
NetApp Console Automatisierungszentrale
NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/de-de/netapp-automation/solutions/bac-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

Inhalt
NetApp Console Automatisierungszentrale . 1

Überblick über den NetApp Console Automatisierungshub . 1

Amazon FSx for NetApp ONTAP -Verwaltung . 1

Amazon FSx for NetApp ONTAP Management – Burst to Cloud . 1

Amazon FSx for NetApp ONTAP Management – Notfallwiederherstellung. 6

Azure NetApp Dateien . 11

Installieren Sie Oracle mit Azure NetApp Files. 11

Cloud Volumes ONTAP für AWS . 17

Cloud Volumes ONTAP für AWS – Burst in die Cloud . 17

Cloud Volumes ONTAP für Azure. 24

Cloud Volumes ONTAP für Azure – Burst in die Cloud . 24

Cloud Volumes ONTAP für Google Cloud . 32

Cloud Volumes ONTAP für Google Cloud – Burst in die Cloud . 32

ONTAP . 39

Tag 0/1 . 39

NetApp Console Automatisierungszentrale

Überblick über den NetApp Console Automatisierungshub

Die NetApp Console ist ein Automatisierungs-Hub, der eine Sammlung von
Automatisierungslösungen für NetApp Kunden, -Partner und -Mitarbeiter bereitstellt. Der
Automatisierungs-Hub bietet zahlreiche Funktionen und Vorteile.

Ein Ort für Ihre Automatisierungsanforderungen

Sie können auf die "NetApp Console Automatisierungszentrale" über die webbasierte Benutzeroberfläche
der Konsole. Hier finden Sie alle Skripte, Playbooks und Module, die Sie benötigen, um die Automatisierung
und den Betrieb Ihrer NetApp -Produkte und -Dienste zu optimieren.

Lösungen werden von NetApp entwickelt und getestet

Alle Automatisierungslösungen und Skripte wurden von NetApp erstellt und getestet. Jede Lösung richtet
sich an einen bestimmten Kunden-Anwendungsfall oder eine bestimmte Anfrage. Der Schwerpunkt liegt
hauptsächlich auf der Integration in NetApp File- und Datenservices.

Dokumentation

Zu jeder Automatisierungslösung gehört eine zugehörige Dokumentation, die Ihnen den Einstieg erleichtert.
Während auf die Lösungen über die Weboberfläche der Konsole zugegriffen werden kann, ist die gesamte
Dokumentation auf dieser Site verfügbar. Die Dokumentation ist nach den NetApp -Produkten und Cloud-
Diensten organisiert.

Solide Grundlage für die Zukunft

NetApp hat sich zum Ziel gesetzt, seine Kunden bei der Verbesserung und Optimierung der
Automatisierung ihrer Rechenzentren und Cloud-Umgebungen zu unterstützen. Wir gehen davon aus, dass
wir die Automatisierungsplattform Console kontinuierlich verbessern werden, um Kundenanforderungen,
technologischen Veränderungen und der fortlaufenden Produktintegration gerecht zu werden.

Wir möchten von Ihnen hören

Das NetApp Customer Experience Office (CXO) Automation Team würde gerne von Ihnen hören. Wenn Sie
Feedback, Probleme oder Funktionsanforderungen haben, senden Sie bitte eine E-Mail an:ng-cxo-
Automation-Admins@NetApp.com[CXO-Automatisierungsteam].

Amazon FSx for NetApp ONTAP -Verwaltung

Amazon FSx for NetApp ONTAP Management – Burst to Cloud

Mit dieser Automatisierungslösung können Sie Amazon FSx for NetApp ONTAP
-Verwaltung mit Volumes und einem zugehörigen FlexCache bereitstellen.

Amazon FSx for NetApp ONTAP Management wird auch als FSx für ONTAP bezeichnet.

Über diese Lösung sprechen

Der mit dieser Lösung bereitgestellte Automatisierungscode führt im allgemeinen die folgenden Aktionen
durch:

• Bereitstellen eines Ziel-FSX für ONTAP-Dateisystem

1

https://console.netapp.com/automationHub

• Storage Virtual Machines (SVMs) für das Filesystem bereitstellen

• Cluster-Peering-Beziehung zwischen den Quell- und Zielsystemen erstellen

• SVM-Peering-Beziehung zwischen dem Quellsystem und dem Zielsystem für FlexCache erstellen

• Optional können Sie FlexVol Volumes mithilfe von FSX für ONTAP erstellen

• Erstellen Sie ein FlexCache-Volume in FSX für ONTAP mit der Quelle, die auf On-Premises-Storage
verweist

Die Automatisierung basiert auf Docker und Docker Compose, die wie unten beschrieben auf der virtuellen
Linux-Maschine installiert werden müssen.

Bevor Sie beginnen

Sie müssen über Folgendes verfügen, um die Bereitstellung und Konfiguration abzuschließen:

• Sie müssen die "Amazon FSx for NetApp ONTAP Management – Burst to Cloud" Automatisierungslösung
über die NetApp Console Web-Benutzeroberfläche. Die Lösung ist als Datei verpackt.
`AWS_FSxN_BTC.zip`Die

• Netzwerk-Konnektivität zwischen Quell- und Zielsystemen

• Eine Linux-VM mit den folgenden Eigenschaften:

◦ Debian-basierte Linux-Distribution

◦ Implementierung mit derselben VPC-Untermenge, die für FSX für die ONTAP-Bereitstellung verwendet
wurde

• Konto bei AWS.

Schritt: Installieren und konfigurieren Sie Docker

Installieren und konfigurieren Sie Docker auf einer Debian-basierten virtuellen Linux-Maschine.

Schritte

1. Bereiten Sie die Umgebung vor.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

2. Installieren Sie Docker und überprüfen Sie die Installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Fügen Sie die erforderliche Linux-Gruppe einem zugeordneten Benutzer hinzu.

2

https://console.netapp.com/automationHub

Prüfen Sie zunächst, ob die Gruppe Docker in Ihrem Linux-System existiert. Wenn dies nicht der Fall ist,
erstellen Sie die Gruppe und fügen Sie den Benutzer hinzu. Standardmäßig wird der aktuelle Shell-
Benutzer der Gruppe hinzugefügt.

sudo groupadd docker

sudo usermod -aG docker $(whoami)

4. Aktivieren Sie die neuen Gruppen- und Benutzerdefinitionen

Wenn Sie eine neue Gruppe mit einem Benutzer erstellt haben, müssen Sie die Definitionen aktivieren.
Dazu können Sie sich von Linux abmelden und dann wieder in. Oder Sie können den folgenden Befehl
ausführen.

newgrp docker

Schritt 2: Installieren Sie Docker Compose

Installieren Sie Docker Compose auf einer Debian-basierten virtuellen Linux-Maschine.

Schritte

1. Installieren Sie Docker Compose.

sudo curl -L

"https://github.com/docker/compose/releases/latest/download/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Überprüfen Sie, ob die Installation erfolgreich war.

docker-compose --version

Schritt 3: Vorbereiten des Docker Images

Sie müssen das mit der Automatisierungslösung bereitgestellte Docker-Image extrahieren und laden.

Schritte

1. Kopieren Sie die Lösungsdatei AWS_FSxN_BTC.zip auf die virtuelle Maschine, auf der der
Automatisierungscode ausgeführt wird.

scp -i ~/<private-key.pem> -r AWS_FSxN_BTC.zip user@<IP_ADDRESS_OF_VM>

Der Eingabeparameter private-key.pem ist Ihre private Schlüsseldatei, die für die Authentifizierung der
AWS Virtual Machine (EC2-Instanz) verwendet wird.

3

2. Navigieren Sie zum richtigen Ordner mit der Lösungsdatei, und entpacken Sie die Datei.

unzip AWS_FSxN_BTC.zip

3. Navigieren Sie zu dem neuen Ordner AWS_FSxN_BTC, der mit dem Entpacken erstellt wurde, und führen
Sie die Dateien auf. Sie sollten die Datei sehen aws_fsxn_flexcache_image_latest.tar.gz.

ls -la

4. Laden Sie die Docker-Image-Datei. Der Ladevorgang sollte in der Regel in wenigen Sekunden
abgeschlossen sein.

docker load -i aws_fsxn_flexcache_image_latest.tar.gz

5. Bestätigen Sie, dass das Docker-Image geladen ist.

docker images

Sie sollten das Docker Image mit dem Tag latest sehen aws_fsxn_flexcache_image.

 REPOSITORY TAG IMAGE ID CREATED SIZE

aws_fsxn_flexcahce_image latest ay98y7853769 2 weeks ago 1.19GB

Schritt 4: Umgebungsdatei für AWS Zugangsdaten erstellen

Sie müssen eine lokale Variablendatei für die Authentifizierung mit dem Zugriff und dem geheimen Schlüssel
erstellen. Fügen Sie dann die Datei der .env Datei hinzu.

Schritte

1. Erstellen Sie die awsauth.env Datei an folgendem Speicherort:

path/to/env-file/awsauth.env

2. Fügen Sie der Datei folgenden Inhalt hinzu:

access_key=<>

secret_key=<>

Das Format muss genau wie oben dargestellt sein, ohne Leerzeichen zwischen key und value.

3. Fügen Sie den absoluten Dateipfad mithilfe der Variablen zur Datei AWS_CREDS hinzu .env. Beispiel:

4

AWS_CREDS=path/to/env-file/awsauth.env

Schritt 5: Erstellen Sie ein externes Volume

Sie benötigen ein externes Volume, um sicherzustellen, dass die Terraform-Statusdateien und andere wichtige
Dateien persistent sind. Diese Dateien müssen für Terraform verfügbar sein, um den Workflow und die
Implementierungen auszuführen.

Schritte

1. Erstellen Sie ein externes Volume außerhalb von Docker Compose.

Stellen Sie sicher, dass Sie den Volume-Namen (letzten Parameter) auf den entsprechenden Wert
aktualisieren, bevor Sie den Befehl ausführen.

docker volume create aws_fsxn_volume

2. Fügen Sie den Pfad zum externen Volume zur Umgebungsdatei mit dem folgenden Befehl hinzu .env:

PERSISTENT_VOL=path/to/external/volume:/volume_name

Denken Sie daran, den vorhandenen Dateiinhalt und die Doppelpunkt-Formatierung beizubehalten.
Beispiel:

PERSISTENT_VOL=aws_fsxn_volume:/aws_fsxn_flexcache

Stattdessen können Sie eine NFS-Freigabe mit einem Befehl wie dem folgenden als externes Volume
hinzufügen:

PERSISTENT_VOL=nfs/mnt/document:/aws_fsx_flexcache

3. Aktualisieren Sie die Terraform-Variablen.

a. Navigieren Sie zum Ordner aws_fsxn_variables.

b. Bestätigen Sie, dass die folgenden beiden Dateien vorhanden sind: terraform.tfvars Und
variables.tf.

c. Aktualisieren Sie die Werte in terraform.tfvars, wie für Ihre Umgebung erforderlich.

Weitere Informationen finden Sie unter "Terraform-Ressource: aws_fsx_ONTAP_File_System" .

Schritt 6: Bereitstellen von Amazon FSx for NetApp ONTAP Management und FlexCache

Sie können Amazon FSx for NetApp ONTAP Management und FlexCache bereitstellen.

Schritte

1. Navigieren Sie zum Ordner root (AWS_FSXN_BTC), und geben Sie den Provisionierungsbefehl aus.

docker-compose -f docker-compose-provision.yml up

5

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

Mit diesem Befehl werden zwei Container erstellt. Der erste Container implementiert FSX for ONTAP, der
zweite Container erstellt Cluster-Peering, SVM-Peering, Ziel-Volume und FlexCache.

