
BeeGFS auf NetApp mit E-Series Storage
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/de-de/beegfs/index.html on January 27, 2026.
Always check docs.netapp.com for the latest.

Inhalt
BeeGFS auf NetApp mit E-Series Storage . 1

Los geht’s . 2

Was ist in dieser Website enthalten . 2

Begriffe und Konzepte . 2

Einsatz verifizierter Architekturen . 4

Überblick und Anforderungen. 4

Lösungsüberblick . 4

Überblick über die Architektur . 5

Technische Anforderungen. 9

Überprüfen des Lösungsdesigns . 12

Designübersicht . 12

Hardwarekonfiguration . 13

Softwarekonfiguration . 15

Design-Überprüfung. 22

Richtlinien für die Dimensionierung . 28

Performance-Optimierung . 29

Baustein mit hoher Kapazität . 31

Implementieren der Lösung . 32

Implementierungsübersicht . 32

Weitere Informationen zum Ansible Inventar . 33

Besprechen der Best Practices . 36

Implementierung von Hardware. 40

Implementierung von Software . 43

Skalierung auf mehr als fünf Bausteine . 81

Empfohlene Prozentsätze für die Überprovisionierung von Storage-Pools . 82

Baustein mit hoher Kapazität . 82

Verwenden Sie individuelle Architekturen . 85

Überblick und Anforderungen. 85

Einführung . 85

Implementierungsübersicht . 85

Anforderungen . 86

Ersteinrichtung . 87

Installieren und verkabeln Sie die Hardware . 87

Datei- und Block-Knoten einrichten . 90

Ansible-Steuerungsknoten Einrichten . 91

Definieren Sie das BeeGFS-Dateisystem . 92

Ansible-Bestandsübersicht. 92

Planen Sie das Dateisystem . 93

Datei- und Blockknoten definieren . 95

BeeGFS-Dienste definieren . 112

Zuordnen von BeeGFS-Services zu Datei-Nodes . 118

Stellen Sie das BeeGFS-Dateisystem bereit . 119

Ansible – Playbook-Überblick. 119

Implementieren Sie das BeeGFS HA-Cluster . 120

Bereitstellen von BeeGFS-Clients . 124

Überprüfen Sie die BeeGFS-Bereitstellung . 129

Funktionen und Integrationen bereitstellen . 131

BeeGFS CSI-Treiber . 131

TLS-Verschlüsselung für BeeGFS v8 konfigurieren. 131

Überblick . 131

Verwendung einer vertrauenswürdigen Zertifizierungsstelle . 131

Erstellung einer lokalen Zertifizierungsstelle . 132

TLS deaktivieren . 137

BeeGFS-Cluster verwalten. 139

Übersicht, Schlüsselkonzepte und Terminologie . 139

Überblick . 139

Schlüsselkonzepte . 139

Allgemeine Terminologie . 140

Wann Ansible im Vergleich zum Tool PCs verwendet werden soll. 140

Untersuchen Sie den Status des Clusters . 141

Überblick . 141

Allgemeines zur Ausgabe von pcs status . 141

Konfigurieren Sie HA-Cluster und BeeGFS neu . 142

Überblick . 142

So deaktivieren und aktivieren Sie Fechten. 143

Aktualisieren Sie die HA-Cluster-Komponenten . 143

Upgrade der BeeGFS Services . 144

Upgrade auf BeeGFS v8 . 147

Aktualisieren Sie Pacemaker- und Corosync-Pakete in einem HA-Cluster . 157

Aktualisiert die Datei-Node-Adapter-Firmware . 160

Upgrade von E-Series Storage-Arrays . 165

Service und Wartung . 167

Failover- und Failback-Services. 167

Versetzen Sie das Cluster in den Wartungsmodus . 169

Beenden Sie den Cluster und starten Sie den Cluster . 170

Datei-Nodes ersetzen . 171

Erweitern oder verkleinern Sie den Cluster . 172

Fehlerbehebung . 174

Überblick . 174

Leitfäden Zur Fehlerbehebung. 174

Häufige Probleme . 178

Häufige Fehlerbehebungsaufgaben. 179

Rechtliche Hinweise . 181

Urheberrecht . 181

Marken . 181

Patente . 181

Datenschutzrichtlinie . 181

Open Source . 181

BeeGFS auf NetApp mit E-Series Storage

1

Los geht’s

Was ist in dieser Website enthalten

Auf dieser Website wird dokumentiert, wie BeeGFS auf NetApp mit sowohl NetApp
Verified Architectures (NVAs) als auch individuellen Architekturen implementiert und
gemanagt wird. NVA-Designs werden ausführlich getestet und bieten Kunden
Referenzkonfigurationen und Anleitungen zur Größenbestimmung, um
Implementierungsrisiken zu minimieren und die Markteinführungszeit zu beschleunigen.
NetApp unterstützt außerdem individuelle BeeGFS-Architekturen, die auf NetApp
Hardware ausgeführt werden. So können Kunden und Partner flexibel Filesysteme
entwerfen, die einen breiten Anforderungsspektrum erfüllen. Beide Ansätze nutzen
Ansible für die Implementierung und bieten einen Appliance-ähnlichen Ansatz, mit dem
BeeGFS in jeder Größenordnung über ein flexibles Spektrum an Hardware gemanagt
werden kann.

Begriffe und Konzepte

Die folgenden Begriffe und Konzepte gelten für die BeeGFS auf NetApp Lösung.

Im "BeeGFS-Cluster verwalten" Abschnitt finden Sie weitere Details zu Begriffen und Konzepten
für die Interaktion mit BeeGFS-Clustern mit hoher Verfügbarkeit (HA).

Laufzeit Beschreibung

KI Künstliche Intelligenz.

Ansible-
Steuerungsknoten

Eine physische oder virtuelle Maschine, die zum Ausführen der Ansible CLI
verwendet wird.

Ansible-
Bestandsaufnahme

Verzeichnisstruktur mit YAML-Dateien, die zur Beschreibung des gewünschten
BeeGFS HA-Clusters verwendet werden.

BMC Baseboard Management Controller Und wird manchmal als Service-Prozessor
bezeichnet.

Block-Nodes E-Series Storage-Systemen

Clients Nodes im HPC-Cluster führen Applikationen aus, die das Filesystem verwenden
müssen. Gelegentlich auch als Computing- oder GPU-Nodes bezeichnet

DL Deep Learning.

Datei-Nodes BeeGFS-Dateiserver.

2

Laufzeit Beschreibung

HOCHVERFÜGBARKEIT Hochverfügbarkeit,

HIC Host-Schnittstellenkarte:

HPC High Performance Computing:

Workloads im HPC-Stil HPC Workloads werden in der Regel durch mehrere Computing-Nodes oder
GPUs gekennzeichnet, die alle parallel auf denselben Datensatz zugreifen
müssen, um ein verteiltes Computing- oder Trainingsjob zu ermöglichen. Diese
Datensätze bestehen häufig aus großen Dateien, die auf mehrere physische
Storage-Nodes verteilt werden sollten, um die herkömmlichen Hardwareengpässe
zu beseitigen, die den gleichzeitigen Zugriff auf eine einzelne Datei verhindern
würden.

ML Maschinelles Lernen:

NLP Natürliche Sprachverarbeitung.

NLU Verständnis Natürlicher Sprachen.

NVA Das NetApp Verified Architecture (NVA) Programm enthält
Referenzkonfigurationen und Anleitungen zur Dimensionierung für spezifische
Workloads und Anwendungsfälle. Diese Lösungen sind sorgfältig getestet und
sollen Implementierungsrisiken minimieren und die Markteinführungszeit
verkürzen.

Storage-Netzwerk/Client-
Netzwerk

Netzwerk, das für Clients zur Kommunikation mit dem BeeGFS-Dateisystem
verwendet wird. Dies ist häufig dasselbe Netzwerk, das für MPI (Parallel Message
Passing Interface) und andere Anwendungskommunikation zwischen HPC-
Clusterknoten verwendet wird.

3

Einsatz verifizierter Architekturen

Überblick und Anforderungen

Lösungsüberblick

Die BeeGFS auf NetApp Lösung kombiniert das parallele BeeGFS Filesystem mit NetApp
EF600 Storage-Systemen und bietet so eine zuverlässige, skalierbare und
kostengünstige Infrastruktur, die mit anspruchsvollen Workloads Schritt hält.

NVA-Programm

Die BeeGFS on NetApp Lösung ist Teil des NetApp Verified Architecture (NVA) Programms, das Kunden
Referenzkonfigurationen und Orientierungshilfen zur Größenbestimmung für spezifische Workloads und
Anwendungsfälle bietet. NVA-Lösungen werden ausführlich getestet und entwickelt, um
Implementierungsrisiken zu minimieren und die Markteinführungszeit zu verkürzen.

Design-Übersicht

BeeGFS auf NetApp wurde als skalierbare Bausteinarchitektur konzipiert, die für eine Vielzahl anspruchsvoller
Workloads konfigurierbar ist. Das Filesystem kann an diese Anforderungen angepasst werden – unabhängig
davon, ob es um zahlreiche kleine Dateien, das Management umfangreicher Dateivorgänge oder um einen
Hybrid-Workload geht. Hohe Verfügbarkeit ist in das Design mit der Verwendung einer zweistufigen Hardware-
Struktur integriert, die ein unabhängiges Failover auf mehreren Hardware-Schichten ermöglicht und eine
konsistente Performance auch bei teilweisen Systemabfällen gewährleistet. Das BeeGFS-Filesystem
ermöglicht eine hochperformante und skalierbare Umgebung für verschiedene Linux-Distributionen. Es stellt
Clients einen einzelnen, einfach zugänglichen Storage-Namespace zur Verfügung. Erfahren Sie mehr in der
"Architekturübersicht".

Anwendungsfälle

Die folgenden Anwendungsfälle gelten für die BeeGFS auf NetApp Lösung:

• NVIDIA DGX SuperPOD-Systeme mit DGX’s mit A100, H100, H200 und B200 GPUs

• Künstliche Intelligenz (KI), einschließlich Machine Learning (ML), Deep Learning (DL), großzügiger
natürlicher Sprachverarbeitung (NLP) und NLU (Natural Language Understanding) Weitere Informationen
finden Sie unter "BeeGFS for AI: Fakt versus Fiction".

• High-Performance Computing (HPC) einschließlich Applikationen, die mit MPI (Message Passing Interface)
und anderen Distributed Computing-Techniken beschleunigt werden. Weitere Informationen finden Sie
unter "Warum BeeGFS das HPC übertrifft".

• Applikations-Workloads zeichnen sich durch folgende Merkmale aus:

◦ Lesen oder Schreiben auf Dateien mit einer Größe von mehr als 1 GB

◦ Lesen oder Schreiben in dieselbe Datei durch mehrere Clients (10s, 100s und 1000s)

• Datensätze mit mehreren Terabyte oder mehreren Petabyte.

• Umgebungen, für die ein einziger Storage Namespace benötigt wird, der sich für eine Mischung aus
großen und kleinen Dateien optimieren lässt

4

https://www.netapp.com/blog/beefs-for-ai-fact-vs-fiction/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/

Vorteile

Die wichtigsten Vorteile von BeeGFS auf NetApp:

• Verfügbarkeit verifizierter Hardware-Designs mit vollständiger Integration von Hardware- und
Softwarekomponenten, die zuverlässige Performance und Zuverlässigkeit gewährleisten.

• Implementierung und Management mit Ansible für Einfachheit und Konsistenz nach Maß

• Überwachung und Beobachtbarkeit mithilfe des E-Series Performance Analyzer und BeeGFS Plug-ins.
Weitere Informationen finden Sie unter "Framework zur Überwachung von NetApp E-Series Lösungen".

• Hochverfügbarkeit dank einer Shared-Disk-Architektur für Datenaufbewahrungszeit und -Verfügbarkeit

• Unterstützung für modernes Workload-Management und moderne Orchestrierung mithilfe von Containern
und Kubernetes Weitere Informationen finden Sie unter "Kubernetes Meet BeeGFS: Eine Geschichte
zukunftssichere Investition".

Überblick über die Architektur

Die BeeGFS on NetApp Lösung beinhaltet Design-Aspekte, die bei der
Architekturentwicklung berücksichtigt werden, um die spezifischen Geräte, Kabel und
Konfigurationen zu ermitteln, die für validierte Workloads erforderlich sind.

Modulare Architektur

Das BeeGFS-Dateisystem kann je nach Storage-Anforderungen unterschiedlich implementiert und skaliert
werden. In Anwendungsfällen, die in erster Linie mehrere kleine Dateien enthalten, profitieren beispielsweise
von der zusätzlichen Performance und Kapazität der Metadaten, während in Anwendungsfällen mit weniger
großen Dateien mehr Storage-Kapazität und Performance für die tatsächlichen Dateiinhalte erforderlich wären.
Diese verschiedenen Überlegungen wirken sich auf die verschiedenen Dimensionen der Implementierung
paralleler Dateisysteme aus, was die Entwicklung und Implementierung des Filesystems weiter vereinfacht.

Zur Bewältigung dieser Herausforderungen hat NetApp eine standardmäßige Bausteinarchitektur entwickelt,
mit der sich jede dieser Dimensionen skalieren lässt. BeeGFS-Bausteine werden in der Regel in einem von
drei Konfigurationsprofilen bereitgestellt:

• Ein einzelner Baustein, einschließlich BeeGFS-Management, Metadaten und Storage-Services

• Ein BeeGFS Metadaten plus Storage-Baustein

• Ein BeeGFS-Lagergebäude

Die einzige Hardware-Änderung zwischen diesen drei Optionen ist die Verwendung kleinerer Laufwerke für
BeeGFS-Metadaten. Andernfalls werden alle Konfigurationsänderungen durch die Software übernommen. Und
mit Ansible als Implementierungs-Engine gestaltet sich die Einrichtung des gewünschten Profils für einen
bestimmten Baustein die Konfigurationsaufgaben unkompliziert.

Weitere Informationen finden Sie unter Verifiziertes Hardwaredesign.

File-System-Services

Das BeeGFS-Dateisystem umfasst die folgenden Hauptdienste:

• Management Service. registriert und überwacht alle anderen Dienste.

• Speicherdienst. speichert den verteilten Inhalt der Benutzerdatei, bekannt als Datenblock-Dateien.

5

https://www.netapp.com/blog/monitoring-netapp-eseries/
https://www.netapp.com/blog/kubernetes-meet-beegfs/
https://www.netapp.com/blog/kubernetes-meet-beegfs/

• Metadatendienst. verfolgt das Dateisystem-Layout, Verzeichnis, Dateiattribute und so weiter.

• Client Service. installiert das Dateisystem, um auf die gespeicherten Daten zuzugreifen.

Die folgende Abbildung zeigt die Komponenten und Beziehungen der BeeGFS-Lösung für NetApp E-Series
Systeme.

Als paralleles Dateisystem verteilt BeeGFS seine Dateien auf mehrere Server-Nodes, um die Lese-/Schreib-
Performance und Skalierbarkeit zu maximieren. Die Server-Knoten arbeiten zusammen, um ein einziges
Dateisystem bereitzustellen, das gleichzeitig von anderen Server-Knoten, allgemein bekannt als Clients,
gemountet werden kann. Diese Clients können das verteilte Dateisystem auf ähnliche Weise wie ein lokales
Dateisystem wie NTFS, XFS oder ext4 sehen und nutzen.

Die vier wichtigsten Services werden in einer Vielzahl von unterstützten Linux Distributionen ausgeführt und
kommunizieren über jedes TCP/IP- oder RDMA-fähige Netzwerk, einschließlich InfiniBand (IB), Omni-Path
(OPA) und RDMA over Converged Ethernet (RoCE). Die BeeGFS Server Services (Management, Speicherung
und Metadaten) sind Benutzerspace-Dämonen, während der Client ein natives Kernel-Modul (patchless) ist.
Alle Komponenten können ohne Neustart installiert oder aktualisiert werden. Sie können beliebige
Kombinationen von Services auf demselben Node ausführen.

HA-Architektur

BeeGFS auf NetApp erweitert die Funktionalität der BeeGFS Enterprise Edition durch Entwicklung einer
vollständig integrierten Lösung mit NetApp Hardware, die eine HA-Architektur (Shared Disk High Availability,
Shared-Hochverfügbarkeit) ermöglicht.

6

Die BeeGFS Community Edition kann zwar kostenlos genutzt werden, jedoch muss bei der
Enterprise Edition ein Professional Support-Abonnementvertrag von einem Partner wie NetApp
abgeschlossen werden. Die Enterprise-Version ermöglicht die Nutzung mehrerer zusätzlicher
Funktionen wie Ausfallsicherheit, Kontingentzuverfolgung und Storage-Pools.

In der folgenden Abbildung werden die HA-Architekturen ohne Shared-Festplatten verglichen.

Weitere Informationen finden Sie unter "Ankündigung der Hochverfügbarkeit für BeeGFS mit Unterstützung
von NetApp".

Verifizierte Nodes

Die BeeGFS auf NetApp-Lösung hat die unten aufgeführten Knoten verifiziert.

Knoten Trennt Details

Block-
Storage

NetApp EF600
Storage-System

Dieses rein NVMe-basierte 2-HE-Storage-Array mit hoher Performance ist
für anspruchsvolle Workloads konzipiert.

Datei Lenovo ThinkSystem
SR665 V3-Server

2-Socket-Server mit PCIe 5.0, zwei AMD EPYC 9124 Prozessoren. Weitere
Informationen zum Lenovo SR665 V3 finden Sie unter "Lenovo Website".

Lenovo ThinkSystem
SR665 Server

2-Socket-Server mit PCIe 4.0, zwei AMD EPYC 7003 Prozessoren. Weitere
Informationen zum Lenovo SR665 finden Sie unter "Lenovo Website".

Verifiziertes Hardwaredesign

Die Bausteine der Lösung (in der folgenden Abbildung dargestellt) verwenden die verifizierten File-Node-
Server für die BeeGFS-Dateiebene und zwei EF600-Storage-Systeme als Block-Ebene.

7

https://www.netapp.com/blog/high-availability-beegfs/
https://www.netapp.com/blog/high-availability-beegfs/
https://lenovopress.lenovo.com/lp1608-thinksystem-sr665-v3-server
https://lenovopress.lenovo.com/lp1269-thinksystem-sr665-server

Die BeeGFS on NetApp Lösung läuft über alle Bausteine während der Implementierung hinweg. Auf dem
ersten implementierten Baustein müssen BeeGFS-Management-, Metadaten- und Storage-Services (als
Basisbaustein bezeichnet) ausgeführt werden. Alle nachfolgenden Bausteine können über Software
konfiguriert werden, um Metadaten und Storage-Services zu erweitern oder ausschließlich Storage-Services
bereitzustellen. Mit diesem modularen Ansatz kann das Filesystem an die Anforderungen eines Workloads
skaliert werden, während gleichzeitig dieselben zugrunde liegenden Hardware-Plattformen und dasselbe
Bausteindesign verwendet werden.

Bis zu fünf Bausteine können als Standalone Linux HA-Cluster implementiert werden. Dies optimiert die
Ressourcenverwaltung mit Pacemaker und sorgt für eine effiziente Synchronisierung mit Corosync.
Mindestens ein dieser Standalone BeeGFS HA-Cluster wird kombiniert, um ein BeeGFS-Filesystem zu
erstellen, das für Clients als einzelner Storage-Namespace zur Verfügung steht. Auf der Hardware-Seite kann
ein einzelnes 42-HE-Rack bis zu fünf Bausteine zusammen mit zwei 1-HE-InfiniBand-Switches für das
Storage-/Datennetzwerk aufnehmen. Eine visuelle Darstellung finden Sie in der folgenden Grafik.

Zum Herstellen von Quorum im Failover Cluster sind mindestens zwei Bausteine erforderlich.
Ein Cluster mit zwei Nodes hat Einschränkungen, die ein erfolgreiches Failover verhindern
können. Wenn Sie ein Cluster mit zwei Nodes konfigurieren, wird ein drittes Gerät als
Tiebreaker integriert, dieses Design wird jedoch nicht in dieser Dokumentation beschrieben.

8

Ansible

BeeGFS auf NetApp wird mittels Ansible-Automatisierung bereitgestellt und implementiert. Das Hosting wird
auf GitHub und Ansible Galaxy (die BeeGFS-Sammlung ist über verfügbar "Ansible-Galaxie" Und "NetApp E-
Series GitHub"). Obwohl Ansible vor allem mit der Hardware getestet wird, die zum Zusammenbauen der
BeeGFS-Bausteine verwendet wird, können Sie es so konfigurieren, dass es auf nahezu jedem x86-basierten
Server unter Verwendung einer unterstützten Linux-Distribution ausgeführt wird.

Weitere Informationen finden Sie unter "Implementieren von BeeGFS mit E-Series Storage".

Technische Anforderungen

Stellen Sie zur Implementierung der Lösung BeeGFS auf NetApp sicher, dass Ihre
Umgebung die in diesem Dokument beschriebenen Technologieanforderungen erfüllt.

9

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/netappeseries/beegfs/
https://github.com/netappeseries/beegfs/
https://www.netapp.com/blog/deploying-beegfs-eseries/

Hardwareanforderungen

Stellen Sie zunächst sicher, dass Ihre Hardware die folgenden Spezifikationen für ein einziges Bausteindesign
der zweiten Generation der BeeGFS auf NetApp-Lösung erfüllt. Die genauen Komponenten für eine bestimmte
Implementierung können je nach den Anforderungen des Kunden variieren.

Menge Hardwarekompone
nten

Anforderungen

2 BeeGFS-Datei-
Nodes

Jeder Datei-Node sollte die Spezifikationen der empfohlenen Datei-Nodes
erfüllen oder übertreffen, um die erwartete Performance zu erreichen.

Empfohlene Dateiknoten-Optionen:

• * Lenovo ThinkSystem SR665 V3*

◦ Prozessoren: 2x AMD EPYC 9124 16C 3.0 GHz (konfiguriert als
zwei NUMA Zonen).

◦ Speicher: 256 GB (16 x 16 GB TruDDR5 4800 MHz RDIMM-A)

◦ PCIe-Erweiterung: vier PCIe Gen5 x16-Steckplätze (zwei pro
NUMA-Zone)

◦ Verschiedenes:

▪ Zwei Laufwerke in RAID 1 für OS (1 TB 7.200 SATA oder höher)

▪ 1-GbE-Port für in-Band-OS-Management

▪ 1GbE BMC mit Redfish API für Out-of-Band-Server-
Management

▪ Zwei Hot-Swap-Netzteile und Lüfter mit hoher Leistung

2 E-Series-Block-
Nodes (EF600
Array)

Speicher: 256 GB (128 GB pro Controller). Adapter: 2-Port 200 GB/HDR
(NVMe/IB). Laufwerke: entsprechend den gewünschten Metadaten und
Speicherkapazität konfiguriert.

8 InfiniBand-Host-
Karten-Adapter (für
Datei-Nodes)

Hostkartenadapter können je nach Servermodell des Dateiknotens
variieren. Zu den Empfehlungen für verifizierte Datei-Nodes gehören:

• * Lenovo ThinkSystem SR665 V3 Server:*

◦ MCX755106AS-HEAT ConnectX-7, NDR200, QSFP112, 2 Ports,
PCIe Gen5 x16, InfiniBand-Adapter

1 Storage-Netzwerk-
Switch

Der Storage-Netzwerk-Switch muss 200 GB/s InfiniBand-Geschwindigkeiten
unterstützen. Empfohlene Switch-Modelle:

• NVIDIA QM9700 Quantum 2 NDR InfiniBand Switch

• NVIDIA MQM8700 Quantum HDR InfiniBand Switch

Verkabelungsanforderungen

Direkte Verbindungen von Block-Knoten zu File-Knoten.

10

Menge Teilenummer Länge

8 MCP1650-H001E30 (passives NVIDIA-Kupferkabel, QSFP56, 200 GB/s) 1 m

Verbindungen von Dateiknoten zum Speichernetzwerk-Switch. Wählen Sie je nach InfiniBand-
Speicherschalter die entsprechende Kabeloption aus der folgenden Tabelle aus. + die empfohlene Kabellänge
beträgt 2 m, dies kann jedoch je nach Umgebung des Kunden variieren.

Switch-Modell Kabeltyp Menge Teilenummer

NVIDIA QM9700 Aktive
Glasfaser
(einschließlich
Transceiver)

2 MMA4Z00-NS (Multimode, IB/ETH, 800 GB/s 2x400 GB/s
Twin-Port OSFP)

4 MFP7E20-Nxxx (Multimode, 4-Kanal-zu-zwei 2-Kanal-
Splitter-Glasfaserkabel)

8 MMA1Z00-NS400 (Multimode, IB/ETH, 400 GB/s Single-
Port QSFP-112)

Passives
Kupfer

2 MCP7Y40-N002 (passives NVIDIA-Kupferverteilerkabel,
InfiniBand 800 GB/s bis 4 x 200 GB/s, OSFP auf 4 x
QSFP112)

NVIDIA MQM8700 Aktive
Glasfaser

8 MFS1S00-H003E (aktives NVIDIA-Glasfaserkabel,
InfiniBand 200 GB/s, QSFP56)

Passives
Kupfer

8 MCP1650-H002E26 (passives NVIDIA-Kupferkabel,
InfiniBand 200 GB/s, QSFP56)

Software- und Firmware-Anforderungen zu erfüllen

Um eine vorhersehbare Performance und Zuverlässigkeit zu gewährleisten, werden Versionen der BeeGFS
auf NetApp Lösung mit bestimmten Versionen der Software- und Firmware-Komponenten getestet. Diese
Versionen sind für die Implementierung der Lösung erforderlich.

Anforderungen an Datei-Nodes

Software Version

Red hat Enterprise
Linux (RHEL)

RHEL 9.4 Server physisch mit hoher Verfügbarkeit (2 Sockel). Hinweis: Für
Dateiknoten sind ein gültiges Red Hat Enterprise Linux Server-Abonnement und das
Red Hat Enterprise Linux High Availability Add-On erforderlich.

Linux-Kernel 5.14.0-427.42.1.el9_4.x86_64

HCA-Firmware ConnectX-7 HCA-Firmware FW: 28.45.1200 + PXE: 3.7.0500 + UEFI: 14.38.0016

ConnectX-6 HCA-Firmware FW: 20.43.2566 + PXE: 3.7.0500 + UEFI: 14.37.0013

Anforderungen der EF600 Block-Nodes

Software Version

SANtricity OS 11.90R3

NVSRAM N6000-890834-D02.dlp

11

Software Version

Festplatten-
Firmware

Neueste verfügbar für die verwendeten Antriebsmodelle. Siehe "E-Series Festplatten-
Firmware-Website".

Anforderungen an die Softwareimplementierung

In der folgenden Tabelle sind die automatisch bereitgestellten Softwareanforderungen im Rahmen der Ansible-
basierten BeeGFS-Implementierung aufgeführt.

Software Version

BeeGFS 7.4.6

Corosync 3.1.8-1

Schrittmacher 2.1.7-5,2

PCS 0.11.7-2

Zaunmittel
(Rotbarsch/apc)

4.10.0-62

InfiniBand-/RDMA-
Treiber

MLNX_OFED_LINUX-23.10-3.2.2.1-LTS

Ansible-Control-Node-Anforderungen

Die BeeGFS auf NetApp Lösung wird über einen Ansible-Kontroll-Node implementiert und gemanagt. Weitere
Informationen finden Sie im "Ansible-Dokumentation".

Die in den folgenden Tabellen aufgeführten Software-Anforderungen beziehen sich speziell auf die unten
aufgeführte Version der NetApp BeeGFS Ansible Sammlung.

Software Version

Ansible 10.x

Ansible-Core >= 2.13.0

Python 3,10

Zusätzliche Python-Pakete Kryptographie-43.0.0, netaddr-1.3.0, ipaddr-2.2.0

NetApp E-Series BeeGFS
Ansible Sammlung

3.2.0

Überprüfen des Lösungsdesigns

Designübersicht

Spezifische Geräte, Kabel und Konfigurationen sind erforderlich, um die BeeGFS auf
NetApp Lösung zu unterstützen, die das parallele Filesystem BeeGFS mit den NetApp
EF600 Storage-Systemen kombiniert.

Weitere Informationen:

12

https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html

• "Hardwarekonfiguration"

• "Softwarekonfiguration"

• "Design-Überprüfung"

• "Richtlinien für die Dimensionierung"

• "Performance-Optimierung"

Derivative Architekturen mit Variationen in Design und Performance:

• "Baustein Mit Hoher Kapazität"

Hardwarekonfiguration

Die Hardware-Konfiguration für BeeGFS auf NetApp umfasst Datei-Nodes und
Netzwerkverkabelung.

Konfiguration der Datei-Nodes

File-Nodes haben zwei CPU-Sockets als separate NUMA-Zonen konfiguriert, die lokalen Zugriff auf eine
gleiche Anzahl von PCIe-Steckplätzen und Arbeitsspeicher enthalten.

InfiniBand-Adapter müssen in die entsprechenden PCI-Risers oder Steckplätze gefüllt sein, damit die
Workload über die verfügbaren PCIe-Lanes und Speicherkanäle ausgeglichen ist. Sie balancieren den
Workload aus, indem einzelne BeeGFS-Services vollständig auf einen bestimmten NUMA-Node isoliert
werden. Das Ziel besteht darin, bei jedem Datei-Node eine ähnliche Performance zu erreichen, als ob es sich
um zwei unabhängige Single-Socket-Server handelte.

Die folgende Abbildung zeigt die NUMA-Konfiguration des Dateiknotens.

Die BeeGFS-Prozesse sind an eine bestimmte NUMA-Zone gebunden, um sicherzustellen, dass sich die
verwendeten Schnittstellen in der gleichen Zone befinden. Diese Konfiguration vermeidet den Remote-Zugriff
über die Verbindung zwischen den Sockets. Die Verbindung zwischen den Sockeln wird manchmal als QPI
oder GMI2 Link bezeichnet; selbst in modernen Prozessorarchitekturen können sie einen Engpass darstellen,
wenn High-Speed-Netzwerke wie HDR InfiniBand eingesetzt werden.

13

Konfiguration der Netzwerkverkabelung

Jeder Datei-Node ist innerhalb eines Bausteins mit zwei Block-Nodes verbunden. Dabei werden insgesamt
vier redundante InfiniBand-Verbindungen verwendet. Zusätzlich verfügt jeder Datei-Node über vier redundante
Verbindungen zum InfiniBand-Storage-Netzwerk.

Beachten Sie in der folgenden Abbildung Folgendes:

• Alle grün dargestellten Datei-Node-Ports werden zur Verbindung mit der Storage-Fabric verwendet. Alle
anderen Datei-Node-Ports sind die direkten Verbindungen zu den Block-Nodes.

• Zwei InfiniBand-Ports in einer bestimmten NUMA-Zone werden mit den A- und B-Controllern desselben
Block-Nodes verbunden.

• Ports im NUMA-Knoten 0 stellen immer eine Verbindung zum ersten Block-Knoten her.

• Die Ports im NUMA-Knoten 1 verbinden sich mit dem zweiten Block-Knoten.

Wenn Sie Splitterkabel verwenden, um den Speicher-Switch mit den Dateiknoten zu verbinden,
sollte ein Kabel abzweigen und mit den hellgrünen Ports verbunden werden. Ein anderes Kabel
sollte abzweigen und an die dunkelgrünen Ports anschließen. Außerdem sollten bei
Speichernetzwerken mit redundanten Switches die hellgrünen Ports mit einem Switch
verbunden werden, während dunkelgrüne Ports mit einem anderen Switch verbunden sein
sollten.

Die in der Abbildung dargestellte Verkabelungskonfiguration ermöglicht jedem BeeGFS-Dienst Folgendes:

• Laufen Sie in derselben NUMA-Zone, unabhängig davon, auf welchem Dateiknoten der BeeGFS-Service
ausgeführt wird.

• Sekundäre optimale Pfade zum Front-End-Storage-Netzwerk und zu den Back-End-Block-Nodes sind
vorhanden, unabhängig davon, wo ein Ausfall auftritt.

• Minimale Auswirkungen auf die Performance, wenn ein Datei-Node oder Controller in einem Block-Node
gewartet werden muss

Verkabelung zur Nutzung der Bandbreite

Um die vollständige bidirektionale PCIe-Bandbreite zu nutzen, stellen Sie sicher, dass ein Port an jedem
InfiniBand-Adapter mit der Storage-Fabric verbunden ist, und der andere Port mit einem Block-Node
verbunden wird.

Die folgende Abbildung zeigt das Verkabelungsdesign, mit dem die vollständige bidirektionale PCIe-Bandbreite
genutzt werden kann.

14

Verwenden Sie für jeden BeeGFS-Service denselben Adapter, um den bevorzugten Port für Client-
Datenverkehr mit dem Pfad zu dem Block-Nodes-Controller zu verbinden, der der primäre Eigentümer dieser
Service-Volumes ist. Weitere Informationen finden Sie unter "Softwarekonfiguration".

Softwarekonfiguration

Die Software-Konfiguration für BeeGFS auf NetApp umfasst BeeGFS-
Netzwerkkomponenten, EF600 Block-Nodes, BeeGFS-Datei-Nodes, Ressourcengruppen
und BeeGFS-Services.

BeeGFS-Netzwerkkonfiguration

Die BeeGFS-Netzwerkkonfiguration besteht aus den folgenden Komponenten.

• Schwimmende IPs schwimmende IPs sind eine Art virtueller IP-Adresse, die dynamisch an jeden Server
im selben Netzwerk weitergeleitet werden kann. Mehrere Server können dieselbe Floating-IP-Adresse
besitzen, sie kann jedoch nur auf einem Server zu einem bestimmten Zeitpunkt aktiv sein.

15

Jeder BeeGFS-Serverdienst hat eine eigene IP-Adresse, die sich je nach Ausführungsort des BeeGFS-
Serverdienstes zwischen Datei-Nodes verschieben kann. Diese fließende IP-Konfiguration ermöglicht
jedem Service ein unabhängiges Failover auf den anderen File-Node. Der Client muss einfach die IP-
Adresse für einen bestimmten BeeGFS-Service kennen. Es muss nicht wissen, welcher Datei-Node derzeit
diesen Service ausführt.

• BeeGFS-Server Multi-Homing-Konfiguration um die Dichte der Lösung zu erhöhen, verfügt jeder
Dateiknoten über mehrere Speicherschnittstellen mit IPs, die im gleichen IP-Subnetz konfiguriert sind.

Es ist eine zusätzliche Konfiguration erforderlich, um sicherzustellen, dass diese Konfiguration wie erwartet
mit dem Linux-Netzwerk-Stack funktioniert, da standardmäßig Anfragen an eine Schnittstelle auf einer
anderen Schnittstelle beantwortet werden können, wenn ihre IPs im selben Subnetz sind. Neben anderen
Nachteilen ist es bei diesem Standardverhalten unmöglich, RDMA-Verbindungen ordnungsgemäß
einzurichten oder zu pflegen.

Die Ansible-basierte Implementierung verarbeitet das Anziehen des Reverse Path (RP) und das ARP-
Verhalten (Address Resolution Protocol) und stellt sicher, dass Floating IPs gestartet und gestoppt werden.
Die entsprechenden IP-Routen und -Regeln werden dynamisch erstellt, damit die Multihomed-
Netzwerkkonfiguration ordnungsgemäß funktioniert.

• BeeGFS-Client-Multi-Rail-Konfiguration Multi-Rail bezieht sich auf die Fähigkeit einer Anwendung,
mehrere unabhängige Netzwerkverbindungen, oder "Schienen", zu verwenden, um die Leistung zu
erhöhen.

BeeGFS implementiert Multi-Rail-Unterstützung, um die Verwendung mehrerer IB-Schnittstellen in einem
einzigen IPoIB-Subnetz zu ermöglichen. Diese Funktion ermöglicht Funktionen wie den dynamischen
Lastausgleich über RDMA NICs und optimiert damit die Auslastung von Netzwerkressourcen. Die
Integration in NVIDIA GPUDirect Storage (GDS) sorgt für eine höhere Systembandbreite sowie geringere
Latenz und Auslastung der Client-CPU.

Diese Dokumentation enthält Anweisungen für einzelne IPoIB-Subnetzkonfigurationen. Duale IPoIB-
Subnetzkonfigurationen werden unterstützt, bieten jedoch nicht die gleichen Vorteile wie Konfigurationen
mit einem einzigen Subnetz.

Die folgende Abbildung zeigt die Verteilung des Datenverkehrs auf mehrere BeeGFS-Client-Schnittstellen.

16

Da jede Datei in BeeGFS normalerweise über mehrere Storage-Services verteilt wird, kann der Client dank der
Multi-Rail-Konfiguration einen höheren Durchsatz erzielen als mit einem einzelnen InfiniBand-Port möglich. Die
folgende Codeprobe zeigt beispielsweise eine allgemeine File-Striping-Konfiguration, die es dem Client
ermöglicht, den Datenverkehr über beide Schnittstellen auszugleichen:

+

17

root@beegfs01:/mnt/beegfs# beegfs-ctl --getentryinfo myfile

Entry type: file

EntryID: 11D-624759A9-65

Metadata node: meta_01_tgt_0101 [ID: 101]

Stripe pattern details:

+ Type: RAID0

+ Chunksize: 1M

+ Number of storage targets: desired: 4; actual: 4

+ Storage targets:

 + 101 @ stor_01_tgt_0101 [ID: 101]

 + 102 @ stor_01_tgt_0101 [ID: 101]

 + 201 @ stor_02_tgt_0201 [ID: 201]

 + 202 @ stor_02_tgt_0201 [ID: 201]

Konfiguration der EF600 Block-Node

Block-Nodes bestehen aus zwei aktiv/aktiv-RAID-Controllern mit gemeinsamem Zugriff auf denselben Satz an
Laufwerken. In der Regel besitzt jeder Controller die Hälfte der im System konfigurierten Volumes, jedoch kann
für den anderen Controller nach Bedarf die Aufgaben übernehmen.

Multipathing-Software auf den Datei-Knoten bestimmt den aktiven und optimierten Pfad zu jedem Volume und
verschiebt sich automatisch nach einem Kabel-, Adapter- oder Controller-Ausfall zum alternativen Pfad.

Das folgende Diagramm zeigt das Controller-Layout in EF600 Block-Nodes.

Um eine Shared-Disk-HA-Lösung zu erleichtern, werden Volumes beiden Datei-Nodes zugeordnet, sodass sie
sich bei Bedarf gegenseitig übernehmen können. Das folgende Diagramm zeigt ein Beispiel, wie BeeGFS-
Service und die bevorzugte Volumeneigentümer für maximale Performance konfiguriert sind. Die Schnittstelle
links von jedem BeeGFS-Dienst gibt die bevorzugte Schnittstelle an, mit der die Clients und andere Dienste
Kontakt aufnehmen.

18

Im vorherigen Beispiel kommunizieren Clients und Server Services lieber mit Storage Service 1 über
Schnittstelle i1b. Storage Service 1 verwendet Schnittstelle i1a als bevorzugten Pfad zur Kommunikation mit
seinen Volumes (Storage_tgt_101, 102) auf Controller A des ersten Block-Node. Diese Konfiguration nutzt die
volle bidirektionale PCIe-Bandbreite, die dem InfiniBand-Adapter zur Verfügung steht, und erreicht mit einem
Dual-Port-HDR-InfiniBand-Adapter eine bessere Leistung als bei PCIe 4.0.

BeeGFS-Dateiknoten-Konfiguration

Die BeeGFS Datei-Nodes sind in einem HA-Cluster (High Availability) konfiguriert, um den Failover von
BeeGFS-Services zwischen mehreren Datei-Nodes zu ermöglichen.

Das HA Cluster Design basiert auf zwei weit verbreiteten Linux HA Projekten: Corosync für Cluster-
Mitgliedschaft und Pacemaker für Cluster Resource Management. Weitere Informationen finden Sie unter "Red
hat Training für Add-ons mit hoher Verfügbarkeit".

NetApp hat mehrere Open Cluster Framework (OCF) Resource Agents entwickelt und erweitert, damit das
Cluster die BeeGFS Ressourcen intelligent starten und überwachen kann.

BeeGFS HA Cluster

Wenn Sie einen BeeGFS-Dienst starten (mit oder ohne HA), müssen in der Regel einige Ressourcen
vorhanden sein:

• IP-Adressen, in denen der Dienst erreichbar ist, werden normalerweise von Network Manager konfiguriert.

• Zugrunde liegende Dateisysteme, die als Ziele für BeeGFS zum Speichern von Daten verwendet werden.

Diese werden typischerweise in definiert /etc/fstab Und montiert von systemd.

19

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters

• Ein systemd-Service, der für den Start von BeeGFS-Prozessen verantwortlich ist, wenn die anderen
Ressourcen bereit sind.

Ohne zusätzliche Software werden diese Ressourcen nur auf einem einzelnen Datei-Node gestartet. Wenn
der Datei-Node offline geschaltet wird, kann auf einen Teil des BeeGFS-Dateisystems zugegriffen werden.

Da mehrere Nodes jeden BeeGFS-Service starten können, muss Pacemaker sicherstellen, dass jeder Service
und die abhängigen Ressourcen nur auf jeweils einem Node ausgeführt werden. Wenn beispielsweise zwei
Knoten versuchen, denselben BeeGFS-Service zu starten, besteht das Risiko einer Datenbeschädigung, wenn
beide versuchen, auf dieselben Dateien auf dem zugrunde liegenden Ziel zu schreiben. Um dieses Szenario
zu vermeiden, setzt Pacemaker auf Corosync, um den Zustand des gesamten Clusters zuverlässig über alle
Knoten hinweg zu synchronisieren und Quorum zu schaffen.

Wenn ein Fehler im Cluster auftritt, reagiert Pacemaker und startet BeeGFS-Ressourcen auf einem anderen
Knoten neu. In einigen Fällen kann Pacemaker möglicherweise nicht mit dem ursprünglichen fehlerhaften
Knoten kommunizieren, um zu bestätigen, dass die Ressourcen angehalten werden. Um zu überprüfen, ob der
Knoten ausgefallen ist, bevor BeeGFS-Ressourcen an anderer Stelle neu gestartet werden, isoliert Pacemaker
den fehlerhaften Knoten, idealerweise indem er die Stromversorgung entfernt.

Es stehen zahlreiche Open-Source-Fechten-Agenten zur Verfügung, die es Pacemaker ermöglichen, einen
Knoten mit einer Stromverteilungs-Einheit (PDU) oder den Server-Baseboard-Management-Controller (BMC)
mit APIs wie Redfish zu Zaun.

Wenn BeeGFS in einem HA-Cluster ausgeführt wird, werden alle BeeGFS-Services und zugrunde liegenden
Ressourcen von Pacemaker in Ressourcengruppen gemanagt. Jeder BeeGFS-Service und die Ressourcen,
auf die er angewiesen ist, werden in einer Ressourcengruppe konfiguriert, die sicherstellt, dass Ressourcen in
der richtigen Reihenfolge gestartet und gestoppt werden und auf demselben Node zusammengelegt werden.

