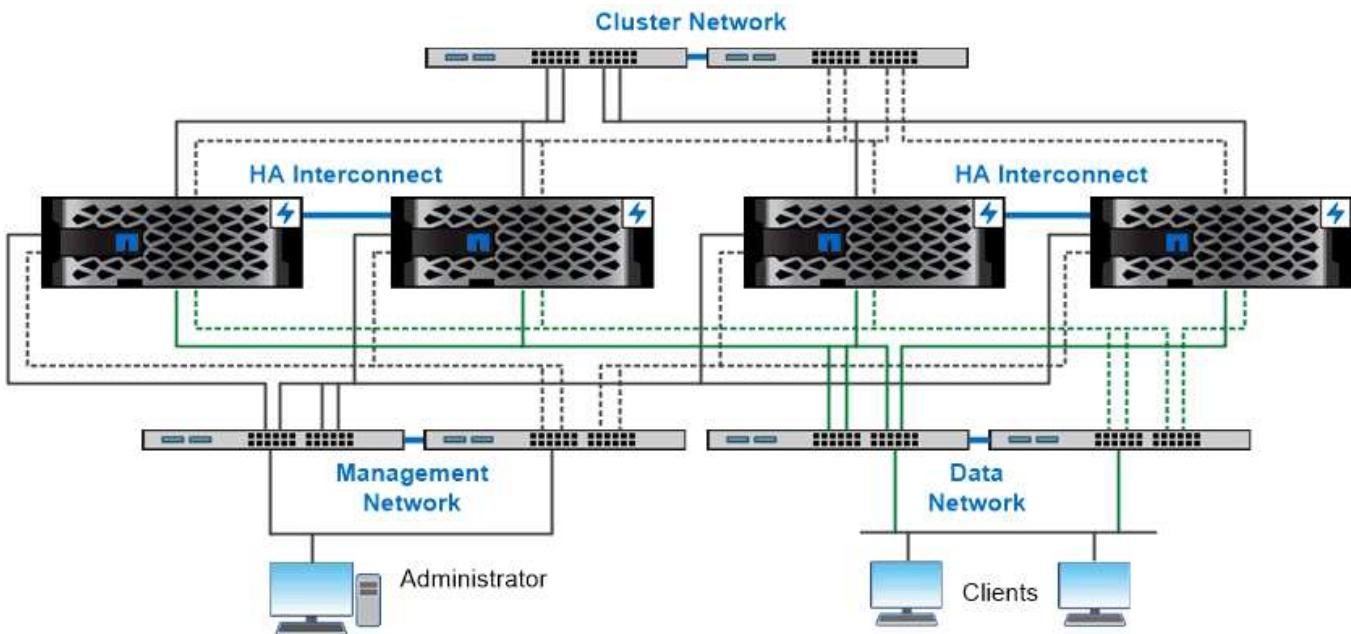


Network architecture

ONTAP 9

NetApp
January 22, 2026

This PDF was generated from <https://docs.netapp.com/us-en/ontap/concepts/network-connectivity-concept.html> on January 22, 2026. Always check docs.netapp.com for the latest.


Table of Contents

Network architecture	1
Network architecture overview	1
Logical ports	1
Interface groups	1
VLANs	1
Support for industry-standard network technologies	2
IPspaces	2
DNS load balancing	3
SNMP traps	3
FIPS compliance	3
RDMA overview	3
NFS over RDMA	3
Cluster interconnect RDMA	3

Network architecture

Network architecture overview

The network architecture for an ONTAP datacenter implementation typically consists of a cluster interconnect, a management network for cluster administration, and a data network. NICs (network interface cards) provide physical ports for Ethernet connections. HBAs (host bus adapters) provide physical ports for FC connections.

