

Prepare for switchback in a MetroCluster IP configuration

ONTAP MetroCluster

NetApp April 25, 2024

This PDF was generated from https://docs.netapp.com/us-en/ontap-metrocluster/disasterrecovery/task_prepare_for_switchback_in_a_mcc_ip_configuration_supertask.html on April 25, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Prepare for switchback in a MetroCluster IP configuration	. 1
Prepare for switchback in a MetroCluster IP configuration	. 1
Setting required environmental variables in MetroCluster IP configurations	. 1
Powering on the equipment at the disaster site (MetroCluster IP configurations)	10
Configuring the IP switches (MetroCluster IP configurations)	10
Verify storage connectivity to the remote site (MetroCluster IP configurations).	13
Reassigning disk ownership for pool 1 disks on the disaster site (MetroCluster IP configurations)	14
Booting to ONTAP on replacement controller modules in MetroCluster IP configurations	18
Restoring connectivity from the surviving nodes to the disaster site (MetroCluster IP configurations)	23
Verifying automatic assignment or manually assigning pool 0 drives	23
Assigning pool 1 drives on the surviving site (MetroCluster IP configurations)	25
Deleting failed plexes owned by the surviving site (MetroCluster IP configurations)	26
Performing aggregate healing and restoring mirrors (MetroCluster IP configurations)	34

Prepare for switchback in a MetroCluster IP configuration

Prepare for switchback in a MetroCluster IP configuration

You must perform certain tasks in order to prepare the MetroCluster IP configuration for the switchback operation.

About this task

Setting required environmental variables in MetroCluster IP configurations

In MetroCluster IP configurations, you must retrieve the IP address of the MetroCluster interfaces on the Ethernet ports, and then use them to configure the interfaces on the replacement controller modules.

About this task

This task is required only in MetroCluster IP configurations.

Commands in this task are performed from the cluster prompt of the surviving site and from the LOADER prompt of the nodes at the disaster site.

The nodes in these examples have the following IP addresses for their MetroCluster IP connections:

These examples are for an AFF A700 or FAS9000 system. The interfaces vary by platform model.

Node	Port	IP address
------	------	------------

node_A_1	e5a	172.17.26.10
	e5b	172.17.27.10
node_A_2	e5a	172.17.26.11
	e5b	172.17.27.11
node_B_1	e5a	172.17.26.13
	e5b	172.17.27.13
node_B_2	e5a	172.17.26.12
	e5b	172.17.27.12

The following table summarizes the relationships between the nodes and each node's MetroCluster IP addresses.

Node	HA partner	DR partner	DR auxiliary partner
node_A_1	node_A_2	node_B_1	node_B_2
• e5a: 172.17.26.10	• e5a: 172.17.26.11	• e5a: 172.17.26.13	• e5a: 172.17.26.12
• e5b: 172.17.27.10	• e5b: 172.17.27.11	• e5b: 172.17.27.13	• e5b: 172.17.27.12
node_A_2	node_A_1	node_B_2	node_B_1
• e5a: 172.17.26.11	• e5a: 172.17.26.10	• e5a: 172.17.26.12	• e5a: 172.17.26.13
• e5b: 172.17.27.11	• e5b: 172.17.27.10	• e5b: 172.17.27.12	• e5b: 172.17.27.13
node_B_1	node_B_2	node_A_1	node_A_2
• e5a: 172.17.26.13	• e5a: 172.17.26.12	• e5a: 172.17.26.10	• e5a: 172.17.26.11
• e5b: 172.17.27.13	• e5b: 172.17.27.12	• e5b: 172.17.27.10	• e5b: 172.17.27.11
node_B_2	node_B_1	node_A_2	node_A_1
• e5a: 172.17.26.12	• e5a: 172.17.26.13	• e5a: 172.17.26.11	• e5a: 172.17.26.10
• e5b: 172.17.27.12	• e5b: 172.17.27.13	• e5b: 172.17.27.11	• e5b: 172.17.27.10

The following table lists the platform models that use VLAN IDs on the MetroCluster IP interfaces. These models might require additional steps if you are not using the default VLAN IDs.

Platform models that use VLAN IDs with the MetroCluster IP interfaces

• AFF A220	• FAS500f
• AFF A250	• FAS2750
• AFF A400	• FAS8300
	• FAS8700

Steps

1. From the surviving site, gather the IP addresses of the MetroCluster interfaces on the disaster site:

metrocluster configuration-settings connection show

The required addresses are the DR Partner addresses shown in the **Destination Network Address** column.

The following output shows the IP addresses for a configuration with AFF A700 and FAS9000 systems with the MetroCluster IP interfaces on ports e5a and e5b. The interfaces vary depending on platform type.

cluster B::*> metrocluster configuration-settings connection show Destination DR Source DR Destination Source Group Cluster Node Network Address Network Address Partner Type Config State _____ ___ ----- -----_____ 1 cluster B node B 1 Home Port: e5a 172.17.26.13 172.17.26.12 HA Partner completed Home Port: e5a 172.17.26.13 172.17.26.10 DR Partner completed Home Port: e5a 172.17.26.13 172.17.26.11 DR Auxiliary completed Home Port: e5b 172.17.27.13 HA Partner 172.17.27.12 completed Home Port: e5b 172.17.27.13 172.17.27.10 DR Partner completed Home Port: e5b 172.17.27.13 172.17.27.11 DR Auxiliary completed node B 2 Home Port: e5a

		172.17.26.12	172.17.26.13	HA	Partner
completed	Home	Port: e5a			
	nome	172.17.26.12	172.17.26.11	DR	Partner
completed					
	Home	Port: e5a			
		172.17.26.12	172.17.26.10	DR	Auxiliary
completed					
	Home	Port: e5b			
		172.17.27.12	172.17.27.13	HA	Partner
completed					
	Home	Port: e5b			
		172.17.27.12	172.17.27.11	DR	Partner
completed					
	Home	Port: e5b			
		172.17.27.12	172.17.27.10	DR	Auxiliary
completed					
12 entries were o	displa	ayed.			

2. If you need to determine the VLAN ID or gateway address for the interface, determine the VLAN IDs from the surviving site:

metrocluster configuration-settings interface show

- You need the VLAN ID if the platform models use VLAN IDs (see the list above), and if you are not using the default VLAN IDs.
- You need the gateway address if you are using Layer 3 wide-area networks.

The VLAN IDs are included in the **Network Address** column of the output. The **Gateway** column shows the gateway IP address.