Für jede BeeGFS-Ressourcengruppe führt Pacemaker eine benutzerdefinierte BeeGFS-
Überwachungsressource aus, die für die Erkennung von Fehlerbedingungen und die intelligente Auslösung
von Failover verantwortlich ist, wenn auf einem bestimmten Knoten kein BeeGFS-Dienst mehr verfügbar ist.

Die folgende Abbildung zeigt die Pacemaker-gesteuerten BeeGFS-Dienste und -Abhängigkeiten.

20

Damit mehrere BeeGFS-Dienste desselben Typs auf demselben Knoten gestartet werden, wird
Pacemaker so konfiguriert, dass BeeGFS-Dienste mit der Multi-Mode-Konfigurationsmethode
gestartet werden. Weitere Informationen finden Sie im "BeeGFS-Dokumentation im Multi-
Modus".

Da BeeGFS-Dienste auf mehreren Nodes starten können müssen, muss die Konfigurationsdatei für jeden
Dienst (normalerweise bei gefunden /etc/beegfs) Wird auf einem der E-Series Volumes gespeichert, die als
BeeGFS-Ziel für diesen Service verwendet werden. Damit sind die Konfiguration zusammen mit den Daten für
einen bestimmten BeeGFS Service für alle Nodes zugänglich, die den Service möglicherweise ausführen
müssen.

21

https://doc.beegfs.io/latest/advanced_topics/multimode.html
https://doc.beegfs.io/latest/advanced_topics/multimode.html

tree stor_01_tgt_0101/ -L 2

stor_01_tgt_0101/

├── data
│ ├── benchmark
│ ├── buddymir
│ ├── chunks
│ ├── format.conf
│ ├── lock.pid
│ ├── nodeID
│ ├── nodeNumID
│ ├── originalNodeID
│ ├── targetID
│ └── targetNumID
└── storage_config
 ├── beegfs-storage.conf
 ├── connInterfacesFile.conf
 └── connNetFilterFile.conf

Design-Überprüfung

Das Design der zweiten Generation für die BeeGFS auf NetApp Lösung wurde mithilfe
von drei Bausteinkonfigurationsprofilen verifiziert.

Die Konfigurationsprofile umfassen Folgendes:

• Ein einzelner Baustein, einschließlich BeeGFS-Management, Metadaten und Storage-Services

• Ein BeeGFS Metadaten plus ein Storage-Baustein.

• Ein BeeGFS-Speicherbaustein.

Die Bausteine wurden mit zwei NVIDIA Quantum InfiniBand (MQM8700) Switches verbunden. Zehn BeeGFS
Clients wurden auch an die InfiniBand Switches angeschlossen und zur Ausführung von Synthetic Benchmark
Utilities verwendet.

Die folgende Abbildung zeigt die BeeGFS-Konfiguration, die zur Validierung der BeeGFS auf NetApp Lösung
verwendet wird.

22

BeeGFS-Datei-Striping

Ein Vorteil paralleler Dateisysteme besteht darin, einzelne Dateien über mehrere Storage-Ziele zu verteilen,
wodurch Volumes auf demselben oder verschiedenen zugrunde liegenden Storage-Systemen dargestellt
werden können.

In BeeGFS können Sie Striping auf Verzeichnisbasis und pro Datei konfigurieren, um die Anzahl der für jede
Datei verwendeten Ziele zu steuern und die für jeden Dateistripe verwendete Chunksize (oder Blockgröße) zu
steuern. Bei dieser Konfiguration kann das Filesystem verschiedene Workload- und I/O-Profile unterstützen,
ohne Services neu konfigurieren oder neu starten zu müssen. Sie können Stripe-Einstellungen mit dem
anwenden beegfs-ctl Befehlszeilen-Tool oder Anwendungen, die die Striping-API verwenden. Weitere
Informationen finden Sie in der BeeGFS-Dokumentation für "Striping" Und "Striping-API".

Um eine optimale Leistung zu erzielen, wurden während des Tests Streifenmuster angepasst und die für jeden
Test verwendeten Parameter werden notiert.

IOR-Bandbreitentests: Mehrere Clients

Die IOR-Bandbreitentests verwendeten OpenMPI, um parallele Jobs des synthetischen E/A-
Generatorwerkzeugs IOR auszuführen (verfügbar unter "HPC GitHub") Über alle 10 Client-Knoten zu einem
oder mehreren BeeGFS-Bausteinen. Sofern nicht anders angegeben:

• Alle Tests verwendeten einen direkten I/O mit einer Übertragungsgröße von 1 MiB.

• BeeGFS-Datei-Striping wurde auf 1 MB Chunksize und ein Ziel pro Datei eingestellt.

Für IOR wurden die folgenden Parameter verwendet, wobei die Segmentanzahl angepasst wurde, um die
aggregierte Dateigröße für einen Baustein auf 5 tib und 40 tib für drei Bausteine zu halten.

mpirun --allow-run-as-root --mca btl tcp -np 48 -map-by node -hostfile

10xnodes ior -b 1024k --posix.odirect -e -t 1024k -s 54613 -z -C -F -E -k

Baustein für eine BeeGFS-Basis (Management, Metadaten und Storage

Die folgende Abbildung zeigt die IOR-Testergebnisse mit einem einzelnen BeeGFS-Basisspeicher
(Management, Metadaten und Storage).

23

https://doc.beegfs.io/latest/advanced_topics/striping.html
https://doc.beegfs.io/latest/reference/striping_api.html
https://github.com/hpc/ior

BeeGFS Metadaten + Storage-Baustein

Die folgende Abbildung zeigt die IOR-Testergebnisse mit einem einzelnen BeeGFS-Metadaten + einem
Storage-Baustein.

BeeGFS-Speicherbaustein

Die folgende Abbildung zeigt die IOR-Testergebnisse mit einem einzelnen BeeGFS-Storage-only-Baustein.

Drei BeeGFS-Bausteine

Die folgende Abbildung zeigt die IOR-Testergebnisse mit drei BeeGFS-Bausteinen.

24

Wie erwartet, ist der Performance-Unterschied zwischen dem Basis-Baustein und den nachfolgenden
Metadaten + dem Storage-Baustein vernachlässigbar. Ein Vergleich zwischen Metadaten und Storage-
Bausteinen und einem ausschließlich Storage-Baustein zeigt einen leichten Anstieg der Lese-Performance
aufgrund der zusätzlichen Laufwerke, die als Storage-Ziele verwendet werden. Allerdings gibt es keinen
wesentlichen Unterschied in der Schreib-Performance. Um eine höhere Performance zu erzielen, können Sie
mehrere Bausteine gleichzeitig hinzufügen, um die Performance linear zu skalieren.

IOR-Bandbreitentests: Einzelner Client

Der IOR-Bandbreitentest nutzte OpenMPI, um mehrere IOR-Prozesse mithilfe eines einzigen leistungsstarken
GPU-Servers auszuführen, um die Performance zu untersuchen, die für einen einzelnen Client erreichbar ist.

Dieser Test vergleicht auch das Verhalten und die Leistung von BeeGFS, wenn der Client so konfiguriert ist,
dass er den Linux-Kernel-Page-Cache verwendet (tuneFileCacheType = native) Im Vergleich zum
Standard buffered Einstellung.

Der native Caching-Modus verwendet den Linux-Kernel-Page-Cache auf dem Client, sodass die
Readervorgänge nicht über das Netzwerk übertragen werden, sondern aus dem lokalen Speicher stammen.

Das folgende Diagramm zeigt die IOR-Testergebnisse mit drei BeeGFS-Bausteinen und einem einzelnen
Client.

BeeGFS Striping für diese Tests wurde auf 1 MB Chunksize mit acht Zielen pro Datei eingestellt.

Obwohl die Performance bei den Schreibzugriffen und beim ersten Lesen im standardmäßigen gepufferten
Modus höher ist, werden bei Workloads, die dieselben Daten mehrmals lesen, eine deutliche Performance-

25

Steigerung im nativen Caching-Modus erzielt. Diese verbesserte Performance bei erneuten Lesevorgängen ist
für Workloads wie Deep Learning wichtig, die denselben Datensatz mehrmals in vielen Epoch-Durchläufen
lesen.

Metadaten-Performance-Test

Bei den Metadaten-Performance-Tests wurde das MDTest-Tool (im Rahmen von IOR enthalten) verwendet, um
die Metadaten-Performance von BeeGFS zu messen. Die Tests verwendeten OpenMPI, um parallele Jobs auf
allen zehn Client-Knoten auszuführen.

Die folgenden Parameter wurden verwendet, um den Benchmark-Test mit der Gesamtzahl der Prozesse von
10 auf 320 in Schritt 2 x und mit einer Dateigröße von 4k durchgeführt.

mpirun -h 10xnodes –map-by node np $processes mdtest -e 4k -w 4k -i 3 -I

16 -z 3 -b 8 -u

Die Metadaten-Performance wurde zuerst mit ein bis zwei Metadaten + Storage-Bausteinen gemessen, um die
Performance durch das Hinzufügen weiterer Bausteine zu verdeutlichen.

1 BeeGFS Metadaten + Storage-Baustein

Das folgende Diagramm zeigt die MDTest-Ergebnisse mit einer BeeGFS-Metadaten + Speicherbausteinen.

Zwei BeeGFS Metadaten + Storage-Bausteine

Das folgende Diagramm zeigt die MDTest-Ergebnisse mit zwei BeeGFS-Metadaten + Speicherbausteinen.

26

Funktionsprüfung

Im Rahmen der Validierung dieser Architektur führte NetApp mehrere Funktionstests durch, darunter:

• Ausfall eines einzelnen InfiniBand-Ports des Clients durch Deaktivieren des Switch-Ports

• Ausfall eines InfiniBand-Ports mit einem einzelnen Server durch Deaktivieren des Switch-Ports

• Sofortige Abschaltung des Servers mithilfe des BMC.

• Anmutig Platzierung eines Node im Standby-Modus und Failover-Betrieb zu einem anderen Node

• Anmutig Setzen eines Node wieder online und Failback-Services auf den ursprünglichen Node.

• Schalten Sie einen der InfiniBand-Switches mithilfe der PDU aus. Alle Tests wurden durchgeführt, während
Belastungstests mit dem durchgeführt wurden sysSessionChecksEnabled: false Parameter auf
BeeGFS-Clients gesetzt. Es wurden keine Fehler oder Störungen bei I/O festgestellt.

Es ist ein bekanntes Problem aufgetreten (siehe "Changelog") Wenn BeeGFS-Client/Server-
RDMA-Verbindungen unerwartet unterbrochen werden, entweder durch Ausfall der primären
Schnittstelle (wie in definiert connInterfacesFile) Oder ein BeeGFS-Server fällt aus. Aktive
Client-I/O kann bis zu zehn Minuten lang aufhängen, bevor der Vorgang fortgesetzt wird. Dieses
Problem tritt nicht auf, wenn BeeGFS-Knoten ordnungsgemäß für geplante Wartung in den
Standby-Modus versetzt oder TCP verwendet wird.

Validierung von NVIDIA DGX SuperPOD und BasePOD

NetApp validierte eine Storage-Lösung für IANVIDDGX A100 SuperPOD unter Verwendung eines ähnlichen
BeeGFS Filesystem, das aus drei Bausteinen mit den Metadaten und angewandtem Storage-
Konfigurationsprofil besteht. Die Qualifizierung bestand darin, die von dieser NVA beschriebene Lösung mit
zwanzig DGX A100 GPU-Servern zu testen, auf denen eine Vielzahl von Storage-, Machine-Learning- und
Deep-Learning-Benchmarks ausgeführt wurden. Aufbauend auf der Validierung mit DGX A100 SuperPOD von
NVIDIA wurde die BeeGFS auf NetApp Lösung für DGX SuperPOD H100-, H200- und B200-Systeme
genehmigt. Diese Erweiterung basiert auf der Erfüllung der zuvor mit dem NVIDIA DGX A100 validierten
Benchmarks und Systemanforderungen.

Weitere Informationen finden Sie unter "NVIDIA DGX SuperPOD mit NetApp" Und "NVIDIA DGX BasePOD".

27

https://github.com/netappeseries/beegfs/blob/master/CHANGELOG.md
https://www.netapp.com/pdf.html?item=/media/72718-nva-1167-DESIGN.pdf
https://www.nvidia.com/en-us/data-center/dgx-basepod/

Richtlinien für die Dimensionierung

Die BeeGFS Lösung enthält Empfehlungen für das Performance- und Kapazitäts-Sizing,
die auf Verifizierungstests basieren.

Die Bausteinarchitektur verfolgt das Ziel, eine Lösung zu entwickeln, die sich einfach dimensionieren lässt.
Dazu werden mehrere Bausteine hinzugefügt, die die Anforderungen für ein bestimmtes BeeGFS-System
erfüllen. Mithilfe der nachstehenden Richtlinien können Sie die Anzahl und die Arten von BeeGFS-Bausteinen
schätzen, die für die Anforderungen Ihrer Umgebung benötigt werden.

Beachten Sie, dass es sich bei diesen Schätzungen um die beste Performance handelt. Benchmark-
Applikationen werden geschrieben und verwendet, um die Nutzung der zugrunde liegenden Filesysteme auf
eine Weise zu optimieren, die reale Applikationen vielleicht nicht erreichen.

Performance-Dimensionierung

Die folgende Tabelle enthält ein empfohlene Performance-Sizing.

Konfigurationsprofil 1 MiB Lesevorgänge 1 MiB Schreibvorgänge

Metadaten + Storage 62Gibps 21Gibps

Nur Storage 64Gibps 21Gibps

Die Schätzungen zur Größe der Metadaten-Kapazität basieren auf der „Faustregel“, dass eine Kapazität von
500 GB für etwa 150 Millionen Dateien in BeeGFS ausreichend ist. (Weitere Informationen finden Sie in der
BeeGFS-Dokumentation für "Systemanforderungen".)

Die Verwendung von Funktionen wie Zugriffssteuerungslisten und die Anzahl der Verzeichnisse und Dateien
pro Verzeichnis wirkt sich auch darauf aus, wie schnell der Metadatenspeicherplatz verbraucht wird.
Schätzungen zur Storage-Kapazität berücksichtigen neben RAID 6 und XFS-Overhead die nutzbare
Laufwerkskapazität.

Kapazitätsdimensionierung für Metadaten + Storage-Bausteine

Die folgende Tabelle enthält eine empfohlene Kapazitätsdimensionierung für Metadaten und Storage-
Bausteine.

Laufwerksgröße (2+2
RAID 1) Metadaten-
Volume-Gruppen

Metadaten-Kapazität
(Anzahl der Dateien)

Laufwerksgröße (8+2
RAID 6) Storage-
Volume-Gruppen

Speicherkapazität (File-
Inhalte)

1,92 TB 1,938,577,200 1,92 TB 51,77 TB

3,84 TB 3,880,388,400 3,84 TB 103,5 TB

7,68 TB 8,125,278,000 7,68 TB 216,74 TB

15,3 TB 17,269,854,000 15,3 TB 460 TB

Bei der Größenbestimmung von Metadaten und Storage-Bausteinen können die Kosten
reduziert werden, da weniger Laufwerke für Metadaten-Volume-Gruppen anstelle von Storage-
Volume-Gruppen verwendet werden.

28

https://doc.beegfs.io/latest/system_design/system_requirements.html

Kapazitätsdimensionierung für reine Storage-Bausteine

Die folgende Tabelle zeigt die Größenanpassung der Kapazität für reine Storage-Bausteine.

Laufwerksgröße (10+2 RAID 6) Storage-Volume-
Gruppen

Speicherkapazität (File-Inhalte)

1,92 TB 59,89 TB

3,84 TB 119,80 TB

7,68 TB 251,89 TB

15,3 TB 538,5 TB

Die Performance- und der Kapazitäts-Overhead, die durch das Einbinden des Management-
Service in den Basis-Baustein (erster) verursacht werden, sind minimal, es sei denn, die globale
Dateisperrung ist aktiviert.

Performance-Optimierung

Die BeeGFS-Lösung enthält Empfehlungen für Performance-Tuning, die auf
Verifikationstests basieren.

Obwohl BeeGFS Out-of-the-Box-Performance bietet, hat NetApp eine Reihe von empfohlenen Tuning-
Parametern entwickelt, um die Performance zu maximieren. Diese Parameter berücksichtigen die Funktionen
der zugrunde liegenden Block-Nodes der E-Series und alle speziellen Anforderungen, die für die Ausführung
von BeeGFS in einer HA-Architektur mit Shared-Festplatten erforderlich sind.

Performance-Tuning für Datei-Nodes

Zu den verfügbaren Tuning-Parametern, die Sie konfigurieren können, gehören folgende:

1. Systemeinstellungen im UEFI/BIOS von Datei-Nodes. um die Leistung zu maximieren, empfehlen wir
die Konfiguration der Systemeinstellungen auf dem Server-Modell, das Sie als Datei-Knoten verwenden.
Sie konfigurieren die Systemeinstellungen, wenn Sie die Datei-Nodes einrichten, indem Sie entweder das
System-Setup (UEFI/BIOS) oder die Redfish-APIs verwenden, die vom Baseboard-Management-Controller
(BMC) bereitgestellt werden.

Die Systemeinstellungen variieren je nach Servermodell, das Sie als Dateiknoten verwenden. Die
Einstellungen müssen manuell auf der Grundlage des verwendeten Servermodells konfiguriert werden.
Informationen zum Konfigurieren der Systemeinstellungen für die validierten Lenovo SR665 V3-
Dateiknoten finden Sie unter "Optimieren Sie die System-Einstellungen des File Node für die Performance"
.

2. Standardeinstellungen für erforderliche Konfigurationsparameter. die erforderlichen
Konfigurationsparameter beeinflussen die Konfiguration von BeeGFS-Diensten und die Formatierung und
Bereitstellung von E-Series-Volumes (Blockgeräte) durch Pacemaker. Die folgenden
Konfigurationsparameter sind erforderlich:

◦ BeeGFS Service-Konfigurationsparameter

Sie können die Standardeinstellungen für die Konfigurationsparameter bei Bedarf überschreiben.
Informationen zu den Parametern, die Sie an Ihre spezifischen Workloads oder Anwendungsfälle
anpassen können, finden Sie im "Parameter für BeeGFS-Service-Konfiguration".

29

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

◦ Für die Volume-Formatierung und die Montage-Parameter gelten die empfohlenen
Standardeinstellungen, die nur für erweiterte Anwendungsfälle angepasst werden sollten. Die
Standardwerte führen folgende Schritte aus:

▪ Optimieren Sie die ursprüngliche Volume-Formatierung auf Basis des Zieltyps (beispielsweise
Management, Metadaten oder Storage), zusammen mit der RAID-Konfiguration und
Segmentgröße des zugrunde liegenden Volumes.

▪ Passen Sie an, wie Pacemaker die einzelnen Lautstärkerahmen einstellt, um sicherzustellen, dass
Änderungen sofort an Block-Nodes der E-Series gespült werden. So wird Datenverlust verhindert,
wenn bei aktiven Schreibvorgängen Datei-Nodes ausfallen.

Informationen zu den Parametern, die Sie an Ihre spezifischen Workloads oder Anwendungsfälle
anpassen können, finden Sie im "Volume-Formatierung und Montage der
Konfigurationsparameter".

3. Systemeinstellungen im Linux-Betriebssystem, das auf den Dateiknoten installiert ist. Sie können
die standardmäßigen Linux OS-Systemeinstellungen überschreiben, wenn Sie den Ansible-Bestand in
Schritt 4 von erstellen "Erstellen des Ansible-Inventars".

Die Standardeinstellungen wurden zur Validierung der BeeGFS auf NetApp Lösung verwendet. Sie können
sie jedoch an Ihre spezifischen Workloads oder Anwendungsfälle anpassen. Einige Beispiele für die Linux-
Betriebssystemeinstellungen, die Sie ändern können, sind:

◦ I/O-Warteschlangen an Block-Geräten der E-Series.

Auf den als BeeGFS-Ziele verwendeten E-Series-Block-Geräten können Sie I/O-Warteschlangen
folgendermaßen konfigurieren:

▪ Passen Sie den Planungsalgorithmus basierend auf dem Gerätetyp (NVMe, HDD usw.) an.

▪ Erhöhen Sie die Anzahl der ausstehenden Anfragen.

▪ Passen Sie Anfragegrößen an.

▪ Optimierung des Verhaltens beim Lesen.

◦ Einstellungen für virtuellen Speicher.

Sie können die Einstellungen für den virtuellen Speicher für eine optimale Streaming-Leistung
anpassen.

◦ CPU-Einstellungen.

Sie können den CPU-Frequenzregler und andere CPU-Konfigurationen für maximale Leistung
anpassen.

◦ Anfragegröße lesen

Sie können die maximale Größe für Leseanforderungen für NVIDIA-HCAs erhöhen.

Performance-Tuning für Block-Nodes

Basierend auf den Konfigurationsprofilen, die auf einen bestimmten BeeGFS-Baustein angewendet werden,
ändern sich die auf den Block-Nodes konfigurierten Volume-Gruppen leicht. Beispiel mit einem EF600 Block-
Node mit 24 Laufwerken:

• Für den einzelnen Basis-Block, einschließlich BeeGFS-Management, Metadaten und Storage-Services:

30

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279

◦ 1x 2+2 RAID 10 Volume-Gruppe für BeeGFS Management und Metadaten-Services

◦ 2 x 8+2 RAID 6-Volume-Gruppen für BeeGFS-Storage-Services

• Für BeeGFS Metadaten + Storage-Baustein:

◦ 1x 2+2 RAID 10 Volume-Gruppe für BeeGFS Metadaten-Services

◦ 2 x 8+2 RAID 6-Volume-Gruppen für BeeGFS-Storage-Services

• Nur für BeeGFS-Lagergebäude:

◦ 2 x 10+2 RAID 6-Volume-Gruppen für BeeGFS-Storage-Services

Da BeeGFS für Management und Metadaten im Gegensatz zu Storage erheblich weniger
Speicherplatz benötigt, besteht die Möglichkeit, für die RAID 10-Volume-Gruppen kleinere
Laufwerke zu verwenden. Kleinere Laufwerke sollten in den äußeren Laufwerksteckplätzen
befüllt werden. Weitere Informationen finden Sie im "Implementierungsanleitungen".

Diese werden alle durch die Ansible-basierte Implementierung konfiguriert, und verschiedene andere
allgemein empfohlene Einstellungen für Performance-/Verhaltensoptimierung:

• Anpassung der globalen Cache-Blockgröße auf 32 KiB und Anpassung der bedarfsorientierten Cache-
Flush auf 80 %.

• Deaktivieren des automatischen Load-Balancing (sicherstellen, dass die Controller-Volume-Zuweisungen
wie vorgesehen bleiben).

• Aktivieren von Lese-Caching und Deaktivieren des Read-Ahead-Caching

• Aktivieren des Schreib-Caches mit Spiegelung und Bedarf an Akku-Backups, sodass Caches während des
Ausfalls eines Block-Node-Controllers bestehen.

• Festlegen der Reihenfolge, in der Laufwerke Volume-Gruppen zugewiesen werden, und Ausgleich der I/O-
Vorgänge über verfügbare Laufwerkskanäle

Baustein mit hoher Kapazität

Bei der Entwicklung der BeeGFS-Standardlösung wurde auf Workloads mit hoher
Performance gedenkt. Kunden, die nach Anwendungsfällen mit hoher Kapazität suchen,
sollten die hier beschriebenen Design- und Performance-Unterschiede beobachten.

Hardware- und Softwarekonfiguration

Hardware- und Softwarekonfiguration für den Baustein mit hoher Kapazität ist Standard. Es sei denn, die
EF600 Controller sollten durch einen EF300 Controller ersetzt werden. Sie können zwischen 1 und 7 IOM-
Erweiterungsfächern mit jeweils 60 Laufwerken pro Storage-Array anschließen, Insgesamt 2 bis 14
Erweiterungsfächer pro Baustein.

Unternehmen, die ein High-Capacity-Baustein-Design implementieren, verwenden wahrscheinlich nur die
Basis-Bausteinkonfiguration, die aus BeeGFS-Management, Metadaten und Storage-Services für jeden Node
besteht. Um die Kosteneffizienz zu steigern, sollten Storage-Nodes mit hoher Kapazität Metadaten-Volumes
auf den NVMe-Laufwerken im EF300-Controller-Gehäuse bereitstellen und Storage-Volumes für die NL-SAS-
Laufwerke in den Erweiterungsfächern bereitstellen.

[]

31

Richtlinien für die Dimensionierung

Bei diesen Richtlinien zur Dimensionierung ist davon auszugehen, dass Bausteine mit hoher Kapazität mit
einer NVMe-SSD-Volume-Gruppe von 2+2 für Metadaten im Basis-EF300-Gehäuse und 6 x 8+2 NL-SAS-
Volume-Gruppen pro IOM-Erweiterungsfach für Storage konfiguriert sind.

Laufwerkgröße
(Kapazitäts-HDDs)

Kapazität pro BB (1
Fach)

Kapazität pro BB (2
Einschübe)

Kapazität pro BB (3
Einschübe)

Kapazität pro BB (4
Einschübe)

4 TB 439 TB 878 TB 1317 TB 1756 TB

8 TB 878 TB 1756 TB 2634 TB 3512 TB

10 TB 1097 TB 2195 TB 3292 TB 4390 TB

12 TB 1317 TB 2634 TB 3951 TB 5268 TB

16 TB 1756 TB 3512 TB 5268 TB 7024 TB

18 TB 1975 TB 3951 TB 5927 TB 7902 TB

Implementieren der Lösung

Implementierungsübersicht

BeeGFS auf NetApp kann auf validierte Datei- und Block-Nodes mithilfe von Ansible mit
dem BeeGFS-Baustein-Design von NetApp implementiert werden.

Ansible-Sammlungen und -Funktionen

Die BeeGFS auf NetApp-Lösung wird mithilfe von Ansible implementiert, einer beliebten IT-Automatisierungs-
Engine, die Applikationsimplementierungen automatisiert. Ansible verwendet eine Reihe von Dateien, die
gemeinsam als Inventar bezeichnet werden. Hierbei wird das BeeGFS-Filesystem modelliert, das Sie
implementieren möchten.

Ansible ermöglicht Unternehmen wie NetApp die Erweiterung auf integrierte Funktionen mithilfe von
Sammlungen, die auf Ansible Galaxy verfügbar sind (siehe "NetApp E-Series BeeGFS Sammlung").
Sammlungen umfassen Module, die bestimmte Funktionen oder Aufgaben (wie das Erstellen eines E-Series
Volumes) ausführen, sowie Rollen, die mehrere Module und andere Rollen aufrufen können. Dieser
automatisierte Ansatz reduziert die Zeit für die Implementierung des BeeGFS-Filesystems und des zugrunde
liegenden HA-Clusters. Darüber hinaus vereinfacht es die Wartung und Erweiterung des Clusters und des
BeeGFS-Dateisystems.

Weitere Informationen finden Sie unter "Weitere Informationen zum Ansible Inventar".

Da zahlreiche Schritte an der Implementierung der BeeGFS auf NetApp-Lösung beteiligt sind,
unterstützt NetApp die manuelle Bereitstellung der Lösung nicht.

Konfigurationsprofile für BeeGFS-Bausteine

Die Implementierungsverfahren umfassen die folgenden Konfigurationsprofile:

• Ein einziger Baustein, der Management-, Metadaten- und Storage-Services umfasst

• Ein zweiter Baustein, der Metadaten und Storage-Services umfasst.

32

https://galaxy.ansible.com/netapp_eseries/santricity

• Ein dritter Baustein, der nur Storage-Services umfasst.

Diese Profile veranschaulichen die gesamte Palette der empfohlenen Konfigurationsprofile für die NetApp
BeeGFS-Bausteine. Bei jeder Implementierung kann die Anzahl der Metadaten und Storage-Bausteine oder
nur-Storage-Services-Bausteine je nach Kapazitäts- und Performance-Anforderungen variieren.

Übersicht über die einzelnen Implementierungsschritte

Die Bereitstellung umfasst folgende allgemeine Aufgaben:

Hardwarebereitstellung

1. Stellen Sie jeden Baustein physisch zusammen.

2. Rack-und Kabelhardware: Ausführliche Verfahren finden Sie unter "Implementierung von Hardware".

Softwareimplementierung

1. "Richten Sie Datei- und Block-Nodes ein".

◦ Konfigurieren Sie BMC-IPs auf Datei-Knoten

◦ Installieren Sie ein unterstütztes Betriebssystem und konfigurieren Sie Managementnetzwerk auf
Datei-Knoten

◦ Konfiguration der Management-IPs auf Block-Nodes

2. "Richten Sie einen Ansible-Steuerungsknoten ein".

3. "Passen Sie die Systemeinstellungen für die Performance an".

4. "Erstellen des Ansible-Inventars".

5. "Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine".

6. "Implementieren Sie BeeGFS mit Ansible".

7. "Konfigurieren Sie BeeGFS-Clients".

Die Bereitstellungsverfahren umfassen mehrere Beispiele, in denen Text in eine Datei kopiert
werden muss. Achten Sie besonders auf Inline-Kommentare, die durch die Zeichen „#“ oder „//“
gekennzeichnet sind und auf alles hinweisen, was für eine bestimmte Bereitstellung geändert
werden sollte oder kann. Beispiel:

`beegfs_ha_ntp_server_pools: # THIS IS AN EXAMPLE OF A COMMENT!

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"`

Derivative Architekturen mit Variationen bei Implementierungsempfehlungen:

• "Baustein Mit Hoher Kapazität"

Weitere Informationen zum Ansible Inventar

Machen Sie sich vor der Implementierung mit der Konfiguration von Ansible vertraut und
werden Sie zur Implementierung der BeeGFS auf NetApp Lösung verwendet.

Der Ansible-Bestand ist eine Verzeichnisstruktur mit den Datei- und Block-Nodes für das zu implementierende

33

BeeGFS-Filesystem. Es enthält Hosts, Gruppen und Variablen, die das gewünschte BeeGFS-Dateisystem
beschreiben. Die Ansible-Bestandsaufnahme muss auf dem Ansible-Steuerungsknoten gespeichert werden,
bei dem es sich um jeden Computer mit Zugriff auf die Datei- und Block-Nodes handelt, mit denen das Ansible-
Playbook ausgeführt wird. Probenbestände können von der heruntergeladen werden "NetApp E-Series
BeeGFS GitHub".

Ansible-Module und -Rollen

Um die im Ansible Inventar beschriebene Konfiguration anzuwenden, verwenden Sie die verschiedenen
Ansible Module und Rollen aus der NetApp E-Series Ansible Sammlung (verfügbar über "NetApp E-Series
BeeGFS GitHub"), die die End-to-End-Lösung implementieren.

Jede Rolle der NetApp E-Series Ansible Sammlung ist eine vollständige End-to-End-Implementierung der
BeeGFS auf NetApp Lösung. Die Rollen verwenden die Sammlungen NetApp E-Series SANtricity, Host und
BeeGFS, mit denen Sie das BeeGFS Filesystem mit HA (High Availability, Hochverfügbarkeit) konfigurieren
können. Anschließend können Sie Storage bereitstellen und zuordnen und den Cluster-Storage betriebsbereit
machen.

Die Rollen verfügen über eine ausführliche Dokumentation. In den Implementierungsverfahren wird
beschrieben, wie die Rolle bei der Implementierung einer NetApp Verified Architecture mit dem BeeGFS-
Bausteindesign der zweiten Generation eingesetzt wird.

Obwohl die Implementierungsschritte versucht, genügend Details bereitzustellen, sodass
frühere Erfahrungen mit Ansible nicht erforderlich sind, sollten Sie mit Ansible und der
zugehörigen Terminologie vertraut sein.

Bestandslayout für BeeGFS HA-Cluster

Definieren Sie ein BeeGFS HA-Cluster mit der Ansible-Bestandsstruktur.

Jeder mit früheren Ansible-Erfahrungen sollte sich bewusst sein, dass die BeeGFS-HA-Rolle eine
benutzerdefinierte Methode implementiert, um zu ermitteln, welche Variablen (oder Fakten) für jeden Host
gelten. Dieses Design vereinfacht die Strukturierung des Ansible-Bestands, um Ressourcen zu beschreiben,
die auf mehreren Servern ausgeführt werden können.

Ein Ansible-Inventar besteht in der Regel aus den Dateien in host_vars und group_vars sowie einer
inventory.yml Datei, die Hosts spezifischen Gruppen (und potenziell Gruppen anderen Gruppen) zuweist.

Erstellen Sie keine Dateien mit dem Inhalt in diesem Unterabschnitt, der nur als Beispiel
gedacht ist.

Obwohl diese Konfiguration anhand des Konfigurationsprofils vorab festgelegt ist, sollten Sie wie folgt
allgemeine Kenntnisse darüber haben, wie alles als Ansible-Inventar ausgelegt ist:

34

https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp01:

 netapp02:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

 meta_01: # Group representing a metadata service with ID 01.

 hosts:

 beegfs_01: # This service is preferred on the first file

node.

 beegfs_02: # And can failover to the second file node.

 meta_02: # Group representing a metadata service with ID 02.

 hosts:

 beegfs_02: # This service is preferred on the second file

node.

 beegfs_01: # And can failover to the first file node.

Für jeden Dienst wird unter eine zusätzliche Datei erstellt group_vars Beschreibung der Konfiguration:

35

meta_01 - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: 8015

 connMetaPortUDP: 8015

 tuneBindToNumaZone: 0

floating_ips:

 - i1b: <IP>/<SUBNET_MASK>

 - i2b: <IP>/<SUBNET_MASK>

Type of BeeGFS service the HA resource group will manage.

beegfs_service: metadata # Choices: management, metadata, storage.

What block node should be used to create a volume for this service:

beegfs_targets:

 netapp01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25

 owning_controller: A

Mit diesem Layout können BeeGFS-Service-, Netzwerk- und Storage-Konfigurationen für jede Ressource an
einem Ort definiert werden. Hinter den Kulissen aggregiert die Rolle BeeGFS basierend auf dieser
Bestandsstruktur die erforderliche Konfiguration für jede Datei und jeden Block-Node.

Die numerische BeeGFS- und String-Node-ID für jeden Dienst wird automatisch auf Basis des
Gruppennamens konfiguriert. Zusätzlich zur allgemeinen Ansible-Anforderung, dass
Gruppennamen eindeutig sein sollen, müssen Gruppen, die einen BeeGFS-Service darstellen,
in einer Zahl enden, die für den BeeGFS-Service eindeutig ist, für den diese Gruppe
repräsentiert. Zum Beispiel sind meta_01 und stor_01 zulässig, aber Metadaten_01 und
meta_01 sind nicht.

Besprechen der Best Practices

Beachten Sie bei der Implementierung der BeeGFS auf NetApp-Lösung die Best
Practice-Richtlinien.

Standardkonventionen

Folgen Sie beim physischen Zusammenbau und Erstellen der Ansible-Bestandsdatei diesen
Standardkonventionen (weitere Informationen finden Sie unter "Erstellen des Ansible-Inventars").

• Host-Namen der Dateiknoten werden nacheinander nummeriert (h01-HN) mit niedrigeren Zahlen oben im
Rack und höheren Zahlen unten.

Die Namenskonvention sieht beispielsweise [location][row][rack]hN wie folgt aus: beegfs_01.

36

• Jeder Block-Node besteht aus zwei Storage-Controllern, die jeweils über einen eigenen Host-Namen
verfügen.

Mit einem Storage-Array-Namen wird im Rahmen eines Ansible-Inventars das gesamte Block-Storage-
System bezeichnet. Die Namen des Speicher-Arrays sollten nacheinander nummeriert sein (a01 - an), und
die Hostnamen für einzelne Controller werden aus dieser Namenskonvention abgeleitet.

Beispielsweise kann bei einem Block-Node mit dem Namen ictad22a01 normalerweise Hostnamen für
jeden Controller wie und konfiguriert ictad22a01-a ictad22a01-b`sein, in einem Ansible-
Inventar jedoch als bezeichnet werden `netapp_01.

• File- und Block-Nodes innerhalb desselben Bausteins teilen sich das gleiche Nummerierungsschema und
sind im Rack nebeneinander, wobei beide Datei-Nodes oben und beide Block-Nodes direkt darunter
liegen.

Im ersten Baustein sind beispielsweise die Datei-Nodes h01 und h02 direkt mit den Block-Nodes a01 und
a02 verbunden. Von oben nach unten sind die Hostnamen h01, h02, a01 und a02.

• Bausteine werden in sequenzieller Reihenfolge auf der Grundlage ihrer Hostnamen installiert, sodass sich
die niedrigeren Host-Namen oben im Rack befinden und die höheren nummerierten Host-Namen sich
unten befinden.

Ziel ist es, die Länge des Kabels zu minimieren, das oben auf den Rack Switches läuft, und eine
standardisierte Implementierungspraxis zu definieren, um die Fehlerbehebung zu vereinfachen. Für
Rechenzentren, in denen dies nicht erlaubt ist, aufgrund von Bedenken um die Rack-Stabilität, ist die
umgekehrte sicherlich erlaubt, das Befüllen des Racks von unten nach oben.

InfiniBand-Storage-Netzwerkkonfiguration

Die Hälfte der InfiniBand-Ports an jedem Datei-Node werden für eine direkte Verbindung mit Block-Nodes
verwendet. Die andere Hälfte ist mit den InfiniBand-Switches verbunden und wird für die BeeGFS-Client-
Server-Konnektivität verwendet. Beim Bestimmen der Größe der IPoIB-Subnetze, die für BeeGFS-Clients und
-Server verwendet werden, müssen Sie das erwartete Wachstum Ihres Compute/GPU-Clusters und BeeGFS-
Dateisystems berücksichtigen. Wenn Sie von den empfohlenen IP-Bereichen abweichen müssen, beachten
Sie, dass jede direkte Verbindung in einem einzelnen Baustein ein eigenes Subnetz hat und es keine
Überschneidung mit Subnetzen gibt, die für die Client-Server-Konnektivität verwendet werden.

Direkte Verbindungen

Datei- und Block-Nodes innerhalb jedes Bausteins verwenden für ihre direkten Verbindungen immer die IPs in
der folgenden Tabelle.

Dieses Adressprogramm entspricht der folgenden Regel: Das dritte Oktett ist immer ungerade
oder gerade, was davon abhängt, ob der Datei-Node ungerade oder gerade ist.

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP

ODD (h1) i1a 192.168.1.10 Ungerade (c1) 2 a 192.168.1.100 192.168.1.101

ODD (h1) i2a 192.168.3.10 Ungerade (c1) 2 a 192.168.3.100 192.168.3.101

ODD (h1) i3a 192.168.5.10 Gleichmäßig
(c2)

2 a 192.168.5.100 192.168.5.101

37

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP

ODD (h1) I4a 192.168.7.10 Gleichmäßig
(c2)

2 a 192.168.7.100 192.168.7.101

Gleichmäßig
(h2)

i1a 192.168.2.10 Ungerade (c1) 2b 192.168.2.100 192.168.2.101

Gleichmäßig
(h2)

i2a 192.168.4.10 Ungerade (c1) 2b 192.168.4.100 192.168.4.101

Gleichmäßig
(h2)

i3a 192.168.6.10 Gleichmäßig
(c2)

2b 192.168.6.100 192.168.6.101

Gleichmäßig
(h2)

I4a 192.168.8.10 Gleichmäßig
(c2)

2b 192.168.8.100 192.168.8.101

IPoIB-Adressierungsschemata für BeeGFS-Client-Server

Auf jedem Datei-Node werden mehrere BeeGFS-Serverservices ausgeführt (Management, Metadaten oder
Storage). Damit jeder Service unabhängig vom anderen Datei-Node ein Failover durchführen kann, verfügt
jeder über eindeutige IP-Adressen, die zwischen beiden Nodes schweben können (auch als logische
Schnittstelle oder LIF bezeichnet).

Diese Bereitstellung setzt zwar nicht zwingend voraus, dass für diese Verbindungen folgende IPoIB-
Subnetzbereiche verwendet werden und definiert ein Standard-Adressierungsschema, das folgende Regeln
anwendet:

• Das zweite Oktett ist immer ungerade oder sogar, basierend darauf, ob der InfiniBand-Port des Datei-
Nodes ungerade oder sogar ungerade ist.

• BeeGFS Cluster-IPs sind immer xxx. 127.100.yyy Oder xxx.128.100.yyy.

Zusätzlich zur Schnittstelle, die für die bandinterne Betriebssystemverwaltung verwendet wird,
können zusätzliche Schnittstellen von Corosync für Cluster Heart-Schläge und Synchronisation
verwendet werden. So wird sichergestellt, dass der Verlust einer einzelnen Schnittstelle das
gesamte Cluster nicht in den Fall bringt.

• Der BeeGFS Management Service ist immer im Betrieb xxx.yyy.101.0 Oder xxx.yyy.102.0.

• BeeGFS Metadatendienste sind immer dabei xxx.yyy.101.zzz Oder xxx.yyy.102.zzz.

• BeeGFS Storage-Services finden sich immer bei xxx.yyy.103.zzz oder xxx.yyy.104.zzz.

• Adressen im Bereich 100.xxx.1.1 Bis 100.xxx.99.255 Sind für Kunden reserviert.

IPoIB-Adressierungsschema für ein einzelnes Subnetz

In diesem Bereitstellungshandbuch wird ein einziges Subnetz-Schema verwendet, da die in aufgeführten
Vorteile im aufgeführt "Softwarearchitektur"sind.

Subnetz: 100.127.0.0/16

Die folgende Tabelle enthält den Bereich für ein einzelnes Subnetz: 100.127.0.0/16.

38

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP i1b oder i4b 100.127.100.1 - 100.127.100.255

BeeGFS Management i1b 100.127.101.0

i2b 100.127.102.0

BeeGFS-Metadaten i1b oder i3b 100.127.101.1 - 100.127.101.255

i2b oder i4b 100.127.102.1 - 100.127.102.255

BeeGFS-Speicherung i1b oder i3b 100.127.103.1 - 100.127.103.255

i2b oder i4b 100.127.104.1 - 100.127.104.255

BeeGFS-Clients (Je nach Kunde) 100.127.1.1 - 100.127.99.255

IPoIB zwei Subnetz-Adressierungsschema

Ein zwei-Subnetz-Adressierungsschema wird nicht mehr empfohlen, kann aber trotzdem implementiert
werden. In den folgenden Tabellen finden Sie ein empfohlenes zwei-Subnetz-Schema.

Subnetz A: 100.127.0.0/16

In der folgenden Tabelle ist der Bereich für Subnetz A angegeben: 100.127.0.0/16.

