
Verwenden Sie individuelle Architekturen

BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/de-de/beegfs/custom/architectures-overview.html
on January 27, 2026. Always check docs.netapp.com for the latest.

Inhalt
Verwenden Sie individuelle Architekturen . 1

Überblick und Anforderungen. 1

Einführung . 1

Implementierungsübersicht . 1

Anforderungen . 2

Ersteinrichtung . 3

Installieren und verkabeln Sie die Hardware . 3

Datei- und Block-Knoten einrichten . 6

Ansible-Steuerungsknoten Einrichten . 7

Definieren Sie das BeeGFS-Dateisystem . 8

Ansible-Bestandsübersicht. 8

Planen Sie das Dateisystem . 9

Datei- und Blockknoten definieren . 11

BeeGFS-Dienste definieren . 28

Zuordnen von BeeGFS-Services zu Datei-Nodes . 34

Stellen Sie das BeeGFS-Dateisystem bereit . 35

Ansible – Playbook-Überblick . 35

Implementieren Sie das BeeGFS HA-Cluster . 36

Bereitstellen von BeeGFS-Clients . 40

Überprüfen Sie die BeeGFS-Bereitstellung . 45

Verwenden Sie individuelle Architekturen

Überblick und Anforderungen

Verwenden Sie alle NetApp E/EF-Series Storage-Systeme als BeeGFS-Block-Nodes und
x86-Server als BeeGFS-Datei-Nodes, wenn Sie BeeGFS High Availability-Cluster mithilfe
von Ansible implementieren.

Definitionen für die in diesem Abschnitt verwendete Terminologie finden Sie auf der "Begriffe
und Konzepte" Seite.

Einführung

"NetApp-verifizierte Architekturen"Einige Kunden und Partner bieten zwar vordefinierte
Referenzkonfigurationen und Hinweise zur Größenbestimmung, möchten aber möglicherweise lieber
benutzerdefinierte Architekturen entwickeln, die sich besser an die speziellen Anforderungen oder
Hardwarepräferenzen anpassen. Einer der Hauptvorteile der Entscheidung für BeeGFS auf NetApp ist die
Möglichkeit, BeeGFS HA-Cluster auf Shared-Festplatten mit Ansible zu implementieren. Dadurch wird das
Cluster-Management vereinfacht und die Zuverlässigkeit mithilfe von NetApp entwickelten HA-Komponenten
gesteigert. Die Implementierung benutzerdefinierter BeeGFS-Architekturen auf NetApp erfolgt noch immer
mithilfe von Ansible und den Appliance-ähnlichen Ansatz auf einem flexiblen Spektrum an Hardware.

Dieser Abschnitt beschreibt die allgemeinen Schritte, die zur Implementierung von BeeGFS-Dateisystemen auf
NetApp Hardware und zur Verwendung von Ansible zur Konfiguration von BeeGFS-Dateisystemen erforderlich
sind. Details zu Best Practices für das Design von BeeGFS-Dateisystemen und optimierten Beispielen finden
Sie im "NetApp-verifizierte Architekturen" Abschnitt.

Implementierungsübersicht

Die Bereitstellung eines BeeGFS-Dateisystems umfasst im Allgemeinen die folgenden Schritte:

• Ersteinrichtung:

◦ Hardware installieren/verkabeln.

◦ Richten Sie Datei- und Block-Nodes ein.

◦ Richten Sie einen Ansible-Steuerungsknoten ein.

• Definieren Sie das BeeGFS-Dateisystem als Ansible-Inventar.

• Ausführen von Ansible für Datei- und Block-Nodes zur Implementierung von BeeGFS

◦ Optional zum Einrichten von Clients und Mounten BeeGFS.

In den nachfolgenden Abschnitten werden diese Schritte näher beschrieben.

1

https://docs.netapp.com/de-de/beegfs/get-started/beegfs-terms.html
https://docs.netapp.com/de-de/beegfs/get-started/beegfs-terms.html
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-solution-overview.html
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-solution-overview.html

Ansible übernimmt alle Softwareprovisionierung- und Konfigurationsaufgaben, z. B.:

• Erstellen/Zuordnen von Volumes auf Block-Nodes

• Formatieren/Tuning von Volumes auf Datei-Nodes

• Installation/Konfiguration von Software auf Datei-Nodes

• Einrichten des HA-Clusters und Konfigurieren von BeeGFS-Ressourcen und File-System-
Services

Anforderungen

Unterstützung für BeeGFS in Ansible ist veröffentlicht am "Ansible-Galaxie" Als Sammlung von Rollen und
Modulen zur Automatisierung der End-to-End-Implementierung und des Managements von BeeGFS HA-
Clustern.

BeeGFS selbst ist nach einem <major>.<minor>.<patch> Versioning Schema versioniert und die Sammlung
pflegt Rollen für jede unterstützte <major>.<minor> Version von BeeGFS, zum Beispiel BeeGFS 7.2 oder
BeeGFS 7.3. Da Updates für die Sammlung veröffentlicht werden, wird die Patch-Version in jeder Rolle
aktualisiert, um auf die neueste verfügbare BeeGFS-Version für diesen Release Branch (Beispiel: 7.2.8) zu
verweisen. Jede Version der Sammlung wird auch mit bestimmten Linux-Distributionen und -Versionen
getestet und unterstützt, derzeit Red Hat für Dateiknoten und Red Hat und Ubuntu für Clients. Die Ausführung
anderer Distributionen wird nicht unterstützt, und die Ausführung anderer Versionen (insbesondere anderer
Hauptversionen) wird nicht empfohlen.

Ansible-Steuerungsknoten

Dieser Node enthält Inventar und Playbooks, die zum Managen von BeeGFS verwendet werden. Dazu
benötigen Sie:

• Ansible, 6.x (ansible-Core, 2.13)

• Python 3.6 (oder höher)

• Python (Pip) Pakete: Ipaddr und netaddr

Es empfiehlt sich auch, passwortlose SSH vom Steuerungsknoten auf alle BeeGFS Datei-Knoten und -Clients
einzurichten.

BeeGFS-Dateiknoten

Dateiknoten müssen Red Hat Enterprise Linux (RHEL) 9.4 ausführen und Zugriff auf das HA-Repository mit
den erforderlichen Paketen (Pacemaker, Corosync, Fence-Agents-All, Resource-Agents) haben.
Beispielsweise kann der folgende Befehl ausgeführt werden, um das entsprechende Repository unter RHEL 9
zu aktivieren:

subscription-manager repo-override repo=rhel-9-for-x86_64-

highavailability-rpms --add=enabled:1

BeeGFS Client-Knoten

Eine BeeGFS-Client-Ansible-Rolle steht zur Verfügung, um das BeeGFS-Client-Paket zu installieren und
BeeGFS-Mount(s) zu verwalten. Diese Rolle wurde mit RHEL 9.4 und Ubuntu 22.04 getestet.

2

https://galaxy.ansible.com/netapp_eseries/beegfs

Wenn Sie nicht Ansible verwenden, um den BeeGFS-Client einzurichten und BeeGFS zu mounten, any
"BeeGFS unterstützte Linux-Distribution und Kernel" Kann verwendet werden.

Ersteinrichtung

Installieren und verkabeln Sie die Hardware

Schritte erforderlich, um Hardware zu installieren und zu verkabeln, die zum Ausführen
von BeeGFS auf NetApp verwendet wird.

Planen Sie die Installation

Jedes BeeGFS-Dateisystem besteht aus einer Anzahl von Datei-Nodes, auf denen BeeGFS-Dienste über
Backend-Storage ausgeführt werden, der von einer Anzahl von Block-Nodes bereitgestellt wird. Die Datei-
Nodes sind in einem oder mehreren Hochverfügbarkeits-Clustern konfiguriert, um Fehlertoleranz für BeeGFS-
Services zu bieten. Jeder Block-Node ist bereits ein aktiv/aktiv-HA-Paar. Die Mindestanzahl unterstützter File-
Nodes in jedem HA-Cluster beträgt drei und die maximale Anzahl unterstützter File-Nodes in jedem Cluster ist
zehn. BeeGFS-Filesysteme können über zehn Nodes hinaus skaliert werden, indem mehrere unabhängige
HA-Cluster implementiert werden, die zusammen einen Single Filesystem Namespace bieten.

Normalerweise wird jedes HA-Cluster als eine Reihe von „Bausteinen“ bereitgestellt, in denen einige File-
Nodes (x86-Server) direkt mit einer Reihe von Block-Nodes verbunden sind (in der Regel E-Series Storage-
Systeme). Diese Konfiguration erzeugt ein asymmetrisches Cluster, in dem BeeGFS-Services nur auf
bestimmten Datei-Nodes ausgeführt werden können, die Zugriff auf den Back-End-Block-Storage haben, der
für BeeGFS-Ziele verwendet wird. Die Balance zwischen Datei- und Block-Nodes in jedem Baustein und dem
für die direkte Verbindung verwendeten Storage-Protokoll hängen von den Anforderungen einer bestimmten
Installation ab.

Eine alternative HA-Cluster-Architektur verwendet ein Storage-Fabric (auch als Storage Area Network oder
SAN bekannt) zwischen den Datei- und Block-Nodes, um ein symmetrisches Cluster herzustellen. So können
BeeGFS-Services auf jedem Datei-Node in einem bestimmten HA-Cluster ausgeführt werden. Da
symmetrische Cluster aufgrund der zusätzlichen SAN-Hardware nicht so kostengünstig sind, setzt diese
Dokumentation den Einsatz eines asymmetrischen Clusters voraus, der als eine Reihe von einem oder
mehreren Bausteinen implementiert wird.

Stellen Sie sicher, dass die gewünschte Dateisystemarchitektur für eine bestimmte BeeGFS-
Bereitstellung gut verstanden wird, bevor Sie mit der Installation fortfahren.

Rack-Hardware

Bei der Planung der Installation ist es wichtig, dass alle Geräte in jedem Baustein in benachbarten Rack-
Einheiten verfügbar sind. Als Best Practice empfiehlt es sich, Datei-Nodes sofort über Block-Nodes in jedem
Baustein verfügbar zu machen. Befolgen Sie die Dokumentation für die Modelle der Datei und "Block-Storage"
Knoten, die Sie verwenden, wenn Sie Schienen und Hardware im Rack installieren.

