# **■** NetApp # **Logical interfaces (LIFs)** ONTAP 9 NetApp March 19, 2024 # **Table of Contents** | Logical interfaces | (LIF | s). | <br> | <br> | <br> | <br> | <br> | | <br> | <br> | <br> | <br> | <br> | <br> | | <br> | <br> | <br> | <br> | 1 | |--------------------|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----| | LIF overview. | | | <br> | <br> | <br> | <br> | <br> | 1 | | Manage LIFs. | | | <br> | | <br> | <br> | <br> | <br> | <br> | <br> | 11 | # Logical interfaces (LIFs) # LIF overview # **Configure LIFs overview** A LIF (logical interface) represents a network access point to a node in the cluster. You can configure LIFs on ports over which the cluster sends and receives communications over the network. A cluster administrator can create, view, modify, migrate, revert, or delete LIFs. An SVM administrator can only view the LIFs associated with the SVM. A LIF is an IP address or WWPN with associated characteristics, such as a service policy, a home port, a home node, a list of ports to fail over to, and a firewall policy. You can configure LIFs on ports over which the cluster sends and receives communications over the network. Beginning with ONTAP 9.10.1, firewall policies are deprecated and wholly replaced with LIF service policies. For more information, see Configure firewall policies for LIFs. LIFs can be hosted on the following ports: - · Physical ports that are not part of interface groups - · Interface groups - VLANs - · Physical ports or interface groups that host VLANs - Virtual IP (VIP) ports Beginning with ONTAP 9.5, VIP LIFs are supported and are hosted on VIP ports. While configuring SAN protocols such as FC on a LIF, it will be associated with a WWPN. #### SAN administration The following figure illustrates the port hierarchy in an ONTAP system: ### LIF failover and giveback A LIF failover occurs when a LIF moves from its home node or port to its HA partner node or port. A LIF failover can be triggered automatically by ONTAP or manually by a cluster administrator for certain events such as a down physical Ethernet link or a node dropping out of replicated database (RDB) quorum. When a LIF failover occurs, ONTAP continues normal operation on the partner node until the reason for the failover is resolved. When the home node or port regains health, the LIF is reverted from the HA partner back to its home node or port. This reversion is called a giveback. For LIF failover and giveback, ports from each node need to belong to the same broadcast domain. To check that the relevant ports on each node belong to the same broadcast domain, see the following: - ONTAP 9.8 and later: Repair port reachability - ONTAP 9.7 and earlier: Add or remove ports from a broadcast domain For LIFs with LIF failover enabled (either automatically or manually), the following applies: - For LIFs using a data service policy, you can check failover-policy restrictions: - ONTAP 9.6 and later: LIFs and service policies in ONTAP 9.6 and later - ONTAP 9.5 and earlier: LIF roles in ONTAP 9.5 and earlier - Auto-revert of LIFs happens when the auto-revert is set to true and when the LIF's home port is healthy and able to host the LIF. - On a planned or unplanned node takeover, the LIF on the node that is taken over, fails over to the HA partner. The port on which the LIF fails over is determined by VIF Manager. - · After the failover is complete, the LIF operates normally. - When a giveback is initiated, the LIF reverts back to its home node and port, if auto-revert is set to true. - When an ethernet link goes down on a port hosting one or more LIFs, the VIF Manager migrates the LIFs from the down port to a different port in the same broadcast domain. The new port could be in the same node or its HA partner. After the link is restored and if auto-revert is set to true, the VIF Manager reverts the LIFs back to their home node and home port. - When a node drops out of replicated database (RDB) quorum, the VIF Manager migrates the LIFs from the out of quorum node to its HA partner. After the node comes back into quorum and if auto-revert is set to true, the VIF Manager reverts the LIFs back to their home node and home port. # LIF compatibility with port types LIFs can have different characteristics to support different port types. When intercluster and management LIFs are configured in the same subnet, the management traffic might be blocked by an external firewall and the AutoSupport and NTP connections might fail. You can recover the system by running the network interface modify -vserver vserver name -lif intercluster LIF -status-admin up|down command to toggle the intercluster LIF. However, you should set the intercluster LIF and management LIF in different subnets to avoid this issue. | LIF | Description | |-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Data LIF | A LIF that is associated with a storage virtual machine (SVM) and is used for communicating with clients. You can have multiple data LIFs on a port. These interfaces can migrate or fail over throughout the cluster. You can modify a data LIF to serve as an SVM management LIF by modifying its firewall policy to mgmt. Sessions established to NIS, LDAP, Active Directory, WINS, and DNS servers use data LIFs. | | Cluster LIF | A LIF that is used to carry intracluster traffic between nodes in a cluster. Cluster LIFs must always be created on cluster ports. Cluster LIFs can fail over between cluster ports on the same node, but they cannot be migrated or failed over to a remote node. When a new node joins a cluster, IP addresses are generated automatically. However, if you want to assign IP addresses manually to the cluster LIFs, you must ensure that the new IP addresses are in the same subnet range as the existing cluster LIFs. | | Cluster management LIF | LIF that provides a single management interface for the entire cluster. A cluster management LIF can fail over to any node in the cluster. It cannot fail over to cluster or intercluster ports | |------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Intercluster LIF | A LIF that is used for cross-cluster communication, backup, and replication. You must create an intercluster LIF on each node in the cluster before a cluster peering relationship can be established. These LIFs can only fail over to ports in the same node. They cannot be migrated or failed over to another node in the cluster. | | Node management LIF | A LIF that provides a dedicated IP address for managing a particular node in a cluster. Node management LIFs are created at the time of creating or joining the cluster. These LIFs are used for system maintenance, for example, when a node becomes inaccessible from the cluster. | | VIP LIF | A VIP LIF is any data LIF created on a VIP port. To learn