Day-to-day administration
ONTAP 9
NetApp
October 14, 2021
Day-to-day administration overview

The topics in this section show you how to manage your cluster with ONTAP System Manager in ONTAP 9.7 and later releases.

If you are using the ONTAP CLI to manage your cluster, see this content:

- Cluster Expansion Express Guide
- Disks and Aggregates Power Guide
- FlexCache Volumes for Faster Data Access Power Guide
- Logical Storage Management Guide
- System Administration Reference

If you are using legacy OnCommand System Manager for ONTAP 9.7 and earlier releases to manage your cluster, see the content for your ONTAP release:

- Volume Move Express Guide
- Cluster management using System Manager 9.6 and 9.7
- Cluster management using System Manager 9.5
- Cluster management using System Manager 9.3 and 9.4
- Cluster management using System Manager 9.2 and earlier

Administration overview with System Manager

ONTAP System Manager is a graphical management interface that enables you to use a web browser to manage storage systems and storage objects (such as disks, volumes, and storage tiers) and perform common management tasks related to storage systems.

Using the System Manager Dashboard, you can view at-a-glance information about important alerts and notifications, the efficiency and capacity of storage tiers and volumes, the nodes that are available in a cluster, the status of the nodes in an HA pair, the most active applications and objects, and the performance metrics of a cluster or a node.

With System Manager you can perform many common tasks, such as the following:

- Create a cluster, configure a network, and set up support details for the cluster.
- Configure and manage storage objects, such as disks, local tiers, volumes, qtrees, and quotas.
- Configure protocols, such as SMB/CIFS and NFS, and provision file sharing.
- Configure protocols such as FC, FCoE, NVMe, and iSCSI for block access.
- Create and configure network components, such as subnets, broadcast domains, data and management interfaces, and interface groups.
- Set up and manage mirroring and vaulting relationships.
- Perform cluster management, storage node management, and storage virtual machine (storage VM) management operations.
- Create and configure storage VMs, manage storage objects associated with storage VMs, and manage storage VM services.
• Monitor and manage high-availability (HA) configurations in a cluster.
• Configure service processors to remotely log in, manage, monitor, and administer the node, regardless of the state of the node.

Search, filter, and sort information in System Manager

You can search for various actions and objects in System Manager. You can also search table data for specific entries.

System Manager provides two types of searching:

• Global searching

When you enter a search argument in the field at the top of each page, System Manager searches throughout the interface to find matches. You can then sort and filter the results.

• Table-grid searching

Starting with ONTAP 9.8, when you enter a search argument in the field at the top of a table grid, System Manager searches only the columns and rows of that table to find matches.

Global searching

At the top of each page in System Manager, you can use a global search field to search various objects and actions in the interface. For example, you can search for different objects by name, pages available in the navigator column (on the left side), various action items, like "Add Volume" or "Add License", and links to external help topics. You can also filter and sort the results.

For better results, perform searching, filtering, and sorting one minute after logging in and five minutes after creating, modifying, or deleting an object.

Getting search results

The search is not case-sensitive. You can enter a variety of text strings to find the page, actions, or topics you need. Up to 20 results are listed. If more results are found, you can click Show more to view all results. The following examples describe typical searches:

<table>
<thead>
<tr>
<th>Type of search</th>
<th>Sample search string</th>
<th>Sample search results</th>
</tr>
</thead>
<tbody>
<tr>
<td>By object name</td>
<td>vol_</td>
<td>vol_lun_dest on storage VM: svm0 (Volume) /vol/vol...est1/lun on storage VM: svm0 (LUN) svm0:vol_lun_dest1 role: Destination (Relationship)</td>
</tr>
<tr>
<td>By location in interface</td>
<td>volume</td>
<td>Add Volume (Action) Protection – Overview (Page) Recover deleted volume (Help)</td>
</tr>
</tbody>
</table>
Filtering search results

You can narrow the results with filters, as shown in the following examples:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Syntax</th>
<th>Sample search string</th>
</tr>
</thead>
<tbody>
<tr>
<td>By object type</td>
<td><code><type>:<objectName></code></td>
<td><code>volume:vol_2</code></td>
</tr>
<tr>
<td>By object size</td>
<td><code><type><size-symbol><number><units></code></td>
<td><code>luns<500mb</code></td>
</tr>
<tr>
<td>By broken disks</td>
<td>"broken disk" or "unhealthy disk"</td>
<td><code>unhealthy disk</code></td>
</tr>
<tr>
<td>By network interface</td>
<td><code><IP address></code></td>
<td><code>172.22.108.21</code></td>
</tr>
</tbody>
</table>

Sorting search results

When you view all the search results, they are sorted alphabetically. You can sort the results by clicking and selecting how you want to sort the results.

Table-grid searching

Starting with ONTAP 9.8, whenever System Manager displays information in a table-grid format, a search button appears at the top of the table.

When you click **Search**, a text field appears in which you can enter a search argument. System Manager searches the entire table and displays only the rows that contain text that matches your search argument.

You can use an asterisk (*) as a "wildcard" character as a substitute for characters. For example, searching for `vol*` might provide rows that contain the following:

- `vol_122_D9`
- `vol_lun_dest1`
- `vol2866`
- `volspec1`
- `volum_dest_765`
- `volume`
- `volume_new4`
- `volume9987`
Enable new features by adding license keys

Some ONTAP features are enabled by license keys. You can add license keys using ONTAP System Manager.

Steps
1. Click Cluster > Settings.
2. Under License, click ➔.
3. Click Add.

Reboot, shut down, take over, and give back nodes

You should switch a node’s workload to its HA partner (takeover) before rebooting or shutting down the node.

Steps
1. Click Cluster > Overview.
2. Under Nodes, click ➕.
3. Click the node and select the desired action.

View hardware configurations to determine problems

With ONTAP 9.8 and later, you can use System Manager to view the configuration of AFF hardware on your network and determine if problems might arise.

The hardware visualization feature enables users to quickly visualize hardware status and any potential connection issues.
Before you Start
For ONTAP 9.8, System Manager provides a preview of the capability to view AFF hardware configurations. Starting with ONTAP 9.9.1, you can view all AFF hardware configurations.