Beispiel für einen einzelnen Baustein:

3

https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Beispiel für eine große BeeGFS-Installation, bei der es in jedem HA-Cluster mehrere Bausteine und mehrere
HA-Cluster im Filesystem gibt:

4

Kabeldatei- und Blockknoten

Sie werden die HIC-Ports der Block-Nodes der E-Series normalerweise mit dem vorgesehenen Host Channel
Adapter (für InfiniBand-Protokolle) oder den Host-Bus-Adaptern (für Fibre Channel und andere Protokolle) der
Datei-Nodes verbinden. Die genaue Art und Weise, diese Verbindungen herzustellen, hängt von der
gewünschten Dateisystemarchitektur ab, hier ist ein Beispiel"Basierend auf BeeGFS der zweiten Generation
auf NetApp Verified Architecture":

Dateiknoten mit dem Client-Netzwerk verkabeln

Jeder Datei-Node verfügt über eine bestimmte Anzahl von InfiniBand- oder Ethernet-Ports für BeeGFS-Client-
Traffic. Je nach Architektur verfügt jeder Datei-Node über eine oder mehrere Verbindungen zu einem
hochperformanten Client-/Storage-Netzwerk, möglicherweise zu mehreren Switches für Redundanz und
höhere Bandbreite. Hier sehen Sie ein Beispiel für die Client-Verkabelung mithilfe redundanter Netzwerk-
Switches, bei denen die in Dunkelgrün bzw. hellgrün hervorgehobenen Ports mit separaten Switches
verbunden sind:

5

../second-gen/beegfs-design-hardware-architecture.html
../second-gen/beegfs-design-hardware-architecture.html

Verbindung zwischen Management-Netzwerk und Stromversorgung

Stellen Sie alle erforderlichen Netzwerkverbindungen für in-Band- und Out-of-Band-Netzwerke her.

Schließen Sie alle Netzteile an, um sicherzustellen, dass jeder Datei- und Block-Knoten Verbindungen zu
mehreren Stromverteilungs-Einheiten hat, um Redundanz zu gewährleisten (falls verfügbar).

Datei- und Block-Knoten einrichten

Manuelle Schritte zur Einrichtung von Datei- und Block-Nodes vor der Ausführung von
Ansible erforderlich

File-Nodes

Konfigurieren des Baseboard Management Controllers (BMC)

Ein Baseboard Management Controller (BMC), der manchmal als Service-Prozessor bezeichnet wird, ist der
generische Name für die Out-of-Band-Management-Funktion, die in verschiedenen Server-Plattformen
integriert ist, die Remote-Zugriff bieten können, selbst wenn das Betriebssystem nicht installiert ist oder nicht
zugänglich ist. Anbieter vermarkten diese Funktionalität in der Regel mit ihrem eigenen Branding. Auf dem
Lenovo SR665 wird beispielsweise der BMC als Lenovo XClarity Controller (XCC) bezeichnet.

Befolgen Sie die Dokumentation des Serveranbieters, um alle erforderlichen Lizenzen für den Zugriff auf diese
Funktionalität zu aktivieren und sicherzustellen, dass der BMC mit dem Netzwerk verbunden und für den
Remote-Zugriff entsprechend konfiguriert ist.

Wenn ein BMC-basiertes Fechten mit Redfish gewünscht wird, stellen Sie sicher, dass Redfish
aktiviert ist und die BMC-Schnittstelle über das auf dem Dateiknoten installierte Betriebssystem
zugänglich ist. Auf dem Netzwerk-Switch kann eine spezielle Konfiguration erforderlich sein,
wenn BMC und der Betrieb dieselbe physische Netzwerkschnittstelle nutzen.

Systemeinstellungen Einstellen

Stellen Sie mithilfe der Benutzeroberfläche des System-Setup (BIOS/UEFI) sicher, dass Einstellungen auf
maximale Leistung eingestellt sind. Die genauen Einstellungen und optimalen Werte variieren je nach
verwendetes Servermodell. Es wird eine Anleitung zur Verfügung gestellt"Verifizierte Datei-Node-Modelle",
andernfalls beziehen Sie sich auf die Dokumentation und Best Practices des Serverherstellers, die auf Ihrem
Modell basieren.

6

../second-gen/beegfs-deploy-file-node-tuning.html

Installieren Sie ein Betriebssystem

Installieren Sie ein unterstütztes Betriebssystem basierend auf den aufgeführten Dateiknoten"Hier"
-Anforderungen. Beachten Sie die nachfolgenden Schritte, die auf Ihrer Linux-Distribution basieren.

Red Hat

Verwenden Sie den Red Hat Subscription Manager, um das System zu registrieren und zu abonnieren, damit
die erforderlichen Pakete aus den offiziellen Red Hat-Repositorys installiert werden können und um Updates
auf die unterstützte Version von Red Hat zu beschränken: subscription-manager release
--set=<MAJOR_VERSION>.<MINOR_VERSION> . Anweisungen finden Sie unter "Registrieren und
Abonnieren eines RHEL Systems" Und "Einschränken von Aktualisierungen" .

Red hat Repository mit den für hohe Verfügbarkeit erforderlichen Paketen aktivieren:

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

Managementnetzwerk Konfigurieren

Konfigurieren Sie alle erforderlichen Netzwerkschnittstellen für die bandinterne Verwaltung des
Betriebssystems. Die genauen Schritte hängen von der jeweiligen Linux-Distribution und der verwendeten
Version ab.

Vergewissern Sie sich, dass SSH aktiviert ist und alle Managementoberflächen über den
Ansible Kontroll-Node zugänglich sind.

Aktualisieren der HCA- und HBA-Firmware

Stellen Sie sicher, dass auf allen HBAs und HCAs unterstützte Firmware-Versionen ausgeführt "NetApp
Interoperabilitätsmatrix"werden, die auf dem aufgeführt sind, und aktualisieren Sie ggf.. Weitere Empfehlungen
für NVIDIA ConnectX Adapter finden Sie "Hier".

Block-Nodes

Befolgen Sie die Schritte zu "Die Inbetriebnahme ist möglich mit E-Series" Um den Managementport an jedem
Block Node Controller zu konfigurieren und optional den Namen des Storage-Arrays für jedes System
festzulegen.

Es ist keine zusätzliche Konfiguration erforderlich, die darüber hinaus sicherstellt, dass alle
Block-Nodes über den Ansible-Kontroll-Node zugänglich sind. Die verbleibende
Systemkonfiguration wird mit Ansible angewendet/gewartet.

Ansible-Steuerungsknoten Einrichten

Richten Sie einen Ansible-Steuerungsknoten ein, um das Dateisystem zu implementieren
und zu managen.

Überblick

Ein Ansible-Steuerungsknoten ist eine physische oder virtuelle Linux-Maschine, die zum Verwalten des

7

../second-gen/beegfs-technology-requirements.html#file-node-requirements
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://imt.netapp.com/matrix/
https://imt.netapp.com/matrix/
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Clusters verwendet wird. Er muss folgende Anforderungen erfüllen:

• Lernen Sie die "Anforderungen"Rolle für die BeeGFS HA kennen, einschließlich der installierten Versionen
von Ansible, Python und zusätzlichen Python-Paketen.

• Treffen Sie den Beamten "Ansible-Control-Node-Anforderungen" Einschließlich Betriebssystemversionen.

• SSH- und HTTPS-Zugriff auf alle Datei- und Block-Nodes

Detaillierte Installationsschritte finden Sie "Hier".

Definieren Sie das BeeGFS-Dateisystem

Ansible-Bestandsübersicht

Der Ansible-Bestand ist ein Satz von Konfigurationsdateien, die das gewünschte
BeeGFS HA-Cluster definieren.

Überblick

Es wird empfohlen, die standardmäßigen Ansible-Methoden für die Organisation des zu befolgen "Inventar",
Einschließlich der Verwendung von "Unterverzeichnisse/Dateien" Anstatt den gesamten Bestand in einer Datei
zu speichern.

Der Ansible-Bestand für ein einzelnes BeeGFS HA-Cluster ist wie folgt organisiert:

8

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-setting-up-an-ansible-control-node.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

Da ein einzelnes BeeGFS-Dateisystem mehrere HA-Cluster umfassen kann, können große
Installationen mehrere Ansible-Inventare durchführen. Im Allgemeinen wird es nicht empfohlen,
mehrere HA-Cluster als einen einzelnen Ansible-Bestand zu definieren, um Probleme zu
vermeiden.

Schritte

1. Erstellen Sie auf Ihrem Ansible-Kontroll-Node ein leeres Verzeichnis, das den Ansible-Bestand für das
BeeGFS-Cluster enthält, das bereitgestellt werden soll.

a. Wenn Ihr Filesystem schließlich mehrere HA-Cluster enthalten soll/kann, wird empfohlen, zuerst ein
Verzeichnis für das Dateisystem zu erstellen und dann Unterverzeichnisse für den Bestand, der die
einzelnen HA-Cluster darstellt, einzutragen. Beispiel:

beegfs_file_system_1/

 beegfs_cluster_1/

 beegfs_cluster_2/

 beegfs_cluster_N/

2. Erstellen Sie im Verzeichnis, das den Bestand für den HA-Cluster enthält, den Sie bereitstellen möchten,
zwei Verzeichnisse group_vars Und host_vars Und zwei Dateien inventory.yml Und
playbook.yml.

Die folgenden Abschnitte gehen durch die Definition des Inhalts jeder dieser Dateien.

Planen Sie das Dateisystem

Planen Sie die Filesystem-Implementierung, bevor Sie den Ansible-Bestand aufbauen.

Überblick

Vor der Bereitstellung des Dateisystems sollten Sie festlegen, welche IP-Adressen, Ports und andere
Konfigurationen für alle Datei-Nodes, Block-Nodes und BeeGFS-Services im Cluster erforderlich sind.
Während die genaue Konfiguration je nach Architektur des Clusters variiert, werden in diesem Abschnitt Best
Practices und Schritte definiert, die allgemein anwendbar sind.

Schritte

1. Wenn Sie zum Verbinden von Datei-Nodes mit Block-Nodes ein IP-basiertes Storage-Protokoll (z. B. iSER,
iSCSI, NVMe/IB oder NVMe/RoCE) verwenden, füllen Sie für jeden Baustein das folgende Arbeitsblatt aus.
Jede direkte Verbindung in einem einzelnen Baustein sollte ein eigenes Subnetz haben, und es sollte
keine Überschneidung mit Subnetzen geben, die für die Client-Server-Konnektivität verwendet werden.

Datei-Node IB-Port IP-Adresse Block-Node IB-Port Physische IP-
Adresse

Virtuelle IP
(nur für
EF600 mit
HDR IB)

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<IP/SUBNET
>

9

Wenn Datei- und Block-Nodes in jedem Baustein direkt verbunden sind, können für mehrere
Bausteine oft dieselben IPs/Schemas verwendet werden.