more, see Configure virtual IP (VIP) LIFs. | # LIFs and service policies (ONTAP 9.6 and later) You can assign service policies (instead of LIF roles or firewall policies) to LIFs that determine the kind of traffic that is supported for the LIFs. Service policies define a collection of network services supported by a LIF. ONTAP provides a set of built-in service policies that can be associated with a LIF. You can display service policies and their details using the following command: network interface service-policy show Features that are not bound to a specific service will use a system-defined behavior to select LIFs for outbound connections. #### Service policies for system SVMs The admin SVM and any system SVM contain service policies that can be used for LIFs in that SVM, including management and intercluster LIFs. These policies are automatically created by the system when an IPspace is created. The following table lists the built-in policies for LIFs in system SVMs as of ONTAP 9.12.1. For other releases, display the service policies and their details using the following command: network interface service-policy show | Policy | Included services | Equivalent role | Description | |----------------------|----------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | default-intercluster | intercluster-core,<br>management-https | intercluster | Used by LIFs carrying intercluster traffic.<br>Note: Service intercluster-core is available<br>from ONTAP 9.5 with the name net-<br>intercluster service policy. | | default-route-<br>announce | management-bgp | - | Used by LIFs carrying BGP peer connections Note: Available from ONTAP 9.5 with the name net-route-announce service policy. | |----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | default-management | management-core, management-https, management-http, management-ssh, management-autosupport, management-dns-client, management-dns-client, management-ldap-client, management-nis-client, management-nis-client, management-ntp-client, management-log-forwarding | node-mgmt, or<br>cluster-mgmt | Use this system scoped management policy to create node- and cluster-scoped management LIFs owned by a system SVM. These LIFs can be used for outbound connections to DNS, AD, LDAP, or NIS servers as well as some additional connections to support applications that run on behalf of the entire system. Beginning in ONTAP 9.12.1, you can use the management-log-forwarding service to control which LIFs are used to forward audit logs to a remote syslog server. | The following table lists the services that LIFs can use on a system SVM as of ONTAP 9.11.1: | Service | Failover limitations | Description | |------------------------|----------------------|-------------------------------------------------------------| | intercluster-core | home-node-only | Core intercluster services | | management-core | - | Core management services | | management-ssh | - | Services for SSH management access | | management-http | - | Services for HTTP management access | | management-https | - | Services for HTTPS management access | | management-autosupport | - | Services related to posting AutoSupport payloads | | management-bgp | home-port-only | Services related to BGP peer interactions | | backup-ndmp-control | - | Services for NDMP backup controls | | management-ems | - | Services for management messaging access | | management-ntp-client | - | Introduced in ONTAP 9.10.1. Services for NTP client access. | | management-ntp-server | - | Introduced in ONTAP 9.11.1. Services for NTP server management access | |-------------------------------|---|-----------------------------------------------------------------------| | management-portmap | - | Services for portmap management | | management-rsh-server | - | Services for rsh server management | | management-snmp-<br>server | - | Services for SNMP server management | | management-telnet-<br>server | - | Services for telnet server management | | management-log-<br>forwarding | - | Introduced in ONTAP 9.12.1. Services for audit log forwarding | # Service policies for data SVMs All data SVMs contain service policies that can be used by LIFs in that SVM. The following table lists the built-in policies for LIFs in data SVMs as of ONTAP 9.11.1. For other releases, display the service policies and their details using the following command: network interface service-policy show | Policy | Included services | Equivalent data protocol | Description | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | default-management | management-https,<br>management-http,<br>management-ssh,<br>management-dns-<br>client, management-<br>ad-client,<br>management-ldap-<br>client, management-<br>nis-client | none | Use this SVM-scoped management policy to create SVM management LIFs owned by a data SVM. These LIFs can be used to provide SSH or HTTPS access to SVM administrators. When necessary, these LIFs can be used for outbound connections to an external DNS, AD, LDAP, or NIS servers. | | default-data-blocks | data-core, data-iscsi | iscsi | Used by LIFs carrying block-oriented SAN data traffic. Starting in ONTAP 9.10.1, the "default-data-blocks" policy is deprecated. Use the "default-data-iscsi" service policy instead. | | default-data-files | data-fpolicy-client,<br>data-dns-server,<br>data-flexcache,<br>data-cifs, data-nfs,<br>management-dns-<br>client, management-<br>ad-client,<br>management-ldap-<br>client, management-<br>nis-client | nfs, cifs, fcache | Use the default-data-files policy to create NAS LIFs supporting file-based data protocols. Sometimes there is only one LIF present in the SVM, therefore this policy allows the LIF to be used for outbound connections to an external DNS, AD, LDAP, or NIS server. You can remove these services to from this policy if you prefer these connections utilize only management LIFs. | |---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | default-data-iscsi | data-core, data-iscsi | iscsi | Used by LIFs carrying iSCSI data traffic. | | default-data-nvme-<br>tcp | data-core, data-<br>nvme-tcp | nvme-tcp | Used by LIFs carrying NVMe/TCP data traffic. | The following table lists the services that can be used on a data SVM along with any restrictions each service imposes on a LIF's failover policy as of ONTAP 9.11.1: | Service | Failover restrictions | Description | |----------------------------|-----------------------|-----------------------------------------------------------------------| | management-ssh | - | Services for SSH management access | | management-http | - | Introduced in ONTAP 9.10.1 Services for HTTP management access | | management-https | - | Services for HTTPS management access | | management-portmap | - | Services for portmap management access | | management-snmp-<br>server | - | Introduced in ONTAP 9.10.1 Services for SNMP server management access | | data-core | - | Core data services | | data-nfs | - | NFS data service | | data-cifs | - | CIFS data service | | data-flexcache | - | FlexCache data service | | data-iscsi | home-port-only | iSCSI data service | | backup-ndmp-control | - | Introduced in ONTAP 9.10.1 Backup NDMP controls data service | | data-dns-server | - | Introduced in ONTAP 9.10.1 DNS server data service | |---------------------|----------------|----------------------------------------------------| | data-fpolicy-client | - | File-screening policy data service | | data-nvme-tcp | home-port-only | Introduced in ONTAP 9.10.1 NVMe TCP data service | | data-s3-server | - | Simple Storage Service (S3) server data service | You should be aware of how the service policies are assigned to the LIFs in data SVMs: - If a data SVM is created with a list of data services, the built-in "default-data-files" and "default-data-blocks" service policies in that SVM are created using the specified services. - If a data SVM is created without specifying a list of data services, the built-in "default-data-files" and "default-data-blocks" service policies in that SVM are created using a default list of data services. The default data services list includes the iSCSI, NFS, NVMe, SMB, and FlexCache services. - When a LIF is created with a list of data protocols, a service policy equivalent to the specified data protocols is assigned to the LIF. - If an equivalent service policy does not exist, a custom service policy is created. - When a LIF is created without a service policy or list of data protocols, the default-data-files service policy is assigned to the LIF by default. #### **Data-core service** The data-core service allows components that previously used LIFs with the data role to work as expected on clusters that have been upgraded to manage LIFs using service policies instead of LIF roles (which are deprecated in ONTAP 9.6). Specifying data-core as a service does not open any ports in the firewall, but the service should be included in any service policy in a data SVM. For example, the default-data-files service policy contains the following services by default: - · data-core - data-nfs - · data-cifs - · data-flexcache The data-core service should be included in the policy to ensure all applications using the LIF work as expected, but the other three services can be removed, if desired. #### Client-side LIF service Beginning with ONTAP 9.10.1, ONTAP provides client-side LIF services for multiple applications. These services provide control over which LIFs are used for outbound connections on behalf of each application. The following new services give administrators control over which LIFs are used as source addresses for certain applications. | Service | SVM restrictions | Description | |------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------| | management-ad-client | - | Beginning with ONTAP 9.11.1, ONTAP provides Active Directory client service for outbound connections to an external AD server. | | management-dns-client | - | Beginning with ONTAP 9.11.1, ONTAP provides DNS client service for outbound connections to an external DNS server. | | management-ldap-client | - | Beginning with ONTAP 9.11.1, ONTAP provides LDAP client service for outbound connections to an external LDAP server. | | management-nis-client | - | Beginning with ONTAP 9.11.1, ONTAP provides NIS client service for outbound connections to an external NIS server. | | management-ntp-client | system-only | Beginning with ONTAP 9.10.1, ONTAP provides NTP client service for outbound connections to an external NTP server. | | data-fpolicy-client | data-only | Beginning with ONTAP 9.8, ONTAP provides client service for outbound FPolicy connections. | Each of the new services are automatically included in some of the built-in service policies, but administrators can remove them from the built-in policies or add them to custom policies to control which LIFs are used for outbound connections on behalf of each application. # LIF roles (ONTAP 9.5 and earlier) LIFs with different roles have different characteristics. A LIF role determines the kind of traffic that is supported over the interface, along with the failover rules that apply, the firewall restrictions that are in place, the security, the load balancing, and the routing behavior for each LIF. A LIF can have any one of the following roles: cluster, cluster management, data, intercluster, node management, and undef (undefined). The undef role is used for BGP LIFs. Beginning with ONTAP 9.6, LIF roles are deprecated. You should specify service policies for LIFs instead of a role. It is not necessary to specify a LIF role when creating a LIF with a service policy. #### LIF security | Data LIF | Cluster LIF | Node | Cluster | Intercluster LIF | |----------|-------------|-------------------|-------------------|------------------| | | | management<br>LIF | management<br>LIF | | | | | LIF | LIF | | | Require private IP subnet? | No | Yes | No | No | No | |----------------------------|------------------|-----------------|--------|--------|------------------| | Require secure network? | No | Yes | No | No | Yes | | Default firewall policy | Very restrictive | Completely open | Medium | Medium | Very restrictive | | Is firewall customizable? | Yes | No | Yes | Yes | Yes | #### LIF failover | | Data LIF | Cluster LIF | Node<br>management<br>LIF | Cluster<br>management<br>LIF | Intercluster LIF | |------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------| | Default behavior | Only those ports<br>in the same<br>failover group<br>that are on the<br>LIF's home node<br>and on a non-<br>SFO partner<br>node | Only those ports<br>in the same<br>failover group<br>that are on the<br>LIF's home node | Only those ports<br>in the same<br>failover group<br>that are on the<br>LIF's home node | Any port in the same failover group | Only those ports<br>in the same<br>failover group<br>that are on the<br>LIF's home node | | Is customizable? | Yes | No | Yes | Yes | Yes | # LIF routing | | Data LIF | Cluster LIF | Node<br>management<br>LIF | Cluster<br>management<br>LIF | Intercluster LIF | |--------------------------------------------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------| | When is a default route needed? | When clients or<br>domain controller<br>are on different<br>IP subnet | Never | When any of the primary traffic types require access to a different IP subnet | When administrator is connecting from another IP subnet | When other intercluster LIFs are on a different IP subnet | | When is a static route to a specific IP subnet needed? | Rare | Never | Rare | Rare | When nodes of<br>another cluster<br>have