2. Monitoring des Bereitstellungsprozesses

docker-compose -f docker-compose-provision.yml logs -f

Dieser Befehl gibt Ihnen die Ausgabe in Echtzeit, wurde aber so konfiguriert, dass die Protokolle durch die
Datei erfasst deployment.log werden. Sie können den Namen dieser Protokolldateien ändern, indem
Sie die Datei bearbeiten .env und die Variablen aktualisieren DEPLOYMENT_LOGS.

Schritt 7: Zerstören Sie Amazon FSx for NetApp ONTAP Management und FlexCache

Sie können Amazon FSx for NetApp ONTAP Management und FlexCache optional löschen und entfernen.

1. Setzen Sie die Variable flexcache_operation in der terraform.tfvars Datei auf "Destroy".

2. Navigieren Sie zum Ordner root (AWS_FSXN_BTC), und geben Sie den folgenden Befehl ein.

docker-compose -f docker-compose-destroy.yml up

Mit diesem Befehl werden zwei Container erstellt. Der erste Container löscht FlexCache und der zweite
Container löscht FSX für ONTAP.

3. Monitoring des Bereitstellungsprozesses

docker-compose -f docker-compose-destroy.yml logs -f

Amazon FSx for NetApp ONTAP Management – Notfallwiederherstellung

Mit dieser Automatisierungslösung können Sie mithilfe von Amazon FSx for NetApp
ONTAP Verwaltung eine Notfallwiederherstellungssicherung eines Quellsystems
erstellen.

Amazon FSx for NetApp ONTAP Management wird auch als FSx für ONTAP bezeichnet.

Über diese Lösung sprechen

Der mit dieser Lösung bereitgestellte Automatisierungscode führt im allgemeinen die folgenden Aktionen
durch:

• Bereitstellen eines Ziel-FSX für ONTAP-Dateisystem

• Storage Virtual Machines (SVMs) für das Filesystem bereitstellen

• Cluster-Peering-Beziehung zwischen den Quell- und Zielsystemen erstellen

• SVM-Peering-Beziehung zwischen dem Quellsystem und dem Zielsystem für SnapMirror erstellen

• Erstellung von Ziel-Volumes

6

• Erstellen Sie eine SnapMirror-Beziehung zwischen den Quell- und Ziel-Volumes

• Starten Sie den SnapMirror-Transfer zwischen den Quell- und Ziel-Volumes

Die Automatisierung basiert auf Docker und Docker Compose, die wie unten beschrieben auf der virtuellen
Linux-Maschine installiert werden müssen.

Bevor Sie beginnen

Sie müssen über Folgendes verfügen, um die Bereitstellung und Konfiguration abzuschließen:

• Sie müssen die "Amazon FSx for NetApp ONTAP Management – Notfallwiederherstellung"
Automatisierungslösung über die NetApp Console Web-Benutzeroberfläche. Die Lösung ist verpackt als
FSxN_DR.zip`Die Diese ZIP-Datei enthält die `AWS_FSxN_Bck_Prov.zip Datei, die Sie
zum Bereitstellen der in diesem Dokument beschriebenen Lösung verwenden werden.

• Netzwerk-Konnektivität zwischen Quell- und Zielsystemen

• Eine Linux-VM mit den folgenden Eigenschaften:

◦ Debian-basierte Linux-Distribution

◦ Implementierung mit derselben VPC-Untermenge, die für FSX für die ONTAP-Bereitstellung verwendet
wurde

• Ein AWS-Konto.

Schritt: Installieren und konfigurieren Sie Docker

Installieren und konfigurieren Sie Docker auf einer Debian-basierten virtuellen Linux-Maschine.

Schritte

1. Bereiten Sie die Umgebung vor.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent softwareproperties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

2. Installieren Sie Docker und überprüfen Sie die Installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Fügen Sie die erforderliche Linux-Gruppe einem zugeordneten Benutzer hinzu.

Prüfen Sie zunächst, ob die Gruppe Docker in Ihrem Linux-System existiert. Wenn sie nicht vorhanden ist,
erstellen Sie die Gruppe und fügen Sie den Benutzer hinzu. Standardmäßig wird der aktuelle Shell-
Benutzer der Gruppe hinzugefügt.

7

https://console.netapp.com/automationHub

sudo groupadd docker

sudo usermod -aG docker $(whoami)

4. Aktivieren Sie die neuen Gruppen- und Benutzerdefinitionen

Wenn Sie eine neue Gruppe mit einem Benutzer erstellt haben, müssen Sie die Definitionen aktivieren.
Dazu können Sie sich von Linux abmelden und dann wieder in. Oder Sie können den folgenden Befehl
ausführen.

newgrp docker

Schritt 2: Installieren Sie Docker Compose

Installieren Sie Docker Compose auf einer Debian-basierten virtuellen Linux-Maschine.

Schritte

1. Installieren Sie Docker Compose.

sudo curl -L

"https://github.com/docker/compose/releases/latest/download/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Überprüfen Sie, ob die Installation erfolgreich war.

docker-compose --version

Schritt 3: Vorbereiten des Docker Images

Sie müssen das mit der Automatisierungslösung bereitgestellte Docker-Image extrahieren und laden.

Schritte

1. Kopieren Sie die Lösungsdatei AWS_FSxN_Bck_Prov.zip auf die virtuelle Maschine, auf der der
Automatisierungscode ausgeführt wird.

scp -i ~/<private-key.pem> -r AWS_FSxN_Bck_Prov.zip

user@<IP_ADDRESS_OF_VM>

Der Eingabeparameter private-key.pem ist Ihre private Schlüsseldatei, die für die Authentifizierung der
AWS Virtual Machine (EC2-Instanz) verwendet wird.

2. Navigieren Sie zum richtigen Ordner mit der Lösungsdatei, und entpacken Sie die Datei.

8

unzip AWS_FSxN_Bck_Prov.zip

3. Navigieren Sie zu dem neuen Ordner AWS_FSxN_Bck_Prov, der mit dem Entpacken erstellt wurde, und
führen Sie die Dateien auf. Sie sollten die Datei sehen aws_fsxn_bck_image_latest.tar.gz.

ls -la

4. Laden Sie die Docker-Image-Datei. Der Ladevorgang sollte in der Regel in wenigen Sekunden
abgeschlossen sein.

docker load -i aws_fsxn_bck_image_latest.tar.gz

5. Bestätigen Sie, dass das Docker-Image geladen ist.

docker images

Sie sollten das Docker Image mit dem Tag latest sehen aws_fsxn_bck_image.

 REPOSITORY TAG IMAGE ID CREATED SIZE

aws_fsxn_bck_image latest da87d4974306 2 weeks ago 1.19GB

Schritt 4: Umgebungsdatei für AWS Zugangsdaten erstellen

Sie müssen eine lokale Variablendatei für die Authentifizierung mit dem Zugriff und dem geheimen Schlüssel
erstellen. Fügen Sie dann die Datei der .env Datei hinzu.

Schritte

1. Erstellen Sie die awsauth.env Datei an folgendem Speicherort:

path/to/env-file/awsauth.env

2. Fügen Sie der Datei folgenden Inhalt hinzu:

access_key=<>

secret_key=<>

Das Format muss genau wie oben dargestellt sein, ohne Leerzeichen zwischen key und value.

3. Fügen Sie den absoluten Dateipfad mithilfe der Variablen zur Datei AWS_CREDS hinzu .env. Beispiel:

AWS_CREDS=path/to/env-file/awsauth.env

9

Schritt 5: Erstellen Sie ein externes Volume

Sie benötigen ein externes Volume, um sicherzustellen, dass die Terraform-Statusdateien und andere wichtige
Dateien persistent sind. Diese Dateien müssen für Terraform verfügbar sein, um den Workflow und die
Implementierungen auszuführen.

Schritte

1. Erstellen Sie ein externes Volume außerhalb von Docker Compose.

Stellen Sie sicher, dass Sie den Volume-Namen (letzten Parameter) auf den entsprechenden Wert
aktualisieren, bevor Sie den Befehl ausführen.

docker volume create aws_fsxn_volume

2. Fügen Sie den Pfad zum externen Volume zur Umgebungsdatei mit dem folgenden Befehl hinzu .env:

PERSISTENT_VOL=path/to/external/volume:/volume_name

Denken Sie daran, den vorhandenen Dateiinhalt und die Doppelpunkt-Formatierung beizubehalten.
Beispiel:

PERSISTENT_VOL=aws_fsxn_volume:/aws_fsxn_bck

Stattdessen können Sie eine NFS-Freigabe mit einem Befehl wie dem folgenden als externes Volume
hinzufügen:

PERSISTENT_VOL=nfs/mnt/document:/aws_fsx_bck

3. Aktualisieren Sie die Terraform-Variablen.

a. Navigieren Sie zum Ordner aws_fsxn_variables.

b. Bestätigen Sie, dass die folgenden beiden Dateien vorhanden sind: terraform.tfvars Und
variables.tf.

c. Aktualisieren Sie die Werte in terraform.tfvars, wie für Ihre Umgebung erforderlich.

Weitere Informationen finden Sie unter "Terraform-Ressource: aws_fsx_ONTAP_File_System" .

Schritt 6: Bereitstellung der Backup-Lösung

Sie können die Disaster Recovery Backup-Lösung implementieren und bereitstellen.

Schritte

1. Navigieren Sie zum Ordner root (AWS_FSxN_BCK_Prov), und geben Sie den Befehl Provisioning aus.

docker-compose up -d

Mit diesem Befehl werden drei Container erstellt. Der erste Container implementiert FSX für ONTAP. Der
zweite Container erstellt Cluster-Peering, SVM-Peering und Ziel-Volume. Der dritte Container erstellt die

10

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

SnapMirror-Beziehung und initiiert den SnapMirror-Transfer.

2. Monitoring des Bereitstellungsprozesses

docker-compose logs -f

Dieser Befehl gibt Ihnen die Ausgabe in Echtzeit, wurde aber so konfiguriert, dass die Protokolle durch die
Datei erfasst deployment.log werden. Sie können den Namen dieser Protokolldateien ändern, indem
Sie die Datei bearbeiten .env und die Variablen aktualisieren DEPLOYMENT_LOGS.

Azure NetApp Dateien

Installieren Sie Oracle mit Azure NetApp Files

Mit dieser Automatisierungslösung können Sie Azure NetApp Files Volumes bereitstellen
und Oracle auf einer verfügbaren Virtual Machine installieren. Anschließend verwendet
Oracle die Volumes für die Datenspeicherung.

Über diese Lösung sprechen

Der mit dieser Lösung bereitgestellte Automatisierungscode führt im allgemeinen die folgenden Aktionen
durch:

• Richten Sie ein NetApp-Konto auf Azure ein

• Richten Sie auf Azure einen Storage-Kapazitäts-Pool ein

• Provisionierung der Azure NetApp Files Volumes basierend auf der Definition

• Erstellen Sie die Mount-Punkte

• Mounten Sie die Azure NetApp Files Volumes an den Bereitstellungspunkten

• Installieren Sie Oracle auf dem Linux-Server

• Erstellen Sie die Listeners und die Datenbank

• Erstellen der steckbaren Datenbanken (PDBs)

• Starten Sie den Listener und die Oracle-Instanz

• Installieren und konfigurieren Sie das azacsnap Dienstprogramm, um einen Snapshot zu erstellen

Bevor Sie beginnen

Sie müssen über Folgendes verfügen, um die Installation abzuschließen:

• Sie müssen die "Oracle mit Azure NetApp Files" Automatisierungslösung über die NetApp Console Web-
Benutzeroberfläche. Die Lösung ist als Datei verpackt. `na_oracle19c_deploy-master.zip`Die

• Eine Linux-VM mit den folgenden Eigenschaften:

◦ RHEL 8 (Standard_D8S_v3-RHEL-8)

◦ Wird auf demselben virtuellen Azure Netzwerk bereitgestellt, das auch für die Azure NetApp Files-
Bereitstellung verwendet wird

• Ein Azure-Konto

11

https://console.netapp.com/automationHub

Die Automatisierungslösung wird als Image bereitgestellt und mit Docker und Docker Compose ausgeführt. Sie
müssen beide auf der virtuellen Linux-Maschine installieren, wie unten beschrieben.