2. Füllen Sie unabhängig davon aus, ob Sie InfiniBand oder RDMA over Converged Ethernet (RoCE) für das
Storage-Netzwerk verwenden, das folgende Arbeitsblatt aus, um die IP-Bereiche zu ermitteln, die für HA-
Cluster-Services, BeeGFS-Fileservices und Clients verwendet werden, um zu kommunizieren:

Zweck InfiniBand-Port IP-Adresse oder Bereich

BeeGFS Cluster-IP(s) <INTERFACE(s)> <RANGE>

BeeGFS Management <INTERFACE(s)> <IP(s)>

BeeGFS-Metadaten <INTERFACE(s)> <RANGE>

BeeGFS-Speicherung <INTERFACE(s)> <RANGE>

BeeGFS-Clients <INTERFACE(s)> <RANGE>

a. Wenn Sie ein einzelnes IP-Subnetz verwenden, ist nur ein Arbeitsblatt erforderlich. Füllen Sie
andernfalls auch ein Arbeitsblatt für das zweite Subnetz aus.

3. Füllen Sie für jeden Baustein im Cluster das folgende Arbeitsblatt aus, um festzulegen, welche BeeGFS-
Services ausgeführt werden sollen. Geben Sie für jeden Service die bevorzugten/sekundären Dateiknoten,
Netzwerkport, fließende IP(s), NUMA-Zonenzuweisung (falls erforderlich) und welche Block-Nodes für ihre
Ziele verwendet werden. Beachten Sie beim Ausfüllen des Arbeitsblatts die folgenden Richtlinien:

a. Geben Sie BeeGFS-Dienste als entweder an mgmt.yml, meta_<ID>.yml, Oder
storage_<ID>.yml Wobei ID eine eindeutige Nummer für alle BeeGFS-Dienste dieses Typs in
diesem Dateisystem darstellt. Dieses Übereinkommen erleichtert die Rückverweisen auf dieses
Arbeitsblatt in den nachfolgenden Abschnitten, während Dateien für die Konfiguration der einzelnen
Dienste erstellt werden.

b. Ports für BeeGFS-Dienste müssen nur in einem bestimmten Baustein einzigartig sein. Stellen Sie
sicher, dass Dienste mit derselben Portnummer nicht jemals auf demselben Dateiknoten ausgeführt
werden können, um Portkonflikte zu vermeiden.

c. Bei Bedarf können Services Volumes von mehr als einem Block-Node und/oder Storage-Pool nutzen
(und nicht alle Volumes müssen Eigentum desselben Controllers sein). Zudem können mehrere
Services denselben Block-Node und/oder dieselbe Storage-Pool-Konfiguration nutzen (einzelne
Volumes werden in einem späteren Abschnitt definiert).

BeeGFS-
Dienst
(Dateinam
e)

File-Nodes Port Fließende
IPs

NUMA-
Zone

Block-
Node

Storage-
Pool

Controller,
der die
LUN
besitzt

<SERVICE
TYPE>_<I
D>.yml

<PREFER
RED FILE
NODE>
<SECOND
ARY FILE
NODE(s)>

<PORT> <INTERFA
CE>:<IP/S
UBNET>
<INTERFA
CE>:<IP/S
UBNET>

<NUMA
NODE/ZO
NE>

<BLOCK
NODE>

<STORAG
E
POOL/VOL
UME
GROUP>

<A OR B>

Weitere Details zu Standardkonventionen, Best Practices und ausgefüllten Arbeitsblättern finden Sie in den
"Best Practices in sich vereint""Definieren Sie BeeGFS-Bausteine"Abschnitten und der BeeGFS on NetApp
Verified Architecture.

10

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-bestpractice.html
../second-gen/beegfs-deploy-define-inventory.html

Datei- und Blockknoten definieren

Konfigurieren Einzelner Dateiknoten

Legen Sie die Konfiguration für einzelne Datei-Nodes mithilfe von Host-Variablen fest
(Host_vars).

Überblick

In diesem Abschnitt wird das Ausfüllen von erläutert host_vars/<FILE_NODE_HOSTNAME>.yml Datei für
jeden Datei-Node im Cluster. Diese Dateien sollten nur die für einen bestimmten Dateiknoten spezifische
Konfiguration enthalten. Hierzu zählen folgende allgemein:

• Die Definition der IP oder des Hostnamen Ansible sollte für die Verbindung mit dem Node verwendet
werden.

• Konfiguration zusätzlicher Schnittstellen und Cluster-IPs, die für HA-Cluster-Services (Pacemaker und
Corosync) zur Kommunikation mit anderen Datei-Nodes verwendet werden Standardmäßig verwenden
diese Dienste dasselbe Netzwerk wie die Managementoberfläche, aber für Redundanz sollten zusätzliche
Schnittstellen verfügbar sein. Es ist üblich, zusätzliche IPs im Storage-Netzwerk zu definieren, ohne dass
ein zusätzliches Cluster- oder Management-Netzwerk erforderlich ist.

◦ Die Performance aller Netzwerke, die für die Cluster-Kommunikation verwendet werden, ist für die
Performance des Filesystems nicht von entscheidender Bedeutung. Bei der Standardkonfiguration des
Clusters bietet ein Netzwerk mit mindestens 1 GB/s im Allgemeinen ausreichende Performance für
Cluster-Vorgänge, z. B. die Synchronisierung von Node-Status und die Koordinierung von Änderungen
des Clusterressourcenstatus. Langsame/überlastete Netzwerke können dazu führen, dass Änderungen
des Ressourcenzustands länger dauern als üblich, und in extremen Fällen können Nodes aus dem
Cluster entfernt werden, wenn sie in einem angemessenen Zeitrahmen keine Herzschläge senden
können.

• Konfigurieren von Schnittstellen, die für die Verbindung zu Block-Nodes über das gewünschte Protokoll
verwendet werden (z. B. iSCSI/iSER, NVMe/IB, NVMe/RoCE, FCP usw.)

Schritte

Wenn Sie auf das im "Planen Sie das Dateisystem" Abschnitt definierte IP-Adressierungsschema verweisen,
erstellen Sie für jeden Dateiknoten im Cluster eine Datei host_vars/<FILE_NODE_HOSTNAME>/yml und
füllen Sie sie wie folgt aus:

1. Geben Sie oben die IP oder den Hostnamen an, den Ansible für den Node mit SSH verwenden und
verwalten soll:

ansible_host: "<MANAGEMENT_IP>"

2. Konfigurieren Sie zusätzliche IPs, die für den Cluster-Datenverkehr verwendet werden können:

a. Wenn der Netzwerktyp ist "InfiniBand (mit IPoIB)":

11

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Wenn der Netzwerktyp ist "RDMA über Converged Ethernet (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Wenn der Netzwerktyp ist "Ethernet (nur TCP, kein RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

3. Geben Sie an, welche IPs für Cluster-Datenverkehr verwendet werden sollen, wobei die bevorzugten IPs
höher aufgeführt sind:

beegfs_ha_cluster_node_ips:

- <MANAGEMENT_IP> # Including the management IP is typically but not

required.

- <IP_ADDRESS> # Ex: 100.127.100.1

- <IP_ADDRESS> # Additional IPs as needed.

IPS, die in Schritt zwei konfiguriert sind, werden nicht als Cluster-IPs verwendet, es sei
denn, sie sind im enthalten beegfs_ha_cluster_node_ips Liste. So können mithilfe von
Ansible zusätzliche IPs/Schnittstellen konfiguriert werden, die bei Bedarf für andere Zwecke
verwendet werden können.

4. Wenn der Datei-Node über ein IP-basiertes Protokoll mit Block-Nodes kommunizieren muss, müssen IPs
auf der entsprechenden Schnittstelle konfiguriert werden. Für dieses installierte/konfigurierte Protokoll sind
alle Pakete erforderlich.

a. Bei Verwendung von "ISCSI":

12

https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md

eseries_iscsi_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

b. Bei Verwendung von "ISER":

eseries_ib_iser_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

c. Bei Verwendung von "NVMe/IB":

eseries_nvme_ib_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

d. Bei Verwendung von "NVMe/RoCE":

eseries_nvme_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Andere Protokolle:

i. Bei Verwendung von "NVMe/FC", Die Konfiguration einzelner Schnittstellen ist nicht erforderlich.
Die BeeGFS-Cluster-Implementierung erkennt das Protokoll automatisch und installiert/konfiguriert
die Anforderungen nach Bedarf. Wenn Sie eine Fabric zum Verbinden von Datei- und Block-Nodes
verwenden, stellen Sie sicher, dass die Switches im Rahmen der Best Practices von NetApp und
dem Switch-Anbieter ordnungsgemäß begrenzt sind.

ii. Bei der Verwendung von FCP oder SAS muss keine zusätzliche Software installiert oder
konfiguriert werden. Wenn Sie FCP verwenden, stellen Sie sicher, dass die Switches Folgendes
ordnungsgemäß begrenzt sind "NetApp" Und die Best Practices Ihres Switch-Anbieters
berücksichtigen.

iii. Die Verwendung von IB-SRP wird derzeit nicht empfohlen. NVMe/IB oder iSER nutzen, je
nachdem, was die Block-Nodes der E-Series unterstützen.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen einzelnen Dateiknoten darstellt.

13

https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml

Erweitert: Zwischen Ethernet- und InfiniBand-Modus können NVIDIA ConnectX VPI-Adapter eingesetzt
werden

NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) Adapter unterstützen sowohl InfiniBand als auch
Ethernet als Transportebene. Das Umschalten zwischen den Modi wird nicht automatisch ausgehandelt und
muss mit dem in enthaltenen Werkzeug konfiguriert werden <code>mstconfig</code> <code>mstflint</code>,
einem Open-Source-Paket, das Teil des ist <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">"NVIDIA Firmare Tools (MFT)". Das Ändern des Modus der Adapter muss nur einmal
vorgenommen werden. Dies kann manuell vorgenommen oder als Teil aller Schnittstellen, die mithilfe des
Abschnitts des Bestands konfiguriert wurden, in das Ansible-Inventar aufgenommen <code>eseries-
[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce]_interfaces:</code> werden, um es automatisch prüfen/anwenden zu
lassen.

So kann beispielsweise die aktuelle Schnittstellenspannung im InfiniBand-Modus in Ethernet geändert werden,
damit sie für RoCE verwendet werden kann:

1. Für jede Schnittstelle, die Sie angeben möchten mstconfig Als Zuordnung (oder Wörterbuch), das angibt
LINK_TYPE_P<N> Wo <N> Wird durch die Anschlussnummer des HCA für die Schnittstelle bestimmt. Der
<N> Wert kann durch Ausführen bestimmt werden grep PCI_SLOT_NAME
/sys/class/net/<INTERFACE_NAME>/device/uevent Und fügen Sie 1 zur letzten Nummer aus
dem PCI-Steckplatznamen hinzu und konvertieren Sie auf dezimal.

a. Beispiel angegeben PCI_SLOT_NAME=0000:2f:00.2 (2 + 1 → HCA-Port 3) → LINK_TYPE_P3:

eth:

eseries_roce_interfaces:

- name: <INTERFACE>

 address: <IP/SUBNET>

 mstconfig:

 LINK_TYPE_P3: eth

Weitere Details finden Sie im "Dokumentation der NetApp E-Series Host-Sammlung" Für den
Schnittstellentyp/das Protokoll, das Sie verwenden.