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP i1b 100.127.100.1 - 100.127.100.255

BeeGFS Management i1b 100.127.101.0

BeeGFS-Metadaten i1b oder i3b 100.127.101.1 - 100.127.101.255

BeeGFS-Speicherung i1b oder i3b 100.127.103.1 - 100.127.103.255

BeeGFS-Clients (Je nach Kunde) 100.127.1.1 - 100.127.99.255

Subnetz B: 100.128.0.0/16

In der folgenden Tabelle ist der Bereich für Subnetz B angegeben: 100.128.0.0/16.

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP I4b 100.128.100.1 - 100.128.100.255

BeeGFS Management i2b 100.128.102.0

BeeGFS-Metadaten i2b oder i4b 100.128.102.1 - 100.128.102.255

BeeGFS-Speicherung i2b oder i4b 100.128.104.1 - 100.128.104.255

BeeGFS-Clients (Je nach Kunde) 100.128.1.1 - 100.128.99.255

In dieser NetApp Verified Architecture werden nicht alle IPs in den oben genannten Bereichen
verwendet. Sie zeigen, wie IP-Adressen vorzugewiesen werden können, um eine einfache
Erweiterung des Dateisystems mit einem konsistenten IP-Adressierungschema zu ermöglichen.
In diesem Schema entsprechen BeeGFS-Datei-Knoten und Service-IDs dem vierten Oktett
eines bekannten IP-Bereichs. Das Filesystem konnte bei Bedarf auf jeden Fall über 255 Nodes
oder Services skaliert werden.

39

Implementierung von Hardware

Jeder Baustein besteht aus zwei validierten x86-Datei-Nodes, die mithilfe von HDR-
Kabeln (200 GB) direkt mit zwei Block-Nodes verbunden sind.

Zum Herstellen von Quorum im Failover Cluster sind mindestens zwei Bausteine erforderlich.
Ein Cluster mit zwei Nodes hat Einschränkungen, die ein erfolgreiches Failover verhindern
können. Wenn Sie ein Cluster mit zwei Nodes konfigurieren, wird ein drittes Gerät als
Tiebreaker integriert, dieses Design wird jedoch nicht in dieser Dokumentation beschrieben.

Die folgenden Schritte sind für jeden Baustein im Cluster identisch, unabhängig davon, ob er sowohl für die
Ausführung von BeeGFS-Metadaten- und Storage-Services als auch nur für Storage-Services eingesetzt wird,
sofern nicht anders angegeben.

Schritte

1. Richten Sie jeden BeeGFS-Dateiknoten mit vier Host-Channel-Adaptern (HCAs) mithilfe der in der
angegebenen Modelle "Technische Anforderungen"ein. Legen Sie die HCAs gemäß den folgenden
Spezifikationen in die PCIe-Steckplätze des Dateiknotens ein:

◦ * Lenovo ThinkSystem SR665 V3 Server:* Verwenden Sie die PCIe-Steckplätze 1, 2, 4 und 5.

◦ * Lenovo ThinkSystem SR665 Server:* Verwenden Sie die PCIe-Steckplätze 2, 3, 5 und 6.

2. Konfigurieren Sie jeden BeeGFS-Block-Node mit einer 200-GB-Host-Schnittstellenkarte (HIC) mit zwei
Ports, und installieren Sie die HIC in jedem ihrer beiden Storage Controller.

Stellen Sie die Bausteine so ein, dass die beiden BeeGFS-Datei-Nodes über den BeeGFS-Block-Nodes
liegen. Die folgende Abbildung zeigt die richtige Hardwarekonfiguration für den BeeGFS-Baustein, der
Lenovo ThinkSystem SR665 V3-Server als Dateiknoten verwendet (Rückansicht).

40

Die Konfiguration der Stromversorgung für Produktionsanwendungsfälle sollte in der Regel
redundante Netzteile verwenden.

3. Installieren Sie bei Bedarf die Laufwerke in jedem BeeGFS-Block-Knoten.

a. Wenn der Baustein zur Ausführung von BeeGFS-Metadaten und Speicherdiensten verwendet wird und
kleinere Laufwerke für Metadaten-Volumes verwendet werden, vergewissern Sie sich, dass diese in
den äußeren Laufwerksschächten gefüllt sind, wie in der Abbildung unten gezeigt.

b. Wenn ein Laufwerkgehäuse nicht vollständig bestückt ist, stellen Sie bei allen Bausteinkonfigurationen
sicher, dass eine gleiche Anzahl an Laufwerken in den Steckplätzen 0–11 und 12–23 gefüllt ist, um
eine optimale Performance zu erzielen.

41

4. Verbinden Sie die Block- und File-Knoten mit dem "1 m InfiniBand HDR 200 GB Direct-Attach-
Kupferkabel", so dass sie mit der in der folgenden Abbildung gezeigten Topologie übereinstimmen.

42

Die Nodes sind über mehrere Bausteine hinweg nie direkt miteinander verbunden. Jeder
Baustein sollte als eigenständige Einheit behandelt werden und alle Kommunikation
zwischen Bausteinen erfolgt über Netzwerk-Switches.

5. Verbinden Sie die übrigen InfiniBand-Ports auf dem Datei-Node mithilfe des spezifischen InfiniBand-
Speicherswitters des Speichernetzwerks mit dem "2 m InfiniBand-Kabel" InfiniBand-Switch.

Wenn Sie Splitterkabel verwenden, um den Speicher-Switch mit Dateiknoten zu verbinden, sollte ein Kabel
vom Switch abzweigen und mit den hellgrünen Ports verbunden werden. Ein anderes Splitterkabel sollte
sich vom Switch abzweigen und an die dunkelgrünen Ports anschließen.

Außerdem sollten bei Speichernetzwerken mit redundanten Switches die hellgrünen Ports mit einem
Switch verbunden werden, während dunkelgrüne Ports mit einem anderen Switch verbunden sein sollten.

6. Montieren Sie bei Bedarf weitere Bausteine gemäß den gleichen Verkabelungsrichtlinien.

Die Gesamtzahl der Bausteine, die in einem einzigen Rack implementiert werden können,
hängt von der verfügbaren Stromversorgung und Kühlung an jedem Standort ab.

Implementierung von Software

Einrichten von Datei-Nodes und Block-Nodes

Während die meisten Software-Konfigurationsaufgaben mithilfe der von NetApp zur
Verfügung gestellten Ansible Sammlungen automatisiert werden, müssen Sie das
Netzwerk auf dem Baseboard Management Controller (BMC) jedes Servers konfigurieren
und den Management-Port auf jedem Controller konfigurieren.

Richten Sie die Datei-Nodes ein

1. Konfigurieren Sie das Netzwerk auf dem Baseboard Management Controller (BMC) jedes Servers.

Informationen zum Konfigurieren der Netzwerkkonfiguration für die validierten Lenovo SR665 V3-
Dateiknoten finden Sie unter "Lenovo ThinkSystem Dokumentation".

43

https://pubs.lenovo.com/sr665-v3/

Ein Baseboard Management Controller (BMC), der manchmal als Service-Prozessor
bezeichnet wird, ist der generische Name für die Out-of-Band-Management-Funktion, die in
verschiedenen Server-Plattformen integriert ist, die Remote-Zugriff bieten können, selbst
wenn das Betriebssystem nicht installiert ist oder nicht zugänglich ist. Anbieter vermarkten
diese Funktionalität in der Regel mit ihrem eigenen Branding. Auf dem Lenovo SR665 wird
beispielsweise der BMC als Lenovo XClarity Controller (XCC) bezeichnet.

2. Konfigurieren Sie die Systemeinstellungen für maximale Performance.

Sie konfigurieren die Systemeinstellungen über das UEFI-Setup (früher BIOS) oder über die Redfish APIs,
die von vielen BMCs bereitgestellt werden. Die Systemeinstellungen variieren je nach Servermodell, das
als Dateiknoten verwendet wird.

Informationen zum Konfigurieren der Systemeinstellungen für die validierten Lenovo SR665 V3-
Dateiknoten finden Sie unter "Passen Sie die Systemeinstellungen für die Performance an" .

3. Installieren Sie Red Hat Enterprise Linux (RHEL) 9.4 und konfigurieren Sie den Hostnamen und den
Netzwerkport, die zur Verwaltung des Betriebssystems verwendet werden, einschließlich der SSH-
Konnektivität vom Ansible-Steuerknoten.

Konfigurieren Sie derzeit keine IPs auf einem der InfiniBand-Ports.

Die nachfolgenden Abschnitte gehen davon aus, dass die Hostnamen sequenziell
nummeriert sind (z. B. h1-HN), und beziehen sich auf Aufgaben, die auf ungeraden oder gar
nummerierten Hosts ausgeführt werden sollten.

4. Verwenden Sie den Red Hat Subscription Manager, um das System zu registrieren und zu abonnieren,
damit die erforderlichen Pakete aus den offiziellen Red Hat-Repositorys installiert werden können und um
Updates auf die unterstützte Version von Red Hat zu beschränken: subscription-manager release
--set=9.4 . Anweisungen hierzu finden Sie unter "Registrieren und Abonnieren eines RHEL Systems"
und "Einschränken von Aktualisierungen".

5. Aktivieren Sie das Red hat Repository mit den für hohe Verfügbarkeit erforderlichen Paketen.

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Aktualisieren Sie alle HCA-Firmware auf die in Verwendung des "Aktualisiert die Datei-Node-Adapter-
Firmware"Handbuchs empfohlene Version"Technologieanforderungen erfüllt".

Richten Sie Block-Nodes ein

Richten Sie die EF600 Block-Nodes ein, indem Sie den Managementport pro Controller konfigurieren.

1. Konfigurieren Sie den Managementport an jedem EF600 Controller.

Anweisungen zum Konfigurieren von Ports finden Sie im "E-Series Documentation Center".

2. Legen Sie optional den Speicher-Array-Namen für jedes System fest.

Durch das Festlegen eines Namens kann es einfacher sein, in den nachfolgenden Abschnitten auf jedes
System zu verweisen. Anweisungen zum Festlegen des Arraynamens finden Sie im "E-Series
Documentation Center".

44

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/de-de/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/de-de/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
beegfs-technology-requirements.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

Folgende Themen setzen voraus, dass die Namen der Speicherarrays nacheinander
nummeriert sind (z. B. c1 - CN), und beziehen sich auf die Schritte, die auf ungeraden und nicht
gerade nummerierten Systemen ausgeführt werden sollten.

Optimieren Sie die System-Einstellungen des File Node für die Performance

Um die Leistung zu maximieren, empfehlen wir, die Systemeinstellungen auf dem
Servermodell zu konfigurieren, das Sie als Dateiknoten verwenden.

Die Systemeinstellungen variieren je nach Servermodell, das Sie als Dateiknoten verwenden. In diesem
Thema wird beschrieben, wie die Systemeinstellungen für die validierten Lenovo ThinkSystem SR665-
Serverdateiknoten konfiguriert werden.

Über die UEFI-Schnittstelle können Sie die Systemeinstellungen anpassen

Die System-Firmware des Lenovo SR665 V3-Servers enthält zahlreiche Tuning-Parameter, die über die UEFI-
Schnittstelle eingestellt werden können. Diese Optimierungsparameter können sich auf alle Aspekte der
Serverfunktionen und die Leistung des Servers auswirken.

Passen Sie unter UEFI Setup > Systemeinstellungen die folgenden Systemeinstellungen an:

Menü „Betriebsmodus“

Systemeinstellung Wechseln Sie zu

Betriebsmodus Individuell

CTDP Manuell

CTDP-Handbuch 350

Maximale Leistung Des Pakets Manuell

Effizienzmodus Deaktivieren

Global-Cstate-Control Deaktivieren

SOC P-Staaten P0

DF-C-Staaten Deaktivieren

P-Zustand Deaktivieren

Speicherabschaltstrom Aktivieren Deaktivieren

NUMA-Knoten pro Socket NPS1

45

Menü „Geräte“ und „E/A-Anschlüsse“

Systemeinstellung Wechseln Sie zu

IOMMU Deaktivieren

Ein-/aus-Menü

Systemeinstellung Wechseln Sie zu

PCIe-Power-Brake Deaktivieren

Menü „Prozessoren“

Systemeinstellung Wechseln Sie zu

Global C-State Control Deaktivieren

DF-C-Staaten Deaktivieren

SMT-Modus Deaktivieren

CPPC Deaktivieren

Verwenden Sie die Redfish-API, um die Systemeinstellungen anzupassen

Zusätzlich zur Verwendung von UEFI Setup können Sie die Redfish API verwenden, um Systemeinstellungen
zu ändern.

46

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

Ausführliche Informationen zum Schema Redfish finden Sie im "DMTF-Website".

Richten Sie einen Ansible-Steuerungsknoten ein

Zum Einrichten eines Ansible-Steuerknotens müssen Sie eine virtuelle oder physische
Maschine mit Netzwerkzugriff auf alle Datei- und Block-Nodes zuweisen, die für die
BeeGFS auf NetApp Lösung implementiert werden.

Eine Liste der empfohlenen Paketversionen finden Sie im"Technische Anforderungen". Die folgenden Schritte
wurden auf Ubuntu 22.04 getestet. Für spezifische Schritte zu Ihrer bevorzugten Linux-Distribution, siehe
"Ansible-Dokumentation".

1. Installieren Sie über Ihren Ansible Control Node die folgenden Pakete für Python und Python Virtual
Environment.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Erstellen Sie eine virtuelle Python-Umgebung.

47

https://redfish.dmtf.org/redfish/schema_index
beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv

3. Aktivieren Sie die virtuelle Umgebung.

source ~/pyenv/bin/activate

4. Installieren Sie die erforderlichen Python-Pakete in der aktivierten virtuellen Umgebung.

pip install ansible netaddr cryptography passlib

5. Installieren Sie die BeeGFS-Sammlung mit Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Überprüfen Sie, ob die installierten Versionen von Ansible, Python und BeeGFS-Sammlung mit der
übereinstimmen"Technische Anforderungen".

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Richten Sie passwortloses SSH ein, damit Ansible vom Ansible-Steuerungsknoten aus auf die Remote-
BeeGFS-Datei-Nodes zugreifen kann.

a. Generieren Sie auf dem Ansible-Steuerungsknoten, falls erforderlich, ein Paar öffentlicher Schlüssel.

ssh-keygen

b. Richten Sie passwortloses SSH für jeden der Dateiknoten ein.

ssh-copy-id <ip_or_hostname>

Richten Sie bei den Blockknoten eine passwortlose SSH ein. Dies wird weder unterstützt noch
erforderlich.

Erstellen des Ansible-Inventars

Um die Konfiguration für Datei- und Block-Nodes zu definieren, erstellen Sie einen
Ansible-Bestand für das BeeGFS-Dateisystem, das bereitgestellt werden soll. Der
Bestand umfasst Hosts, Gruppen und Variablen, die das gewünschte BeeGFS-
Dateisystem beschreiben.

48

beegfs-technology-requirements.html#ansible-control-node-requirements

Schritt 1: Konfiguration für alle Bausteine definieren

Legen Sie die Konfiguration fest, die für alle Bausteine gilt, unabhängig davon, welches Konfigurationsprofil
Sie für sie einzeln anwenden können.

Bevor Sie beginnen

• Wählen Sie ein Subnetz-Adressierungsschema für Ihre Bereitstellung aus. Aufgrund der im aufgeführten
Vorteile "Softwarearchitektur"wird empfohlen, ein einziges Subnetz-Adressierungsschema zu verwenden.

Schritte

1. Geben Sie auf dem Ansible-Steuerungsknoten ein Verzeichnis an, das Sie zum Speichern der Bestands-
und Playbook-Dateien in Ansible verwenden möchten.

Sofern nicht anders angegeben, werden alle in diesem Schritt erstellten Dateien und Verzeichnisse und die
folgenden Schritte relativ zu diesem Verzeichnis erstellt.

2. Folgende Unterverzeichnisse erstellen:

host_vars

group_vars

packages

3. Erstellen Sie ein Unterverzeichnis für Cluster-Passwörter und sichern Sie die Datei durch Verschlüsselung
mit Ansible Vault (siehe "Verschlüsseln von Inhalten mit Ansible Vault"):

a. Erstellen Sie das Unterverzeichnis group_vars/all.

b. Erstellen Sie im group_vars/all Verzeichnis eine Passwortdatei mitder Bezeichnung
passwords.yml.

c. Füllen Sie den passwords.yml file mit den folgenden Angaben aus, und ersetzen Sie alle
Benutzernamen- und Kennwortparameter entsprechend Ihrer Konfiguration:

49

https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Führen Sie aus ansible-vault encrypt passwords.yml, und legen Sie ein Vault-Kennwort fest,
wenn Sie dazu aufgefordert werden.

Schritt: Konfiguration für einzelne Datei- und Block-Nodes definieren

Legen Sie die Konfiguration für einzelne Datei-Nodes und einzelne Baustein-Nodes fest.

1. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Dateiknoten eine Datei mit dem
Namen `<HOSTNAME>.yml Mit dem folgenden Inhalt, besondere Aufmerksamkeit auf die Notizen über
den Inhalt für BeeGFS Cluster-IPs und Host-Namen enden in ungerade oder gerade Zahlen.

Zunächst stimmen die Schnittstellennamen der Dateiknoten mit dem überein, was hier aufgeführt ist (z. B.
ib0 oder ibs1f0). Diese benutzerdefinierten Namen werden in konfiguriert die für alle Datei-Knoten gelten
soll.

50

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

51

Wenn Sie bereits das BeeGFS-Cluster implementiert haben, müssen Sie das Cluster
beenden, bevor Sie statisch konfigurierte IP-Adressen hinzufügen oder ändern,
einschließlich Cluster-IPs und IPs für NVMe/IB. Dies ist erforderlich, damit diese
Änderungen ordnungsgemäß wirksam werden und Cluster-Vorgänge nicht unterbrechen.

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Block-Knoten eine Datei mit dem
Namen `<HOSTNAME>.yml Und geben Sie den folgenden Inhalt ein.

Achten Sie besonders auf die Hinweise zum Inhalt, die für Speicher-Array-Namen ausgefüllt werden
müssen, die mit ungeraden oder geraden Zahlen enden.

Erstellen Sie für jeden Block-Node eine Datei, und geben Sie den an <MANAGEMENT_IP> Für einen der
beiden Controller (normalerweise A).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Schritt 3: Definieren Sie die Konfiguration, die für alle Datei- und Block-Nodes gelten soll

Unter können Sie die gemeinsame Konfiguration für eine Gruppe von Hosts definieren group_vars In einem
Dateinamen, der der Gruppe entspricht. Dadurch wird verhindert, dass eine gemeinsame Konfiguration an
mehreren Orten wiederholt wird.

52

Über diese Aufgabe

Hosts können sich in mehr als einer Gruppe befinden. Ansible zur Laufzeit wählt Ansible aus, welche Variablen
auf Basis seiner variablen Rangfolge für einen bestimmten Host gelten. (Weitere Informationen zu diesen
Regeln finden Sie in der Ansible-Dokumentation für "Variablen verwenden".)

Host-zu-Gruppe-Zuweisungen werden in der tatsächlichen Ansible-Bestandsdatei definiert, die gegen Ende
dieses Vorgangs erstellt wird.

Schritt

In Ansible können alle Konfigurationen, die auf alle Hosts angewendet werden sollen, in einer Gruppe mit dem
Namen definiert werden All. Erstellen Sie die Datei group_vars/all.yml Mit folgenden Inhalten:

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Schritt 4: Definieren Sie die Konfiguration, die für alle Datei-Knoten gelten soll

Die gemeinsame Konfiguration für Dateiknoten ist in einer Gruppe mit dem Namen definiert ha_cluster. In
den Schritten in diesem Abschnitt wird die Konfiguration erstellt, die in der enthalten sein sollte
group_vars/ha_cluster.yml Datei:

Schritte

1. Legen Sie oben in der Datei die Standardeinstellungen fest, einschließlich des Kennworts, das als
verwendet werden soll sudo Benutzer auf den Datei-Nodes.

53

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

Wenn der ansible_ssh_user bereits ist root, können Sie optional die auslassen und
beim Ausführen des Playbook die ansible_become_password Option angeben --ask
-become-pass.

2. Konfigurieren Sie optional einen Namen für den Hochverfügbarkeits-Cluster und geben Sie einen Benutzer
für die Cluster-interne Kommunikation an.

Wenn Sie das private IP-Adressschema ändern, müssen Sie auch die Standardeinstellung aktualisieren
beegfs_ha_mgmtd_floating_ip. Dies muss mit dem übereinstimmen, was Sie später für die BeeGFS
Management Ressourcengruppe konfigurieren.

Geben Sie eine oder mehrere E-Mails an, die Warnmeldungen für Cluster-Ereignisse mit empfangen sollen
beegfs_ha_alert_email_list.

54

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

Während scheinbar redundant, beegfs_ha_mgmtd_floating_ip Ist wichtig, wenn Sie
das BeeGFS-Dateisystem über einen einzelnen HA-Cluster hinaus skalieren. Nachfolgende
HA-Cluster werden ohne zusätzlichen BeeGFS-Managementservice bereitgestellt und Punkt
am Managementservice des ersten Clusters.

3. Konfigurieren Sie einen Fechtagenten. (Weitere Informationen finden Sie unter "Konfigurieren Sie Fechten
in einem Red hat High Availability Cluster".) Die folgende Ausgabe zeigt Beispiele für die Konfiguration
gängiger Fencing-Agenten. Wählen Sie eine dieser Optionen.

Beachten Sie bei diesem Schritt Folgendes:

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ Standardmäßig ist Fechten aktiviert, Sie müssen jedoch einen Fechten_Agent_ konfigurieren.

◦ Der <HOSTNAME> Angegeben in pcmk_host_map Oder pcmk_host_list Der Hostname in der
Ansible-Bestandsaufnahme entspricht.

◦ Das BeeGFS-Cluster ohne Fencing wird insbesondere in der Produktion nicht unterstützt. Dies soll
weitgehend sicherstellen, wenn BeeGFS-Services, einschließlich aller Ressourcenabhängigkeiten wie
Blockgeräte, Failover aufgrund eines Problems durchführen, es besteht keine Möglichkeit des
gleichzeitigen Zugriffs durch mehrere Nodes, die zu einer Beschädigung des Filesystems oder anderen
unerwünschten oder unerwarteten Verhalten führen. Wenn das Fechten deaktiviert werden muss,
lesen Sie die allgemeinen Hinweise in der BeeGFS HA-Rolle „erste Schritte“-Anleitung und „Set“
beegfs_ha_cluster_crm_config_options["stonith-enabled"] Mit FALSE innen
ha_cluster.yml.

◦ Es sind mehrere Fechtgeräte auf Node-Ebene verfügbar, und die BeeGFS HA-Rolle kann jeden
Fechtagenten konfigurieren, der im Red hat HA Package Repository verfügbar ist. Wenn möglich,
verwenden Sie einen Zaunsagenten, der über die unterbrechungsfreie Stromversorgung (USV) oder
die Rack-Stromverteilereinheit (rPDU) arbeitet. Da einige Fechten-Agenten wie der Baseboard-
Management-Controller (BMC) oder andere Lights-Out-Geräte, die in den Server integriert sind,
möglicherweise nicht auf die Zaunanforderung unter bestimmten Ausfallszenarien reagieren.

56

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Aktivieren Sie die empfohlene Performance-Optimierung im Linux-Betriebssystem.

Viele Benutzer finden die Standardeinstellungen für die Performance-Parameter zwar im Allgemeinen gut,
Sie können jedoch optional die Standardeinstellungen für einen bestimmten Workload ändern. Daher sind
diese Empfehlungen in die BeeGFS-Rolle enthalten, jedoch sind sie nicht standardmäßig aktiviert, um
sicherzustellen, dass Benutzer die auf ihr Dateisystem angewendete Einstellung kennen.

Um das Performance-Tuning zu aktivieren, geben Sie Folgendes an:

57

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Optional) Sie können die Leistungsparameter im Linux-Betriebssystem nach Bedarf anpassen.

Eine umfassende Liste der verfügbaren Tuning-Parameter, die Sie anpassen können, finden Sie im
Abschnitt Performance Tuning Defaults der BeeGFS HA-Rolle in "E-Series BeeGFS GitHub-Website". Die
Standardwerte können für alle Knoten im Cluster in dieser Datei oder für die Datei eines einzelnen Knotens
überschrieben werden host_vars .

6. Um vollständige 200 GB/HDR-Konnektivität zwischen Block- und Dateiknoten zu ermöglichen, verwenden
Sie das OpenSM-Paket (Open Subnetz Manager) aus der NVIDIA Open Fabrics Enterprise Distribution
(MLNX_OFED). Die MLNX_OFED-Version in der Liste wird im Lieferumfang der "Anforderungen an den
Datei-Node" empfohlenen OpenSM-Pakete enthalten. Obwohl die Implementierung mit Ansible unterstützt
wird, müssen Sie zuerst den MLNX_OFED-Treiber auf allen Datei-Nodes installieren.

a. Füllen Sie die folgenden Parameter in aus group_vars/ha_cluster.yml (Passen Sie Pakete nach
Bedarf an):

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Konfigurieren Sie die udev Regel zur Sicherstellung einer konsistenten Zuordnung von logischen
InfiniBand-Port-IDs zu zugrunde liegenden PCIe-Geräten.

Der udev Die Regel muss für die PCIe-Topologie jeder Serverplattform, die als BeeGFS-Datei-Node
verwendet wird, eindeutig sein.

Für verifizierte Dateiknoten folgende Werte verwenden:

58

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Optional) Aktualisieren des Metadaten-Zielauswahlalgorithmus.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

Während der Verifizierungstests randomrobin Wurde in der Regel verwendet, um
sicherzustellen, dass Testdateien während des Performance-Benchmarking gleichmäßig auf
alle BeeGFS-Speicherziele verteilt wurden (weitere Informationen zu Benchmarking finden
Sie auf der BeeGFS-Website für "Benchmarking eines BeeGFS-Systems"). Bei der realen
Welt könnte dies dazu führen, dass sich die niedrigeren nummerierten Ziele schneller füllen
als die höher nummerierten Ziele. Auslassung randomrobin Und nur mit dem Standard
randomized Der Wert zeigt sich, dass er eine gute Leistung bietet und gleichzeitig alle
verfügbaren Ziele nutzt.

Schritt 5: Definieren Sie die Konfiguration für den gemeinsamen Block-Node

Die gemeinsame Konfiguration für Block-Knoten wird in einer Gruppe mit dem Namen definiert
eseries_storage_systems. In den Schritten in diesem Abschnitt wird die Konfiguration erstellt, die in der
enthalten sein sollte group_vars/ eseries_storage_systems.yml Datei:

Schritte

1. Setzen Sie die Ansible-Verbindung auf Local, geben Sie das Systemkennwort ein und geben Sie an, ob

59

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

SSL-Zertifikate verifiziert werden sollen. (Normalerweise verwendet Ansible SSH für die Verbindung zu
gemanagten Hosts. Bei Storage-Systemen der NetApp E-Series, die als Block-Nodes verwendet werden,
verwenden die Module JEDOCH die REST-API für die Kommunikation.) Fügen Sie oben in der Datei
Folgendes hinzu:

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. Installieren Sie die für Block-Nodes in aufgeführten Versionen, um eine optimale Performance zu
gewährleisten "Technische Anforderungen".

Laden Sie die entsprechenden Dateien aus dem herunter "NetApp Support Website". Sie können sie
entweder manuell aktualisieren oder sie in das einbeziehen packages/ Verzeichnis des Ansible-
Steuerungsknotens, und füllen Sie dann die folgenden Parameter in aus
eseries_storage_systems.yml So führen Sie ein Upgrade mit Ansible durch:

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Laden Sie die neueste Laufwerksfirmware herunter, die für die in Ihren Blockknoten installierten Laufwerke
verfügbar ist, und installieren Sie sie im "NetApp Support Website". Sie können sie entweder manuell
aktualisieren oder in das Verzeichnis des Ansible-Steuerknotens aufnehmen packages/ . Dann füllen Sie
die folgenden Parameter in aus eseries_storage_systems.yml , um das Upgrade mit Ansible
auszuführen:

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Einstellung eseries_drive_firmware_upgrade_drives_online Bis false
Beschleunigt das Upgrade, sollte aber erst nach dem Einsatz von BeeGFS durchgeführt
werden. Der Grund dafür ist, dass bei dieser Einstellung sämtliche I/O-Vorgänge auf den
Laufwerken vor dem Upgrade angehalten werden müssen, um Applikationsfehler zu
vermeiden. Obwohl ein Online-Laufwerk-Firmware-Upgrade vor der Konfiguration von
Volumes noch schnell durchgeführt wird, empfehlen wir Ihnen, diesen Wert immer auf zu
setzen true Um später Probleme zu vermeiden.

4. Nehmen Sie zur Optimierung der Leistung folgende Änderungen an der globalen Konfiguration vor:

60

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

5. Um eine optimale Bereitstellung und ein optimales Verhalten von Volumes zu gewährleisten, geben Sie
folgende Parameter an:

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Der für angegebene Wert eseries_storage_pool_usable_drives Gibt einen
spezifischen Block-Node der NetApp EF600 an und steuert die Reihenfolge, in der
Laufwerke neuen Volume-Gruppen zugewiesen werden. Durch diese Bestellung wird
sichergestellt, dass der I/O zu jeder Gruppe gleichmäßig über die Kanäle des Backend-
Laufwerks verteilt wird.

Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine

Definieren Sie nach der Definition der allgemeinen Ansible-Bestandsstruktur die
Konfiguration für jeden Baustein im BeeGFS-Dateisystem.

Diese Implementierungsanleitungen zeigen, wie Sie ein Filesystem implementieren, das aus einem
Grundbaustein besteht, einschließlich Management-, Metadaten- und Storage-Services, einem zweiten
Baustein mit Metadaten und Storage-Services und einem dritten Baustein nur für Storage.

Diese Schritte sollen den gesamten Bereich typischer Konfigurationsprofile anzeigen, mit denen Sie NetApp
BeeGFS-Bausteine konfigurieren können, um die Anforderungen des gesamten BeeGFS-Dateisystems zu
erfüllen.

Passen Sie in diesen und nachfolgenden Abschnitten nach Bedarf an, um den Bestand zu
erstellen, der das BeeGFS-Dateisystem darstellt, das Sie bereitstellen möchten. Verwenden Sie
insbesondere Ansible-Hostnamen, die jeden Block- oder Datei-Node darstellen, und das
gewünschte IP-Adressschema für das Storage-Netzwerk, um sicherzustellen, dass es auf die
Anzahl der BeeGFS-Datei-Nodes und -Clients skaliert werden kann.

61

Schritt: Die Ansible-Bestandsdatei erstellen

Schritte

1. Erstellen Sie eine neue inventory.yml Datei, und fügen Sie dann die folgenden Parameter ein,
ersetzen Sie die Hosts unter eseries_storage_systems Nach Bedarf zur Darstellung der Block-Nodes
in Ihrer Implementierung. Die Namen sollten dem Namen entsprechen, für den sie verwendet werden
host_vars/<FILENAME>.yml.

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

In den nachfolgenden Abschnitten werden unter weitere Ansible-Gruppen erstellt ha_cluster Die die
BeeGFS-Dienste darstellen, die im Cluster ausgeführt werden sollen.

Schritt: Inventar für einen Management-, Metadaten- und Storage-Baustein konfigurieren

Der erste Baustein im Cluster- oder Basis-Baustein muss den BeeGFS-Managementservice sowie Metadaten-
und Storage-Services umfassen:

Schritte

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

62

 beegfs_01:

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

63

 stor_07:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Erstellen Sie die Datei group_vars/mgmt.yml Und geben Sie Folgendes an:

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Unter group_vars/, Dateien für Ressourcengruppen erstellen meta_01 Bis meta_08 Verwenden Sie die
folgende Vorlage und füllen Sie dann die Platzhalterwerte für jeden Service aus, indem Sie auf die
folgende Tabelle verweisen:

64

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Die Volume-Größe wird als Prozentsatz des gesamten Storage-Pools angegeben (auch als
Volume-Gruppe bezeichnet). NetApp empfiehlt, freie Kapazitäten in jedem Pool zu
belassen, um Platz für die SSD-Überprovisionierung zu haben (weitere Informationen finden
Sie unter "Einführung in das NetApp EF600 Array"). Der Storage-Pool,
beegfs_m1_m2_m5_m6, Weist auch 1% der Kapazität des Pools für den Management-
Service. Somit für Metadaten-Volumes im Storage-Pool beegfs_m1_m2_m5_m6, Wenn
1,92-TB- oder 3,84-TB-Laufwerke verwendet werden, setzen Sie diesen Wert auf 21.25;
Für 7,5-TB-Laufwerke setzen Sie diesen Wert auf 22.25; Und für 15,3-TB-Laufwerke ist
dieser Wert auf festgelegt 23.75.

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_01.yml 8015 i1b:100.127.1
01.1/16
i2b:100.127.1
02.1/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

A

meta_02.yml 8025 i2b:100.127.1
02.2/16
i1b:100.127.1
01.2/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1
01.3/16
i4b:100.127.1
02.3/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

A

65

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_04.yml 8045 I4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

A

meta_06.yml 8065 i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

A

meta_08.yml 8085 I4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

B

4. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_01 Bis stor_08 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

66

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

Informationen zur richtigen Größe finden Sie unter "Empfohlene Prozentsätze für die
Überprovisionierung von Storage-Pools".

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_01.yml 8013 i1b:100.127.1
03.1/16
i2b:100.127.1
04.1/16

0 netapp_01 Beegfs_s1_s
2

A

stor_02.yml 8023 i2b:100.127.1
04.2/16
i1b:100.127.1
03.2/16

0 netapp_01 Beegfs_s1_s
2

B

stor_03.yml 8033 i3b:100.127.1
03.3/16
i4b:100.127.1
04.3/16

1 netapp_02 Beegfs_s3_s
4

A

stor_04.yml 8043 I4b:100.127.1
04.4/16
i3b:100.127.1
03.4/16

1 netapp_02 Beegfs_s3_s
4

B

67

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_05.yml 8053 i1b:100.127.1
03.5/16
i2b:100.127.1
04.5/16

0 netapp_01 Beegfs_s5_s
6

A

stor_06.yml 8063 i2b:100.127.1
04.6/16
i1b:100.127.1
03.6/16

0 netapp_01 Beegfs_s5_s
6

B

stor_07.yml 8073 i3b:100.127.1
03.7/16
i4b:100.127.1
04.7/16

1 netapp_02 Beegfs_s7_s
8

A

stor_08.yml 8083 I4b:100.127.1
04.8/16
i3b:100.127.1
03.8/16

1 netapp_02 Beegfs_s7_s
8

B

Schritt 3: Konfigurieren Sie den Bestand für einen Baustein Metadaten + Speicher

In diesen Schritten wird beschrieben, wie ein Ansible-Inventar für BeeGFS-Metadaten + Storage-Baustein
eingerichtet wird.

Schritte

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter der vorhandenen Konfiguration:

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

 beegfs_03:

68

 beegfs_04:

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

69

2. Unter group_vars/, Dateien für Ressourcengruppen erstellen meta_09 Bis meta_16 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Informationen zur richtigen Größe finden Sie unter "Empfohlene Prozentsätze für die
Überprovisionierung von Storage-Pools".

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_09.yml 8015 i1b:100.127.1
01.9/16
i2b:100.127.1
02.9/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

A

meta_10.yml 8025 i2b:100.127.1
02.10/16
i1b:100.127.1
01.10/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

B

meta_11.yml 8035 i3b:100.127.1
01.11/16
i4b:100.127.1
02.11/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

A

meta_12.yml 8045 I4b:100.127.1
02.12/16
i3b:100.127.1
01.12/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

B

70

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_13.yml 8055 i1b:100.127.1
01.13/16
i2b:100.127.1
02.13/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

A

meta_14.yml 8065 i2b:100.127.1
02.14/16
i1b:100.127.1
01.14/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

B

meta_15.yml 8075 i3b:100.127.1
01.15/16
i4b:100.127.1
02.15/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

A

meta_16.yml 8085 I4b:100.127.1
02.16/16
i3b:100.127.1
01.16/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

B

3. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_09 Bis stor_16 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

71

Die richtige Größe finden Sie unter "Empfohlene Prozentsätze für die Überprovisionierung
von Storage-Pools" ..

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_09.yml 8013 i1b:100.127.1
03.9/16
i2b:100.127.1
04.9/16

0 netapp_03 Beegfs_s9_s
10

A

stor_10.yml 8023 i2b:100.127.1
04.10/16
i1b:100.127.1
03.10/16

0 netapp_03 Beegfs_s9_s
10

B

stor_11.yml 8033 i3b:100.127.1
03.11/16
i4b:100.127.1
04.11/16

1 netapp_04 Beegfs_s11_
s12

A

stor_12.yml 8043 I4b:100.127.1
04.12/16
i3b:100.127.1
03.12/16

1 netapp_04 Beegfs_s11_
s12

B

stor_13.yml 8053 i1b:100.127.1
03.13/16
i2b:100.127.1
04.13/16

0 netapp_03 Beegfs_s13_
s14

A

stor_14.yml 8063 i2b:100.127.1
04.14/16
i1b:100.127.1
03.14/16

0 netapp_03 Beegfs_s13_
s14

B

stor_15.yml 8073 i3b:100.127.1
03.15/16
i4b:100.127.1
04.15/16

1 netapp_04 Beegfs_s15_
s16

A

stor_16.yml 8083 I4b:100.127.1
04.16/16
i3b:100.127.1
03.16/16

1 netapp_04 Beegfs_s15_
s16

B

Schritt 4: Konfigurieren Sie den Bestand für einen nur-Storage-Baustein

In diesen Schritten wird beschrieben, wie Sie einen Ansible-Bestand für einen einzigen BeeGFS-Baustein
einrichten. Der Hauptunterschied zwischen der Konfiguration für Metadaten + Storage und einem rein Storage-
basierten Baustein besteht darin, dass alle Metadaten-Ressourcengruppen und Änderungen nicht mehr
berücksichtigt werden criteria_drive_count Von 10 bis 12 für jeden Speicherpool.

Schritte

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter der vorhandenen Konfiguration:

72

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_17 Bis stor_24 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

73

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

Die richtige Größe finden Sie unter "Empfohlene Prozentsätze für die Überprovisionierung
von Storage-Pools" .

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_17.yml 8013 i1b:100.127.1
03.17/16
i2b:100.127.1
04.17/16

0 netapp_05 Beegfs_s17_
s18

A

stor_18.yml 8023 i2b:100.127.1
04.18/16
i1b:100.127.1
03.18/16

0 netapp_05 Beegfs_s17_
s18

B

stor_19.yml 8033 i3b:100.127.1
03.19/16
i4b:100.127.1
04.19/16

1 netapp_06 Beegfs_s19_
s20

A

stor_20.yml 8043 I4b:100.127.1
04.20/16
i3b:100.127.1
03.20/16

1 netapp_06 Beegfs_s19_
s20

B

74

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_21.yml 8053 i1b:100.127.1
03.21/16
i2b:100.127.1
04.21/16

0 netapp_05 Beegfs_s21_
s22

A

stor_22.yml 8063 i2b:100.127.1
04.22/16
i1b:100.127.1
03.22/16

0 netapp_05 Beegfs_s21_
s22

B

stor_23.yml 8073 i3b:100.127.1
03.23/16
i4b:100.127.1
04.23/16

1 netapp_06 Beegfs_s23_
s24

A

stor_24.yml 8083 I4b:100.127.1
04.24/16
i3b:100.127.1
03.24/16

1 netapp_06 Beegfs_s23_
s24

B

BeeGFS bereitstellen

Zur Implementierung und zum Management der Konfiguration werden ein oder mehrere
Playbooks ausgeführt, die die Aufgaben enthalten, die Ansible ausführen muss, und das
gesamte System in den gewünschten Zustand bringen.

Zwar können alle Aufgaben in einem einzigen Playbook enthalten sein, doch bei komplexen Systemen ist dies
schnell und schwerfällig. Mit Ansible können Sie Rollen erstellen und verteilen, um wiederverwendbare
Playbooks und verwandte Inhalte (z. B. Standardvariablen, Aufgaben und Handler) zu verpacken. Weitere
Informationen finden Sie in der Ansible-Dokumentation für "Rollen".

Rollen werden häufig im Rahmen einer Ansible Sammlung mit zugehörigen Rollen und Modulen verteilt. Daher
importieren diese Playbooks in erster Linie mehrere Rollen, die in den verschiedenen NetApp E-Series Ansible
Sammlungen verteilt sind.

Derzeit sind mindestens zwei Bausteine (vier Datei-Nodes) für die Bereitstellung von BeeGFS
erforderlich, es sei denn, ein separates Quorum-Gerät ist als Tiebreaker konfiguriert, um
Probleme beim Einrichten von Quorum mit einem Cluster mit zwei Nodes zu minimieren.

Schritte

1. Erstellen Sie eine neue playbook.yml Datei und schließen Sie Folgendes ein:

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

75

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

76

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

In diesem Playbook wird ein paar ausgeführt pre_tasks Überprüfen Sie, ob Python 3 auf
den Datei-Nodes installiert ist, und überprüfen Sie, ob die angegebenen Ansible-Tags
unterstützt werden.

2. Verwenden Sie die ansible-playbook Befehl mit den Inventar- und Playbook-Dateien, wenn Sie bereit
sind BeeGFS zu implementieren.

Die Bereitstellung wird komplett ausgeführt pre_tasks, Und dann zur Bestätigung des Benutzers
aufgefordert, bevor mit der tatsächlichen BeeGFS-Bereitstellung.

Führen Sie den folgenden Befehl aus, indem Sie die Anzahl der Gabeln nach Bedarf anpassen (siehe
Hinweis unten):

ansible-playbook -i inventory.yml playbook.yml --forks 20

Insbesondere bei größeren Bereitstellungen forks wird empfohlen, die Standardanzahl von
Gabeln (5) mit dem Parameter zu überschreiben, um die Anzahl der Hosts zu erhöhen, die
Ansible parallel konfiguriert. (Weitere Informationen finden Sie unter "Kontrolle der
Playbook-Ausführung".) Die Einstellung für den maximalen Wert hängt von der
Verarbeitungsleistung ab, die auf dem Ansible-Steuerungsknoten verfügbar ist. Das oben
genannte Beispiel von 20 wurde auf einem virtuellen Ansible-Steuerungsknoten mit 4 CPUs
(Intel® Xeon® Gold 6146 CPU @ 3,20 GHz) ausgeführt.

Je nach Größe der Implementierung und Netzwerk-Performance zwischen dem Ansible Control Node und
BeeGFS File- und Block-Nodes kann die Implementierungszeit variieren.

Konfigurieren Sie BeeGFS-Clients

Sie müssen den BeeGFS-Client auf allen Hosts installieren und konfigurieren, die Zugriff
auf das BeeGFS-Dateisystem benötigen, z. B. Compute- oder GPU-Nodes. Für diese

77

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

Aufgabe können Sie Ansible und die BeeGFS-Sammlung verwenden.

