
Implementieren der Lösung
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-
overview.html on January 27, 2026. Always check docs.netapp.com for the latest.

Inhalt
Implementieren der Lösung . 1

Implementierungsübersicht . 1

Ansible-Sammlungen und -Funktionen . 1

Konfigurationsprofile für BeeGFS-Bausteine . 1

Übersicht über die einzelnen Implementierungsschritte . 1

Weitere Informationen zum Ansible Inventar . 2

Ansible-Module und -Rollen. 2

Bestandslayout für BeeGFS HA-Cluster . 3

Besprechen der Best Practices . 4

Standardkonventionen . 4

InfiniBand-Storage-Netzwerkkonfiguration . 5

Implementierung von Hardware . 8

Implementierung von Software. 11

Einrichten von Datei-Nodes und Block-Nodes . 11

Optimieren Sie die System-Einstellungen des File Node für die Performance . 13

Richten Sie einen Ansible-Steuerungsknoten ein . 15

Erstellen des Ansible-Inventars . 16

Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine . 29

BeeGFS bereitstellen . 43

Konfigurieren Sie BeeGFS-Clients . 46

Skalierung auf mehr als fünf Bausteine . 50

Empfohlene Prozentsätze für die Überprovisionierung von Storage-Pools . 51

Baustein mit hoher Kapazität . 51

Controller . 52

Laufwerkplatzierung. 52

Erweiterungsfächer . 53

Implementieren der Lösung

Implementierungsübersicht

BeeGFS auf NetApp kann auf validierte Datei- und Block-Nodes mithilfe von Ansible mit
dem BeeGFS-Baustein-Design von NetApp implementiert werden.

Ansible-Sammlungen und -Funktionen

Die BeeGFS auf NetApp-Lösung wird mithilfe von Ansible implementiert, einer beliebten IT-Automatisierungs-
Engine, die Applikationsimplementierungen automatisiert. Ansible verwendet eine Reihe von Dateien, die
gemeinsam als Inventar bezeichnet werden. Hierbei wird das BeeGFS-Filesystem modelliert, das Sie
implementieren möchten.

Ansible ermöglicht Unternehmen wie NetApp die Erweiterung auf integrierte Funktionen mithilfe von
Sammlungen, die auf Ansible Galaxy verfügbar sind (siehe "NetApp E-Series BeeGFS Sammlung").
Sammlungen umfassen Module, die bestimmte Funktionen oder Aufgaben (wie das Erstellen eines E-Series
Volumes) ausführen, sowie Rollen, die mehrere Module und andere Rollen aufrufen können. Dieser
automatisierte Ansatz reduziert die Zeit für die Implementierung des BeeGFS-Filesystems und des zugrunde
liegenden HA-Clusters. Darüber hinaus vereinfacht es die Wartung und Erweiterung des Clusters und des
BeeGFS-Dateisystems.

Weitere Informationen finden Sie unter "Weitere Informationen zum Ansible Inventar".

Da zahlreiche Schritte an der Implementierung der BeeGFS auf NetApp-Lösung beteiligt sind,
unterstützt NetApp die manuelle Bereitstellung der Lösung nicht.

Konfigurationsprofile für BeeGFS-Bausteine

Die Implementierungsverfahren umfassen die folgenden Konfigurationsprofile:

• Ein einziger Baustein, der Management-, Metadaten- und Storage-Services umfasst

• Ein zweiter Baustein, der Metadaten und Storage-Services umfasst.

• Ein dritter Baustein, der nur Storage-Services umfasst.

Diese Profile veranschaulichen die gesamte Palette der empfohlenen Konfigurationsprofile für die NetApp
BeeGFS-Bausteine. Bei jeder Implementierung kann die Anzahl der Metadaten und Storage-Bausteine oder
nur-Storage-Services-Bausteine je nach Kapazitäts- und Performance-Anforderungen variieren.

Übersicht über die einzelnen Implementierungsschritte

Die Bereitstellung umfasst folgende allgemeine Aufgaben:

Hardwarebereitstellung

1. Stellen Sie jeden Baustein physisch zusammen.

2. Rack-und Kabelhardware: Ausführliche Verfahren finden Sie unter "Implementierung von Hardware".

Softwareimplementierung

1. "Richten Sie Datei- und Block-Nodes ein".

1

https://galaxy.ansible.com/netapp_eseries/santricity

◦ Konfigurieren Sie BMC-IPs auf Datei-Knoten

◦ Installieren Sie ein unterstütztes Betriebssystem und konfigurieren Sie Managementnetzwerk auf
Datei-Knoten

◦ Konfiguration der Management-IPs auf Block-Nodes

2. "Richten Sie einen Ansible-Steuerungsknoten ein".

3. "Passen Sie die Systemeinstellungen für die Performance an".

4. "Erstellen des Ansible-Inventars".

5. "Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine".

6. "Implementieren Sie BeeGFS mit Ansible".

7. "Konfigurieren Sie BeeGFS-Clients".

Die Bereitstellungsverfahren umfassen mehrere Beispiele, in denen Text in eine Datei kopiert
werden muss. Achten Sie besonders auf Inline-Kommentare, die durch die Zeichen „#“ oder „//“
gekennzeichnet sind und auf alles hinweisen, was für eine bestimmte Bereitstellung geändert
werden sollte oder kann. Beispiel:

`beegfs_ha_ntp_server_pools: # THIS IS AN EXAMPLE OF A COMMENT!

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"`

Derivative Architekturen mit Variationen bei Implementierungsempfehlungen:

• "Baustein Mit Hoher Kapazität"

Weitere Informationen zum Ansible Inventar

Machen Sie sich vor der Implementierung mit der Konfiguration von Ansible vertraut und
werden Sie zur Implementierung der BeeGFS auf NetApp Lösung verwendet.

Der Ansible-Bestand ist eine Verzeichnisstruktur mit den Datei- und Block-Nodes für das zu implementierende
BeeGFS-Filesystem. Es enthält Hosts, Gruppen und Variablen, die das gewünschte BeeGFS-Dateisystem
beschreiben. Die Ansible-Bestandsaufnahme muss auf dem Ansible-Steuerungsknoten gespeichert werden,
bei dem es sich um jeden Computer mit Zugriff auf die Datei- und Block-Nodes handelt, mit denen das Ansible-
Playbook ausgeführt wird. Probenbestände können von der heruntergeladen werden "NetApp E-Series
BeeGFS GitHub".

Ansible-Module und -Rollen

Um die im Ansible Inventar beschriebene Konfiguration anzuwenden, verwenden Sie die verschiedenen
Ansible Module und Rollen aus der NetApp E-Series Ansible Sammlung (verfügbar über "NetApp E-Series
BeeGFS GitHub"), die die End-to-End-Lösung implementieren.

Jede Rolle der NetApp E-Series Ansible Sammlung ist eine vollständige End-to-End-Implementierung der
BeeGFS auf NetApp Lösung. Die Rollen verwenden die Sammlungen NetApp E-Series SANtricity, Host und
BeeGFS, mit denen Sie das BeeGFS Filesystem mit HA (High Availability, Hochverfügbarkeit) konfigurieren
können. Anschließend können Sie Storage bereitstellen und zuordnen und den Cluster-Storage betriebsbereit
machen.

2

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-design-high-capacity-building-block.html
https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4

Die Rollen verfügen über eine ausführliche Dokumentation. In den Implementierungsverfahren wird
beschrieben, wie die Rolle bei der Implementierung einer NetApp Verified Architecture mit dem BeeGFS-
Bausteindesign der zweiten Generation eingesetzt wird.

Obwohl die Implementierungsschritte versucht, genügend Details bereitzustellen, sodass
frühere Erfahrungen mit Ansible nicht erforderlich sind, sollten Sie mit Ansible und der
zugehörigen Terminologie vertraut sein.

Bestandslayout für BeeGFS HA-Cluster

Definieren Sie ein BeeGFS HA-Cluster mit der Ansible-Bestandsstruktur.

Jeder mit früheren Ansible-Erfahrungen sollte sich bewusst sein, dass die BeeGFS-HA-Rolle eine
benutzerdefinierte Methode implementiert, um zu ermitteln, welche Variablen (oder Fakten) für jeden Host
gelten. Dieses Design vereinfacht die Strukturierung des Ansible-Bestands, um Ressourcen zu beschreiben,
die auf mehreren Servern ausgeführt werden können.

Ein Ansible-Inventar besteht in der Regel aus den Dateien in host_vars und group_vars sowie einer
inventory.yml Datei, die Hosts spezifischen Gruppen (und potenziell Gruppen anderen Gruppen) zuweist.

Erstellen Sie keine Dateien mit dem Inhalt in diesem Unterabschnitt, der nur als Beispiel
gedacht ist.

Obwohl diese Konfiguration anhand des Konfigurationsprofils vorab festgelegt ist, sollten Sie wie folgt
allgemeine Kenntnisse darüber haben, wie alles als Ansible-Inventar ausgelegt ist:

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp01:

 netapp02:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

 meta_01: # Group representing a metadata service with ID 01.

 hosts:

 beegfs_01: # This service is preferred on the first file

node.

 beegfs_02: # And can failover to the second file node.

 meta_02: # Group representing a metadata service with ID 02.

 hosts:

 beegfs_02: # This service is preferred on the second file

node.

 beegfs_01: # And can failover to the first file node.