Sie sollten die VM auch mit dem Befehl bei RedHat registrieren sudo subscription-manager register.
Der Befehl fordert Sie zur Eingabe Ihrer Kontoanmeldeinformationen auf. Bei Bedarf können Sie ein Konto bei
https://developers.redhat.com/. erstellen

Schritt: Installieren und konfigurieren Sie Docker

Installation und Konfiguration von Docker auf einer virtuellen RHEL 8 Linux-Maschine

Schritte

1. Installieren Sie die Docker-Software mithilfe der folgenden Befehle.

dnf config-manager --add

-repo=https://download.docker.com/linux/centos/docker-ce.repo

dnf install docker-ce --nobest -y

2. Starten Sie Docker und zeigen Sie die Version an, um zu bestätigen, dass die Installation erfolgreich war.

systemctl start docker

systemctl enable docker

docker --version

3. Fügen Sie die erforderliche Linux-Gruppe einem zugeordneten Benutzer hinzu.

Prüfen Sie zunächst, ob die Gruppe Docker in Ihrem Linux-System existiert. Wenn dies nicht der Fall ist,
erstellen Sie die Gruppe und fügen Sie den Benutzer hinzu. Standardmäßig wird der aktuelle Shell-
Benutzer der Gruppe hinzugefügt.

sudo groupadd docker

sudo usermod -aG docker $USER

4. Aktivieren Sie die neuen Gruppen- und Benutzerdefinitionen

Wenn Sie eine neue Gruppe mit einem Benutzer erstellt haben, müssen Sie die Definitionen aktivieren.
Dazu können Sie sich von Linux abmelden und dann wieder in. Oder Sie können den folgenden Befehl
ausführen.

newgrp docker

Schritt 2: Installieren Sie Docker Compose und die NFS-Dienstprogramme

Installieren und konfigurieren Sie Docker Compose zusammen mit dem NFS-Dienstprogramme-Paket.

Schritte

12

1. Installieren Sie Docker Compose, und zeigen Sie die Version an, um zu bestätigen, dass die Installation
erfolgreich war.

dnf install curl -y

curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

docker-compose --version

2. Installieren Sie das NFS Utilities-Paket.

sudo yum install nfs-utils

Schritt 3: Laden Sie die Oracle Installationsdateien herunter

Laden Sie die erforderlichen Oracle-Installations- und Patch-Dateien sowie das Dienstprogramm herunter
azacsnap.

Schritte

1. Melden Sie sich bei Bedarf bei Ihrem Oracle Konto an.

2. Laden Sie die folgenden Dateien herunter.

Datei Beschreibung

LINUX.X64_193000_db_home.zip 19.3 Basisinstallateur

p31281355_190000_Linux-x86-64.zip 19.8-HE-Patch

p6880880_190000_Linux-x86-64.zip opatch-Version 12.2.0.1.23

azacsnap_installer_v5.0.run Azacsnap-Installationsprogramm

3. Legen Sie alle Installationsdateien in den Ordner /tmp/archive.

4. Stellen Sie sicher, dass alle Benutzer auf dem Datenbankserver vollen Zugriff (Lesen, Schreiben,
Ausführen) auf den Ordner haben /tmp/archive.

Schritt 4: Vorbereiten des Docker Images

Sie müssen das mit der Automatisierungslösung bereitgestellte Docker-Image extrahieren und laden.

Schritte

1. Kopieren Sie die Lösungsdatei na_oracle19c_deploy-master.zip auf die virtuelle Maschine, auf der
der Automatisierungscode ausgeführt wird.

scp -i ~/<private-key.pem> -r na_oracle19c_deploy-master.zip

user@<IP_ADDRESS_OF_VM>

13

Der Eingabeparameter private-key.pem ist Ihre private Schlüsseldatei, die für die Authentifizierung der
virtuellen Azure-Maschinen verwendet wird.

2. Navigieren Sie zum richtigen Ordner mit der Lösungsdatei, und entpacken Sie die Datei.

unzip na_oracle19c_deploy-master.zip

3. Navigieren Sie zu dem neuen Ordner na_oracle19c_deploy-master, der mit dem Entpacken erstellt
wurde, und führen Sie die Dateien auf. Sie sollten die Datei sehen ora_anf_bck_image.tar.

ls -lt

4. Laden Sie die Docker-Image-Datei. Der Ladevorgang sollte in der Regel in wenigen Sekunden
abgeschlossen sein.

docker load -i ora_anf_bck_image.tar

5. Bestätigen Sie, dass das Docker-Image geladen ist.

docker images

Sie sollten das Docker Image mit dem Tag latest sehen ora_anf_bck_image.

 REPOSITORY TAG IMAGE ID CREATED SIZE

ora_anf_bck_image latest ay98y7853769 1 week ago 2.58GB

Schritt 5: Erstellen Sie ein externes Volume

Sie benötigen ein externes Volume, um sicherzustellen, dass die Terraform-Statusdateien und andere wichtige
Dateien persistent sind. Diese Dateien müssen für Terraform verfügbar sein, um den Workflow und die
Implementierungen auszuführen.

Schritte

1. Erstellen Sie ein externes Volume außerhalb von Docker Compose.

Stellen Sie sicher, dass Sie den Volume-Namen aktualisieren, bevor Sie den Befehl ausführen.

docker volume create <VOLUME_NAME>

2. Fügen Sie den Pfad zum externen Volume zur Umgebungsdatei mit dem folgenden Befehl hinzu .env:

PERSISTENT_VOL=path/to/external/volume:/ora_anf_prov.

14

Denken Sie daran, den vorhandenen Dateiinhalt und die Doppelpunkt-Formatierung beizubehalten.
Beispiel:

PERSISTENT_VOL= ora_anf _volume:/ora_anf_prov

3. Aktualisieren Sie die Terraform-Variablen.

a. Navigieren Sie zum Ordner ora_anf_variables.

b. Bestätigen Sie, dass die folgenden beiden Dateien vorhanden sind: terraform.tfvars Und
variables.tf.

c. Aktualisieren Sie die Werte in terraform.tfvars, wie für Ihre Umgebung erforderlich.

Schritt 6: Installieren Sie Oracle

Sie können jetzt Oracle bereitstellen und installieren.

Schritte

1. Installieren Sie Oracle mithilfe der folgenden Befehlssequenz.

docker-compose up terraform_ora_anf

bash /ora_anf_variables/setup.sh

docker-compose up linux_config

bash /ora_anf_variables/permissions.sh

docker-compose up oracle_install

2. Laden Sie Ihre Bash-Variablen neu und bestätigen Sie, indem Sie den Wert für anzeigen ORACLE_HOME.

a. cd /home/oracle

b. source .bash_profile

c. echo $ORACLE_HOME

3. Sie sollten sich bei Oracle anmelden können.

sudo su oracle

Schritt 7: Validierung der Oracle-Installation

Sie sollten bestätigen, dass die Oracle-Installation erfolgreich war.

Schritte

1. Melden Sie sich beim Linux Oracle-Server an, und zeigen Sie eine Liste der Oracle-Prozesse an. Damit
wird bestätigt, dass die Installation wie erwartet abgeschlossen wurde und die Oracle-Datenbank
ausgeführt wird.

15

ps -ef | grep ora

2. Melden Sie sich bei der Datenbank an, um die Datenbankkonfiguration zu überprüfen und zu bestätigen,
dass die PDBs ordnungsgemäß erstellt wurden.

sqlplus / as sysdba

Sie sollten eine Ausgabe wie die folgende sehen:

SQL*Plus: Release 19.0.0.0.0 - Production on Thu May 6 12:52:51 2021

Version 19.8.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.8.0.0.0

3. Führen Sie ein paar einfache SQL-Befehle aus, um zu bestätigen, dass die Datenbank verfügbar ist.

select name, log_mode from v$database;

show pdbs.

Schritt 8: Installieren Sie das Dienstprogramm azacsnap und führen Sie ein Snapshot-Backup durch

Sie müssen das Dienstprogramm installieren und ausführen azacsnap, um ein Snapshot-Backup
durchzuführen.

Schritte

1. Den Behälter einbauen.

docker-compose up azacsnap_install

2. Wechseln Sie zum Snapshot-Benutzerkonto.

su - azacsnap

execute /tmp/archive/ora_wallet.sh

3. Konfigurieren einer Speicherdetaildatei. Dadurch wird die Konfigurationsdatei erstellt azacsnap.json.

16

cd /home/azacsnap/bin/

azacsnap -c configure –-configuration new

4. Führen Sie ein Snapshot-Backup durch.

azacsnap -c backup –-other data --prefix ora_test --retention=1

Schritt 9: Optional Migration einer lokalen PDB in die Cloud

Optional können Sie die lokale PDB in die Cloud migrieren.

Schritte

1. Legen Sie die Variablen in den Dateien nach Bedarf für Ihre Umgebung fest tfvars.

2. Migrieren Sie die PDB.

docker-compose -f docker-compose-relocate.yml up

Cloud Volumes ONTAP für AWS

Cloud Volumes ONTAP für AWS – Burst in die Cloud

Dieser Artikel unterstützt die NetApp Cloud Volumes ONTAP for AWS Automation
Solution, die NetApp -Kunden über den NetApp Console Automation Hub zur Verfügung
steht.

Die Automatisierungslösung Cloud Volumes ONTAP für AWS automatisiert die Container-Implementierung von
Cloud Volumes ONTAP für AWS mithilfe von Terraform, sodass Sie Cloud Volumes ONTAP für AWS schnell
und ohne manuelles Eingreifen implementieren können.

Bevor Sie beginnen

• Sie müssen die "Cloud Volumes ONTAP AWS – Burst in die Cloud" Automatisierungslösung über die Web-
Benutzeroberfläche der Konsole. Die Lösung ist verpackt als `cvo_aws_flexcache.zip`Die

• Sie müssen eine Linux-VM im gleichen Netzwerk wie Cloud Volumes ONTAP installieren.

• Nach der Installation der Linux-VM müssen Sie die Schritte in dieser Lösung befolgen, um die
erforderlichen Abhängigkeiten zu installieren.

Schritt: Installieren Sie Docker und Docker Compose

Installation Von Docker

Die folgenden Schritte verwenden Ubuntu 20.04 Debian Linux-Distributionssoftware als Beispiel. Die Befehle,
die Sie ausführen, hängen von der Linux-Distributionssoftware ab, die Sie verwenden. Informationen zur
Konfiguration finden Sie in der Dokumentation der jeweiligen Linux-Distributionssoftware.

17

https://console.netapp.com/automationHub

Schritte

1. Installieren Sie Docker, indem Sie die folgenden Befehle ausführen sudo:

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent

software-properties-common curl -fsSL

https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Überprüfen Sie die Installation:

docker –version

3. Vergewissern Sie sich, dass auf Ihrem Linux-System eine Gruppe namens „Docker“ erstellt wurde.
Erstellen Sie bei Bedarf die Gruppe:

sudo groupadd docker

4. Fügen Sie den Benutzer hinzu, der der Gruppe Zugriff auf Docker benötigt:

sudo usermod -aG docker $(whoami)

5. Ihre Änderungen werden übernommen, nachdem Sie sich beim Terminal abmelden und wieder anmelden.
Alternativ können Sie die Änderungen sofort anwenden:

newgrp docker

Installieren Sie Docker Compose

Schritte

1. Installieren Sie Docker Compose, indem Sie die folgenden Befehle ausführen sudo:

sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

18

2. Überprüfen Sie die Installation:

docker-compose –version

Schritt 2: Vorbereiten des Docker Images

Schritte

1. Kopieren Sie den cvo_aws_flexcache.zip Ordner auf die Linux-VM, die Sie zum Bereitstellen von
Cloud Volumes ONTAP verwenden möchten:

scp -i ~/<private-key>.pem -r cvo_aws_flexcache.zip

<awsuser>@<IP_ADDRESS_OF_VM>:<LOCATION_TO_BE_COPIED>

◦ private-key.pem Ist Ihre private Schlüsseldatei für die Anmeldung ohne Kennwort.