their<br>intercluster LIFs<br>in different IP<br>subnets | | When is a static host route to a specific server needed? | To have one of the traffic types listed under node management LIF, go through a data LIF rather than a node management LIF. This requires a corresponding firewall change. | | Rare | Rare | Rare | |----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|------|------| |----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------|------|------| ### LIF rebalancing | | Data LIF | Cluster LIF | Node<br>management<br>LIF | Cluster<br>management<br>LIF | Intercluster LIF | |-------------------------|----------|-------------|---------------------------|------------------------------|------------------| | DNS: use as DNS server? | Yes | No | No | No | No | | DNS: export as zone? | Yes | No | No | No | No | #### LIF primary traffic types | | Data LIF | Cluster LIF | Node<br>management<br>LIF | Cluster<br>management<br>LIF | Intercluster LIF | |-----------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------|------------------------------|---------------------------| | Primary traffic types | NFS server,<br>CIFS server, NIS<br>client, Active<br>Directory, LDAP,<br>WINS, DNS<br>client and server,<br>iSCSI and FC<br>server | Intracluster | SSH server, HTTPS server, NTP client, SNMP, AutoSupport client, DNS client, loading software updates | SSH server,<br>HTTPS server | Cross-cluster replication | # Manage LIFs # **Configure LIF service policies** You can configure LIF service policies to identify a single service or a list of services that will use a LIF. #### Create a service policy for LIFs You can create a service policy for LIFs. You can assign a service policy to one or more LIFs; thereby allowing the LIF to carry traffic for a single service or a list of services. You need advanced privileges to run the network interface service-policy create command. #### About this task Built-in services and service policies are available for managing data and management traffic on both data and system SVMs. Most use cases are satisfied using a built-in service policy rather than creating a custom service policy. You can modify these built-in service policies, if required. #### **Steps** 1. View the services that are available in the cluster: ``` network interface service show ``` Services represent the applications accessed by a LIF as well as the applications served by the cluster. Each service includes zero or more TCP and UDP ports on which the application is listening. The following additional data and management services are available: ``` cluster1::> network interface service show Service Protocol:Ports _____ _____ cluster-core data-cifs data-core data-flexcache data-iscsi data-nfs intercluster-core tcp:11104-11105 management-autosupport management-bgp tcp:179 management-core management-https tcp:443 management-ssh tcp:22 12 entries were displayed. ``` 2. View the service policies that exist in the cluster: cluster1::> network interface service-policy show Vserver Policy Service: Allowed Addresses ----- ----- cluster1 default-intercluster intercluster-core: 0.0.0.0/0 management-https: 0.0.0.0/0 default-management management-core: 0.0.0.0/0 management-autosupport: 0.0.0.0/0 management-ssh: 0.0.0.0/0 management-https: 0.0.0.0/0 default-route-announce management-bgp: 0.0.0.0/0 Cluster default-cluster cluster-core: 0.0.0.0/0 vs0 default-data-blocks data-core: 0.0.0.0/0 data-iscsi: 0.0.0.0/0 default-data-files data-core: 0.0.0.0/0 data-nfs: 0.0.0.0/0 data-cifs: 0.0.0.0/0 data-flexcache: 0.0.0.0/0 default-management data-core: 0.0.0.0/0 management-ssh: 0.0.0.0/0 management-https: 0.0.0.0/0 7 entries were displayed. #### 3. Create a service policy: cluster1::> set -privilege advanced Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support. Do you wish to continue? (y or n): y cluster1::> network interface service-policy create -vserver <svm\_name> -policy <service policy name> -services <service name> -allowed -addresses <IP address/mask,...> - "service" name" specifies a list of services that should be included in the policy. - "IP\_address/mask" specifies the list of subnet masks for addresses that are allowed to access the services in the service policy. By default, all specified services are added with a default allowed address list of 0.0.0.0/0, which allows traffic from all subnets. When a non-default allowed address list is provided, LIFs using the policy are configured to block all requests with a source address that does not match any of the specified masks. The following example shows how to create a data service policy, *svm1\_data\_policy*, for an SVM that includes *NFS* and *SMB* services: ``` cluster1::> set -privilege advanced Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support. Do you wish to continue? (y or n): y cluster1::> network interface service-policy create -vserver svm1 -policy svm1_data_policy -services data-nfs,data-cifs,data-core ``` The following example shows how to create an intercluster service policy: ``` cluster1::> set -privilege advanced Warning: These advanced commands are potentially dangerous; use them only when directed to do so by technical support. Do you wish to continue? (y or n): y cluster1::> network interface service-policy create -vserver cluster1 -policy intercluster1 -services intercluster-core ``` 4. Verify that the service policy is created. ``` cluster1::> network interface service-policy show ``` The following output shows the service policies that are available: | Vserver | Policy<br> | Service: Allowed Addresses | |--------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------| | <br>cluster1 | | | | | default-intercluster | <pre>intercluster-core: 0.0.0.0/0 management-https: 0.0.0.0/0</pre> | | | intercluster1 | intercluster-core: 0.0.0.0/0 | | | default-management | <pre>management-core: 0.0.0.0/0 management-autosupport: 0.0.0.0/0 management-ssh: 0.0.0.0/0 management-https: 0.0.0.0/0</pre> | | | default-route-announce | management-bgp: 0.0.0.0/0 | | Cluster | default-cluster | cluster-core: 0.0.0.0/0 | | vs0 | default-data-blocks | data-core: 0.0.0.0/0 data-iscsi: 0.0.0.0/0 | | | default-data-files | <pre>data-core: 0.0.0.0/0 data-nfs: 0.0.0.0/0 data-cifs: 0.0.0.0/0 data-flexcache: 0.0.0.0/0</pre> | | | default-management | data-core: 0.0.0.0/0 management-ssh: 0.0.0.0/0 management-https: 0.0.0.0/0 | | | svm1_data_policy | data-core: 0.0.0.0/0 data-nfs: 0.0.0.0/0 data-cifs: 0.0.0.0/0 | # After you finish Assign the service policy to a LIF either at the time of creation or by modifying an existing LIF. #### Assign a service policy to a LIF You can assign a service policy to a LIF either at the time of creating the LIF or by modifying the LIF. A service policy defines the list of services that can