Collecting SNMP Integration data

OnCommand Insight

NetApp
October 24, 2024

This PDF was generated from https://docs.netapp.com/us-en/oncommand-insight/howto/importing-snmp-
integration-data.html on October 24, 2024. Always check docs.netapp.com for the latest.



Table of Contents

Collecting SNMP Integration data
Integration packs
Integration file format
Importing SNMP integration packs
Creating an SNMP integration data source
Integration.json file information



Collecting SNMP Integration data

The integration SNMP data source allows you to collect generic SNMP data in
OnCommand Insight.

Integration packs

The SNMP Integration data source uses an “Integration Pack” to define what integration values are collected,
and what SNMP objects provide those values.

An Integration Pack consists of:
» A JSON configuration file (integration.json) defining integration payload contents in terms of SNMP objects
of a specific device type (switch, router, and so on).
» Alist of MIB files that the integration pack depends on.
An integration pack can define multiple data types. For example, when integrating an RHEL host, a data type
can be defined for the general system information such as uptime, number of users, and number of running

processes, a second data type can be defined for data on memory and file system usage. In general, each
data type must be “flat” and cannot contain nested data.

A single integration pack should not define more than 24 data types. Insight limits the amount of integration
data that is collected. Attempting to ingest more than 24 reports over a period of one minute results in a rate
error.

The names for integration types must adhere to the following rules:

* The name cannot start with the following characters: _, -, or,+

* The name cannot contain the following characters: #,\,/, *, ?,", <, >, |, ', ’,
« Cannot be longer than 100 UTF-8 encoded bytes

e Cannot be named . or ..

Integration file format

An integration pack is a ZIP file that contains a JSON configuration file (integration.json) defining the
integration payload contents in terms of SNMP objects. It also contains a MIBS folder that contains all of the
MIB files and their MIB dependencies.

The integration. json file must exist at the top level of the ZIP file and the MIB files must exist in the
"resources/mibs" subdirectory within the ZIP. The ZIP file may also contain files, such as a "readme.txt", if
desired. An example of integration ZIP structure is:



— integration.json
—— resources
mibs

IANA] fType—-MIB.txt
IF-MTB.txt
INET-ADDRESS-MIE. TtXT
IP-MIB.txt
RFC1155-SMI.c=tC
RFC-1212.t=xt
REFC1213-MIB.txtC
SNMPv2-CONF.t=xt
SNMPvZ2-MTB.cxt
SNMPwvZ2-5MI.tCXtT
SHMPv2-TC.txt
TCP-MIB.t=t

Importing SNMP integration packs

You import SNMP integration packs into OnCommand Insight using the web UI.
Integration packs are identified by the "integrationPackName" value defined in the
integration. json configuration file contained in the ZIP file.

Before you begin

You must have created a properly formatted ZIP file that contains the integration pack you want to import to the
OnCommand Insight server.

About this task

Use the following steps to import SNMP integration packs to the Insight server.

Steps
1. Click Admin > Setup > SNMP Integration
The system displays the Import SNMP package screen:

Import SHMP package

= Selectfile | Mo file selected & Import

Warninag: This will overwrite any conflicting package from existing database.

2. Click Select file to select the local file containing the SNMP package.

The file you select is displayed in the File box.



@ Any existing integration pack with the same name is overwritten.

3. Click Import

The file is imported to the Insight server.

Creating an SNMP integration data source

The Integration SNMP Data Source provides common SNMP configuration properties
similar to other SNMP based data sources included with the OnCommand Insight data
sources for Brocade and Cisco.

Before you begin

In order to successfully use the Integration SNMP data source to collect, the following must be true:

* You must have already imported an integration pack you will use for this SNMP data source.
 All target devices share the same credentials.

« All target devices implement the SNMP Objects referenced by the configured integration pack.

About this task

To create an SNMP Integration data source, choose vendor "Integration" and model "SNMP" in the data source
creation wizard.

Steps

1. In the OnCommand Insight web Ul, click Admin > Data Sources
2. Click +Add

3. Enter a name for the Data Source

4. For Vendor, select Integration

5. For Model, select SNMP



13.

14.

Add data source

Settings
*Mame
Vendor Integration j
Model | SNMP -
Where to run local j

Whatto collect & |ntegration (BETA)

Configure

Configuration
Advanced configuration

Test

. For What to collect, check Integration

This is the only package on this data source and is checked by default:

. Click Configuration

. Enter the IP addresses for the systems from which you will collect SNMP data
. Select an imported SNMP Integration Pack

10.
1.
12.

Set the integration poll interval
Select the SNMP version
Enter the SNMP community string

For SNMP V1 and V2.

Add the user name and password for systems you will be collecting data from.
For SNMP V3.

Click Advanced Configuration

The Advanced Configuration default settings are displayed. Make any changes to these settings that are
required.



Integration.json file information

The integration.json file identifies the payload .

The following illustration provides a color-coded representation of a simple integration.json file. The

accompanying table identifies the function of the objects in the file.