Konfigurieren Einzelner Blockknoten

Legen Sie die Konfiguration für einzelne Block-Nodes mithilfe von Host-Variablen fest
(Host_vars).

Überblick

In diesem Abschnitt wird das Ausfüllen von erläutert host_vars/<BLOCK_NODE_HOSTNAME>.yml Datei für
jeden Block-Node im Cluster. Diese Dateien sollten nur die Konfiguration enthalten, die für einen bestimmten
Block-Node eindeutig ist. Hierzu zählen folgende allgemein:

• Der Systemname (wie in System Manager angezeigt).

• Die HTTPS-URL für einen der Controller (wird zum Verwalten des Systems mit seiner REST-API
verwendet).

• Welche Storage-Protokoll-Datei-Nodes verwenden für die Verbindung zu diesem Block-Node?

14

https://github.com/netappeseries/host

• Konfigurieren von Ports für die Host-Schnittstelle (HIC), z. B. IP-Adressen (falls erforderlich)

Schritte

Wenn Sie auf das im "Planen Sie das Dateisystem" Abschnitt definierte IP-Adressierungsschema verweisen,
erstellen Sie für jeden Block-Node im Cluster eine Datei host_vars/<BLOCK_NODE_HOSTNAME>/yml und
füllen Sie sie wie folgt aus:

1. Geben Sie oben den Systemnamen und die HTTPS-URL für einen Controller an:

eseries_system_name: <SYSTEM_NAME>

eseries_system_api_url:

https://<MANAGEMENT_HOSTNAME_OR_IP>:8443/devmgr/v2/

2. Wählen Sie die aus "Protokoll" Dateiknoten werden für die Verbindung zu diesem Block-Knoten verwendet:

a. Unterstützte Protokolle: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme_ib, nvme_fc, nvme_roce.

eseries_initiator_protocol: <PROTOCOL>

3. Je nach verwendetem Protokoll erfordern die HIC-Ports unter Umständen zusätzliche Konfigurationen. Bei
Bedarf sollte die HIC-Port-Konfiguration definiert werden, sodass der oberste Eintrag in der Konfiguration
für jeden Controller dem physischen, am meisten linken Port auf jedem Controller entspricht, und der
untere Port dem fast rechten Port. Alle Ports erfordern eine gültige Konfiguration, auch wenn sie derzeit
nicht verwendet werden.

Wenn Sie HDR (200 GB) InfiniBand oder 200 GB RoCE mit EF600 Block-Nodes
verwenden, sehen Sie den folgenden Abschnitt.

a. Für iSCSI:

15

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

eseries_controller_iscsi_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

Choices: enabled, disabled

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 gateway: # Port IPv4 gateway

 subnet_mask: # Port IPv4 subnet_mask

 mtu: # Port IPv4 mtu

 - (...) # Additional ports as needed.

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_iscsi_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_iscsi_port_config_method: dhcp # General port

configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_iscsi_port_gateway: # General port

IPv4 gateway for both controllers.

eseries_controller_iscsi_port_subnet_mask: # General port

IPv4 subnet mask for both controllers.

eseries_controller_iscsi_port_mtu: 9000 # General port

maximum transfer units (MTU) for both controllers. Any value greater

than 1500 (bytes).

b. Für iSER:

eseries_controller_ib_iser_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

c. Für NVMe/IB:

16

eseries_controller_nvme_ib_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

d. Für NVMe/RoCE:

eseries_controller_nvme_roce_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 subnet_mask: # Port IPv4 subnet_mask

 gateway: # Port IPv4 gateway

 mtu: # Port IPv4 mtu

 speed: # Port IPv4 speed

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_nvme_roce_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_nvme_roce_port_config_method: dhcp # General

port configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_nvme_roce_port_gateway: # General

port IPv4 gateway for both controllers.

eseries_controller_nvme_roce_port_subnet_mask: # General

port IPv4 subnet mask for both controllers.

eseries_controller_nvme_roce_port_mtu: 4200 # General

port maximum transfer units (MTU). Any value greater than 1500

(bytes).

eseries_controller_nvme_roce_port_speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

17

e. FC- und SAS-Protokolle erfordern keine zusätzliche Konfiguration. SRP wird nicht richtig empfohlen.

Weitere Optionen zum Konfigurieren von HIC-Ports und Hostprotokollen, einschließlich der Möglichkeit zum
Konfigurieren von iSCSI-CHAP finden Sie im "Dokumentation" In der SANtricity Kollektion enthalten. Hinweis:
Bei der Bereitstellung von BeeGFS werden der Speicherpool, die Volume-Konfiguration und andere Aspekte
des Bereitstellungsspeicher an anderer Stelle konfiguriert und in dieser Datei nicht definiert.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen einzelnen Block-Knoten darstellt.

Mit HDR (200 GB) InfiniBand oder 200 GB RoCE mit NetApp EF600 Block-Nodes:

Um HDR (200 GB) InfiniBand mit der EF600 zu verwenden, muss für jeden physischen Port eine zweite
„virtuelle“ IP konfiguriert werden. Nachfolgend sehen Sie ein Beispiel für die korrekte Konfiguration eines
EF600 mit Dual-Port InfiniBand HDR HIC:

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101 # Port 2a (virtual)

 - 192.168.2.101 # Port 2b (virtual)

 - 192.168.1.100 # Port 2a (physical)

 - 192.168.2.100 # Port 2b (physical)

 controller_b:

 - 192.168.3.101 # Port 2a (virtual)

 - 192.168.4.101 # Port 2b (virtual)

 - 192.168.3.100 # Port 2a (physical)

 - 192.168.4.100 # Port 2b (physical)

Festlegen Der Konfiguration Des Gemeinsamen Dateiknotens

Geben Sie unter Verwendung von Gruppenvariablen (Group_vars) die Konfiguration
allgemeiner Dateiknoten an.

Überblick

Konfiguration, die auf alle Datei-Nodes Apfel soll, wird bei definiert group_vars/ha_cluster.yml. Dazu
gehören in der Regel:

• Details zur Verbindung und Anmeldung zu den einzelnen Dateiknoten.

• Gängige Netzwerkkonfiguration.

• Gibt an, ob ein automatischer Neustart zulässig ist.

• Wie Firewall- und selinux-Status konfiguriert werden sollen.

• Cluster-Konfiguration mit Warn- und Fechten

• Performance-Optimierung:

• Allgemeine BeeGFS-Servicekonfiguration.

18

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

Die in dieser Datei festgelegten Optionen können auch auf einzelnen Datei-Nodes definiert
werden, z. B. wenn gemischte Hardware-Modelle verwendet werden oder Sie unterschiedliche
Passwörter für jeden Knoten haben. Die Konfiguration auf einzelnen Datei-Knoten hat Vorrang
vor der Konfiguration in dieser Datei.

Schritte

Erstellen Sie die Datei group_vars/ha_cluster.yml Und füllen Sie es wie folgt aus:

1. Geben Sie an, wie sich der Ansible Control-Node mit den Remote-Hosts authentifizieren soll:

ansible_ssh_user: root

ansible_become_password: <PASSWORD>

Speichern Sie Passwörter insbesondere für Produktionsumgebungen nicht im Klartext.
Verwenden Sie stattdessen Ansible Vault (siehe "Verschlüsseln von Inhalten mit Ansible
Vault") Oder der --ask-become-pass Option beim Ausführen des Playbooks. Wenn der
ansible_ssh_user Ist bereits root, dann können Sie optional auslassen
ansible_become_password.

2. Wenn Sie statische IPs in ethernet- oder InfiniBand-Schnittstellen konfigurieren (zum Beispiel Cluster-IPs)
und mehrere Schnittstellen im gleichen IP-Subnetz sind (z. B. wenn ib0 192.168.1.10/24 verwendet und
ib1 192.168.1.11/24 verwendet), Zusätzliche IP-Routing-Tabellen und -Regeln müssen so eingerichtet sein,
dass Multi-Homed-Unterstützung ordnungsgemäß funktioniert. Aktivieren Sie einfach den mitgelieferten
Konfigurationshaken für Netzwerkschnittstellen wie folgt:

eseries_ip_default_hook_templates:

 - 99-multihoming.j2

3. Bei der Implementierung des Clusters müssen je nach Storage-Protokoll Nodes neu gestartet werden, um
die Erkennung von Remote-Block-Geräten (E-Series Volumes) zu erleichtern oder andere Aspekte der
Konfiguration anzuwenden. Standardmäßig werden vor dem Neubooten von Nodes angezeigt. Sie können
Nodes jedoch durch Angabe des folgenden Verfahrens automatisch neu starten:

eseries_common_allow_host_reboot: true

a. Standardmäßig nach einem Neustart, um sicherzustellen, dass Block-Geräte und andere Services
bereit sind Ansible wartet, bis das System default.target Erreicht wird, bevor die Implementierung
fortgesetzt wird. In manchen Szenarien, in denen NVMe/IB verwendet wird, ist dies möglicherweise
nicht lang genug, um Remote-Geräte zu initialisieren, zu erkennen und eine Verbindung zu herstellen.
Dies kann dazu führen, dass die automatisierte Implementierung vorzeitig ausfällt und ausfällt. Um dies
bei der Nutzung von NVMe/IB zu vermeiden, müssen Sie außerdem Folgendes definieren:

19

https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/vault_guide/index.html

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

4. Für die Kommunikation mit BeeGFS und HA-Cluster-Services sind mehrere Firewall-Ports erforderlich.
Wenn Sie die Firwewall nicht manuell konfigurieren möchten (nicht empfohlen), geben Sie Folgendes an,
damit erforderliche Firewall-Zonen erstellt und Ports automatisch geöffnet werden:

beegfs_ha_firewall_configure: True

5. Derzeit wird SELinux nicht unterstützt, und es wird empfohlen, den Status auf deaktiviert zu setzen, um
Konflikte zu vermeiden (insbesondere, wenn RDMA verwendet wird). Stellen Sie Folgendes ein, um
sicherzustellen, dass SELinux deaktiviert ist:

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

6. Konfigurieren Sie die Authentifizierung so, dass Dateiknoten kommunizieren können und passen Sie die
Standardeinstellungen entsprechend Ihren Unternehmensrichtlinien an:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: hacluster # BeeGFS HA cluster

username.

beegfs_ha_cluster_password: hapassword # BeeGFS HA cluster

username's password.

beegfs_ha_cluster_password_sha512_salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. "Planen Sie das Dateisystem"Legen Sie auf der Grundlage des Abschnitts die BeeGFS-Management-IP
für dieses Dateisystem fest:

beegfs_ha_mgmtd_floating_ip: <IP ADDRESS>

Während scheinbar redundant, beegfs_ha_mgmtd_floating_ip Ist wichtig, wenn Sie
das BeeGFS-Dateisystem über einen einzelnen HA-Cluster hinaus skalieren. Nachfolgende
HA-Cluster werden ohne zusätzlichen BeeGFS-Managementservice bereitgestellt und Punkt
am Managementservice des ersten Clusters.