◦ awsuser Ist der VM-Benutzername.

◦ IP_ADDRESS_OF_VM Ist die VM IP-Adresse.

◦ LOCATION_TO_BE_COPIED Ist der Speicherort, an den der Ordner kopiert werden soll.

2. Extrahieren Sie den cvo_aws_flexcache.zip Ordner. Sie können den Ordner im aktuellen Verzeichnis
oder an einem benutzerdefinierten Speicherort extrahieren.

Um den Ordner im aktuellen Verzeichnis zu extrahieren, führen Sie Folgendes aus:

unzip cvo_aws_flexcache.zip

Um den Ordner an einem benutzerdefinierten Speicherort zu extrahieren, führen Sie Folgendes aus:

unzip cvo_aws_flexcache.zip -d ~/<your_folder_name>

3. Navigieren Sie nach dem Extrahieren des Inhalts zum Ordner, CVO_Aws_Deployment und führen Sie den
folgenden Befehl aus, um die Dateien anzuzeigen:

 ls -la

Sie sollten eine Liste von Dateien sehen, ähnlich wie das folgende Beispiel:

19

total 32

 drwxr-xr-x 8 user1 staff 256 Mar 23 12:26 .

 drwxr-xr-x 6 user1 staff 192 Mar 22 08:04 ..

 -rw-r--r-- 1 user1 staff 324 Apr 12 21:37 .env

 -rw-r--r-- 1 user1 staff 1449 Mar 23 13:19 Dockerfile

 drwxr-xr-x 15 user1 staff 480 Mar 23 13:19 cvo_Aws_source_code

 drwxr-xr-x 4 user1 staff 128 Apr 27 13:43 cvo_Aws_variables

 -rw-r--r-- 1 user1 staff 996 Mar 24 04:06 docker-compose-

deploy.yml

 -rw-r--r-- 1 user1 staff 1041 Mar 24 04:06 docker-compose-

destroy.yml

4. Suchen Sie die cvo_aws_flexcache_ubuntu_image.tar Datei. Dieses enthält das Docker Image,
das für die Implementierung von Cloud Volumes ONTAP für AWS erforderlich ist.

5. Enttaren Sie die Datei:

docker load -i cvo_aws_flexcache_ubuntu_image.tar

6. Warten Sie einige Minuten, bis das Docker-Image geladen ist, und überprüfen Sie dann, ob das Docker-
Image erfolgreich geladen wurde:

docker images

Sie sollten ein Docker-Image mit dem latest Tag sehen cvo_aws_flexcache_ubuntu_image, wie im
folgenden Beispiel gezeigt:

REPOSITORY TAG IMAGE ID CREATED

SIZE

 cvo_aws_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks ago

1.14GB

Bei Bedarf können Sie den Docker-Image-Namen ändern. Wenn Sie den Docker-Image-
Namen ändern, müssen Sie den Docker-Image-Namen in den Dateien und docker-
compose-destroy aktualisieren docker-compose-deploy.

Schritt 3: Erstellen Sie variable Umgebungsdateien

In dieser Phase müssen Sie zwei Umgebungsvariablendateien erstellen. Eine Datei dient der Authentifizierung
von AWS Resource Manager-APIs mithilfe des AWS-Zugriffs und der geheimen Schlüssel. Die zweite Datei
dient zum Festlegen von Umgebungsvariablen, damit die Terraform-Konsolenmodule AWS-APIs lokalisieren
und authentifizieren können.

Schritte

20

1. Erstellen Sie die awsauth.env Datei an folgendem Speicherort:

path/to/env-file/awsauth.env

a. Fügen Sie der Datei folgenden Inhalt hinzu awsauth.env:

Access_Key=<> secret_key=<>

Das Format muss genau wie oben dargestellt sein.

2. Fügen Sie der Datei den absoluten Dateipfad hinzu .env.

Geben Sie den absoluten Pfad für die Umgebungsdatei ein awsauth.env, die der Umgebungsvariable
entspricht AWS_CREDS.

AWS_CREDS=path/to/env-file/awsauth.env

3. Navigieren Sie zu dem cvo_aws_variable Ordner, und aktualisieren Sie den Zugriffs- und
Geheimschlüssel in der Datei mit den Anmeldeinformationen.

Fügen Sie der Datei folgenden Inhalt hinzu:

aws_Access_Key_id=<> aws_Secret_Access_Key=<>

Das Format muss genau wie oben dargestellt sein.

Schritt 4: Registrieren Sie sich für NetApp Intelligent Services

Melden Sie sich über Ihren Cloud-Anbieter für NetApp Intelligent Services an und zahlen Sie stundenweise
(PAYGO) oder über einen Jahresvertrag. Zu den intelligenten Diensten von NetApp gehören NetApp Backup
und Recovery, Cloud Volumes ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience und NetApp
Disaster Recovery. Die NetApp Datenklassifizierung ist ohne zusätzliche Kosten in Ihrem Abonnement
enthalten.

Schritte

1. Navigieren Sie im Amazon Web Services (AWS)-Portal zu SaaS und wählen Sie * NetApp Intelligent
Services abonnieren*.

Sie können entweder dieselbe Ressourcengruppe wie Cloud Volumes ONTAP oder eine andere
Ressourcengruppe verwenden.

2. Konfigurieren Sie das NetApp Konsolenportal, um das SaaS-Abonnement in die Konsole zu importieren.

Sie können dies direkt über das AWS-Portal konfigurieren.

Sie werden zum Konsolenportal weitergeleitet, um die Konfiguration zu bestätigen.

3. Bestätigen Sie die Konfiguration im Konsolenportal, indem Sie Speichern auswählen.

Schritt 5: Erstellen Sie ein externes Volume

Sie sollten ein externes Volume erstellen, damit die Terraform-Statusdateien und andere wichtige Dateien
erhalten bleiben. Sie müssen sicherstellen, dass die Dateien für Terraform verfügbar sind, um den Workflow
und die Implementierungen auszuführen.

21

Schritte

1. Externes Volume außerhalb von Docker Compose erstellen:

docker volume create <volume_name>

Beispiel:

docker volume create cvo_aws_volume_dst

2. Verwenden Sie eine der folgenden Optionen:

a. Fügen Sie einen externen Volume-Pfad zur Umgebungsdatei hinzu .env.

Sie müssen das genaue unten dargestellte Format einhalten.

Format:

PERSISTENT_VOL=path/to/external/volume:/cvo_aws

Beispiel:
PERSISTENT_VOL=cvo_aws_volume_dst:/cvo_aws

b. Fügen Sie NFS-Freigaben als externes Volume hinzu.

Stellen Sie sicher, dass der Docker Container mit den NFS-Freigaben kommunizieren kann und dass
die korrekten Berechtigungen wie Lese-/Schreibvorgänge konfiguriert sind.

i. Fügen Sie den Pfad der NFS-Freigaben als Pfad zum externen Volume in der Docker Compose-
Datei hinzu, wie unten gezeigt: Format:

PERSISTENT_VOL=path/to/nfs/volume:/cvo_aws

Beispiel:
PERSISTENT_VOL=nfs/mnt/document:/cvo_aws

3. Navigieren Sie zum cvo_aws_variables Ordner.

Im Ordner sollte die folgende Variablendatei angezeigt werden:

◦ terraform.tfvars

◦ variables.tf

4. Ändern Sie die Werte innerhalb der terraform.tfvars Datei entsprechend Ihren Anforderungen.

Sie müssen die spezifische Begleitdokumentation lesen, wenn Sie einen der Variablenwerte in der Datei
ändern terraform.tfvars. Die Werte können je nach Region, Verfügbarkeitszonen und anderen von
Cloud Volumes ONTAP für AWS unterstützten Faktoren variieren. Dies umfasst Lizenzen,
Festplattengröße und VM-Größe für einzelne Nodes sowie Hochverfügbarkeitspaare (HA).

Alle unterstützenden Variablen für den Konsolenagenten und die Cloud Volumes ONTAP Terraform-Module

22

sind bereits in der variables.tf Datei. Sie müssen auf die Variablennamen in der variables.tf Datei
vor dem Hinzufügen zur terraform.tfvars Datei.

5. Je nach Ihren Anforderungen können Sie FlexCache und FlexClone aktivieren oder deaktivieren, indem
Sie die folgenden Optionen auf oder false einstellen true.

Die folgenden Beispiele aktivieren FlexCache und FlexClone:

◦ is_flexcache_required = true

◦ is_flexclone_required = true

Schritt 6: Implementierung von Cloud Volumes ONTAP für AWS

Gehen Sie wie folgt vor, um Cloud Volumes ONTAP für AWS zu implementieren.

Schritte

1. Führen Sie im Stammordner den folgenden Befehl aus, um die Bereitstellung auszulösen:

docker-compose -f docker-compose-deploy.yml up -d

Zwei Container werden ausgelöst, der erste Container implementiert Cloud Volumes ONTAP und der
zweite Container sendet Telemetriedaten an AutoSupport.

Der zweite Container wartet, bis der erste Container alle Schritte erfolgreich abgeschlossen hat.

2. Überwachen Sie den Fortschritt des Bereitstellungsprozesses mithilfe der Protokolldateien:

docker-compose -f docker-compose-deploy.yml logs -f

Dieser Befehl liefert die Ausgabe in Echtzeit und erfasst die Daten in den folgenden Protokolldateien:
deployment.log

telemetry_asup.log

Sie können den Namen dieser Protokolldateien ändern, indem Sie die Datei mithilfe der folgenden
Umgebungsvariablen bearbeiten .env:

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

Die folgenden Beispiele zeigen, wie Sie die Protokolldateinamen ändern:

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

Nachdem Sie fertig sind

Mit den folgenden Schritten können Sie die temporäre Umgebung entfernen und Elemente bereinigen, die

23

während des Bereitstellungsprozesses erstellt wurden.

Schritte

1. Wenn Sie FlexCache bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars
Variablendatei fest. Dadurch werden FlexCache-Volumes bereinigt und die zuvor erstellte temporäre
Umgebung wird entfernt.

flexcache_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

2. Wenn Sie FlexClone bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars
Variablendatei fest. Dadurch werden FlexClone-Volumes bereinigt und die zuvor erstellte temporäre
Umgebung wird entfernt.

flexclone_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

Cloud Volumes ONTAP für Azure

Cloud Volumes ONTAP für Azure – Burst in die Cloud

Dieser Artikel unterstützt die NetApp Cloud Volumes ONTAP for Azure Automation
Solution, die NetApp -Kunden über den NetApp Console Automation Hub zur Verfügung
steht.

Die Automatisierungslösung Cloud Volumes ONTAP für Azure automatisiert die Container-Implementierung
von Cloud Volumes ONTAP für Azure mithilfe von Terraform, sodass Sie Cloud Volumes ONTAP für Azure
schnell und ohne manuelles Eingreifen implementieren können.

Bevor Sie beginnen

• Sie müssen die "Cloud Volumes ONTAP Azure – Burst in die Cloud" Automatisierungslösung über die
Web-Benutzeroberfläche der Konsole. Die Lösung ist verpackt als `CVO-Azure-Burst-To-Cloud.zip`Die

• Sie müssen eine Linux-VM im gleichen Netzwerk wie Cloud Volumes ONTAP installieren.