In this example the interfaces are e0a with the VLAN ID 120 and e0b with the VLAN ID 130:

```
Cluster-A::*> metrocluster configuration-settings interface show
DR
Config
Group Cluster Node Network Address Netmask
                                                   Gateway
State
_____ _____
_____
1
     cluster A
             node A 1
                Home Port: e0a-120
                        172.17.26.10 255.255.255.0 -
completed
                Home Port: e0b-130
                        172.17.27.10 255.255.255.0 -
completed
```

3. If the disaster site nodes use VLAN IDs (see the list above), at the LOADER prompt for each of the disaster site nodes, set the following bootargs:

```
setenv bootarg.mcc.port_a_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-address,DR-
aux-partnerIP-address,vlan-id
setenv bootarg.mcc.port_b_ip_config local-IP-address/local-IP-
mask,gateway-IP-address,HA-partner-IP-address,DR-partner-IP-address,DR-
aux-partnerIP-address,vlan-id
```

- If the interfaces are using the default VLANs, or the platform model does not require a VLAN (see the list above), the *vlan-id* is not necessary.
- If the configuration is not using Layer3 wide-area networks, the value for *gateway-IP-address* is **0** (zero).
- If the interfaces are using the default VLANs, or the platform model does not require a VLAN (see the list above), the *vlan-id* is not necessary.

÷.

• If the configuration is not using layer 3 backend connections, the value for *gateway-IP-address* is **0** (zero).

The following commands set the values for node_A_1 using VLAN 120 for the first network and VLAN 130 for the second network:

```
setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,172.17.26.11,172.17.26.13,172.17.26.12,120
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,172.17.27.11,172.17.27.13,172.17.27.12,130
```

The following example shows the commands for node_A_1 without a VLAN ID:

```
setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,172.17.26.11,172.17.26.13,172.17.26.12
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,172.17.27.11,172.17.27.13,172.17.27.12
```

4. If the disaster site nodes are not systems that use VLAN IDs, at the LOADER prompt for each of the disaster nodes, set the following bootargs with local_IP/mask,gateway:

```
setenv bootarg.mcc.port_a_ip_config local-IP-address/local-IP-mask,0,HA-
partner-IP-address,DR-partner-IP-address,DR-aux-partnerIP-address
setenv bootarg.mcc.port_b_ip_config local-IP-address/local-IP-mask,0,HA-
partner-IP-address,DR-partner-IP-address,DR-aux-partnerIP-address
```


- If the interfaces are using the default VLANs, or the platform model does not require a VLAN (see the list above), the *vlan-id* is not necessary.
- If the configuration is not using Layer 3 wide-area networks, the value for *gateway-IP-address* is **0** (zero).

The following commands set the values for node_A_1. In this example, the *gateway-IP-address* and *vlan-id* values are not used.

```
setenv bootarg.mcc.port_a_ip_config
172.17.26.10/23,0,172.17.26.11,172.17.26.13,172.17.26.12
setenv bootarg.mcc.port_b_ip_config
172.17.27.10/23,0,172.17.27.11,172.17.27.13,172.17.27.12
```

5. From the surviving site, gather the UUIDs for the disaster site:

metrocluster node show -fields node-cluster-uuid, node-uuid

```
cluster B::> metrocluster node show -fields node-cluster-uuid, node-uuid
  (metrocluster node show)
dr-group-id cluster node node-uuid
node-cluster-uuid
_____ ____
_____
         cluster A node A 1 f03cb63c-9a7e-11e7-b68b-00a098908039
1
ee7db9d5-9a82-11e7-b68b-00a098
908039
1
         cluster_A node_A_2 aa9a7a7a-9a81-11e7-a4e9-00a098908c35
ee7db9d5-9a82-11e7-b68b-00a098
908039
1
         cluster B node B 1 f37b240b-9ac1-11e7-9b42-00a098c9e55d
07958819-9ac6-11e7-9b42-00a098
c9e55d
1
          cluster B node B 2 bf8e3f8f-9ac4-11e7-bd4e-00a098ca379f
07958819-9ac6-11e7-9b42-00a098
c9e55d
4 entries were displayed.
cluster A::*>
```

Node	UUID
cluster_B	07958819-9ac6-11e7-9b42-00a098c9e55d
node_B_1	f37b240b-9ac1-11e7-9b42-00a098c9e55d
node_B_2	bf8e3f8f-9ac4-11e7-bd4e-00a098ca379f
cluster_A	ee7db9d5-9a82-11e7-b68b-00a098908039
node_A_1	f03cb63c-9a7e-11e7-b68b-00a098908039
node_A_2	aa9a7a7a-9a81-11e7-a4e9-00a098908c35

6. At the replacement nodes' LOADER prompt, set the UUIDs:

```
setenv bootarg.mgwd.partner_cluster_uuid partner-cluster-UUID
setenv bootarg.mgwd.cluster_uuid local-cluster-UUID
setenv bootarg.mcc.pri_partner_uuid DR-partner-node-UUID
setenv bootarg.mcc.aux_partner_uuid DR-aux-partner-node-UUID
setenv bootarg.mcc_iscsi.node_uuid local-node-UUID`
```

a. Set the UUIDs on node_A_1.

The following example shows the commands for setting the UUIDs on node_A_1:

```
setenv bootarg.mgwd.cluster_uuid ee7db9d5-9a82-11e7-b68b-00a098908039
setenv bootarg.mgwd.partner_cluster_uuid 07958819-9ac6-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.pri_partner_uuid f37b240b-9ac1-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.aux_partner_uuid bf8e3f8f-9ac4-11e7-bd4e-
00a098ca379f
setenv bootarg.mcc_iscsi.node_uuid f03cb63c-9a7e-11e7-b68b-
00a098908039
```

b. Set the UUIDs on node_A_2:

The following example shows the commands for setting the UUIDs on node_A_2:

```
setenv bootarg.mgwd.cluster_uuid ee7db9d5-9a82-11e7-b68b-00a098908039
setenv bootarg.mgwd.partner_cluster_uuid 07958819-9ac6-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc.pri_partner_uuid bf8e3f8f-9ac4-11e7-bd4e-
00a098ca379f
setenv bootarg.mcc.aux_partner_uuid f37b240b-9ac1-11e7-9b42-
00a098c9e55d
setenv bootarg.mcc_iscsi.node_uuid aa9a7a7a-9a81-11e7-a4e9-
00a098908c35
```

If the original systems were configured for ADP, at each of the replacement nodes' LOADER prompt, enable ADP:

setenv bootarg.mcc.adp_enabled true

8. If running ONTAP 9.5, 9.6 or 9.7, at each of the replacement nodes' LOADER prompt, enable the following variable:

setenv bootarg.mcc.lun_part true

a. Set the variables on node_A_1.

The following example shows the commands for setting the values on node_A_1 when running ONTAP 9.6:

setenv bootarg.mcc.lun_part true

b. Set the variables on node_A_2.

The following example shows the commands for setting the values on node_A_2 when running ONTAP 9.6:

setenv bootarg.mcc.lun_part true

 If the original systems were configured for ADP, at each of the replacement nodes' LOADER prompt, set the original system ID (not the system ID of the replacement controller module) and the system ID of the DR partner of the node:

setenv bootarg.mcc.local config id original-sysID

setenv bootarg.mcc.dr_partner dr_partner-sysID

Determining the system IDs and VLAN IDs of the old controller modules

a. Set the variables on node_A_1.