be used with the LIF. #### About this task You can assign service policies for LIFs in the admin and data SVMs. #### Step Depending on when you want to assign the service policy to a LIF, perform one of the following actions: | If you are | Assign the service policy | |-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Creating a LIF | network interface create -vserver svm_name -lif <lif_name> -home-node <node_name> -home-port <port_name> {(-address <ip_address> -netmask <ip_address>) -subnet-name <subnet_name>} -service-policy <service_policy_name></service_policy_name></subnet_name></ip_address></ip_address></port_name></node_name></lif_name> | | Modifying a LIF | network interface modify -vserver <svm_name> -lif <lif_name> -service-policy <service_policy_name></service_policy_name></lif_name></svm_name> | When you specify a service policy for a LIF, you need not specify the data protocol and role for the LIF. Creating LIFs by specifying the role and data protocols is also supported. A service policy can only be used by LIFs in the same SVM that you specified when creating the service policy. #### **Examples** The following example shows how to modify the service policy of a LIF to use the default- management service policy: cluster1::> network interface modify -vserver cluster1 -lif lif1 -service -policy default-management #### Commands for managing LIF service policies Use the network interface service-policy commands to manage LIF service policies. #### Before you begin Modifying the service policy of a LIF in an active SnapMirror relationship disrupts the replication schedule. If you convert a LIF from intercluster to non-intercluster (or vice versa), those changes are not replicated to the peered cluster. To update the peer cluster after modifying the LIF service policy, first perform the snapmirror abort operation then resynchronize the replication relationship. | If you want to | Use this command | | | | |--------------------------------------------------------|-----------------------------------------|--|--|--| | Create a service policy (advanced privileges required) | network interface service-policy create | | | | | If you want to | Use this command | |----------------------------------------------------------------------------------------------|---------------------------------------------------| | Add an additional service entry to an existing service policy (advanced privileges required) | network interface service-policy add-<br>service | | Clone an existing service policy (advanced privileges required) | network interface service-policy clone | | Modify a service entry in an existing service policy (advanced privileges required) | network interface service-policy modify-service | | Remove a service entry from an existing service policy (advanced privileges required) | network interface service-policy remove-service | | Rename an existing service policy (advanced privileges required) | network interface service-policy rename | | Delete an existing service policy (advanced privileges required) | network interface service-policy delete | | Restore a built-in service-policy to its original state (advanced privileges required) | network interface service-policy restore-defaults | | Display existing service policies | network interface service-policy show | ## **Create a LIF (network interface)** An SVM serves data to clients through one or more network logical interfaces (LIFs). You must create LIFs on the ports you want to use to access data. A LIF (network interface) is an IP address associated with a physical or logical port. If there is a component failure, a LIF can fail over to or be migrated to a different physical port, thereby continuing to communicate with the network. #### **Best practice** Switch ports connected to ONTAP should be configured as spanning-tree edge ports to reduce delays during LIF migration. #### Before you begin - You must be a cluster administrator to perform this task. - The underlying physical or logical network port must have been configured to the administrative up status. - If you are planning to use a subnet name to allocate the IP address and network mask value for a LIF, the subnet must already exist. Subnets contain a pool of IP addresses that belong to the same layer 3 subnet. They are created using System Manager or the network subnet create command. • The mechanism for specifying the type of traffic handled by a LIF has changed. For ONTAP 9.5 and earlier, LIFs used roles to specify the type of traffic it would handle. Beginning with ONTAP 9.6, LIFs use service policies to specify the type of traffic it would handle. #### About this task · You cannot assign NAS and SAN protocols to the same LIF. The supported protocols are SMB, NFS, FlexCache, iSCSI, and FC; iSCSI and FC cannot be combined with other protocols. However, NAS and Ethernet-based SAN protocols can be present on the same physical port. - You should not configure LIFs that carry SMB traffic to automatically revert to their home nodes. This recommendation is mandatory if the SMB server is to host a solution for nondisruptive operations with Hyper-V or SQL Server over SMB. - You can create both IPv4 and IPv6 LIFs on the same network port. - All the name mapping and host-name resolution services used by an SVM, such as DNS, NIS, LDAP, and Active Directory, must be reachable from at least one LIF handling data traffic of the SVM. - A LIF handling intracluster traffic between nodes should not be on the same subnet as a LIF handling management traffic or a LIF handling data traffic. - Creating a LIF that does not have a valid failover target results in a warning message. - If you have a large number of LIFs in your cluster, you can verify the LIF capacity supported on the cluster: - System Manager: Beginning with ONTAP 9.12.0, view the throughput on the Network Interface grid. - CLI: Use the network interface capacity show command and the LIF capacity supported on each node by using the network interface capacity details show command (at the advanced privilege level). - Beginning with ONTAP 9.7, if other LIFs already exist for the SVM in the same subnet, you do not need to specify the home port of the LIF. ONTAP automatically chooses a random port on the specified home node in the same broadcast domain as the other LIFs already configured in the same subnet. Beginning with ONTAP 9.4, FC-NVMe is supported. If you are creating an FC-NVMe LIF you should be aware of the following: - The NVMe protocol must be supported by the FC adapter on which the LIF is created. - FC-NVMe can be the only data protocol on data LIFs. - One LIF handling management traffic must be configured for every storage virtual machine (SVM) supporting SAN. - NVMe LIFs and namespaces must be