Steps
To view AFF hardware configurations, perform the following steps:

1. In System Manager, select Cluster > Hardware.
2. Hover your mouse over components to view status and other details.

You can view various types of information:

- Information about controllers
- Information about disk shelves
- Information about storage switches

Information about controllers

You can view the following:

Nodes:

- Rear views are displayed.
- Models with an internal disk shelf also show the disk layout in the front view.
- You can view the following platform models:
<table>
<thead>
<tr>
<th>If your system is running...</th>
<th>Then you can view...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.8</td>
<td>C190, A220, A300, A400, and A700</td>
</tr>
<tr>
<td>ONTAP 9.9.1</td>
<td>C190, A220, A250, A300, A320, A400, A700, A700s, A800, FAS500f</td>
</tr>
</tbody>
</table>

Ports:

- Console ports are not shown.
- A port is red if it is down.
- The status of a port and other details are shown when you hover over the port.

FRUs:

Information about FRUs appears only when the state of a FRU is non-optimal.

- Failed PSUs in nodes or chassis.
- High temperatures detected in nodes.
- Failed fans on the nodes or chassis.

Adapter cards:

- Cards with defined part number fields are shown in the slots if external cards has been inserted.
- Ports on cards are shown.
- Certain cards are shown with specific images of the cards. If the card is not in the list of supported part numbers, then a generic graphic is displayed.

Information about disk shelves

You can view the following:

Disk shelves:

- Front and rear views are displayed.
- You can view the following disk shelf models:

<table>
<thead>
<tr>
<th>If your system is running...</th>
<th>Then you can view...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.8</td>
<td>DS4243, DS4486, DS212C, DS2246, DS224C, and NS224</td>
</tr>
<tr>
<td>ONTAP 9.9.1</td>
<td>All supported disk shelf models</td>
</tr>
</tbody>
</table>

Shelf ports:

- Port status is displayed.
- Remote port information is shown if the port is connected.

Shelf FRUs:

- PSU failure information is shown.
Information about storage switches

- The display shows switches that act as storage switches used to connect shelves to nodes.
- Starting with 9.9.1, System Manager displays information about a switch that acts as both a storage switch and a cluster, which can also be shared between nodes of an HA pair.
- You can view the following storage switch models:

<table>
<thead>
<tr>
<th>If your system is running…</th>
<th>Then you can view…</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAP 9.8</td>
<td>Cisco Nexus 3232C Switch</td>
</tr>
<tr>
<td>ONTAP 9.9.1</td>
<td>Cisco Nexus 3232C Switch</td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus 9336C-FX2 Switch</td>
</tr>
</tbody>
</table>

- You can view the following:
 - **Storage switch** information includes switch name, IP address, serial number, SNMP version, and system version.
 - **Storage switch port** information includes identity name, identity index, state, and other details, including remote connection.

View and submit support cases

Starting with ONTAP 9.9.1, you can view support cases from Active IQ associated with the cluster. You can also copy cluster details that you need to submit a new support case on the NetApp Support Site.

- When working with ONTAP 9.9.1, to receive alerts about firmware updates, you must be registered with Active IQ Unified Manager. Refer to Active IQ Unified Manager documentation resources.

Steps

1. In System Manager, select **Support**.

 A list of open support cases associated with this cluster is displayed.

2. Click on the following links to perform procedures:
 - **Case Number**: See details about the case.
 - **Go to NetApp Support Site**: Navigate to the My AutoSupport page on the NetApp Support Site to view knowledge base articles or submit a new support case.
 - **View My Cases**: Navigate to the My Cases page on the NetApp Support Site.
 - **View Cluster Details**: View and copy information you will need when you submit a new case.

Monitor risks

Using System Manager with ONTAP 9.10.0 or later, you can monitor the risks reported by Active IQ Digital Advisor.

NetApp Active IQ Digital Advisor reports opportunities to reduce risk and improve the performance and
efficiency of your storage environment. With System Manager, you can learn about risks reported by Active IQ and receive actionable intelligence that helps you administer storage and achieve higher availability, improved security, and better storage performance.

Link to your Active IQ account

To receive information about risks from Active IQ, you should first link to your Active IQ account from System Manager.

Steps

1. In System Manager, click **Cluster > Settings**.
2. Under **Active IQ Registration**, click **Register**.
3. Enter your credentials for Active IQ.
4. After your credentials are authenticated, click **Confirm to link Active IQ with System Manager**.

View the number of risks

Beginning with ONTAP 9.10.0, you can view from the dashboard in System Manager the number of risks reported by Active IQ.

Before you begin

You must establish a connection from System Manager to your Active IQ account. Refer to **Link to your Active IQ account**.

Steps

1. In System Manager, click **Dashboard**.
2. In the **Health** section, view the number of reported risks.

You can view more detailed information about the risks by clicking the message showing the number of risks. See **View details of risks**.

View details of risks

Beginning with ONTAP 9.10.0, you can view from System Manager how the risks reported by Active IQ are categorized by impact areas. You can also view detailed information about each reported risk, its potential impact on your system, and corrective actions you can take.

Before you begin

You must establish a connection from System Manager to your Active IQ account. Refer to **Link to your Active IQ account**.

Steps

1. Click **Events > All Events**.
2. In the **Overview** section, under **Active IQ Suggestions**, view the number of risks in each impact area category. The risk categories include:
 - Performance & efficiency
 - Availability & protection
 - Capacity
3. Click on the **Active IQ Suggestions** tab to view information about each risk, including the following:
 - Level of impact to your System
 - Category of the risk
 - Nodes that are affected
 - Type of mitigation needed
 - Corrective actions you can take

Manage MetroCluster sites

Starting with ONTAP 9.8, you can use System Manager as a simplified interface for managing a configuration of a MetroCluster setup.

A MetroCluster configuration allows two clusters to mirror data to each other so if one cluster goes down, the data isn’t lost.