8. Aktivieren Sie bei Bedarf E-Mail-Alarme:

20

beegfs_ha_enable_alerts: True

E-mail recipient list for notifications when BeeGFS HA resources

change or fail.

beegfs_ha_alert_email_list: ["<EMAIL>"]

This dictionary is used to configure postfix service

(/etc/postfix/main.cf) which is required to set email alerts.

beegfs_ha_alert_conf_ha_group_options:

 # This parameter specifies the local internet domain name. This is

optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com)

 mydomain: <MY_DOMAIN>

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

9. Es wird dringend empfohlen, Fechten zu aktivieren, da bei Ausfall des primären Knotens Services vom
Starten auf sekundären Knoten blockiert werden können.

a. Aktivieren Sie das globale Fechten, indem Sie Folgendes angeben:

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: True

i. Hinweis: Bei Bedarf können auch alle unterstützten "Cluster-Eigenschaft" Daten hier angegeben
werden. Diese Anpassungen sind in der Regel nicht notwendig, da die BeeGFS HA-Rolle mit einer
Reihe gut getesteter ausgeliefert "Standardwerte"wird.

b. Wählen Sie anschließend einen Fechten-Agent aus und konfigurieren Sie ihn:

i. OPTION 1: Ermöglicht das Fechten mit APC Power Distribution Units (PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: <PDU_USERNAME>

 passwd: <PDU_PASSWORD>

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>

"

ii. OPTION 2: Ermöglicht das Fechten mit den vom Lenovo XCC (und anderen BMCs)
bereitgestellten Redfish APIs:

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54

redfish: &redfish

 username: <BMC_USERNAME>

 password: <BMC_PASSWORD>

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

iii. Weitere Informationen zum Konfigurieren anderer Fencing-Agenten finden Sie im "Red Hat-
Dokumentation".

10. Die BeeGFS HA-Rolle kann viele verschiedene Tuning-Parameter anwenden, um die Leistung weiter zu
optimieren. Dazu gehören unter anderem die Optimierung der Kernel-Speicherauslastung und die E/A von
Blockgeräten. Die Rolle wird mit einem angemessenen Satz von basierend auf Tests mit NetApp E-Series
Block-Nodes ausgeliefert "Standardwerte" . Diese werden standardmäßig jedoch nicht angewendet, es sei
denn, Sie geben Folgendes an:

beegfs_ha_enable_performance_tuning: True

a. Geben Sie bei Bedarf auch hier Änderungen an der Standard-Performance-Optimierung an. Weitere
Informationen finden Sie in der vollständigen "Parameter für die Performance-Optimierung"
Dokumentation.

11. Damit schwebende IP-Adressen (manchmal auch als logische Schnittstellen bekannt), die für BeeGFS-
Dienste verwendet werden, zwischen Datei-Nodes ausfallen können, müssen alle Netzwerkschnittstellen
konsistent benannt werden. Standardmäßig werden Netzwerkschnittstellennamen vom Kernel generiert,
was nicht garantiert ist, dass konsistente Namen generiert werden, auch bei identischen Servermodellen
mit Netzwerkadaptern, die in denselben PCIe-Steckplätzen installiert sind. Dies ist auch nützlich, wenn
Vorräte erstellt werden, bevor das Gerät bereitgestellt wird und generierte Schnittstellennamen bekannt
sind. Um konsistente Gerätenamen auf der Grundlage eines Blockdiagramms des Servers oder
sicherzustellen lshw -class network -businfo Ausgabe, geben Sie die gewünschte PCIe-Adresse-
zu-logische Schnittstellenzuordnung wie folgt an:

a. Für InfiniBand (IPoIB)-Netzwerkschnittstellen:

eseries_ipoib_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: i1a

b. Bei Ethernet-Netzwerkschnittstellen:

22

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md

eseries_ip_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: e1a

Um Konflikte zu vermeiden, wenn Schnittstellen umbenannt werden (um zu verhindern,
dass sie umbenannt werden), sollten Sie keine möglichen Standardnamen wie eth0,
ens9f0, ib0 oder ibs4f0 verwenden. Eine häufige Namenskonvention besteht darin, „e“
oder „i“ für Ethernet oder InfiniBand zu verwenden, gefolgt von der PCIe-
Steckplatznummer und einem Buchstaben zur Angabe des Ports. Zum Beispiel wäre der
zweite Port eines InfiniBand-Adapters, der in Steckplatz 3 installiert ist: i3b.

Wenn Sie ein verifiziertes Datei-Node-Modell verwenden, klicken Sie auf "Hier" Beispiel für
Zuordnungen von PCIe-Adressen zu logischen Ports

12. Geben Sie optional die Konfiguration an, die für alle BeeGFS-Dienste im Cluster gelten soll. Die
Standardkonfigurationswerte können gefunden werden "Hier", und die Konfiguration pro Service wird an
anderer Stelle angegeben:

a. BeeGFS Management-Service:

beegfs_ha_beegfs_mgmtd_conf_ha_group_options:

 <OPTION>: <VALUE>

b. BeeGFS Metadata Services:

beegfs_ha_beegfs_meta_conf_ha_group_options:

 <OPTION>: <VALUE>

c. BeeGFS Storage-Services:

beegfs_ha_beegfs_storage_conf_ha_group_options:

 <OPTION>: <VALUE>

13. Ab BeeGFS 7.2.7 und 7.3.1 "Verbindungsauthentifizierung" Muss konfiguriert oder explizit deaktiviert
werden. Es gibt einige Konfigurationsmöglichkeiten, die mit der Ansible-basierten Implementierung
konfiguriert werden können:

a. Standardmäßig konfiguriert die Bereitstellung die Verbindungsauthentifizierung automatisch und erstellt
ein connauthfile Die auf alle Datei-Nodes verteilt und mit den BeeGFS-Diensten verwendet
werden. Diese Datei wird auch auf dem Ansible-Steuerungsknoten in abgelegt/gepflegt
<INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile Wo Sie Daten für die
Wiederverwendung mit Clients, die auf dieses Filesystem zugreifen müssen, aufbewahren (sicher).

i. Zum Generieren eines neuen Schlüssels angeben -e
"beegfs_ha_conn_auth_force_new=True Wenn Sie das Ansible-Playbook ausführen.
Beachten Sie, dass dies bei einem ignoriert wird beegfs_ha_conn_auth_secret Definiert ist.

ii. Weitere Optionen finden Sie in der vollständigen Liste der Standardwerte, die im enthalten

23

https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://doc.beegfs.io/latest/advanced_topics/authentication.html

"BeeGFS HA-Rolle"sind.

b. Ein benutzerdefiniertes Geheimnis kann verwendet werden, indem Sie Folgendes in definieren
ha_cluster.yml:

beegfs_ha_conn_auth_secret: <SECRET>

c. Die Verbindungsauthentifizierung kann vollständig deaktiviert werden (NICHT empfohlen):

beegfs_ha_conn_auth_enabled: false

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die die allgemeine Konfiguration des
Dateiknoten darstellt.

Verwendung von HDR (200 GB) InfiniBand mit NetApp EF600 Block-Nodes:

Um HDR (200 GB) InfiniBand mit der EF600 zu verwenden, muss der Subnetzmanager die Virtualisierung
unterstützen. Wenn Datei- und Block-Knoten über einen Switch verbunden sind, muss dies im Subnetz
Manager für die Gesamtstruktur aktiviert sein.

Wenn Block- und Datei-Nodes direkt über InfiniBand verbunden sind, opensm muss auf jedem Datei-Node für
jede Schnittstelle, die direkt mit einem Block-Node verbunden ist, eine Instanz von konfiguriert werden. Dies
geschieht durch Angabe von configure: true wann "Konfigurieren von File-Node-Storage-Schnittstellen".

Derzeit unterstützt die Inbox-Version von opensm , die mit unterstützten Linux-Distributionen ausgeliefert
wurde, keine Virtualisierung. Stattdessen ist es erforderlich, dass Sie die Version von über die NVIDIA
OpenFabrics Enterprise Distribution (OFED) installieren und konfigurieren opensm . Obwohl die
Implementierung mit Ansible weiterhin unterstützt wird, sind einige weitere Schritte erforderlich:

1. Laden Sie die Pakete für die Version von OpenSM, die im Abschnitt von der NVIDIA-Website aufgeführt
sind, mithilfe von Curl oder Ihrem gewünschten Tool in das Verzeichnis herunter
"Technologieanforderungen erfüllt" <INVENTORY>/packages/ . Beispiel:

curl -o packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

curl -o packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

2. Unter group_vars/ha_cluster.yml Definieren Sie die folgende Konfiguration:

24

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml
https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-technology-requirements.html

OpenSM package and configuration information

eseries_ib_opensm_allow_upgrades: true

eseries_ib_opensm_skip_package_validation: true

eseries_ib_opensm_rhel_packages: []

eseries_ib_opensm_custom_packages:

 install:

 - files:

 add:

 "packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 "packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 - packages:

 add:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 uninstall:

 - packages:

 remove:

 - opensm

 - opensm-libs

 files:

 remove:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

eseries_ib_opensm_options:

 virt_enabled: "2"

Festlegen Der Konfiguration Allgemeiner Blockknoten

Geben Sie unter Verwendung von Gruppenvariablen (Group_vars) die allgemeine
Konfiguration von Blockknoten an.

Überblick

Die Konfiguration, die auf alle Block-Nodes Apfel soll, wird auf definiert
group_vars/eseries_storage_systems.yml. Dazu gehören in der Regel:

• Details dazu, wie der Ansible-Kontroll-Node mit als Block-Nodes verwendeten E-Series Storage-Systemen
verbunden werden soll.

25

• Welche Firmware-, NVSRAM- und Laufwerk-Firmware-Versionen die Nodes ausführen sollten.

• Globale Konfiguration einschließlich Cache-Einstellungen, Host-Konfiguration und Einstellungen für die
Bereitstellung von Volumes

Die in dieser Datei festgelegten Optionen können auch auf einzelnen Block-Nodes definiert
werden, z. B. wenn gemischte Hardware-Modelle verwendet werden oder Sie unterschiedliche
Passwörter für jeden Knoten haben. Die Konfiguration auf einzelnen Block-Knoten hat Vorrang
vor der Konfiguration in dieser Datei.