3

Für jeden Dienst wird unter eine zusätzliche Datei erstellt group_vars Beschreibung der Konfiguration:

meta_01 - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: 8015

 connMetaPortUDP: 8015

 tuneBindToNumaZone: 0

floating_ips:

 - i1b: <IP>/<SUBNET_MASK>

 - i2b: <IP>/<SUBNET_MASK>

Type of BeeGFS service the HA resource group will manage.

beegfs_service: metadata # Choices: management, metadata, storage.

What block node should be used to create a volume for this service:

beegfs_targets:

 netapp01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25

 owning_controller: A

Mit diesem Layout können BeeGFS-Service-, Netzwerk- und Storage-Konfigurationen für jede Ressource an
einem Ort definiert werden. Hinter den Kulissen aggregiert die Rolle BeeGFS basierend auf dieser
Bestandsstruktur die erforderliche Konfiguration für jede Datei und jeden Block-Node.

Die numerische BeeGFS- und String-Node-ID für jeden Dienst wird automatisch auf Basis des
Gruppennamens konfiguriert. Zusätzlich zur allgemeinen Ansible-Anforderung, dass
Gruppennamen eindeutig sein sollen, müssen Gruppen, die einen BeeGFS-Service darstellen,
in einer Zahl enden, die für den BeeGFS-Service eindeutig ist, für den diese Gruppe
repräsentiert. Zum Beispiel sind meta_01 und stor_01 zulässig, aber Metadaten_01 und
meta_01 sind nicht.

Besprechen der Best Practices

Beachten Sie bei der Implementierung der BeeGFS auf NetApp-Lösung die Best
Practice-Richtlinien.

Standardkonventionen

Folgen Sie beim physischen Zusammenbau und Erstellen der Ansible-Bestandsdatei diesen
Standardkonventionen (weitere Informationen finden Sie unter "Erstellen des Ansible-Inventars").

• Host-Namen der Dateiknoten werden nacheinander nummeriert (h01-HN) mit niedrigeren Zahlen oben im

4

Rack und höheren Zahlen unten.

Die Namenskonvention sieht beispielsweise [location][row][rack]hN wie folgt aus: beegfs_01.

• Jeder Block-Node besteht aus zwei Storage-Controllern, die jeweils über einen eigenen Host-Namen
verfügen.

Mit einem Storage-Array-Namen wird im Rahmen eines Ansible-Inventars das gesamte Block-Storage-
System bezeichnet. Die Namen des Speicher-Arrays sollten nacheinander nummeriert sein (a01 - an), und
die Hostnamen für einzelne Controller werden aus dieser Namenskonvention abgeleitet.

Beispielsweise kann bei einem Block-Node mit dem Namen ictad22a01 normalerweise Hostnamen für
jeden Controller wie und konfiguriert ictad22a01-a ictad22a01-b`sein, in einem Ansible-
Inventar jedoch als bezeichnet werden `netapp_01.

• File- und Block-Nodes innerhalb desselben Bausteins teilen sich das gleiche Nummerierungsschema und
sind im Rack nebeneinander, wobei beide Datei-Nodes oben und beide Block-Nodes direkt darunter
liegen.

Im ersten Baustein sind beispielsweise die Datei-Nodes h01 und h02 direkt mit den Block-Nodes a01 und
a02 verbunden. Von oben nach unten sind die Hostnamen h01, h02, a01 und a02.

• Bausteine werden in sequenzieller Reihenfolge auf der Grundlage ihrer Hostnamen installiert, sodass sich
die niedrigeren Host-Namen oben im Rack befinden und die höheren nummerierten Host-Namen sich
unten befinden.

Ziel ist es, die Länge des Kabels zu minimieren, das oben auf den Rack Switches läuft, und eine
standardisierte Implementierungspraxis zu definieren, um die Fehlerbehebung zu vereinfachen. Für
Rechenzentren, in denen dies nicht erlaubt ist, aufgrund von Bedenken um die Rack-Stabilität, ist die
umgekehrte sicherlich erlaubt, das Befüllen des Racks von unten nach oben.

InfiniBand-Storage-Netzwerkkonfiguration

Die Hälfte der InfiniBand-Ports an jedem Datei-Node werden für eine direkte Verbindung mit Block-Nodes
verwendet. Die andere Hälfte ist mit den InfiniBand-Switches verbunden und wird für die BeeGFS-Client-
Server-Konnektivität verwendet. Beim Bestimmen der Größe der IPoIB-Subnetze, die für BeeGFS-Clients und
-Server verwendet werden, müssen Sie das erwartete Wachstum Ihres Compute/GPU-Clusters und BeeGFS-
Dateisystems berücksichtigen. Wenn Sie von den empfohlenen IP-Bereichen abweichen müssen, beachten
Sie, dass jede direkte Verbindung in einem einzelnen Baustein ein eigenes Subnetz hat und es keine
Überschneidung mit Subnetzen gibt, die für die Client-Server-Konnektivität verwendet werden.

Direkte Verbindungen

Datei- und Block-Nodes innerhalb jedes Bausteins verwenden für ihre direkten Verbindungen immer die IPs in
der folgenden Tabelle.

Dieses Adressprogramm entspricht der folgenden Regel: Das dritte Oktett ist immer ungerade
oder gerade, was davon abhängt, ob der Datei-Node ungerade oder gerade ist.

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP

ODD (h1) i1a 192.168.1.10 Ungerade (c1) 2 a 192.168.1.100 192.168.1.101

5

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP

ODD (h1) i2a 192.168.3.10 Ungerade (c1) 2 a 192.168.3.100 192.168.3.101

ODD (h1) i3a 192.168.5.10 Gleichmäßig
(c2)

2 a 192.168.5.100 192.168.5.101

ODD (h1) I4a 192.168.7.10 Gleichmäßig
(c2)

2 a 192.168.7.100 192.168.7.101

Gleichmäßig
(h2)

i1a 192.168.2.10 Ungerade (c1) 2b 192.168.2.100 192.168.2.101

Gleichmäßig
(h2)

i2a 192.168.4.10 Ungerade (c1) 2b 192.168.4.100 192.168.4.101

Gleichmäßig
(h2)

i3a 192.168.6.10 Gleichmäßig
(c2)

2b 192.168.6.100 192.168.6.101

Gleichmäßig
(h2)

I4a 192.168.8.10 Gleichmäßig
(c2)

2b 192.168.8.100 192.168.8.101

IPoIB-Adressierungsschemata für BeeGFS-Client-Server

Auf jedem Datei-Node werden mehrere BeeGFS-Serverservices ausgeführt (Management, Metadaten oder
Storage). Damit jeder Service unabhängig vom anderen Datei-Node ein Failover durchführen kann, verfügt
jeder über eindeutige IP-Adressen, die zwischen beiden Nodes schweben können (auch als logische
Schnittstelle oder LIF bezeichnet).

Diese Bereitstellung setzt zwar nicht zwingend voraus, dass für diese Verbindungen folgende IPoIB-
Subnetzbereiche verwendet werden und definiert ein Standard-Adressierungsschema, das folgende Regeln
anwendet:

• Das zweite Oktett ist immer ungerade oder sogar, basierend darauf, ob der InfiniBand-Port des Datei-
Nodes ungerade oder sogar ungerade ist.

• BeeGFS Cluster-IPs sind immer xxx. 127.100.yyy Oder xxx.128.100.yyy.

Zusätzlich zur Schnittstelle, die für die bandinterne Betriebssystemverwaltung verwendet wird,
können zusätzliche Schnittstellen von Corosync für Cluster Heart-Schläge und Synchronisation
verwendet werden. So wird sichergestellt, dass der Verlust einer einzelnen Schnittstelle das
gesamte Cluster nicht in den Fall bringt.

• Der BeeGFS Management Service ist immer im Betrieb xxx.yyy.101.0 Oder xxx.yyy.102.0.

• BeeGFS Metadatendienste sind immer dabei xxx.yyy.101.zzz Oder xxx.yyy.102.zzz.

• BeeGFS Storage-Services finden sich immer bei xxx.yyy.103.zzz oder xxx.yyy.104.zzz.

• Adressen im Bereich 100.xxx.1.1 Bis 100.xxx.99.255 Sind für Kunden reserviert.

IPoIB-Adressierungsschema für ein einzelnes Subnetz

In diesem Bereitstellungshandbuch wird ein einziges Subnetz-Schema verwendet, da die in aufgeführten
Vorteile im aufgeführt "Softwarearchitektur"sind.

Subnetz: 100.127.0.0/16

6

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration

Die folgende Tabelle enthält den Bereich für ein einzelnes Subnetz: 100.127.0.0/16.

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP i1b oder i4b 100.127.100.1 - 100.127.100.255

BeeGFS Management i1b 100.127.101.0

i2b 100.127.102.0

BeeGFS-Metadaten i1b oder i3b 100.127.101.1 - 100.127.101.255

i2b oder i4b 100.127.102.1 - 100.127.102.255

BeeGFS-Speicherung i1b oder i3b 100.127.103.1 - 100.127.103.255

i2b oder i4b 100.127.104.1 - 100.127.104.255

BeeGFS-Clients (Je nach Kunde) 100.127.1.1 - 100.127.99.255

IPoIB zwei Subnetz-Adressierungsschema

Ein zwei-Subnetz-Adressierungsschema wird nicht mehr empfohlen, kann aber trotzdem implementiert
werden. In den folgenden Tabellen finden Sie ein empfohlenes zwei-Subnetz-Schema.