hosted on the same node. - Only one NVMe LIF handling data traffic can be configured per SVM. - When you create a network interface with a subnet, ONTAP automatically selects an available IP address from the selected subnet and assigns it to the network interface. You can change the subnet if there is more than one subnet, but you cannot change the IP address. - When you create (add) an SVM, for a network interface, you cannot specify an IP address that is in the range of an existing subnet. You will receive a subnet conflict error. This issue occurs in other workflows for a network interface, such as creating or modifying inter-cluster network interfaces in SVM settings or cluster settings. - Beginning with ONTAP 9.10.1, the network interface CLI commands include an -rdma-protocols parameter for NFS over RDMA configurations. Creating network interfaces for NFS over RDMA configurations is supported in System Manager beginning in ONTAP 9.12.1. For more information, see #### Configure LIFS for NFS over RDMA. • Beginning with ONTAP 9.11.1, automatic iSCSI LIF failover is available on All-Flash SAN Array (ASA) platforms. iSCSI LIF failover is automatically enabled (the failover policy is set to sfo-partner-only and the autorevert value is set to true) on newly created iSCSI LIFs if no iSCSI LIFs exist in the specified SVM or if all existing iSCSI LIFs in the specified SVM are already enabled with iSCSI LIF failover. If after you upgrade to ONTAP 9.11.1 or later, you have existing iSCSI LIFs in an SVM that have not been enabled with the iSCSI LIF failover feature and you create new iSCSI LIFs in the same SVM, the new iSCSI LIFs assume the same failover policy (disabled) of the existing iSCSI LIFs in the SVM. #### iSCSI LIF failover for ASA platforms Beginning with ONTAP 9.7, ONTAP automatically chooses the home port of a LIF, as long as at least one LIF already exists in the same subnet in that IPspace. ONTAP chooses a home-port in the same broadcast domain as other LIFs in that subnet. You can still specify a home port, but it is no longer required (unless no LIFs yet exist in that subnet in the specified IPspace). Beginning with ONTAP 9.12.0, the procedure you follow depends on the interface that you use—System Manager or the CLI: #### **System Manager** #### Use System Manager to add a network interface #### Steps - 1. Select Network > Overview > Network Interfaces. - Select + Add. - 3. Select one of the following interface roles: - a. Data - b. Intercluster - c. SVM Management - 4. Select the protocol: - a. SMB/CIFS and NFS - b. iSCSI - c. FC - d. NVMe/FC - e. NVMe/TCP - 5. Name the LIF or accept the name generated from your previous selections. - 6. Accept the home node or use the drop-down to select one. - 7. If at least one subnet is configured in the IPspace of the selected SVM, the subnet drop-down is displayed. - a. If you select a subnet, choose it from the drop-down. - b. If you proceed without a subnet, the broadcast domain drop-down is displayed: - i. Specify the IP address. If the IP address is in use, a warning message will display. - ii. Specify a subnet mask. - 8. Select the home port from the broadcast domain, either automatically (recommended) or by selecting one from the drop-down menu. The Home port control is displayed based on the broadcast domain or subnet selection. - 9. Save the network interface. #### CLI #### Use the CLI to create a LIF #### **Steps** 1. Determine which broadcast domain ports you want to use for the LIF. network port broadcast-domain show -ipspace ipspace1 ``` Broadcast Update IPspace Port List Name Domain name MTU Status Details ipspace1 default 1500 complete node1:e0d node1:e0e complete node2:e0d complete node2:e0e complete ``` 2. Verify that the subnet you want to use for the LIFs contains sufficient unused IP addresses. ``` network subnet show -ipspace ipspace1 ``` 3. Create one or more LIFs on the ports you want to use to access data. ``` network interface create -vserver _SVM_name_ -lif _lif_name_ -service-policy _service_policy_name_ -home-node _node_name_ -home -port port_name {-address _IP_address_ - netmask _Netmask_value_ | -subnet-name _subnet_name_} -firewall- policy _policy_ -auto-revert {true|false} ``` • -home-node is the node to which the LIF returns when the network interface revert command is run on the LIF. You can also specify whether the LIF should automatically revert to the home-node and home-port with the -auto-revert option. - -home-port is the physical or logical port to which the LIF returns when the network interface revert command is run on the LIF. - You can specify an IP address with the -address and -netmask options, or you enable allocation from a subnet with the -subnet name option. - When using a subnet to supply the IP address and network mask, if the subnet was defined with a gateway, a default route to that gateway is added automatically to the SVM when a LIF is created using that subnet. - If you assign IP addresses manually (without using a subnet), you might need to configure a default route to a gateway if there are clients or domain controllers on a different IP subnet. The network route create man page contains information about creating a static route within an SVM. - -auto-revert enables you to specify whether a data LIF is automatically reverted to its home node under circumstances such as startup, changes to the status of the management database, or when the network connection is made. The default setting is false, but you can set it to true depending on network management policies in your environment. - -service-policy Beginning with ONTAP 9.5, you can assign a service policy for the LIF with the -service-policy option. - When a service policy is specified for a LIF, the policy is used to construct a default role, failover policy, and data protocol list for the LIF. In ONTAP 9.5, service policies are supported only for intercluster and BGP peer services. In ONTAP 9.6, you can create service policies for several data and management services. - -data-protocol enables you to create a LIF that supports the FCP or NVMe/FC protocols. This option is not required when creating an IP LIF. - 4. **Optional**: Assign an IPv6 address in the -address option: - a. Use the network ndp prefix show command to view the list of RA prefixes learned on various interfaces. The network ndp prefix show command is available at the advanced privilege level. b. Use the format prefix::id to construct the IPv6 address manually. prefix is the prefix learned on various interfaces. For deriving the id, choose a random 64-bit hexadecimal number. 