Schritte

1. Richten Sie bei Bedarf über den Ansible-Steuerungsknoten passwortlose SSH für jeden Host ein, den Sie
als BeeGFS-Clients konfigurieren möchten:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Client eine Datei mit dem Namen
`<HOSTNAME>.yml Füllen Sie den Platzhaltertext mit den korrekten Informationen für Ihre Umgebung
aus:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

Bei der Bereitstellung mit zwei Subnetzadressierungsschemata müssen auf jedem Client
zwei InfiniBand-Schnittstellen konfiguriert werden, eine in jedem der beiden Storage-IPoIB-
Subnetze. Wenn Sie die Beispiel-Subnetze und empfohlenen Bereiche für jeden hier
aufgeführten BeeGFS-Dienst verwenden, sollten Clients eine Schnittstelle im Bereich von
bis und die andere in bis konfigurieren 100.127.1.0 100.127.99.255 100.128.1.0
100.128.99.255.

3. Erstellen Sie eine neue Datei client_inventory.yml, Und dann füllen Sie die folgenden Parameter an
der Spitze:

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

78

Speichern Sie Passwörter nicht im Klartext. Verwenden Sie stattdessen den Ansible Vault
(siehe Ansible-Dokumentation für) "Verschlüsseln von Inhalten mit Ansible Vault") Oder
verwenden Sie die --ask-become-pass Option beim Ausführen des Playbooks.

4. Im client_inventory.yml Datei, Listen Sie alle Hosts auf, die als BeeGFS-Clients unter dem
konfiguriert werden sollen beegfs_clients Gruppe, und geben Sie dann alle zusätzlichen
Konfigurationen an, die zum Erstellen des BeeGFS-Client-Kernelmoduls erforderlich sind.

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

Wenn Sie die NVIDIA OFED-Treiber verwenden, stellen Sie sicher, dass
beegfs_client_ofed_include_path sie auf den richtigen „Header include path“ für
Ihre Linux-Installation verweist. Weitere Informationen finden Sie in der BeeGFS-
Dokumentation für "RDMA-Unterstützung".

5. Im client_inventory.yml Datei, Listen Sie die BeeGFS-Dateisysteme auf, die am unteren Rand eines
zuvor definierten gemountet werden sollen vars.

79

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

Der beegfs_client_config Stellt die Einstellungen dar, die getestet wurden. Lesen Sie
die Dokumentation im netapp_eseries.beegfs Kollektion’s beegfs_client Rolle für
einen umfassenden Überblick über alle Optionen. Dies enthält Details zum Mounten
mehrerer BeeGFS-Dateisysteme oder zum mehrere Male das gleiche BeeGFS-
Dateisystem.

6. Erstellen Sie eine neue client_playbook.yml Datei, und füllen Sie dann die folgenden Parameter aus:

80

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Beim Importieren des weglassen netapp_eseries.host Sammlung und ipoib Rolle,
wenn Sie bereits die erforderlichen IB/RDMA-Treiber und IP-Adressen auf den
entsprechenden IPoIB-Schnittstellen installiert haben.

7. Führen Sie den folgenden Befehl aus, um den Client zu installieren und zu erstellen und BeeGFS zu
mounten:

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Bevor Sie das BeeGFS-Dateisystem in Produktion setzen, empfehlen wir * dringend*, sich bei allen Clients
anzumelden und zu starten beegfs-fsck --checkfs Um sicherzustellen, dass alle Knoten erreichbar
sind und keine Probleme gemeldet werden.

Skalierung auf mehr als fünf Bausteine

Pacemaker und Corosync können so konfiguriert werden, dass sie über fünf Bausteine
(10 Datei-Knoten) hinausgehen. Allerdings gibt es Nachteile zu größeren Clustern, und
schließlich Pacemaker und Corosync auferlegen ein Maximum von 32 Knoten.

NetApp hat nur BeeGFS HA Cluster für bis zu 10 Nodes getestet. Es wird nicht empfohlen, einzelne Cluster
über dieses Limit hinaus zu skalieren. BeeGFS-Filesysteme müssen jedoch immer noch weit über 10 Nodes
skalieren, und NetApp hat dies in der BeeGFS on NetApp Lösung berücksichtigt.

Durch die Implementierung mehrerer HA-Cluster mit einer Teilmenge der Bausteine in jedem Filesystem
können Sie das gesamte BeeGFS Filesystem unabhängig von empfohlenen oder festen Grenzwerten für die
zugrunde liegenden HA-Clustering-Mechanismen skalieren. Gehen Sie in diesem Szenario wie folgt vor:

• Erstellen Sie einen neuen Ansible-Bestand, der die zusätzlichen HA-Cluster darstellt, und geben Sie dann
das Konfigurieren eines anderen Managementservices nicht ein. Zeigen Sie stattdessen auf
beegfs_ha_mgmtd_floating_ip Variable in jedem zusätzlichen Cluster enthalten ha_cluster.yml
An die IP für den ersten BeeGFS Management Service.

81

• Wenn Sie dem selben Dateisystem zusätzliche HA-Cluster hinzufügen, stellen Sie Folgendes sicher:

◦ Die BeeGFS-Knoten-IDs sind eindeutig.

◦ Die Dateinamen, die den einzelnen Diensten unter entsprechen group_vars Ist für alle Cluster
eindeutig.

◦ Die BeeGFS-Client- und Server-IP-Adressen sind für alle Cluster eindeutig.

◦ Das erste HA-Cluster mit dem BeeGFS-Managementservice wird ausgeführt, bevor versucht wird,
zusätzliche Cluster zu implementieren oder zu aktualisieren.

• Inventarisierung für jedes HA-Cluster getrennt in der eigenen Verzeichnisstruktur

Wenn Sie versuchen, die Bestandsdateien für mehrere Cluster in einem Verzeichnisbaum zu mischen,
kann dies zu Problemen führen, wie die BeeGFS HA-Rolle die auf ein bestimmtes Cluster angewendete
Konfiguration aggregiert.

Es ist nicht erforderlich, dass jedes HA-Cluster auf fünf Bausteine skaliert werden kann, bevor
ein neues erstellt wird. In vielen Fällen lässt sich das Management mit weniger Bausteinen pro
Cluster vereinfachen. Ein Ansatz besteht darin, die Bausteine in jedem einzelnen Rack als HA-
Cluster zu konfigurieren.

Empfohlene Prozentsätze für die Überprovisionierung von Storage-Pools

Wenn Sie den standardmäßigen vier Volumes pro Storage-Pool-Konfiguration für
Bausteine der zweiten Generation folgen, finden Sie in der folgenden Tabelle.

Diese Tabelle enthält empfohlene Prozentsätze, die als Volume-Größe im verwendet werden können
eseries_storage_pool_configuration Für jede BeeGFS-Metadaten oder jedes Storage-Ziel:

Laufwerkgröße Größe

1,92 TB 18

3,84 TB 21.5

7,68 TB 22.5

15,3 TB 24

Die oben stehende Anleitung gilt nicht für den Speicherpool, der den Management-Service
enthält. Dieser sollte die Größe von über 25 % verringern, um 1 % des Speicherpools für
Management-Daten zuzuweisen.

Um zu verstehen, wie diese Werte ermittelt wurden, lesen Sie "TR-4800: Anhang A: Verständnis von SSD-
Ausdauer und -Überprovisionierung".

Baustein mit hoher Kapazität

Im Standard BeeGFS Solution Deployment Guide werden Verfahren und Empfehlungen
für High-Performance-Workload-Anforderungen beschrieben. Kunden, die hohe
Kapazitätsanforderungen erfüllen möchten, sollten die hier aufgeführten Variationen bei
Implementierung und Empfehlungen beobachten.

82

https://www.netapp.com/media/17009-tr4800.pdf
https://www.netapp.com/media/17009-tr4800.pdf

Controller

Wenn Sie Bausteine mit hoher Kapazität benötigen, sollten EF600 Controller durch EF300 Controller ersetzt
werden, wobei jeweils eine Cascade HIC zur SAS-Erweiterung installiert ist. Jeder Block-Node verfügt über
eine minimale Anzahl von NVMe-SSDs, die im Array-Gehäuse für BeeGFS-Metadaten-Storage befüllt sind,
und wird an Erweiterungs-Shelfs mit NL-SAS-HDDs für BeeGFS-Storage-Volumes angeschlossen.

Die Konfiguration des Datei-Node zu Block-Nodes bleibt unverändert.

Laufwerkplatzierung

In jedem Block-Node sind mindestens 4 NVMe-SSDs für BeeGFS-Metadaten-Storage erforderlich. Diese
Laufwerke sollten in den äußeren Steckplätzen des Gehäuses platziert werden.

Erweiterungsfächer

Der Baustein mit hoher Kapazität kann mit 1-7, 60 Laufwerkserweiterungsfächern pro Speicher-Array
dimensioniert werden.

83

Anweisungen zum Kabelanschluss der einzelnen Erweiterungsfächer finden Sie unter "Siehe EF300-
Verkabelung für Laufwerk-Shelfs".

84

https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^
https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^

Verwenden Sie individuelle Architekturen

Überblick und Anforderungen

Verwenden Sie alle NetApp E/EF-Series Storage-Systeme als BeeGFS-Block-Nodes und
x86-Server als BeeGFS-Datei-Nodes, wenn Sie BeeGFS High Availability-Cluster mithilfe
von Ansible implementieren.

Definitionen für die in diesem Abschnitt verwendete Terminologie finden Sie auf der "Begriffe
und Konzepte" Seite.

Einführung

"NetApp-verifizierte Architekturen"Einige Kunden und Partner bieten zwar vordefinierte
Referenzkonfigurationen und Hinweise zur Größenbestimmung, möchten aber möglicherweise lieber
benutzerdefinierte Architekturen entwickeln, die sich besser an die speziellen Anforderungen oder
Hardwarepräferenzen anpassen. Einer der Hauptvorteile der Entscheidung für BeeGFS auf NetApp ist die
Möglichkeit, BeeGFS HA-Cluster auf Shared-Festplatten mit Ansible zu implementieren. Dadurch wird das
Cluster-Management vereinfacht und die Zuverlässigkeit mithilfe von NetApp entwickelten HA-Komponenten
gesteigert. Die Implementierung benutzerdefinierter BeeGFS-Architekturen auf NetApp erfolgt noch immer
mithilfe von Ansible und den Appliance-ähnlichen Ansatz auf einem flexiblen Spektrum an Hardware.

Dieser Abschnitt beschreibt die allgemeinen Schritte, die zur Implementierung von BeeGFS-Dateisystemen auf
NetApp Hardware und zur Verwendung von Ansible zur Konfiguration von BeeGFS-Dateisystemen erforderlich
sind. Details zu Best Practices für das Design von BeeGFS-Dateisystemen und optimierten Beispielen finden
Sie im "NetApp-verifizierte Architekturen" Abschnitt.

Implementierungsübersicht

Die Bereitstellung eines BeeGFS-Dateisystems umfasst im Allgemeinen die folgenden Schritte:

• Ersteinrichtung:

◦ Hardware installieren/verkabeln.

◦ Richten Sie Datei- und Block-Nodes ein.

◦ Richten Sie einen Ansible-Steuerungsknoten ein.

• Definieren Sie das BeeGFS-Dateisystem als Ansible-Inventar.

• Ausführen von Ansible für Datei- und Block-Nodes zur Implementierung von BeeGFS

◦ Optional zum Einrichten von Clients und Mounten BeeGFS.

In den nachfolgenden Abschnitten werden diese Schritte näher beschrieben.

85

Ansible übernimmt alle Softwareprovisionierung- und Konfigurationsaufgaben, z. B.:

• Erstellen/Zuordnen von Volumes auf Block-Nodes

• Formatieren/Tuning von Volumes auf Datei-Nodes

• Installation/Konfiguration von Software auf Datei-Nodes

• Einrichten des HA-Clusters und Konfigurieren von BeeGFS-Ressourcen und File-System-
Services

Anforderungen

Unterstützung für BeeGFS in Ansible ist veröffentlicht am "Ansible-Galaxie" Als Sammlung von Rollen und
Modulen zur Automatisierung der End-to-End-Implementierung und des Managements von BeeGFS HA-
Clustern.

BeeGFS selbst ist nach einem <major>.<minor>.<patch> Versioning Schema versioniert und die Sammlung
pflegt Rollen für jede unterstützte <major>.<minor> Version von BeeGFS, zum Beispiel BeeGFS 7.2 oder
BeeGFS 7.3. Da Updates für die Sammlung veröffentlicht werden, wird die Patch-Version in jeder Rolle
aktualisiert, um auf die neueste verfügbare BeeGFS-Version für diesen Release Branch (Beispiel: 7.2.8) zu
verweisen. Jede Version der Sammlung wird auch mit bestimmten Linux-Distributionen und -Versionen
getestet und unterstützt, derzeit Red Hat für Dateiknoten und Red Hat und Ubuntu für Clients. Die Ausführung
anderer Distributionen wird nicht unterstützt, und die Ausführung anderer Versionen (insbesondere anderer
Hauptversionen) wird nicht empfohlen.

Ansible-Steuerungsknoten

Dieser Node enthält Inventar und Playbooks, die zum Managen von BeeGFS verwendet werden. Dazu
benötigen Sie:

• Ansible, 6.x (ansible-Core, 2.13)

• Python 3.6 (oder höher)

• Python (Pip) Pakete: Ipaddr und netaddr

Es empfiehlt sich auch, passwortlose SSH vom Steuerungsknoten auf alle BeeGFS Datei-Knoten und -Clients
einzurichten.

BeeGFS-Dateiknoten

Dateiknoten müssen Red Hat Enterprise Linux (RHEL) 9.4 ausführen und Zugriff auf das HA-Repository mit
den erforderlichen Paketen (Pacemaker, Corosync, Fence-Agents-All, Resource-Agents) haben.
Beispielsweise kann der folgende Befehl ausgeführt werden, um das entsprechende Repository unter RHEL 9
zu aktivieren:

subscription-manager repo-override repo=rhel-9-for-x86_64-

highavailability-rpms --add=enabled:1

BeeGFS Client-Knoten

Eine BeeGFS-Client-Ansible-Rolle steht zur Verfügung, um das BeeGFS-Client-Paket zu installieren und
BeeGFS-Mount(s) zu verwalten. Diese Rolle wurde mit RHEL 9.4 und Ubuntu 22.04 getestet.

86

https://galaxy.ansible.com/netapp_eseries/beegfs

Wenn Sie nicht Ansible verwenden, um den BeeGFS-Client einzurichten und BeeGFS zu mounten, any
"BeeGFS unterstützte Linux-Distribution und Kernel" Kann verwendet werden.

Ersteinrichtung

Installieren und verkabeln Sie die Hardware

Schritte erforderlich, um Hardware zu installieren und zu verkabeln, die zum Ausführen
von BeeGFS auf NetApp verwendet wird.

Planen Sie die Installation

Jedes BeeGFS-Dateisystem besteht aus einer Anzahl von Datei-Nodes, auf denen BeeGFS-Dienste über
Backend-Storage ausgeführt werden, der von einer Anzahl von Block-Nodes bereitgestellt wird. Die Datei-
Nodes sind in einem oder mehreren Hochverfügbarkeits-Clustern konfiguriert, um Fehlertoleranz für BeeGFS-
Services zu bieten. Jeder Block-Node ist bereits ein aktiv/aktiv-HA-Paar. Die Mindestanzahl unterstützter File-
Nodes in jedem HA-Cluster beträgt drei und die maximale Anzahl unterstützter File-Nodes in jedem Cluster ist
zehn. BeeGFS-Filesysteme können über zehn Nodes hinaus skaliert werden, indem mehrere unabhängige
HA-Cluster implementiert werden, die zusammen einen Single Filesystem Namespace bieten.

Normalerweise wird jedes HA-Cluster als eine Reihe von „Bausteinen“ bereitgestellt, in denen einige File-
Nodes (x86-Server) direkt mit einer Reihe von Block-Nodes verbunden sind (in der Regel E-Series Storage-
Systeme). Diese Konfiguration erzeugt ein asymmetrisches Cluster, in dem BeeGFS-Services nur auf
bestimmten Datei-Nodes ausgeführt werden können, die Zugriff auf den Back-End-Block-Storage haben, der
für BeeGFS-Ziele verwendet wird. Die Balance zwischen Datei- und Block-Nodes in jedem Baustein und dem
für die direkte Verbindung verwendeten Storage-Protokoll hängen von den Anforderungen einer bestimmten
Installation ab.

Eine alternative HA-Cluster-Architektur verwendet ein Storage-Fabric (auch als Storage Area Network oder
SAN bekannt) zwischen den Datei- und Block-Nodes, um ein symmetrisches Cluster herzustellen. So können
BeeGFS-Services auf jedem Datei-Node in einem bestimmten HA-Cluster ausgeführt werden. Da
symmetrische Cluster aufgrund der zusätzlichen SAN-Hardware nicht so kostengünstig sind, setzt diese
Dokumentation den Einsatz eines asymmetrischen Clusters voraus, der als eine Reihe von einem oder
mehreren Bausteinen implementiert wird.

Stellen Sie sicher, dass die gewünschte Dateisystemarchitektur für eine bestimmte BeeGFS-
Bereitstellung gut verstanden wird, bevor Sie mit der Installation fortfahren.

Rack-Hardware

Bei der Planung der Installation ist es wichtig, dass alle Geräte in jedem Baustein in benachbarten Rack-
Einheiten verfügbar sind. Als Best Practice empfiehlt es sich, Datei-Nodes sofort über Block-Nodes in jedem
Baustein verfügbar zu machen. Befolgen Sie die Dokumentation für die Modelle der Datei und "Block-Storage"
Knoten, die Sie verwenden, wenn Sie Schienen und Hardware im Rack installieren.

Beispiel für einen einzelnen Baustein:

87

https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Beispiel für eine große BeeGFS-Installation, bei der es in jedem HA-Cluster mehrere Bausteine und mehrere
HA-Cluster im Filesystem gibt:

88

Kabeldatei- und Blockknoten

Sie werden die HIC-Ports der Block-Nodes der E-Series normalerweise mit dem vorgesehenen Host Channel
Adapter (für InfiniBand-Protokolle) oder den Host-Bus-Adaptern (für Fibre Channel und andere Protokolle) der
Datei-Nodes verbinden. Die genaue Art und Weise, diese Verbindungen herzustellen, hängt von der
gewünschten Dateisystemarchitektur ab, hier ist ein Beispiel"Basierend auf BeeGFS der zweiten Generation
auf NetApp Verified Architecture":

Dateiknoten mit dem Client-Netzwerk verkabeln

Jeder Datei-Node verfügt über eine bestimmte Anzahl von InfiniBand- oder Ethernet-Ports für BeeGFS-Client-
Traffic. Je nach Architektur verfügt jeder Datei-Node über eine oder mehrere Verbindungen zu einem
hochperformanten Client-/Storage-Netzwerk, möglicherweise zu mehreren Switches für Redundanz und
höhere Bandbreite. Hier sehen Sie ein Beispiel für die Client-Verkabelung mithilfe redundanter Netzwerk-
Switches, bei denen die in Dunkelgrün bzw. hellgrün hervorgehobenen Ports mit separaten Switches
verbunden sind:

89

../second-gen/beegfs-design-hardware-architecture.html
../second-gen/beegfs-design-hardware-architecture.html

Verbindung zwischen Management-Netzwerk und Stromversorgung

Stellen Sie alle erforderlichen Netzwerkverbindungen für in-Band- und Out-of-Band-Netzwerke her.

Schließen Sie alle Netzteile an, um sicherzustellen, dass jeder Datei- und Block-Knoten Verbindungen zu
mehreren Stromverteilungs-Einheiten hat, um Redundanz zu gewährleisten (falls verfügbar).

Datei- und Block-Knoten einrichten

Manuelle Schritte zur Einrichtung von Datei- und Block-Nodes vor der Ausführung von
Ansible erforderlich

File-Nodes

Konfigurieren des Baseboard Management Controllers (BMC)

Ein Baseboard Management Controller (BMC), der manchmal als Service-Prozessor bezeichnet wird, ist der
generische Name für die Out-of-Band-Management-Funktion, die in verschiedenen Server-Plattformen
integriert ist, die Remote-Zugriff bieten können, selbst wenn das Betriebssystem nicht installiert ist oder nicht
zugänglich ist. Anbieter vermarkten diese Funktionalität in der Regel mit ihrem eigenen Branding. Auf dem
Lenovo SR665 wird beispielsweise der BMC als Lenovo XClarity Controller (XCC) bezeichnet.

Befolgen Sie die Dokumentation des Serveranbieters, um alle erforderlichen Lizenzen für den Zugriff auf diese
Funktionalität zu aktivieren und sicherzustellen, dass der BMC mit dem Netzwerk verbunden und für den
Remote-Zugriff entsprechend konfiguriert ist.

Wenn ein BMC-basiertes Fechten mit Redfish gewünscht wird, stellen Sie sicher, dass Redfish
aktiviert ist und die BMC-Schnittstelle über das auf dem Dateiknoten installierte Betriebssystem
zugänglich ist. Auf dem Netzwerk-Switch kann eine spezielle Konfiguration erforderlich sein,
wenn BMC und der Betrieb dieselbe physische Netzwerkschnittstelle nutzen.

Systemeinstellungen Einstellen

Stellen Sie mithilfe der Benutzeroberfläche des System-Setup (BIOS/UEFI) sicher, dass Einstellungen auf
maximale Leistung eingestellt sind. Die genauen Einstellungen und optimalen Werte variieren je nach
verwendetes Servermodell. Es wird eine Anleitung zur Verfügung gestellt"Verifizierte Datei-Node-Modelle",
andernfalls beziehen Sie sich auf die Dokumentation und Best Practices des Serverherstellers, die auf Ihrem
Modell basieren.

90

../second-gen/beegfs-deploy-file-node-tuning.html

Installieren Sie ein Betriebssystem

Installieren Sie ein unterstütztes Betriebssystem basierend auf den aufgeführten Dateiknoten"Hier"
-Anforderungen. Beachten Sie die nachfolgenden Schritte, die auf Ihrer Linux-Distribution basieren.

Red Hat

Verwenden Sie den Red Hat Subscription Manager, um das System zu registrieren und zu abonnieren, damit
die erforderlichen Pakete aus den offiziellen Red Hat-Repositorys installiert werden können und um Updates
auf die unterstützte Version von Red Hat zu beschränken: subscription-manager release
--set=<MAJOR_VERSION>.<MINOR_VERSION> . Anweisungen finden Sie unter "Registrieren und
Abonnieren eines RHEL Systems" Und "Einschränken von Aktualisierungen" .

Red hat Repository mit den für hohe Verfügbarkeit erforderlichen Paketen aktivieren:

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

Managementnetzwerk Konfigurieren

Konfigurieren Sie alle erforderlichen Netzwerkschnittstellen für die bandinterne Verwaltung des
Betriebssystems. Die genauen Schritte hängen von der jeweiligen Linux-Distribution und der verwendeten
Version ab.

Vergewissern Sie sich, dass SSH aktiviert ist und alle Managementoberflächen über den
Ansible Kontroll-Node zugänglich sind.

Aktualisieren der HCA- und HBA-Firmware

Stellen Sie sicher, dass auf allen HBAs und HCAs unterstützte Firmware-Versionen ausgeführt "NetApp
Interoperabilitätsmatrix"werden, die auf dem aufgeführt sind, und aktualisieren Sie ggf.. Weitere Empfehlungen
für NVIDIA ConnectX Adapter finden Sie "Hier".

Block-Nodes

Befolgen Sie die Schritte zu "Die Inbetriebnahme ist möglich mit E-Series" Um den Managementport an jedem
Block Node Controller zu konfigurieren und optional den Namen des Storage-Arrays für jedes System
festzulegen.

Es ist keine zusätzliche Konfiguration erforderlich, die darüber hinaus sicherstellt, dass alle
Block-Nodes über den Ansible-Kontroll-Node zugänglich sind. Die verbleibende
Systemkonfiguration wird mit Ansible angewendet/gewartet.

Ansible-Steuerungsknoten Einrichten

Richten Sie einen Ansible-Steuerungsknoten ein, um das Dateisystem zu implementieren
und zu managen.

Überblick

Ein Ansible-Steuerungsknoten ist eine physische oder virtuelle Linux-Maschine, die zum Verwalten des

91

../second-gen/beegfs-technology-requirements.html#file-node-requirements
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://imt.netapp.com/matrix/
https://imt.netapp.com/matrix/
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Clusters verwendet wird. Er muss folgende Anforderungen erfüllen:

• Lernen Sie die "Anforderungen"Rolle für die BeeGFS HA kennen, einschließlich der installierten Versionen
von Ansible, Python und zusätzlichen Python-Paketen.

• Treffen Sie den Beamten "Ansible-Control-Node-Anforderungen" Einschließlich Betriebssystemversionen.

• SSH- und HTTPS-Zugriff auf alle Datei- und Block-Nodes

Detaillierte Installationsschritte finden Sie "Hier".

Definieren Sie das BeeGFS-Dateisystem

Ansible-Bestandsübersicht

Der Ansible-Bestand ist ein Satz von Konfigurationsdateien, die das gewünschte
BeeGFS HA-Cluster definieren.

Überblick

Es wird empfohlen, die standardmäßigen Ansible-Methoden für die Organisation des zu befolgen "Inventar",
Einschließlich der Verwendung von "Unterverzeichnisse/Dateien" Anstatt den gesamten Bestand in einer Datei
zu speichern.

Der Ansible-Bestand für ein einzelnes BeeGFS HA-Cluster ist wie folgt organisiert:

92

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

Da ein einzelnes BeeGFS-Dateisystem mehrere HA-Cluster umfassen kann, können große
Installationen mehrere Ansible-Inventare durchführen. Im Allgemeinen wird es nicht empfohlen,
mehrere HA-Cluster als einen einzelnen Ansible-Bestand zu definieren, um Probleme zu
vermeiden.

Schritte

1. Erstellen Sie auf Ihrem Ansible-Kontroll-Node ein leeres Verzeichnis, das den Ansible-Bestand für das
BeeGFS-Cluster enthält, das bereitgestellt werden soll.

a. Wenn Ihr Filesystem schließlich mehrere HA-Cluster enthalten soll/kann, wird empfohlen, zuerst ein
Verzeichnis für das Dateisystem zu erstellen und dann Unterverzeichnisse für den Bestand, der die
einzelnen HA-Cluster darstellt, einzutragen. Beispiel:

beegfs_file_system_1/

 beegfs_cluster_1/

 beegfs_cluster_2/

 beegfs_cluster_N/

2. Erstellen Sie im Verzeichnis, das den Bestand für den HA-Cluster enthält, den Sie bereitstellen möchten,
zwei Verzeichnisse group_vars Und host_vars Und zwei Dateien inventory.yml Und
playbook.yml.

Die folgenden Abschnitte gehen durch die Definition des Inhalts jeder dieser Dateien.

Planen Sie das Dateisystem

Planen Sie die Filesystem-Implementierung, bevor Sie den Ansible-Bestand aufbauen.

Überblick

Vor der Bereitstellung des Dateisystems sollten Sie festlegen, welche IP-Adressen, Ports und andere
Konfigurationen für alle Datei-Nodes, Block-Nodes und BeeGFS-Services im Cluster erforderlich sind.
Während die genaue Konfiguration je nach Architektur des Clusters variiert, werden in diesem Abschnitt Best
Practices und Schritte definiert, die allgemein anwendbar sind.

Schritte

1. Wenn Sie zum Verbinden von Datei-Nodes mit Block-Nodes ein IP-basiertes Storage-Protokoll (z. B. iSER,
iSCSI, NVMe/IB oder NVMe/RoCE) verwenden, füllen Sie für jeden Baustein das folgende Arbeitsblatt aus.
Jede direkte Verbindung in einem einzelnen Baustein sollte ein eigenes Subnetz haben, und es sollte
keine Überschneidung mit Subnetzen geben, die für die Client-Server-Konnektivität verwendet werden.

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP
(nur für
EF600 mit
HDR IB)

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<IP/SUBNET
>

93

Wenn Datei- und Block-Nodes in jedem Baustein direkt verbunden sind, können für mehrere
Bausteine oft dieselben IPs/Schemas verwendet werden.

2. Füllen Sie unabhängig davon aus, ob Sie InfiniBand oder RDMA over Converged Ethernet (RoCE) für das
Storage-Netzwerk verwenden, das folgende Arbeitsblatt aus, um die IP-Bereiche zu ermitteln, die für HA-
Cluster-Services, BeeGFS-Fileservices und Clients verwendet werden, um zu kommunizieren:

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP(s) <INTERFACE(s)> <RANGE>

BeeGFS Management <INTERFACE(s)> <IP(s)>

BeeGFS-Metadaten <INTERFACE(s)> <RANGE>

BeeGFS-Speicherung <INTERFACE(s)> <RANGE>

BeeGFS-Clients <INTERFACE(s)> <RANGE>

a. Wenn Sie ein einzelnes IP-Subnetz verwenden, ist nur ein Arbeitsblatt erforderlich. Füllen Sie
andernfalls auch ein Arbeitsblatt für das zweite Subnetz aus.

3. Füllen Sie für jeden Baustein im Cluster das folgende Arbeitsblatt aus, um festzulegen, welche BeeGFS-
Services ausgeführt werden sollen. Geben Sie für jeden Service die bevorzugten/sekundären Dateiknoten,
Netzwerkport, fließende IP(s), NUMA-Zonenzuweisung (falls erforderlich) und welche Block-Nodes für ihre
Ziele verwendet werden. Beachten Sie beim Ausfüllen des Arbeitsblatts die folgenden Richtlinien:

a. Geben Sie BeeGFS-Dienste als entweder an mgmt.yml, meta_<ID>.yml, Oder
storage_<ID>.yml Wobei ID eine eindeutige Nummer für alle BeeGFS-Dienste dieses Typs in
diesem Dateisystem darstellt. Dieses Übereinkommen erleichtert die Rückverweisen auf dieses
Arbeitsblatt in den nachfolgenden Abschnitten, während Dateien für die Konfiguration der einzelnen
Dienste erstellt werden.

b. Ports für BeeGFS-Dienste müssen nur in einem bestimmten Baustein einzigartig sein. Stellen Sie
sicher, dass Dienste mit derselben Portnummer nicht jemals auf demselben Dateiknoten ausgeführt
werden können, um Portkonflikte zu vermeiden.

c. Bei Bedarf können Services Volumes von mehr als einem Block-Node und/oder Storage-Pool nutzen
(und nicht alle Volumes müssen Eigentum desselben Controllers sein). Zudem können mehrere
Services denselben Block-Node und/oder dieselbe Storage-Pool-Konfiguration nutzen (einzelne
Volumes werden in einem späteren Abschnitt definiert).

BeeGFS-
Dienst
(Dateinam
e)

File-Nodes Port Fließende
IPs

NUMA-
Zone

Block-
Node

Storage-
Pool

Controller,
der die
LUN
besitzt

<SERVICE
TYPE>_<I
D>.yml

<PREFER
RED FILE
NODE>
<SECOND
ARY FILE
NODE(s)>

<PORT> <INTERFA
CE>:<IP/S
UBNET>
<INTERFA
CE>:<IP/S
UBNET>

<NUMA
NODE/ZO
NE>

<BLOCK
NODE>

<STORAG
E
POOL/VOL
UME
GROUP>

<A OR B>

Weitere Details zu Standardkonventionen, Best Practices und ausgefüllten Arbeitsblättern finden Sie in den
"Best Practices in sich vereint""Definieren Sie BeeGFS-Bausteine"Abschnitten und der BeeGFS on NetApp
Verified Architecture.

94

../second-gen/beegfs-deploy-define-inventory.html

Datei- und Blockknoten definieren

Konfigurieren Einzelner Dateiknoten

Legen Sie die Konfiguration für einzelne Datei-Nodes mithilfe von Host-Variablen fest
(Host_vars).

Überblick

In diesem Abschnitt wird das Ausfüllen von erläutert host_vars/<FILE_NODE_HOSTNAME>.yml Datei für
jeden Datei-Node im Cluster. Diese Dateien sollten nur die für einen bestimmten Dateiknoten spezifische
Konfiguration enthalten. Hierzu zählen folgende allgemein:

• Die Definition der IP oder des Hostnamen Ansible sollte für die Verbindung mit dem Node verwendet
werden.

• Konfiguration zusätzlicher Schnittstellen und Cluster-IPs, die für HA-Cluster-Services (Pacemaker und
Corosync) zur Kommunikation mit anderen Datei-Nodes verwendet werden Standardmäßig verwenden
diese Dienste dasselbe Netzwerk wie die Managementoberfläche, aber für Redundanz sollten zusätzliche
Schnittstellen verfügbar sein. Es ist üblich, zusätzliche IPs im Storage-Netzwerk zu definieren, ohne dass
ein zusätzliches Cluster- oder Management-Netzwerk erforderlich ist.

◦ Die Performance aller Netzwerke, die für die Cluster-Kommunikation verwendet werden, ist für die
Performance des Filesystems nicht von entscheidender Bedeutung. Bei der Standardkonfiguration des
Clusters bietet ein Netzwerk mit mindestens 1 GB/s im Allgemeinen ausreichende Performance für
Cluster-Vorgänge, z. B. die Synchronisierung von Node-Status und die Koordinierung von Änderungen
des Clusterressourcenstatus. Langsame/überlastete Netzwerke können dazu führen, dass Änderungen
des Ressourcenzustands länger dauern als üblich, und in extremen Fällen können Nodes aus dem
Cluster entfernt werden, wenn sie in einem angemessenen Zeitrahmen keine Herzschläge senden
können.

• Konfigurieren von Schnittstellen, die für die Verbindung zu Block-Nodes über das gewünschte Protokoll
verwendet werden (z. B. iSCSI/iSER, NVMe/IB, NVMe/RoCE, FCP usw.)

Schritte

Wenn Sie auf das im "Planen Sie das Dateisystem" Abschnitt definierte IP-Adressierungsschema verweisen,
erstellen Sie für jeden Dateiknoten im Cluster eine Datei host_vars/<FILE_NODE_HOSTNAME>/yml und
füllen Sie sie wie folgt aus:

1. Geben Sie oben die IP oder den Hostnamen an, den Ansible für den Node mit SSH verwenden und
verwalten soll:

ansible_host: "<MANAGEMENT_IP>"

2. Konfigurieren Sie zusätzliche IPs, die für den Cluster-Datenverkehr verwendet werden können:

a. Wenn der Netzwerktyp ist "InfiniBand (mit IPoIB)":

95

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Wenn der Netzwerktyp ist "RDMA über Converged Ethernet (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Wenn der Netzwerktyp ist "Ethernet (nur TCP, kein RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

3. Geben Sie an, welche IPs für Cluster-Datenverkehr verwendet werden sollen, wobei die bevorzugten IPs
höher aufgeführt sind:

beegfs_ha_cluster_node_ips:

- <MANAGEMENT_IP> # Including the management IP is typically but not

required.

- <IP_ADDRESS> # Ex: 100.127.100.1

- <IP_ADDRESS> # Additional IPs as needed.

IPS, die in Schritt zwei konfiguriert sind, werden nicht als Cluster-IPs verwendet, es sei
denn, sie sind im enthalten beegfs_ha_cluster_node_ips Liste. So können mithilfe von
Ansible zusätzliche IPs/Schnittstellen konfiguriert werden, die bei Bedarf für andere Zwecke
verwendet werden können.

4. Wenn der Datei-Node über ein IP-basiertes Protokoll mit Block-Nodes kommunizieren muss, müssen IPs
auf der entsprechenden Schnittstelle konfiguriert werden. Für dieses installierte/konfigurierte Protokoll sind
alle Pakete erforderlich.

a. Bei Verwendung von "ISCSI":

96

https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md

eseries_iscsi_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

b. Bei Verwendung von "ISER":

eseries_ib_iser_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

c. Bei Verwendung von "NVMe/IB":

eseries_nvme_ib_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

d. Bei Verwendung von "NVMe/RoCE":

eseries_nvme_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Andere Protokolle:

i. Bei Verwendung von "NVMe/FC", Die Konfiguration einzelner Schnittstellen ist nicht erforderlich.
Die BeeGFS-Cluster-Implementierung erkennt das Protokoll automatisch und installiert/konfiguriert
die Anforderungen nach Bedarf. Wenn Sie eine Fabric zum Verbinden von Datei- und Block-Nodes
verwenden, stellen Sie sicher, dass die Switches im Rahmen der Best Practices von NetApp und
dem Switch-Anbieter ordnungsgemäß begrenzt sind.

ii. Bei der Verwendung von FCP oder SAS muss keine zusätzliche Software installiert oder
konfiguriert werden. Wenn Sie FCP verwenden, stellen Sie sicher, dass die Switches Folgendes
ordnungsgemäß begrenzt sind "NetApp" Und die Best Practices Ihres Switch-Anbieters
berücksichtigen.

iii. Die Verwendung von IB-SRP wird derzeit nicht empfohlen. NVMe/IB oder iSER nutzen, je
nachdem, was die Block-Nodes der E-Series unterstützen.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen einzelnen Dateiknoten darstellt.

97

https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml

Erweitert: Zwischen Ethernet- und InfiniBand-Modus können NVIDIA ConnectX VPI-Adapter eingesetzt
werden

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) Adapter unterstützen sowohl InfiniBand als auch
Ethernet als Transportebene. Das Umschalten zwischen den Modi wird nicht automatisch ausgehandelt und
muss mit dem in enthaltenen Werkzeug konfiguriert werden <code>mstconfig</code> <code>mstflint</code>,
einem Open-Source-Paket, das Teil des ist <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">"NVIDIA Firmare Tools (MFT)". Das Ändern des Modus der Adapter muss nur einmal
vorgenommen werden. Dies kann manuell vorgenommen oder als Teil aller Schnittstellen, die mithilfe des
Abschnitts des Bestands konfiguriert wurden, in das Ansible-Inventar aufgenommen <code>eseries-
[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce]_interfaces:</code> werden, um es automatisch prüfen/anwenden zu
lassen.

So kann beispielsweise die aktuelle Schnittstellenspannung im InfiniBand-Modus in Ethernet geändert werden,
damit sie für RoCE verwendet werden kann:

1. Für jede Schnittstelle, die Sie angeben möchten mstconfig Als Zuordnung (oder Wörterbuch), das angibt
LINK_TYPE_P<N> Wo <N> Wird durch die Anschlussnummer des HCA für die Schnittstelle bestimmt. Der
<N> Wert kann durch Ausführen bestimmt werden grep PCI_SLOT_NAME
/sys/class/net/<INTERFACE_NAME>/device/uevent Und fügen Sie 1 zur letzten Nummer aus
dem PCI-Steckplatznamen hinzu und konvertieren Sie auf dezimal.

a. Beispiel angegeben PCI_SLOT_NAME=0000:2f:00.2 (2 + 1 → HCA-Port 3) → LINK_TYPE_P3:
eth:

eseries_roce_interfaces:

- name: <INTERFACE>

 address: <IP/SUBNET>

 mstconfig:

 LINK_TYPE_P3: eth

Weitere Details finden Sie im "Dokumentation der NetApp E-Series Host-Sammlung" Für den
Schnittstellentyp/das Protokoll, das Sie verwenden.

Konfigurieren Einzelner Blockknoten

Legen Sie die Konfiguration für einzelne Block-Nodes mithilfe von Host-Variablen fest
(Host_vars).

Überblick

In diesem Abschnitt wird das Ausfüllen von erläutert host_vars/<BLOCK_NODE_HOSTNAME>.yml Datei für
jeden Block-Node im Cluster. Diese Dateien sollten nur die Konfiguration enthalten, die für einen bestimmten
Block-Node eindeutig ist. Hierzu zählen folgende allgemein:

• Der Systemname (wie in System Manager angezeigt).

• Die HTTPS-URL für einen der Controller (wird zum Verwalten des Systems mit seiner REST-API
verwendet).

• Welche Storage-Protokoll-Datei-Nodes verwenden für die Verbindung zu diesem Block-Node?

98

https://github.com/netappeseries/host

• Konfigurieren von Ports für die Host-Schnittstelle (HIC), z. B. IP-Adressen (falls erforderlich)

Schritte

Wenn Sie auf das im "Planen Sie das Dateisystem" Abschnitt definierte IP-Adressierungsschema verweisen,
erstellen Sie für jeden Block-Node im Cluster eine Datei host_vars/<BLOCK_NODE_HOSTNAME>/yml und
füllen Sie sie wie folgt aus:

1. Geben Sie oben den Systemnamen und die HTTPS-URL für einen Controller an:

eseries_system_name: <SYSTEM_NAME>

eseries_system_api_url:

https://<MANAGEMENT_HOSTNAME_OR_IP>:8443/devmgr/v2/

2. Wählen Sie die aus "Protokoll" Dateiknoten werden für die Verbindung zu diesem Block-Knoten verwendet:

a. Unterstützte Protokolle: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme_ib, nvme_fc, nvme_roce.

eseries_initiator_protocol: <PROTOCOL>

3. Je nach verwendetem Protokoll erfordern die HIC-Ports unter Umständen zusätzliche Konfigurationen. Bei
Bedarf sollte die HIC-Port-Konfiguration definiert werden, sodass der oberste Eintrag in der Konfiguration
für jeden Controller dem physischen, am meisten linken Port auf jedem Controller entspricht, und der
untere Port dem fast rechten Port. Alle Ports erfordern eine gültige Konfiguration, auch wenn sie derzeit
nicht verwendet werden.

Wenn Sie HDR (200 GB) InfiniBand oder 200 GB RoCE mit EF600 Block-Nodes
verwenden, sehen Sie den folgenden Abschnitt.

a. Für iSCSI:

99

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

eseries_controller_iscsi_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

Choices: enabled, disabled

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 gateway: # Port IPv4 gateway

 subnet_mask: # Port IPv4 subnet_mask

 mtu: # Port IPv4 mtu

 - (...) # Additional ports as needed.

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_iscsi_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_iscsi_port_config_method: dhcp # General port

configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_iscsi_port_gateway: # General port

IPv4 gateway for both controllers.

eseries_controller_iscsi_port_subnet_mask: # General port

IPv4 subnet mask for both controllers.

eseries_controller_iscsi_port_mtu: 9000 # General port

maximum transfer units (MTU) for both controllers. Any value greater

than 1500 (bytes).

b. Für iSER:

eseries_controller_ib_iser_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

c. Für NVMe/IB:

100

eseries_controller_nvme_ib_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

d. Für NVMe/RoCE:

eseries_controller_nvme_roce_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 subnet_mask: # Port IPv4 subnet_mask

 gateway: # Port IPv4 gateway

 mtu: # Port IPv4 mtu

 speed: # Port IPv4 speed

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_nvme_roce_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_nvme_roce_port_config_method: dhcp # General

port configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_nvme_roce_port_gateway: # General

port IPv4 gateway for both controllers.

eseries_controller_nvme_roce_port_subnet_mask: # General

port IPv4 subnet mask for both controllers.

eseries_controller_nvme_roce_port_mtu: 4200 # General

port maximum transfer units (MTU). Any value greater than 1500

(bytes).

eseries_controller_nvme_roce_port_speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

101

e. FC- und SAS-Protokolle erfordern keine zusätzliche Konfiguration. SRP wird nicht richtig empfohlen.