Subnetz A: 100.127.0.0/16

In der folgenden Tabelle ist der Bereich für Subnetz A angegeben: 100.127.0.0/16.

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP i1b 100.127.100.1 - 100.127.100.255

BeeGFS Management i1b 100.127.101.0

BeeGFS-Metadaten i1b oder i3b 100.127.101.1 - 100.127.101.255

BeeGFS-Speicherung i1b oder i3b 100.127.103.1 - 100.127.103.255

BeeGFS-Clients (Je nach Kunde) 100.127.1.1 - 100.127.99.255

Subnetz B: 100.128.0.0/16

In der folgenden Tabelle ist der Bereich für Subnetz B angegeben: 100.128.0.0/16.

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP I4b 100.128.100.1 - 100.128.100.255

BeeGFS Management i2b 100.128.102.0

BeeGFS-Metadaten i2b oder i4b 100.128.102.1 - 100.128.102.255

BeeGFS-Speicherung i2b oder i4b 100.128.104.1 - 100.128.104.255

BeeGFS-Clients (Je nach Kunde) 100.128.1.1 - 100.128.99.255

7

In dieser NetApp Verified Architecture werden nicht alle IPs in den oben genannten Bereichen
verwendet. Sie zeigen, wie IP-Adressen vorzugewiesen werden können, um eine einfache
Erweiterung des Dateisystems mit einem konsistenten IP-Adressierungschema zu ermöglichen.
In diesem Schema entsprechen BeeGFS-Datei-Knoten und Service-IDs dem vierten Oktett
eines bekannten IP-Bereichs. Das Filesystem konnte bei Bedarf auf jeden Fall über 255 Nodes
oder Services skaliert werden.

Implementierung von Hardware

Jeder Baustein besteht aus zwei validierten x86-Datei-Nodes, die mithilfe von HDR-
Kabeln (200 GB) direkt mit zwei Block-Nodes verbunden sind.

Zum Herstellen von Quorum im Failover Cluster sind mindestens zwei Bausteine erforderlich.
Ein Cluster mit zwei Nodes hat Einschränkungen, die ein erfolgreiches Failover verhindern
können. Wenn Sie ein Cluster mit zwei Nodes konfigurieren, wird ein drittes Gerät als
Tiebreaker integriert, dieses Design wird jedoch nicht in dieser Dokumentation beschrieben.

Die folgenden Schritte sind für jeden Baustein im Cluster identisch, unabhängig davon, ob er sowohl für die
Ausführung von BeeGFS-Metadaten- und Storage-Services als auch nur für Storage-Services eingesetzt wird,
sofern nicht anders angegeben.

Schritte

1. Richten Sie jeden BeeGFS-Dateiknoten mit vier Host-Channel-Adaptern (HCAs) mithilfe der in der
angegebenen Modelle "Technische Anforderungen"ein. Legen Sie die HCAs gemäß den folgenden
Spezifikationen in die PCIe-Steckplätze des Dateiknotens ein:

◦ * Lenovo ThinkSystem SR665 V3 Server:* Verwenden Sie die PCIe-Steckplätze 1, 2, 4 und 5.

◦ * Lenovo ThinkSystem SR665 Server:* Verwenden Sie die PCIe-Steckplätze 2, 3, 5 und 6.

2. Konfigurieren Sie jeden BeeGFS-Block-Node mit einer 200-GB-Host-Schnittstellenkarte (HIC) mit zwei
Ports, und installieren Sie die HIC in jedem ihrer beiden Storage Controller.

Stellen Sie die Bausteine so ein, dass die beiden BeeGFS-Datei-Nodes über den BeeGFS-Block-Nodes
liegen. Die folgende Abbildung zeigt die richtige Hardwarekonfiguration für den BeeGFS-Baustein, der
Lenovo ThinkSystem SR665 V3-Server als Dateiknoten verwendet (Rückansicht).

8

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html

Die Konfiguration der Stromversorgung für Produktionsanwendungsfälle sollte in der Regel
redundante Netzteile verwenden.

3. Installieren Sie bei Bedarf die Laufwerke in jedem BeeGFS-Block-Knoten.

a. Wenn der Baustein zur Ausführung von BeeGFS-Metadaten und Speicherdiensten verwendet wird und
kleinere Laufwerke für Metadaten-Volumes verwendet werden, vergewissern Sie sich, dass diese in
den äußeren Laufwerksschächten gefüllt sind, wie in der Abbildung unten gezeigt.

b. Wenn ein Laufwerkgehäuse nicht vollständig bestückt ist, stellen Sie bei allen Bausteinkonfigurationen
sicher, dass eine gleiche Anzahl an Laufwerken in den Steckplätzen 0–11 und 12–23 gefüllt ist, um
eine optimale Performance zu erzielen.

9

4. Verbinden Sie die Block- und File-Knoten mit dem "1 m InfiniBand HDR 200 GB Direct-Attach-
Kupferkabel", so dass sie mit der in der folgenden Abbildung gezeigten Topologie übereinstimmen.

10

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#block-file-cables
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#block-file-cables

Die Nodes sind über mehrere Bausteine hinweg nie direkt miteinander verbunden. Jeder
Baustein sollte als eigenständige Einheit behandelt werden und alle Kommunikation
zwischen Bausteinen erfolgt über Netzwerk-Switches.

5. Verbinden Sie die übrigen InfiniBand-Ports auf dem Datei-Node mithilfe des spezifischen InfiniBand-
Speicherswitters des Speichernetzwerks mit dem "2 m InfiniBand-Kabel" InfiniBand-Switch.

Wenn Sie Splitterkabel verwenden, um den Speicher-Switch mit Dateiknoten zu verbinden, sollte ein Kabel
vom Switch abzweigen und mit den hellgrünen Ports verbunden werden. Ein anderes Splitterkabel sollte
sich vom Switch abzweigen und an die dunkelgrünen Ports anschließen.

Außerdem sollten bei Speichernetzwerken mit redundanten Switches die hellgrünen Ports mit einem
Switch verbunden werden, während dunkelgrüne Ports mit einem anderen Switch verbunden sein sollten.

6. Montieren Sie bei Bedarf weitere Bausteine gemäß den gleichen Verkabelungsrichtlinien.

Die Gesamtzahl der Bausteine, die in einem einzigen Rack implementiert werden können,
hängt von der verfügbaren Stromversorgung und Kühlung an jedem Standort ab.

Implementierung von Software

Einrichten von Datei-Nodes und Block-Nodes

Während die meisten Software-Konfigurationsaufgaben mithilfe der von NetApp zur
Verfügung gestellten Ansible Sammlungen automatisiert werden, müssen Sie das
Netzwerk auf dem Baseboard Management Controller (BMC) jedes Servers konfigurieren
und den Management-Port auf jedem Controller konfigurieren.

Richten Sie die Datei-Nodes ein

1. Konfigurieren Sie das Netzwerk auf dem Baseboard Management Controller (BMC) jedes Servers.

Informationen zum Konfigurieren der Netzwerkkonfiguration für die validierten Lenovo SR665 V3-
Dateiknoten finden Sie unter "Lenovo ThinkSystem Dokumentation".

11

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#file-switch-cables
https://pubs.lenovo.com/sr665-v3/

Ein Baseboard Management Controller (BMC), der manchmal als Service-Prozessor
bezeichnet wird, ist der generische Name für die Out-of-Band-Management-Funktion, die in
verschiedenen Server-Plattformen integriert ist, die Remote-Zugriff bieten können, selbst
wenn das Betriebssystem nicht installiert ist oder nicht zugänglich ist. Anbieter vermarkten
diese Funktionalität in der Regel mit ihrem eigenen Branding. Auf dem Lenovo SR665 wird
beispielsweise der BMC als Lenovo XClarity Controller (XCC) bezeichnet.

2. Konfigurieren Sie die Systemeinstellungen für maximale Performance.

Sie konfigurieren die Systemeinstellungen über das UEFI-Setup (früher BIOS) oder über die Redfish APIs,
die von vielen BMCs bereitgestellt werden. Die Systemeinstellungen variieren je nach Servermodell, das
als Dateiknoten verwendet wird.

Informationen zum Konfigurieren der Systemeinstellungen für die validierten Lenovo SR665 V3-
Dateiknoten finden Sie unter "Passen Sie die Systemeinstellungen für die Performance an" .

3. Installieren Sie Red Hat Enterprise Linux (RHEL) 9.4 und konfigurieren Sie den Hostnamen und den
Netzwerkport, die zur Verwaltung des Betriebssystems verwendet werden, einschließlich der SSH-
Konnektivität vom Ansible-Steuerknoten.

Konfigurieren Sie derzeit keine IPs auf einem der InfiniBand-Ports.

Die nachfolgenden Abschnitte gehen davon aus, dass die Hostnamen sequenziell
nummeriert sind (z. B. h1-HN), und beziehen sich auf Aufgaben, die auf ungeraden oder gar
nummerierten Hosts ausgeführt werden sollten.