5. Verify that the LIF interface configuration is correct. network interface show -vserver vs1 | Vserver<br>Home | 2 | | Network<br>Address/Mask | Current<br>Node | Current Is<br>Port | |-----------------|------|-------|-------------------------|-----------------|--------------------| | | | | | | | | | | | | | | | vs1 | | | | | | | | lif1 | up/up | 10.0.0.128/24 | node1 | e0d | | true | | | | | | 6. Verify that the failover group configuration is as desired. network interface show -failover -vserver vs1 | Vserver | 3 | Home<br>Node:Port | Failover<br>Policy | Failover<br>Group | |----------|-----------------|-------------------|--------------------------------------------|-------------------| | <br>vs1 | | | | | | Failover | lif1 Targets: n | | <pre>system-defined ode1:e0e, node2:</pre> | | 7. Verify that the configured IP address is reachable: | To verify an | Use | |--------------|---------------| | IPv4 address | network ping | | IPv6 address | network ping6 | #### **Examples** The following command creates a LIF and specifies the IP address and network mask values using the -address and -netmask parameters: ``` network interface create -vserver vsl.example.com -lif datalif1 -service-policy default-data-files -home-node node-4 -home-port elc -address 192.0.2.145 -netmask 255.255.255.0 -auto-revert true ``` The following command creates a LIF and assigns IP address and network mask values from the specified subnet (named client1\_sub): ``` network interface create -vserver vs3.example.com -lif datalif3 -service-policy default-data-files -home-node node-3 -home-port elc -subnet-name client1_sub - auto-revert true ``` The following command creates an NVMe/FC LIF and specifies the nvme-fc data protocol: ``` network interface create -vserver vsl.example.com -lif datalif1 -data -protocol nvme-fc -home-node node-4 -home-port 1c -address 192.0.2.145 -netmask 255.255.255.0 -auto-revert true ``` # **Modify a LIF** You can modify a LIF by changing the attributes, such as home node or current node, administrative status, IP address, netmask, failover policy, firewall policy, and service policy. You can also change the address family of a LIF from IPv4 to IPv6. #### About this task • When modifying a LIF's administrative status to down, any outstanding NFSv4 locks are held until the LIF's administrative status is returned to up. To avoid lock conflicts that can occur when other LIFs attempt to access the locked files, you must move the NFSv4 clients to a different LIF before setting the administrative status to down. • You cannot modify the data protocols used by an FC LIF. However, you can modify the services assigned to a service policy or change the service policy assigned to an IP LIF. To modify the data protocols used by a FC LIF, you must delete and re-create the LIF. To make service policy changes to an IP LIF, there is a brief outage while the updates occur. - You cannot modify either the home node or the current node of a node-scoped management LIF. - When using a subnet to change the IP address and network mask value for a LIF, an IP address is allocated from the specified subnet; if the LIF's previous IP address is from a different subnet, the IP address is returned to that subnet. - To modify the address family of a LIF from IPv4 to IPv6, you must use the colon notation for the IPv6 address and add a new value for the <code>-netmask-length</code> parameter. - You cannot modify the auto-configured link-local IPv6 addresses. - Modification of a LIF that results in the LIF having no valid failover target results in a warning message. If a LIF that does not have a valid failover target attempts to fail over, an outage might occur. • Beginning with ONTAP 9.5, you can modify the service policy associated with a LIF. In ONTAP 9.5, service policies are supported only for intercluster and BGP peer services. In ONTAP 9.6, you can create service policies for several data and management services. • Beginning with ONTAP 9.11.1, the automatic iSCSI LIF failover is available on All-Flash SAN Array (ASA) platforms. For pre-existing iSCSI LIFs, meaning LIFs created prior to upgrading to 9.11.1 or later, you can modify the failover policy to enable automatic iSCSI LIF failover. The procedure you follow depends on the interface that you use—System Manager or the CLI: #### **System Manager** Beginning with ONTAP 9.12.0, you can use System Manager to edit a network interface #### **Steps** - 1. Select Network > Overview > Network Interfaces. - 2. Select : > Edit beside the network interface you want to change. - 3. Change one or more of the network interface settings. For details, see Create a LIF. - 4. Save your changes. #### CLI #### Use the CLI to modify a LIF #### **Steps** 1. Modify a LIF's attributes by using the network interface modify command. The following example shows how to modify the IP address and network mask of LIF datalif2 using an IP address and the network mask value from subnet client1\_sub: ``` network interface modify -vserver vs1 -lif datalif2 -subnet-name client1_sub ``` The following example shows how to modify the service policy of a LIF. ``` network interface modify -vserver siteA -lif node1_inter1 -service -policy example ``` 2. Verify that the IP addresses are reachable. | If you are using | Then use | |------------------|---------------| | IPv4 addresses | network ping | | IPv6 addresses | network ping6 | ## Migrate a LIF You might have to migrate a LIF to a different port on the same node or a different node within the cluster, if the port is either faulty or requires maintenance. Migrating a LIF is similar to LIF failover, but LIF migration is a manual operation, while LIF failover is the automatic migration of a LIF in response to a link failure on the LIF's current network port. #### Before you begin · A failover group must have been configured for the LIFs. The destination node and ports must be operational and must be able to access the same network as the source port. #### About this task - BGP LIFs reside on the home-port and cannot be migrated to any other node or port. - You must migrate LIFs hosted on the ports belonging to a NIC to other ports in the cluster, before removing the NIC from the node. - You must execute the command for migrating a cluster LIF from the node where the cluster LIF is hosted. - A node-scoped LIF, such as a node-scoped management LIF, cluster LIF, intercluster LIF, cannot be migrated to a remote node. - When an NFSv4 LIF is migrated between nodes, a delay of up to 45 seconds results before the LIF is available on a new port. To work around this problem, use NFSv4.1 where no delay is encountered. • You can migrate iSCSI LIFs on All-Flash SAN Array (ASA) platforms running ONTAP 9.11.1 or later. Migrating iSCSI LIFs is limited to ports on the home-node or the HA partner. • If your platform is not an All-Flash SAN Array (ASA) platform running ONTAP version 9.11.1 or later, you cannot migrate iSCSI