Schritte

Erstellen Sie die Datei group_vars/eseries_storage_systems.yml Und füllen Sie es wie folgt aus:

1. Ansible verwendet SSH nicht für die Verbindung mit Block-Nodes und verwendet stattdessen REST-APIs.
Um dies zu erreichen, müssen wir Folgendes festlegen:

ansible_connection: local

2. Geben Sie den Benutzernamen und das Passwort an, um jeden Knoten zu verwalten. Der Benutzername
kann optional ausgelassen werden (und wird standardmäßig auf admin gesetzt), andernfalls können Sie
jedes Konto mit Administratorrechten angeben. Geben Sie außerdem an, ob SSL-Zertifikate überprüft oder
ignoriert werden sollen:

eseries_system_username: admin

eseries_system_password: <PASSWORD>

eseries_validate_certs: false

Es wird nicht empfohlen, Kennwörter im Klartext zu verwenden. Verwenden Sie einen
Ansible-Vault, oder stellen Sie die bereit eseries_system_password Wenn Sie Ansible
mit --extra-Vars verwenden.

3. Geben Sie optional an, welche Controller-Firmware, NVSRAM und Laufwerk-Firmware auf den Nodes
installiert werden soll. Diese müssen auf das heruntergeladen werden packages/ Verzeichnis vor der
Ausführung von Ansible. NVSRAM und E-Series Controller Firmware können heruntergeladen werden
"Hier" Und Laufwerk-Firmware "Hier":

26

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

eseries_firmware_firmware: "packages/<FILENAME>.dlp" # Ex.

"packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/<FILENAME>.dlp" # Ex.

"packages/N6000-880834-D08.dlp"

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

 # Additional firmware versions as needed.

eseries_drive_firmware_upgrade_drives_online: true # Recommended unless

BeeGFS hasn't been deployed yet, as it will disrupt host access if set

to "false".

Wenn diese Konfiguration angegeben wird, aktualisiert Ansible automatisch alle Firmware
einschließlich des Neubootens von Controllern (falls erforderlich), ohne zusätzliche
Eingabeaufforderungen. Dies wird für BeeGFS/Host-I/O voraussichtlich ohne Unterbrechung
ausgeführt, kann jedoch zu einer vorübergehenden Abnahme der Performance führen.

4. Passen Sie die Standardeinstellungen für die globale Systemkonfiguration an. Die hier aufgeführten
Optionen und Werte werden häufig für BeeGFS auf NetApp empfohlen, können jedoch bei Bedarf
angepasst werden:

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required by default.

5. Konfigurieren Sie die Standardeinstellungen für die globale Volume-Bereitstellung. Die hier aufgeführten
Optionen und Werte werden häufig für BeeGFS auf NetApp empfohlen, können jedoch bei Bedarf
angepasst werden:

eseries_volume_size_unit: pct # Required by default. This allows volume

capacities to be specified as a percentage, simplifying putting together

the inventory.

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

6. Passen Sie bei Bedarf die Reihenfolge an, in der Ansible Laufwerke für Storage Pools und Volume-
Gruppen wählt, und berücksichtigen Sie die folgenden Best Practices:

a. Nennen Sie alle (möglicherweise kleineren) Laufwerke, die zuerst für Management- und/oder
Metadaten-Volumes verwendet werden sollten, und Storage Volumes zuletzt.

27

b. Stellen Sie sicher, dass Sie die Reihenfolge der Festplattenauswahl auf der Grundlage der Modelle für
Festplatten-Shelfs/Festplattengehäuse ausgleichen, um die Laufwerksauswahl über verfügbare
Laufwerkskanäle auszugleichen. Beispielsweise befinden sich Laufwerke 0-11 mit der EF600 und ohne
Erweiterungen auf Laufwerkskanal 1 und Laufwerke 12-23 auf dem Laufwerkskanal. Daher ist eine
Strategie zur Balance der Antriebsauswahl zu wählen disk shelf:drive 99:0, 99:23, 99:1, 99:22
usw. Wenn mehr als ein Gehäuse vorhanden ist, steht die erste Ziffer für die Laufwerk-Shelf-ID.

Optimal/recommended order for the EF600 (no expansion):

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99

:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die die allgemeine Block-Node-Konfiguration
darstellt.

BeeGFS-Dienste definieren

Definieren Sie den BeeGFS-Managementdienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Managementservice erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte nur ein Service dieses Typs vorhanden sein. Die Konfiguration dieses Services
umfasst die folgenden Punkte:

• Der Servicetyp (Management).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Geben Sie an, wo/wie ein Volume Daten für diesen Service speichern soll (das BeeGFS-Managementziel).

Schritte

Erstellen Sie eine neue Datei group_vars/mgmt.yml, und verweisen Sie auf den "Planen Sie das
Dateisystem" Abschnitt. Füllen Sie diese wie folgt aus:

1. Geben Sie diese Datei an, um die Konfiguration für einen BeeGFS-Managementdienst anzuzeigen:

beegfs_service: management

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Dies ist in der Regel
nicht für den Management-Service erforderlich, es sei denn, Sie müssen Quoten aktivieren, jedoch alle
unterstützten Konfigurationsparameter von beegfs-mgmtd.conf Kann enthalten sein. Beachten Sie,
dass die folgenden Parameter automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben
werden sollten: storeMgmtdDirectory, connAuthFile, connDisableAuthentication,
connInterfacesFile, und connNetFilterFile.

28

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

 <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.0/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie das BeeGFS-Managementziel an, auf dem dieser Service Daten gemäß den folgenden
Richtlinien speichert:

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

29

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Managementdienst
darstellt.

Definieren Sie den BeeGFS-Metadatendienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Metadatendienstes erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte mindestens ein Service dieses Typs vorhanden sein. Die Konfiguration dieses
Services umfasst die folgenden Punkte:

• Der Servicetyp (Metadaten).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Festlegen, wo/wie ein Volume Daten für diesen Service speichern soll (das BeeGFS-Metadatenziel).

Schritte

"Planen Sie das Dateisystem"Erstellen Sie group_vars/meta_<ID>.yml für jeden Metadatendienst im
Cluster eine Datei unter, und füllen Sie sie wie folgt aus, um auf den Abschnitt zu verweisen:

1. Geben Sie an, dass diese Datei die Konfiguration für einen BeeGFS-Metadatendienst darstellt:

beegfs_service: metadata

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Mindestens müssen
Sie den gewünschten TCP- und UDP-Port angeben, jedoch alle unterstützten Konfigurationsparameter von
beegfs-meta.conf Kann ebenfalls enthalten sein. Beachten Sie, dass die folgenden Parameter
automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben werden sollten:
sysMgmtdHost, storeMetaDirectory, connAuthFile, connDisableAuthentication,

30

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

connInterfacesFile, und connNetFilterFile.

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <TCP PORT>

 connMetaPortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie das BeeGFS-Metadatenziel an, bei dem dieser Dienst Daten gemäß den folgenden Richtlinien
speichert (dies konfiguriert auch automatisch den storeMetaDirectory Option):

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

31

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Metadatendienst darstellt.

Definieren Sie den BeeGFS-Speicherdienst

BeeGFS-Dienste werden mit Gruppenvariablen (Group_vars) konfiguriert.

Überblick

In diesem Abschnitt wird die Definition des BeeGFS-Speicherdienstes erläutert. In den HA-Clustern für ein
bestimmtes Dateisystem sollte mindestens ein Service dieses Typs vorhanden sein. Die Konfiguration dieses
Services umfasst die folgenden Punkte:

• Den Servicetyp (Storage).

• Definieren von Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen.

• Konfiguration einer oder mehrerer fließender IPs (logische Schnittstellen), an denen dieser Service erreicht
werden kann.

• Geben Sie an, wo/wie Volumen(en) Daten für diesen Dienst speichern sollen (die BeeGFS-Speicherziele).

Schritte

"Planen Sie das Dateisystem"Erstellen Sie group_vars/stor_<ID>.yml für jeden Storage-Service im
Cluster eine Datei unter, und füllen Sie sie wie folgt aus, um auf den Abschnitt Bezug zu nehmen:

1. Geben Sie diese Datei für die Konfiguration eines BeeGFS-Speicherdienstes an:

beegfs_service: storage

2. Definieren Sie alle Konfigurationen, die nur für diesen BeeGFS-Dienst gelten sollen. Mindestens müssen
Sie den gewünschten TCP- und UDP-Port angeben, jedoch alle unterstützten Konfigurationsparameter von
beegfs-storage.conf Kann ebenfalls enthalten sein. Beachten Sie, dass die folgenden Parameter
automatisch/an anderer Stelle konfiguriert werden und hier nicht angegeben werden sollten:
sysMgmtdHost, storeStorageDirectory, connAuthFile, connDisableAuthentication,
connInterfacesFile, und connNetFilterFile.

32

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <TCP PORT>

 connStoragePortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Konfigurieren Sie eine oder mehrere unverankerte IPs, die andere Dienste und Clients verwenden, um
eine Verbindung zu diesem Dienst herzustellen (dadurch wird das BeeGFS automatisch festgelegt
connInterfacesFile Option):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Geben Sie optional ein oder mehrere zulässige IP-Subnetze an, die für die ausgehende Kommunikation
verwendet werden können (dadurch wird automatisch das BeeGFS eingestellt connNetFilterFile
Option):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Geben Sie die BeeGFS-Speicherziele an, in denen dieser Service Daten gemäß den folgenden Richtlinien
speichert (dies konfiguriert auch automatisch den storeStorageDirectory Option):

a. Für mehrere BeeGFS Services/Ziele kann derselbe Speicherpool oder Volume-Gruppenname
verwendet werden. Stellen Sie einfach sicher, dass er dasselbe verwendet name, raid_level,
criteria_*, und common_* Konfiguration für jede einzelne (die für jeden Service aufgeführten
Volumes sollten unterschiedlich sein).

b. Volume-Größen sollten als Prozentsatz der Storage-Pool/Volume-Gruppe angegeben werden. Die
Summe sollte bei allen Services/Volumes, die über einen bestimmten Storage-Pool/Volume-Gruppe
verfügen, nicht mehr als 100 übersteigen. Hinweis: Bei der Verwendung von SSDs wird empfohlen,
freien Speicherplatz in der Volume-Gruppe zu belassen, um die SSD-Performance und den SSD-
Verschleiß "Hier"zu maximieren (klicken Sie für weitere Details).

c. Klicken Sie Auf "Hier" Eine vollständige Liste der für das verfügbaren Konfigurationsoptionen finden Sie
unter eseries_storage_pool_configuration. Notieren Sie einige Optionen wie z. B. state,
host, host_type, workload_name, und workload_metadata Und Volume-Namen werden
automatisch generiert und sollten hier nicht angegeben werden.