• Nach der Installation der Linux-VM müssen Sie die Schritte in dieser Lösung befolgen, um die
erforderlichen Abhängigkeiten zu installieren.

Schritt: Installieren Sie Docker und Docker Compose

Installation Von Docker

Die folgenden Schritte verwenden Ubuntu 20.04 Debian Linux-Distributionssoftware als Beispiel. Die Befehle,
die Sie ausführen, hängen von der Linux-Distributionssoftware ab, die Sie verwenden. Informationen zur
Konfiguration finden Sie in der Dokumentation der jeweiligen Linux-Distributionssoftware.

Schritte

1. Installieren Sie Docker, indem Sie die folgenden Befehle ausführen sudo:

24

https://console.netapp.com/automationHub

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent

software-properties-common curl -fsSL

https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Überprüfen Sie die Installation:

docker –version

3. Vergewissern Sie sich, dass auf Ihrem Linux-System eine Gruppe namens „Docker“ erstellt wurde.
Erstellen Sie bei Bedarf die Gruppe:

sudo groupadd docker

4. Fügen Sie den Benutzer hinzu, der der Gruppe Zugriff auf Docker benötigt:

sudo usermod -aG docker $(whoami)

5. Ihre Änderungen werden übernommen, nachdem Sie sich beim Terminal abmelden und wieder anmelden.
Alternativ können Sie die Änderungen sofort anwenden:

newgrp docker

Installieren Sie Docker Compose

Schritte

1. Installieren Sie Docker Compose, indem Sie die folgenden Befehle ausführen sudo:

sudo curl -L

“https://github.com/docker/compose/releases/download/1.29.2/dockercompos

e-(ᵆ�ᵅ�ᵄ�ᵅ�ᵅ� − ᵆ�)−(uname -m)” -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Überprüfen Sie die Installation:

25

docker-compose –version

Schritt 2: Vorbereiten des Docker Images

Schritte

1. Kopieren Sie den CVO-Azure-Burst-To-Cloud.zip Ordner auf die Linux-VM, die Sie zum
Bereitstellen von Cloud Volumes ONTAP verwenden möchten:

scp -i ~/<private-key>.pem -r CVO-Azure-Burst-To-Cloud.zip

<azureuser>@<IP_ADDRESS_OF_VM>:<LOCATION_TO_BE_COPIED>

◦ private-key.pem Ist Ihre private Schlüsseldatei für die Anmeldung ohne Kennwort.

◦ azureuser Ist der VM-Benutzername.

◦ IP_ADDRESS_OF_VM Ist die VM IP-Adresse.

◦ LOCATION_TO_BE_COPIED Ist der Speicherort, an den der Ordner kopiert werden soll.

2. Extrahieren Sie den CVO-Azure-Burst-To-Cloud.zip Ordner. Sie können den Ordner im aktuellen
Verzeichnis oder an einem benutzerdefinierten Speicherort extrahieren.

Um den Ordner im aktuellen Verzeichnis zu extrahieren, führen Sie Folgendes aus:

unzip CVO-Azure-Burst-To-Cloud.zip

Um den Ordner an einem benutzerdefinierten Speicherort zu extrahieren, führen Sie Folgendes aus:

unzip CVO-Azure-Burst-To-Cloud.zip -d ~/<your_folder_name>

3. Navigieren Sie nach dem Extrahieren des Inhalts zum Ordner, CVO_Azure_Deployment und führen Sie
den folgenden Befehl aus, um die Dateien anzuzeigen:

 ls -la

Sie sollten eine Liste von Dateien sehen, ähnlich wie das folgende Beispiel:

26

drwxr-xr-x@ 11 user1 staff 352 May 5 13:56 .

drwxr-xr-x@ 5 user1 staff 160 May 5 14:24 ..

-rw-r--r--@ 1 user1 staff 324 May 5 13:18 .env

-rw-r--r--@ 1 user1 staff 1449 May 5 13:18 Dockerfile

-rw-r--r--@ 1 user1 staff 35149 May 5 13:18 LICENSE

-rw-r--r--@ 1 user1 staff 13356 May 5 14:26 README.md

-rw-r--r-- 1 user1 staff 354318151 May 5 13:51

cvo_azure_flexcache_ubuntu_image_latest

drwxr-xr-x@ 4 user1 staff 128 May 5 13:18 cvo_azure_variables

-rw-r--r--@ 1 user1 staff 996 May 5 13:18 docker-compose-deploy.yml

-rw-r--r--@ 1 user1 staff 1041 May 5 13:18 docker-compose-destroy.yml

-rw-r--r--@ 1 user1 staff 4771 May 5 13:18 sp_role.json

4. Suchen Sie die cvo_azure_flexcache_ubuntu_image_latest.tar.gz Datei. Dieses enthält das
Docker Image, das für die Implementierung von Cloud Volumes ONTAP für Azure erforderlich ist.

5. Enttaren Sie die Datei:

docker load -i cvo_azure_flexcache_ubuntu_image_latest.tar.gz

6. Warten Sie einige Minuten, bis das Docker-Image geladen ist, und überprüfen Sie dann, ob das Docker-
Image erfolgreich geladen wurde:

docker images

Sie sollten ein Docker-Image mit dem latest Tag sehen
cvo_azure_flexcache_ubuntu_image_latest, wie im folgenden Beispiel gezeigt:

REPOSITORY TAG IMAGE ID CREATED SIZE

cvo_azure_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks ago 1.14GB

Schritt 3: Erstellen Sie variable Umgebungsdateien

In dieser Phase müssen Sie zwei Umgebungsvariablendateien erstellen. Eine Datei dient der Authentifizierung
von Azure Resource Manager-APIs mithilfe der Anmeldeinformationen des Dienstprinzipals. Die zweite Datei
dient zum Festlegen von Umgebungsvariablen, damit die Terraform-Konsolenmodule Azure-APIs finden und
authentifizieren können.

Schritte

1. Erstellen Sie einen Dienstprinzipal.

Bevor Sie die Umgebungsvariablen-Dateien erstellen können, müssen Sie einen Dienstprinzipal erstellen,
indem Sie die Schritte in befolgen"Erstellen Sie eine Azure Active Directory-Applikation und einen
Dienstprinzipal, die auf Ressourcen zugreifen können".

27

https://learn.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://learn.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

2. Weisen Sie die Rolle Contributor dem neu erstellten Service-Prinzipal zu.

3. Erstellen Sie eine benutzerdefinierte Rolle.

a. Suchen Sie die sp_role.json Datei, und prüfen Sie unter den aufgeführten Aktionen, ob die
erforderlichen Berechtigungen vorhanden sind.

b. Fügen Sie diese Berechtigungen ein und hängen Sie die benutzerdefinierte Rolle an den neu erstellten
Dienstprinzipal an.

4. Navigieren Sie zu Certificates & Secrets und wählen Sie New Client secret, um das Client-Secret zu
erstellen.

Wenn Sie das Client-Secret erstellen, müssen Sie die Details aus der Spalte Wert aufzeichnen, da Sie
diesen Wert nicht mehr sehen können. Außerdem müssen Sie folgende Informationen erfassen:

◦ Client-ID

◦ Abonnement-ID

◦ Mandanten-ID

Sie benötigen diese Informationen, um die Umgebungsvariablen zu erstellen. Die Client-ID und die
Mandanten-ID finden Sie im Abschnitt Übersicht der Service Principal UI.

5. Erstellen Sie die Umgebungsdateien.

a. Erstellen Sie die azureauth.env Datei an folgendem Speicherort:

path/to/env-file/azureauth.env

i. Fügen Sie der Datei folgenden Inhalt hinzu:

ClientID=<> ClientSecret=<> SubscriptionID=<> tenantId=<>

Das Format muss genau wie oben dargestellt sein, ohne Leerzeichen zwischen Schlüssel und Wert.

b. Erstellen Sie die credentials.env Datei an folgendem Speicherort:

path/to/env-file/credentials.env

i. Fügen Sie der Datei folgenden Inhalt hinzu:

AZURE_TENANT_ID=<> AZURE_CLIENT_SECRET=<> AZURE_CLIENT_ID=<>
AZURE_SUBSCRIPTION_ID=<>

Das Format muss genau wie oben dargestellt sein, ohne Leerzeichen zwischen Schlüssel und Wert.

6. Fügen Sie der Datei die absoluten Dateipfade hinzu .env.

Geben Sie den absoluten Pfad für die Umgebungsdatei in die .env Datei ein azureauth.env, die der
Umgebungsvariable entspricht AZURE_RM_CREDS.

AZURE_RM_CREDS=path/to/env-file/azureauth.env

Geben Sie den absoluten Pfad für die Umgebungsdatei in die .env Datei ein credentials.env, die der
Umgebungsvariable entspricht BLUEXP_TF_AZURE_CREDS.

28

BLUEXP_TF_AZURE_CREDS=path/to/env-file/credentials.env

Schritt 4: Registrieren Sie sich für NetApp Intelligent Services

Melden Sie sich über Ihren Cloud-Anbieter für NetApp Intelligent Services an und zahlen Sie stundenweise
(PAYGO) oder über einen Jahresvertrag. Zu den intelligenten Diensten von NetApp gehören NetApp Backup
und Recovery, Cloud Volumes ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience und NetApp
Disaster Recovery. NetApp Data Classification ist ohne zusätzliche Kosten in Ihrem Abonnement enthalten

Schritte

1. Navigieren Sie im Azure-Portal zu SaaS und wählen Sie * NetApp Intelligent Services abonnieren* aus.

2. Wählen Sie den Plan Cloud Manager (nach Cap PYGO nach Stunde, WORM und Datendiensten) aus.

Sie können entweder dieselbe Ressourcengruppe wie Cloud Volumes ONTAP oder eine andere
Ressourcengruppe verwenden.

3. Konfigurieren Sie das Konsolenportal, um das SaaS-Abonnement in die Konsole zu importieren.

Sie können dies direkt über das Azure-Portal konfigurieren, indem Sie zu Produkt- und Plandetails
navigieren und die Option Jetzt Konto konfigurieren auswählen.

Sie werden dann zum Konsolenportal weitergeleitet, um die Konfiguration zu bestätigen.

4. Bestätigen Sie die Konfiguration im Konsolenportal, indem Sie Speichern auswählen.

Schritt 5: Erstellen Sie ein externes Volume

Sie sollten ein externes Volume erstellen, damit die Terraform-Statusdateien und andere wichtige Dateien
erhalten bleiben. Sie müssen sicherstellen, dass die Dateien für Terraform verfügbar sind, um den Workflow
und die Implementierungen auszuführen.

Schritte

1. Externes Volume außerhalb von Docker Compose erstellen:

docker volume create « volume_name »

Beispiel:

docker volume create cvo_azure_volume_dst

2. Verwenden Sie eine der folgenden Optionen:

a. Fügen Sie einen externen Volume-Pfad zur Umgebungsdatei hinzu .env.

Sie müssen das genaue unten dargestellte Format einhalten.

Format:

PERSISTENT_VOL=path/to/external/volume:/cvo_azure

29

Beispiel:
PERSISTENT_VOL=cvo_azure_volume_dst:/cvo_azure

b. Fügen Sie NFS-Freigaben als externes Volume hinzu.

Stellen Sie sicher, dass der Docker Container mit den NFS-Freigaben kommunizieren kann und dass
die korrekten Berechtigungen wie Lese-/Schreibvorgänge konfiguriert sind.

i. Fügen Sie den Pfad der NFS-Freigaben als Pfad zum externen Volume in der Docker Compose-
Datei hinzu, wie unten gezeigt: Format:

PERSISTENT_VOL=path/to/nfs/volume:/cvo_azure

Beispiel:
PERSISTENT_VOL=nfs/mnt/document:/cvo_azure

3. Navigieren Sie zum cvo_azure_variables Ordner.

Im Ordner sollten die folgenden Variablendateien angezeigt werden:

terraform.tfvars

variables.tf

4. Ändern Sie die Werte innerhalb der terraform.tfvars Datei entsprechend Ihren Anforderungen.