Typically, an organization sets up the clusters in two separate geographical locations. An administrator at each location sets up a cluster and configures it. Then one of the administrators can set up the peering between the clusters so that they can share data.

The organization can also install an ONTAP Mediator in a third location. The ONTAP Mediator service monitors the status of each cluster. When one of the clusters detects that it cannot communicate with the partner cluster, it queries the monitor to determine if the error is a problem with the cluster system or with the network connection.

If the problem is with the network connection, the system administrator performs troubleshooting methods to correct the error and reconnect. If the partner cluster is down, the other cluster initiates a switchover process to control the data I/O for both clusters.

You can also perform a switchover to bring down one of the cluster systems for planned maintenance. The partner cluster handles all data I/O operations for both clusters until you bring up the cluster on which you performed maintenance and perform a switchback operation.

You can manage the following operations:

- Set up an IP MetroCluster site
- Set up IP MetroCluster peering
- Configure an IP MetroCluster site
- Perform IP MetroCluster switchover and switchback
- Troubleshoot problems with IP MetroCluster configurations
- Upgrade ONTAP on MetroCluster clusters

Set up an IP MetroCluster site

Starting with ONTAP 9.8, you can use System Manager to set up an IP configuration of a MetroCluster site.
A MetroCluster site consists of two clusters. Typically, the clusters are located in different geographical locations.

Before you start

- Your system should already be installed and cabled according to the *Installation and Setup Instructions* that came with the system.
- Cluster network interfaces should be configured on each node of each cluster for intra-cluster communication.

Assign a node-management IP address

Windows System

You should connect your Windows computer to the same subnet as the controllers. This will automatically assign a node-management IP address to your system.

Steps

1. From the Windows system, open the **Network** drive to discover the nodes.
2. Double-click the node to launch the cluster setup wizard.

Other systems

You should configure the node-management IP address for one of the nodes in your cluster. You can use this node-management IP address to launch the cluster set up wizard.

See [Creating the cluster on the first node](#) for information about assigning a node-management IP address.
Initialize and configure the cluster

You initialize the cluster by setting an administrative password for the cluster and setting up the cluster management and node management networks. You can also configure services like a DNS server to resolve host names and an NTP server to synchronize time.

Steps
1. On a web browser, enter the node-management IP address that you have configured: "https://node-management-IP"

 System Manager automatically discovers the remaining nodes in the cluster.

2. In the Initialize Storage System window, perform the following:
 a. Enter cluster management network configuration data.
 b. Enter Node management IP addresses for all the nodes.
 c. Provide domain name servers (DNS) details.
 d. In the Other section, select the check box labeled Use time service (NTP) to add the time servers.

When you click Submit, wait for the cluster to be created and configured. Then, a validation process occurs.

What's Next?
After both clusters have been set up, initialized, and configured, perform the following procedure:

- Set up IP MetroCluster peering

Set up IP MetroCluster peering

Starting with ONTAP 9.8, you can manage an IP configuration of a MetroCluster operation with System Manager. After setting up two clusters, you set up peering between them.

Before you start
You should have completed the following procedure to set up two clusters:

- Set up an IP MetroCluster site

Certain steps of this process are performed by different system administrators located at the geographical sites of each cluster. For the purposes of explaining this process, the clusters are called "Site A cluster" and "Site B cluster".

Performing the peering process from Site A

This process is performed by a system administrator at Site A.

Steps
1. Log in to Site A cluster.
2. In System Manager, select Dashboard from the left navigation column to display the cluster overview.

 The dashboard shows the details for this cluster (Site A). In the MetroCluster section, Site A cluster is shown on the left.
3. Click **Attach Partner Cluster**.

4. Enter the details of the network interfaces that allow the nodes in Site A cluster to communicate with the nodes in Site B cluster.

5. Click **Save and Continue**.

6. On the **Attach Partner Cluster** window, select **I do not have a passphrase**, which lets you generate a passphrase.

7. Copy the generated passphrase and share it with the system administrator at Site B.

8. Select **Close**.

Performing the peering process from Site B

This process is performed by a system administrator at Site B.

Steps

1. Log in to Site B cluster.

2. In System Manager, select **Dashboard** to display the cluster overview.

 The dashboard shows the details for this cluster (Site B). In the MetroCluster section, Site B cluster is shown on the left.

3. Click **Attach Partner Cluster** to start the peering process.

4. Enter the details of the network interfaces that allow the nodes in Site B cluster to communicate with the nodes in Site A cluster.

5. Click **Save and Continue**.

6. On the **Attach Partner Cluster** window, select **I have a passphrase**, which lets you enter the passphrase that you received from the system administrator at Site A.

7. Select **Peer** to complete the peering process.

What’s next?

After the peering process is successfully completed, you configure the clusters. See Configure an IP MetroCluster site.

Configure an IP MetroCluster site

Starting with ONTAP 9.8, you can manage an IP configuration of a MetroCluster operation with System Manager. After setting up two clusters and peering them, you configure each cluster.

Before you start

You should have completed the following procedures:

- Set up an IP MetroCluster site
- Set up IP MetroCluster peering

Configure the connection between clusters

Steps
1. Log in to System Manager on one of the sites, and select **Dashboard**.

 In the **MetroCluster** section, the graphic shows the two clusters that you set up and peered for the MetroCluster sites. The cluster you are working from (local cluster) is shown on the left.

2. Click **Configure MetroCluster**. From this window, you can perform the following tasks:
 a. The nodes for each cluster in the MetroCluster configuration are shown. Use the drop-down lists to select which nodes in the local cluster will be disaster recovery partners with which nodes in the remote cluster.
 b. Click the check box if you want to configure an ONTAP Mediator service. See **Configure the ONTAP Mediator service**.
 c. If both clusters have a license to enable encryption, the **Encryption** section is displayed.

To enable encryption, enter a passphrase.

1. Click **Save** to configure the MetroCluster sites.

On the **Dashboard**, in the **MetroCluster** section, the graphic shows a check mark on the link between the two clusters, indicating a healthy connection.