4. Verwenden Sie den Red Hat Subscription Manager, um das System zu registrieren und zu abonnieren,
damit die erforderlichen Pakete aus den offiziellen Red Hat-Repositorys installiert werden können und um
Updates auf die unterstützte Version von Red Hat zu beschränken: subscription-manager release
--set=9.4 . Anweisungen hierzu finden Sie unter "Registrieren und Abonnieren eines RHEL Systems"
und "Einschränken von Aktualisierungen".

5. Aktivieren Sie das Red hat Repository mit den für hohe Verfügbarkeit erforderlichen Paketen.

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Aktualisieren Sie alle HCA-Firmware auf die in Verwendung des "Aktualisiert die Datei-Node-Adapter-
Firmware"Handbuchs empfohlene Version"Technologieanforderungen erfüllt".

Richten Sie Block-Nodes ein

Richten Sie die EF600 Block-Nodes ein, indem Sie den Managementport pro Controller konfigurieren.

1. Konfigurieren Sie den Managementport an jedem EF600 Controller.

Anweisungen zum Konfigurieren von Ports finden Sie im "E-Series Documentation Center".

2. Legen Sie optional den Speicher-Array-Namen für jedes System fest.

Durch das Festlegen eines Namens kann es einfacher sein, in den nachfolgenden Abschnitten auf jedes
System zu verweisen. Anweisungen zum Festlegen des Arraynamens finden Sie im "E-Series

12

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/de-de/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/de-de/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
beegfs-technology-requirements.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

Documentation Center".

Folgende Themen setzen voraus, dass die Namen der Speicherarrays nacheinander
nummeriert sind (z. B. c1 - CN), und beziehen sich auf die Schritte, die auf ungeraden und nicht
gerade nummerierten Systemen ausgeführt werden sollten.

Optimieren Sie die System-Einstellungen des File Node für die Performance

Um die Leistung zu maximieren, empfehlen wir, die Systemeinstellungen auf dem
Servermodell zu konfigurieren, das Sie als Dateiknoten verwenden.

Die Systemeinstellungen variieren je nach Servermodell, das Sie als Dateiknoten verwenden. In diesem
Thema wird beschrieben, wie die Systemeinstellungen für die validierten Lenovo ThinkSystem SR665-
Serverdateiknoten konfiguriert werden.

Über die UEFI-Schnittstelle können Sie die Systemeinstellungen anpassen

Die System-Firmware des Lenovo SR665 V3-Servers enthält zahlreiche Tuning-Parameter, die über die UEFI-
Schnittstelle eingestellt werden können. Diese Optimierungsparameter können sich auf alle Aspekte der
Serverfunktionen und die Leistung des Servers auswirken.

Passen Sie unter UEFI Setup > Systemeinstellungen die folgenden Systemeinstellungen an:

Menü „Betriebsmodus“

Systemeinstellung Wechseln Sie zu

Betriebsmodus Individuell

CTDP Manuell

CTDP-Handbuch 350

Maximale Leistung Des Pakets Manuell

Effizienzmodus Deaktivieren

Global-Cstate-Control Deaktivieren

SOC P-Staaten P0

DF-C-Staaten Deaktivieren

P-Zustand Deaktivieren

Speicherabschaltstrom Aktivieren Deaktivieren

NUMA-Knoten pro Socket NPS1

13

https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

Menü „Geräte“ und „E/A-Anschlüsse“

Systemeinstellung Wechseln Sie zu

IOMMU Deaktivieren

Ein-/aus-Menü

Systemeinstellung Wechseln Sie zu

PCIe-Power-Brake Deaktivieren

Menü „Prozessoren“

Systemeinstellung Wechseln Sie zu

Global C-State Control Deaktivieren

DF-C-Staaten Deaktivieren

SMT-Modus Deaktivieren

CPPC Deaktivieren

Verwenden Sie die Redfish-API, um die Systemeinstellungen anzupassen

Zusätzlich zur Verwendung von UEFI Setup können Sie die Redfish API verwenden, um Systemeinstellungen
zu ändern.

14

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

Ausführliche Informationen zum Schema Redfish finden Sie im "DMTF-Website".

Richten Sie einen Ansible-Steuerungsknoten ein

Zum Einrichten eines Ansible-Steuerknotens müssen Sie eine virtuelle oder physische
Maschine mit Netzwerkzugriff auf alle Datei- und Block-Nodes zuweisen, die für die
BeeGFS auf NetApp Lösung implementiert werden.

Eine Liste der empfohlenen Paketversionen finden Sie im"Technische Anforderungen". Die folgenden Schritte
wurden auf Ubuntu 22.04 getestet. Für spezifische Schritte zu Ihrer bevorzugten Linux-Distribution, siehe
"Ansible-Dokumentation".

1. Installieren Sie über Ihren Ansible Control Node die folgenden Pakete für Python und Python Virtual
Environment.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Erstellen Sie eine virtuelle Python-Umgebung.

15

https://redfish.dmtf.org/redfish/schema_index
beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv

3. Aktivieren Sie die virtuelle Umgebung.

source ~/pyenv/bin/activate

4. Installieren Sie die erforderlichen Python-Pakete in der aktivierten virtuellen Umgebung.

pip install ansible netaddr cryptography passlib

5. Installieren Sie die BeeGFS-Sammlung mit Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Überprüfen Sie, ob die installierten Versionen von Ansible, Python und BeeGFS-Sammlung mit der
übereinstimmen"Technische Anforderungen".

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Richten Sie passwortloses SSH ein, damit Ansible vom Ansible-Steuerungsknoten aus auf die Remote-
BeeGFS-Datei-Nodes zugreifen kann.

a. Generieren Sie auf dem Ansible-Steuerungsknoten, falls erforderlich, ein Paar öffentlicher Schlüssel.

ssh-keygen

b. Richten Sie passwortloses SSH für jeden der Dateiknoten ein.

ssh-copy-id <ip_or_hostname>

Richten Sie bei den Blockknoten eine passwortlose SSH ein. Dies wird weder unterstützt noch
erforderlich.

Erstellen des Ansible-Inventars

Um die Konfiguration für Datei- und Block-Nodes zu definieren, erstellen Sie einen
Ansible-Bestand für das BeeGFS-Dateisystem, das bereitgestellt werden soll. Der
Bestand umfasst Hosts, Gruppen und Variablen, die das gewünschte BeeGFS-
Dateisystem beschreiben.

16

beegfs-technology-requirements.html#ansible-control-node-requirements

Schritt 1: Konfiguration für alle Bausteine definieren

Legen Sie die Konfiguration fest, die für alle Bausteine gilt, unabhängig davon, welches Konfigurationsprofil
Sie für sie einzeln anwenden können.

Bevor Sie beginnen

• Wählen Sie ein Subnetz-Adressierungsschema für Ihre Bereitstellung aus. Aufgrund der im aufgeführten
Vorteile "Softwarearchitektur"wird empfohlen, ein einziges Subnetz-Adressierungsschema zu verwenden.

Schritte

1. Geben Sie auf dem Ansible-Steuerungsknoten ein Verzeichnis an, das Sie zum Speichern der Bestands-
und Playbook-Dateien in Ansible verwenden möchten.

Sofern nicht anders angegeben, werden alle in diesem Schritt erstellten Dateien und Verzeichnisse und die
folgenden Schritte relativ zu diesem Verzeichnis erstellt.

2. Folgende Unterverzeichnisse erstellen:

host_vars

group_vars

packages

3. Erstellen Sie ein Unterverzeichnis für Cluster-Passwörter und sichern Sie die Datei durch Verschlüsselung
mit Ansible Vault (siehe "Verschlüsseln von Inhalten mit Ansible Vault"):

a. Erstellen Sie das Unterverzeichnis group_vars/all.

b. Erstellen Sie im group_vars/all Verzeichnis eine Passwortdatei mitder Bezeichnung
passwords.yml.

c. Füllen Sie den passwords.yml file mit den folgenden Angaben aus, und ersetzen Sie alle
Benutzernamen- und Kennwortparameter entsprechend Ihrer Konfiguration:

17

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Führen Sie aus ansible-vault encrypt passwords.yml, und legen Sie ein Vault-Kennwort fest,
wenn Sie dazu aufgefordert werden.

Schritt: Konfiguration für einzelne Datei- und Block-Nodes definieren

Legen Sie die Konfiguration für einzelne Datei-Nodes und einzelne Baustein-Nodes fest.

1. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Dateiknoten eine Datei mit dem
Namen `<HOSTNAME>.yml Mit dem folgenden Inhalt, besondere Aufmerksamkeit auf die Notizen über
den Inhalt für BeeGFS Cluster-IPs und Host-Namen enden in ungerade oder gerade Zahlen.

Zunächst stimmen die Schnittstellennamen der Dateiknoten mit dem überein, was hier aufgeführt ist (z. B.
ib0 oder ibs1f0). Diese benutzerdefinierten Namen werden in konfiguriert die für alle Datei-Knoten gelten
soll.

18

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

19

Wenn Sie bereits das BeeGFS-Cluster implementiert haben, müssen Sie das Cluster
beenden, bevor Sie statisch konfigurierte IP-Adressen hinzufügen oder ändern,
einschließlich Cluster-IPs und IPs für NVMe/IB. Dies ist erforderlich, damit diese
Änderungen ordnungsgemäß wirksam werden und Cluster-Vorgänge nicht unterbrechen.