The following example shows the commands for setting the system IDs on node_A_1:

- The old system ID of node_A_1 is 4068741258.
- The system ID of node_B_1 is 4068741254.

setenv bootarg.mcc.local_config_id 4068741258
setenv bootarg.mcc.dr partner 4068741254

b. Set the variables on node_A_2.

The following example shows the commands for setting the system IDs on node_A_2:

- The old system ID of node_A_1 is 4068741260.
- The system ID of node_B_1 is 4068741256.

setenv bootarg.mcc.local_config_id 4068741260
setenv bootarg.mcc.dr partner 4068741256

Powering on the equipment at the disaster site (MetroCluster IP configurations)

You must power on the disk shelves and MetroCluster IP switches components at the disaster site. The controller modules at the disaster site remain at the LOADER prompt.

About this task

The examples in this procedure assume the following:

- Site A is the disaster site.
- Site B is the surviving site.

Steps

- 1. Turn on the disk shelves at the disaster site and make sure that all disks are running.
- 2. Turn on the MetroCluster IP switches if they are not already on.

Configuring the IP switches (MetroCluster IP configurations)

You must configure any IP switches that were replaced.

About this task

This task applies to MetroCluster IP configurations only.

This must be done on both switches. Verify after configuring the first switch that storage access on the

surviving site is not impacted.

You must not proceed with the second switch if storage access on the surviving site is impacted.

Steps

1. Refer to MetroCluster IP installation and configuration: : Differences among the ONTAP MetroCluster configurations for procedures for cabling and configuring a replacement switch.

You can use the procedures in the following sections:

- Cabling the IP switches
- · Configuring the IP switches
- 2. If the ISLs were disabled at the surviving site, enable the ISLs and verify that the ISLs are online.
 - a. Enable the ISL interfaces on the first switch:

no shutdown

The following examples show the commands for a Broadcom IP switch or a Cisco IP switch.

Switch vendor	Commands	
Broadcom	<pre>(IP_Switch_A_1) > enable (IP_switch_A_1) # configure (IP_switch_A_1) (Config) # interface 0/13-0/16 (IP_switch_A_1) (Interface 0/13- 0/16) # no shutdown (IP_switch_A_1) (Interface 0/13- 0/16) # exit (IP_switch_A_1) (Config) # exit</pre>	
Cisco	<pre>IP_switch_A_1# conf t IP_switch_A_1(config)# int eth1/15-eth1/20 IP_switch_A_1(config)# no shutdown IP_switch_A_1(config)# copy running startup IP_switch_A_1(config)# show interface brief</pre>	

b. Enable the ISL interfaces on the partner switch:

no shutdown

The following examples show the commands for a Broadcom IP switch or a Cisco IP switch.

Switch vendor	Commands		
Broadcom	<pre>(IP_Switch_A_2)> enable (IP_switch_A_2)# configure (IP_switch_A_2) (Config)# interface 0/13-0/16 (IP_switch_A_2) (Interface 0/13- 0/16)# no shutdown (IP_switch_A_2) (Interface 0/13- 0/16)# exit (IP_switch_A_2) (Config)# exit</pre>		
Cisco	<pre>IP_switch_A_2# conf t IP_switch_A_2(config) # int eth1/15-eth1/20 IP_switch_A_2(config) # no shutdown IP_switch_A_2(config) # copy running startup IP_switch_A_2(config) # show interface brief</pre>		

c. Verify that the interfaces are enabled:

show interface brief

The following example shows the output for a Cisco switch.

```
IP switch A 2(config) # show interface brief
_____
Port VRF Status IP Address Speed MTU
_____
mt0 -- up 10.10.99.10 100 1500
_____
Ethernet
      VLAN Type Mode Status Reason Speed Port
Interface
                                 Ch
#
_____
.
Eth1/15 10 eth access up
                      none 40G(D) --
Eth1/16
      10 eth access up
                      none 40G(D) --
Eth1/17 10 eth access down none auto(D) --
Eth1/18 10 eth access down none auto(D) --
      10 eth access down none auto(D) --
Eth1/19
          eth access down none auto(D) --
Eth1/20 10
IP switch A 2#
```

Verify storage connectivity to the remote site (MetroCluster IP configurations)

You must confirm that the replaced nodes have connectivity to the disk shelves at the surviving site.

About this task

This task is performed on the replacement nodes at the disaster site.

This task is performed in Maintenance mode.

Steps

1. Display the disks that are owned by the original system ID.

```
disk show -s old-system-ID
```

The remote disks can be recognized by the 0m device. 0m indicates that the disk is connected via the MetroCluster iSCSI connection. These disks must be reassigned later in the recovery procedure.

```
*> disk show -s 4068741256
Local System ID: 1574774970
 DISK OWNER
                            POOL SERIAL NUMBER
                                               HOME
DR HOME
 -----
Om.i0.0L11 node A 2 (4068741256) Pool1 S396NA0HA02128 node A 2
(4068741256) node A 2 (4068741256)
Om.i0.1L38 node A 2 (4068741256) Pool1 S396NA0J148778
                                               node A 2
(4068741256) node A 2 (4068741256)
Om.i0.0L52 node A 2 (4068741256) Pool1 S396NA0J148777 node A 2
(4068741256) node A 2 (4068741256)
. . .
. . .
NOTE: Currently 49 disks are unowned. Use 'disk show -n' for additional
information.
*>
```

2. Repeat this step on the other replacement nodes

Reassigning disk ownership for pool 1 disks on the disaster site (MetroCluster IP configurations)

If one or both of the controller modules or NVRAM cards were replaced at the disaster site, the system ID has changed and you must reassign disks belonging to the root aggregates to the replacement controller modules.

About this task

Because the nodes are in switchover mode, only the disks containing the root aggregates of pool1 of the disaster site will be reassigned in this task. They are the only disks still owned by the old system ID at this point.

This task is performed on the replacement nodes at the disaster site.

This task is performed in Maintenance mode.

The examples make the following assumptions:

- Site A is the disaster site.
- node_A_1 has been replaced.
- node_A_2 has been replaced.
- Site B is the surviving site.
- node_B_1 is healthy.
- node_B_2 is healthy.

The old and new system IDs were identified in Determining the new System IDs of the replacement controller modules.

Node	Original system ID	New system ID
node_A_1	4068741258	1574774970
node_A_2	4068741260	1574774991
node_B_1	4068741254	unchanged
node_B_2	4068741256	unchanged

The examples in this procedure use controllers with the following system IDs:

Steps

1. With the replacement node in Maintenance mode, reassign the root aggregate disks, using the correct command, depending on whether your system is configured with ADP and your ONTAP version.

You can proceed with the reassignment when prompted.