Configure the ONTAP Mediator service

The ONTAP Mediator service is typically installed at a geographic location separate from either location of the clusters. The clusters communicate regularly with the service to indicate that they are up and running. If one of the clusters in the MetroCluster configuration detects that the communication with its partner cluster is down, it checks with the ONTAP Mediator to determine if the partner cluster itself is down.

Before you start

Both clusters at the MetroCluster sites should be up and peered.

Steps

1. In System Manager 9.8, select **Cluster > Settings**.
2. In the **Mediator** section, click 🌐.
3. On the **Configure Mediator** window, click **Add+**.
4. Enter the configuration details for the ONTAP Mediator.

Perform IP MetroCluster switchover and switchback

You can switch over control from one IP MetroCluster site to the other to perform maintenance or recover from an issue.

> Switchover and switchback procedures are supported only for IP MetroCluster configurations.

Overview of switchover and switchback

A switchover can occur in two instances:

- **A planned switchover**

 This switchover is initiated by a system administrator using System Manager. The planned switchover
allows a system administrator of a local cluster to switch control so that the data services of the remote cluster are handled by the local cluster. Then, a system administrator at the remote cluster location can perform maintenance on the remote cluster.

• An unplanned switchover

In some cases, when a MetroCluster cluster goes down or the connections between the clusters are down, ONTAP will automatically initiate a switchover procedure so that the cluster that is still running handles the data handling responsibilities of the down cluster.

At other times, when ONTAP cannot determine the status of one of the clusters, the system administrator of the site that is working initiates the switchover procedure to take control of the data handling responsibilities of the other site.

For any type of switchover procedure, the data servicing capability is returned to the cluster by using a switchback process.

You perform different switchover and switchback processes for ONTAP 9.7 and 9.8:

• Use System Manager 9.7 for switchover and switchback
• Use System Manager 9.8 for switchover and switchback

Use System Manager 9.7 for switchover and switchback

Steps
1. Log in to System Manager 9.7.
2. Click (Return to classic version).
3. Click Configuration > MetroCluster.

 System Manager verifies whether a negotiated switchover is possible.

4. Perform one of the following substeps when the validation process has completed:
 a. If validation fails, but Site B is up, then an error has occurred. For example, there might be a problem with a subsystem, or NVRAM mirroring might not be synchronized.
 i. Fix the issue that is causing the error, click Close, and then start again at Step 2.
 ii. Halt the Site B nodes, click Close, and then perform the steps in Performing an unplanned switchover.
 b. If validation fails, and Site B is down, then most likely there is a connection problem. Verify that Site B is really down, then perform the steps in Performing an unplanned switchover.

5. Click Switchover from Site B to Site A to initiate the switchover process.
6. Click Switch to the new experience.

Use System Manager 9.8 for switchover and switchback

Perform a planned switchover (ONTAP 9.8)

Steps
1. Log in to System Manager 9.8.
2. Select Dashboard. In the MetroCluster section, the two clusters are shown with a connection.
3. In the local cluster (shown on the left), click 🔄, and select Take control of remote site.

After the switchover request is validated, control is transferred from the remote site to the local site, which performs data service requests for both clusters.

The remote cluster reboots, but the storage components are not active, and the cluster does not service data requests. It is now available for planned maintenance.

The remote cluster should not be used for data servicing until you perform a switchback.

Perform an unplanned switchover (ONTAP 9.8)

An unplanned switchover might be initiated automatically by ONTAP. If ONTAP cannot determine if a switchback is needed, the system administrator of the MetroCluster site that is still running initiates the switchover with the following steps:

Steps
1. Log in to System Manager 9.8.
2. Select Dashboard.

In the MetroCluster section, the connection between the two clusters is shown with an "X" on it, meaning a connection cannot be detected. Either the connections or the cluster is down.

3. In the local cluster (shown on the left), click 🔄, and select Take control of remote site.

After the switchover request is validated, control is transferred from the remote site to the local site, which performs data service requests for both clusters.

The cluster must be repaired before it is brought online again.

After the remote cluster is brought online again, it should not be used for data servicing until you perform a switchback.

Perform a switchback (ONTAP 9.8)

Before you start
Whether the remote cluster was down due to planned maintenance or due to a disaster, it should now be up and running and waiting for the switchback.

Steps
1. On the local cluster, log in to System Manager 9.8.
2. Select Dashboard.

In the MetroCluster section, the two clusters are shown.

3. In the local cluster (shown on the left), click 🔄, and select Take back control.

The data is healed first, to ensure data is synchronized and mirrored between both clusters.

4. When the data healing is complete, click 🔄, and select Initiate switchback.

When the switchback is complete, both clusters are active and servicing data requests. Also, the data is
being mirrored and synchronized between the clusters.

Troubleshoot problems with IP MetroCluster configurations

Starting with ONTAP 9.8, System Manager monitors the health of IP MetroCluster configurations and helps you identify and correct problems that might occur.

Overview of the MetroCluster Health Check

System Manager periodically checks the health of your IP MetroCluster configuration. When you view the MetroCluster section in the Dashboard, usually the message is "MetroCluster systems are healthy."

However, when a problem occurs, the message will show the number of events. You can click on that message and view the results of the health check for the following components:

- Node
- Network Interface
- Tier (Storage)
- Cluster
- Connection
- Volume
- Configuration Replication

The **Status** column identifies which components have problems, and the **Details** column suggests how to correct the problem.

MetroCluster troubleshooting

Steps

1. In System Manager, select **Dashboard**.
2. In the **MetroCluster** section, notice the message.

a. If the message indicates that your MetroCluster configuration is healthy, and the connections between the clusters and the ONTAP Mediator are healthy (shown with check marks), then you have no problems to correct.

b. If the message lists the number of events, or the connections have gone down (shown with an "X"), then continue to the next step.
3. Click the message that shows the number of events.

The MetroCluster Health Report displays.
4. Troubleshoot the problems that appear in the report using the suggestions in the **Details** column.
5. When all the problems have been corrected, click **Check MetroCluster Health**.

i
The MetroCluster Health Check uses an intensive amount of resources, so it is recommended that you perform all your troubleshooting tasks before running the check.