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Block-Knoten eine Datei mit dem
Namen `<HOSTNAME>.yml Und geben Sie den folgenden Inhalt ein.

Achten Sie besonders auf die Hinweise zum Inhalt, die für Speicher-Array-Namen ausgefüllt werden
müssen, die mit ungeraden oder geraden Zahlen enden.

Erstellen Sie für jeden Block-Node eine Datei, und geben Sie den an <MANAGEMENT_IP> Für einen der
beiden Controller (normalerweise A).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Schritt 3: Definieren Sie die Konfiguration, die für alle Datei- und Block-Nodes gelten soll

Unter können Sie die gemeinsame Konfiguration für eine Gruppe von Hosts definieren group_vars In einem
Dateinamen, der der Gruppe entspricht. Dadurch wird verhindert, dass eine gemeinsame Konfiguration an
mehreren Orten wiederholt wird.

20

Über diese Aufgabe

Hosts können sich in mehr als einer Gruppe befinden. Ansible zur Laufzeit wählt Ansible aus, welche Variablen
auf Basis seiner variablen Rangfolge für einen bestimmten Host gelten. (Weitere Informationen zu diesen
Regeln finden Sie in der Ansible-Dokumentation für "Variablen verwenden".)

Host-zu-Gruppe-Zuweisungen werden in der tatsächlichen Ansible-Bestandsdatei definiert, die gegen Ende
dieses Vorgangs erstellt wird.

Schritt

In Ansible können alle Konfigurationen, die auf alle Hosts angewendet werden sollen, in einer Gruppe mit dem
Namen definiert werden All. Erstellen Sie die Datei group_vars/all.yml Mit folgenden Inhalten:

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Schritt 4: Definieren Sie die Konfiguration, die für alle Datei-Knoten gelten soll

Die gemeinsame Konfiguration für Dateiknoten ist in einer Gruppe mit dem Namen definiert ha_cluster. In
den Schritten in diesem Abschnitt wird die Konfiguration erstellt, die in der enthalten sein sollte
group_vars/ha_cluster.yml Datei:

Schritte

1. Legen Sie oben in der Datei die Standardeinstellungen fest, einschließlich des Kennworts, das als
verwendet werden soll sudo Benutzer auf den Datei-Nodes.

21

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

Wenn der ansible_ssh_user bereits ist root, können Sie optional die auslassen und
beim Ausführen des Playbook die ansible_become_password Option angeben --ask
-become-pass.

2. Konfigurieren Sie optional einen Namen für den Hochverfügbarkeits-Cluster und geben Sie einen Benutzer
für die Cluster-interne Kommunikation an.

Wenn Sie das private IP-Adressschema ändern, müssen Sie auch die Standardeinstellung aktualisieren
beegfs_ha_mgmtd_floating_ip. Dies muss mit dem übereinstimmen, was Sie später für die BeeGFS
Management Ressourcengruppe konfigurieren.

Geben Sie eine oder mehrere E-Mails an, die Warnmeldungen für Cluster-Ereignisse mit empfangen sollen
beegfs_ha_alert_email_list.

22

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

Während scheinbar redundant, beegfs_ha_mgmtd_floating_ip Ist wichtig, wenn Sie
das BeeGFS-Dateisystem über einen einzelnen HA-Cluster hinaus skalieren. Nachfolgende
HA-Cluster werden ohne zusätzlichen BeeGFS-Managementservice bereitgestellt und Punkt
am Managementservice des ersten Clusters.

3. Konfigurieren Sie einen Fechtagenten. (Weitere Informationen finden Sie unter "Konfigurieren Sie Fechten
in einem Red hat High Availability Cluster".) Die folgende Ausgabe zeigt Beispiele für die Konfiguration
gängiger Fencing-Agenten. Wählen Sie eine dieser Optionen.

Beachten Sie bei diesem Schritt Folgendes:

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ Standardmäßig ist Fechten aktiviert, Sie müssen jedoch einen Fechten_Agent_ konfigurieren.

◦ Der <HOSTNAME> Angegeben in pcmk_host_map Oder pcmk_host_list Der Hostname in der
Ansible-Bestandsaufnahme entspricht.

◦ Das BeeGFS-Cluster ohne Fencing wird insbesondere in der Produktion nicht unterstützt. Dies soll
weitgehend sicherstellen, wenn BeeGFS-Services, einschließlich aller Ressourcenabhängigkeiten wie
Blockgeräte, Failover aufgrund eines Problems durchführen, es besteht keine Möglichkeit des
gleichzeitigen Zugriffs durch mehrere Nodes, die zu einer Beschädigung des Filesystems oder anderen
unerwünschten oder unerwarteten Verhalten führen. Wenn das Fechten deaktiviert werden muss,
lesen Sie die allgemeinen Hinweise in der BeeGFS HA-Rolle „erste Schritte“-Anleitung und „Set“
beegfs_ha_cluster_crm_config_options["stonith-enabled"] Mit FALSE innen
ha_cluster.yml.

◦ Es sind mehrere Fechtgeräte auf Node-Ebene verfügbar, und die BeeGFS HA-Rolle kann jeden
Fechtagenten konfigurieren, der im Red hat HA Package Repository verfügbar ist. Wenn möglich,
verwenden Sie einen Zaunsagenten, der über die unterbrechungsfreie Stromversorgung (USV) oder
die Rack-Stromverteilereinheit (rPDU) arbeitet. Da einige Fechten-Agenten wie der Baseboard-
Management-Controller (BMC) oder andere Lights-Out-Geräte, die in den Server integriert sind,
möglicherweise nicht auf die Zaunanforderung unter bestimmten Ausfallszenarien reagieren.

24

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Aktivieren Sie die empfohlene Performance-Optimierung im Linux-Betriebssystem.

Viele Benutzer finden die Standardeinstellungen für die Performance-Parameter zwar im Allgemeinen gut,
Sie können jedoch optional die Standardeinstellungen für einen bestimmten Workload ändern. Daher sind
diese Empfehlungen in die BeeGFS-Rolle enthalten, jedoch sind sie nicht standardmäßig aktiviert, um
sicherzustellen, dass Benutzer die auf ihr Dateisystem angewendete Einstellung kennen.

Um das Performance-Tuning zu aktivieren, geben Sie Folgendes an:

25

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Optional) Sie können die Leistungsparameter im Linux-Betriebssystem nach Bedarf anpassen.

Eine umfassende Liste der verfügbaren Tuning-Parameter, die Sie anpassen können, finden Sie im
Abschnitt Performance Tuning Defaults der BeeGFS HA-Rolle in "E-Series BeeGFS GitHub-Website". Die
Standardwerte können für alle Knoten im Cluster in dieser Datei oder für die Datei eines einzelnen Knotens
überschrieben werden host_vars .

6. Um vollständige 200 GB/HDR-Konnektivität zwischen Block- und Dateiknoten zu ermöglichen, verwenden
Sie das OpenSM-Paket (Open Subnetz Manager) aus der NVIDIA Open Fabrics Enterprise Distribution
(MLNX_OFED). Die MLNX_OFED-Version in der Liste wird im Lieferumfang der "Anforderungen an den
Datei-Node" empfohlenen OpenSM-Pakete enthalten. Obwohl die Implementierung mit Ansible unterstützt
wird, müssen Sie zuerst den MLNX_OFED-Treiber auf allen Datei-Nodes installieren.

a. Füllen Sie die folgenden Parameter in aus group_vars/ha_cluster.yml (Passen Sie Pakete nach
Bedarf an):

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Konfigurieren Sie die udev Regel zur Sicherstellung einer konsistenten Zuordnung von logischen
InfiniBand-Port-IDs zu zugrunde liegenden PCIe-Geräten.

Der udev Die Regel muss für die PCIe-Topologie jeder Serverplattform, die als BeeGFS-Datei-Node
verwendet wird, eindeutig sein.

Für verifizierte Dateiknoten folgende Werte verwenden:

26

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Optional) Aktualisieren des Metadaten-Zielauswahlalgorithmus.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

Während der Verifizierungstests randomrobin Wurde in der Regel verwendet, um
sicherzustellen, dass Testdateien während des Performance-Benchmarking gleichmäßig auf
alle BeeGFS-Speicherziele verteilt wurden (weitere Informationen zu Benchmarking finden
Sie auf der BeeGFS-Website für "Benchmarking eines BeeGFS-Systems"). Bei der realen
Welt könnte dies dazu führen, dass sich die niedrigeren nummerierten Ziele schneller füllen
als die höher nummerierten Ziele. Auslassung randomrobin Und nur mit dem Standard
randomized Der Wert zeigt sich, dass er eine gute Leistung bietet und gleichzeitig alle
verfügbaren Ziele nutzt.