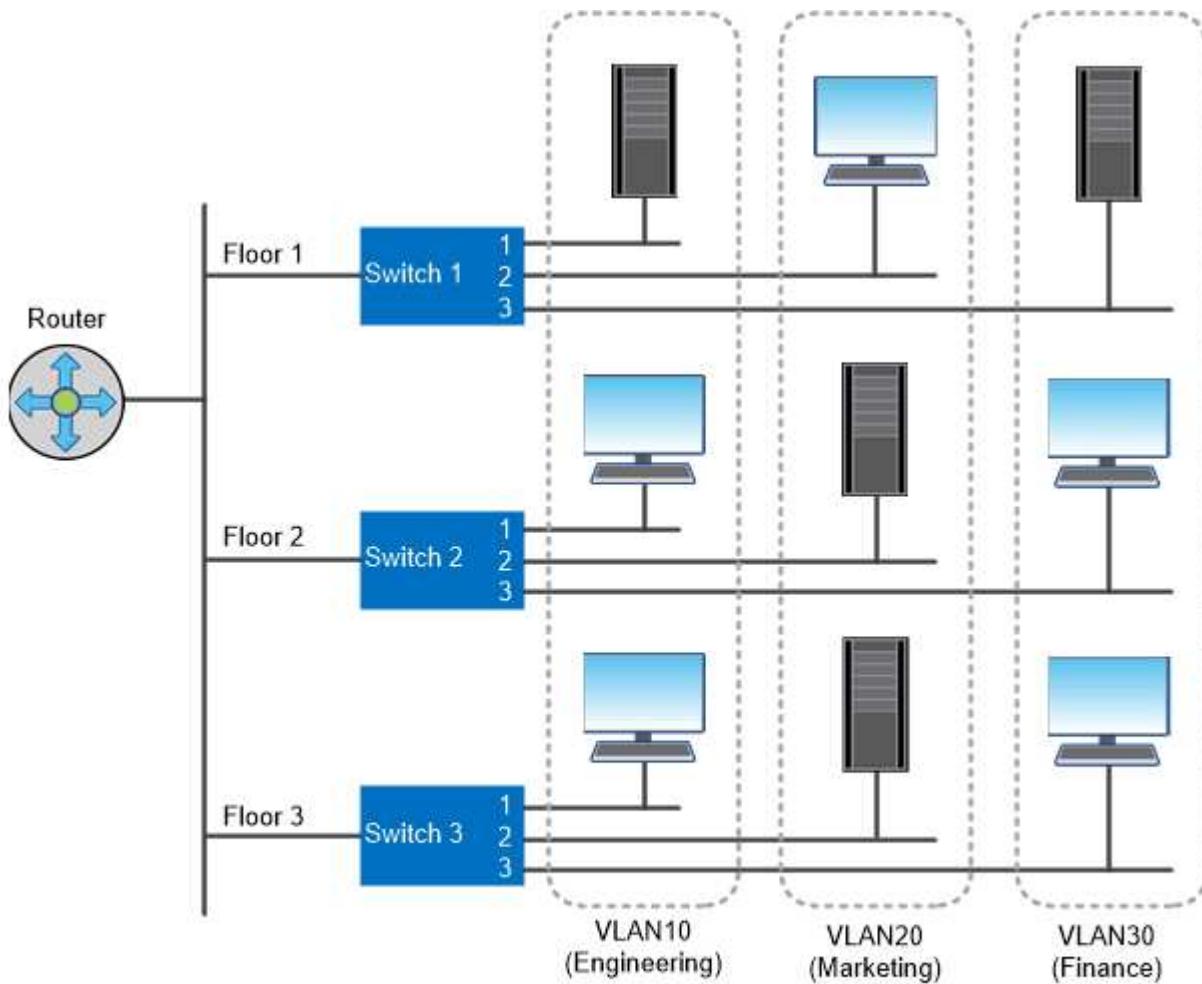
The network architecture for an ONTAP datacenter implementation typically consists of a cluster interconnect, a management network for cluster administration, and a data network.