If the system is using ADP…	Use this command for disk reassignment
Yes (ONTAP 9.8)	disk reassign -s old-system-ID -d new- system-ID -r dr-partner-system-ID
Yes (ONTAP 9.7.x and earlier)	disk reassign -s old-system-ID -d new- system-ID -p old-partner-system-ID
No	disk reassign -s old-system-ID -d new- system-ID

The following example shows reassignment of drives on a non-ADP system:

*> disk reassign -s 4068741256 -d 1574774970 Partner node must not be in Takeover mode during disk reassignment from maintenance mode. Serious problems could result !! Do not proceed with reassignment if the partner is in takeover mode. Abort reassignment (y/n)? n After the node becomes operational, you must perform a takeover and giveback of the HA partner node to ensure disk reassignment is successful. Do you want to continue (y/n)? y Disk ownership will be updated on all disks previously belonging to Filer with sysid 537037643. Do you want to continue (y/n)? y disk reassign parameters: new home owner id 537070473 , new home owner name Disk Om.i0.3L14 will be reassigned. Disk Om.iO.1L6 will be reassigned. Disk Om.i0.1L8 will be reassigned. Number of disks to be reassigned: 3

2. Destroy the contents of the mailbox disks:

mailbox destroy local

You can proceed with the destroy operation when prompted.

The following example shows the output for the mailbox destroy local command:

```
*> mailbox destroy local
Destroying mailboxes forces a node to create new empty mailboxes,
which clears any takeover state, removes all knowledge
of out-of-date plexes of mirrored volumes, and will prevent
management services from going online in 2-node cluster
HA configurations.
Are you sure you want to destroy the local mailboxes? y
.....Mailboxes destroyed.
*>
```

- 3. If disks have been replaced, there will be failed local plexes that must be deleted.
 - a. Display the aggregate status:

aggr status

In the following example, plex node_A_1_aggr0/plex0 has failed.

```
*> aggr status
Aug 18 15:00:07 [node B 1:raid.vol.mirror.degraded:ALERT]: Aggregate
node A 1 aggr0 is
   mirrored and one plex has failed. It is no longer protected by
mirroring.
Aug 18 15:00:07 [node B 1:raid.debug:info]: Mirrored aggregate
node A 1 aggr0 has plex0
   clean(-1), online(0)
Aug 18 15:00:07 [node B 1:raid.debug:info]: Mirrored aggregate
node A 1 aggr0 has plex2
   clean(0), online(1)
Aug 18 15:00:07 [node B 1:raid.mirror.vote.noRecord1Plex:error]:
WARNING: Only one plex
   in aggregate node A 1 aggr0 is available. Aggregate might contain
stale data.
Aug 18 15:00:07 [node B 1:raid.debug:info]:
volobj mark sb recovery aggrs: tree:
   node A 1 aggr0 vol state:1 mcc dr opstate: unknown
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0 (VOL):
   raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1_aggr0 (MIRROR):
   raid state change UNINITD -> DEGRADED
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex0
   (PLEX): raid state change UNINITD -> FAILED
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex2
   (PLEX): raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.fsm.commitStateTransit:debug]:
/node A 1 aggr0/plex2/rg0
   (GROUP): raid state change UNINITD -> NORMAL
Aug 18 15:00:07 [node B 1:raid.debug:info]: Topology updated for
aggregate node A 1 aggr0
  to plex plex2
*>
```

b. Delete the failed plex:

```
aggr destroy plex-id
```

*> aggr destroy node A_1_aggr0/plex0

4. Halt the node to display the LOADER prompt:

halt

5. Repeat these steps on the other node at the disaster site.

Booting to ONTAP on replacement controller modules in MetroCluster IP configurations

You must boot the replacement nodes at the disaster site to the ONTAP operating system.

About this task

This task begins with the nodes at the disaster site in Maintenance mode.

Steps

- 1. On one of the replacement nodes, exit to the LOADER prompt: halt
- 2. Display the boot menu: boot_ontap menu
- 3. From the boot menu, select option 6, Update flash from backup config.

The system boots twice. You should respond yes when prompted to continue. After the second boot, you should respond y when prompted about the system ID mismatch.

If you did not clear the NVRAM contents of a used replacement controller module, then you might see the following panic message: PANIC: NVRAM contents are invalid.... If this occurs, boot the system to the ONTAP prompt again (boot_ontap menu). You then need to Reset the boot_recovery and rdb_corrupt bootargs

• Confirmation to continue prompt:

```
Selection (1-9)? 6
This will replace all flash-based configuration with the last backup
to
disks. Are you sure you want to continue?: yes
```

• System ID mismatch prompt:

```
WARNING: System ID mismatch. This usually occurs when replacing a boot device or NVRAM cards!
Override system ID? {y|n} y
```

4. From the surviving site, verify that the correct partner system IDs have been applied to the nodes:

```
metrocluster node show -fields node-systemid,ha-partner-systemid,dr-partner-
systemid,dr-auxiliary-systemid
```

In this example, the following new system IDs should appear in the output:

- Node A 1: 1574774970
- Node_A_2: 1574774991

The "ha-partner-systemid" column should show the new system IDs.

```
metrocluster node show -fields node-systemid, ha-partner-systemid, dr-
partner-systemid, dr-auxiliary-systemid
dr-group-id cluster node node-systemid ha-partner-systemid dr-
partner-systemid dr-auxiliary-systemid
_____ ____
 _____ __________ ______
   Cluster A Node A 1 1574774970 1574774991
1
4068741254
               4068741256
        Cluster_A Node_A_2 1574774991 1574774970
1
4068741256
               4068741254
1
         Cluster B Node B 1 -
_
1
         Cluster B Node B 2 -
4 entries were displayed.
```

- 5. If the partner system IDs were not correctly set, you must manually set the correct value:
 - a. Halt and display the LOADER prompt on the node.
 - b. Verify the partner-sysID bootarg's current value:

printenv

c. Set the value to the correct partner system ID:

setenv partner-sysid partner-sysID

d. Boot the node:

boot_ontap

- e. Repeat these substeps on the other node, if necessary.
- 6. Confirm that the replacement nodes at the disaster site are ready for switchback:

metrocluster node show

The replacement nodes should be in waiting for switchback recovery mode. If they are in normal mode instead, you can reboot the replacement nodes. After that boot, the nodes should be in waiting for switchback recovery mode.