Weitere Optionen zum Konfigurieren von HIC-Ports und Hostprotokollen, einschließlich der Möglichkeit zum
Konfigurieren von iSCSI-CHAP finden Sie im "Dokumentation" In der SANtricity Kollektion enthalten. Hinweis:
Bei der Bereitstellung von BeeGFS werden der Speicherpool, die Volume-Konfiguration und andere Aspekte
des Bereitstellungsspeicher an anderer Stelle konfiguriert und in dieser Datei nicht definiert.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen einzelnen Block-Knoten darstellt.

Mit HDR (200 GB) InfiniBand oder 200 GB RoCE mit NetApp EF600 Block-Nodes:

Um HDR (200 GB) InfiniBand mit der EF600 zu verwenden, muss für jeden physischen Port eine zweite
„virtuelle“ IP konfiguriert werden. Nachfolgend sehen Sie ein Beispiel für die korrekte Konfiguration eines
EF600 mit Dual-Port InfiniBand HDR HIC:

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101 # Port 2a (virtual)

 - 192.168.2.101 # Port 2b (virtual)

 - 192.168.1.100 # Port 2a (physical)

 - 192.168.2.100 # Port 2b (physical)

 controller_b:

 - 192.168.3.101 # Port 2a (virtual)

 - 192.168.4.101 # Port 2b (virtual)

 - 192.168.3.100 # Port 2a (physical)

 - 192.168.4.100 # Port 2b (physical)

Festlegen Der Konfiguration Des Gemeinsamen Dateiknotens

Geben Sie unter Verwendung von Gruppenvariablen (Group_vars) die Konfiguration
allgemeiner Dateiknoten an.

Überblick

Konfiguration, die auf alle Datei-Nodes Apfel soll, wird bei definiert group_vars/ha_cluster.yml. Dazu
gehören in der Regel:

• Details zur Verbindung und Anmeldung zu den einzelnen Dateiknoten.

• Gängige Netzwerkkonfiguration.

• Gibt an, ob ein automatischer Neustart zulässig ist.

• Wie Firewall- und selinux-Status konfiguriert werden sollen.

• Cluster-Konfiguration mit Warn- und Fechten

• Performance-Optimierung:

• Allgemeine BeeGFS-Servicekonfiguration.

102

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

Die in dieser Datei festgelegten Optionen können auch auf einzelnen Datei-Nodes definiert
werden, z. B. wenn gemischte Hardware-Modelle verwendet werden oder Sie unterschiedliche
Passwörter für jeden Knoten haben. Die Konfiguration auf einzelnen Datei-Knoten hat Vorrang
vor der Konfiguration in dieser Datei.

Schritte

Erstellen Sie die Datei group_vars/ha_cluster.yml Und füllen Sie es wie folgt aus:

1. Geben Sie an, wie sich der Ansible Control-Node mit den Remote-Hosts authentifizieren soll:

ansible_ssh_user: root

ansible_become_password: <PASSWORD>

Speichern Sie Passwörter insbesondere für Produktionsumgebungen nicht im Klartext.
Verwenden Sie stattdessen Ansible Vault (siehe "Verschlüsseln von Inhalten mit Ansible
Vault") Oder der --ask-become-pass Option beim Ausführen des Playbooks. Wenn der
ansible_ssh_user Ist bereits root, dann können Sie optional auslassen
ansible_become_password.

2. Wenn Sie statische IPs in ethernet- oder InfiniBand-Schnittstellen konfigurieren (zum Beispiel Cluster-IPs)
und mehrere Schnittstellen im gleichen IP-Subnetz sind (z. B. wenn ib0 192.168.1.10/24 verwendet und
ib1 192.168.1.11/24 verwendet), Zusätzliche IP-Routing-Tabellen und -Regeln müssen so eingerichtet sein,
dass Multi-Homed-Unterstützung ordnungsgemäß funktioniert. Aktivieren Sie einfach den mitgelieferten
Konfigurationshaken für Netzwerkschnittstellen wie folgt:

eseries_ip_default_hook_templates:

 - 99-multihoming.j2

3. Bei der Implementierung des Clusters müssen je nach Storage-Protokoll Nodes neu gestartet werden, um
die Erkennung von Remote-Block-Geräten (E-Series Volumes) zu erleichtern oder andere Aspekte der
Konfiguration anzuwenden. Standardmäßig werden vor dem Neubooten von Nodes angezeigt. Sie können
Nodes jedoch durch Angabe des folgenden Verfahrens automatisch neu starten:

eseries_common_allow_host_reboot: true

a. Standardmäßig nach einem Neustart, um sicherzustellen, dass Block-Geräte und andere Services
bereit sind Ansible wartet, bis das System default.target Erreicht wird, bevor die Implementierung
fortgesetzt wird. In manchen Szenarien, in denen NVMe/IB verwendet wird, ist dies möglicherweise
nicht lang genug, um Remote-Geräte zu initialisieren, zu erkennen und eine Verbindung zu herstellen.
Dies kann dazu führen, dass die automatisierte Implementierung vorzeitig ausfällt und ausfällt. Um dies
bei der Nutzung von NVMe/IB zu vermeiden, müssen Sie außerdem Folgendes definieren:

103

https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/vault_guide/index.html

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

4. Für die Kommunikation mit BeeGFS und HA-Cluster-Services sind mehrere Firewall-Ports erforderlich.
Wenn Sie die Firwewall nicht manuell konfigurieren möchten (nicht empfohlen), geben Sie Folgendes an,
damit erforderliche Firewall-Zonen erstellt und Ports automatisch geöffnet werden:

beegfs_ha_firewall_configure: True

5. Derzeit wird SELinux nicht unterstützt, und es wird empfohlen, den Status auf deaktiviert zu setzen, um
Konflikte zu vermeiden (insbesondere, wenn RDMA verwendet wird). Stellen Sie Folgendes ein, um
sicherzustellen, dass SELinux deaktiviert ist:

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

6. Konfigurieren Sie die Authentifizierung so, dass Dateiknoten kommunizieren können und passen Sie die
Standardeinstellungen entsprechend Ihren Unternehmensrichtlinien an:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: hacluster # BeeGFS HA cluster

username.

beegfs_ha_cluster_password: hapassword # BeeGFS HA cluster

username's password.

beegfs_ha_cluster_password_sha512_salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. "Planen Sie das Dateisystem"Legen Sie auf der Grundlage des Abschnitts die BeeGFS-Management-IP
für dieses Dateisystem fest:

beegfs_ha_mgmtd_floating_ip: <IP ADDRESS>

Während scheinbar redundant, beegfs_ha_mgmtd_floating_ip Ist wichtig, wenn Sie
das BeeGFS-Dateisystem über einen einzelnen HA-Cluster hinaus skalieren. Nachfolgende
HA-Cluster werden ohne zusätzlichen BeeGFS-Managementservice bereitgestellt und Punkt
am Managementservice des ersten Clusters.

8. Aktivieren Sie bei Bedarf E-Mail-Alarme:

104

beegfs_ha_enable_alerts: True

E-mail recipient list for notifications when BeeGFS HA resources

change or fail.

beegfs_ha_alert_email_list: ["<EMAIL>"]

This dictionary is used to configure postfix service

(/etc/postfix/main.cf) which is required to set email alerts.

beegfs_ha_alert_conf_ha_group_options:

 # This parameter specifies the local internet domain name. This is

optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com)

 mydomain: <MY_DOMAIN>

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

9. Es wird dringend empfohlen, Fechten zu aktivieren, da bei Ausfall des primären Knotens Services vom
Starten auf sekundären Knoten blockiert werden können.

a. Aktivieren Sie das globale Fechten, indem Sie Folgendes angeben:

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: True

i. Hinweis: Bei Bedarf können auch alle unterstützten "Cluster-Eigenschaft" Daten hier angegeben
werden. Diese Anpassungen sind in der Regel nicht notwendig, da die BeeGFS HA-Rolle mit einer
Reihe gut getesteter ausgeliefert "Standardwerte"wird.

b. Wählen Sie anschließend einen Fechten-Agent aus und konfigurieren Sie ihn:

i. OPTION 1: Ermöglicht das Fechten mit APC Power Distribution Units (PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: <PDU_USERNAME>

 passwd: <PDU_PASSWORD>

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>

"

ii. OPTION 2: Ermöglicht das Fechten mit den vom Lenovo XCC (und anderen BMCs)
bereitgestellten Redfish APIs:

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54

redfish: &redfish

 username: <BMC_USERNAME>

 password: <BMC_PASSWORD>

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

iii. Weitere Informationen zum Konfigurieren anderer Fencing-Agenten finden Sie im "Red Hat-
Dokumentation".

10. Die BeeGFS HA-Rolle kann viele verschiedene Tuning-Parameter anwenden, um die Leistung weiter zu
optimieren. Dazu gehören unter anderem die Optimierung der Kernel-Speicherauslastung und die E/A von
Blockgeräten. Die Rolle wird mit einem angemessenen Satz von basierend auf Tests mit NetApp E-Series
Block-Nodes ausgeliefert "Standardwerte" . Diese werden standardmäßig jedoch nicht angewendet, es sei
denn, Sie geben Folgendes an:

beegfs_ha_enable_performance_tuning: True

a. Geben Sie bei Bedarf auch hier Änderungen an der Standard-Performance-Optimierung an. Weitere
Informationen finden Sie in der vollständigen "Parameter für die Performance-Optimierung"
Dokumentation.

11. Damit schwebende IP-Adressen (manchmal auch als logische Schnittstellen bekannt), die für BeeGFS-
Dienste verwendet werden, zwischen Datei-Nodes ausfallen können, müssen alle Netzwerkschnittstellen
konsistent benannt werden. Standardmäßig werden Netzwerkschnittstellennamen vom Kernel generiert,
was nicht garantiert ist, dass konsistente Namen generiert werden, auch bei identischen Servermodellen
mit Netzwerkadaptern, die in denselben PCIe-Steckplätzen installiert sind. Dies ist auch nützlich, wenn
Vorräte erstellt werden, bevor das Gerät bereitgestellt wird und generierte Schnittstellennamen bekannt
sind. Um konsistente Gerätenamen auf der Grundlage eines Blockdiagramms des Servers oder
sicherzustellen lshw -class network -businfo Ausgabe, geben Sie die gewünschte PCIe-Adresse-
zu-logische Schnittstellenzuordnung wie folgt an:

a. Für InfiniBand (IPoIB)-Netzwerkschnittstellen:

eseries_ipoib_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: i1a

b. Bei Ethernet-Netzwerkschnittstellen:

106

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md

eseries_ip_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: e1a

Um Konflikte zu vermeiden, wenn Schnittstellen umbenannt werden (um zu verhindern,
dass sie umbenannt werden), sollten Sie keine möglichen Standardnamen wie eth0,
ens9f0, ib0 oder ibs4f0 verwenden. Eine häufige Namenskonvention besteht darin, „e“
oder „i“ für Ethernet oder InfiniBand zu verwenden, gefolgt von der PCIe-
Steckplatznummer und einem Buchstaben zur Angabe des Ports. Zum Beispiel wäre der
zweite Port eines InfiniBand-Adapters, der in Steckplatz 3 installiert ist: i3b.

Wenn Sie ein verifiziertes Datei-Node-Modell verwenden, klicken Sie auf "Hier" Beispiel für
Zuordnungen von PCIe-Adressen zu logischen Ports

12. Geben Sie optional die Konfiguration an, die für alle BeeGFS-Dienste im Cluster gelten soll. Die
Standardkonfigurationswerte können gefunden werden "Hier", und die Konfiguration pro Service wird an
anderer Stelle angegeben:

a. BeeGFS Management-Service:

beegfs_ha_beegfs_mgmtd_conf_ha_group_options:

 <OPTION>: <VALUE>

b. BeeGFS Metadata Services:

beegfs_ha_beegfs_meta_conf_ha_group_options:

 <OPTION>: <VALUE>

c. BeeGFS Storage-Services:

beegfs_ha_beegfs_storage_conf_ha_group_options:

 <OPTION>: <VALUE>

13. Ab BeeGFS 7.2.7 und 7.3.1 "Verbindungsauthentifizierung" Muss konfiguriert oder explizit deaktiviert
werden. Es gibt einige Konfigurationsmöglichkeiten, die mit der Ansible-basierten Implementierung
konfiguriert werden können:

a. Standardmäßig konfiguriert die Bereitstellung die Verbindungsauthentifizierung automatisch und erstellt
ein connauthfile Die auf alle Datei-Nodes verteilt und mit den BeeGFS-Diensten verwendet
werden. Diese Datei wird auch auf dem Ansible-Steuerungsknoten in abgelegt/gepflegt
<INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile Wo Sie Daten für die
Wiederverwendung mit Clients, die auf dieses Filesystem zugreifen müssen, aufbewahren (sicher).

i. Zum Generieren eines neuen Schlüssels angeben -e
"beegfs_ha_conn_auth_force_new=True Wenn Sie das Ansible-Playbook ausführen.
Beachten Sie, dass dies bei einem ignoriert wird beegfs_ha_conn_auth_secret Definiert ist.

ii. Weitere Optionen finden Sie in der vollständigen Liste der Standardwerte, die im enthalten

107

https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://doc.beegfs.io/latest/advanced_topics/authentication.html

"BeeGFS HA-Rolle"sind.

b. Ein benutzerdefiniertes Geheimnis kann verwendet werden, indem Sie Folgendes in definieren
ha_cluster.yml:

beegfs_ha_conn_auth_secret: <SECRET>

c. Die Verbindungsauthentifizierung kann vollständig deaktiviert werden (NICHT empfohlen):

beegfs_ha_conn_auth_enabled: false

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die die allgemeine Konfiguration des
Dateiknoten darstellt.

Verwendung von HDR (200 GB) InfiniBand mit NetApp EF600 Block-Nodes:

Um HDR (200 GB) InfiniBand mit der EF600 zu verwenden, muss der Subnetzmanager die Virtualisierung
unterstützen. Wenn Datei- und Block-Knoten über einen Switch verbunden sind, muss dies im Subnetz
Manager für die Gesamtstruktur aktiviert sein.

Wenn Block- und Datei-Nodes direkt über InfiniBand verbunden sind, opensm muss auf jedem Datei-Node für
jede Schnittstelle, die direkt mit einem Block-Node verbunden ist, eine Instanz von konfiguriert werden. Dies
geschieht durch Angabe von configure: true wann "Konfigurieren von File-Node-Storage-Schnittstellen".

Derzeit unterstützt die Inbox-Version von opensm , die mit unterstützten Linux-Distributionen ausgeliefert
wurde, keine Virtualisierung. Stattdessen ist es erforderlich, dass Sie die Version von über die NVIDIA
OpenFabrics Enterprise Distribution (OFED) installieren und konfigurieren opensm . Obwohl die
Implementierung mit Ansible weiterhin unterstützt wird, sind einige weitere Schritte erforderlich:

1. Laden Sie die Pakete für die Version von OpenSM, die im Abschnitt von der NVIDIA-Website aufgeführt
sind, mithilfe von Curl oder Ihrem gewünschten Tool in das Verzeichnis herunter
"Technologieanforderungen erfüllt" <INVENTORY>/packages/ . Beispiel:

curl -o packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

curl -o packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

2. Unter group_vars/ha_cluster.yml Definieren Sie die folgende Konfiguration:

108

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml

OpenSM package and configuration information

eseries_ib_opensm_allow_upgrades: true

eseries_ib_opensm_skip_package_validation: true

eseries_ib_opensm_rhel_packages: []

eseries_ib_opensm_custom_packages:

 install:

 - files:

 add:

 "packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 "packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 - packages:

 add:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 uninstall:

 - packages:

 remove:

 - opensm

 - opensm-libs

 files:

 remove:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

eseries_ib_opensm_options:

 virt_enabled: "2"

Festlegen Der Konfiguration Allgemeiner Blockknoten

Geben Sie unter Verwendung von Gruppenvariablen (Group_vars) die allgemeine
Konfiguration von Blockknoten an.

Überblick

Die Konfiguration, die auf alle Block-Nodes Apfel soll, wird auf definiert
group_vars/eseries_storage_systems.yml. Dazu gehören in der Regel:

• Details dazu, wie der Ansible-Kontroll-Node mit als Block-Nodes verwendeten E-Series Storage-Systemen
verbunden werden soll.

109

• Welche Firmware-, NVSRAM- und Laufwerk-Firmware-Versionen die Nodes ausführen sollten.

• Globale Konfiguration einschließlich Cache-Einstellungen, Host-Konfiguration und Einstellungen für die
Bereitstellung von Volumes

Die in dieser Datei festgelegten Optionen können auch auf einzelnen Block-Nodes definiert
werden, z. B. wenn gemischte Hardware-Modelle verwendet werden oder Sie unterschiedliche
Passwörter für jeden Knoten haben. Die Konfiguration auf einzelnen Block-Knoten hat Vorrang
vor der Konfiguration in dieser Datei.

Schritte

Erstellen Sie die Datei group_vars/eseries_storage_systems.yml Und füllen Sie es wie folgt aus:

1. Ansible verwendet SSH nicht für die Verbindung mit Block-Nodes und verwendet stattdessen REST-APIs.
Um dies zu erreichen, müssen wir Folgendes festlegen:

ansible_connection: local

2. Geben Sie den Benutzernamen und das Passwort an, um jeden Knoten zu verwalten. Der Benutzername
kann optional ausgelassen werden (und wird standardmäßig auf admin gesetzt), andernfalls können Sie
jedes Konto mit Administratorrechten angeben. Geben Sie außerdem an, ob SSL-Zertifikate überprüft oder
ignoriert werden sollen:

eseries_system_username: admin

eseries_system_password: <PASSWORD>

eseries_validate_certs: false

Es wird nicht empfohlen, Kennwörter im Klartext zu verwenden. Verwenden Sie einen
Ansible-Vault, oder stellen Sie die bereit eseries_system_password Wenn Sie Ansible
mit --extra-Vars verwenden.

3. Geben Sie optional an, welche Controller-Firmware, NVSRAM und Laufwerk-Firmware auf den Nodes
installiert werden soll. Diese müssen auf das heruntergeladen werden packages/ Verzeichnis vor der
Ausführung von Ansible. NVSRAM und E-Series Controller Firmware können heruntergeladen werden
"Hier" Und Laufwerk-Firmware "Hier":

110

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

eseries_firmware_firmware: "packages/<FILENAME>.dlp" # Ex.

"packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/<FILENAME>.dlp" # Ex.

"packages/N6000-880834-D08.dlp"

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

 # Additional firmware versions as needed.

eseries_drive_firmware_upgrade_drives_online: true # Recommended unless

BeeGFS hasn't been deployed yet, as it will disrupt host access if set

to "false".

Wenn diese Konfiguration angegeben wird, aktualisiert Ansible automatisch alle Firmware
einschließlich des Neubootens von Controllern (falls erforderlich), ohne zusätzliche
Eingabeaufforderungen. Dies wird für BeeGFS/Host-I/O voraussichtlich ohne Unterbrechung
ausgeführt, kann jedoch zu einer vorübergehenden Abnahme der Performance führen.

4. Passen Sie die Standardeinstellungen für die globale Systemkonfiguration an. Die hier aufgeführten
Optionen und Werte werden häufig für BeeGFS auf NetApp empfohlen, können jedoch bei Bedarf
angepasst werden:

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required by default.

5. Konfigurieren Sie die Standardeinstellungen für die globale Volume-Bereitstellung. Die hier aufgeführten
Optionen und Werte werden häufig für BeeGFS auf NetApp empfohlen, können jedoch bei Bedarf
angepasst werden:

eseries_volume_size_unit: pct # Required by default. This allows volume

capacities to be specified as a percentage, simplifying putting together

the inventory.

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

6. Passen Sie bei Bedarf die Reihenfolge an, in der Ansible Laufwerke für Storage Pools und Volume-
Gruppen wählt, und berücksichtigen Sie die folgenden Best Practices:

a. Nennen Sie alle (möglicherweise kleineren) Laufwerke, die zuerst für Management- und/oder
Metadaten-Volumes verwendet werden sollten, und Storage Volumes zuletzt.

111

b. Stellen Sie sicher, dass Sie die Reihenfolge der Festplattenauswahl auf der Grundlage der Modelle für
Festplatten-Shelfs/Festplattengehäuse ausgleichen, um die Laufwerksauswahl über verfügbare
Laufwerkskanäle auszugleichen. Beispielsweise befinden sich Laufwerke 0-11 mit der EF600 und ohne
Erweiterungen auf Laufwerkskanal 1 und Laufwerke 12-23 auf dem Laufwerkskanal. Daher ist eine
Strategie zur Balance der Antriebsauswahl zu wählen disk shelf:drive 99:0, 99:23, 99:1, 99:22
usw. Wenn mehr als ein Gehäuse vorhanden ist, steht die erste Ziffer für die Laufwerk-Shelf-ID.

Optimal/recommended order for the EF600 (no expansion):

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99

:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die die allgemeine Block-Node-Konfiguration
darstellt.

BeeGFS-Dienste definieren

Definieren Sie den BeeGFS-Managementdienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Managementservice erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte nur ein Service dieses Typs vorhanden sein. Die Konfiguration dieses Services
umfasst die folgenden Punkte:

• Der Servicetyp (Management).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Geben Sie an, wo/wie ein Volume Daten für diesen Service speichern soll (das BeeGFS-Managementziel).

Schritte

Erstellen Sie eine neue Datei group_vars/mgmt.yml, und verweisen Sie auf den "Planen Sie das
Dateisystem" Abschnitt. Füllen Sie diese wie folgt aus:

1. Geben Sie diese Datei an, um die Konfiguration für einen BeeGFS-Managementdienst anzuzeigen:

beegfs_service: management

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Dies ist in der Regel
nicht für den Management-Service erforderlich, es sei denn, Sie müssen Quoten aktivieren, jedoch alle
unterstützten Konfigurationsparameter von beegfs-mgmtd.conf Kann enthalten sein. Beachten Sie,
dass die folgenden Parameter automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben
werden sollten: storeMgmtdDirectory, connAuthFile, connDisableAuthentication,
connInterfacesFile, und connNetFilterFile.

112

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

 <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.0/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie das BeeGFS-Managementziel an, auf dem dieser Service Daten gemäß den folgenden
Richtlinien speichert:

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

113

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Managementdienst
darstellt.

Definieren Sie den BeeGFS-Metadatendienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Metadatendienstes erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte mindestens ein Service dieses Typs vorhanden sein. Die Konfiguration dieses
Services umfasst die folgenden Punkte:

• Der Servicetyp (Metadaten).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Festlegen, wo/wie ein Volume Daten für diesen Service speichern soll (das BeeGFS-Metadatenziel).

Schritte

"Planen Sie das Dateisystem"Erstellen Sie group_vars/meta_<ID>.yml für jeden Metadatendienst im
Cluster eine Datei unter, und füllen Sie sie wie folgt aus, um auf den Abschnitt zu verweisen:

1. Geben Sie an, dass diese Datei die Konfiguration für einen BeeGFS-Metadatendienst darstellt:

beegfs_service: metadata

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Mindestens müssen
Sie den gewünschten TCP- und UDP-Port angeben, jedoch alle unterstützten Konfigurationsparameter von
beegfs-meta.conf Kann ebenfalls enthalten sein. Beachten Sie, dass die folgenden Parameter
automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben werden sollten:
sysMgmtdHost, storeMetaDirectory, connAuthFile, connDisableAuthentication,

114

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

connInterfacesFile, und connNetFilterFile.

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <TCP PORT>

 connMetaPortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie das BeeGFS-Metadatenziel an, bei dem dieser Dienst Daten gemäß den folgenden Richtlinien
speichert (dies konfiguriert auch automatisch den storeMetaDirectory Option):

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

115

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Metadatendienst darstellt.

Definieren Sie den BeeGFS-Speicherdienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Speicherdienstes erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte mindestens ein Service dieses Typs vorhanden sein. Die Konfiguration dieses
Services umfasst die folgenden Punkte:

• Den Servicetyp (Storage).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Geben Sie an, wo/wie Volumen(en) Daten für diesen Dienst speichern sollen (die BeeGFS-Speicherziele).

Schritte

"Planen Sie das Dateisystem"Erstellen Sie group_vars/stor_<ID>.yml für jeden Storage-Service im
Cluster eine Datei unter, und füllen Sie sie wie folgt aus, um auf den Abschnitt Bezug zu nehmen:

1. Geben Sie diese Datei für die Konfiguration eines BeeGFS-Speicherdienstes an:

beegfs_service: storage

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Mindestens müssen
Sie den gewünschten TCP- und UDP-Port angeben, jedoch alle unterstützten Konfigurationsparameter von
beegfs-storage.conf Kann ebenfalls enthalten sein. Beachten Sie, dass die folgenden Parameter
automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben werden sollten:
sysMgmtdHost, storeStorageDirectory, connAuthFile, connDisableAuthentication,
connInterfacesFile, und connNetFilterFile.

116

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <TCP PORT>

 connStoragePortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie die BeeGFS-Speicherziele an, in denen dieser Service Daten gemäß den folgenden Richtlinien
speichert (dies konfiguriert auch automatisch den storeStorageDirectory Option):

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

117

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_s1_s2

 raid_level: <LEVEL> # One of: raid1, raid5, raid6,

raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

 # Multiple storage targets are supported / typical:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Speicherdienst darstellt.

Zuordnen von BeeGFS-Services zu Datei-Nodes

Geben Sie an, welche Datei-Nodes jeden BeeGFS-Dienst mit dem ausführen können
inventory.yml Datei:

Überblick

In diesem Abschnitt wird die Erstellung des erläutert inventory.yml Datei: Dazu gehören alle Block-Nodes
und die Angabe, welche Datei-Nodes jeden BeeGFS-Service ausführen können.

Schritte

Erstellen Sie die Datei inventory.yml Und füllen Sie es wie folgt aus:

1. Erstellen Sie oben in der Datei die Ansible-Standardinventarstruktur:

BeeGFS HA (High_Availability) cluster inventory.

all:

 children:

2. Erstellen Sie eine Gruppe mit allen Block-Nodes, die an diesem HA-Cluster teilnehmen:

118

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 <BLOCK NODE HOSTNAME>:

 <BLOCK NODE HOSTNAME>:

 # Additional block nodes as needed.

3. Erstellen Sie eine Gruppe, die alle BeeGFS-Dienste im Cluster und die Datei-Nodes enthält, auf denen sie
ausgeführt werden:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

4. Definieren Sie für jeden BeeGFS-Service im Cluster die bevorzugten und sekundären Dateiknoten, die
diesen Service ausführen sollen:

 <SERVICE>: # Ex. "mgmt", "meta_01", or "stor_01".

 hosts:

 <FILE NODE HOSTNAME>:

 <FILE NODE HOSTNAME>:

 # Additional file nodes as needed.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei.

Stellen Sie das BeeGFS-Dateisystem bereit

Ansible – Playbook-Überblick

BeeGFS HA-Cluster implementieren und managen mithilfe von Ansible

Überblick

In den vorherigen Abschnitten wurden die Schritte aufgeführt, mit denen ein Ansible-Inventar erstellt werden
konnte, der ein BeeGFS HA-Cluster darstellt. In diesem Abschnitt wird die von NetApp entwickelte Ansible-
Automatisierung für die Implementierung und das Management des Clusters vorgestellt.

Ansible – Wichtige Konzepte

Bevor Sie fortfahren, ist es hilfreich, sich mit ein paar Schlüsselkonzepten von Ansible vertraut zu machen:

• Aufgaben, die für einen Ansible-Bestand ausgeführt werden müssen, werden in einem sogenannten
Playbook definiert.

◦ Die meisten Aufgaben in Ansible sind idempotent, d. h., sie können mehrmals ausgeführt werden, um
zu überprüfen, ob die gewünschte Konfiguration/der gewünschte Zustand noch angewendet wird, ohne

119

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

dass Dinge zu stören oder unnötige Updates zu machen.

• Die kleinste Ausführungseinheit in Ansible ist ein Modul.

◦ Typische Playbooks nutzen mehrere Module.

▪ Beispiele: Laden Sie ein Paket herunter, aktualisieren Sie eine Konfigurationsdatei,
starten/aktivieren Sie einen Dienst.

◦ NetApp verteilt Module zur Automatisierung von NetApp E-Series Systemen.

• Komplexe Automatisierungsoptionen sind besser als Rollen integriert.

◦ Im Wesentlichen ein Standardformat zur Verteilung eines wiederverwendbaren Playbooks.

◦ NetApp verteilt Rollen für Linux-Hosts und BeeGFS-Filesysteme.

BeeGFS HA-Rolle für Ansible: Schlüsselkonzepte

Die gesamte Automatisierung, die für das Implementieren und Managen jeder Version von BeeGFS auf
NetApp erforderlich ist, ist als Ansible-Rolle verpackt und im Rahmen der verteilt "NetApp E-Series Ansible
Collection für BeeGFS":

• Diese Rolle kann als irgendwo zwischen einem Installer und einer modernen Deployment/Management
Engine für BeeGFS gedacht werden.

◦ Nutzt moderne Infrastruktur als Code-Praktiken und -Philosophien um das Management der Storage-
Infrastruktur in jeder Größenordnung zu vereinfachen

◦ Das "Kubesbete"Projekt ermöglicht Benutzern die Implementierung und Wartung einer gesamten
Kubernetes-Distribution für die Scale-out-Computing-Infrastruktur.

• Dabei handelt es sich um das softwaredefinierte-Format von NetApp zur Verpackung, Verteilung und
Wartung von BeeGFS auf NetApp Lösungen.

◦ Versuchen Sie, eine „Appliance-ähnliche“ Erfahrung zu schaffen, ohne eine gesamte Linux-Distribution
oder ein großes Bild zu verteilen.

◦ Dazu gehören die von NetApp entwickelten Open Cluster Framework (OCF)-konformen Cluster-
Ressourcen-Agents für benutzerdefinierte BeeGFS-Ziele, IP-Adressen und Monitoring für intelligente
Pacemaker/BeeGFS-Integration.

• Diese Rolle spielt nicht einfach die Implementierung der „Automatisierung“ und soll den gesamten
Lebenszyklus des Filesystems managen, darunter:

◦ Konfigurationsänderungen und Updates pro Service oder Cluster-weite Konfiguration

◦ Automatisierung von Cluster-Reparatur und Recovery nach Behebung von Hardware-Problemen

◦ Vereinfachte Performance-Optimierung mit Standardeinstellungen, die auf umfangreichen Tests mit
BeeGFS und NetApp Volumes basieren

◦ Überprüfung und Korrektur von Konfigurationstendenzen.

NetApp bietet auch eine Ansible-Rolle für "BeeGFS-Clients", Die optional verwendet werden kann, um
BeeGFS zu installieren und mounten Sie Dateisysteme auf Compute/GPU/Login-Nodes.

Implementieren Sie das BeeGFS HA-Cluster

Geben Sie an, welche Aufgaben ausgeführt werden sollen, um BeeGFS HA-Cluster
mithilfe eines Playbooks zu implementieren.

120

https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/kubernetes-sigs/kubespray
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

Überblick

In diesem Abschnitt wird beschrieben, wie Sie das Standard-Playbook zur Bereitstellung/zum Managen von
BeeGFS auf NetApp zusammenstellen können.

Schritte

Erstellen Sie das Ansible Playbook

Erstellen Sie die Datei playbook.yml Und füllen Sie es wie folgt aus:

1. Definieren Sie zunächst einen Satz von Aufgaben (allgemein als A bezeichnet) "Spielen") Die nur auf
Block-Nodes der NetApp E-Series ausgeführt werden sollte. Wir verwenden eine Pause-Aufgabe, um vor
dem Ausführen der Installation eine Aufforderung zu geben (um versehentliche Playbook-Läufe zu
vermeiden), und importieren dann die nar_santricity_management Rolle: Diese Rolle übernimmt die
Anwendung aller in definierten allgemeinen Systemkonfiguration
group_vars/eseries_storage_systems.yml Oder einzeln host_vars/<BLOCK NODE>.yml
Dateien:

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

2. Definieren Sie die Wiedergabe, die für alle Datei- und Blockknoten ausgeführt wird:

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

3. In diesem Sales Play können wir optional einen Satz von „Voraufgaben“ definieren, die vor der
Bereitstellung des HA-Clusters ausgeführt werden sollten. Dies kann nützlich sein, um alle
Voraussetzungen wie Python zu überprüfen/zu installieren. Zudem können Überprüfungen vor dem Flug
durchgeführt werden, beispielsweise die Unterstützung der bereitgestellten Ansible-Tags:

121

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

122

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

4. Schließlich importiert dieses Spiel die BeeGFS HA-Rolle für die Version von BeeGFS, die Sie bereitstellen
möchten:

 tasks:

 - name: Verify the BeeGFS HA cluster is properly deployed.

 import_role:

 name: beegfs_ha_7_4 # Alternatively specify: beegfs_ha_7_3.

Für jede unterstützte Major.Minor Version von BeeGFS wird eine BeeGFS HA-Rolle
beibehalten. Auf diese Weise können Benutzer festlegen, wann ein Upgrade von Major-
/Minor-Versionen durchgeführt werden soll. Derzeit (beegfs_7_3(`beegfs_7_2`werden
BeeGFS 7.3.x) oder BeeGFS 7.2.x) unterstützt. Standardmäßig werden beide Rollen zum
Zeitpunkt der Veröffentlichung die neueste BeeGFS-Patch-Version bereitstellen. Benutzer
können dies jedoch überschreiben und gegebenenfalls den neuesten Patch bereitstellen.
"Upgrade-Leitfaden"Weitere Informationen finden Sie auf dem neuesten Stand.

5. Optional: Wenn Sie zusätzliche Aufgaben definieren möchten, sollten Sie beachten, ob die Aufgaben an
geleitet werden sollen all Hosts (einschließlich der E-Series Storage-Systeme) oder nur die Datei-Nodes
Definieren Sie bei Bedarf ein neues Spiel speziell für Dateiknoten mit - hosts: ha_cluster.

Klicken Sie Auf "Hier" Beispiel für eine vollständige Playbook-Datei.

NetApp Ansible Sammlungen installieren

Die BeeGFS-Sammlung für Ansible, und alle Abhängigkeiten werden aufrechterhalten "Ansible-Galaxie".
Führen Sie auf Ihrem Ansible-Steuerungsknoten den folgenden Befehl aus, um die neueste Version zu
installieren:

ansible-galaxy collection install netapp_eseries.beegfs

Obwohl nicht in der Regel empfohlen, ist es auch möglich, eine bestimmte Version der Sammlung zu
installieren:

ansible-galaxy collection install netapp_eseries.beegfs:

==<MAJOR>.<MINOR>.<PATCH>

Führen Sie das Playbook aus

Aus dem Verzeichnis auf Ihrem Ansible-Steuerungsknoten, der den enthält inventory.yml Und
playbook.yml Dateien, führen Sie das Playbook wie folgt aus:

ansible-playbook -i inventory.yml playbook.yml

123

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs

Basierend auf der Cluster-Größe kann die ursprüngliche Implementierung 20+ Minuten dauern. Wenn die
Implementierung aus irgendeinem Grund fehlschlägt, korrigieren Sie einfach Probleme (z. B. Fehlverkabelung,
Knoten wurde nicht gestartet usw.) und starten Sie das Ansible Playbook neu.

"Allgemeine Konfiguration der Datei-Nodes"Wenn Sie angeben , wenn Sie die Standardoption wählen, damit
Ansible die verbindungsbasierte Authentifizierung automatisch verwaltet, connAuthFile kann ein als
gemeinsamer Schlüssel verwendet jetzt unter
<playbook_dir>/files/beegfs/<sysMgmtdHost>_connAuthFile (standardmäßig) gefunden werden.
Alle Clients, die auf das Dateisystem zugreifen müssen, müssen diesen gemeinsam genutzten Schlüssel
verwenden. Dies wird automatisch verarbeitet, wenn Clients über die konfiguriert werden"BeeGFS-Client-
Rolle".

Bereitstellen von BeeGFS-Clients

Optional kann Ansible verwendet werden, um BeeGFS-Clients zu konfigurieren und das
Dateisystem zu mounten.

Überblick

Für den Zugriff auf BeeGFS-Dateisysteme muss der BeeGFS-Client auf jedem Node installiert und konfiguriert
werden, der das Dateisystem bereitstellen muss. In diesem Abschnitt wird beschrieben, wie Sie diese
Aufgaben mit dem verfügbaren ausführen "Ansible-Rolle".

Schritte

Erstellen Sie die Client-Bestandsdatei

1. Richten Sie bei Bedarf über den Ansible-Steuerungsknoten passwortlose SSH für jeden Host ein, den Sie
als BeeGFS-Clients konfigurieren möchten:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Client eine Datei mit dem Namen
`<HOSTNAME>.yml Füllen Sie den Platzhaltertext mit den korrekten Informationen für Ihre Umgebung
aus:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

3. Geben Sie optional eine der folgenden Optionen ein, wenn Sie die Rollen der NetApp E-Series Host
Collection verwenden möchten, um InfiniBand- oder Ethernet-Schnittstellen für Clients zu konfigurieren,
damit eine Verbindung mit BeeGFS File-Nodes hergestellt werden kann:

a. Wenn der Netzwerktyp ist "InfiniBand (mit IPoIB)":

124

architectures-deploy-beegfs-clients.html
architectures-deploy-beegfs-clients.html
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Wenn der Netzwerktyp ist "RDMA über Converged Ethernet (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Wenn der Netzwerktyp ist "Ethernet (nur TCP, kein RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

4. Erstellen Sie eine neue Datei client_inventory.yml Geben Sie den Benutzer an, den Ansible für die
Verbindung mit den einzelnen Clients verwenden soll, und das Passwort, das Ansible zur Eskalation von
Berechtigungen verwenden soll (dies erfordert ansible_ssh_user „Root“ oder „Sudo“-Berechtigungen
besitzen):

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER>

 ansible_become_password: <PASSWORD>

Speichern Sie Passwörter nicht im Klartext. Verwenden Sie stattdessen den Ansible-Vault
(siehe "Ansible-Dokumentation" Für Inhalte mit Ansible Vault) oder verwenden Sie den
--ask-become-pass Option beim Ausführen des Playbooks.

5. Im client_inventory.yml Datei, Listen Sie alle Hosts auf, die als BeeGFS-Clients unter dem
konfiguriert werden sollen beegfs_clients Gruppe, und dann beachten Sie die Inline-Kommentare und
Uncomment zusätzliche Konfiguration erforderlich, um das BeeGFS-Client-Kernel-Modul auf Ihrem System
zu erstellen:

125

https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 <CLIENT HOSTNAME>:

 # Additional clients as needed.

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 #beegfs_client_ofed_enable: True

 #beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 #eseries_ib_skip: False # Default value.

 #beegfs_client_ofed_enable: False # Default value.

Wenn Sie die NVIDIA OFED-Treiber verwenden, stellen Sie sicher, dass
beegfs_Client_ofed_include_PATH auf den korrekten „Header include path“ für Ihre Linux-
Installation verweist. Weitere Informationen finden Sie in der BeeGFS-Dokumentation für
"RDMA-Unterstützung".

6. Im client_inventory.yml Datei, Listen Sie die BeeGFS-Dateisysteme auf, die Sie unter einem zuvor
definierten gemountet haben möchten vars:

126

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

 # Specify additional file system mounts for this or other file

systems.

7. Ab BeeGFS 7.2.7 und 7.3.1 "Verbindungsauthentifizierung" müssen konfiguriert oder explizit deaktiviert
sein. Je nachdem, wie Sie die verbindungsbasierte Authentifizierung bei der Angabe
konfigurieren"Allgemeine Konfiguration der Datei-Nodes", müssen Sie möglicherweise Ihre
Clientkonfiguration anpassen:

a. Standardmäßig konfiguriert die HA-Cluster-Implementierung die Verbindungsauthentifizierung
automatisch und generiert einen connauthfile Die auf dem Ansible-Kontroll-Node bei
platziert/gewartet werden <INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile.
Standardmäßig ist die BeeGFS-Client-Rolle so eingerichtet, dass sie diese Datei an die in definierten
Clients liest/verteilt client_inventory.yml, Und es ist keine zusätzliche Aktion erforderlich.

i. Weitere Optionen finden Sie in der vollständigen Liste der Standardwerte, die im enthalten sind
"BeeGFS-Client-Rolle".

b. Wenn Sie ein benutzerdefiniertes Geheimnis mit angeben beegfs_ha_conn_auth_secret Geben
Sie ihn im an client_inventory.yml Außerdem:

beegfs_ha_conn_auth_secret: <SECRET>

c. Wenn Sie die verbindungsbasierte Authentifizierung vollständig mit deaktivieren
beegfs_ha_conn_auth_enabled, Geben Sie das im an client_inventory.yml Außerdem:

127

https://doc.beegfs.io/latest/advanced_topics/authentication.html
architectures-inventory-common-file-node-configuration.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs_ha_conn_auth_enabled: false

Eine vollständige Liste der unterstützten Parameter und weitere Details finden Sie im "Vollständige BeeGFS-
Client-Dokumentation". Klicken Sie für ein vollständiges Beispiel eines Clientbestands auf "Hier".

Erstellen Sie die BeeGFS Client Playbook-Datei

1. Erstellen Sie eine neue Datei client_playbook.yml

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

2. Optional: Wenn Sie die Rollen der NetApp E-Series Host Collection verwenden möchten, um Schnittstellen
für Clients zu konfigurieren, mit denen sich eine Verbindung zu BeeGFS-Dateisystemen herstellen lässt,
importieren Sie die Rolle entsprechend dem Schnittstellentyp, den Sie konfigurieren:

a. Wenn Sie InfiniBand (IPoIB) verwenden:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

b. Bei Verwendung von RDMA over Converged Ethernet (RoCE):

 - name: Ensure IPoIB is configured

 import_role:

 name: roce

c. Wenn Sie Ethernet verwenden (nur TCP, kein RDMA):

 - name: Ensure IPoIB is configured

 import_role:

 name: ip

3. Schließlich importieren Sie die BeeGFS-Client-Rolle, um die Client-Software zu installieren und das
Dateisystem-Mounts einzurichten:

128

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

 # REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Klicken Sie zum vollständigen Beispiel für ein Client-Playbook auf "Hier".