The MetroCluster Health Check runs in the background. You can work on other tasks while you wait for it to finish.
Clone volumes and LUNs for testing

You can clone volumes and LUNs to create temporary, writable copies for testing. The clones reflect the current, point-in-time state of the data. You can also use clones to give additional users access to data without giving them access to production data.

The FlexClone license should be installed on the storage system.

Cloning a volume

Create a clone of a volume, as follows:

Steps

1. Click Storage > Volumes.
2. Click next to the name of the volume you want to clone.
3. Select Clone from the list.
4. Specify a name for the clone and complete the other selections.
5. Click Clone and verify that the volume clone appears in the list of volumes.

Alternatively, you can clone a volume from the Overview that displays when you view volume details.

Cloning a LUN

Create a clone of a LUN, as follows:

Steps

1. Click Storage > LUNs.
2. Click next to the name of the LUN you want to clone.
3. Select Clone from the list.
4. Specify a name for the clone and complete the other selections.
5. Click Clone and verify that the LUN clone appears in the list of LUNs.

Alternatively, you can clone a LUN from the Overview that displays when you view LUN details.

When you create a LUN clone, System Manager automatically enables the deletion of the clone when space is needed.

Modify QoS

Beginning in ONTAP 9.8, when you provision storage, QoS is enabled by default. You can disable QoS or choose a custom QoS policy during the provisioning process. You can also modify QoS after your storage has been provisioned.

Steps

1. In ONTAP System Manager, click Storage and select Volumes.
2. Next to the volume for which you want to modify QoS, click and select Edit.
Update firmware

You can apply a firmware update to supported devices in your cluster, such as disks, disk shelves, the Disk Qualification Package (DQP) the service processor (SP), or the Baseboard Management Controller (BMC).

Starting with ONTAP 9.9.1, you can receive alerts from Active IQ that inform you when firmware updates are pending on the cluster. Then, you can download the firmware image and upload it using System Manager.

View firmware update alerts from Active IQ

Starting with ONTAP 9.9.1, you can receive alerts from Active IQ Unified Manager that inform you when firmware updates are pending on the cluster.

When working with ONTAP 9.9.1, to receive alerts about firmware updates, you must be registered with Active IQ Unified Manager. Refer to Active IQ Unified Manager documentation resources.

Steps
1. Go to Dashboard.

 In the Health section, a message displays if there are any recommended firmware updates for the cluster.

2. Click on the alert message.

 The Firmware Update tab is displayed in the Update page.

Download the cluster firmware

For ONTAP 9.8, you must navigate to the NetApp Support Site to download an updated firmware image package.

Starting with ONTAP 9.9.1, you can download firmware updates from the Update page when you view firmware alerts (see View firmware update alerts from Active IQ.).

Steps
Perform the procedure that is appropriate for the version of ONTAP that is installed on the cluster.
For ONTAP 9.8 and ONTAP 9.9.1, if you are not registered with Active IQ Unified Manager, then perform these steps…

1. Navigate to the NetApp Support Site.
2. Log into the NetApp Support Site.
3. Select the firmware package that you want to use to update your cluster firmware.
4. Copy the files to an HTTP or FTP server on your network or to a local folder.

Starting with ONTAP 9.9.1, if you are registered with Active IQ Unified Manager, then perform these steps…

1. On the Update page, for the firmware update that you want to perform, click on the link that says "Download from NetApp Support Site".
 The NetApp Support Site is displayed.
2. Log into the NetApp Support Site.
3. Download the firmware image package you want to update with.
4. Copy the files to an HTTP or FTP server on your network or to a local folder.

Update the cluster firmware

After the firmware package files are downloaded, you can update the cluster firmware.

Steps

1. In ONTAP System Manager, click Cluster > Overview.
2. In the right corner of the Overview pane, click and select ONTAP Update.
3. Click Firmware Update, select From Server or Local Client and provide the server URL or the file location.

You can monitor or verify the update under Firmware Update Summary.

Manage storage

Capacity measurements in System Manager

System capacity can be measured as physical space or logical space. Recent versions of System Manager use measurements of both physical and logical capacity.

The differences between the two measurements are explained in the following descriptions:

- **Physical capacity**: Physical space refers to the physical blocks of storage used in the volume. The value for physical used capacity is typically smaller than the value for logical used capacity due to the reduction of data from storage efficiency features (such as deduplication and compression).

- **Logical capacity**: Logical space refers to the usable space (the logical blocks) in a volume. Logical space refers to how theoretical space can be used, without accounting for results of deduplication or compression. The value for logical space used is derived from the amount of physical space used plus the savings from storage efficiency features (such as deduplication and compression) that have been configured. This measurement often appears larger than the physical used capacity because it includes Snapshot copies, clones, and other components, and it does not reflect the data compression and other reductions in the physical space. Thus, the total logical capacity could be higher than the provisioned space.
In System Manager, capacity representations do not account for root storage tier (aggregate) capacities.

Measurements of used capacity

Measurements of used capacity are displayed differently depending on the version of System Manager you are using, as explained in the following table:

<table>
<thead>
<tr>
<th>Version of System Manager</th>
<th>Term used for capacity</th>
<th>Type of capacity referred to</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 and 9.6 (Classic view)</td>
<td>Used</td>
<td>Physical space used</td>
</tr>
<tr>
<td>9.7 and 9.8</td>
<td>Used</td>
<td>Logical space used (if storage efficiency settings have been enabled)</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Logical Used</td>
<td>Logical space used (if storage efficiency settings have been enabled)</td>
</tr>
</tbody>
</table>

Measurement terms

- **Physical used**: Displays the amount of capacity used in the physical blocks of a volume.
- **Physical used %**: Displays the percentage of capacity used in the physical blocks of a volume compared to the provisioned size.
- **Logical used**: Displays the amount of used space without considering the space saved by storage efficiency features.
- **Logical used %**: Displays the percentage of the current logical used capacity compared to the provisioned size, excluding the Snapshot reserve of the volume. This value can be greater than 100%, because it includes efficiency savings in the volume.