Sie müssen die spezifische Begleitdokumentation lesen, wenn Sie einen der Variablenwerte in der Datei
ändern terraform.tfvars. Die Werte können je nach Region, Verfügbarkeitszonen und anderen von
Cloud Volumes ONTAP für Azure unterstützten Faktoren variieren. Dies umfasst Lizenzen,
Festplattengröße und VM-Größe für einzelne Nodes sowie Hochverfügbarkeitspaare (HA).

Alle unterstützenden Variablen für den Konsolenagenten und die Cloud Volumes ONTAP Terraform-Module
sind bereits in der variables.tf Datei. Sie müssen auf die Variablennamen in der variables.tf Datei
vor dem Hinzufügen zur terraform.tfvars Datei.

5. Je nach Ihren Anforderungen können Sie FlexCache und FlexClone aktivieren oder deaktivieren, indem
Sie die folgenden Optionen auf oder false einstellen true.

Die folgenden Beispiele aktivieren FlexCache und FlexClone:

◦ is_flexcache_required = true

◦ is_flexclone_required = true

6. Bei Bedarf können Sie den Wert für die Terraform-Variable aus dem Azure Active Directory-Dienst abrufen
az_service_principal_object_id:

a. Navigieren Sie zu Enterprise Applications –> All Applications und wählen Sie den Namen des
zuvor erstellten Service Principal aus.

b. Kopieren Sie die Objekt-ID, und fügen Sie den Wert für die Terraform-Variable ein:

az_service_principal_object_id

30

Schritt 6: Implementierung von Cloud Volumes ONTAP für Azure

Gehen Sie wie folgt vor, um Cloud Volumes ONTAP für Azure zu implementieren.

Schritte

1. Führen Sie im Stammordner den folgenden Befehl aus, um die Bereitstellung auszulösen:

docker-compose up -d

Zwei Container werden ausgelöst, der erste Container implementiert Cloud Volumes ONTAP und der
zweite Container sendet Telemetriedaten an AutoSupport.

Der zweite Container wartet, bis der erste Container alle Schritte erfolgreich abgeschlossen hat.

2. Überwachen Sie den Fortschritt des Bereitstellungsprozesses mithilfe der Protokolldateien:

docker-compose logs -f

Dieser Befehl liefert die Ausgabe in Echtzeit und erfasst die Daten in den folgenden Protokolldateien:

deployment.log

telemetry_asup.log

Sie können den Namen dieser Protokolldateien ändern, indem Sie die Datei mithilfe der folgenden
Umgebungsvariablen bearbeiten .env:

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

Die folgenden Beispiele zeigen, wie Sie die Protokolldateinamen ändern:

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

Nachdem Sie fertig sind

Mit den folgenden Schritten können Sie die temporäre Umgebung entfernen und Elemente bereinigen, die
während des Bereitstellungsprozesses erstellt wurden.

Schritte

1. Wenn Sie FlexCache bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars Datei
fest. Dadurch werden FlexCache-Volumes bereinigt und die zuvor erstellte temporäre Umgebung wird
entfernt.

flexcache_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

31

2. Wenn Sie FlexClone bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars Datei
fest. Dadurch werden FlexClone-Volumes bereinigt und die zuvor erstellte temporäre Umgebung wird
entfernt.

flexclone_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

Cloud Volumes ONTAP für Google Cloud

Cloud Volumes ONTAP für Google Cloud – Burst in die Cloud

Dieser Artikel unterstützt die NetApp Cloud Volumes ONTAP für Google Cloud
Automation Solution, die NetApp -Kunden über den NetApp Console Automation Hub zur
Verfügung steht.

Die Automatisierungslösung Cloud Volumes ONTAP für Google Cloud automatisiert die Container-
Implementierung von Cloud Volumes ONTAP für Google Cloud, sodass Sie Cloud Volumes ONTAP für Google
Cloud schnell und ohne manuelle Eingriffe implementieren können.

Bevor Sie beginnen

• Sie müssen die "Cloud Volumes ONTAP für Google Cloud – Burst in die Cloud" Automatisierungslösung
über die Web-Benutzeroberfläche der Konsole. Die Lösung ist verpackt als `cvo_gcp_flexcache.zip`Die

• Sie müssen eine Linux-VM im gleichen Netzwerk wie Cloud Volumes ONTAP installieren.

• Nach der Installation der Linux-VM müssen Sie die Schritte in dieser Lösung befolgen, um die
erforderlichen Abhängigkeiten zu installieren.

Schritt: Installieren Sie Docker und Docker Compose

Installation Von Docker

Die folgenden Schritte verwenden Ubuntu 20.04 Debian Linux-Distributionssoftware als Beispiel. Die Befehle,
die Sie ausführen, hängen von der Linux-Distributionssoftware ab, die Sie verwenden. Informationen zur
Konfiguration finden Sie in der Dokumentation der jeweiligen Linux-Distributionssoftware.

Schritte

1. Installieren Sie Docker, indem Sie die folgenden Befehle ausführen:

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

32

https://console.netapp.com/automationHub

2. Überprüfen Sie die Installation:

docker –version

3. Vergewissern Sie sich, dass auf Ihrem Linux-System eine Gruppe namens „Docker“ erstellt wurde.
Erstellen Sie bei Bedarf die Gruppe:

sudo groupadd docker

4. Fügen Sie den Benutzer hinzu, der der Gruppe Zugriff auf Docker benötigt:

sudo usermod -aG docker $(whoami)

5. Ihre Änderungen werden übernommen, nachdem Sie sich beim Terminal abmelden und wieder anmelden.
Alternativ können Sie die Änderungen sofort anwenden:

newgrp docker

Installieren Sie Docker Compose

Schritte

1. Installieren Sie Docker Compose, indem Sie die folgenden Befehle ausführen sudo:

sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Überprüfen Sie die Installation:

docker-compose –version

Schritt 2: Vorbereiten des Docker Images

Schritte

1. Kopieren Sie den cvo_gcp_flexcache.zip Ordner auf die Linux-VM, die Sie zum Bereitstellen von
Cloud Volumes ONTAP verwenden möchten:

33

scp -i ~/private-key.pem -r cvo_gcp_flexcache.zip

gcpuser@IP_ADDRESS_OF_VM:LOCATION_TO_BE_COPIED

◦ private-key.pem Ist Ihre private Schlüsseldatei für die Anmeldung ohne Kennwort.

◦ gcpuser Ist der VM-Benutzername.

◦ IP_ADDRESS_OF_VM Ist die VM IP-Adresse.

◦ LOCATION_TO_BE_COPIED Ist der Speicherort, an den der Ordner kopiert werden soll.

2. Extrahieren Sie den cvo_gcp_flexcache.zip Ordner. Sie können den Ordner im aktuellen Verzeichnis
oder an einem benutzerdefinierten Speicherort extrahieren.

Um den Ordner im aktuellen Verzeichnis zu extrahieren, führen Sie Folgendes aus:

unzip cvo_gcp_flexcache.zip

Um den Ordner an einem benutzerdefinierten Speicherort zu extrahieren, führen Sie Folgendes aus:

unzip cvo_gcp_flexcache.zip -d ~/<your_folder_name>

3. Führen Sie nach dem Extrahieren des Inhalts den folgenden Befehl aus, um die Dateien anzuzeigen:

 ls -la

Sie sollten eine Liste von Dateien sehen, ähnlich wie das folgende Beispiel:

 total 32

 drwxr-xr-x 8 user staff 256 Mar 23 12:26 .

 drwxr-xr-x 6 user staff 192 Mar 22 08:04 ..

 -rw-r--r-- 1 user staff 324 Apr 12 21:37 .env

 -rw-r--r-- 1 user staff 1449 Mar 23 13:19 Dockerfile

 drwxr-xr-x 15 user staff 480 Mar 23 13:19 cvo_gcp_source_code

 drwxr-xr-x 4 user staff 128 Apr 27 13:43 cvo_gcp_variables

 -rw-r--r-- 1 user staff 996 Mar 24 04:06 docker-compose-

deploy.yml

 -rw-r--r-- 1 user staff 1041 Mar 24 04:06 docker-compose-

destroy.yml

4. Suchen Sie die cvo_gcp_flexcache_ubuntu_image.tar Datei. Dieses enthält das Docker Image,
das für die Implementierung von Cloud Volumes ONTAP für Google Cloud erforderlich ist.

5. Enttaren Sie die Datei:

34

docker load -i cvo_gcp_flexcache_ubuntu_image.tar

6. Warten Sie einige Minuten, bis das Docker-Image geladen ist, und überprüfen Sie dann, ob das Docker-
Image erfolgreich geladen wurde:

docker images

Sie sollten ein Docker-Image mit dem latest Tag sehen cvo_gcp_flexcache_ubuntu_image, wie im
folgenden Beispiel gezeigt:

REPOSITORY TAG IMAGE ID CREATED

SIZE

 cvo_gcp_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks

ago 1.14GB

Bei Bedarf können Sie den Docker-Image-Namen ändern. Wenn Sie den Docker-Image-
Namen ändern, müssen Sie den Docker-Image-Namen in den Dateien und docker-
compose-destroy aktualisieren docker-compose-deploy.

Schritt 3: Aktualisieren Sie die JSON-Datei

In dieser Phase müssen Sie die Datei mit einem Servicekontoschlüssel aktualisieren cxo-automation-
gcp.json, um den Google Cloud-Provider zu authentifizieren.

1. Erstellen Sie ein Dienstkonto mit Berechtigungen zum Bereitstellen von Cloud Volumes ONTAP und eines
Konsolenagenten"Erfahren Sie mehr über das Erstellen von Servicekonten."

2. Laden Sie die Schlüsseldatei für das Konto herunter, und aktualisieren Sie die cxo-automation-
gcp.json Datei mit den Informationen zur Schlüsseldatei. Die cxo-automation-gcp.json Datei
befindet sich im cvo_gcp_variables Ordner.

35

https://cloud.google.com/iam/docs/service-accounts-create

Beispiel

{

 "type": "service_account",

 "project_id": "",

 "private_key_id": "",

 "private_key": "",

 "client_email": "",

 "client_id": "",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url": "",

 "universe_domain": "googleapis.com"

}

Das Dateiformat muss genau wie oben dargestellt sein.

Schritt 4: Registrieren Sie sich für NetApp Intelligent Services

Melden Sie sich über Ihren Cloud-Anbieter für NetApp Intelligent Services an und zahlen Sie stundenweise
(PAYGO) oder über einen Jahresvertrag. Zu den intelligenten Diensten von NetApp gehören NetApp Backup
und Recovery, Cloud Volumes ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience und NetApp
Disaster Recovery. Die NetApp Datenklassifizierung ist ohne zusätzliche Kosten in Ihrem Abonnement
enthalten.

Schritte

1. Navigieren Sie zum"Google Cloud-Konsole" und wählen Sie * NetApp Intelligent Services abonnieren*.

2. Konfigurieren Sie das NetApp Konsolenportal, um das SaaS-Abonnement in die Konsole zu importieren.

Sie können dies direkt über die Google Cloud Platform konfigurieren. Sie werden zum Konsolenportal
weitergeleitet, um die Konfiguration zu bestätigen.

3. Bestätigen Sie die Konfiguration im Konsolenportal, indem Sie Speichern auswählen.

Weitere Informationen finden Sie unter "Verwalten Sie Google Cloud-Anmeldeinformationen und Abonnements
für die NetApp Konsole" .