LIFs from one node to another node. To work around this restriction, you must create an iSCSI LIF on the destination node. Learn about creating iSCSI LIFs. - If you want to migrate a LIF (network interface) for NFS over RDMA, you must ensure the destination port is RoCE capable. You must be running ONTAP 9.10.1 or later to migrate a LIF with the CLI, or ONTAP 9.12.1 to migrate using System Manager. In System Manager, once you have selected your RoCE capable destination-port, you must check the box next to Use RoCE ports to complete the migration successfully. Learn more about configuring LIFs for NFS over RDMA. - VMware VAAI copy offload operations fail when you migrate the source or the destination LIF. Learn about copy off-load: - NFS environments - SAN environments The procedure you follow depends on the interface that you use—System Manager or the CLI: #### **System Manager** #### **Use System Manager to migrate a network interface** #### **Steps** - 1. Select Network > Overview > Network Interfaces. - 2. Select **> Migrate** beside the network interface you want to change. For an iSCSI LIF, in the **Migrate Interface** dialog box, select the destination node and port of the HA partner. If you want to migrate the iSCSI LIF permanently, select the checkbox. The iSCSI LIF must be offline before it is permanently migrated. Additionally, once an iSCSI LIF is permanently migrated, it cannot be undone. There is no revert option. - 3. Click Migrate. - 4. Save your changes. #### CLI #### Use the CLI to migrate a LIF #### Step Depending on whether you want to migrate a specific LIF or all the LIFs, perform the appropriate action: | If you want to migrate | Enter the following command | |--------------------------------------------------------|----------------------------------------------------------------------------------| | A specific LIF | network interface migrate | | All the data and cluster-<br>management LIFs on a node | network interface migrate-all | | All of the LIFs off of a port | <pre>network interface migrate-all -node <node> -port <port></port></node></pre> | The following example shows how to migrate a LIF named datalif1 on the SVM vs0 to the port e0d on node0b: $\label{lem:network} \begin{tabular}{ll} network interface migrate -vserver vs0 -lif datalif1 -dest-node node0b -dest-port e0d \\ \end{tabular}$ The following example shows how to migrate all the data and cluster-management LIFs from the current (local) node: network interface migrate-all -node local ### Revert a LIF to its home port You can revert a LIF to its home port after it fails over or is migrated to a different port either manually or automatically. If the home port of a particular LIF is unavailable, the LIF remains at its current port and is not reverted. #### About this task - If you administratively bring the home port of a LIF to the up state before setting the automatic revert option, the LIF is not returned to the home port. - The LIF does not automatically revert unless the value of the "auto-revert" option is set to true. - You must ensure that the "auto-revert" option is enabled for the LIFs to revert to their home ports. The procedure you follow depends on the interface that you use—System Manager or the CLI: #### **System Manager** Use System Manager to revert a network interface to its home port #### **Steps** - 1. Select Network > Overview > Network Interfaces. - 2. Select > Revert beside the network interface you want to change. - 3. Select **Revert** to revert a network interface to its home port. #### CLI Use the CLI to revert a LIF to its home port #### Step Revert a LIF to its home port manually or automatically: | If you want to revert a LIF to its home port | Then enter the following command | |----------------------------------------------|-----------------------------------------------------------------------------------------------| | Manually | <pre>network interface revert -vserver vserver_name -lif<br/>lif_name</pre> | | Automatically | <pre>network interface modify -vserver vserver_name -lif<br/>lif_name -auto-revert true</pre> | # ONTAP 9.8 and later: Recover from an incorrectly configured cluster LIF A cluster cannot be created when the cluster network is cabled to a switch but not all of the ports configured in the Cluster IPspace can reach the other ports configured in the Cluster IPspace. #### About this task In a switched cluster, if a cluster network interface (LIF) is configured on the wrong port, or if a cluster port is wired into the wrong network, the cluster create command can fail with the following error: ``` Not all local cluster ports have reachability to one another. Use the "network port reachability show -detail" command for more details. ``` The results of the network port show command might show that several ports are added to the Cluster IPspace because they are connected to a port that is configured with a cluster LIF. However, the results of the network port reachability show -detail command reveal which ports do not have connectivity to one another. To recover from a cluster LIF configured on a port that is not reachable to the other ports configured with cluster LIFs, perform the following steps: #### **Steps** 1. Reset the home port of the cluster LIF to the correct port: ``` network port modify -home-port ``` 2. Remove the ports that do not have cluster LIFs configured on them from the cluster broadcast domain: ``` network port broadcast-domain remove-ports ``` 3. Create the cluster: ``` cluster create ``` #### Result When you complete the cluster creation, the system detects the correct configuration and places the ports into the correct broadcast domains. #### **Delete a LIF** You can delete a network interface (LIF) that is no longer required. #### Before you begin LIFs to be deleted must not be in use. #### **Steps** 1. Mark the LIFs you want to delete as administratively down using the following command: ``` network interface modify -vserver vserver_name -lif lif_name -status -admin down ``` 2. Use the network interface delete command to delete one or all LIFs: | If you want to delete | Enter the command | |-----------------------|-------------------------------------------------------------------------| | A specific LIF | <pre>network interface delete -vserver vserver_name -lif lif_name</pre> | | All LIFs | <pre>network interface delete -vserver vserver_name -lif *</pre> | The following command deletes the LIF mgmtlif2: ``` network interface delete -vserver vs1 -lif mgmtlif2 ``` 3. Use the network interface show command to confirm that the LIF is deleted. #### Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at <a href="http://www.netapp.com/TM">http://www.netapp.com/TM</a> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.