Schritt 5: Definieren Sie die Konfiguration für den gemeinsamen Block-Node

Die gemeinsame Konfiguration für Block-Knoten wird in einer Gruppe mit dem Namen definiert
eseries_storage_systems. In den Schritten in diesem Abschnitt wird die Konfiguration erstellt, die in der
enthalten sein sollte group_vars/ eseries_storage_systems.yml Datei:

Schritte

1. Setzen Sie die Ansible-Verbindung auf Local, geben Sie das Systemkennwort ein und geben Sie an, ob

27

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

SSL-Zertifikate verifiziert werden sollen. (Normalerweise verwendet Ansible SSH für die Verbindung zu
gemanagten Hosts. Bei Storage-Systemen der NetApp E-Series, die als Block-Nodes verwendet werden,
verwenden die Module JEDOCH die REST-API für die Kommunikation.) Fügen Sie oben in der Datei
Folgendes hinzu:

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. Installieren Sie die für Block-Nodes in aufgeführten Versionen, um eine optimale Performance zu
gewährleisten "Technische Anforderungen".

Laden Sie die entsprechenden Dateien aus dem herunter "NetApp Support Website". Sie können sie
entweder manuell aktualisieren oder sie in das einbeziehen packages/ Verzeichnis des Ansible-
Steuerungsknotens, und füllen Sie dann die folgenden Parameter in aus
eseries_storage_systems.yml So führen Sie ein Upgrade mit Ansible durch:

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Laden Sie die neueste Laufwerksfirmware herunter, die für die in Ihren Blockknoten installierten Laufwerke
verfügbar ist, und installieren Sie sie im "NetApp Support Website". Sie können sie entweder manuell
aktualisieren oder in das Verzeichnis des Ansible-Steuerknotens aufnehmen packages/ . Dann füllen Sie
die folgenden Parameter in aus eseries_storage_systems.yml , um das Upgrade mit Ansible
auszuführen:

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Einstellung eseries_drive_firmware_upgrade_drives_online Bis false
Beschleunigt das Upgrade, sollte aber erst nach dem Einsatz von BeeGFS durchgeführt
werden. Der Grund dafür ist, dass bei dieser Einstellung sämtliche I/O-Vorgänge auf den
Laufwerken vor dem Upgrade angehalten werden müssen, um Applikationsfehler zu
vermeiden. Obwohl ein Online-Laufwerk-Firmware-Upgrade vor der Konfiguration von
Volumes noch schnell durchgeführt wird, empfehlen wir Ihnen, diesen Wert immer auf zu
setzen true Um später Probleme zu vermeiden.

4. Nehmen Sie zur Optimierung der Leistung folgende Änderungen an der globalen Konfiguration vor:

28

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html
https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

5. Um eine optimale Bereitstellung und ein optimales Verhalten von Volumes zu gewährleisten, geben Sie
folgende Parameter an:

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Der für angegebene Wert eseries_storage_pool_usable_drives Gibt einen
spezifischen Block-Node der NetApp EF600 an und steuert die Reihenfolge, in der
Laufwerke neuen Volume-Gruppen zugewiesen werden. Durch diese Bestellung wird
sichergestellt, dass der I/O zu jeder Gruppe gleichmäßig über die Kanäle des Backend-
Laufwerks verteilt wird.

Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine

Definieren Sie nach der Definition der allgemeinen Ansible-Bestandsstruktur die
Konfiguration für jeden Baustein im BeeGFS-Dateisystem.

Diese Implementierungsanleitungen zeigen, wie Sie ein Filesystem implementieren, das aus einem
Grundbaustein besteht, einschließlich Management-, Metadaten- und Storage-Services, einem zweiten
Baustein mit Metadaten und Storage-Services und einem dritten Baustein nur für Storage.

Diese Schritte sollen den gesamten Bereich typischer Konfigurationsprofile anzeigen, mit denen Sie NetApp
BeeGFS-Bausteine konfigurieren können, um die Anforderungen des gesamten BeeGFS-Dateisystems zu
erfüllen.

Passen Sie in diesen und nachfolgenden Abschnitten nach Bedarf an, um den Bestand zu
erstellen, der das BeeGFS-Dateisystem darstellt, das Sie bereitstellen möchten. Verwenden Sie
insbesondere Ansible-Hostnamen, die jeden Block- oder Datei-Node darstellen, und das
gewünschte IP-Adressschema für das Storage-Netzwerk, um sicherzustellen, dass es auf die
Anzahl der BeeGFS-Datei-Nodes und -Clients skaliert werden kann.

29

Schritt: Die Ansible-Bestandsdatei erstellen

Schritte

1. Erstellen Sie eine neue inventory.yml Datei, und fügen Sie dann die folgenden Parameter ein,
ersetzen Sie die Hosts unter eseries_storage_systems Nach Bedarf zur Darstellung der Block-Nodes
in Ihrer Implementierung. Die Namen sollten dem Namen entsprechen, für den sie verwendet werden
host_vars/<FILENAME>.yml.

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

In den nachfolgenden Abschnitten werden unter weitere Ansible-Gruppen erstellt ha_cluster Die die
BeeGFS-Dienste darstellen, die im Cluster ausgeführt werden sollen.

Schritt: Inventar für einen Management-, Metadaten- und Storage-Baustein konfigurieren

Der erste Baustein im Cluster- oder Basis-Baustein muss den BeeGFS-Managementservice sowie Metadaten-
und Storage-Services umfassen:

Schritte

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

30

 beegfs_01:

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

31

 stor_07:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Erstellen Sie die Datei group_vars/mgmt.yml Und geben Sie Folgendes an:

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Unter group_vars/, Dateien für Ressourcengruppen erstellen meta_01 Bis meta_08 Verwenden Sie die
folgende Vorlage und füllen Sie dann die Platzhalterwerte für jeden Service aus, indem Sie auf die
folgende Tabelle verweisen:

32

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Die Volume-Größe wird als Prozentsatz des gesamten Storage-Pools angegeben (auch als
Volume-Gruppe bezeichnet). NetApp empfiehlt, freie Kapazitäten in jedem Pool zu
belassen, um Platz für die SSD-Überprovisionierung zu haben (weitere Informationen finden
Sie unter "Einführung in das NetApp EF600 Array"). Der Storage-Pool,
beegfs_m1_m2_m5_m6, Weist auch 1% der Kapazität des Pools für den Management-
Service. Somit für Metadaten-Volumes im Storage-Pool beegfs_m1_m2_m5_m6, Wenn
1,92-TB- oder 3,84-TB-Laufwerke verwendet werden, setzen Sie diesen Wert auf 21.25;
Für 7,5-TB-Laufwerke setzen Sie diesen Wert auf 22.25; Und für 15,3-TB-Laufwerke ist
dieser Wert auf festgelegt 23.75.

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_01.yml 8015 i1b:100.127.1
01.1/16
i2b:100.127.1
02.1/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

A

meta_02.yml 8025 i2b:100.127.1
02.2/16
i1b:100.127.1
01.2/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1
01.3/16
i4b:100.127.1
02.3/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

A

33

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_04.yml 8045 I4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

A

meta_06.yml 8065 i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

0 netapp_01 Beegfs_m1_
m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

A

meta_08.yml 8085 I4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

1 netapp_02 Beegfs_m3_
m4_m7_m8

B

4. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_01 Bis stor_08 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

34

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

Informationen zur richtigen Größe finden Sie unter "Empfohlene Prozentsätze für die
Überprovisionierung von Storage-Pools".

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_01.yml 8013 i1b:100.127.1
03.1/16
i2b:100.127.1
04.1/16

0 netapp_01 Beegfs_s1_s
2

A

stor_02.yml 8023 i2b:100.127.1
04.2/16
i1b:100.127.1
03.2/16

0 netapp_01 Beegfs_s1_s
2

B

stor_03.yml 8033 i3b:100.127.1
03.3/16
i4b:100.127.1
04.3/16

1 netapp_02 Beegfs_s3_s
4

A

stor_04.yml 8043 I4b:100.127.1
04.4/16
i3b:100.127.1
03.4/16

1 netapp_02 Beegfs_s3_s
4

B

35

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_05.yml 8053 i1b:100.127.1
03.5/16
i2b:100.127.1
04.5/16

0 netapp_01 Beegfs_s5_s
6

A

stor_06.yml 8063 i2b:100.127.1
04.6/16
i1b:100.127.1
03.6/16

0 netapp_01 Beegfs_s5_s
6

B

stor_07.yml 8073 i3b:100.127.1
03.7/16
i4b:100.127.1
04.7/16

1 netapp_02 Beegfs_s7_s
8

A

stor_08.yml 8083 I4b:100.127.1
04.8/16
i3b:100.127.1
03.8/16

1 netapp_02 Beegfs_s7_s
8

B

Schritt 3: Konfigurieren Sie den Bestand für einen Baustein Metadaten + Speicher

In diesen Schritten wird beschrieben, wie ein Ansible-Inventar für BeeGFS-Metadaten + Storage-Baustein
eingerichtet wird.

Schritte

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter der vorhandenen Konfiguration:

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

36

 beegfs_03:

 beegfs_04:

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

37

2. Unter group_vars/, Dateien für Ressourcengruppen erstellen meta_09 Bis meta_16 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Informationen zur richtigen Größe finden Sie unter "Empfohlene Prozentsätze für die
Überprovisionierung von Storage-Pools".