33

https://docs.netapp.com/de-de/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_s1_s2

 raid_level: <LEVEL> # One of: raid1, raid5, raid6,

raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

 # Multiple storage targets are supported / typical:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei, die einen BeeGFS-Speicherdienst darstellt.

Zuordnen von BeeGFS-Services zu Datei-Nodes

Geben Sie an, welche Datei-Nodes jeden BeeGFS-Dienst mit dem ausführen können
inventory.yml Datei:

Überblick

In diesem Abschnitt wird die Erstellung des erläutert inventory.yml Datei: Dazu gehören alle Block-Nodes
und die Angabe, welche Datei-Nodes jeden BeeGFS-Service ausführen können.

Schritte

Erstellen Sie die Datei inventory.yml Und füllen Sie es wie folgt aus:

1. Erstellen Sie oben in der Datei die Ansible-Standardinventarstruktur:

BeeGFS HA (High_Availability) cluster inventory.

all:

 children:

2. Erstellen Sie eine Gruppe mit allen Block-Nodes, die an diesem HA-Cluster teilnehmen:

34

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 <BLOCK NODE HOSTNAME>:

 <BLOCK NODE HOSTNAME>:

 # Additional block nodes as needed.

3. Erstellen Sie eine Gruppe, die alle BeeGFS-Dienste im Cluster und die Datei-Nodes enthält, auf denen sie
ausgeführt werden:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

4. Definieren Sie für jeden BeeGFS-Service im Cluster die bevorzugten und sekundären Dateiknoten, die
diesen Service ausführen sollen:

 <SERVICE>: # Ex. "mgmt", "meta_01", or "stor_01".

 hosts:

 <FILE NODE HOSTNAME>:

 <FILE NODE HOSTNAME>:

 # Additional file nodes as needed.

Klicken Sie Auf "Hier" Beispiel für eine komplette Bestandsdatei.

Stellen Sie das BeeGFS-Dateisystem bereit

Ansible – Playbook-Überblick

BeeGFS HA-Cluster implementieren und managen mithilfe von Ansible

Überblick

In den vorherigen Abschnitten wurden die Schritte aufgeführt, mit denen ein Ansible-Inventar erstellt werden
konnte, der ein BeeGFS HA-Cluster darstellt. In diesem Abschnitt wird die von NetApp entwickelte Ansible-
Automatisierung für die Implementierung und das Management des Clusters vorgestellt.

Ansible – Wichtige Konzepte

Bevor Sie fortfahren, ist es hilfreich, sich mit ein paar Schlüsselkonzepten von Ansible vertraut zu machen:

• Aufgaben, die für einen Ansible-Bestand ausgeführt werden müssen, werden in einem sogenannten
Playbook definiert.

◦ Die meisten Aufgaben in Ansible sind idempotent, d. h., sie können mehrmals ausgeführt werden, um
zu überprüfen, ob die gewünschte Konfiguration/der gewünschte Zustand noch angewendet wird, ohne

35

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

dass Dinge zu stören oder unnötige Updates zu machen.

• Die kleinste Ausführungseinheit in Ansible ist ein Modul.

◦ Typische Playbooks nutzen mehrere Module.

▪ Beispiele: Laden Sie ein Paket herunter, aktualisieren Sie eine Konfigurationsdatei,
starten/aktivieren Sie einen Dienst.

◦ NetApp verteilt Module zur Automatisierung von NetApp E-Series Systemen.

• Komplexe Automatisierungsoptionen sind besser als Rollen integriert.

◦ Im Wesentlichen ein Standardformat zur Verteilung eines wiederverwendbaren Playbooks.

◦ NetApp verteilt Rollen für Linux-Hosts und BeeGFS-Filesysteme.

BeeGFS HA-Rolle für Ansible: Schlüsselkonzepte

Die gesamte Automatisierung, die für das Implementieren und Managen jeder Version von BeeGFS auf
NetApp erforderlich ist, ist als Ansible-Rolle verpackt und im Rahmen der verteilt "NetApp E-Series Ansible
Collection für BeeGFS":

• Diese Rolle kann als irgendwo zwischen einem Installer und einer modernen Deployment/Management
Engine für BeeGFS gedacht werden.

◦ Nutzt moderne Infrastruktur als Code-Praktiken und -Philosophien um das Management der Storage-
Infrastruktur in jeder Größenordnung zu vereinfachen

◦ Das "Kubesbete"Projekt ermöglicht Benutzern die Implementierung und Wartung einer gesamten
Kubernetes-Distribution für die Scale-out-Computing-Infrastruktur.

• Dabei handelt es sich um das softwaredefinierte-Format von NetApp zur Verpackung, Verteilung und
Wartung von BeeGFS auf NetApp Lösungen.

◦ Versuchen Sie, eine „Appliance-ähnliche“ Erfahrung zu schaffen, ohne eine gesamte Linux-Distribution
oder ein großes Bild zu verteilen.

◦ Dazu gehören die von NetApp entwickelten Open Cluster Framework (OCF)-konformen Cluster-
Ressourcen-Agents für benutzerdefinierte BeeGFS-Ziele, IP-Adressen und Monitoring für intelligente
Pacemaker/BeeGFS-Integration.

• Diese Rolle spielt nicht einfach die Implementierung der „Automatisierung“ und soll den gesamten
Lebenszyklus des Filesystems managen, darunter:

◦ Konfigurationsänderungen und Updates pro Service oder Cluster-weite Konfiguration

◦ Automatisierung von Cluster-Reparatur und Recovery nach Behebung von Hardware-Problemen

◦ Vereinfachte Performance-Optimierung mit Standardeinstellungen, die auf umfangreichen Tests mit
BeeGFS und NetApp Volumes basieren

◦ Überprüfung und Korrektur von Konfigurationstendenzen.

NetApp bietet auch eine Ansible-Rolle für "BeeGFS-Clients", Die optional verwendet werden kann, um
BeeGFS zu installieren und mounten Sie Dateisysteme auf Compute/GPU/Login-Nodes.

Implementieren Sie das BeeGFS HA-Cluster

Geben Sie an, welche Aufgaben ausgeführt werden sollen, um BeeGFS HA-Cluster
mithilfe eines Playbooks zu implementieren.

36

https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/kubernetes-sigs/kubespray
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

Überblick

In diesem Abschnitt wird beschrieben, wie Sie das Standard-Playbook zur Bereitstellung/zum Managen von
BeeGFS auf NetApp zusammenstellen können.

Schritte

Erstellen Sie das Ansible Playbook

Erstellen Sie die Datei playbook.yml Und füllen Sie es wie folgt aus:

1. Definieren Sie zunächst einen Satz von Aufgaben (allgemein als A bezeichnet) "Spielen") Die nur auf
Block-Nodes der NetApp E-Series ausgeführt werden sollte. Wir verwenden eine Pause-Aufgabe, um vor
dem Ausführen der Installation eine Aufforderung zu geben (um versehentliche Playbook-Läufe zu
vermeiden), und importieren dann die nar_santricity_management Rolle: Diese Rolle übernimmt die
Anwendung aller in definierten allgemeinen Systemkonfiguration
group_vars/eseries_storage_systems.yml Oder einzeln host_vars/<BLOCK NODE>.yml
Dateien:

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

2. Definieren Sie die Wiedergabe, die für alle Datei- und Blockknoten ausgeführt wird:

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

3. In diesem Sales Play können wir optional einen Satz von „Voraufgaben“ definieren, die vor der
Bereitstellung des HA-Clusters ausgeführt werden sollten. Dies kann nützlich sein, um alle
Voraussetzungen wie Python zu überprüfen/zu installieren. Zudem können Überprüfungen vor dem Flug
durchgeführt werden, beispielsweise die Unterstützung der bereitgestellten Ansible-Tags:

37

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

38

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

4. Schließlich importiert dieses Spiel die BeeGFS HA-Rolle für die Version von BeeGFS, die Sie bereitstellen
möchten:

 tasks:

 - name: Verify the BeeGFS HA cluster is properly deployed.

 import_role:

 name: beegfs_ha_7_4 # Alternatively specify: beegfs_ha_7_3.

Für jede unterstützte Major.Minor Version von BeeGFS wird eine BeeGFS HA-Rolle
beibehalten. Auf diese Weise können Benutzer festlegen, wann ein Upgrade von Major-
/Minor-Versionen durchgeführt werden soll. Derzeit (beegfs_7_3(`beegfs_7_2`werden
BeeGFS 7.3.x) oder BeeGFS 7.2.x) unterstützt. Standardmäßig werden beide Rollen zum
Zeitpunkt der Veröffentlichung die neueste BeeGFS-Patch-Version bereitstellen. Benutzer
können dies jedoch überschreiben und gegebenenfalls den neuesten Patch bereitstellen.
"Upgrade-Leitfaden"Weitere Informationen finden Sie auf dem neuesten Stand.

5. Optional: Wenn Sie zusätzliche Aufgaben definieren möchten, sollten Sie beachten, ob die Aufgaben an
geleitet werden sollen all Hosts (einschließlich der E-Series Storage-Systeme) oder nur die Datei-Nodes
Definieren Sie bei Bedarf ein neues Spiel speziell für Dateiknoten mit - hosts: ha_cluster.

Klicken Sie Auf "Hier" Beispiel für eine vollständige Playbook-Datei.

NetApp Ansible Sammlungen installieren

Die BeeGFS-Sammlung für Ansible, und alle Abhängigkeiten werden aufrechterhalten "Ansible-Galaxie".
Führen Sie auf Ihrem Ansible-Steuerungsknoten den folgenden Befehl aus, um die neueste Version zu
installieren:

ansible-galaxy collection install netapp_eseries.beegfs

Obwohl nicht in der Regel empfohlen, ist es auch möglich, eine bestimmte Version der Sammlung zu
installieren:

ansible-galaxy collection install netapp_eseries.beegfs:

==<MAJOR>.<MINOR>.<PATCH>

Führen Sie das Playbook aus

Aus dem Verzeichnis auf Ihrem Ansible-Steuerungsknoten, der den enthält inventory.yml Und
playbook.yml Dateien, führen Sie das Playbook wie folgt aus:

ansible-playbook -i inventory.yml playbook.yml

39

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs

Basierend auf der Cluster-Größe kann die ursprüngliche Implementierung 20+ Minuten dauern. Wenn die
Implementierung aus irgendeinem Grund fehlschlägt, korrigieren Sie einfach Probleme (z. B. Fehlverkabelung,
Knoten wurde nicht gestartet usw.) und starten Sie das Ansible Playbook neu.