Additional references:
"Logical space reporting and enforcement for volumes" topic in the ONTAP 9 Logical Storage Management Guide

Add a volume

You can create an NFS volume and add it to an existing storage VM that is configured for NFS or SMB/CIFS service.
Before you Start
A storage VM that is configured for NFS or SMB/CIFS service should exist in the cluster.

Steps
1. Go to Storage > Volumes.
2. Click Add.
3. Specify a name and size for the volume.
4. Perform one of the following steps:

<table>
<thead>
<tr>
<th>Click this button…</th>
<th>To perform this action…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>The volume is created and added using the system defaults. No additional steps are required.</td>
</tr>
<tr>
<td>More Options</td>
<td>Proceed to Step 5 to define the specifications for the volume.</td>
</tr>
</tbody>
</table>

5. The volume name and size are shown if you previously specified them. Otherwise, enter the name and size.
6. Select a storage VM from the pull-down list.

Only storage VMs configured with the NFS protocol are listed. If only one storage VM configured with the NFS protocol is available, the Storage VM field is not shown.

7. To add a cache for the remote volume, select Add a cache for remote volume and specify the following
values:
◦ Select a cluster.
◦ Select a storage VM.
◦ Select the volume that you want to be a cache volume.

8. In the **Storage and Optimization** section, specify the following values:
 a. The capacity of the volume is already shown, but you can modify it.
 b. In the **Performance Service Level** field, select a service level:

<table>
<thead>
<tr>
<th>When you select this service level…</th>
<th>This occurs…</th>
</tr>
</thead>
<tbody>
<tr>
<td>An existing service level, such as "Extreme", "Performance", or "Value".</td>
<td>A local tier or tiers are automatically chosen. Proceed to Step 9.</td>
</tr>
<tr>
<td>Only the service levels that are valid for the system platform (AFF, FAS, or others) are displayed.</td>
<td>Proceed to Step 8c to define a new service level.</td>
</tr>
</tbody>
</table>

 c. Starting with ONTAP 9.9.1, you can use System Manager to manually select the local tier on which you want to place the volume you are creating (if you have selected the "Custom" service level).

 This option is not available if you select **Add as a cache for a remote volume** or **Distribute volume data across the cluster** (see below).

<table>
<thead>
<tr>
<th>When you make this choice…</th>
<th>You perform these steps…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual placement</td>
<td>Manual placement is enabled. The Distribute volume data across the cluster selection is disabled (see below). Proceed to Step 8d to complete the process.</td>
</tr>
<tr>
<td>No selection</td>
<td>Manual placement is not enabled. The local tier is automatically selected. Proceed to Step 9.</td>
</tr>
</tbody>
</table>

 d. Select a local tier from the pull-down menu.
 e. Select a QoS policy.
 Select "Existing" to choose from a list of existing policies, or select "New" to enter the specifications of a new policy.

9. In the **Optimization options** section, determine if you want to distribute the volume data across the cluster:

<table>
<thead>
<tr>
<th>When you make this choice…</th>
<th>This occurs…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribute volume data across the cluster</td>
<td>The volume you are adding becomes a FlexGroup volume. This option is not available if you previously selected Manual placement.</td>
</tr>
</tbody>
</table>
When you make this choice... | This occurs...
---|---
No selection | The volume you are adding becomes a FlexVol volume by default.

10. In the **Access Permissions** section, specify the access permissions for the protocols for which the volume is configured.

11. In the **Protection** section, specify the protections for the volume. If you select **Enable SnapMirror (Local or Remote)**, then specify the protection policy and settings for the destination cluster from the pull-down lists.

12. Click **Save**.

The volume is created and added to the cluster and storage VM.

You can also save the specifications of this volume to an Ansible Playbook. For more details, go to [Use Ansible Playbooks to add or edit volumes or LUNs](#).

Add LUNs

You can create LUNs and add them to an existing storage VM that is configured with the SAN protocol.

Before you Start

A storage VM that is configured for SAN service should exist in the cluster.

Steps

1. Go to **Storage > LUNs**.
2. Click **Add**.
3. Specify a prefix that will be used at the start of each LUN name. (If you are creating only one LUN, enter the LUN name.)

4. Select a storage VM from the pull-down list.

 Only storage VMs that are configured for the SAN protocol are listed. If only one storage VM that is configured for the SAN protocol is available, then the Storage VM field is not displayed.

5. Indicate how many LUNs you want to create and the size of each LUN.

6. Select the host operating system and LUN format from the pull-down lists.

7. Enter the host initiators, and separate them with commas.

8. Perform one of the following actions:

<table>
<thead>
<tr>
<th>Click this button…</th>
<th>To perform this action…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>The LUNs are created with the specifications you entered. System defaults are used for other specifications. No additional steps are required.</td>
</tr>
<tr>
<td>More Options</td>
<td>Proceed to Step 9 to define additional specifications for the LUNs.</td>
</tr>
</tbody>
</table>

9. The LUN prefix is already shown if you previously entered it, but you can modify it. Otherwise, enter the prefix.

10. Select a storage VM from the pull-down list.

 Only storage VMs that are configured for the SAN protocol are listed. If only one storage VM that is configured for the SAN protocol is available, then the Storage VM field is not displayed.

11. Determine how you want the LUNs to be grouped:

When you make this choice…	This occurs…
Group with related LUNs	The LUNs will be grouped together with related LUNs on an existing volume on the storage VM.
No selection	The LUNs will be grouped together on a volume called "container".

12. In the Storage and Optimization section, specify the following values:

 a. The number and capacity of the LUNs are already shown if you previously entered them, but you can modify them. Otherwise, enter the values.

 b. In the Performance Service Level field, select a service level:

When you select this service level…	This occurs…
An existing service level, such as "Extreme", "Performance", or "Value". Only the service levels that are valid for the system platform (AFF, FAS, or others) are displayed.	A local tier is automatically chosen. Proceed to Step 13.
Custom	Proceed to Step 12c to define a new service level.
c. Starting with ONTAP 9.9.1, you can use System Manager to manually select the local tier on which you want to place the LUNs you are creating (if you have selected the "Custom" service level).