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_09.yml 8015 i1b:100.127.1
01.9/16
i2b:100.127.1
02.9/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

A

meta_10.yml 8025 i2b:100.127.1
02.10/16
i1b:100.127.1
01.10/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

B

meta_11.yml 8035 i3b:100.127.1
01.11/16
i4b:100.127.1
02.11/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

A

meta_12.yml 8045 I4b:100.127.1
02.12/16
i3b:100.127.1
01.12/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

B

38

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

meta_13.yml 8055 i1b:100.127.1
01.13/16
i2b:100.127.1
02.13/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

A

meta_14.yml 8065 i2b:100.127.1
02.14/16
i1b:100.127.1
01.14/16

0 netapp_03 Beegfs_m9_
m10_m13_m
14

B

meta_15.yml 8075 i3b:100.127.1
01.15/16
i4b:100.127.1
02.15/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

A

meta_16.yml 8085 I4b:100.127.1
02.16/16
i3b:100.127.1
01.16/16

1 netapp_04 Beegfs_m11_
m12_m15_m
16

B

3. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_09 Bis stor_16 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

39

Die richtige Größe finden Sie unter "Empfohlene Prozentsätze für die Überprovisionierung
von Storage-Pools" ..

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_09.yml 8013 i1b:100.127.1
03.9/16
i2b:100.127.1
04.9/16

0 netapp_03 Beegfs_s9_s
10

A

stor_10.yml 8023 i2b:100.127.1
04.10/16
i1b:100.127.1
03.10/16

0 netapp_03 Beegfs_s9_s
10

B

stor_11.yml 8033 i3b:100.127.1
03.11/16
i4b:100.127.1
04.11/16

1 netapp_04 Beegfs_s11_
s12

A

stor_12.yml 8043 I4b:100.127.1
04.12/16
i3b:100.127.1
03.12/16

1 netapp_04 Beegfs_s11_
s12

B

stor_13.yml 8053 i1b:100.127.1
03.13/16
i2b:100.127.1
04.13/16

0 netapp_03 Beegfs_s13_
s14

A

stor_14.yml 8063 i2b:100.127.1
04.14/16
i1b:100.127.1
03.14/16

0 netapp_03 Beegfs_s13_
s14

B

stor_15.yml 8073 i3b:100.127.1
03.15/16
i4b:100.127.1
04.15/16

1 netapp_04 Beegfs_s15_
s16

A

stor_16.yml 8083 I4b:100.127.1
04.16/16
i3b:100.127.1
03.16/16

1 netapp_04 Beegfs_s15_
s16

B

Schritt 4: Konfigurieren Sie den Bestand für einen nur-Storage-Baustein

In diesen Schritten wird beschrieben, wie Sie einen Ansible-Bestand für einen einzigen BeeGFS-Baustein
einrichten. Der Hauptunterschied zwischen der Konfiguration für Metadaten + Storage und einem rein Storage-
basierten Baustein besteht darin, dass alle Metadaten-Ressourcengruppen und Änderungen nicht mehr
berücksichtigt werden criteria_drive_count Von 10 bis 12 für jeden Speicherpool.

Schritte

40

1. In inventory.yml, Befüllen Sie die folgenden Parameter unter der vorhandenen Konfiguration:

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Unter group_vars/, Dateien für Ressourcengruppen erstellen stor_17 Bis stor_24 Füllen Sie
anschließend die Platzhalterwerte für jeden Service aus, indem Sie auf das Beispiel verweisen:

41

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

Die richtige Größe finden Sie unter "Empfohlene Prozentsätze für die Überprovisionierung
von Storage-Pools" .

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_17.yml 8013 i1b:100.127.1
03.17/16
i2b:100.127.1
04.17/16

0 netapp_05 Beegfs_s17_
s18

A

stor_18.yml 8023 i2b:100.127.1
04.18/16
i1b:100.127.1
03.18/16

0 netapp_05 Beegfs_s17_
s18

B

stor_19.yml 8033 i3b:100.127.1
03.19/16
i4b:100.127.1
04.19/16

1 netapp_06 Beegfs_s19_
s20

A

stor_20.yml 8043 I4b:100.127.1
04.20/16
i3b:100.127.1
03.20/16

1 netapp_06 Beegfs_s19_
s20

B

42

Dateiname Port Fließende
IPs

NUMA-Zone Block-Node Storage-Pool Controller,
der die LUN
besitzt

stor_21.yml 8053 i1b:100.127.1
03.21/16
i2b:100.127.1
04.21/16

0 netapp_05 Beegfs_s21_
s22

A

stor_22.yml 8063 i2b:100.127.1
04.22/16
i1b:100.127.1
03.22/16

0 netapp_05 Beegfs_s21_
s22

B

stor_23.yml 8073 i3b:100.127.1
03.23/16
i4b:100.127.1
04.23/16

1 netapp_06 Beegfs_s23_
s24

A

stor_24.yml 8083 I4b:100.127.1
04.24/16
i3b:100.127.1
03.24/16

1 netapp_06 Beegfs_s23_
s24

B

BeeGFS bereitstellen

Zur Implementierung und zum Management der Konfiguration werden ein oder mehrere
Playbooks ausgeführt, die die Aufgaben enthalten, die Ansible ausführen muss, und das
gesamte System in den gewünschten Zustand bringen.

Zwar können alle Aufgaben in einem einzigen Playbook enthalten sein, doch bei komplexen Systemen ist dies
schnell und schwerfällig. Mit Ansible können Sie Rollen erstellen und verteilen, um wiederverwendbare
Playbooks und verwandte Inhalte (z. B. Standardvariablen, Aufgaben und Handler) zu verpacken. Weitere
Informationen finden Sie in der Ansible-Dokumentation für "Rollen".

Rollen werden häufig im Rahmen einer Ansible Sammlung mit zugehörigen Rollen und Modulen verteilt. Daher
importieren diese Playbooks in erster Linie mehrere Rollen, die in den verschiedenen NetApp E-Series Ansible
Sammlungen verteilt sind.

Derzeit sind mindestens zwei Bausteine (vier Datei-Nodes) für die Bereitstellung von BeeGFS
erforderlich, es sei denn, ein separates Quorum-Gerät ist als Tiebreaker konfiguriert, um
Probleme beim Einrichten von Quorum mit einem Cluster mit zwei Nodes zu minimieren.

Schritte

1. Erstellen Sie eine neue playbook.yml Datei und schließen Sie Folgendes ein:

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

43

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 tasks:

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

44

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

In diesem Playbook wird ein paar ausgeführt pre_tasks Überprüfen Sie, ob Python 3 auf
den Datei-Nodes installiert ist, und überprüfen Sie, ob die angegebenen Ansible-Tags
unterstützt werden.

2. Verwenden Sie die ansible-playbook Befehl mit den Inventar- und Playbook-Dateien, wenn Sie bereit
sind BeeGFS zu implementieren.

Die Bereitstellung wird komplett ausgeführt pre_tasks, Und dann zur Bestätigung des Benutzers
aufgefordert, bevor mit der tatsächlichen BeeGFS-Bereitstellung.

Führen Sie den folgenden Befehl aus, indem Sie die Anzahl der Gabeln nach Bedarf anpassen (siehe
Hinweis unten):

ansible-playbook -i inventory.yml playbook.yml --forks 20

Insbesondere bei größeren Bereitstellungen forks wird empfohlen, die Standardanzahl von
Gabeln (5) mit dem Parameter zu überschreiben, um die Anzahl der Hosts zu erhöhen, die
Ansible parallel konfiguriert. (Weitere Informationen finden Sie unter "Kontrolle der
Playbook-Ausführung".) Die Einstellung für den maximalen Wert hängt von der
Verarbeitungsleistung ab, die auf dem Ansible-Steuerungsknoten verfügbar ist. Das oben
genannte Beispiel von 20 wurde auf einem virtuellen Ansible-Steuerungsknoten mit 4 CPUs
(Intel® Xeon® Gold 6146 CPU @ 3,20 GHz) ausgeführt.

Je nach Größe der Implementierung und Netzwerk-Performance zwischen dem Ansible Control Node und
BeeGFS File- und Block-Nodes kann die Implementierungszeit variieren.

45

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

Konfigurieren Sie BeeGFS-Clients

Sie müssen den BeeGFS-Client auf allen Hosts installieren und konfigurieren, die Zugriff
auf das BeeGFS-Dateisystem benötigen, z. B. Compute- oder GPU-Nodes. Für diese
Aufgabe können Sie Ansible und die BeeGFS-Sammlung verwenden.

Schritte

1. Richten Sie bei Bedarf über den Ansible-Steuerungsknoten passwortlose SSH für jeden Host ein, den Sie
als BeeGFS-Clients konfigurieren möchten:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Client eine Datei mit dem Namen
`<HOSTNAME>.yml Füllen Sie den Platzhaltertext mit den korrekten Informationen für Ihre Umgebung
aus:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

Bei der Bereitstellung mit zwei Subnetzadressierungsschemata müssen auf jedem Client
zwei InfiniBand-Schnittstellen konfiguriert werden, eine in jedem der beiden Storage-IPoIB-
Subnetze. Wenn Sie die Beispiel-Subnetze und empfohlenen Bereiche für jeden hier
aufgeführten BeeGFS-Dienst verwenden, sollten Clients eine Schnittstelle im Bereich von
bis und die andere in bis konfigurieren 100.127.1.0 100.127.99.255 100.128.1.0
100.128.99.255.