"Allgemeine Konfiguration der Datei-Nodes"Wenn Sie angeben , wenn Sie die Standardoption wählen, damit
Ansible die verbindungsbasierte Authentifizierung automatisch verwaltet, connAuthFile kann ein als
gemeinsamer Schlüssel verwendet jetzt unter
<playbook_dir>/files/beegfs/<sysMgmtdHost>_connAuthFile (standardmäßig) gefunden werden.
Alle Clients, die auf das Dateisystem zugreifen müssen, müssen diesen gemeinsam genutzten Schlüssel
verwenden. Dies wird automatisch verarbeitet, wenn Clients über die konfiguriert werden"BeeGFS-Client-
Rolle".

Bereitstellen von BeeGFS-Clients

Optional kann Ansible verwendet werden, um BeeGFS-Clients zu konfigurieren und das
Dateisystem zu mounten.

Überblick

Für den Zugriff auf BeeGFS-Dateisysteme muss der BeeGFS-Client auf jedem Node installiert und konfiguriert
werden, der das Dateisystem bereitstellen muss. In diesem Abschnitt wird beschrieben, wie Sie diese
Aufgaben mit dem verfügbaren ausführen "Ansible-Rolle".

Schritte

Erstellen Sie die Client-Bestandsdatei

1. Richten Sie bei Bedarf über den Ansible-Steuerungsknoten passwortlose SSH für jeden Host ein, den Sie
als BeeGFS-Clients konfigurieren möchten:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Unter host_vars/`Erstellen Sie für jeden BeeGFS-Client eine Datei mit dem Namen
`<HOSTNAME>.yml Füllen Sie den Platzhaltertext mit den korrekten Informationen für Ihre Umgebung
aus:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

3. Geben Sie optional eine der folgenden Optionen ein, wenn Sie die Rollen der NetApp E-Series Host
Collection verwenden möchten, um InfiniBand- oder Ethernet-Schnittstellen für Clients zu konfigurieren,
damit eine Verbindung mit BeeGFS File-Nodes hergestellt werden kann:

a. Wenn der Netzwerktyp ist "InfiniBand (mit IPoIB)":

40

architectures-deploy-beegfs-clients.html
architectures-deploy-beegfs-clients.html
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Wenn der Netzwerktyp ist "RDMA über Converged Ethernet (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Wenn der Netzwerktyp ist "Ethernet (nur TCP, kein RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

4. Erstellen Sie eine neue Datei client_inventory.yml Geben Sie den Benutzer an, den Ansible für die
Verbindung mit den einzelnen Clients verwenden soll, und das Passwort, das Ansible zur Eskalation von
Berechtigungen verwenden soll (dies erfordert ansible_ssh_user „Root“ oder „Sudo“-Berechtigungen
besitzen):

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER>

 ansible_become_password: <PASSWORD>

Speichern Sie Passwörter nicht im Klartext. Verwenden Sie stattdessen den Ansible-Vault
(siehe "Ansible-Dokumentation" Für Inhalte mit Ansible Vault) oder verwenden Sie den
--ask-become-pass Option beim Ausführen des Playbooks.

5. Im client_inventory.yml Datei, Listen Sie alle Hosts auf, die als BeeGFS-Clients unter dem
konfiguriert werden sollen beegfs_clients Gruppe, und dann beachten Sie die Inline-Kommentare und
Uncomment zusätzliche Konfiguration erforderlich, um das BeeGFS-Client-Kernel-Modul auf Ihrem System
zu erstellen:

41

https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 <CLIENT HOSTNAME>:

 # Additional clients as needed.

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 #beegfs_client_ofed_enable: True

 #beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 #eseries_ib_skip: False # Default value.

 #beegfs_client_ofed_enable: False # Default value.

Wenn Sie die NVIDIA OFED-Treiber verwenden, stellen Sie sicher, dass
beegfs_Client_ofed_include_PATH auf den korrekten „Header include path“ für Ihre Linux-
Installation verweist. Weitere Informationen finden Sie in der BeeGFS-Dokumentation für
"RDMA-Unterstützung".

6. Im client_inventory.yml Datei, Listen Sie die BeeGFS-Dateisysteme auf, die Sie unter einem zuvor
definierten gemountet haben möchten vars:

42

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

 # Specify additional file system mounts for this or other file

systems.

7. Ab BeeGFS 7.2.7 und 7.3.1 "Verbindungsauthentifizierung" müssen konfiguriert oder explizit deaktiviert
sein. Je nachdem, wie Sie die verbindungsbasierte Authentifizierung bei der Angabe
konfigurieren"Allgemeine Konfiguration der Datei-Nodes", müssen Sie möglicherweise Ihre
Clientkonfiguration anpassen:

a. Standardmäßig konfiguriert die HA-Cluster-Implementierung die Verbindungsauthentifizierung
automatisch und generiert einen connauthfile Die auf dem Ansible-Kontroll-Node bei
platziert/gewartet werden <INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile.
Standardmäßig ist die BeeGFS-Client-Rolle so eingerichtet, dass sie diese Datei an die in definierten
Clients liest/verteilt client_inventory.yml, Und es ist keine zusätzliche Aktion erforderlich.

i. Weitere Optionen finden Sie in der vollständigen Liste der Standardwerte, die im enthalten sind
"BeeGFS-Client-Rolle".

b. Wenn Sie ein benutzerdefiniertes Geheimnis mit angeben beegfs_ha_conn_auth_secret Geben
Sie ihn im an client_inventory.yml Außerdem:

beegfs_ha_conn_auth_secret: <SECRET>

c. Wenn Sie die verbindungsbasierte Authentifizierung vollständig mit deaktivieren
beegfs_ha_conn_auth_enabled, Geben Sie das im an client_inventory.yml Außerdem:

43

https://doc.beegfs.io/latest/advanced_topics/authentication.html
architectures-inventory-common-file-node-configuration.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs_ha_conn_auth_enabled: false

Eine vollständige Liste der unterstützten Parameter und weitere Details finden Sie im "Vollständige BeeGFS-
Client-Dokumentation". Klicken Sie für ein vollständiges Beispiel eines Clientbestands auf "Hier".

Erstellen Sie die BeeGFS Client Playbook-Datei

1. Erstellen Sie eine neue Datei client_playbook.yml

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

2. Optional: Wenn Sie die Rollen der NetApp E-Series Host Collection verwenden möchten, um Schnittstellen
für Clients zu konfigurieren, mit denen sich eine Verbindung zu BeeGFS-Dateisystemen herstellen lässt,
importieren Sie die Rolle entsprechend dem Schnittstellentyp, den Sie konfigurieren:

a. Wenn Sie InfiniBand (IPoIB) verwenden:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

b. Bei Verwendung von RDMA over Converged Ethernet (RoCE):

 - name: Ensure IPoIB is configured

 import_role:

 name: roce

c. Wenn Sie Ethernet verwenden (nur TCP, kein RDMA):

 - name: Ensure IPoIB is configured

 import_role:

 name: ip

3. Schließlich importieren Sie die BeeGFS-Client-Rolle, um die Client-Software zu installieren und das
Dateisystem-Mounts einzurichten:

44

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

 # REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Klicken Sie zum vollständigen Beispiel für ein Client-Playbook auf "Hier".

Führen Sie das BeeGFS Client Playbook aus

Führen Sie den folgenden Befehl aus, um den Client zu installieren/zu erstellen und BeeGFS zu mounten:

ansible-playbook -i client_inventory.yml client_playbook.yml

Überprüfen Sie die BeeGFS-Bereitstellung

Überprüfen Sie die Bereitstellung des Dateisystems, bevor Sie das System in die
Produktion bringen.

Überblick

Bevor Sie das BeeGFS-Dateisystem in Produktion setzen, führen Sie einige Überprüfungsprüfungen durch.

Schritte

1. Melden Sie sich bei einem Client an und führen Sie Folgendes aus, um sicherzustellen, dass alle
erwarteten Knoten vorhanden/erreichbar sind, und es werden keine Inkonsistenzen oder andere Probleme
gemeldet:

beegfs-fsck --checkfs

2. Fahren Sie den gesamten Cluster herunter und starten Sie ihn dann neu. Führen Sie von jedem beliebigen
Dateiknoten Folgendes aus:

pcs cluster stop --all # Stop the cluster on all file nodes.

pcs cluster start --all # Start the cluster on all file nodes.

pcs status # Verify all nodes and services are started and no failures

are reported (the command may need to be reran a few times to allow time

for all services to start).

3. Platzieren Sie jeden Knoten in den Standby-Modus, und überprüfen Sie, ob BeeGFS-Dienste einen
Failover auf sekundäre Knoten ausführen können. So melden Sie sich an einem beliebigen Dateiknoten an
und führen Sie Folgendes aus:

45

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in

standby.

pcs status # Verify services are started on a secondary node and no

failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out

of standby.

pcs status # Verify the file node is back online and no failures are

reported.

pcs resource relocate run # Move all services back to their preferred

nodes.

pcs status # Verify services have moved back to the preferred node.

4. Verwenden Sie Tools zum Leistungsvergleich wie IOR und MDTest, um zu überprüfen, ob die Performance
des Dateisystems den Erwartungen entspricht. Beispiele für häufige Tests und Parameter, die mit BeeGFS
verwendet werden"Design-Verifizierung", finden Sie im Abschnitt BeeGFS on NetApp Verified Architecture.

Zusätzliche Tests sollten auf Grundlage der Abnahmekriterien durchgeführt werden, die für einen bestimmten
Standort/eine bestimmte Installation definiert sind.

46

../second-gen/beegfs-design-solution-verification.html

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

47

http://www.netapp.com/TM\

	Verwenden Sie individuelle Architekturen : BeeGFS on NetApp with E-Series Storage
	Inhalt
	Verwenden Sie individuelle Architekturen
	Überblick und Anforderungen
	Einführung
	Implementierungsübersicht
	Anforderungen

	Ersteinrichtung
	Installieren und verkabeln Sie die Hardware
	Datei- und Block-Knoten einrichten
	Ansible-Steuerungsknoten Einrichten

	Definieren Sie das BeeGFS-Dateisystem
	Ansible-Bestandsübersicht
	Planen Sie das Dateisystem
	Datei- und Blockknoten definieren
	BeeGFS-Dienste definieren
	Zuordnen von BeeGFS-Services zu Datei-Nodes

	Stellen Sie das BeeGFS-Dateisystem bereit
	Ansible – Playbook-Überblick
	Implementieren Sie das BeeGFS HA-Cluster
	Bereitstellen von BeeGFS-Clients
	Überprüfen Sie die BeeGFS-Bereitstellung