<table>
<thead>
<tr>
<th>When you make this choice…</th>
<th>You perform these steps…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual placement</td>
<td>Manual placement is enabled. Proceed to Step 12d to complete the process.</td>
</tr>
<tr>
<td>No selection</td>
<td>Manual selection is not enabled. The local tier is automatically selected. Proceed to Step 13.</td>
</tr>
</tbody>
</table>

d. Select a local tier from the pull-down menu.

e. Select a QoS policy.

 Select "Existing" to choose from a list of existing policies, or select "New" to enter the specifications of a new policy.

13. In the Host Information section, the host operating system and LUN format are already shown, but you can modify them.

14. Under Host Mapping, select the type of initiators for the LUNs:

 - Existing initiator group: Select an initiator group for the list that displays.
 - New initiator group using existing initiator groups: Specify the name of the new group, and select the group or groups that you want to use to create the new group.
 - Host initiators: Specify a name from the new initiator group, and click +Add Initiator to add initiators to the group.

15. In the Protection section, specify the protections for the LUNs.

 If you select Enable SnapMirror (Local or Remote), then specify the protection policy and settings for the destination cluster from the pull-down lists.

16. Click Save.

 The LUNs are created and added to the cluster and storage VM.

You can also save the specifications of these LUNs to an Ansible Playbook. For more details, go to Use Ansible Playbooks to add or edit volumes or LUNs.

Expand storage

You can increase the size of your volume or LUN so that more space is available to your host. The size of a LUN cannot exceed the size of the containing volume.

- Increase the size of a volume
- Increase the size of a LUN

Also, you can add a LUN to an existing volume. The processes are different for using System Manager with ONTAP 9.7 or 9.8

- Add a LUN to an existing volume (ONTAP 9.7)
• Add a LUN to an existing volume (ONTAP 9.8)

Also, starting with ONTAP 9.8, you can use System Manager to add a LUN to an existing volume.

Increase the size of a volume

Steps
1. Click Storage > Volumes.
2. Hover over the name of the volume you want to increase in size.
3. Click.
4. Select Edit.
5. Increase the capacity value.

Increase the size of a LUN

Steps
1. Click Storage > LUNs.
2. Hover over the name of the LUN you want to increase in size.
3. Click.
4. Select Edit.
5. Increase the capacity value.

Add a LUN to an existing volume (ONTAP 9.7)

To use System Manager with ONTAP 9.7 to add a LUN to an existing volume, you should switch to the Classical View first.

Steps
1. Log in to System Manager in ONTAP 9.7.
2. Click Classical View.
3. Select Storage > LUNs > Create
4. Specify the details to create the LUN.
5. Specify to which existing volume or qtree the LUN should be added.

Add a LUN to an existing volume (ONTAP 9.8)

Starting with ONTAP 9.8, you can use System Manager to add a LUN to an existing volume that already has at least one LUN.

Steps
1. Click Storage > LUNs.
2. Click Add+.
3. Complete the fields in the Add LUNs window.
4. Select More Options.
5. Select the checkbox labeled Group with related LUNs.
6. In the drop-down field, select a LUN that exists on the volume to which you want to add another LUN.
7. Complete the rest of the fields. For **Host Mapping**, click one of the radio buttons:
 - **Existing initiator group** lets you select an existing group from a list.
 - **New initiator group** lets you enter a new group in the field.

Add disks to a local tier (Add capacity to aggregate)

You can increase the size of an existing aggregate (local tier) by adding capacity disks.

Steps
1. Click *(Return to classic version)*.
2. Click **Hardware and Diagnostics > Aggregates**.
3. Select the aggregate to which you want to add capacity disks, and then click **Actions > Add Capacity**.

 You should add disks that are of the same size as the other disks in the aggregate.
4. Click **Switch to the new experience**.
5. Click **Storage > Tiers** to verify the size of the new aggregate.

Add nodes to cluster

You can increase the size and capabilities of your cluster by adding new nodes.

Before you Start

You should have already cabled the new nodes to the cluster.

There are separate processes for working with System Manager in ONTAP 9.7 or ONTAP 9.8.

- Adding nodes to a cluster with System Manager 9.7
- Adding nodes to a cluster with System Manager 9.8

Adding nodes to a cluster with System Manager 9.7

Steps
1. Click *(Return to classic version)*.
2. Click **Configurations > Cluster Expansion**.

 System Manager automatically discovers the new nodes.
3. Click **Switch to the new experience**.
4. Click **Cluster > Overview** to view the new nodes.

Adding nodes to a cluster with System Manager 9.8

Steps
1. Select **Cluster > Overview**.

 The new controllers are shown as nodes connected to the cluster network but are not in the cluster.
2. Click Add.
 • The nodes are added into the cluster.
 • Storage is allocated implicitly.

Manage storage efficiency policies

Starting with ONTAP 9.8, you can use System Manager to enable, disable, add, edit, or delete efficiency policies for storage VMs on FAS systems.

This function is not available on AFF systems.

Steps
1. Select Storage > Storage VMs
2. Select the storage VM for which you want to manage efficiency policies.
3. On the Settings tab, select in the Efficiency Policy section. The efficiency policies for that storage VM are displayed.

You can perform the following tasks:

• Enable or disable an efficiency policy by clicking the toggle button in the Status column.
• Add an efficiency policy by clicking on Add+.
• Edit an efficiency policy by clicking on to the right of the policy name and selecting Edit.
• Delete an efficiency policy by clicking on to the right of the policy name and selecting Delete.

Recover deleted volumes

If you have accidently deleted one or more FlexVol volumes, you can recover these volumes. Starting in System Manager 9.8, you can also recover FlexGroup volumes. You can also delete the volumes permanently by purging the volumes.

The volume retention time can be set on a storage VM level. By default, the volume retention time is set to 12 hours.

Selecting deleted volumes

Steps
1. Click Storage > Volumes.
2. Click More > Show Deleted Volumes.
3. Select the volumes and click the desired action to recover or permanently delete the volumes.