The following example shows that the replacement nodes are ready for switchback:

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ _____ 1 cluster B node B 1 configured enabled switchover completed node B 2 configured enabled switchover completed cluster A configured enabled waiting for node A 1 switchback recovery node A 2 configured enabled waiting for switchback recovery 4 entries were displayed. cluster B::>

7. Verify the MetroCluster connection configuration settings:

metrocluster configuration-settings connection show

The configuration state should indicate completed.

```
cluster B::*> metrocluster configuration-settings connection show
                Source Destination
DR
Group Cluster Node Network Address Network Address Partner Type
Config State
_____ _____
_____
1 cluster B
           node B 2
             Home Port: e5a
                 172.17.26.13 172.17.26.12 HA Partner
completed
             Home Port: e5a
                 172.17.26.13 172.17.26.10 DR Partner
completed
             Home Port: e5a
                 172.17.26.13 172.17.26.11 DR Auxiliary
completed
             Home Port: e5b
              172.17.27.13 172.17.27.12 HA Partner
completed
```

Hom	e Port: e5b		
	172.17.27.13	172.17.27.10	DR Partner
completed			
Hom	e Port: e5b		
	172.17.27.13	172.17.27.11	DR Auxiliary
completed			
node B	1		
Hom	e Port: e5a		
	172.17.26.12	172.17.26.13	HA Partner
completed			
Hom	e Port: e5a		
	172.17.26.12	172.17.26.11	DR Partner
completed			
Hom	e Port: e5a		
	172.17.26.12	172.17.26.10	DR Auxiliary
completed			
Hom	e Port: e5b		
	172.17.27.12	172.17.27.13	HA Partner
completed			
Hom	e Port: e5b		
	172.17.27.12	172.17.27.11	DR Partner
completed			
Hom	e Port: e5b		
	172.17.27.12	172.17.27.10	DR Auxiliary
completed			
cluster_A			
node_A	_2		
Hom	e Port: e5a		
	172.17.26.11	172.17.26.10	HA Partner
completed			
Hom	e Port: e5a		
	172.17.26.11	172.17.26.12	DR Partner
completed			
Hom	e Port: e5a		
	172.17.26.11	172.17.26.13	DR Auxiliary
completed			
Hom	e Port: e5b		
	172.17.27.11	172.17.27.10	HA Partner
completed			
Hom	e Port: e5b		
	172.17.27.11	172.17.27.12	DR Partner
completed			
Hom	e Port: e5b		
	172.17.27.11	172.17.27.13	DR Auxiliary
completed			
node_A	_1		

Home Port: e5a 172.17.26.10 172.17.26.11 HA Partner completed Home Port: e5a 172.17.26.10 172.17.26.13 DR Partner completed Home Port: e5a 172.17.26.10 172.17.26.12 DR Auxiliary completed Home Port: e5b 172.17.27.10 172.17.27.11 HA Partner completed Home Port: e5b 172.17.27.10 172.17.27.13 DR Partner completed Home Port: e5b 172.17.27.10 172.17.27.12 DR Auxiliary completed 24 entries were displayed. cluster B::*>

8. Repeat the previous steps on the other node at the disaster site.

Reset the boot_recovery and rdb_corrupt bootargs

If required, you can reset the boot_recovery and rdb_corrupt_bootargs

Steps

1. Halt the node back to the LOADER prompt:

node_A_1::*> halt -node _node-name_

2. Check if the following bootargs have been set:

LOADER> printenv bootarg.init.boot_recovery LOADER> printenv bootarg.rdb corrupt

3. If either bootarg has been set to a value, unset it and boot ONTAP:

```
LOADER> unsetenv bootarg.init.boot_recovery
LOADER> unsetenv bootarg.rdb_corrupt
LOADER> saveenv
LOADER> bye
```

Restoring connectivity from the surviving nodes to the disaster site (MetroCluster IP configurations)

You must restore the MetroCluster iSCSI initiator connections from the surviving nodes.

About this task

This procedure is only required on MetroCluster IP configurations.

Steps

1. From either surviving node's prompt, change to the advanced privilege level:

```
set -privilege advanced
```

You need to respond with y when prompted to continue into advanced mode and see the advanced mode prompt (*>).

2. Connect the iSCSI initiators on both surviving nodes in the DR group:

```
storage iscsi-initiator connect -node surviving-node -label *
```

The following example shows the commands for connecting the initiators on site B:

```
site_B::*> storage iscsi-initiator connect -node node_B_1 -label *
site B::*> storage iscsi-initiator connect -node node B 2 -label *
```

3. Return to the admin privilege level:

```
set -privilege admin
```

Verifying automatic assignment or manually assigning pool 0 drives

On systems configured for ADP, you must verify that pool 0 drives have been automatically assigned. On systems that are not configured for ADP, you must manually assign the pool 0 drives.

Verifying drive assignment of pool 0 drives on ADP systems at the disaster site (MetroCluster IP systems)

If drives have been replaced at the disaster site and the system is configured for ADP, you must verify that the remote drives are visible to the nodes and have been assigned correctly.

Step

1. Verify that pool 0 drives are assigned automatically:

disk show

In the following example for an AFF A800 system with no external shelves, one quarter (8 drives) were automatically assigned to node_A_1 and one quarter were automatically assigned to node_A_2. The remaining drives will be remote (pool1) drives for node_B_1 and node_B_2.

cluster_A::*> disk show											
	Usable	Disk		Container		Container					
Disk	Size	Shelf	Вау	Туре	Туре	Name					
Owner											
node_A_1:0n.12	1.75TB	0	12	SSD-NVM	shared	aggr0					
node_A_1											
node_A_1:0n.13	1.75TB	0	13	SSD-NVM	shared	aggr0					
node_A_1											
node_A_1:0n.14	1.75TB	0	14	SSD-NVM	shared	aggr0					
node_A_1											
node_A_1:0n.15	1.75TB	0	15	SSD-NVM	shared	aggr0					
node_A_1											
node_A_1:0n.16	1.75TB	0	16	SSD-NVM	shared	aggr0					
node_A_1											
node_A_1:0n.17	1.75TB	0	17	SSD-NVM	shared	aggr0					
node_A_1						<u>,</u>					
node_A_1:0n.18	1.75TB	0	18	SSD-NVM	shared	aggr0					
node_A_1	4 85	0	1.0								
node_A_1:Un.19	1.75'I'B	0	19	SSD-NVM	shared	-					
node_A_1	1 7575	0	0		, ,						
node_A_2:Un.U	1./5TB	0	0	SSD-NVM	shared						
aggrU_node_A_2_U	node_A_2	0	1		, ,						
noae_A_2:un.1	T. / 2.I.R	0	T	SSD-NVM	snared						
aggru_node_A_2_0	node_A_2	0	2		a ha wa -l						
noae_A_2:Un.2	T. / 2.I.R	0	2	SSD-NVM	snared						
aggru_node_A_2_U	node_A_2	0	2								
noae_A_2:Un.3	T. / S.I.R	0	3	SSD-NVM	snared						
aggru_node_A_2_0	node_A_2	0	4								
noae_A_2:Un.4	T. / 2.1,B	0	4	SSD-NVM	snared						
aggru_node_A_2_0	node_A_2	0	-		, ,						
node_A_2:Un.5	1./5'I'B	0	5	SSD-NVM	shared						