{

"integrationPackName": "WindowsSnmp",
"description": "Generic integration for mibs supported by the default
SNMP Agent for Windows 2012, including HOST-RESOURCES",

"acquisitionType": "SNMP",
"integrationTypes": [

"integrationType": "snmp win2012 host",
"name": {
"mibModuleName": "RFC1213-MIB",
"objectName": "sysName"
i

"identifiers": {
"hostname™: {

"mibModuleName": "RFC1213-MIB",

}
35

"attributes": {
"description": {

"mibModuleName": "RFC1213-MIB",

"objectName": "sysDescr"

I
"snmp_sys obj id": {

"mibModuleName": "RFC1213-MIB",

"objectName": "sysObjectID"
]
fs
"dataPoints": {
"uptime": {
"num":
"mibModuleName": "RFC1213-MIB",
"objectName": "sysUpTime"
)
}
J
Y

About integration.json files

Each field has the following characteristics:

PIue

Reserved

Red

User customizable strings and IDs

Green

MIB names

Purple

MIB object

Black

JSON structure

» The "identifiers" section forms a unique compound key to create a new "object" in Insight

* The "attributes" provide supporting meta-data about the object.




In both of these cases, only the value of the latest report for that object (identified by the identifiers) is
preserved.

* The "dataPoints" are time-series data and must be numeric values. Insight keeps each and every value
reported here for 90 days (by default) and links them time-series to the object identified.

Numeric Expressions

By default, all value expressions are reported as strings in the integration payload. "identifiers" and "attributes
may only define string values. "dataPoints" may define string or numeric values. Numeric values are defined
using one of the following modifier keys:

* num - the total number of bytes received since the counter was last initialized

« delta - the number of bytes received during the poll interval

* rate - the average receive rate during the poll interval in bytes per second

An average receive rate during the poll interval in megabytes per second can be accomplished using a
combination of rate and math operations

Math operations

The integration. json file supports the following math operations: add, subtract, multiply, divide. The
following example shows multiplication, division, and sum operations in a JSON file.



"metwork utilization™:

{

WAL
{
mdivT: [
{
Tzum™: [
"rate™: {
"mibModuleName": "TF-MTIE"™,
"objectHame"™: "ifHCCuatOctets™,
"comment™: "bytes per second out™
Yo
"rate™: {
"mibModuleHame™: "IF-MIE",
"objectHName"™: "ifHAHCInCctets"™,
Toomment™: "Thytes per second in™
¥
1
Yo
{
"oamT: |
"mibModuleHame™: "IF-MIE",
"objectHName"™: "ifSpeed"”,
Toomment™: 71,000,000 bits per =second”™
¥
H
1
Yo
{
"consk": 0.0008,
"comment™: "Tnormalize to ratio of bits and convert to percent:
g * 100 f 1,000,000 = 0.0008"™
¥
1
H
Keywords

An integration pack keyword, string, is implemented to force OCTET STRINGs or proprietary types derived
from OCTET STRING that would normally be rendered in hexadecimal format to instead be rendered as ASCII
characters.

Often OCTET STRINGs contain binary data, for example MAC addresses and WWNs:

"interface mac": {
"mibModuleName" : "IF-MIB",
"objectName": "ifPhysAddress"

}

ifPhysAddress is type PhysAddress, which is just an OCTET STRING:



PhysAddress ::= TEXTUAL-CONVENTION

DISPLAY-HINT "1x:"

STATUS
DESCRIPTION

addresses."
SYNTAX

current

"Represents media- or physical-level

OCTET STRING

When ifPhysAddress is rendered as hex by default, the result is:

"interface mac": "00:50:56:A2:07:E7"

However if you have an OCTET STRING or proprietary type derived from OCTET STRING that you want to

interpret as ASCII, you can use the "string" keyword:

"string test 1": {
"string": {
"mibModuleName" :
"objectName":
}
by

"string test 2": {
"string": [

{

"mibModuleName" :

"objectName":

"const": "JSD"

"mibModuleName" :

"objectName":

The keyword follows the existing string concatenation rules, inserting a single space between terms in the

following example:

"IF-MIB",
"ifPhysAddress"

"IF-MIB",
"ifPhysAddress"

"IF-MIB",
"ifPhysAddress"



"string test 1": "PVee",
"string test 2": "PV¢g JSD PVeg"

The "string" keyword acts on a single term or a list of terms, but not nested expressions. Nested expressions
are only supported for dataPoint expressions. Attempting to use a "string" expression in a dataPoint expression
will result in an error similar to the following:

Java.lang.lllegalArgumentException: Integration pack 'GenericSwitch32' index 'snmp_generic_interface_32'
section 'dataPoints' key 'string_test 3" unsupported JSON numeric expression
"{"string":{"mibModuleName":"IF-MIB","objectName":"ifPhysAddress"}}'

Some derived OCTET STRING types such as DisplayString, SnmpAdminString have hard-coded precedence
over the "string" keyword. This is because SnmpAdminString is specifically UTF-8 encoded, and we want to
handle it correctly, whereas the "string" keyword forces the default string representation returned by the
snmp_framework, which assumes single byte ascii code points per character.



Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

10


http://www.netapp.com/TM

	Collecting SNMP Integration data : OnCommand Insight
	Table of Contents
	Collecting SNMP Integration data
	Integration packs
	Integration file format
	Importing SNMP integration packs
	Creating an SNMP integration data source
	Integration.json file information