Resetting the volume configurations

Deleting a volume deletes the associated configurations of the volume. Recovering a volume does not reset all the configurations. Perform the following tasks manually after recovering a volume to bring the volume back to its original state:

Steps
1. Rename the volume.
2. Set up a junction path (NAS).
3. Create mappings for LUNs in the volume (SAN).
4. Associate a Snapshot policy and export policy with the volume.
5. Add new quota policy rules for the volume.
6. Add a QOS policy for the volume.

Save storage space using compression, compaction, and deduplication

For volumes on non-AFF clusters, you can run deduplication, data compression, and data compaction together or independently to achieve optimal space savings.

- Deduplication eliminates duplicate data blocks.
- Data compression compresses the data blocks to reduce the amount of physical storage that is required.
- Data compaction stores more data in less space to increase storage efficiency.

These tasks are supported for volumes on non-AFF clusters. Beginning with ONTAP 9.2, all inline storage efficiency features, such as inline deduplication and inline compression, are enabled by default on AFF volumes.

Steps
1. Click **Storage > Volumes**.
2. Next to the name of the volume for which you want to save storage, click 📈.
3. Click **Edit** and scroll to **Storage Efficiency**.
4. Optional: If you want to enable background deduplication, ensure the checkbox is checked.
5. Optional: If you want to enable background compression, specify the storage efficiency policy and ensure the checkbox is checked.
6. Optional: If you want to enable inline compression, ensure the checkbox is checked.

Balance loads by moving LUNs

You can move a LUN to another volume within the storage VM to balance the load, or you can move it to a volume with a higher performance service level to improve performance.

Move restrictions
- A LUN cannot be moved to a qtree within the same volume.
- A LUN created from a file using the CLI cannot be moved with System Manager.
- LUNs that are online and serving data cannot be moved.
- LUNs cannot be moved if the allocated space in the destination volume cannot contain the LUN (even if autogrow is enabled on the volume).
- LUNs on SnapLock volumes cannot be moved with System Manager.
Steps
1. Click **Storage > LUNs**.
2. Select the LUN that you want to move and click **Move**.
3. Select an existing volume to which you want to move the LUN. If the volume contains qtrees, select the qtree.

 While the Move operation is in progress, the LUN is displayed on both the origin and destination volume.

Balance loads by moving volumes to another tier

Starting with ONTAP 9.8, you can use System Manager to move a volume to another tier to balance the load.

Starting with ONTAP 9.9.1, you can also move volumes based on analysis of active and inactive data storage. For more information, see [File System Analytics overview](#).

Steps
1. Click **Storage > Volumes**.
2. Select the volume or volumes that you want to move, and then click **Move**.
3. Select an existing tier (aggregate) to which you want to move the volume or volumes.

Use Ansible Playbooks to add or edit volumes or LUNs

Starting with ONTAP 9.9.1, you can use Ansible Playbooks with System Manager when you want to add or edit volumes or LUNs.

This feature lets you use the same configuration multiple times or use the same configuration with slight changes when you add or edit volumes or LUNs.

Enable or disable Ansible Playbooks

You can enable or disable the use of Ansible Playbooks with System Manager.

Steps
1. In System Manager, go to the UI settings in the cluster settings page:

 Cluster > Settings

2. Under **UI Settings**, change the slider switch to "Enabled" or "Disabled".
Save a volume configuration to an Ansible Playbook

When you create or modify the configuration of a volume, you can save the configuration as Ansible Playbook files.

Steps

1. Add or Edit the volume:

 Volume > Add (or Volume > Edit)

2. Specify or edit the configuration values of the volume.

3. Select Save to Ansible Playbook to save the configuration to Ansible Playbook files.

A zip file is downloaded that contains the following files:

- variable.yaml: The values you entered or modified to add or edit the volume.
- volumeAdd.yaml (or volumeEdit.yaml): The test cases that are required to create or modify the values when reading the inputs from the variable.yaml file.

Save a LUN configuration to an Ansible Playbook

When you create or modify the configuration of a LUN, you can save the configuration as Ansible Playbook files.

Steps

1. Add or Edit the LUN:

 LUN > Add (or LUN > Edit)

2. Specify or edit the configuration values of the LUN.

3. Select Save to Ansible Playbook to save the configuration to Ansible Playbook files:

A zip file is downloaded that contains the following files:

- variable.yaml: The values you entered or modified to add or edit the LUN.
- lunAdd.yaml (or lunEdit.yaml): The test cases that are required to create or modify the values when reading the inputs from the variable.yaml file.

Download Ansible Playbook files from global search results

You can download Ansible Playbook files when you do a global search.

Steps

1. In the search field, enter “volume” or “LUN” or “Playbook”.

2. Find the search result, either “Volume Management (Ansible Playbook)” or “LUN Management (Ansible Playbook)”.

3. Click on ⬇️ to download the Ansible Playbook files.
Work with Ansible Playbook files

Ansible Playbook files can be modified and run to specify configurations for volumes and LUNs.

About this task

You use two files to perform an operation (either an “add” or an “edit”):

<table>
<thead>
<tr>
<th>If you want to...</th>
<th>Use this variable file...</th>
<th>And use this run file...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a volume</td>
<td>volumeAdd-variable.yaml</td>
<td>valueAdd.yaml</td>
</tr>
<tr>
<td>Edit a volume</td>
<td>volumeEdit-variable.yaml</td>
<td>volumeEdit.yaml</td>
</tr>
<tr>
<td>Add a LUN</td>
<td>lunAdd-variable.yaml</td>
<td>lunAdd.yaml</td>
</tr>
<tr>
<td>Edit a LUN</td>
<td>lunEdit-variable.yaml</td>
<td>lunEdit.yaml</td>
</tr>
</tbody>
</table>

Steps

1. Modify the variables file.

 The file contains the various values that you use to configure the volume or LUN.
 - If you do not change the values, leave them commented.
 - If you modify the values, remove the commenting.

2. Run the associated run file.

 The run file contains the test cases that are required to create or modify the values when reading the inputs from the variable file.

3. Enter your user login credentials.