Führen Sie das BeeGFS Client Playbook aus

Führen Sie den folgenden Befehl aus, um den Client zu installieren/zu erstellen und BeeGFS zu mounten:

ansible-playbook -i client_inventory.yml client_playbook.yml

Überprüfen Sie die BeeGFS-Bereitstellung

Überprüfen Sie die Bereitstellung des Dateisystems, bevor Sie das System in die
Produktion bringen.

Überblick

Bevor Sie das BeeGFS-Dateisystem in Produktion setzen, führen Sie einige Überprüfungsprüfungen durch.

Schritte

1. Melden Sie sich bei einem Client an und führen Sie Folgendes aus, um sicherzustellen, dass alle
erwarteten Knoten vorhanden/erreichbar sind, und es werden keine Inkonsistenzen oder andere Probleme
gemeldet:

beegfs-fsck --checkfs

2. Fahren Sie den gesamten Cluster herunter und starten Sie ihn dann neu. Führen Sie von jedem beliebigen
Dateiknoten Folgendes aus:

pcs cluster stop --all # Stop the cluster on all file nodes.

pcs cluster start --all # Start the cluster on all file nodes.

pcs status # Verify all nodes and services are started and no failures

are reported (the command may need to be reran a few times to allow time

for all services to start).

3. Platzieren Sie jeden Knoten in den Standby-Modus, und überprüfen Sie, ob BeeGFS-Dienste einen
Failover auf sekundäre Knoten ausführen können. So melden Sie sich an einem beliebigen Dateiknoten an
und führen Sie Folgendes aus:

129

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in

standby.

pcs status # Verify services are started on a secondary node and no

failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out

of standby.

pcs status # Verify the file node is back online and no failures are

reported.

pcs resource relocate run # Move all services back to their preferred

nodes.

pcs status # Verify services have moved back to the preferred node.

4. Verwenden Sie Tools zum Leistungsvergleich wie IOR und MDTest, um zu überprüfen, ob die Performance
des Dateisystems den Erwartungen entspricht. Beispiele für häufige Tests und Parameter, die mit BeeGFS
verwendet werden"Design-Verifizierung", finden Sie im Abschnitt BeeGFS on NetApp Verified Architecture.

Zusätzliche Tests sollten auf Grundlage der Abnahmekriterien durchgeführt werden, die für einen bestimmten
Standort/eine bestimmte Installation definiert sind.

130

../second-gen/beegfs-design-solution-verification.html

Funktionen und Integrationen bereitstellen

BeeGFS CSI-Treiber

TLS-Verschlüsselung für BeeGFS v8 konfigurieren

Konfigurieren Sie die TLS-Verschlüsselung, um die Kommunikation zwischen BeeGFS v8
Management Services und Clients zu sichern.

Überblick

BeeGFS v8 führt TLS-Unterstützung für die Verschlüsselung der Netzwerkkommunikation zwischen
Verwaltungstools (wie dem beegfs Befehlszeilenprogramm) und BeeGFS-Serverdiensten wie Management
oder Remote ein. Dieser Leitfaden beschreibt die Konfiguration der TLS-Verschlüsselung in Ihrem BeeGFS-
Cluster anhand von drei TLS-Konfigurationsmethoden:

• Verwendung einer vertrauenswürdigen Zertifizierungsstelle: Verwenden Sie vorhandene, von einer CA
signierte Zertifikate auf Ihrem BeeGFS-Cluster.

• Lokale Zertifizierungsstelle erstellen: Erstellen einer lokalen Zertifizierungsstelle und deren Verwendung
zum Signieren von Zertifikaten für Ihre BeeGFS-Services. Dieser Ansatz eignet sich für Umgebungen, in
denen Sie Ihre eigene Vertrauenskette verwalten möchten, ohne auf eine externe Zertifizierungsstelle
angewiesen zu sein.

• TLS deaktiviert: Deaktivieren Sie TLS vollständig für Umgebungen, in denen keine Verschlüsselung
erforderlich ist oder zur Fehlerbehebung. Dies wird nicht empfohlen, da dadurch potenziell sensible
Informationen über die interne Dateisystemstruktur und Konfiguration im Klartext offengelegt werden.

Wählen Sie die Methode, die am besten zu Ihrer Umgebung und Ihren Unternehmensrichtlinien passt. Siehe
die "BeeGFS TLS" Dokumentation für weitere Details.

Rechner, auf denen der beegfs-client Dienst ausgeführt wird, benötigen kein TLS, um das
BeeGFS-Dateisystem einzubinden. TLS muss eingerichtet werden, um die BeeGFS CLI und
andere BeeGFS-Dienste wie remote und sync zu nutzen.

Verwendung einer vertrauenswürdigen Zertifizierungsstelle

Wenn Sie Zugriff auf Zertifikate haben, die von einer vertrauenswürdigen Zertifizierungsstelle (CA) ausgestellt
wurden—sei es von einer internen Unternehmens-CA oder einem Drittanbieter—, können Sie BeeGFS v8 so
konfigurieren, dass diese CA-signierten Zertifikate anstelle von selbstsignierten verwendet werden.

Bereitstellung eines neuen BeeGFS v8 Clusters

Konfigurieren Sie für eine neue BeeGFS v8-Clusterbereitstellung die user_defined_params.yml-Datei des
Ansible-Inventars so, dass sie auf Ihre von der CA signierten Zertifikate verweist:

131

https://doc.beegfs.io/latest/advanced_topics/tls.html

beegfs_ha_tls_enabled: true

beegfs_ha_ca_cert_src_path: files/beegfs/cert/ca_cert.pem

beegfs_ha_tls_cert_src_path: files/beegfs/cert/mgmtd_tls_cert.pem

beegfs_ha_tls_key_src_path: files/beegfs/cert/mgmtd_tls_key.pem

Wenn beegfs_ha_tls_config_options.alt_names nicht leer ist, generiert Ansible
automatisch ein selbstsigniertes TLS-Zertifikat und einen Schlüssel, wobei die angegebenen
alt_names als Subject Alternative Names (SANs) im Zertifikat verwendet werden. Um Ihr
eigenes TLS-Zertifikat und Ihren eigenen Schlüssel zu verwenden (wie durch
beegfs_ha_tls_cert_src_path und beegfs_ha_tls_key_src_path angegeben),
müssen Sie den gesamten beegfs_ha_tls_config_options Abschnitt auskommentieren
oder entfernen. Andernfalls hat die Generierung des selbstsignierten Zertifikats Vorrang, und Ihr
benutzerdefiniertes Zertifikat und Ihr benutzerdefinierter Schlüssel werden nicht verwendet.

Konfigurieren eines bestehenden BeeGFS v8 Clusters

Für einen bestehenden BeeGFS v8-Cluster legen Sie die Pfade in der Konfigurationsdatei der BeeGFS-
Managementdienste auf die CA-signierten Zertifikate des Dateiknotens fest:

tls-cert-file = /path/to/cert.pem

tls-key-file = /path/to/key.pem

Konfigurieren von BeeGFS v8-Clients mit CA-signierten Zertifikaten

Um BeeGFS v8-Clients so zu konfigurieren, dass sie von einer Zertifizierungsstelle signierten Zertifikaten aus
dem Systemzertifikatspool vertrauen, setzen Sie tls-cert-file = "" in der Konfiguration jedes Clients. Wenn der
Systemzertifikatspool nicht verwendet wird, geben Sie den Pfad zu einem lokalen Zertifikat an, indem Sie tls-
cert-file = <local cert> setzen. Diese Konfiguration ermöglicht es Clients, die von den BeeGFS-
Managementdiensten präsentierten Zertifikate zu authentifizieren.

Erstellung einer lokalen Zertifizierungsstelle

Wenn Ihre Organisation eine eigene Zertifikatsinfrastruktur für den BeeGFS-Cluster erstellen möchte, können
Sie eine lokale Zertifizierungsstelle (CA) einrichten, die Zertifikate für Ihren BeeGFS-Cluster ausstellt und
signiert. Dieser Ansatz beinhaltet die Erstellung einer CA, die Zertifikate für BeeGFS-Managementdienste
signiert, welche dann an Clients verteilt werden, um eine Vertrauenskette herzustellen. Befolgen Sie diese
Anweisungen, um eine lokale CA einzurichten und Zertifikate auf Ihrem bestehenden oder neuen BeeGFS v8
Cluster bereitzustellen.

Bereitstellung eines neuen BeeGFS v8 Clusters

Für eine neue BeeGFS v8-Bereitstellung wird die beegfs_8 Ansible-Rolle die Erstellung einer lokalen CA auf
dem Kontrollknoten übernehmen und die notwendigen Zertifikate für die Managementdienste generieren. Dies
kann aktiviert werden, indem die folgenden Parameter in der Ansible-Inventar user_defined_params.yml
-Datei gesetzt werden:

132

beegfs_ha_tls_enabled: true

beegfs_ha_ca_cert_src_path: files/beegfs/cert/local_ca_cert.pem

beegfs_ha_tls_cert_src_path: files/beegfs/cert/mgmtd_tls_cert.pem

beegfs_ha_tls_key_src_path: files/beegfs/cert/mgmtd_tls_key.pem

beegfs_ha_tls_config_options:

 alt_names: [<mgmt_service_ip>]

Wenn beegfs_ha_tls_config_options.alt_names nicht angegeben wird, versucht
Ansible, vorhandene Zertifikate in den angegebenen Zertifikats-/Schlüsselpfaden zu verwenden.

Konfigurieren eines bestehenden BeeGFS v8 Clusters

Für einen bestehenden BeeGFS-Cluster können Sie TLS integrieren, indem Sie eine lokale
Zertifizierungsstelle erstellen und die erforderlichen Zertifikate für die Managementdienste generieren.
Aktualisieren Sie die Pfade in der BeeGFS-Managementdienste-Konfigurationsdatei, sodass sie auf die neu
erstellten Zertifikate verweisen.

Die Anweisungen in diesem Abschnitt dienen als Referenz. Beim Umgang mit privaten
Schlüsseln und Zertifikaten sollten angemessene Sicherheitsvorkehrungen getroffen werden.

Erstellen Sie die Zertifizierungsstelle

Erstellen Sie auf einem vertrauenswürdigen Rechner eine lokale Certificate Authority, um Zertifikate für Ihre
BeeGFS-Managementdienste zu signieren. Das CA-Zertifikat wird an die Clients verteilt, um Vertrauen
herzustellen und eine sichere Kommunikation mit BeeGFS-Services zu ermöglichen.

Die folgenden Anweisungen sind eine Referenz für die Erstellung einer lokalen Zertifizierungsstelle auf einem
RHEL-basierten System.

1. Installieren Sie OpenSSL, falls es noch nicht installiert ist:

dnf install openssl

2. Erstellen Sie ein Arbeitsverzeichnis zum Speichern der Zertifikatsdateien:

mkdir -p ~/beegfs_tls && cd ~/beegfs_tls

3. Generieren Sie den privaten CA-Schlüssel:

openssl genrsa -out ca_key.pem 4096

133

4. Erstellen Sie eine CA Konfigurationsdatei mit dem Namen ca.cnf und passen Sie die Felder für den
individuellen Namen an Ihre Organisation an:

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

x509_extensions = v3_ca

prompt = no

[req_distinguished_name]

C = <Country>

ST = <State>

L = <City>

O = <Organization>

OU = <OrganizationalUnit>

CN = BeeGFS-CA

[v3_ca]

basicConstraints = critical,CA:TRUE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

5. Generieren Sie das CA-Zertifikat. Dieses Zertifikat sollte für die gesamte Lebensdauer des Systems gültig
sein, andernfalls müssen Sie die Zertifikate vor ihrem Ablaufdatum neu generieren. Sobald ein Zertifikat
abläuft, ist die Kommunikation zwischen einigen Komponenten nicht mehr möglich und die Aktualisierung
von TLS-Zertifikaten erfordert in der Regel einen Neustart der Dienste, um sie abzuschließen.

Der folgende Befehl generiert ein CA-Zertifikat, das 1 Jahr gültig ist:

openssl req -new -x509 -key ca_key.pem -out ca_cert.pem -days 365

-config ca.cnf

Während in diesem Beispiel der Einfachheit halber eine Gültigkeitsdauer von 1 Jahr
verwendet wird, sollten Sie den -days Parameter entsprechend den
Sicherheitsanforderungen Ihrer Organisation anpassen und einen Prozess zur
Zertifikatserneuerung einrichten.

Management-Service-Zertifikate erstellen

Generieren Sie Zertifikate für Ihre BeeGFS management services und signieren Sie diese mit der von Ihnen
erstellten CA. Diese Zertifikate werden auf den Dateiknoten installiert, auf denen BeeGFS management
services ausgeführt werden.

1. Generieren Sie den privaten Schlüssel des Verwaltungsdienstes:

134

openssl genrsa -out mgmtd_tls_key.pem 4096

2. Erstellen Sie eine Konfigurationsdatei tls_san.cnf mit Subject Alternative Names (SANs) für alle
Management-Service-IP-Adressen:

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

req_extensions = req_ext

prompt = no

[req_distinguished_name]

C = <Country>

ST = <State>

L = <City>

O = <Organization>

OU = <OrganizationalUnit>

CN = beegfs-mgmt

[req_ext]

subjectAltName = @alt_names

[v3_ca]

subjectAltName = @alt_names

basicConstraints = CA:FALSE

[alt_names]

IP.1 = <beegfs_mgmt_service_ip_1>

IP.2 = <beegfs_mgmt_service_ip_2>

Aktualisieren Sie die Felder für den individuellen Namen, damit sie mit Ihrer CA-Konfiguration sowie die
IP.1 und IP.2 Werte mit den IP-Adressen Ihres Management-Dienstes übereinstimmen.

3. Generieren Sie eine Certificate Signing Request (CSR):

openssl req -new -key mgmtd_tls_key.pem -out mgmtd_tls_csr.pem -config

tls_san.cnf

4. Signieren Sie das Zertifikat mit Ihrer CA (gültig für 1 Jahr):

openssl x509 -req -in mgmtd_tls_csr.pem -CA ca_cert.pem -CAkey

ca_key.pem -CAcreateserial -out mgmtd_tls_cert.pem -days 365 -sha256

-extensions v3_ca -extfile tls_san.cnf

135

Passen Sie die Gültigkeitsdauer des Zertifikats (-days 365) an die Sicherheitsrichtlinien
Ihrer Organisation an. Viele Organisationen verlangen eine Zertifikatsrotation alle 1–2 Jahre.

5. Überprüfen Sie, ob das Zertifikat korrekt erstellt wurde:

openssl x509 -in mgmtd_tls_cert.pem -text -noout

Bestätigen Sie, dass der Abschnitt „Subject Alternative Name“ alle Ihre Management-IP-Adressen enthält.

Zertifikate an Dateiknoten verteilen

Verteilen Sie das CA-Zertifikat und die Management-Service-Zertifikate an die entsprechenden Dateiknoten
und Clients.

1. Kopieren Sie das CA-Zertifikat sowie das Zertifikat und den Schlüssel des Verwaltungsdienstes auf die
Dateiknoten, auf denen die Verwaltungsdienste ausgeführt werden:

scp ca_cert.pem mgmtd_tls_cert.pem mgmtd_tls_key.pem

user@beegfs_01:/etc/beegfs/

scp ca_cert.pem mgmtd_tls_cert.pem mgmtd_tls_key.pem

user@beegfs_02:/etc/beegfs/

Weisen Sie den Verwaltungsdienst auf die TLS-Zertifikate zu.

Aktualisieren Sie die Konfiguration des BeeGFS-Managementdienstes, um TLS zu aktivieren und auf die
erstellten TLS-Zertifikate zu verweisen.

1. Bearbeiten Sie auf einem Dateiknoten, auf dem der BeeGFS-Managementdienst ausgeführt wird, die
Konfigurationsdatei, zum Beispiel unter /mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-
mgmtd.toml. Fügen Sie die folgenden TLS-bezogenen Parameter hinzu oder aktualisieren Sie sie:

tls-disable = false

tls-cert-file = "/etc/beegfs/mgmtd_tls_cert.pem"

tls-key-file = "/etc/beegfs/mgmtd_tls_key.pem"

2. Ergreifen Sie geeignete Maßnahmen, um den BeeGFS management service sicher neu zu starten, damit
die Änderungen wirksam werden:

systemctl restart beegfs-mgmtd

3. Überprüfen Sie, ob der Managementdienst erfolgreich gestartet wurde:

journalctl -xeu beegfs-mgmtd

136

Suchen Sie nach Logeinträgen, die eine erfolgreiche TLS-Initialisierung und das Laden des Zertifikats
anzeigen.

Successfully initialized certificate verification library.

Successfully loaded license certificate: TMP-XXXXXXXXXX

TLS für BeeGFS v8-Clients konfigurieren

Erstellen und verteilen Sie von der lokalen CA signierte Zertifikate an alle BeeGFS-Clients, die eine
Kommunikation mit den BeeGFS-Managementdiensten benötigen.

1. Generieren Sie ein Zertifikat für den Client nach dem gleichen Verfahren wie das oben beschriebene
Management-Service-Zertifikat, jedoch mit der IP-Adresse oder dem Hostnamen des Clients im Feld
Subject Alternative Name (SAN).

2. Kopieren Sie das Client-Zertifikat sicher per Remote auf den Client und benennen Sie das Zertifikat auf
dem Client in cert.pem um:

scp client_cert.pem user@client:/etc/beegfs/cert.pem

3. Starten Sie den BeeGFS client service auf allen Clients neu:

systemctl restart beegfs-client

4. Überprüfen Sie die Client-Verbindung, indem Sie einen beegfs CLI-Befehl ausführen, zum Beispiel:

beegfs health check

TLS deaktivieren

TLS kann zur Fehlerbehebung oder auf Wunsch der Benutzer deaktiviert werden. Davon wird abgeraten, da
dadurch potenziell sensible Informationen über die interne Dateisystemstruktur und Konfiguration im Klartext
offengelegt werden. Befolgen Sie diese Anweisungen, um TLS auf Ihrem bestehenden oder neuen BeeGFS v8
Cluster zu deaktivieren.

Bereitstellung eines neuen BeeGFS v8 Clusters

Für die Bereitstellung eines neuen BeeGFS-Clusters kann der Cluster mit deaktiviertem TLS bereitgestellt
werden, indem der folgende Parameter in der Ansible-Inventar user_defined_params.yml-Datei festgelegt
wird:

beegfs_ha_tls_enabled: false

137

Konfigurieren eines bestehenden BeeGFS v8 Clusters

Bearbeiten Sie für einen bestehenden BeeGFS v8-Cluster die Konfigurationsdatei des Management-Dienstes.
Bearbeiten Sie beispielsweise die Datei unter /mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-
mgmtd.toml und legen Sie Folgendes fest:

tls-disable = true

Ergreifen Sie geeignete Maßnahmen, um den Managementdienst sicher neu zu starten, damit die Änderungen
wirksam werden.

138

BeeGFS-Cluster verwalten

Übersicht, Schlüsselkonzepte und Terminologie

Lesen Sie, wie BeeGFS HA-Cluster nach der Implementierung verwaltet werden.

Überblick

Dieser Abschnitt richtet sich an Cluster-Administratoren, die BeeGFS HA-Cluster nach ihrer Bereitstellung
verwalten müssen. Selbst diejenigen, die mit Linux HA-Clustern vertraut sind, sollten diesen Leitfaden genau
lesen, da es verschiedene Unterschiede beim Management des Clusters gibt, insbesondere im Hinblick auf die
Neukonfiguration aufgrund der Verwendung von Ansible.

Schlüsselkonzepte

Während einige dieser Konzepte auf der Hauptseite vorgestellt werden"Begriffe und Konzepte", ist es hilfreich,
sie im Kontext eines BeeGFS HA-Clusters neu einzuführen:

Cluster Node: Ein Server, auf dem Pacemaker- und Corosync-Dienste ausgeführt und am HA-Cluster beteiligt
sind.

Datei-Node: Ein Clusterknoten, mit dem ein oder mehrere BeeGFS-Management-, Metadaten- oder Storage-
Services ausgeführt werden.

Block-Node: Ein Storage-System der NetApp E-Series, das Block-Storage für Datei-Nodes bereitstellt. Diese
Nodes nehmen nicht am BeeGFS HA-Cluster Teil, da sie eigene Standalone-HA-Funktionen bereitstellen.
Jeder Node besteht aus zwei Storage Controllern, die auf Blockebene Hochverfügbarkeit bieten.

BeeGFS-Service: Ein BeeGFS-Management, Metadaten- oder Speicherservice. Auf jedem Datei-Node wird
ein oder mehrere Services ausgeführt, die Volumes auf dem Block-Node zum Speichern ihrer Daten
verwenden.

Baustein: Eine standardisierte Implementierung von BeeGFS-Datei-Nodes, E-Series Block-Nodes und auf
ihnen ausgeführten BeeGFS-Services zur Vereinfachung der Skalierung eines BeeGFS HA-Clusters/-
Filesystems nach einer NetApp Verified Architecture. Kundenspezifische HA-Cluster werden ebenfalls
unterstützt, verfolgen jedoch oft einen ähnlichen Bausteinansatz, der die Skalierung vereinfacht.

BeeGFS HA Cluster: Eine skalierbare Anzahl von Datei-Nodes, die für die Ausführung von BeeGFS-Diensten
verwendet werden, die von Block-Nodes gesichert werden, um BeeGFS-Daten auf hochverfügbare Weise zu
speichern. Basiert auf bewährten Open-Source-Komponenten Pacemaker und Corosync mit Ansible für
Verpackung und Bereitstellung.

Cluster Services: bezieht sich auf Pacemaker- und Corosync-Dienste, die auf jedem Knoten ausgeführt
werden, der am Cluster teilnimmt. Hinweis: Es ist möglich, dass ein Node keine BeeGFS-Services ausführen
kann und nur als „Tiebreaker“-Node im Cluster teilnimmt, wenn es nur zwei Datei-Nodes benötigt.

Cluster-Ressourcen: für jeden BeeGFS-Dienst, der im Cluster ausgeführt wird, wird eine BeeGFS-
Monitorressource und eine Ressourcengruppe mit Ressourcen für BeeGFS-Ziele, IP-Adressen (fließende IPs)
und den BeeGFS-Service selbst angezeigt.

Ansible: Ein Tool für die Softwarebereitstellung, das Konfigurationsmanagement und den Applikationseinsatz,
das Infrastruktur als Code ermöglicht. Die Pakete von BeeGFS HA-Clustern vereinfachen die Bereitstellung,
Neukonfiguration und Aktualisierung von BeeGFS auf NetApp.

139

../get-started/beegfs-terms.html

Stk: Eine Befehlszeilenoberfläche, die von einem der Dateiknoten im Cluster zur Abfrage und Kontrolle des
Status von Knoten und Ressourcen im Cluster verfügbar ist.

Allgemeine Terminologie

Failover: jeder BeeGFS-Dienst hat einen bevorzugten Dateiknoten, auf dem er ausgeführt wird, es sei denn,
der Knoten schlägt fehl. Wenn ein BeeGFS-Service auf einem nicht-bevorzugten/sekundären Dateiknoten
ausgeführt wird, muss er sich im Failover befinden.

Failback: der Akt, BeeGFS-Dienste von einem nicht bevorzugten Dateiknoten zurück zu ihrem bevorzugten
Knoten zu verschieben.

HA-Paar: zwei Datei-Nodes, die auf den gleichen Satz von Block-Nodes zugreifen können, werden manchmal
als HA-Paar bezeichnet. Dieser Begriff wird von NetApp häufig verwendet, um zwei Storage-Controller oder
Nodes zu bezeichnen, die untereinander „übernommen“ können.

Wartungsmodus: deaktiviert die gesamte Ressourcenüberwachung und verhindert, dass Pacemaker
Ressourcen im Cluster verschieben oder anderweitig verwalten kann (siehe auch den Abschnitt auf
"Wartungsmodus").

HA-Cluster: ein oder mehrere Dateiknoten mit BeeGFS-Diensten, die ein Failover zwischen mehreren Knoten
im Cluster ausführen können, um ein hochverfügbares BeeGFS-Dateisystem zu erstellen. Häufig sind Datei-
Nodes in HA-Paaren konfiguriert, die in der Lage sind, eine Untergruppe der BeeGFS-Dienste im Cluster
auszuführen.

Wann Ansible im Vergleich zum Tool PCs verwendet werden
soll

Wann sollten Sie Ansible im Vergleich zum PCs-Befehlszeilungstool für das Management
des HA-Clusters verwenden?

Alle Cluster-Implementierungs- und Neukonfigurierungsaufgaben sollten mit Ansible von einem externen
Ansible-Kontroll-Node abgeschlossen werden. Temporäre Änderungen im Clusterstatus (z. B. ein- und
Ausstellen von Knoten in den Standby-Modus) werden in der Regel durch Anmeldung an einem Knoten des
Clusters (vorzugsweise einer, der nicht beeinträchtigt ist oder sich über die Wartung befindet) und unter
Verwendung des Befehlszeilen-Tools PCs durchgeführt.

Das Ändern einer beliebigen Cluster-Konfiguration einschließlich Ressourcen, Einschränkungen,
Eigenschaften und der BeeGFS Services selbst sollte immer mit Ansible erfolgen. Das Verwalten einer
aktuellen Kopie des Ansible-Bestands und Playbook (ideal zur Versionskontrolle, um Änderungen zu
verfolgen) ist Teil der Wartung des Clusters. Wenn Sie Änderungen an der Konfiguration vornehmen müssen,
aktualisieren Sie den Bestand und führen Sie das Ansible-Playbook aus, das die BeeGFS HA-Rolle importiert.

Die HA-Rolle verarbeitet, das Cluster in den Wartungsmodus zu platzieren und anschließend alle
erforderlichen Änderungen vorzunehmen, bevor BeeGFS oder Cluster-Services neu gestartet werden, um die
neue Konfiguration anzuwenden. Da in der Regel keine vollständigen Node-Neustarts außerhalb der
ursprünglichen Implementierung erforderlich sind, wird das Rerunning von Ansible in der Regel als „sicheres“
Verfahren angesehen. Für den Fall, dass BeeGFS-Services neu gestartet werden müssen, wird jedoch immer
während Wartungsfenster oder außerhalb der Geschäftszeiten empfohlen. Diese Neustarts sollten in der Regel
keine Anwendungsfehler verursachen, können aber die Leistung beeinträchtigen (was einige Anwendungen
besser verarbeiten können als andere).

Die erneute Ausführung von Ansible ist auch eine Option, wenn Sie den gesamten Cluster wieder in einen

140

vollkommen optimalen Zustand zurückversetzen möchten, und kann in einigen Fällen den Status des Clusters
einfacher wiederherstellen als PCs. Insbesondere in einem Notfall, in dem der Cluster aus irgendeinem Grund
ausgefallen ist, kann, wenn alle Knoten gesichert werden, Ansible neu zu starten, den Cluster schneller und
zuverlässiger wiederherstellen, als zu versuchen, PCs zu verwenden.

Untersuchen Sie den Status des Clusters

Verwenden Sie PCs, um den Status des Clusters anzuzeigen.

Überblick

Wird Ausgeführt pcs status Von jedem Cluster-Node aus können Sie den Gesamtstatus des Clusters und
den Status jeder Ressource (z. B. BeeGFS-Services und deren Abhängigkeiten) am einfachsten einsehen. In
diesem Abschnitt wird erklärt, was Sie in der Ausgabe von finden pcs status Befehl.

Allgemeines zur Ausgabe von pcs status

Laufen pcs status Auf jedem Clusterknoten, auf dem die Cluster-Dienste (Pacemaker und Corosync)
gestartet werden. Oben in der Ausgabe wird eine Zusammenfassung des Clusters angezeigt:

[root@beegfs_01 ~]# pcs status

Cluster name: hacluster

Cluster Summary:

 * Stack: corosync

 * Current DC: beegfs_01 (version 2.0.5-9.el8_4.3-ba59be7122) - partition

with quorum

 * Last updated: Fri Jul 1 13:37:18 2022

 * Last change: Fri Jul 1 13:23:34 2022 by root via cibadmin on

beegfs_01

 * 6 nodes configured

 * 235 resource instances configured

Im folgenden Abschnitt werden Nodes im Cluster aufgeführt:

Node List:

 * Node beegfs_06: standby

 * Online: [beegfs_01 beegfs_02 beegfs_04 beegfs_05]

 * OFFLINE: [beegfs_03]

Dies zeigt insbesondere alle Knoten an, die sich im Standby- oder Offline-Modus befinden. Nodes im Standby-
Modus sind weiterhin am Cluster beteiligt, sind jedoch als nicht zur Ausführung von Ressourcen geeignet.
Nodes, die offline sind, geben an, dass auf diesem Node keine Cluster-Services ausgeführt werden, entweder
da sie manuell angehalten werden, oder weil der Node neu gebootet/heruntergefahren wurde.

141

Beim ersten Starten von Nodes werden Cluster-Services angehalten und müssen manuell
gestartet werden, um zu vermeiden, dass versehentlich Ressourcen auf einen nicht
funktionsuntüchtigen Node zurückfallen.

Wenn sich Knoten aufgrund eines nicht-administrativen Grund im Standby- oder Offline-Modus befinden (zum
Beispiel ein Ausfall), wird neben dem Status des Node in Klammern zusätzlicher Text angezeigt. Wenn
beispielsweise das Fechten deaktiviert ist und eine Ressource auf einen Fehler stößt, wird angezeigt Node
<HOSTNAME>: standby (on-fail). Ein anderer möglicher Zustand ist Node <HOSTNAME>: UNCLEAN
(offline), Die kurz als ein Knoten angezeigt wird, wird eingezäunt, aber bleibt bestehen, wenn das Fechten
fehlgeschlagen zeigt, dass der Cluster den Status des Knotens nicht bestätigen kann (dies kann verhindern,
dass die Ressourcen auf anderen Knoten beginnen).

Im nächsten Abschnitt werden alle Ressourcen im Cluster und ihre Status angezeigt:

Full List of Resources:

 * mgmt-monitor (ocf::eseries:beegfs-monitor): Started beegfs_01

 * Resource Group: mgmt-group:

 * mgmt-FS1 (ocf::eseries:beegfs-target): Started beegfs_01

 * mgmt-IP1 (ocf::eseries:beegfs-ipaddr2): Started beegfs_01

 * mgmt-IP2 (ocf::eseries:beegfs-ipaddr2): Started beegfs_01

 * mgmt-service (systemd:beegfs-mgmtd): Started beegfs_01

[...]

Ähnlich wie bei Knoten wird neben dem Ressourcenzustand in Klammern zusätzlicher Text angezeigt, wenn
Probleme mit der Ressource auftreten. Wenn z. B. Pacemaker einen Ressourcenstopp anfordert und dieser
nicht innerhalb der zugewiesenen Zeit abgeschlossen werden kann, versucht Pacemaker, den Knoten
einzuzäunen. Wenn das Fechten deaktiviert ist oder der Fechten-Vorgang fehlschlägt, wird der
Ressourcenzustand angezeigt FAILED <HOSTNAME> (blocked) Pacemaker kann ihn nicht auf einem
anderen Knoten starten.

Es ist erwähnenswert BeeGFS HA-Cluster nutzen eine Reihe von BeeGFS optimiert benutzerdefinierte OCF-
Ressourcen-Agenten. Insbesondere ist der BeeGFS-Monitor für das Auslösen eines Failover verantwortlich,
wenn BeeGFS-Ressourcen auf einem bestimmten Knoten nicht verfügbar sind.

Konfigurieren Sie HA-Cluster und BeeGFS neu

Verwenden Sie Ansible, um das Cluster neu zu konfigurieren.

Überblick

Generell sollten Sie jeden Aspekt des BeeGFS HA-Clusters neu konfigurieren, indem Sie Ihren Ansible-
Bestand aktualisieren und den ansible-playbook Befehl erneut ausführen. Dazu gehören das Aktualisieren
von Warnungen, das Ändern der Konfiguration für permanente Fechten oder das Anpassen der BeeGFS-
Servicekonfiguration. Diese werden über die group_vars/ha_cluster.yml Datei angepasst und eine
vollständige Liste der Optionen finden Sie im "Festlegen Der Konfiguration Des Gemeinsamen Dateiknotens"
Abschnitt.

Weitere Informationen zu ausgewählten Konfigurationsoptionen finden Sie unten, die Administratoren bei der
Wartung oder Wartung des Clusters beachten sollten.

142

So deaktivieren und aktivieren Sie Fechten

Beim Einrichten des Clusters ist Fechten standardmäßig aktiviert/erforderlich. In einigen Fällen ist es
wünschenswert, Fechten vorübergehend zu deaktivieren, um sicherzustellen, dass Knoten nicht versehentlich
heruntergefahren werden, wenn bestimmte Wartungsvorgänge ausgeführt werden (z. B. ein Upgrade des
Betriebssystems). Auch wenn dies manuell deaktiviert werden kann, sollte es auf die Kompromisse-
Administratoren achten.

OPTION 1: Deaktivieren Sie Fechten mit Ansible (empfohlen).

Wenn das Fechten mit Ansible deaktiviert wird, wird die on-Fail-Aktion des BeeGFS-Monitors von „Zaun“ in
„Standby“ geändert. Wenn der BeeGFS-Monitor einen Fehler erkennt, versucht er, den Knoten in den Standby-
Modus zu stellen und alle BeeGFS-Dienste zu ausfallsicher. Außerhalb aktiver Fehlerbehebung/Tests ist dies
in der Regel wünschenswerter als Option 2. Der Nachteil ergibt sich daraus, dass eine Ressource auf dem
ursprünglichen Knoten nicht stoppt, dass sie an einem anderen Ort gestartet werden kann (weshalb
normalerweise ein Fechten für Produktionscluster erforderlich ist).

1. In Ihrem Ansible-Inventar unter groups_vars/ha_cluster.yml Fügen Sie die folgende Konfiguration
hinzu:

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: False

2. Führen Sie das Ansible-Playbook erneut aus, um die Änderungen auf das Cluster anzuwenden.

OPTION 2: Manuelle Abwahl deaktivieren.

In einigen Fällen möchten Sie die Fechten unter Umständen vorübergehend deaktivieren, ohne Ansible neu zu
verwenden, um die Fehlerbehebung oder das Testen des Clusters zu erleichtern.

Wenn der BeeGFS-Monitor in dieser Konfiguration einen Fehler erkennt, versucht das Cluster,
die entsprechende Ressourcengruppe zu stoppen. Es wird KEIN vollständiger Failover
ausgelöst oder versucht, die betroffene Ressourcengruppe auf einen anderen Host neu zu
starten oder zu verschieben. Zur Wiederherstellung sollten Sie alle Probleme beheben und
anschließend ausführen pcs resource cleanup Oder setzen Sie den Knoten manuell in den
Standby-Modus.

Schritte

1. So legen Sie fest, ob Fechten (stonith) global aktiviert oder deaktiviert ist: pcs property show
stonith-enabled

2. So deaktivieren Sie den Fechtlauf: pcs property set stonith-enabled=false

3. So aktivieren Sie den Fechtlauf: pcs property set stonith-enabled=true

Diese Einstellung wird beim nächsten Ausführen des Ansible-Playbooks überschrieben.

Aktualisieren Sie die HA-Cluster-Komponenten

143

Upgrade der BeeGFS Services

Verwenden Sie Ansible, um die BeeGFS-Version, die auf Ihrem HA-Cluster läuft, zu
aktualisieren.

Überblick

BeeGFS folgt einem major.minor.patch Versionsschema. Die BeeGFS HA-Ansible-Rollen werden für jede
unterstützte major.minor Version (z. B. beegfs_ha_7_2 und beegfs_ha_7_3) bereitgestellt. Jede HA-
Rolle ist auf die neueste BeeGFS-Patch-Version fixiert, die zum Zeitpunkt der Veröffentlichung der Ansible
Sammlung verfügbar ist.

Ansible sollte für alle BeeGFS-Upgrades verwendet werden, einschließlich des Wechsels zwischen Haupt-,
Neben- und Patch-Versionen von BeeGFS. Um BeeGFS zu aktualisieren, müssen Sie zunächst die BeeGFS
Ansible Collection aktualisieren, wodurch auch die neuesten Korrekturen und Verbesserungen für die
Bereitstellungs-/Verwaltungsautomatisierung und den zugrunde liegenden HA-Cluster übernommen werden.
Selbst nach der Aktualisierung auf die neueste Version der Collection wird BeeGFS erst aktualisiert, wenn
ansible-playbook mit dem -e "beegfs_ha_force_upgrade=true"-Set ausgeführt wird. Weitere
Details zu jedem Upgrade finden Sie in der "BeeGFS Upgrade-Dokumentation" für Ihre aktuelle Version.

Wenn Sie auf BeeGFS v8 aktualisieren, beachten Sie stattdessen das "Upgrade auf BeeGFS
v8" Verfahren.

Getestete Upgrade-Pfade

Die folgenden Upgrade-Pfade wurden getestet und verifiziert:

Originalver
sion

Upgrade-
Version

Multirail Details

7.2.6 7.3.2 Ja. Beegfs-Sammlung von v3.0.1 auf v3.1.0, multirail hinzugefügt

7.2.6 7.2.8 Nein Beegfs-Sammlung wird von v3.0.1 auf v3.1 aktualisiert

7.2.8 7.3.1 Ja. Upgrade mit beegfs Collection v3.1.0, multirail hinzugefügt

7.3.1 7.3.2 Ja. Upgrade mit beegfs Collection v3.1.0

7.3.2 7.4.1 Ja. Upgrade mit beegfs Collection v3.2.0

7.4.1 7.4.2 Ja. Upgrade mit beegfs Collection v3.2.0

7.4.2 7.4.6 Ja. Upgrade mit beegfs Collection v3.2.0

7.4.6 8,0 Ja. Führen Sie das Upgrade gemäß den Anweisungen in der "Upgrade
auf BeeGFS v8"-Prozedur durch.

7.4.6 8,1 Ja. Führen Sie das Upgrade gemäß den Anweisungen in der "Upgrade
auf BeeGFS v8"-Prozedur durch.

7.4.6 8,2 Ja. Führen Sie das Upgrade gemäß den Anweisungen in der "Upgrade
auf BeeGFS v8"-Prozedur durch.

Schritte beim BeeGFS-Upgrade

In den folgenden Abschnitten werden die Schritte zum Aktualisieren der BeeGFS Ansible Sammlung und
BeeGFS selbst beschrieben. Achten Sie besonders auf zusätzliche Schritte für die Aktualisierung von BeeGFS

144

https://doc.beegfs.io/latest/advanced_topics/upgrade.html

Major oder Minor Versionen.

Schritt: Upgrade der BeeGFS-Sammlung

Bei Erfassungs-Upgrades mit Zugriff auf "Ansible-Galaxie", Ausführen des folgenden Befehls:

ansible-galaxy collection install netapp_eseries.beegfs --upgrade

Laden Sie die Sammlung von herunter, um Offline-Sammlungs-Upgrades von zu erhalten "Ansible-Galaxie"
Durch Klicken auf das gewünschte Install Version` Und dann Download tarball. Übertragen Sie den
Tarball auf Ihren Ansible-Steuerungsknoten und führen Sie den folgenden Befehl aus.

ansible-galaxy collection install netapp_eseries-beegfs-<VERSION>.tar.gz

--upgrade

Siehe "Sammlungen Werden Installiert" Finden Sie weitere Informationen.

Schritt 2: Aktualisieren Sie den Ansible-Bestand

Nehmen Sie alle erforderlichen oder gewünschten Aktualisierungen an den Ansible-Inventardateien Ihres
Clusters vor. Siehe den Hinweise zur Versionsaktualisierung Abschnitt unten für Details zu Ihren spezifischen
Upgrade-Anforderungen. Siehe den "Ansible-Bestandsübersicht" Abschnitt für allgemeine Informationen zur
Konfiguration Ihres BeeGFS HA-Inventars.

Schritt 3: Ansible-Playbook aktualisieren (nur bei Aktualisierung von Haupt- oder Nebenversionen)

Wenn Sie zwischen Haupt- oder Unterversionen wechseln, aktualisieren Sie in der playbook.yml Datei, die
zum Bereitstellen und Warten des Clusters verwendet wird, den Namen der beegfs_ha_<VERSION> Rolle,
damit die gewünschte Version angezeigt wird. Wenn Sie beispielsweise BeeGFS 7.4 bereitstellen möchten,
wäre dies beegfs_ha_7_4:

- hosts: all

 gather_facts: false

 any_errors_fatal: true

 collections:

 - netapp_eseries.beegfs

 tasks:

 - name: Ensure BeeGFS HA cluster is setup.

 ansible.builtin.import_role: # import_role is required for tag

availability.

 name: beegfs_ha_7_4

Weitere Informationen zum Inhalt dieser Playbook-Datei finden Sie im "Implementieren Sie das BeeGFS HA-
Cluster" Abschnitt.

145

https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/netapp_eseries/beegfs
https://docs.ansible.com/ansible/latest/collections_guide/collections_installing.html

Schritt 4: Führen Sie das BeeGFS-Upgrade aus

So wenden Sie das BeeGFS-Update an:

ansible-playbook -i inventory.yml beegfs_ha_playbook.yml -e

"beegfs_ha_force_upgrade=true" --tags beegfs_ha

Hinter den Kulissen übernimmt die BeeGFS HA-Rolle:

• Stellen Sie sicher, dass sich das Cluster in einem optimalen Zustand befindet, wobei sich jeder BeeGFS-
Service auf seinem bevorzugten Node befindet.

• Versetzen Sie das Cluster in den Wartungsmodus.

• Aktualisieren der HA-Cluster-Komponenten (falls erforderlich)

• Aktualisieren Sie jeden Dateiknoten nacheinander wie folgt:

◦ Setzen Sie ihn in den Standby-Modus und führen Sie ein Failover seiner Dienste zum sekundären
Knoten durch.

◦ BeeGFS-Pakete aktualisieren.

◦ Fallback-Services.

• Verschieben Sie das Cluster aus dem Wartungsmodus.

Hinweise zur Versionsaktualisierung

Upgrade von BeeGFS Version 7.2.6 oder 7.3.0

Änderungen an verbindungsbasierter Authentifizierung

BeeGFS Version 7.3.2 und höher erfordert, dass eine verbindungsbasierte Authentifizierung konfiguriert wird.
Dienste werden ohne eine der folgenden Optionen nicht gestartet:

• Angabe eines connAuthFile, oder

• Einstellung connDisableAuthentication=true in der Konfigurationsdatei des Dienstes.

Es wird dringend empfohlen, die verbindungsbasierte Authentifizierung aus Sicherheitsgründen zu aktivieren.
Siehe "BeeGFS-Verbindungsbasierte Authentifizierung" für weitere Informationen.