Schritt 5: Aktivieren Sie die erforderlichen Google Cloud APIs

Sie müssen die folgenden Google Cloud-APIs in Ihrem Projekt aktivieren, um Cloud Volumes ONTAP und den
Konsolenagenten bereitzustellen.

• Cloud Deployment Manager V2-API

• Cloud-ProtokollierungsAPI

• Cloud Resource Manager API

• Compute Engine-API

36

https://console.cloud.google.com/marketplace/product/netapp-cloudmanager/cloud-manager
https://docs.netapp.com/us-en/console-setup-admin/task-adding-gcp-accounts.html#associate-a-marketplace-subscription-with-google-cloud-credentials
https://docs.netapp.com/us-en/console-setup-admin/task-adding-gcp-accounts.html#associate-a-marketplace-subscription-with-google-cloud-credentials

• IAM-API (Identitäts- und Zugriffsmanagement

"Erfahren Sie mehr über die Aktivierung von APIs"

Schritt 6: Erstellen Sie ein externes Volume

Sie sollten ein externes Volume erstellen, damit die Terraform-Statusdateien und andere wichtige Dateien
erhalten bleiben. Sie müssen sicherstellen, dass die Dateien für Terraform verfügbar sind, um den Workflow
und die Implementierungen auszuführen.

Schritte

1. Externes Volume außerhalb von Docker Compose erstellen:

docker volume create <volume_name>

Beispiel:

docker volume create cvo_gcp_volume_dst

2. Verwenden Sie eine der folgenden Optionen:

a. Fügen Sie einen externen Volume-Pfad zur Umgebungsdatei hinzu .env.

Sie müssen das genaue unten dargestellte Format einhalten.

Format:

PERSISTENT_VOL=path/to/external/volume:/cvo_gcp

Beispiel:
PERSISTENT_VOL=cvo_gcp_volume_dst:/cvo_gcp

b. Fügen Sie NFS-Freigaben als externes Volume hinzu.

Stellen Sie sicher, dass der Docker Container mit den NFS-Freigaben kommunizieren kann und dass
die korrekten Berechtigungen wie Lese-/Schreibvorgänge konfiguriert sind.

i. Fügen Sie den Pfad der NFS-Freigaben als Pfad zum externen Volume in der Docker Compose-
Datei hinzu, wie unten gezeigt: Format:

PERSISTENT_VOL=path/to/nfs/volume:/cvo_gcp

Beispiel:
PERSISTENT_VOL=nfs/mnt/document:/cvo_gcp

3. Navigieren Sie zum cvo_gcp_variables Ordner.

Folgende Dateien sollten im Ordner angezeigt werden:

◦ terraform.tfvars

37

https://cloud.google.com/apis/docs/getting-started#enabling_apis

◦ variables.tf

4. Ändern Sie die Werte innerhalb der terraform.tfvars Datei entsprechend Ihren Anforderungen.

Sie müssen die spezifische Begleitdokumentation lesen, wenn Sie einen der Variablenwerte in der Datei
ändern terraform.tfvars. Die Werte können je nach Region, Verfügbarkeitszonen und anderen von
Cloud Volumes ONTAP für Google Cloud unterstützten Faktoren variieren. Dies umfasst Lizenzen,
Festplattengröße und VM-Größe für einzelne Nodes sowie Hochverfügbarkeitspaare (HA).

Alle unterstützenden Variablen für den Konsolenagenten und die Cloud Volumes ONTAP Terraform-Module
sind bereits in der variables.tf Datei. Sie müssen auf die Variablennamen in der variables.tf Datei
vor dem Hinzufügen zur terraform.tfvars Datei.

5. Je nach Ihren Anforderungen können Sie FlexCache und FlexClone aktivieren oder deaktivieren, indem
Sie die folgenden Optionen auf oder false einstellen true.

Die folgenden Beispiele aktivieren FlexCache und FlexClone:

◦ is_flexcache_required = true

◦ is_flexclone_required = true

Schritt 7: Implementierung von Cloud Volumes ONTAP für Google Cloud

Führen Sie die folgenden Schritte zur Implementierung von Cloud Volumes ONTAP für Google Cloud durch.

Schritte

1. Führen Sie im Stammordner den folgenden Befehl aus, um die Bereitstellung auszulösen:

docker-compose -f docker-compose-deploy.yml up -d

Zwei Container werden ausgelöst, der erste Container implementiert Cloud Volumes ONTAP und der
zweite Container sendet Telemetriedaten an AutoSupport.

Der zweite Container wartet, bis der erste Container alle Schritte erfolgreich abgeschlossen hat.

2. Überwachen Sie den Fortschritt des Bereitstellungsprozesses mithilfe der Protokolldateien:

docker-compose -f docker-compose-deploy.yml logs -f

Dieser Befehl liefert die Ausgabe in Echtzeit und erfasst die Daten in den folgenden Protokolldateien:
deployment.log

telemetry_asup.log

Sie können den Namen dieser Protokolldateien ändern, indem Sie die Datei mithilfe der folgenden
Umgebungsvariablen bearbeiten .env:

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

38

Die folgenden Beispiele zeigen, wie Sie die Protokolldateinamen ändern:

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

Nachdem Sie fertig sind

Mit den folgenden Schritten können Sie die temporäre Umgebung entfernen und Elemente bereinigen, die
während des Bereitstellungsprozesses erstellt wurden.

Schritte

1. Wenn Sie FlexCache bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars Datei
fest. Dadurch werden FlexCache-Volumes bereinigt und die zuvor erstellte temporäre Umgebung wird
entfernt.

flexcache_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

2. Wenn Sie FlexClone bereitgestellt haben, legen Sie die folgende Option in der terraform.tfvars Datei
fest. Dadurch werden FlexClone-Volumes bereinigt und die zuvor erstellte temporäre Umgebung wird
entfernt.

flexclone_operation = "destroy"

Die möglichen Optionen sind deploy und destroy.

ONTAP

Tag 0/1

Überblick über die ONTAP-Tag-0/1-Lösung

Mit der ONTAP Day 0/1 Automatisierungslösung können Sie einen ONTAP Cluster
mithilfe von Ansible bereitstellen und konfigurieren. Die Lösung ist erhältlich bei "NetApp
Console Automatisierungszentrale"Die

Flexible Implementierungsoptionen für ONTAP

Je nach Ihren Anforderungen können Sie lokale Hardware verwenden oder ONTAP simulieren, um einen
ONTAP Cluster mithilfe von Ansible zu implementieren und zu konfigurieren.

On-Premises-Hardware

Sie können diese Lösung mit On-Premises-Hardware mit ONTAP wie einem FAS oder einem AFF System
implementieren. Sie müssen eine Linux VM verwenden, um den ONTAP-Cluster mit Ansible zu implementieren
und zu konfigurieren.

ONTAP simulieren

Um diese Lösung mit einem ONTAP-Simulator implementieren zu können, müssen Sie die aktuellste Version

39

https://console.netapp.com/automationHub
https://console.netapp.com/automationHub

von Simulate ONTAP von der NetApp Support-Website herunterladen. Simulieren ONTAP ist ein virtueller
Simulator für ONTAP Software. Simulieren Sie ONTAP in einem VMware Hypervisor auf einem Windows-,
Linux- oder Mac-System. Für Windows- und Linux-Hosts müssen Sie den VMware Workstation-Hypervisor
verwenden, um diese Lösung auszuführen. Wenn Sie über ein Mac-Betriebssystem verfügen, verwenden Sie
den VMware Fusion-Hypervisor.

Mehrlagiges Design

Das Ansible-Framework vereinfacht die Entwicklung und Wiederverwendung von Automatisierungsausführung
und logischen Aufgaben. Das Framework unterscheidet zwischen den Entscheidungsaufgaben (Logikschicht)
und den Ausführungsschritten (Ausführungsebene) in der Automatisierung. Wenn Sie verstehen, wie diese
Ebenen funktionieren, können Sie die Konfiguration anpassen.

In einem Ansible-„Playbook“ werden verschiedene Aufgaben vom Anfang bis zum Ende ausgeführt. Das
site.yml Playbook enthält das logic.yml Playbook und das execution.yml Playbook.

Wenn eine Anfrage ausgeführt wird, ruft das site.yml Playbook zuerst in das logic.yml Playbook auf und
ruft dann das Playbook zur Ausführung der Service-Anfrage auf execution.yml.

Sie müssen die logische Schicht des Frameworks nicht verwenden. Die Logikebene bietet Optionen zur
Erweiterung der Funktionalität des Frameworks über die hartcodierten Werte für die Ausführung hinaus. Auf
diese Weise können Sie die Framework-Funktionen bei Bedarf anpassen.

Logische Ebene

Die Logikschicht besteht aus folgenden Komponenten:

• Das Playbook logic.yml

• Logische Aufgabendateien im logic-tasks Verzeichnis

Die Logikebene bietet die Möglichkeit für komplexe Entscheidungen, ohne dass eine umfassende
benutzerdefinierte Integration erforderlich ist (z. B. eine Verbindung zu ServiceNow). Die Logikebene ist
konfigurierbar und liefert die Eingabe zu Microservices.

Die Möglichkeit, die Logikschicht zu umgehen, wird ebenfalls bereitgestellt. Wenn Sie die logische Ebene
umgehen möchten, definieren Sie die Variable nicht logic_operation. Der direkte Aufruf des logic.yml
Playbooks ermöglicht es, ein gewisses Maß an Debugging ohne Ausführung durchzuführen. Sie können eine
„Debug“-Anweisung verwenden, um zu überprüfen, ob der Wert des raw_service_request korrekt ist.

Wichtige Überlegungen:

• Das logic.yml Playbook sucht nach der logic_operation Variablen. Wenn die Variable in der
Anfrage definiert ist, wird eine Aufgabendatei aus dem Verzeichnis geladen logic-tasks. Die Task-Datei
muss eine .yml-Datei sein. Wenn keine passende Task-Datei vorhanden ist und die logic_operation
Variable definiert ist, schlägt die Logikebene fehl.

• Der Standardwert der logic_operation Variable ist no-op. Wenn die Variable nicht explizit definiert ist,
wird standardmäßig auf, gesetzt no-op, das keine Operationen ausführt.

• Wenn die raw_service_request Variable bereits definiert ist, wird die Ausführung zur
Ausführungsebene fortgesetzt. Wenn die Variable nicht definiert ist, schlägt die logische Ebene fehl.

Ausführungsebene

Die Ausführungsebene besteht aus folgenden Komponenten:

40

• Das Playbook execution.yml

Die Ausführungsebene führt die API-Aufrufe zum Konfigurieren eines ONTAP-Clusters durch. Das
execution.yml Playbook setzt voraus, dass die raw_service_request Variable bei der Ausführung
definiert ist.

Unterstützung für Anpassungen

Sie können diese Lösung auf verschiedene Weise an Ihre Anforderungen anpassen.

Die Anpassungsoptionen umfassen:

• Ändern von Ansible Playbooks

• Hinzufügen von Rollen

Ansible-Dateien anpassen

In der folgenden Tabelle werden die in dieser Lösung enthaltenen anpassbaren Ansible-Dateien beschrieben.

Standort Beschreibung

playbooks/inventory

/hosts

Enthält eine einzelne Datei mit einer Liste von Hosts und Gruppen.

playbooks/group_var

s/all/*

Ansible bietet eine praktische Möglichkeit, Variablen auf mehrere Hosts
gleichzeitig anzuwenden. Sie können alle oder alle Dateien in diesem Ordner
ändern, einschließlich cfg.yml, , , clusters.yml defaults.yml ,
services.yml standards.yml und vault.yml.

playbooks/logic-

tasks

Unterstützung von Entscheidungsaufgaben innerhalb von Ansible und
Beibehaltung der Trennung von Logik und Ausführung Sie können diesem Ordner
Dateien hinzufügen, die dem entsprechenden Dienst entsprechen.

playbooks/vars/* Dynamische Werte, die in Ansible Playbooks und Rollen verwendet werden, um
Anpassungen, Flexibilität und Wiederverwendbarkeit von Konfigurationen zu
ermöglichen. Bei Bedarf können Sie alle oder alle Dateien in diesem Ordner
ändern.