3. Erstellen Sie eine neue Datei client_inventory.yml, Und dann füllen Sie die folgenden Parameter an
der Spitze:

46

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

Speichern Sie Passwörter nicht im Klartext. Verwenden Sie stattdessen den Ansible Vault
(siehe Ansible-Dokumentation für) "Verschlüsseln von Inhalten mit Ansible Vault") Oder
verwenden Sie die --ask-become-pass Option beim Ausführen des Playbooks.

4. Im client_inventory.yml Datei, Listen Sie alle Hosts auf, die als BeeGFS-Clients unter dem
konfiguriert werden sollen beegfs_clients Gruppe, und geben Sie dann alle zusätzlichen
Konfigurationen an, die zum Erstellen des BeeGFS-Client-Kernelmoduls erforderlich sind.

47

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

Wenn Sie die NVIDIA OFED-Treiber verwenden, stellen Sie sicher, dass
beegfs_client_ofed_include_path sie auf den richtigen „Header include path“ für
Ihre Linux-Installation verweist. Weitere Informationen finden Sie in der BeeGFS-
Dokumentation für "RDMA-Unterstützung".

5. Im client_inventory.yml Datei, Listen Sie die BeeGFS-Dateisysteme auf, die am unteren Rand eines
zuvor definierten gemountet werden sollen vars.

48

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

Der beegfs_client_config Stellt die Einstellungen dar, die getestet wurden. Lesen Sie
die Dokumentation im netapp_eseries.beegfs Kollektion’s beegfs_client Rolle für
einen umfassenden Überblick über alle Optionen. Dies enthält Details zum Mounten
mehrerer BeeGFS-Dateisysteme oder zum mehrere Male das gleiche BeeGFS-
Dateisystem.

6. Erstellen Sie eine neue client_playbook.yml Datei, und füllen Sie dann die folgenden Parameter aus:

49

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Beim Importieren des weglassen netapp_eseries.host Sammlung und ipoib Rolle,
wenn Sie bereits die erforderlichen IB/RDMA-Treiber und IP-Adressen auf den
entsprechenden IPoIB-Schnittstellen installiert haben.

7. Führen Sie den folgenden Befehl aus, um den Client zu installieren und zu erstellen und BeeGFS zu
mounten:

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Bevor Sie das BeeGFS-Dateisystem in Produktion setzen, empfehlen wir * dringend*, sich bei allen Clients
anzumelden und zu starten beegfs-fsck --checkfs Um sicherzustellen, dass alle Knoten erreichbar
sind und keine Probleme gemeldet werden.

Skalierung auf mehr als fünf Bausteine

Pacemaker und Corosync können so konfiguriert werden, dass sie über fünf Bausteine
(10 Datei-Knoten) hinausgehen. Allerdings gibt es Nachteile zu größeren Clustern, und
schließlich Pacemaker und Corosync auferlegen ein Maximum von 32 Knoten.

NetApp hat nur BeeGFS HA Cluster für bis zu 10 Nodes getestet. Es wird nicht empfohlen, einzelne Cluster
über dieses Limit hinaus zu skalieren. BeeGFS-Filesysteme müssen jedoch immer noch weit über 10 Nodes
skalieren, und NetApp hat dies in der BeeGFS on NetApp Lösung berücksichtigt.

Durch die Implementierung mehrerer HA-Cluster mit einer Teilmenge der Bausteine in jedem Filesystem
können Sie das gesamte BeeGFS Filesystem unabhängig von empfohlenen oder festen Grenzwerten für die
zugrunde liegenden HA-Clustering-Mechanismen skalieren. Gehen Sie in diesem Szenario wie folgt vor:

• Erstellen Sie einen neuen Ansible-Bestand, der die zusätzlichen HA-Cluster darstellt, und geben Sie dann
das Konfigurieren eines anderen Managementservices nicht ein. Zeigen Sie stattdessen auf
beegfs_ha_mgmtd_floating_ip Variable in jedem zusätzlichen Cluster enthalten ha_cluster.yml
An die IP für den ersten BeeGFS Management Service.

50

• Wenn Sie dem selben Dateisystem zusätzliche HA-Cluster hinzufügen, stellen Sie Folgendes sicher:

◦ Die BeeGFS-Knoten-IDs sind eindeutig.

◦ Die Dateinamen, die den einzelnen Diensten unter entsprechen group_vars Ist für alle Cluster
eindeutig.

◦ Die BeeGFS-Client- und Server-IP-Adressen sind für alle Cluster eindeutig.

◦ Das erste HA-Cluster mit dem BeeGFS-Managementservice wird ausgeführt, bevor versucht wird,
zusätzliche Cluster zu implementieren oder zu aktualisieren.

• Inventarisierung für jedes HA-Cluster getrennt in der eigenen Verzeichnisstruktur

Wenn Sie versuchen, die Bestandsdateien für mehrere Cluster in einem Verzeichnisbaum zu mischen,
kann dies zu Problemen führen, wie die BeeGFS HA-Rolle die auf ein bestimmtes Cluster angewendete
Konfiguration aggregiert.

Es ist nicht erforderlich, dass jedes HA-Cluster auf fünf Bausteine skaliert werden kann, bevor
ein neues erstellt wird. In vielen Fällen lässt sich das Management mit weniger Bausteinen pro
Cluster vereinfachen. Ein Ansatz besteht darin, die Bausteine in jedem einzelnen Rack als HA-
Cluster zu konfigurieren.

Empfohlene Prozentsätze für die Überprovisionierung von
Storage-Pools

Wenn Sie den standardmäßigen vier Volumes pro Storage-Pool-Konfiguration für
Bausteine der zweiten Generation folgen, finden Sie in der folgenden Tabelle.

Diese Tabelle enthält empfohlene Prozentsätze, die als Volume-Größe im verwendet werden können
eseries_storage_pool_configuration Für jede BeeGFS-Metadaten oder jedes Storage-Ziel:

Laufwerkgröße Größe

1,92 TB 18

3,84 TB 21.5

7,68 TB 22.5

15,3 TB 24

Die oben stehende Anleitung gilt nicht für den Speicherpool, der den Management-Service
enthält. Dieser sollte die Größe von über 25 % verringern, um 1 % des Speicherpools für
Management-Daten zuzuweisen.

Um zu verstehen, wie diese Werte ermittelt wurden, lesen Sie "TR-4800: Anhang A: Verständnis von SSD-
Ausdauer und -Überprovisionierung".

Baustein mit hoher Kapazität

Im Standard BeeGFS Solution Deployment Guide werden Verfahren und Empfehlungen
für High-Performance-Workload-Anforderungen beschrieben. Kunden, die hohe
Kapazitätsanforderungen erfüllen möchten, sollten die hier aufgeführten Variationen bei

51

https://www.netapp.com/media/17009-tr4800.pdf
https://www.netapp.com/media/17009-tr4800.pdf

Implementierung und Empfehlungen beobachten.

Controller

Wenn Sie Bausteine mit hoher Kapazität benötigen, sollten EF600 Controller durch EF300 Controller ersetzt
werden, wobei jeweils eine Cascade HIC zur SAS-Erweiterung installiert ist. Jeder Block-Node verfügt über
eine minimale Anzahl von NVMe-SSDs, die im Array-Gehäuse für BeeGFS-Metadaten-Storage befüllt sind,
und wird an Erweiterungs-Shelfs mit NL-SAS-HDDs für BeeGFS-Storage-Volumes angeschlossen.

Die Konfiguration des Datei-Node zu Block-Nodes bleibt unverändert.

Laufwerkplatzierung

In jedem Block-Node sind mindestens 4 NVMe-SSDs für BeeGFS-Metadaten-Storage erforderlich. Diese
Laufwerke sollten in den äußeren Steckplätzen des Gehäuses platziert werden.

52

Erweiterungsfächer

Der Baustein mit hoher Kapazität kann mit 1-7, 60 Laufwerkserweiterungsfächern pro Speicher-Array
dimensioniert werden.

Anweisungen zum Kabelanschluss der einzelnen Erweiterungsfächer finden Sie unter "Siehe EF300-
Verkabelung für Laufwerk-Shelfs".

53

https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^
https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

54

http://www.netapp.com/TM\

	Implementieren der Lösung : BeeGFS on NetApp with E-Series Storage
	Inhalt
	Implementieren der Lösung
	Implementierungsübersicht
	Ansible-Sammlungen und -Funktionen
	Konfigurationsprofile für BeeGFS-Bausteine
	Übersicht über die einzelnen Implementierungsschritte

	Weitere Informationen zum Ansible Inventar
	Ansible-Module und -Rollen
	Bestandslayout für BeeGFS HA-Cluster

	Besprechen der Best Practices
	Standardkonventionen
	InfiniBand-Storage-Netzwerkkonfiguration

	Implementierung von Hardware
	Implementierung von Software
	Einrichten von Datei-Nodes und Block-Nodes
	Optimieren Sie die System-Einstellungen des File Node für die Performance
	Richten Sie einen Ansible-Steuerungsknoten ein
	Erstellen des Ansible-Inventars
	Definieren Sie den Ansible-Bestand für BeeGFS-Bausteine
	BeeGFS bereitstellen
	Konfigurieren Sie BeeGFS-Clients

	Skalierung auf mehr als fünf Bausteine
	Empfohlene Prozentsätze für die Überprovisionierung von Storage-Pools
	Baustein mit hoher Kapazität
	Controller
	Laufwerkplatzierung
	Erweiterungsfächer