Die `beegfs_ha*`Rollen generieren und verteilen die Authentifizierungsdatei an:

• Alle Dateiknoten im Cluster

• Der Ansible control node bei
<playbook_directory>/files/beegfs/<beegfs_mgmt_ip_address>_connAuthFile

Die beegfs_client Rolle erkennt diese Datei automatisch und wendet sie auf Clients an, wenn sie
vorhanden ist.

146

https://doc.beegfs.io/7.3.2/advanced_topics/authentication.html#connectionbasedauth

Wenn Sie die beegfs_client Rolle nicht zur Konfiguration der Clients verwendet haben,
müssen Sie die Authentifizierungsdatei manuell an jeden Client verteilen und die
connAuthFile Einstellung in der beegfs-client.conf Datei konfigurieren. Beim Upgrade
von einer BeeGFS-Version ohne verbindungsbasierte Authentifizierung verlieren Clients den
Zugriff, es sei denn, Sie deaktivieren die verbindungsbasierte Authentifizierung während des
Upgrades, indem Sie beegfs_ha_conn_auth_enabled: false in
group_vars/ha_cluster.yml setzen (nicht empfohlen).

Weitere Details und alternative Konfigurationsoptionen finden Sie im Schritt zur Authentifizierung der
Verbindungskonfiguration im "Festlegen Der Konfiguration Des Gemeinsamen Dateiknotens" Abschnitt.

Upgrade auf BeeGFS v8

Führen Sie diese Schritte aus, um Ihren BeeGFS HA Cluster von Version 7.4.6 auf
BeeGFS v8 zu aktualisieren.

Überblick

BeeGFS v8 führt mehrere bedeutende Änderungen ein, die vor dem Upgrade von BeeGFS v7 zusätzliche
Konfigurationen erfordern. Dieses Dokument führt Sie durch die Vorbereitung Ihres Clusters auf die neuen
Anforderungen von BeeGFS v8 und anschließend durch das Upgrade auf BeeGFS v8.

Vor dem Upgrade auf BeeGFS v8 stellen Sie sicher, dass auf Ihrem System mindestens
BeeGFS 7.4.6 ausgeführt wird. Jeder Cluster, auf dem eine Version vor BeeGFS 7.4.6
ausgeführt wird, muss zuerst "Upgrade auf Version 7.4.6" bevor Sie mit diesem Upgrade-
Verfahren für BeeGFS v8 fortfahren.

Wichtige Änderungen in BeeGFS v8

BeeGFS v8 führt die folgenden wesentlichen Änderungen ein:

• Lizenzbestimmungen: BeeGFS v8 erfordert eine Lizenz für die Nutzung von Premium-Funktionen wie
Speicherpools, Remote-Speicherzielen, BeeOND und mehr. Erwerben Sie vor dem Upgrade eine gültige
Lizenz für Ihren BeeGFS-Cluster. Bei Bedarf können Sie eine temporäre BeeGFS v8-Evaluierungslizenz
von dem "BeeGFS License Portal" erhalten.

• Migration der Management-Service-Datenbank: Um die Konfiguration mit dem neuen TOML-basierten
Format in BeeGFS v8 zu ermöglichen, müssen Sie Ihre BeeGFS v7 Management-Service-Datenbank in
das aktualisierte BeeGFS v8-Format migrieren.

• TLS-Verschlüsselung: BeeGFS v8 führt TLS für die sichere Kommunikation zwischen Diensten ein. Sie
müssen TLS-Zertifikate für den BeeGFS-Verwaltungsdienst und das beegfs Befehlszeilenprogramm im
Rahmen des Upgrades generieren und verteilen.

Weitere Details und zusätzliche Änderungen in BeeGFS 8 finden Sie in der "BeeGFS v8.0.0 Upgrade-
Leitfaden".

Für das Upgrade auf BeeGFS v8 ist eine Ausfallzeit des Clusters erforderlich. Darüber hinaus
können BeeGFS v7 Clients keine Verbindung zu BeeGFS v8 Clustern herstellen. Koordinieren
Sie die Upgrade-Zeitpunkte zwischen dem Cluster und den Clients sorgfältig, um die
Auswirkungen auf den Betrieb zu minimieren.

147

https://beegfs.io/license/
https://doc.beegfs.io/8.0/advanced_topics/upgrade.html
https://doc.beegfs.io/8.0/advanced_topics/upgrade.html

Bereiten Sie Ihren BeeGFS Cluster auf das Upgrade vor

Bereiten Sie Ihre Umgebung sorgfältig vor, bevor Sie mit dem Upgrade beginnen, um einen reibungslosen
Übergang zu gewährleisten und Ausfallzeiten zu minimieren.

1. Stellen Sie sicher, dass sich Ihr Cluster in einem fehlerfreien Zustand befindet und alle BeeGFS-Dienste
auf ihren bevorzugten Knoten ausgeführt werden. Überprüfen Sie von einem Dateiknoten, auf dem
BeeGFS-Dienste ausgeführt werden, ob alle Pacemaker-Ressourcen auf ihren bevorzugten Knoten
ausgeführt werden.

pcs status

2. Zeichnen Sie Ihre Clusterkonfiguration auf und sichern Sie sie.

a. Siehe die "BeeGFS Backup-Dokumentation" für Anweisungen zum Sichern Ihrer Clusterkonfiguration.

b. Sichern Sie das bestehende Verwaltungsdatenverzeichnis:

cp -r /mnt/mgmt_tgt_mgmt01/data

/mnt/mgmt_tgt_mgmt01/data_beegfs_v7_backup_$(date +%Y%m%d)

c. Führen Sie die folgenden Befehle von einem beegfs client aus und speichern Sie deren Ausgabe zur
Referenz:

beegfs-ctl --getentryinfo --verbose /path/to/beegfs/mountpoint

d. Wenn Sie die Spiegelung verwenden, erfassen Sie detaillierte Statusinformationen:

beegfs-ctl --listtargets --longnodes --state --spaceinfo

--mirrorgroups --nodetype=meta

beegfs-ctl --listtargets --longnodes --state --spaceinfo

--mirrorgroups --nodetype=storage

3. Bereiten Sie Ihre Kunden auf Ausfallzeiten vor und stoppen Sie beegfs-client Dienste. Führen Sie für
jeden Kunden aus:

systemctl stop beegfs-client

4. Deaktivieren Sie für jeden Pacemaker-Cluster STONITH. Dadurch können Sie die Integrität des Clusters
nach dem Upgrade überprüfen, ohne unnötige Knotenneustarts auszulösen.

pcs property set stonith-enabled=false

5. Für alle Pacemaker-Cluster im BeeGFS-Namespace verwenden Sie PCS, um den Cluster zu stoppen:

148

https://doc.beegfs.io/7.4.6/advanced_topics/backup.html

pcs cluster stop --all

Aktualisieren Sie die BeeGFS-Pakete

Fügen Sie auf allen Dateiknoten im Cluster das BeeGFS v8-Paket-Repository für Ihre Linux-Distribution hinzu.
Anweisungen zur Verwendung der offiziellen BeeGFS-Repositories finden Sie unter "BeeGFS Download-
Seite". Andernfalls konfigurieren Sie Ihr lokales BeeGFS-Mirror-Repository entsprechend.

Die folgenden Schritte beschreiben die Vorgehensweise anhand des offiziellen BeeGFS 8.2 Repository auf
RHEL 9 Dateiknoten. Führen Sie die folgenden Schritte auf allen Dateiknoten im Cluster aus:

1. Importieren Sie den BeeGFS GPG-Schlüssel:

rpm --import https://www.beegfs.io/release/beegfs_8.2/gpg/GPG-KEY-beegfs

2. Importieren Sie das BeeGFS repository:

curl -L -o /etc/yum.repos.d/beegfs-rhel9.repo

https://www.beegfs.io/release/beegfs_8.2/dists/beegfs-rhel9.repo

Entfernen Sie alle zuvor konfigurierten BeeGFS-Repositories, um Konflikte mit dem neuen
BeeGFS v8-Repository zu vermeiden.

3. Leeren Sie den Cache Ihres Paketmanagers:

dnf clean all

4. Aktualisieren Sie auf allen Dateiknoten die BeeGFS-Pakete auf BeeGFS 8.2.

dnf update beegfs-mgmtd beegfs-storage beegfs-meta libbeegfs-ib

In einem Standardcluster wird das beegfs-mgmtd Paket nur auf den ersten beiden
Dateiknoten aktualisiert.

Aktualisieren Sie die Management-Datenbank

Führen Sie auf einem der Dateiknoten, auf denen der BeeGFS-Managementdienst ausgeführt wird, die
folgenden Schritte durch, um die Management-Datenbank von BeeGFS v7 auf v8 zu migrieren.

1. Alle NVMe-Geräte auflisten und nach dem Verwaltungsziel filtern:

149

https://www.beegfs.io/c/download/
https://www.beegfs.io/c/download/

nvme netapp smdevices | grep mgmt_tgt

a. Beachten Sie den Gerätepfad aus der Ausgabe.

b. Binden Sie das Management-Zielgerät an den vorhandenen Management-Ziel-Mountpunkt ein
(ersetzen Sie /dev/nvmeXnY durch Ihren Gerätepfad):

mount /dev/nvmeXnY /mnt/mgmt_tgt_mgmt01/

2. Importieren Sie Ihre BeeGFS 7-Verwaltungsdaten in das neue Datenbankformat, indem Sie Folgendes
ausführen:

/opt/beegfs/sbin/beegfs-mgmtd --import-from

-v7=/mnt/mgmt_tgt_mgmt01/data/

Erwartete Ausgabe:

Created new database version 3 at "/var/lib/beegfs/mgmtd.sqlite".

Successfully imported v7 management data from

"/mnt/mgmt_tgt_mgmt01/data/".

Der automatische Import kann in einigen Fällen aufgrund strengerer
Validierungsanforderungen in BeeGFS v8 fehlschlagen. Wenn beispielsweise Ziele nicht
existierenden Speicherpools zugewiesen werden, schlägt der Import fehl. Wenn die
Migration fehlschlägt, führen Sie das Upgrade nicht durch. Wenden Sie sich an den NetApp
Support, um Unterstützung bei der Behebung der Datenbankmigration-Probleme zu
erhalten. Als Übergangslösung können Sie die BeeGFS v8 Pakete downgraden und
BeeGFS v7 weiterhin verwenden, während das Problem behoben wird.

3. Verschieben Sie die generierte SQLite-Datei auf den Management-Service-Mount:

mv /var/lib/beegfs/mgmtd.sqlite /mnt/mgmt_tgt_mgmt01/data/

4. Verschieben Sie die generierte beegfs-mgmtd.toml auf den Mountpunkt des Verwaltungsdienstes:

mv /etc/beegfs/beegfs-mgmtd.toml /mnt/mgmt_tgt_mgmt01/mgmt_config/

Die Vorbereitung der beegfs-mgmtd.toml Konfigurationsdatei erfolgt nach Abschluss der Lizenzierungs-
und TLS-Konfigurationsschritte in den nächsten Abschnitten.

150

Lizenzierung konfigurieren

1. Installieren Sie die beegfs-Lizenzpakete auf allen Knoten, auf denen der beegfs-Managementdienst
ausgeführt wird. Dies sind typischerweise die ersten beiden Knoten des Clusters:

dnf install libbeegfs-license

2. Laden Sie Ihre BeeGFS v8-Lizenzdatei auf die Management-Knoten herunter und platzieren Sie sie unter:

/etc/beegfs/license.pem

TLS-Verschlüsselung konfigurieren

BeeGFS v8 erfordert TLS-Verschlüsselung für die sichere Kommunikation zwischen Verwaltungsdiensten und
Clients. Es gibt drei Optionen, die TLS-Verschlüsselung für die Netzwerkkommunikation zwischen
Verwaltungsdiensten und Clientdiensten zu konfigurieren. Die empfohlene und sicherste Methode ist die
Verwendung von Zertifikaten, die von einer vertrauenswürdigen Zertifizierungsstelle signiert wurden. Alternativ
können Sie eine eigene lokale Zertifizierungsstelle erstellen, um Zertifikate für Ihren BeeGFS-Cluster zu
signieren. Für Umgebungen, in denen keine Verschlüsselung erforderlich ist, oder zur Fehlerbehebung kann
TLS vollständig deaktiviert werden, obwohl dies nicht empfohlen wird, da dadurch sensible Informationen im
Netzwerk offengelegt werden.

Bevor Sie fortfahren, befolgen Sie die Anweisungen im "TLS-Verschlüsselung für BeeGFS 8 konfigurieren"
guide, um die TLS-Verschlüsselung für Ihre Umgebung einzurichten.

Konfiguration des Update-Management-Dienstes

Bereiten Sie die BeeGFS v8 Management-Service-Konfigurationsdatei vor, indem Sie die Einstellungen
manuell aus Ihrer BeeGFS v7 Konfigurationsdatei in die /mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-
mgmtd.toml Datei übertragen.

1. Auf dem Management-Knoten, auf dem das Management-Ziel eingebunden ist, referenzieren Sie die
/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.conf Management-Service-Datei für
BeeGFS 7 und übertragen Sie anschließend alle Einstellungen in die
/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml Datei. Für eine grundlegende
Einrichtung könnte Ihre beegfs-mgmtd.toml wie folgt aussehen:

151

beemsg-port = 8008

grpc-port = 8010

log-level = "info"

node-offline-timeout = "900s"

quota-enable = false

auth-disable = false

auth-file = "/etc/beegfs/<mgmt_service_ip>_connAuthFile"

db-file = "/mnt/mgmt_tgt_mgmt01/data/mgmtd.sqlite"

license-disable = false

license-cert-file = "/etc/beegfs/license.pem"

tls-disable = false

tls-cert-file = "/etc/beegfs/mgmtd_tls_cert.pem"

tls-key-file = "/etc/beegfs/mgmtd_tls_key.pem"

interfaces = ['i1b:mgmt_1', 'i2b:mgmt_2']

Passen Sie alle Pfade nach Bedarf an Ihre Umgebung und TLS-Konfiguration an.

2. Ändern Sie auf jedem Dateiknoten, auf dem Verwaltungsdienste ausgeführt werden, Ihre systemd-
Dienstdatei so, dass sie auf den neuen Speicherort der Konfigurationsdatei verweist.

sudo sed -i 's|ExecStart=.*|ExecStart=nice -n -3

/opt/beegfs/sbin/beegfs-mgmtd --config-file

/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml|'

/etc/systemd/system/beegfs-mgmtd.service

a. Systemd neu laden:

systemctl daemon-reload

3. Für jeden Dateiknoten, auf dem Verwaltungsdienste ausgeführt werden, öffnen Sie Port 8010 für die
gRPC-Kommunikation des Verwaltungsdienstes.

a. Fügen Sie Port 8010/tcp zur beegfs zone hinzu:

sudo firewall-cmd --zone=beegfs --permanent --add-port=8010/tcp

b. Laden Sie die Firewall neu, um die Änderung anzuwenden:

sudo firewall-cmd --reload

152

Aktualisieren Sie das BeeGFS-Monitor-Skript

Das Pacemaker beegfs-monitor OCF-Skript muss aktualisiert werden, um das neue TOML-
Konfigurationsformat und die systemd-Dienstverwaltung zu unterstützen. Aktualisieren Sie das Skript auf
einem Knoten im Cluster und kopieren Sie das aktualisierte Skript dann auf alle anderen Knoten.

1. Erstellen Sie eine Sicherungskopie des aktuellen Skripts:

cp /usr/lib/ocf/resource.d/eseries/beegfs-monitor

/usr/lib/ocf/resource.d/eseries/beegfs-monitor.bak.$(date +%F)

2. Aktualisieren Sie den Pfad der Management-Konfigurationsdatei von .conf zu .toml:

sed -i 's|mgmt_config/beegfs-mgmtd\.conf|mgmt_config/beegfs-mgmtd.toml|'

/usr/lib/ocf/resource.d/eseries/beegfs-monitor

Alternativ suchen Sie den folgenden Block im Skript manuell:

case $type in

 management)

 conf_path="${configuration_mount}/mgmt_config/beegfs-mgmtd.conf"

 ;;

Und ersetzen Sie es durch:

case $type in

 management)

 conf_path="${configuration_mount}/mgmt_config/beegfs-mgmtd.toml"

 ;;

3. Aktualisieren Sie die get_interfaces() und get_subnet_ips() Funktionen, um die TOML-
Konfiguration zu unterstützen:

a. Öffnen Sie das Skript in einem Texteditor:

vi /usr/lib/ocf/resource.d/eseries/beegfs-monitor

b. Finden Sie die beiden Funktionen: get_interfaces() und get_subnet_ips().

c. Löschen Sie beide gesamten Funktionen, beginnend bei get_interfaces() bis zum Ende von
get_subnet_ips().

d. Kopieren Sie die folgenden aktualisierten Funktionen und fügen Sie sie an ihrer Stelle ein:

153

Return network communication interface name(s) from the BeeGFS

resource's connInterfaceFile

get_interfaces() {

 # Determine BeeGFS service network IP interfaces.

 if ["$type" = "management"]; then

 interfaces_line=$(grep "^interfaces =" "$conf_path")

 interfaces_list=$(echo "$interfaces_line" | sed "s/.*= \[\(.*

\)\]/\1/")

 interfaces=$(echo "$interfaces_list" | tr -d "'" | tr -d " " | tr

',' '\n')

 for entry in $interfaces; do

 echo "$entry" | cut -d ':' -f 1

 done

 else

 connInterfacesFile_path=$(grep "^connInterfacesFile" "$conf_path"

| tr -d "[:space:]" | cut -f 2 -d "=")

 if [-f "$connInterfacesFile_path"]; then

 while read -r entry; do

 echo "$entry" | cut -f 1 -d ':'

 done < "$connInterfacesFile_path"

 fi

 fi

}

Return list containing all the BeeGFS resource's usable IP

addresses. *Note that these are filtered by the connNetFilterFile

entries.

get_subnet_ips() {

 # Determine all possible BeeGFS service network IP addresses.

 if ["$type" != "management"]; then

 connNetFilterFile_path=$(grep "^connNetFilterFile" "$conf_path" |

tr -d "[:space:]" | cut -f 2 -d "=")

 filter_ips=""

 if [-n "$connNetFilterFile_path"] && [-e

$connNetFilterFile_path]; then

 while read -r filter; do

 filter_ips="$filter_ips $(get_ipv4_subnet_addresses $filter)"

 done < $connNetFilterFile_path

 fi

 echo "$filter_ips"

 fi

}

154

e. Speichern und beenden Sie den Texteditor.

f. Führen Sie den folgenden Befehl aus, um das Skript vor der Fortsetzung auf Syntaxfehler zu
überprüfen. Keine Ausgabe zeigt an, dass das Skript syntaktisch korrekt ist.

bash -n /usr/lib/ocf/resource.d/eseries/beegfs-monitor

4. Kopieren Sie das aktualisierte beegfs-monitor OCF-Skript auf alle anderen Knoten im Cluster, um die
Konsistenz zu gewährleisten:

scp /usr/lib/ocf/resource.d/eseries/beegfs-monitor

user@node:/usr/lib/ocf/resource.d/eseries/beegfs-monitor

Den Cluster wieder online bringen

1. Sobald alle vorherigen Upgrade-Schritte abgeschlossen sind, bringen Sie das Cluster wieder online, indem
Sie die BeeGFS-Dienste auf allen Knoten starten.

pcs cluster start --all

2. Überprüfen Sie, ob der beegfs-mgmtd Service erfolgreich gestartet wurde:

journalctl -xeu beegfs-mgmtd

Die erwartete Ausgabe umfasst Zeilen wie:

Started Cluster Controlled beegfs-mgmtd.

Loaded config file from "/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-

mgmtd.toml"

Successfully initialized certificate verification library.

Successfully loaded license certificate: TMP-113489268

Opened database at "/mnt/mgmt_tgt_mgmt01/data/mgmtd.sqlite"

Listening for BeeGFS connections on [::]:8008

Serving gRPC requests on [::]:8010

Falls Fehler in den Journalprotokollen auftreten, überprüfen Sie die Pfade der
Verwaltungskonfigurationsdatei und stellen Sie sicher, dass alle Werte korrekt aus der
BeeGFS 7 Konfigurationsdatei übernommen wurden.

3. Führen Sie pcs status aus und überprüfen Sie, ob der Cluster fehlerfrei ist und die Dienste auf den
bevorzugten Knoten gestartet wurden.

4. Sobald die einwandfreie Funktion des Clusters bestätigt ist, aktivieren Sie STONITH wieder:

155

pcs property set stonith-enabled=true

5. Fahren Sie mit dem nächsten Abschnitt fort, um die BeeGFS-Clients im Cluster zu aktualisieren und die
Gesundheit des BeeGFS-Clusters zu überprüfen.

BeeGFS-Clients aktualisieren

Nach erfolgreichem Upgrade Ihres Clusters auf BeeGFS v8 müssen Sie auch alle BeeGFS Clients
aktualisieren.

Die folgenden Schritte beschreiben den Prozess zum Upgrade von BeeGFS Clients auf einem Ubuntu-
basierten System.

1. Falls noch nicht geschehen, stoppen Sie den BeeGFS client service:

systemctl stop beegfs-client

2. Fügen Sie das BeeGFS v8-Paket-Repository für Ihre Linux-Distribution hinzu. Anweisungen zur
Verwendung der offiziellen BeeGFS-Repositories finden Sie unter "^BeeGFS Download-Seite". Andernfalls
konfigurieren Sie Ihr lokales BeeGFS-Mirror-Repository entsprechend.

Die folgenden Schritte verwenden das offizielle BeeGFS 8.2 Repository auf einem Ubuntu-basierten
System:

3. Importieren Sie den BeeGFS GPG-Schlüssel:

wget https://www.beegfs.io/release/beegfs_8.2/gpg/GPG-KEY-beegfs -O

/etc/apt/trusted.gpg.d/beegfs.asc

4. Laden Sie die Repository-Datei herunter:

wget https://www.beegfs.io/release/beegfs_8.2/dists/beegfs-noble.list -O

/etc/apt/sources.list.d/beegfs.list

Entfernen Sie alle zuvor konfigurierten BeeGFS-Repositories, um Konflikte mit dem neuen
BeeGFS v8-Repository zu vermeiden.

5. Aktualisieren Sie die BeeGFS client packages:

apt-get update

apt-get install --only-upgrade beegfs-client

6. Konfigurieren Sie TLS für den Client. TLS ist für die Verwendung der BeeGFS CLI erforderlich. Beziehen
Sie sich auf das "TLS-Verschlüsselung für BeeGFS 8 konfigurieren" Verfahren, um TLS auf dem Client zu
konfigurieren.

156

https://www.beegfs.io/c/download/

7. Starten Sie den BeeGFS Client Service:

systemctl start beegfs-client

Überprüfen Sie das Upgrade

Nach Abschluss des Upgrades auf BeeGFS v8 führen Sie die folgenden Befehle aus, um zu überprüfen, ob
das Upgrade erfolgreich war.

1. Überprüfen Sie, ob der Root-Inode demselben Metadatenknoten wie zuvor gehört. Dies sollte automatisch
erfolgen, wenn Sie die import-from-v7 Funktionalität im Verwaltungsdienst verwendet haben:

beegfs entry info /mnt/beegfs

2. Überprüfen Sie, ob alle Knoten und Ziele online und in einwandfreiem Zustand sind:

beegfs health check

Wenn die Überprüfung „Verfügbare Kapazität“ darauf hinweist, dass auf den Zielen nur noch
wenig freier Speicherplatz vorhanden ist, können Sie die in der beegfs-mgmtd.toml
Konfigurationsdatei definierten Schwellenwerte für den „Kapazitätspool“ so anpassen, dass
sie besser zu Ihrer Umgebung passen.

Aktualisieren Sie Pacemaker- und Corosync-Pakete in einem HA-Cluster

Führen Sie diese Schritte aus, um Pacemaker- und Corosync-Pakete in einem HA-
Cluster zu aktualisieren.

Überblick

Durch ein Upgrade von Pacemaker und Corosync wird sichergestellt, dass der Cluster von neuen Funktionen,
Sicherheits-Patches und Leistungsverbesserungen profitiert.

Upgrade-Ansatz

Es gibt zwei empfohlene Ansätze für das Upgrade eines Clusters: Ein rollierendes Upgrade oder eine
vollständige Abschaltung des Clusters. Jeder Ansatz hat seine eigenen vor- und Nachteile. Der
Aktualisierungsvorgang kann je nach Ihrer Pacemaker-Version variieren. Bestimmen Sie anhand der
Dokumentation von ClusterLabs"Aktualisieren eines Pacemaker-Clusters", welche Vorgehensweise verwendet
werden soll. Bevor Sie einen Upgrade-Ansatz verfolgen, müssen Sie Folgendes überprüfen:

• Die neuen Pacemaker- und Corosync-Pakete werden von der NetApp BeeGFS-Lösung unterstützt.

• Für das BeeGFS-Dateisystem und die Pacemaker-Cluster-Konfiguration sind gültige Backups vorhanden.

• Das Cluster befindet sich in einem ordnungsgemäßen Zustand.

157

https://clusterlabs.org/projects/pacemaker/doc/3.0/Pacemaker_Administration/html/upgrading.html

Rollierendes Upgrade

Bei dieser Methode wird jeder Node aus dem Cluster entfernt, aktualisiert und anschließend wieder in das
Cluster eingeführt, bis die neue Version auf allen Nodes ausgeführt wird. Dieser Ansatz sorgt für einen
unterbrechungsfreien Cluster, was ideal für größere HA-Cluster ist, birgt aber auch das Risiko, dass während
des Prozesses gemischte Versionen ausgeführt werden. Dieser Ansatz sollte in einem Cluster mit zwei Nodes
vermieden werden.

1. Vergewissern Sie sich, dass sich das Cluster in einem optimalen Zustand befindet, wobei jeder BeeGFS-
Service auf seinem bevorzugten Node ausgeführt wird. Weitere Informationen finden Sie unter
"Untersuchen Sie den Status des Clusters" .

2. Platzieren Sie den Node für das Upgrade in den Standby-Modus, um alle BeeGFS-Services zu leeren
(oder zu verschieben):

pcs node standby <HOSTNAME>

3. Überprüfen Sie, ob die Services des Node durch Ausführen von abgelaufen sind:

pcs status

Stellen Sie sicher, dass keine Dienste als auf dem Node im Standby gemeldet werden Started.

Je nach Clustergröße kann es Sekunden oder Minuten dauern, bis Dienste zum
Schwesterknoten verschoben werden. Wenn ein BeeGFS-Dienst auf dem Schwesterknoten
nicht gestartet werden kann, lesen Sie die "Leitfäden Zur Fehlerbehebung".

4. Fahren Sie das Cluster auf dem Node herunter:

pcs cluster stop <HOSTNAME>

5. Aktualisieren Sie die Pacemaker-, Corosync- und PCs-Pakete auf dem Knoten:

Die Befehle des Package Managers variieren je nach Betriebssystem. Die folgenden
Befehle gelten für Systeme, auf denen RHEL 8 und höher ausgeführt wird.

dnf update pacemaker-<version>

dnf update corosync-<version>

dnf update pcs-<version>

6. Starten Sie die Pacemaker-Clusterdienste auf dem Knoten:

158

pcs cluster start <HOSTNAME>

7. Wenn das pcs Paket aktualisiert wurde, authentifizieren Sie den Node erneut beim Cluster:

pcs host auth <HOSTNAME>

8. Überprüfen Sie, ob die Pacemaker-Konfiguration mit dem Werkzeug noch gültig crm_verify ist.

Dies muss nur einmal während des Cluster-Upgrades überprüft werden.

crm_verify -L -V

9. Beenden Sie den Standby-Modus des Node:

pcs node unstandby <HOSTNAME>

10. Verschieben Sie alle BeeGFS-Services zurück auf ihren bevorzugten Node:

pcs resource relocate run

11. Wiederholen Sie die vorherigen Schritte für jeden Knoten im Cluster, bis auf allen Knoten die gewünschten
Pacemaker-, Corosync- und PCs-Versionen ausgeführt werden.

12. Führen Sie abschließend den Cluster aus pcs status, und überprüfen Sie, ob er ordnungsgemäß ist,
und der Current DC meldet die gewünschte Pacemaker-Version.

Wenn der Current DC Bericht „Misted-Version“ meldet, wird ein Knoten im Cluster
weiterhin mit der vorherigen Pacemaker-Version ausgeführt und muss aktualisiert werden.
Wenn ein aktualisierter Node nicht in der Lage ist, dem Cluster erneut beizutreten, oder
wenn die Ressourcen nicht gestartet werden können, prüfen Sie die Cluster-Protokolle, und
lesen Sie die Pacemaker-Versionshinweise oder Benutzerhandbücher nach bekannten
Upgrade-Problemen.

Schließen Sie den Cluster ab

Bei diesem Ansatz werden alle Cluster Nodes und Ressourcen heruntergefahren, die Nodes aktualisiert und
das Cluster anschließend neu gestartet. Dieser Ansatz ist erforderlich, wenn die Pacemaker- und Corosync-
Versionen keine Konfiguration mit gemischten Versionen unterstützen.

1. Vergewissern Sie sich, dass sich das Cluster in einem optimalen Zustand befindet, wobei jeder BeeGFS-
Service auf seinem bevorzugten Node ausgeführt wird. Weitere Informationen finden Sie unter
"Untersuchen Sie den Status des Clusters" .

2. Fahren Sie die Cluster-Software (Pacemaker und Corosync) auf allen Knoten herunter.

159

Je nach Cluster-Größe kann es Sekunden oder Minuten dauern, bis das gesamte Cluster
angehalten wurde.

pcs cluster stop --all

3. Sobald Cluster-Services auf allen Knoten heruntergefahren sind, aktualisieren Sie die Pacemaker-,
Corosync- und PCs-Pakete auf jedem Knoten entsprechend Ihren Anforderungen.

Die Befehle des Package Managers variieren je nach Betriebssystem. Die folgenden
Befehle gelten für Systeme, auf denen RHEL 8 und höher ausgeführt wird.

dnf update pacemaker-<version>

dnf update corosync-<version>

dnf update pcs-<version>

4. Starten Sie nach dem Upgrade aller Nodes die Cluster-Software auf allen Nodes:

pcs cluster start --all

5. Wenn das pcs Paket aktualisiert wurde, authentifizieren Sie jeden Node im Cluster erneut:

pcs host auth <HOSTNAME>

6. Führen Sie abschließend den Cluster aus pcs status, und überprüfen Sie, ob er in Ordnung ist, und der
Current DC meldet die korrekte Pacemaker-Version.

Wenn der Current DC Bericht „Misted-Version“ meldet, wird ein Knoten im Cluster
weiterhin mit der vorherigen Pacemaker-Version ausgeführt und muss aktualisiert werden.

Aktualisiert die Datei-Node-Adapter-Firmware

Führen Sie die folgenden Schritte aus, um die ConnectX-7-Adapter des Datei-Knotens
auf die neueste Firmware zu aktualisieren.

Überblick

Um einen neuen MLNX_OFED-Treiber zu unterstützen, neue Funktionen zu aktivieren oder Fehler zu
beheben, ist möglicherweise eine Aktualisierung der ConnectX-7-Adapter-Firmware erforderlich. In diesem

160

Handbuch wird das Dienstprogramm von NVIDIA für Adapteraktualisierungen aufgrund seiner
Benutzerfreundlichkeit und Effizienz verwendet mlxfwmanager.

Upgrade-Überlegungen

In diesem Handbuch werden zwei Ansätze zur Aktualisierung der ConnectX-7-Adapter-Firmware beschrieben:
Ein laufendes Update und ein zwei-Knoten-Cluster-Update. Wählen Sie den passenden Aktualisierungsansatz
gemäß der Clustergröße aus. Bevor Sie Firmware-Aktualisierungen durchführen, stellen Sie sicher, dass:

• Ein unterstützter MLNX_OFED-Treiber ist installiert, siehe "Technologieanforderungen erfüllt".

• Für das BeeGFS-Dateisystem und die Pacemaker-Cluster-Konfiguration sind gültige Backups vorhanden.

• Das Cluster befindet sich in einem ordnungsgemäßen Zustand.

Vorbereitung des Firmware-Updates

Es wird empfohlen, das NVIDIA-Dienstprogramm zu verwenden mlxfwmanager, um die Adapter-Firmware
eines Knotens zu aktualisieren, die mit dem NVIDIA-Treiber MLNX_OFED gebündelt ist. Laden Sie vor dem
Starten der Updates das Firmware-Image des Adapters von herunter"Die Support-Website von NVIDIA", und
speichern Sie es auf jedem Datei-Node.

Für Lenovo ConnectX-7 Adapter, verwenden Sie das mlxfwmanager_LES Tool, das auf der
NVIDIA-Seite zur Verfügung steht"OEM-Firmware".

Rollierender Aktualisierungsansatz

Dieser Ansatz wird für alle HA-Cluster mit mehr als zwei Nodes empfohlen. Dieser Ansatz beinhaltet die
Aktualisierung der Adapter-Firmware auf einem Datei-Node, sodass das HA-Cluster Anforderungen weiterhin
erfüllen kann. Allerdings wird empfohlen, um I/O-Anfragen während dieser Zeit zu vermeiden.

1. Vergewissern Sie sich, dass sich das Cluster in einem optimalen Zustand befindet, wobei jeder BeeGFS-
Service auf seinem bevorzugten Node ausgeführt wird. Weitere Informationen finden Sie unter
"Untersuchen Sie den Status des Clusters" .

2. Wählen Sie einen Datei-Node aus, um ihn zu aktualisieren und in den Standby-Modus zu versetzen, der
alle BeeGFS-Services von diesem Node entfernt (oder verschiebt):

pcs node standby <HOSTNAME>

3. Überprüfen Sie, ob die Dienste des Node abgelaufen sind, indem Sie Folgendes ausführen:

pcs status

Vergewissern Sie sich, dass keine Services als auf dem Node im Standby-Modus melden Started.

Je nach Cluster-Größe kann es Sekunden oder Minuten dauern, bis die BeeGFS-Dienste
zum Schwesterknoten verschoben werden. Wenn ein BeeGFS-Dienst auf dem
Schwesterknoten nicht gestartet werden kann, lesen Sie die "Leitfäden Zur
Fehlerbehebung".

161

https://network.nvidia.com/support/firmware/firmware-downloads/
https://network.nvidia.com/support/firmware/lenovo-intelligent-cluster/

4. Aktualisieren Sie die Adapter-Firmware mit mlxfwmanager.

 mlxfwmanager -i <path/to/firmware.bin> -u

Beachten Sie PCI Device Name für jeden Adapter, der Firmware-Updates empfängt.

5. Setzen Sie jeden Adapter mithilfe des Dienstprogramms zurück mlxfwreset, um die neue Firmware
anzuwenden.

Einige Firmware-Aktualisierungen erfordern möglicherweise einen Neustart, um das Update
anzuwenden. Weitere Informationen finden Sie unter"Die Einschränkungen von NVIDIA
mlxfwreset". Wenn ein Neustart erforderlich ist, führen Sie einen Neustart durch, anstatt die
Adapter zurückzusetzen.

a. Beenden Sie den opensm-Dienst:

systemctl stop opensm

b. Führen Sie den folgenden Befehl für jeden PCI Device Name zuvor genannten aus.

mlxfwreset -d <pci_device_name> reset -y

c. Starten Sie den opensm-Dienst:

systemctl start opensm

d. Starten Sie den eseries_nvme_ib.service .

systemctl restart eseries_nvme_ib.service

e. Überprüfen Sie, ob die Volumes des E-Series-Speicherarrays vorhanden sind.

multipath -ll

1. Führen Sie aus ibstat, und überprüfen Sie, ob alle Adapter mit der gewünschten Firmware-Version
ausgeführt werden:

ibstat

2. Starten Sie die Pacemaker-Clusterdienste auf dem Knoten:

162

https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw
https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw

pcs cluster start <HOSTNAME>

3. Beenden Sie den Standby-Modus des Node:

pcs node unstandby <HOSTNAME>

4. Verschieben Sie alle BeeGFS-Services zurück auf ihren bevorzugten Node:

pcs resource relocate run

Wiederholen Sie diese Schritte für jeden Datei-Node im Cluster, bis alle Adapter aktualisiert wurden.

Update für Cluster mit zwei Nodes

Dieser Ansatz wird für HA-Cluster mit nur zwei Nodes empfohlen. Dieser Ansatz ähnelt einem rollierenden
Update, enthält jedoch zusätzliche Schritte zur Vermeidung von Service-Ausfallzeiten, wenn die Cluster-
Services eines Node angehalten werden.

1. Vergewissern Sie sich, dass sich das Cluster in einem optimalen Zustand befindet, wobei jeder BeeGFS-
Service auf seinem bevorzugten Node ausgeführt wird. Weitere Informationen finden Sie unter
"Untersuchen Sie den Status des Clusters" .

2. Wählen Sie einen Datei-Node aus, um den Node zu aktualisieren und in den Standby-Modus zu versetzen,
der alle BeeGFS-Services von diesem Node entfernt (oder verschiebt):

pcs node standby <HOSTNAME>

3. Überprüfen Sie, ob die Ressourcen des Node abgelaufen sind, indem Sie Folgendes ausführen:

pcs status

Vergewissern Sie sich, dass keine Services als auf dem Node im Standby-Modus melden Started.

Je nach Cluster-Größe kann es Sekunden oder Minuten dauern, bis BeeGFS-Dienste als
auf dem Schwesternknoten melden Started. Wenn ein BeeGFS-Dienst nicht gestartet
werden kann, lesen Sie die "Leitfäden Zur Fehlerbehebung".

4. Versetzen Sie das Cluster in den Wartungsmodus.

pcs property set maintenance-mode=true

5. Aktualisieren Sie die Adapter-Firmware mit mlxfwmanager.

163

 mlxfwmanager -i <path/to/firmware.bin> -u

Beachten Sie PCI Device Name für jeden Adapter, der Firmware-Updates empfängt.

6. Setzen Sie jeden Adapter mithilfe des Dienstprogramms zurück mlxfwreset, um die neue Firmware
anzuwenden.

Einige Firmware-Aktualisierungen erfordern möglicherweise einen Neustart, um das Update
anzuwenden. Weitere Informationen finden Sie unter"Die Einschränkungen von NVIDIA
mlxfwreset". Wenn ein Neustart erforderlich ist, führen Sie einen Neustart durch, anstatt die
Adapter zurückzusetzen.

a. Beenden Sie den opensm-Dienst:

systemctl stop opensm

b. Führen Sie den folgenden Befehl für jeden PCI Device Name zuvor genannten aus.

mlxfwreset -d <pci_device_name> reset -y

c. Starten Sie den opensm-Dienst:

systemctl start opensm

7. Führen Sie aus ibstat, und überprüfen Sie, ob alle Adapter mit der gewünschten Firmware-Version
ausgeführt werden:

ibstat

8. Starten Sie die Pacemaker-Clusterdienste auf dem Knoten:

pcs cluster start <HOSTNAME>

9. Beenden Sie den Standby-Modus des Node:

pcs node unstandby <HOSTNAME>

10. Beenden Sie das Cluster aus dem Wartungsmodus.

164

https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw
https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw

pcs property set maintenance-mode=false

11. Verschieben Sie alle BeeGFS-Services zurück auf ihren bevorzugten Node:

pcs resource relocate run

Wiederholen Sie diese Schritte für jeden Datei-Node im Cluster, bis alle Adapter aktualisiert wurden.

Upgrade von E-Series Storage-Arrays

Führen Sie die folgenden Schritte aus, um die Komponenten des HA-Clusters des E-
Series Storage-Arrays zu aktualisieren.

Überblick

Die NetApp E-Series Storage Arrays Ihres HA Clusters mit der neuesten Firmware auf dem neuesten Stand zu
halten, gewährleistet optimale Performance und verbesserte Sicherheit. Firmware-Updates für das Storage
Array werden über SANtricity OS-, NVSRAM- und Festplatten-Firmware-Dateien angewendet.

Obwohl ein Upgrade der Storage Arrays während des Online-Betriebs des HA-Clusters möglich
ist, sollte das Cluster bei allen Upgrades in den Wartungsmodus versetzt werden.

Upgrade-Schritte für Block-Nodes

Im Folgenden wird beschrieben, wie die Firmware der Storage-Arrays mithilfe der
Netapp_Eseries.Santricity Ansible-Sammlung aktualisiert wird. Bevor Sie fortfahren, lesen "Upgrade-
Überlegungen"Sie das zur Aktualisierung von E-Series Systemen.

Ein Upgrade auf SANtricity OS 11.80 oder höhere Versionen ist nur ab 11.70.5P1 möglich. Das
Speicher-Array muss vor der Anwendung weiterer Upgrades zuerst auf 11.70.5P1 aktualisiert
werden.

1. Überprüfen Sie den Ansible Control-Node mithilfe der neuesten SANtricity Ansible Sammlung.

◦ Bei Erfassungs-Upgrades mit Zugriff auf "Ansible-Galaxie", Ausführen des folgenden Befehls:

ansible-galaxy collection install netapp_eseries.santricity --upgrade

◦ Laden Sie für Offline-Upgrades den Sammeltarball von herunter"Ansible-Galaxie", übertragen Sie ihn
auf Ihren Steuerungsknoten und führen Sie Folgendes aus:

ansible-galaxy collection install netapp_eseries-santricity-

<VERSION>.tar.gz --upgrade

Siehe "Sammlungen Werden Installiert" Finden Sie weitere Informationen.

165

https://docs.netapp.com/us-en/e-series/upgrade-santricity/overview-upgrade-consider-task.html
https://docs.netapp.com/us-en/e-series/upgrade-santricity/overview-upgrade-consider-task.html
https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/ui/repo/published/netapp_eseries/santricity/
https://docs.ansible.com/ansible/latest/collections_guide/collections_installing.html

2. Holen Sie sich die neueste Firmware für Ihr Speicher-Array und die Laufwerke.

a. Laden Sie die Firmware-Dateien herunter.

▪ SANtricity OS und NVSRAM: Navigieren "NetApp Support Website"Sie zum und laden Sie die
neueste Version von SANtricity OS und NVSRAM für Ihr Speicherarray-Modell herunter.

▪ Laufwerksfirmware: Navigieren "E-Series Festplatten-Firmware-Website"Sie zum und laden Sie
die neueste Firmware für jedes Laufwerkmodell Ihres Speicherarrays herunter.

b. Speichern Sie SANtricity OS-, NVSRAM- und Laufwerk-Firmware-Dateien im
<inventory_directory>/packages Verzeichnis Ihres Ansible Control Node.

3. Bei Bedarf aktualisieren Sie die Ansible-Bestandsdateien Ihres Clusters, damit alle Storage-Arrays (Block-
Nodes), die aktualisiert werden müssen, einbezogen werden. Weitere Informationen finden Sie im
"Ansible-Bestandsübersicht" Abschnitt.