aggr0_node_A_2_0	node_A_2									
node_A_2:0n.6	1.75TB	0	6	SSD-NVM	shared					
aggr0_node_A_2_0	node_A_2									
node_A_2:0n.7	1.75TB	0	7	SSD-NVM	shared	-				
node_A_2										
node_A_2:0n.24	-	0	24	SSD-NVM	unassigned	-	-			
node_A_2:0n.25	-	0	25	SSD-NVM	unassigned	-	-			
node_A_2:0n.26	-	0	26	SSD-NVM	unassigned	_	-			
node_A_2:0n.27	-	0	27	SSD-NVM	unassigned	-	-			
node_A_2:0n.28	-	0	28	SSD-NVM	unassigned	-	-			
node_A_2:0n.29	-	0	29	SSD-NVM	unassigned	-	-			
node_A_2:0n.30	-	0	30	SSD-NVM	unassigned	-	-			
node_A_2:0n.31	-	0	31	SSD-NVM	unassigned	-	-			
node_A_2:0n.36	-	0	36	SSD-NVM	unassigned	-	-			
node_A_2:0n.37	-	0	37	SSD-NVM	unassigned	-	-			
node_A_2:0n.38	-	0	38	SSD-NVM	unassigned	-	-			
node_A_2:0n.39	-	0	39	SSD-NVM	unassigned	-	-			
node_A_2:0n.40	-	0	40	SSD-NVM	unassigned	-	-			
node_A_2:0n.41	-	0	41	SSD-NVM	unassigned	-	-			
node_A_2:0n.42	-	0	42	SSD-NVM	unassigned	-	-			
node_A_2:0n.43	-	0	43	SSD-NVM	unassigned	-	-			
32 entries were displayed.										

Assigning pool 0 drives on non-ADP systems at the disaster site (MetroCluster IP configurations)

If drives have been replaced at the disaster site and the system is not configured for ADP, you need to manually assign new drives to pool 0.

About this task

For ADP systems, the drives are assigned automatically.

Steps

1. On one of the replacement nodes at the disaster site, reassign the node's pool 0 drives:

storage disk assign -n number-of-replacement disks -p 0

This command assigns the newly added (and unowned) drives on the disaster site. You should assign the same number and size (or larger) of drives that the node had prior to the disaster. The storage disk assign man page contains more information about performing more granular drive assignment.

2. Repeat the step on the other replacement node at the disaster site.

Assigning pool 1 drives on the surviving site (MetroCluster IP configurations)

If drives have been replaced at the disaster site and the system is not configured for ADP,

at the surviving site you need to manually assign remote drives located at the disaster site to the surviving nodes' pool 1. You must identify the number of drives to assign.

About this task

For ADP systems, the drives are assigned automatically.

Step

1. On the surviving site, assign the first node's pool 1 (remote) drives: storage disk assign -n number-of-replacement disks -p 1 0m*

This command assigns the newly added and unowned drives on the disaster site.

The following command assigns 22 drives:

cluster_B::> storage disk assign -n 22 -p 1 0m*

Deleting failed plexes owned by the surviving site (MetroCluster IP configurations)

After replacing hardware and assigning disks, you must delete failed remote plexes that are owned by the surviving site nodes but located at the disaster site.

About this task

These steps are performed on the surviving cluster.

Steps

1. Identify the local aggregates: storage aggregate show -is-home true

degraded node B 1 aggr1 2.99TB 2.88TB 3% online 15 node B 1 raid dp, mirror degraded node_B_1_aggr2 2.99TB 2.91TB 3% online 14 node_B_1 raid_tec, mirror degraded node B 2 aggr1 2.95TB 2.80TB 5% online 37 node B 2 raid dp, mirror degraded node_B_2_aggr2_2.99TB_2.87TB__4% online 35 node_B_2 raid_tec, mirror degraded 6 entries were displayed. cluster B::>

2. Identify the failed remote plexes:

storage aggregate plex show

The following example calls out the plexes that are remote (not plex0) and have a status of "failed":

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool aggregate is-online pool plex status ----- ----- ------ ------ ----node B 1 aggr0 plex0 normal,active true 0 node B 1 aggr0 plex4 failed, inactive false - <<<<---Plex at remote site node B 2 aggr0 plex0 normal, active true 0 node B 2 aggr0 plex4 failed, inactive false - <<<---Plex at remote site node B 1 aggr1 plex0 normal, active true 0 node B 1 aggr1 plex4 failed, inactive false - <<<<---Plex at remote site node B 1 aggr2 plex0 normal, active true 0 node B 1 aggr2 plex1 failed, inactive false - <<<<---Plex at remote site node B 2 aggr1 plex0 normal,active true 0 node B 2 aggr1 plex4 failed, inactive false - <<<<---Plex at remote site node B 2 aggr2 plex0 normal, active true 0 node B 2 aggr2 plex1 failed, inactive false - <<<<---Plex at remote site node A 1 aggr1 plex0 failed, inactive false node A 1 aggr1 plex4 normal, active true 1 node A 1 aggr2 plex0 failed, inactive false node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false node A 2 aggr1 plex4 normal,active true 1 node A 2 aggr2 plex0 failed,inactive false node A 2 aggr2 plex1 normal, active true 1 20 entries were displayed. cluster B::>

- 3. Take offline each of the failed plexes, and then delete them:
 - a. Take offline the failed plexes:

```
storage aggregate plex offline -aggregate aggregate-name -plex plex-id
```

The following example shows the aggregate "node B 2 aggr1/plex1" being taken offline:

```
cluster_B::> storage aggregate plex offline -aggregate node_B_1_aggr0
-plex plex4
```

Plex offline successful on plex: node B 1 aggr0/plex4

b. Delete the failed plex:

```
storage aggregate plex delete -aggregate aggregate-name -plex plex-id
```

You can destroy the plex when prompted.

The following example shows the plex node_B_2_aggr1/plex1 being deleted.

```
cluster B::> storage aggregate plex delete -aggregate node B 1 aggr0
-plex plex4
Warning: Aggregate "node B 1 aggr0" is being used for the local
management root
        volume or HA partner management root volume, or has been
marked as
        the aggregate to be used for the management root volume
after a
        reboot operation. Deleting plex "plex4" for this aggregate
could lead
        to unavailability of the root volume after a disaster
recovery
        procedure. Use the "storage aggregate show -fields
        has-mroot, has-partner-mroot, root" command to view such
aggregates.
Warning: Deleting plex "plex4" of mirrored aggregate "node B 1 aggr0"
on node
         "node B 1" in a MetroCluster configuration will disable its
         synchronous disaster recovery protection. Are you sure you
want to
        destroy this plex? {y|n}: y
[Job 633] Job succeeded: DONE
cluster B::>
```

You must repeat these steps for each of the failed plexes.

4. Confirm that the plexes have been removed:

storage aggregate plex show -fields aggregate, status, is-online, plex, pool

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool aggregate plex status is-online pool ----- ---- ----- ----node B 1 aggr0 plex0 normal, active true 0 node B 2 aggr0 plex0 normal, active true 0 node B 1 aggr1 plex0 normal, active true 0 node B 1 aggr2 plex0 normal, active true 0 node B 2 aggr1 plex0 normal, active true 0 node B 2 aggr2 plex0 normal, active true 0 node A 1 aggr1 plex0 failed, inactive false _ node A 1 aggr1 plex4 normal, active true 1 node A 1 aggr2 plex0 failed, inactive false _ node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false _ node A 2 aggr1 plex4 normal, active true 1 node A 2 aggr2 plex0 failed, inactive false _ node A 2 aggr2 plex1 normal, active true 1 14 entries were displayed. cluster B::>

5. Identify the switched-over aggregates:

storage aggregate show -is-home false

You can also use the storage aggregate plex show -fields aggregate, status, isonline, plex, pool command to identify plex 0 switched-over aggregates. They will have a status of "failed, inactive".