Logical ports

In addition to the physical ports provided on each node, you can use *logical ports* to manage network traffic. Logical ports are interface groups or VLANs.

Interface groups

Interface groups combine multiple physical ports into a single logical “trunk port”. You might want to create an interface group consisting of ports from NICs in different PCI slots to ensure against a slot failure bringing down business-critical traffic.


An interface group can be single-mode, multimode, or dynamic multimode. Each mode offers differing levels of fault tolerance. You can use either type of multimode interface group to load-balance network traffic.

VLANs

VLANs separate traffic from a network port (which could be an interface group) into logical segments defined on a switch port basis, rather than on physical boundaries. The *end-stations* belonging to a VLAN are related

by function or application.

You might group end-stations by department, such as Engineering and Marketing, or by project, such as release1 and release2. Because physical proximity of the end-stations is irrelevant in a VLAN, the end-stations can be geographically remote.

You can use VLANs to segregate traffic by department.

Support for industry-standard network technologies

ONTAP supports all major industry-standard network technologies. Key technologies include IPspaces, DNS load balancing, and SNMP traps.

Broadcast domains, failover groups, and subnets are described in [NAS path failover](#).

IPspaces

You can use an *IPspace* to create a distinct IP address space for each virtual data server in a cluster. Doing so enables clients in administratively separate network domains to access cluster data while using overlapping IP addresses from the same IP address subnet range.

A service provider, for example, could configure different IPspaces for tenants using the same IP addresses to

access a cluster.

DNS load balancing

You can use *DNS load balancing* to distribute user network traffic across available ports. A DNS server dynamically selects a network interface for traffic based on the number of clients that are mounted on the interface.

SNMP traps

You can use *SNMP traps* to check periodically for operational thresholds or failures. SNMP traps capture system monitoring information sent asynchronously from an SNMP agent to an SNMP manager.

FIPS compliance

ONTAP is compliant with the Federal Information Processing Standards (FIPS) 140-2 for all SSL connections. You can turn on and off SSL FIPS mode, set SSL protocols globally, and turn off any weak ciphers such as RC4.

RDMA overview

ONTAP's Remote Direct Memory Access (RDMA) offerings support latency-sensitive and high-bandwidth workloads. RDMA allows data to be copied directly between storage system memory and host system memory, circumventing CPU interruptions and overhead.

NFS over RDMA

Beginning with ONTAP 9.10.1, you can configure [NFS over RDMA](#) to enable the use of NVIDIA GPUDirect Storage for GPU-accelerated workloads on hosts with supported NVIDIA GPUs.

RDMA is not supported with the SMB protocol.

Cluster interconnect RDMA

Cluster interconnect RDMA reduces latency, decreases failover times, and accelerates communication between nodes in a cluster.

Beginning with ONTAP 9.10.1, cluster interconnect RDMA is supported for certain hardware systems when used with X1151A cluster NICs. Beginning with ONTAP 9.13.1, X91153A NICs also support cluster interconnect RDMA. Consult the table to learn what systems are supported in different ONTAP releases.

Systems	Supported ONTAP versions
<ul style="list-style-type: none"> • AFF A50 • AFF A30 • AFF A20 • AFF C80 • AFF C60 • AFF C30 • ASA A50 • ASA A30 • ASA A20 	ONTAP 9.16.1 and later
<ul style="list-style-type: none"> • AFF A1K • AFF A90 • AFF A70 • ASAA1K • ASA A90 • ASA A70 • FAS90 • FAS70 	ONTAP 9.15.1 and later
<ul style="list-style-type: none"> • AFF A900 • ASAA900 • FAS9500 	ONTAP 9.13.1 and later
<ul style="list-style-type: none"> • AFF A400 • ASAA400 	ONTAP 9.10.1 and later

Given the appropriate storage system set up, no additional configuration is needed to use cluster interconnect RDMA.

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—with prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at <http://www.netapp.com/TM> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.