4. Stellen Sie sicher, dass sich das Cluster mit jedem BeeGFS-Service auf seinem bevorzugten Node in
einem optimalen Zustand befindet. Weitere Informationen finden Sie unter "Untersuchen Sie den Status
des Clusters" .

5. Versetzen Sie das Cluster gemäß den Anweisungen in in "Versetzen Sie das Cluster in den
Wartungsmodus"den Wartungsmodus.

6. Erstellen Sie ein neues Ansible-Playbook mit dem Namen update_block_node_playbook.yml. Füllen
Sie das Playbook mit den folgenden Inhalten aus und ersetzen Sie die Versionen des SANtricity
Betriebssystems, des NVSRAM und der Festplatten-Firmware auf Ihren gewünschten Upgrade-Pfad:

- hosts: eseries_storage_systems

 gather_facts: false

 any_errors_fatal: true

 collections:

 - netapp_eseries.santricity

 vars:

 eseries_firmware_firmware: "packages/<SantricityOS>.dlp"

 eseries_firmware_nvsram: "packages/<NVSRAM>.dlp"

 eseries_drive_firmware_firmware_list:

 - "packages/<drive_firmware>.dlp"

 eseries_drive_firmware_upgrade_drives_online: true

 tasks:

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

7. Führen Sie über Ihren Ansible-Steuerungsknoten den folgenden Befehl aus, um die Updates zu starten:

ansible-playbook -i inventory.yml update_block_node_playbook.yml

8. Überprüfen Sie nach Abschluss des Playbook, ob sich jedes Speicher-Array in einem optimalen Zustand
befindet.

9. Entfernen Sie das Cluster aus dem Wartungsmodus und überprüfen Sie, ob sich das Cluster in einem

166

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

optimalen Zustand befindet, wobei sich jeder BeeGFS-Service auf seinem bevorzugten Node befindet.

Service und Wartung

Failover- und Failback-Services

BeeGFS-Services zwischen Cluster-Nodes verschieben

Überblick

BeeGFS-Services können ein Failover zwischen den Nodes im Cluster durchführen, um sicherzustellen, dass
die Clients weiterhin auf das Filesystem zugreifen können, wenn ein Node einen Fehler aufweist, oder Sie
müssen eine geplante Wartung durchführen. In diesem Abschnitt werden verschiedene Möglichkeiten
beschrieben, wie Administratoren das Cluster nach der Wiederherstellung nach einem Ausfall reparieren oder
Services manuell zwischen Nodes verschieben können.

Schritte

Failover und Failback

Failover (Geplant)

Wenn Sie einen einzelnen Datei-Node zur Wartung offline schalten müssen, möchten Sie in der Regel alle
BeeGFS-Dienste von diesem Node verschieben (oder ablassen). Dies kann erreicht werden, indem zunächst
der Knoten in den Standby-Modus versetzt wird:

pcs node standby <HOSTNAME>

Nach der Überprüfung mit pcs status Alle Ressourcen wurden auf dem alternativen Datei-Node neu
gestartet. Sie können je nach Bedarf weitere Änderungen am Node vornehmen.

Failback (nach einem geplanten Failover)

Wenn Sie bereit sind, die BeeGFS-Dienste zuerst auf den bevorzugten Knoten wiederherzustellen pcs
status Und überprüfen Sie in der „Knotenliste“, ob der Status Standby lautet. Wenn der Node neu gebootet
wurde, wird er offline angezeigt, bis Sie die Cluster-Services in den Online-Modus versetzen:

pcs cluster start <HOSTNAME>

Sobald der Node online ist, bringen Sie ihn aus dem Standby-Modus mit:

pcs node unstandby <HOSTNAME>

Schließlich verlagern alle BeeGFS-Dienste wieder auf ihre bevorzugten Knoten mit:

pcs resource relocate run

167

Failback (nach einem ungeplanten Failover)

Wenn auf einem Node ein Hardware- oder ein anderer Fehler auftritt, sollte der HA-Cluster automatisch
reagieren und seine Services auf einen gesunden Node verschieben. So bleibt den Administratoren Zeit für
Korrekturmaßnahmen. Bevor Sie fortfahren, lesen "Fehlerbehebung"Sie den Abschnitt, um die Ursache des
Failovers zu ermitteln und alle offenen Probleme zu beheben. Sobald der Knoten wieder eingeschaltet ist und
sich in einem ordnungsgemäßen Zustand befindet, können Sie mit dem Failback fortfahren.

Wenn ein Node nach einem ungeplanten (oder geplanten) Neubooten gebootet wird, werden Cluster-Services
nicht automatisch gestartet. Sie müssen daher den Node zuerst in den Online-Modus versetzen:

pcs cluster start <HOSTNAME>

Bei der nächsten Bereinigung werden alle Ressourcenfehler behoben, und der Fechtverlauf des Node wird
zurückgesetzt:

pcs resource cleanup node=<HOSTNAME>

pcs stonith history cleanup <HOSTNAME>

Verifizieren in pcs status Der Knoten ist online und in einem ordnungsgemäßen Zustand. Standardmäßig
werden BeeGFS-Dienste nicht automatisch Failback durchführen, um zu vermeiden, dass Ressourcen
versehentlich auf einen ungesunden Knoten zurückverschoben werden. Wenn Sie bereit sind, alle Ressourcen
im Cluster wieder an die bevorzugten Nodes zurückzugeben, mit den folgenden Funktionen:

pcs resource relocate run

Einzelne BeeGFS-Services werden auf alternative Datei-Nodes verschoben

Verschieben Sie einen BeeGFS-Service dauerhaft auf einen neuen Datei-Node

Wenn Sie den bevorzugten Datei-Node für einen einzelnen BeeGFS-Service dauerhaft ändern möchten,
passen Sie den Ansible-Bestand an, sodass der bevorzugte Node zuerst aufgelistet wird, und führen Sie das
Ansible-Playbook erneut aus.

In dieser Beispieldatei ist beegfs_01 beispielsweise inventory.yml der bevorzugte Datei-Node zum
Ausführen des BeeGFS-Managementservice:

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

Durch eine Umkehrung des Auftrags würden die Managementservices am beegfs_02 bevorzugt werden:

168

 mgmt:

 hosts:

 beegfs_02:

 beegfs_01:

Verschieben Sie einen BeeGFS-Service vorübergehend auf einen alternativen Datei-Node

Im Allgemeinen, wenn ein Knoten gerade gewartet wird, möchten Sie die Schritte [Failover und
Failback](#Failover-and-Failback) verwenden, um alle Dienste von diesem Knoten weg zu verschieben.

Wenn Sie aus irgendeinem Grund einen einzelnen Service auf einen anderen Dateiknoten verschieben
müssen, führen Sie:

pcs resource move <SERVICE>-monitor <HOSTNAME>

Geben Sie keine einzelnen Ressourcen oder die Ressourcengruppe an. Geben Sie immer den
Namen des Monitors für den BeeGFS-Dienst an, den Sie verschieben möchten. Um zum
Beispiel den BeeGFS-Managementdienst auf beegfs_02 zu verschieben, führen Sie: Aus pcs
resource move mgmt-monitor beegfs_02. Dieser Prozess kann wiederholt werden, um
einen oder mehrere Services von den bevorzugten Nodes weg zu verschieben. Überprüfen Sie,
ob pcs status die Services auf dem neuen Node verlegt/gestartet wurden.

Wenn Sie einen BeeGFS-Service wieder auf den bevorzugten Node verschieben möchten, löschen Sie zuerst
die temporären Ressourcenbeschränkungen (diesen Schritt wird bei mehreren Services wiederholt):

pcs resource clear <SERVICE>-monitor

Wenn Sie bereit sind, den Service(s) dann wieder zurück zu den bevorzugten Knoten zu verschieben, werden
die folgenden Aktionen ausgeführt:

pcs resource relocate run

Hinweis: Mit diesem Befehl werden Services verschoben, bei denen keine temporären
Ressourcenbeschränkungen mehr vorhanden sind, die sich nicht auf den bevorzugten Nodes befinden.

Versetzen Sie das Cluster in den Wartungsmodus

Verhindern Sie, dass das HA-Cluster versehentlich auf geplante Änderungen in der
Umgebung reagiert.

Überblick

Wenn Sie das Cluster in den Wartungsmodus versetzen, werden die gesamte Ressourcenüberwachung
deaktiviert und Pacemaker kann nicht mehr Ressourcen im Cluster verschieben oder anderweitig verwalten.
Alle Ressourcen werden auf den ursprünglichen Nodes weiterhin ausgeführt, unabhängig davon, ob es eine

169

temporäre Ausfallbedingung gibt, die den Zugriff auf sie verhindern würde. Dies wird empfohlen/ist u. a.:

• Netzwerkwartung, die vorübergehend Verbindungen zwischen Datei-Nodes und BeeGFS-Diensten
unterbrechen kann.

• Block-Node-Upgrades:

• Dateiknoten-Betriebssystem, Kernel oder andere Paketaktualisierungen.

Im Allgemeinen ist der einzige Grund, das Cluster manuell in den Wartungsmodus zu versetzen, um zu
verhindern, dass es auf externe Änderungen in der Umgebung reagiert. Wenn für einen einzelnen Node im
Cluster die physische Reparatur erforderlich ist, verwenden Sie keinen Wartungsmodus und platzieren Sie den
Node einfach gemäß dem oben beschriebenen Verfahren in Standby. Beachten Sie, dass bei der Umleitung
von Ansible der Cluster automatisch der Wartungsmodus für die meisten Softwarewartungsarbeiten
einschließlich Upgrades und Konfigurationsänderungen durchgeführt wird.

Schritte

So überprüfen Sie, ob das Cluster sich im Wartungsmodus befindet:

pcs property config

Die maintenance-mode Eigenschaft wird nicht angezeigt, wenn das Cluster ordnungsgemäß ausgeführt
wird. Wenn sich der Cluster derzeit im Wartungsmodus befindet, wird die Eigenschaft als gemeldet true. Um
den Wartungsmodus zu aktivieren, führen Sie folgende Schritte aus:

pcs property set maintenance-mode=true

Sie können überprüfen, indem Sie den PC-Status ausführen und sicherstellen, dass alle Ressourcen „(nicht
verwaltet)“ anzeigen. Um das Cluster aus dem Wartungsmodus zu nehmen, führen Sie folgende Schritte aus:

pcs property set maintenance-mode=false

Beenden Sie den Cluster und starten Sie den Cluster

Graziös wird das HA-Cluster angehalten und gestartet.

Überblick

In diesem Abschnitt wird beschrieben, wie das BeeGFS-Cluster ordnungsgemäß heruntergefahren und neu
gestartet wird. Beispielszenarien, bei denen dies möglicherweise erforderlich ist, sind beispielsweise die
elektrische Wartung oder die Migration zwischen Rechenzentren oder Racks.

Schritte

Wenn Sie aus irgendeinem Grund das gesamte BeeGFS-Cluster beenden und alle Dienste herunterfahren
müssen, laufen:

170

pcs cluster stop --all

Es ist auch möglich, das Cluster auf einzelnen Nodes anzuhalten (wodurch automatisch ein Failover von
Services auf einen anderen Node erfolgt). Es wird jedoch empfohlen, den Node zunächst in den Standby-
Modus zu versetzen (siehe "Failover"Abschnitt):

pcs cluster stop <HOSTNAME>

So starten Sie Cluster Services und Ressourcen auf allen Nodes:

pcs cluster start --all

Oder starten Sie Services auf einem bestimmten Knoten mit:

pcs cluster start <HOSTNAME>

An dieser Stelle Lauf pcs status Überprüfen Sie, ob die Cluster- und BeeGFS-Services auf allen Nodes
gestartet werden und die Services auf den erwarteten Nodes ausgeführt werden.

Je nach Clustergröße kann es Sekunden oder Minuten dauern, bis der gesamte Cluster
angehalten wird oder wie gestartet in angezeigt pcs status wird. Wenn pcs cluster
<COMMAND> länger als fünf Minuten hängt, bevor Sie den Befehl mit „Strg+C“ abbrechen,
melden Sie sich bei jedem Knoten des Clusters an und prüfen Sie mit pcs status, ob
Clusterdienste (Corosync/Pacemaker) auf diesem Knoten noch ausgeführt werden. Von jedem
Node, der das Cluster noch aktiv ist, können Sie überprüfen, welche Ressourcen das Cluster
blockieren. Lösen Sie das Problem manuell, und der Befehl sollte entweder abgeschlossen
werden oder kann erneut ausgeführt werden, um alle verbleibenden Services zu beenden.

Datei-Nodes ersetzen

Ersetzen eines Dateiknotens, wenn der ursprüngliche Server fehlerhaft ist.

Überblick

Dies bietet einen Überblick über die Schritte, die zum Austausch eines Datei-Nodes im Cluster erforderlich
sind. Diese Schritte setzen voraus, dass der Datei-Node aufgrund eines Hardwareproblems ausgefallen ist und
dass er durch einen neuen identischen File-Node ersetzt wurde.

Schritte

1. Ersetzen Sie den Datei-Node physisch und stellen Sie alle Kabel auf den Block-Node und das Storage-
Netzwerk wieder her.

2. Installieren Sie das Betriebssystem auf dem Dateiknoten neu, einschließlich Hinzufügen von Red hat
Subskriptionen.

3. Konfiguration von Management und BMC Networking auf dem Datei-Node

171

4. Aktualisieren Sie die Ansible-Bestandsaufnahme, wenn sich der Hostname, die IP, die Zuordnung der
PCIe-zu-logischen Schnittstelle oder eine weitere Änderung bezüglich des neuen Datei-Nodes ergeben. Im
Allgemeinen ist dies nicht erforderlich, wenn der Node durch identische Serverhardware ersetzt wurde und
Sie die ursprüngliche Netzwerkkonfiguration verwenden.

a. Wenn sich beispielsweise der Hostname geändert hat, erstellen Sie die Bestandsdatei des Node (oder
benennen Sie sie um) (host_vars/<NEW_NODE>.yml`) Und dann in der Ansible-Bestandsdatei
(inventory.yml), ersetzen Sie den Namen des alten Knotens durch den neuen Knotennamen:

all:

 ...

 children:

 ha_cluster:

 children:

 mgmt:

 hosts:

 node_h1_new: # Replaced "node_h1" with "node_h1_new"

 node_h2:

5. Entfernen Sie den alten Node von einem der anderen Nodes im Cluster: pcs cluster node remove
<HOSTNAME>.

FAHREN SIE VOR AUSFÜHRUNG DIESES SCHRITTS NICHT FORT.

6. Auf dem Ansible-Steuerungsknoten:

a. Entfernen Sie den alten SSH-Schlüssel mit:

`ssh-keygen -R <HOSTNAME_OR_IP>`

b. Konfigurieren Sie passwortloses SSH auf den Knoten Ersetzen mit:

ssh-copy-id <USER>@<HOSTNAME_OR_IP>

7. Führen Sie das Ansible-Playbook erneut aus, um den Node zu konfigurieren und dem Cluster
hinzuzufügen:

ansible-playbook -i <inventory>.yml <playbook>.yml

8. An dieser Stelle, Lauf pcs status Und überprüfen Sie, ob der ersetzte Node jetzt aufgeführt ist und
Services ausführt.

Erweitern oder verkleinern Sie den Cluster

Fügen Sie dem Cluster Bausteine hinzu oder entfernen Sie diese.

172

Überblick

In diesem Abschnitt werden verschiedene Überlegungen und Optionen dokumentiert, um die Größe Ihres
BeeGFS HA-Clusters anzupassen. Normalerweise wird die Cluster-Größe durch Hinzufügen oder Entfernen
von Bausteinen angepasst. Bei diesen handelt es sich in der Regel um zwei Datei-Nodes, die als HA-Paar
eingerichtet wurden. Bei Bedarf können auch einzelne Datei-Nodes (oder andere Cluster-Nodes) hinzugefügt
oder entfernt werden.

Hinzufügen eines Bausteins zum Cluster

Überlegungen

Das erweitern des Clusters durch Hinzufügen weiterer Bausteine ist ein unkomplizierter Prozess. Beachten Sie
zunächst die Einschränkungen der minimalen und maximalen Anzahl von Cluster-Nodes in jedem einzelnen
HA-Cluster und bestimmen Sie, ob Sie Nodes zum vorhandenen HA-Cluster hinzufügen oder ein neues HA-
Cluster erstellen sollten. Normalerweise besteht jeder Baustein aus zwei Datei-Nodes, aber drei Nodes sind
die Mindestanzahl an Nodes pro Cluster (um ein Quorum zu schaffen). Zehn davon ist das empfohlene
Maximum (getestete). Für erweiterte Szenarien ist es möglich, einen einzelnen „Tiebreaker“ Node
hinzuzufügen, auf dem keine BeeGFS-Services ausgeführt werden, wenn ein Cluster mit zwei Nodes
implementiert wird. Bitte wenden Sie sich an den NetApp Support, wenn Sie eine solche Implementierung in
Betracht ziehen.

Beachten Sie diese Einschränkungen und das erwartete zukünftige Cluster-Wachstum bei Ihrer Entscheidung
über das erweitern des Clusters. Wenn Sie beispielsweise einen sechs-Node-Cluster haben und vier weitere
Nodes hinzufügen müssen, empfiehlt es sich, nur einen neuen HA-Cluster zu starten.

Denken Sie daran, dass ein einziges BeeGFS-Dateisystem aus mehreren unabhängigen HA-
Clustern bestehen kann. Dadurch können Filesysteme weit über die empfohlenen/harten
Grenzen der zugrunde liegenden HA-Cluster-Komponenten hinaus skaliert werden.

Schritte

Wenn Sie dem Cluster einen Baustein hinzufügen, müssen Sie die host_vars Dateien für jeden der neuen
Datei-Nodes und Block-Nodes (E-Series-Arrays) erstellen. Die Namen dieser Hosts müssen dem Bestand
hinzugefügt werden, zusammen mit den neuen Ressourcen, die erstellt werden sollen. Die entsprechenden
group_vars Dateien müssen für jede neue Ressource erstellt werden. "Nutzung benutzerdefinierter
Architekturen"Weitere Informationen finden Sie im Abschnitt.

Nach dem Erstellen der richtigen Dateien müssen alle erforderlichen Dateien die Automatisierung mit dem
Befehl erneut ausführen:

ansible-playbook -i <inventory>.yml <playbook>.yml

Entfernen eines Bausteins aus dem Cluster

Beachten Sie bei der Außerbetriebnahme eines Baublocks verschiedene Aspekte, z. B.:

• Welche BeeGFS-Services laufen in diesem Baustein?

• Werden nur die File-Nodes ausgemustert und die Block-Nodes mit neuen Datei-Nodes verbunden?

• Wenn der gesamte Baustein außer Betrieb genommen wird, sollten die Daten in einen neuen Baustein
verschoben, in vorhandene Nodes im Cluster verteilt oder auf ein neues BeeGFS Filesystem oder ein
anderes Storage-System verschoben werden?

173

• Kann dies bei einem Ausfall oder ohne Unterbrechung geschehen?

• Ist der Baustein aktiv genutzt oder enthält er in erster Linie Daten, die nicht mehr aktiv sind?

Aufgrund der vielfältigen möglichen Ausgangspunkte und gewünschten Endzustände wenden Sie sich bitte an
den NetApp Support, damit wir die optimale Strategie basierend auf Ihrer Umgebung und Ihren Anforderungen
identifizieren und implementieren können.

Fehlerbehebung

Fehlerbehebung für ein BeeGFS HA-Cluster.

Überblick

In diesem Abschnitt wird erläutert, wie verschiedene Fehler und andere Szenarien untersucht und behoben
werden können, die beim Betrieb eines BeeGFS HA-Clusters auftreten können.

Leitfäden Zur Fehlerbehebung

Untersuchen Unerwarteter Failover

Wenn ein Node unerwartet eingezäunt ist und seine Services auf einen anderen Node verschoben werden,
sollte der erste Schritt darin bestehen, zu überprüfen, ob das Cluster auf mögliche Ressourcenausfälle an der
Unterseite von hinweist pcs status. Normalerweise gibt es keine Daten, wenn das Fechten erfolgreich
abgeschlossen wurde und die Ressourcen auf einem anderen Knoten neu gestartet wurden.

Im Allgemeinen wird der nächste Schritt sein, durch die systemd-Logs mit zu suchen journalctl Auf einem
beliebigen der übrigen Dateiknoten (Pacemaker-Protokolle werden auf allen Knoten synchronisiert). Wenn Sie
wissen, wann der Fehler aufgetreten ist, können Sie die Suche kurz vor dem Auftreten des Fehlers starten (in
der Regel mindestens zehn Minuten vor dem Auftreten des Fehlers empfohlen):

journalctl --since "<YYYY-MM-DD HH:MM:SS>"

Die folgenden Abschnitte zeigen einen gemeinsamen Text, den Sie in den Protokollen grep können, um die
Untersuchung weiter einzugrenzen.

Schritte zur Untersuchung/Lösung

Schritt 1: Prüfen, ob der BeeGFS-Monitor einen Fehler festgestellt hat:

Wenn das Failover vom BeeGFS-Monitor ausgelöst wurde, sollte ein Fehler angezeigt werden (wenn nicht mit
dem nächsten Schritt fortfahren).

journalctl --since "<YYYY-MM-DD HH:MM:SS>" | grep -i unexpected

[...]

Jul 01 15:51:03 beegfs_01 pacemaker-schedulerd[9246]: warning: Unexpected

result (error: BeeGFS service is not active!) was recorded for monitor of

meta_08-monitor on beegfs_02 at Jul 1 15:51:03 2022

174

In diesem Fall hat der BeeGFS-Service meta_08 aus irgendeinem Grund gestoppt. Um mit der
Fehlerbehebung fortzufahren, sollten wir beegfs_02 booten und Protokolle für den Dienst unter überprüfen
/var/log/beegfs-meta-meta_08_tgt_0801.log. Beispiel: Aufgrund eines internen Problems oder
eines Problems mit dem Node konnte für den BeeGFS-Service ein Applikationsfehler aufgetreten sein.

Im Gegensatz zu den Protokollen von Pacemaker werden Protokolle für BeeGFS-Services nicht
auf alle Knoten im Cluster verteilt. Um diese Arten von Ausfällen zu untersuchen, sind die
Protokolle vom ursprünglichen Knoten, auf dem der Fehler aufgetreten ist, erforderlich.

Mögliche Fehler, die vom Monitor gemeldet werden könnten:

• Auf Ziel(e) kann(n) nicht zugegriffen werden!

◦ Beschreibung: Gibt an, auf die Block-Volumes nicht zugegriffen werden konnte.

◦ Fehlerbehebung:

▪ Wenn auch der Service am alternativen Datei-Node nicht gestartet werden konnte, vergewissern
Sie sich, dass der Block-Node ordnungsgemäß ist.

▪ Prüfen Sie auf physische Probleme, die den Zugriff auf die Block-Nodes durch diesen Datei-Node
verhindern würden, z. B. fehlerhafte InfiniBand-Adapter oder Kabel.

• Netzwerk ist nicht erreichbar!

◦ Beschreibung: Keiner der Adapter, die von Clients verwendet wurden, um sich mit diesem BeeGFS-
Dienst zu verbinden, war online.

◦ Fehlerbehebung:

▪ Wenn mehrere/alle Dateiknoten betroffen waren, überprüfen Sie, ob ein Fehler im Netzwerk
vorhanden ist, das zum Verbinden der BeeGFS-Clients und des Dateisystems verwendet wurde.

▪ Prüfen Sie, ob physikalische Probleme den Zugriff auf die Clients durch diesen Dateiknoten
verhindern würden, z. B. fehlerhafte InfiniBand-Adapter oder Kabel.

• BeeGFS-Service ist nicht aktiv!

◦ Beschreibung: Ein BeeGFS-Dienst hat unerwartet gestoppt.

◦ Fehlerbehebung:

▪ Überprüfen Sie auf dem Datei-Node, der den Fehler gemeldet hat, die Protokolle für den
betroffenen BeeGFS-Dienst, ob er einen Absturz gemeldet hat. Öffnen Sie in diesem Fall einen Fall
mit NetApp Support, damit der Absturz untersucht werden kann.

▪ Wenn im BeeGFS-Protokoll keine Fehler gemeldet werden, prüfen Sie in den Journalprotokollen,
ob systemd einen Grund protokolliert hat, warum der Dienst angehalten wurde. In einigen Fällen
wurde dem BeeGFS-Dienst möglicherweise keine Chance gegeben, Nachrichten zu protokollieren,
bevor der Prozess beendet wurde (z. B. wenn jemand ausgeführt wurde kill -9 <PID>).

Schritt 2: Prüfen Sie, ob der Node das Cluster unerwartet verlassen hat

Falls auf dem Node ein schwerwiegender Hardware-Ausfall auftritt (z. B. die Systemplatine gestorben) oder ein
Kernel-Panic oder ein ähnliches Softwareproblem auftritt, wird der BeeGFS-Monitor keinen Fehler melden.
Suchen Sie stattdessen nach dem Hostnamen und Sie sollten Meldungen von Pacemaker sehen, die darauf
hinweisen, dass der Knoten unerwartet verloren gegangen ist:

175

journalctl --since "<YYYY-MM-DD HH:MM:SS>" | grep -i <HOSTNAME>

[...]

Jul 01 16:18:01 beegfs_01 pacemaker-attrd[9245]: notice: Node beegfs_02

state is now lost

Jul 01 16:18:01 beegfs_01 pacemaker-controld[9247]: warning:

Stonith/shutdown of node beegfs_02 was not expected

Schritt 3: Überprüfen Sie, ob Pacemaker in der Lage war, den Knoten einzuzäunen

In allen Szenarien sollten Sie sehen, dass Pacemaker versucht, den Knoten einzuzäunen, um zu überprüfen,
ob er tatsächlich offline ist (genaue Meldungen können von der Ursache des Fechts abweichen):

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Cluster

node beegfs_02 will be fenced: peer is no longer part of the cluster

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Node

beegfs_02 is unclean

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Scheduling

Node beegfs_02 for STONITH

Wenn die Fechtaktion erfolgreich abgeschlossen ist, werden folgende Meldungen angezeigt:

Jul 01 16:18:14 beegfs_01 pacemaker-fenced[9243]: notice: Operation 'off'

[2214070] (call 27 from pacemaker-controld.9247) for host 'beegfs_02' with

device 'fence_redfish_2' returned: 0 (OK)

Jul 01 16:18:14 beegfs_01 pacemaker-fenced[9243]: notice: Operation 'off'

targeting beegfs_02 on beegfs_01 for pacemaker-

controld.9247@beegfs_01.786df3a1: OK

Jul 01 16:18:14 beegfs_01 pacemaker-controld[9247]: notice: Peer

beegfs_02 was terminated (off) by beegfs_01 on behalf of pacemaker-

controld.9247: OK

Wenn die Fechten-Aktion aus irgendeinem Grund fehlgeschlagen ist, können die BeeGFS-Dienste auf einem
anderen Node nicht neu starten, um Datenkorruption zu vermeiden. Das wäre ein Problem, separat zu
untersuchen, wenn zum Beispiel das Fechten-Gerät (PDU oder BMC) unzugänglich oder falsch konfiguriert
war.

Adressen fehlgeschlagener Ressourcen Aktionen (am Ende des Stk-Status gefunden)

Wenn eine Ressource, die zum Ausführen eines BeeGFS-Dienstes erforderlich ist, ausfällt, wird ein Failover
durch den BeeGFS-Monitor ausgelöst. Wenn dies der Fall ist, werden wahrscheinlich keine „fehlgeschlagenen
Ressourcenaktionen“ am Ende von aufgeführt pcs status, und Sie sollten die Schritte zum Thema "Failback
nach einem ungeplanten Failover"lesen.

Ansonsten sollte es in der Regel nur zwei Szenarien geben, in denen Sie „Aktionen für fehlgeschlagene
Ressourcen“ sehen.

176

Schritte zur Untersuchung/Lösung

Szenario 1: Bei einem Fechten-Agent wurde ein temporäres oder dauerhaftes Problem erkannt und es
wurde neu gestartet oder auf einen anderen Knoten verschoben.

Einige Fechten-Agenten sind zuverlässiger als andere, und jeder implementiert seine eigene
Überwachungsmethode, um sicherzustellen, dass die Fechtvorrichtung bereit ist. Insbesondere wurde
festgestellt, dass der Fechtagent von Redfish fehlgeschlagene Ressourcenaktionen wie die folgenden meldet,
obwohl er immer noch gestartet wird:

 * fence_redfish_2_monitor_60000 on beegfs_01 'not running' (7):

call=2248, status='complete', exitreason='', last-rc-change='2022-07-26

08:12:59 -05:00', queued=0ms, exec=0ms

Ein Fechten-Agent, der fehlgeschlagene Ressourcen-Aktionen auf einem bestimmten Knoten meldet, wird
nicht erwartet, dass ein Failover der BeeGFS-Dienste ausgelöst wird, die auf diesem Knoten ausgeführt
werden. Es sollte einfach automatisch auf demselben oder einem anderen Knoten neu gestartet werden.

Schritte zur Lösung:

1. Wenn der Fechtagent sich immer wieder weigert, auf allen oder einer Untermenge von Knoten ausgeführt
zu werden, überprüfen Sie, ob diese Knoten eine Verbindung zum Fechtagenten herstellen können, und
überprüfen Sie, ob der Fechtagent im Ansible-Bestand korrekt konfiguriert ist.

a. Wenn z. B. ein Fechten-Agent von Redfish (BMC) auf demselben Knoten ausgeführt wird, wie er für
das Fechten verantwortlich ist, und die Betriebssystemverwaltung und BMC-IPs auf derselben
physischen Schnittstelle sind, ermöglichen einige Netzwerk-Switch-Konfigurationen keine
Kommunikation zwischen den beiden Schnittstellen (um Netzwerkschleifen zu verhindern).
Standardmäßig versucht das HA-Cluster, keine Fechten-Agenten auf dem Node zu platzieren, den sie
für Fechten verantwortlich sind, aber dies kann in einigen Szenarien/Konfigurationen geschehen.

2. Sobald alle Probleme behoben sind (oder das Problem scheinbar kurzlebig zu sein schien), führen Sie den
folgenden Lauf aus pcs resource cleanup So setzen Sie die fehlgeschlagenen Ressourcenaktionen
zurück.

Szenario 2: Der BeeGFS-Monitor hat ein Problem erkannt und ein Failover ausgelöst, aber aus
irgendeinem Grund konnte das System nicht auf einem sekundären Knoten starten.

Sofern das Fechten aktiviert ist und die Ressource nicht vom Stoppen auf dem ursprünglichen Knoten blockiert
wurde (siehe Abschnitt Fehlerbehebung für „Standby (on-fail)“)), sind die wahrscheinlichsten Gründe, warum
Probleme auftreten, die die Ressource auf einem sekundären Knoten zu starten, weil:

• Der sekundäre Node war bereits offline.

• Ein physisches oder logisches Konfigurationsproblem verhindert, dass das sekundäre System auf die als
BeeGFS-Ziele verwendeten Block-Volumes zugreift.

Schritte zur Lösung:

1. Für jeden Eintrag in den Aktionen für fehlgeschlagene Ressourcen:

a. Bestätigen Sie, dass die fehlgeschlagene Ressourcenaktion ein Startvorgang war.

b. Basierend auf der in den Aktionen für fehlgeschlagene Ressourcen angegebenen Ressource und dem
in den Knoten angegebenen Ressource:

177

i. Suchen Sie nach externen Problemen, die verhindern würden, dass der Knoten die angegebene
Ressource startet, und beheben Sie diese. Wenn zum Beispiel BeeGFS IP-Adresse (Floating IP)
nicht gestartet werden konnte, vergewissern Sie sich, dass mindestens eine der erforderlichen
Schnittstellen angeschlossen/online ist und mit dem richtigen Netzwerk-Switch verbunden ist.
Wenn ein BeeGFS-Ziel (Blockgerät/E-Series-Volume) fehlgeschlagen ist, überprüfen Sie, ob die
physischen Verbindungen zu den Backend-Block-Nodes wie erwartet verbunden sind, und
überprüfen Sie, ob die Block-Nodes ordnungsgemäß sind.

c. Wenn es keine offensichtlichen externen Probleme gibt und Sie eine Ursache für diesen Vorfall
wünschen, sollten Sie einen Case mit dem NetApp Support eröffnen, um ihn zu untersuchen, bevor Sie
fortfahren, da die folgenden Schritte eine Ursachenanalyse (Root Cause Analysis, RCA)
schwierig/unmöglich machen können.

2. Nach der Lösung externer Probleme:

a. Kommentieren Sie alle nicht funktionierenden Nodes aus der Ansible Inventory.yml-Datei und führen
Sie das vollständige Ansible-Playbook erneut aus, um sicherzustellen, dass die logische Konfiguration
auf den/den sekundären Nodes korrekt eingerichtet ist.

i. Hinweis: Vergessen Sie nicht, diese Nodes zu kommentieren und das Playbook erneut
auszuführen, sobald sich die Nodes in einem ordnungsgemäßen Zustand befinden und Sie zum
Failback bereit sind.

b. Alternativ können Sie versuchen, das Cluster manuell wiederherzustellen:

i. Platzieren Sie alle Offline-Nodes wieder online mithilfe von: pcs cluster start <HOSTNAME>

ii. Löschen Sie alle fehlgeschlagenen Ressourcenaktionen mit: pcs resource cleanup

iii. Stk-Status ausführen und überprüfen, ob alle Dienste wie erwartet beginnen.

iv. Bei Bedarf ausführen pcs resource relocate run Verschieben von Ressourcen zurück auf
den bevorzugten Node (sofern verfügbar)

Häufige Probleme

BeeGFS-Services führen bei Anforderung kein Failover oder Failback durch

Wahrscheinliche Ausgabe: das pcs resource relocate Befehl ausführen wurde ausgeführt, aber nie
erfolgreich abgeschlossen.

So überprüfen Sie: Lauf pcs constraint --full Und überprüfen Sie auf alle Standortbeschränkungen
mit einer ID von pcs-relocate-<RESOURCE>.

Wie löst man: Lauf pcs resource relocate clear Wiederholen Sie anschließend den Test pcs
constraint --full Um zu überprüfen, ob die zusätzlichen Bedingungen entfernt wurden.

Ein Knoten im Stk-Status zeigt „Standby (ein-aus)“ an, wenn das Fechten deaktiviert ist

Wahrscheinliche Ursache: Pacemaker konnte nicht erfolgreich bestätigen, dass alle Ressourcen auf dem
Knoten, der ausgefallen ist, angehalten wurden.

Wie löst man:

1. Laufen pcs status Und überprüfen Sie, ob die Ressourcen nicht „gestartet“ sind, oder zeigen Sie Fehler
an der Unterseite der Ausgabe an, und beheben Sie eventuelle Probleme.

2. Um den Node wieder in den Online-Modus zu versetzen, wird ausgeführt pcs resource cleanup
--node=<HOSTNAME>.

178

Nach einem unerwarteten Failover zeigen die Ressourcen „gestartet (ein-Fehler)“ im Stk-Status an,
wenn das Fechten aktiviert ist

Wahrscheinliches Problem: Es trat ein Problem auf, das einen Failover auslöste, Pacemaker konnte jedoch
nicht überprüfen, ob der Knoten eingezäunt war. Dies kann passieren, weil Fechten falsch konfiguriert war
oder es ein Problem mit dem Fechten Agent gab (Beispiel: Die PDU wurde vom Netzwerk getrennt).

Wie löst man:

1. Vergewissern Sie sich, dass der Node tatsächlich ausgeschaltet ist.

Wenn der von Ihnen angegebene Node nicht aktiv ist, der aber Cluster-Services oder
-Ressourcen ausführt, treten Datenbeschädigungen/Cluster-Ausfälle auf.

2. Fechten manuell bestätigen mit: pcs stonith confirm <NODE>

An diesem Punkt sollten die Dienste den Failover beenden und auf einem anderen gesunden Knoten neu
gestartet werden.

Häufige Fehlerbehebungsaufgaben

Starten Sie individuelle BeeGFS-Dienste neu

Normalerweise, wenn ein BeeGFS-Service neu gestartet werden muss (z. B. um eine Konfigurationsänderung
zu ermöglichen), sollte dies durch Aktualisierung des Ansible-Bestands und durch erneute Ausführung des
Playbooks geschehen. In manchen Szenarien kann es wünschenswert sein, einzelne Services neu zu starten,
um eine schnellere Fehlerbehebung zu ermöglichen, beispielsweise um das Protokollierungsniveau zu ändern,
ohne auf die Ausführung des gesamten Playbooks zu warten.

Wenn nicht auch manuelle Änderungen am Ansible-Inventar hinzugefügt werden, werden diese
bei der nächsten Ausführung des Ansible-Playbooks zurückgesetzt.

Option 1: Systemgesteuerter Neustart

Wenn das Risiko besteht, dass der BeeGFS-Service mit der neuen Konfiguration nicht ordnungsgemäß neu
gestartet wird, versetzen Sie das Cluster zuerst in den Wartungsmodus, um zu verhindern, dass der BeeGFS-
Monitor den Service erkennt, angehalten wird und ein unerwünschtes Failover ausgelöst wird:

pcs property set maintenance-mode=true

Nehmen Sie ggf. Änderungen an der Servicekonfiguration unter vor
/mnt/<SERVICE_ID>/_config/beegfs-.conf (Beispiel:
/mnt/meta_01_tgt_0101/metadata_config/beegfs-meta.conf) Dann systemd verwenden, um es
neu zu starten:

systemctl restart beegfs-*@<SERVICE_ID>.service

Beispiel: systemctl restart beegfs-meta@meta_01_tgt_0101.service

179

Option 2: Schrittmachergesteuerter Neustart

Wenn Sie keine Sorge haben, dass die neue Konfiguration dazu führen könnte, dass der Service unerwartet
angehalten wird (z. B. einfach die Protokollierungsebene ändern), oder Sie sich in einem Wartungsfenster
befinden und sich keine Gedanken über Ausfallzeiten machen, können Sie den BeeGFS-Monitor einfach für
den Service neu starten, den Sie neu starten möchten:

pcs resource restart <SERVICE>-monitor

Zum Beispiel zum Neustart des BeeGFS-Managementdienstes: pcs resource restart mgmt-monitor

180

Rechtliche Hinweise
Rechtliche Hinweise ermöglichen den Zugriff auf Copyright-Erklärungen, Marken, Patente
und mehr.

Urheberrecht

"https://www.netapp.com/company/legal/copyright/"

Marken

NetApp, das NETAPP Logo und die auf der NetApp Markenseite aufgeführten Marken sind Marken von
NetApp Inc. Andere Firmen- und Produktnamen können Marken der jeweiligen Eigentümer sein.

"https://www.netapp.com/company/legal/trademarks/"

Patente

Eine aktuelle Liste der NetApp Patente finden Sie unter:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Datenschutzrichtlinie

"https://www.netapp.com/company/legal/privacy-policy/"

Open Source

In den Benachrichtigungsdateien finden Sie Informationen zu Urheberrechten und Lizenzen von Drittanbietern,
die in der NetApp Software verwendet werden.

"Hinweis zum SANtricity OS für die E-Series/EF-Series"

181

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://library.netapp.com/ecm/ecm_download_file/ECMLP2874738

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

182

http://www.netapp.com/TM\

	BeeGFS auf NetApp mit E-Series Storage : BeeGFS on NetApp with E-Series Storage
	Inhalt
	BeeGFS auf NetApp mit E-Series Storage
	Los geht’s
	Was ist in dieser Website enthalten
	Begriffe und Konzepte

	Einsatz verifizierter Architekturen
	Überblick und Anforderungen
	Lösungsüberblick
	Überblick über die Architektur
	Technische Anforderungen

	Überprüfen des Lösungsdesigns
	Designübersicht
	Hardwarekonfiguration
	Softwarekonfiguration
	Design-Überprüfung
	Richtlinien für die Dimensionierung
	Performance-Optimierung
	Baustein mit hoher Kapazität

	Implementieren der Lösung
	Implementierungsübersicht
	Weitere Informationen zum Ansible Inventar
	Besprechen der Best Practices
	Implementierung von Hardware
	Implementierung von Software
	Skalierung auf mehr als fünf Bausteine
	Empfohlene Prozentsätze für die Überprovisionierung von Storage-Pools
	Baustein mit hoher Kapazität

	Verwenden Sie individuelle Architekturen
	Überblick und Anforderungen
	Einführung
	Implementierungsübersicht
	Anforderungen

	Ersteinrichtung
	Installieren und verkabeln Sie die Hardware
	Datei- und Block-Knoten einrichten
	Ansible-Steuerungsknoten Einrichten

	Definieren Sie das BeeGFS-Dateisystem
	Ansible-Bestandsübersicht
	Planen Sie das Dateisystem
	Datei- und Blockknoten definieren
	BeeGFS-Dienste definieren
	Zuordnen von BeeGFS-Services zu Datei-Nodes

	Stellen Sie das BeeGFS-Dateisystem bereit
	Ansible – Playbook-Überblick
	Implementieren Sie das BeeGFS HA-Cluster
	Bereitstellen von BeeGFS-Clients
	Überprüfen Sie die BeeGFS-Bereitstellung

	Funktionen und Integrationen bereitstellen
	BeeGFS CSI-Treiber
	TLS-Verschlüsselung für BeeGFS v8 konfigurieren
	Überblick
	Verwendung einer vertrauenswürdigen Zertifizierungsstelle
	Erstellung einer lokalen Zertifizierungsstelle
	TLS deaktivieren

	BeeGFS-Cluster verwalten
	Übersicht, Schlüsselkonzepte und Terminologie
	Überblick
	Schlüsselkonzepte
	Allgemeine Terminologie

	Wann Ansible im Vergleich zum Tool PCs verwendet werden soll
	Untersuchen Sie den Status des Clusters
	Überblick
	Allgemeines zur Ausgabe von pcs status

	Konfigurieren Sie HA-Cluster und BeeGFS neu
	Überblick
	So deaktivieren und aktivieren Sie Fechten

	Aktualisieren Sie die HA-Cluster-Komponenten
	Upgrade der BeeGFS Services
	Upgrade auf BeeGFS v8
	Aktualisieren Sie Pacemaker- und Corosync-Pakete in einem HA-Cluster
	Aktualisiert die Datei-Node-Adapter-Firmware
	Upgrade von E-Series Storage-Arrays

	Service und Wartung
	Failover- und Failback-Services
	Versetzen Sie das Cluster in den Wartungsmodus
	Beenden Sie den Cluster und starten Sie den Cluster
	Datei-Nodes ersetzen
	Erweitern oder verkleinern Sie den Cluster

	Fehlerbehebung
	Überblick
	Leitfäden Zur Fehlerbehebung
	Häufige Probleme
	Häufige Fehlerbehebungsaufgaben

	Rechtliche Hinweise
	Urheberrecht
	Marken
	Patente
	Datenschutzrichtlinie
	Open Source