The following commands show four switched-over aggregates:

- o node_A_1_aggr1
- node_A_1_aggr2
- node_A_2_aggr1
- o node_A_2_aggr2

cluster B::> storage aggregate show -is-home false cluster A Switched Over Aggregates: Aggregate Size Available Used% State #Vols Nodes RAID Status _____ _____ _____ node A 1 aggr1 2.12TB 1.88TB 11% online 91 node B 1 raid dp, mirror degraded node A 1 aggr2 2.89TB 2.64TB 9% online 90 node B 1 raid tec, mirror degraded node A 2 aggr1 2.12TB 1.86TB 12% online 91 node B 2 raid dp, mirror degraded node A 2 aggr2 2.89TB 2.64TB 9% online 90 node B 2 raid tec, mirror degraded 4 entries were displayed. cluster B::>

6. Identify switched-over plexes:

storage aggregate plex show -fields aggregate, status, is-online, Plex, pool

You want to identify the plexes with a status of "failed, inactive".

The following commands show four switched-over aggregates:

cluster B::> storage aggregate plex show -fields aggregate, status, isonline, Plex, pool aggregate plex status is-online pool ---- ---- ----- ----node B 1 aggr0 plex0 normal,active true 0 node B 2 aggr0 plex0 normal, active true 0 node B 1 aggr1 plex0 normal,active true 0 node B 1 aggr2 plex0 normal, active true 0 node B 2 aggr1 plex0 normal, active true 0 node B 2 aggr2 plex0 normal, active true 0 node A 1 aggr1 plex0 failed, inactive false - <<<-- Switched over aggr/Plex0 node A 1 aggr1 plex4 normal, active true 1 node A 1 aggr2 plex0 failed, inactive false - <<<-- Switched over aggr/Plex0 node A 1 aggr2 plex1 normal, active true 1 node A 2 aggr1 plex0 failed, inactive false - <<<<-- Switched over aggr/Plex0 node A 2 aggr1 plex4 normal, active true 1 node A 2 aggr2 plex0 failed, inactive false - <<<<-- Switched over aggr/Plex0 node A 2 aggr2 plex1 normal, active true 1 14 entries were displayed. cluster B::>

7. Delete the failed plex:

storage aggregate plex delete -aggregate node_A_1_aggr1 -plex plex0

You can destroy the plex when prompted.

The following example shows the plex node_A_1_aggr1/plex0 being deleted:

```
cluster B::> storage aggregate plex delete -aggregate node A 1 aggr1
-plex plex0
Warning: Aggregate "node A_1_aggr1" hosts MetroCluster metadata volume
         "MDV CRS e8457659b8a711e78b3b00a0988fe74b A". Deleting plex
"plex0"
         for this aggregate can lead to the failure of configuration
         replication across the two DR sites. Use the "volume show
-vserver
         <admin-vserver> -volume MDV_CRS*" command to verify the
location of
         such volumes.
Warning: Deleting plex "plex0" of mirrored aggregate "node A 1 aggr1" on
node
         "node A 1" in a MetroCluster configuration will disable its
         synchronous disaster recovery protection. Are you sure you want
to
         destroy this plex? {y|n}: y
[Job 639] Job succeeded: DONE
cluster B::>
```

You must repeat these steps for each of the failed aggregates.

8. Verify that there are no failed plexes remaining on the surviving site.

The following output shows that all plexes are normal, active, and online.

```
cluster B::> storage aggregate plex show -fields aggregate, status, is-
online, Plex, pool
aggregate plex status
                                 is-online pool
    ----- ----- ------ ------ -----
node B 1 aggr0 plex0 normal,active true
                                            0
node B 2 aggr0 plex0 normal, active true
                                            0
node B 1 aggr1 plex0 normal, active true
                                            0
node B 2 aggr2 plex0 normal, active true
                                            0
node B 1 aggr1 plex0 normal, active true
                                            0
node B 2 aggr2 plex0 normal, active true
                                            0
node A 1 aggr1 plex4 normal, active true
                                            1
node A 1 aggr2 plex1 normal, active true
                                            1
node A 2 aggr1 plex4 normal, active true
                                            1
node A 2 aggr2 plex1 normal, active true
                                            1
10 entries were displayed.
cluster B::>
```

Performing aggregate healing and restoring mirrors (MetroCluster IP configurations)

After replacing hardware and assigning disks, in systems running ONTAP 9.5 or earlier you can perform the MetroCluster healing operations. In all versions of ONTAP, you must then confirm that aggregates are mirrored and, if necessary, restart mirroring.

About this task

Beginning with ONTAP 9.6, the healing operations are performed automatically when the disaster site nodes boot up. The healing commands are not required.

These steps are performed on the surviving cluster.

Steps

- 1. If you are using ONTAP 9.6 or later, you must verify that automatic healing completed successfully:
 - a. Confirm that the heal-aggr-auto and heal-root-aggr-auto operations completed:

metrocluster operation history show

The following output shows that the operations have completed successfully on cluster_A.

b. Confirm that the disaster site is ready for switchback:

```
metrocluster node show
```

The following output shows that the operations have completed successfully on cluster_A.

```
cluster B::*> metrocluster node show
                    Configuration DR
DR
Group Cluster Node
                    State Mirroring Mode
_____ ____
_____
1 cluster A
         node_A_1 configured enabled heal roots
completed
         node A 2 configured enabled heal roots
completed
    cluster B
         node B 1 configured enabled waiting for
switchback recovery
          node B 2 configured enabled waiting for
switchback recovery
4 entries were displayed.
```

- 2. If you are using ONTAP 9.5 or earlier, you must perform aggregate healing:
 - a. Verify the state of the nodes:

metrocluster node show

The following output shows that switchover has completed, so healing can be performed.

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ _____ 1 cluster B node_B_1 configured enabled switchover completed node B 2 configured enabled switchover completed cluster A node_A_1 configured enabled waiting for switchback recovery configured enabled waiting for node A 2 switchback recovery 4 entries were displayed. cluster B::>

b. Perform the aggregates healing phase:

metrocluster heal -phase aggregates

The following output shows a typical aggregates healing operation.

```
cluster_B::*> metrocluster heal -phase aggregates
[Job 647] Job succeeded: Heal Aggregates is successful.
cluster_B::*> metrocluster operation show
   Operation: heal-aggregates
       State: successful
Start Time: 10/26/2017 12:01:15
End Time: 10/26/2017 12:01:17
Errors: -
cluster_B::*>
```

c. Verify that aggregate healing has completed and the disaster site is ready for switchback:

metrocluster node show

The following output shows that the "heal aggregates" phase has completed on cluster_A.

cluster B::> metrocluster node show DR Configuration DR Group Cluster Node State Mirroring Mode _____ _____ _____ 1 cluster A node_A_1 configured enabled heal aggregates completed configured enabled heal node A 2 aggregates completed cluster B node_B_1 configured enabled waiting for switchback recovery configured enabled waiting for node B 2 switchback recovery 4 entries were displayed. cluster B::>

- 3. If disks have been replaced, you must mirror the local and switched-over aggregates:
 - a. Display the aggregates:

storage aggregate show

```
cluster B::> storage aggregate show
cluster B Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
----- ----- ------ ----- ----- -----
-----
node B 1 aggr0 1.49TB 74.12GB 95% online 1 node B 1
raid4,
normal
node B 2 aggr0 1.49TB 74.12GB 95% online 1 node B 2
raid4,
normal
node_B_1_aggr1 3.14TB 3.04TB 3% online 15 node_B_1
raid dp,
normal
node_B_1_aggr2 3.14TB 3.06TB 3% online 14 node_B_1
raid tec,
```

```
normal
node_B_1_aggr1 3.14TB 2.99TB 5% online 37 node_B_2
raid dp,
normal
node_B_1_aggr2 3.14TB 3.02TB 4% online 35 node_B_2
raid tec,
normal
cluster A Switched Over Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
_____ ____
_____
node A 1 aggr1 2.36TB 2.12TB 10% online 91 node B 1
raid_dp,
normal
node_A_1_aggr2 3.14TB 2.90TB 8% online 90 node_B_1
raid tec,
normal
node A 2 aggr1 2.36TB 2.10TB 11% online 91 node B 2
raid_dp,
normal
node A 2 aggr2 3.14TB 2.89TB 8% online 90 node B 2
raid tec,
normal
12 entries were displayed.
cluster B::>
```

b. Mirror the aggregate:

storage aggregate mirror -aggregate aggregate-name

The following output shows a typical mirroring operation.

cluster B::> storage aggregate mirror -aggregate node B 1 aggr1 Info: Disks would be added to aggregate "node B 1 aggr1" on node "node B 1" in the following manner: Second Plex RAID Group rg0, 6 disks (block checksum, raid dp) Position Disk Type Size _____ dparity 5.20.6 SSD parity 5.20.14 SSD data 5.21.1 SSD 894.0GB data 5.21.3 SSD 894.0GB data 5.22.3 SSD 894.0GB data 5.21.13 SSD 894.0GB Aggregate capacity available for volume use would be 2.99TB. Do you want to continue? {y|n}: y

- c. Repeat the previous step for each of the aggregates from the surviving site.
- d. Wait for the aggregates to resynchronize; you can check the status with the storage aggregate show command.

The following output shows that a number of aggregates are resynchronizing.

```
mirrored,
normal
node_B_2_aggr0 1.49TB 74.12GB 95% online 1 node_B_2
raid4,
mirrored,
normal
node B 1 aggr1 2.86TB 2.76TB 4% online 15 node B 1
raid dp,
resyncing
node_B_1_aggr2 2.89TB 2.81TB 3% online 14 node_B_1
raid tec,
resyncing
node B 2 aggr1 2.73TB 2.58TB 6% online 37 node B 2
raid dp,
resyncing
node B-2 aggr2 2.83TB 2.71TB 4% online 35 node B 2
raid tec,
resyncing
cluster A Switched Over Aggregates:
Aggregate Size Available Used% State #Vols Nodes
RAID Status
_____ _____
_____
node A 1 aggr1 1.86TB 1.62TB 13% online 91 node B 1
raid_dp,
resyncing
node A 1 aggr2 2.58TB 2.33TB 10% online 90 node B 1
raid tec,
resyncing
node A 2 aggr1 1.79TB 1.53TB 14% online 91 node B 2
raid_dp,
resyncing
node_A_2_aggr2 2.64TB 2.39TB 9% online 90 node_B_2
raid tec,
```

```
resyncing
12 entries were displayed.
```

e. Confirm that all aggregates are online and have resynchronized:

storage aggregate plex show

The following output shows that all aggregates have resynchronized.

```
cluster A::> storage aggregate plex show
  ()
                   Is
                           Is
                                     Resyncing
Aggregate Plex
                   Online Resyncing
                                       Percent Status
                      ____
node B 1 aggr0 plex0 true
                           false
                                              - normal, active
node B 1 aggr0 plex8 true
                                             - normal, active
                          false
node B 2 aggr0 plex0 true
                                              - normal, active
                          false
node B 2 aggr0 plex8 true
                                              - normal, active
                          false
node B 1 aggr1 plex0 true
                                              - normal, active
                          false
                                              - normal, active
node B 1 aggr1 plex9 true
                          false
node B 1 aggr2 plex0 true
                                              - normal, active
                          false
node B 1 aggr2 plex5 true
                                              - normal, active
                          false
node B 2 aggr1 plex0 true
                                              - normal, active
                          false
node B 2 aggr1 plex9 true
                           false
                                              - normal, active
node B 2 aggr2 plex0 true
                                              - normal, active
                          false
node B 2 aggr2 plex5 true
                          false
                                              - normal, active
node A 1 aggr1 plex4 true
                                              - normal, active
                          false
node_A_1_aggr1 plex8 true
                          false
                                              - normal, active
node A 1 aggr2 plex1 true
                           false
                                              - normal, active
node A 1 aggr2 plex5 true
                          false
                                              - normal, active
node A 2 aggr1 plex4 true
                           false
                                              - normal, active
node A 2 aggr1 plex8 true
                           false
                                              - normal, active
node A 2 aggr2 plex1 true
                                              - normal, active
                           false
node A 2 aggr2 plex5 true
                          false
                                              - normal, active
20 entries were displayed.
```

4. On systems running ONTAP 9.5 and earlier, perform the root-aggregates healing phase:

metrocluster heal -phase root-aggregates

```
cluster_B::> metrocluster heal -phase root-aggregates
[Job 651] Job is queued: MetroCluster Heal Root Aggregates Job.Oct 26
13:05:00
[Job 651] Job succeeded: Heal Root Aggregates is successful.
```

5. Verify that the "heal roots" phase has completed and the disaster site is ready for switchback:

The following output shows that the "heal roots" phase has completed on cluster_A.

```
cluster B::> metrocluster node show
                       Configuration DR
DR
Group Cluster Node
                       State
                                   Mirroring Mode
_____ _____
  -----
1 cluster A
          node_A_1 configured enabled heal roots
completed
          node A 2 configured enabled heal roots
completed
    cluster B
          node B 1
                  configured enabled waiting for
switchback recovery
                   configured enabled waiting for
          node B 2
switchback recovery
4 entries were displayed.
cluster B::>
```

Proceed to verify the licenses on the replaced nodes.

Verifying licenses on the replaced nodes

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.