Anpassen von Rollen

Sie können die Lösung auch anpassen, indem Sie Ansible-Rollen, auch Microservices genannt, hinzufügen
oder ändern. Weitere Informationen finden Sie unter "Anpassen".

Bereiten Sie sich auf die Verwendung der Lösung für den ONTAP Tag 0/1 vor

Vor der Implementierung der Automatisierungslösung müssen Sie die ONTAP-Umgebung
vorbereiten und Ansible installieren und konfigurieren.

Erste Überlegungen zur Planung

Lesen Sie sich die folgenden Anforderungen und Überlegungen durch, bevor Sie diese Lösung zum
Bereitstellen eines ONTAP-Clusters verwenden.

Grundvoraussetzungen

Sie müssen die folgenden grundlegenden Anforderungen erfüllen, um diese Lösung verwenden zu können:

41

• Sie müssen auf die ONTAP-Software zugreifen können – entweder vor Ort oder über einen ONTAP-
Simulator.

• Sie müssen wissen, wie Sie die ONTAP Software nutzen.

• Sie müssen wissen, wie Sie die Automatisierungssoftware-Tools von Ansible verwenden können.

Überlegungen zur Planung

Vor der Implementierung dieser Automatisierungslösung müssen Sie folgende Entscheidungen treffen:

• Der Speicherort, an dem der Ansible-Steuerungsknoten ausgeführt werden soll.

• Dem ONTAP System, entweder vor Ort Hardware oder einem ONTAP Simulator.

• Ob Sie eine Anpassung benötigen.

Bereiten Sie das ONTAP-System vor

Unabhängig davon, ob Sie ein lokales ONTAP System nutzen oder ONTAP simulieren, müssen Sie die
Umgebung vorbereiten, bevor die Automatisierungslösung implementiert werden kann.

Optional können Sie Simulate ONTAP installieren und konfigurieren

Wenn Sie diese Lösung über einen ONTAP Simulator bereitstellen möchten, müssen Sie Simulate ONTAP
herunterladen und ausführen.

Bevor Sie beginnen

• Sie müssen den VMware Hypervisor herunterladen und installieren, den Sie verwenden werden, um
Simulate ONTAP auszuführen.

◦ Wenn Sie über ein Windows- oder Linux-Betriebssystem verfügen, verwenden Sie VMware
Workstation.

◦ Wenn Sie ein Mac-Betriebssystem verwenden, verwenden Sie VMware Fusion.

Wenn Sie ein Mac-Betriebssystem verwenden, benötigen Sie einen Intel-Prozessor.

Schritte

Gehen Sie wie folgt vor, um zwei ONTAP Simulatoren in Ihrer lokalen Umgebung zu installieren:

1. Laden Sie Simulate ONTAP aus dem "NetApp Support Website".

Obwohl Sie zwei ONTAP Simulatoren installieren, müssen Sie nur eine Kopie der Software
herunterladen.

2. Wenn die Anwendung noch nicht ausgeführt wird, starten Sie die VMware-Anwendung.

3. Suchen Sie die heruntergeladene Simulatordatei, und klicken Sie mit der rechten Maustaste, um sie mit
der VMware-Anwendung zu öffnen.

4. Legen Sie den Namen der ersten ONTAP-Instanz fest.

5. Warten Sie, bis der Simulator hochgefahren ist, und befolgen Sie die Anweisungen zum Erstellen eines
einzelnen Node-Clusters.

Wiederholen Sie die Schritte für die zweite ONTAP-Instanz.

42

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

6. Fügen Sie optional eine vollständige Datenträgerergänzung hinzu.

Führen Sie in jedem Cluster die folgenden Befehle aus:

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

Der Status des ONTAP Systems

Sie müssen den Anfangsstatus des ONTAP Systems überprüfen, unabhängig davon, ob es sich vor Ort
befindet oder über einen ONTAP Simulator ausgeführt wird.

Stellen Sie sicher, dass die folgenden ONTAP-Systemanforderungen erfüllt sind:

• ONTAP ist installiert und läuft ohne Cluster definiert.

• ONTAP wird gebootet und zeigt die IP-Adresse für den Zugriff auf das Cluster an.

• Das Netzwerk ist erreichbar.

• Sie haben Admin-Anmeldedaten.

• Das MOTD-Banner (Message of the Day) wird mit der Managementadresse angezeigt.

Installieren Sie die erforderliche Automatisierungssoftware

Dieser Abschnitt enthält Informationen über die Installation von Ansible und die Vorbereitung der
Automatisierungslösung für die Implementierung.

Installation Von Ansible

Ansible kann auf Linux oder Windows Systemen installiert werden.

Die standardmäßige Kommunikationsmethode, die Ansible für die Kommunikation mit einem ONTAP-Cluster
verwendet, ist SSH.

Informationen zur Installation von Ansible finden Sie unter"Erste Schritte mit NetApp und Ansible – Installation
von Ansible".

Ansible muss auf dem Steuerungsknoten des Systems installiert sein.

Laden Sie die Automatisierungslösung herunter und bereiten Sie sie vor

Sie können die Automatisierungslösung mit den folgenden Schritten herunterladen und für die
Implementierung vorbereiten.

1. Laden Sie die "ONTAP - Tag 0/1 Health Checks" Automatisierungslösung über die Web-
Benutzeroberfläche der Konsole. Die Lösung ist verpackt als `ONTAP_DAY0_DAY1.zip`Die

2. Extrahieren Sie den ZIP-Ordner und kopieren Sie die Dateien an den gewünschten Speicherort auf dem
Steuerknoten in Ihrer Ansible-Umgebung.

43

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://console.netapp.com/automationHub

Anfängliche Ansible-Framework-Konfiguration

Führen Sie die Erstkonfiguration des Ansible-Frameworks durch:

1. Navigieren Sie zu playbooks/inventory/group_vars/all.

2. Entschlüsseln der vault.yml Datei:

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

Wenn Sie zur Eingabe des Vault-Passworts aufgefordert werden, geben Sie das folgende temporäre
Passwort ein:

NetApp123!

„NetApp123!“ ist ein temporäres Kennwort zum Entschlüsseln der vault.yml Datei und
des entsprechenden Vault-Passworts. Nach der ersten Verwendung müssen Sie die Datei
mit Ihrem eigenen Passwort verschlüsseln.

3. Ändern Sie die folgenden Ansible-Dateien:

◦ clusters.yml - Ändern Sie die Werte in dieser Datei, um Ihre Umgebung anzupassen.

◦ vault.yml - Nach der Entschlüsselung der Datei, ändern Sie die ONTAP-Cluster, Benutzername und
Passwort-Werte, um Ihre Umgebung anzupassen.

◦ cfg.yml - Setzen Sie den Dateipfad für log2file und show_request unter cfg auf True, um die
anzuzeigen raw_service_request.

Die raw_service_request Variable wird in den Protokolldateien und während der Ausführung
angezeigt.

Jede aufgeführte Datei enthält Kommentare mit Anweisungen, wie sie entsprechend Ihren
Anforderungen geändert werden kann.

4. Verschlüsseln Sie die Datei erneut vault.yml:

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

Sie werden bei der Verschlüsselung aufgefordert, ein neues Passwort für den Tresor
auszuwählen.

5. Navigieren Sie zu playbooks/inventory/hosts einem gültigen Python Interpreter und legen Sie ihn
fest.

6. Bereitstellung des framework_test Service:

Mit dem folgenden Befehl wird das Modul mit dem gather_subset Wert cluster_identity_info
ausgeführt na_ontap_info. Dadurch wird überprüft, ob die Grundkonfiguration korrekt ist und ob Sie mit
dem Cluster kommunizieren können.

44

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

Führen Sie den Befehl für jedes Cluster aus.

Wenn der Erfolg erfolgreich ist, sollte die Ausgabe wie im folgenden Beispiel angezeigt werden:

PLAY RECAP

**

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

Implementieren Sie den ONTAP Cluster mit der Lösung

Nach Abschluss der Vorbereitung und Planung sind Sie bereit, mit der ONTAP Day 0/1
Lösung schnell einen ONTAP Cluster mithilfe von Ansible zu konfigurieren.

Sie können jederzeit während der Schritte in diesem Abschnitt auswählen, ob Sie eine Anforderung testen
möchten, anstatt sie tatsächlich auszuführen. Um eine Anforderung zu testen, ändern Sie das site.yml
Playbook in der Befehlszeile in logic.yml.

Der docs/tutorial-requests.txt Speicherort enthält die endgültige Version aller Service-
Requests, die während dieses Verfahrens verwendet werden. Wenn Sie Schwierigkeiten bei der
Ausführung einer Service-Anfrage haben, können Sie die entsprechende Anforderung aus der
Datei an den playbooks/inventory/group_vars/all/tutorial-requests.yml
Speicherort kopieren tutorial-requests.txt und die hartcodierten Werte nach Bedarf
ändern (IP-Adresse, Aggregatnamen usw.). Die Anforderung sollte dann erfolgreich ausgeführt
werden können.

Bevor Sie beginnen

• Ansible muss installiert sein.

• Sie müssen die ONTAP Day 0/1-Lösung heruntergeladen und den Ordner an den gewünschten
Speicherort auf dem Ansible-Steuerungsknoten extrahiert haben.

• Der ONTAP-Systemstatus muss die Anforderungen erfüllen und Sie müssen über die erforderlichen
Anmeldedaten verfügen.

• Sie müssen alle erforderlichen Aufgaben abgeschlossen haben, die im Abschnitt beschrieben
"Vorbereiten"sind.

Die Beispiele in dieser Lösung verwenden „Cluster_01“ und „Cluster_02“ als Namen für die
beiden Cluster. Sie müssen diese Werte durch die Namen der Cluster in Ihrer Umgebung
ersetzen.

45

Schritt: Erstkonfiguration des Clusters

In dieser Phase müssen Sie zunächst einige Schritte zur Cluster-Konfiguration durchführen.

Schritte

1. Navigieren Sie zum playbooks/inventory/group_vars/all/tutorial-requests.yml
Speicherort und prüfen Sie die cluster_initial Anforderung in der Datei. Nehmen Sie alle
erforderlichen Änderungen an Ihrer Umgebung vor.

2. Erstellen Sie eine Datei im logic-tasks Ordner für die Service-Anfrage. Erstellen Sie beispielsweise
eine Datei mit dem Namen cluster_initial.yml.

Kopieren Sie die folgenden Zeilen in die neue Datei:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

3. Definieren Sie die raw_service_request Variable.

Sie können eine der folgenden Optionen verwenden, um die Variable in der Datei zu
cluster_initial.yml definieren raw_service_request, die Sie im Ordner erstellt logic-tasks
haben:

◦ Option 1: Variable manuell definieren raw_service_request.

Öffnen Sie die tutorial-requests.yml Datei mit einem Editor und kopieren Sie den Inhalt von
Zeile 11 in Zeile 165. Fügen Sie den Inhalt unter der Variablen in der neuen cluster_initial.yml
Datei ein raw service request, wie in den folgenden Beispielen gezeigt:

46

47

Beispiel anzeigen

Beispieldatei cluster_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

 service: cluster_initial

 operation: create

 std_name: none

 req_details:

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

 ontap_license:

 - hostname: "{{ cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

48

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - hostname: "{{ peer_cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

49

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 ontap_motd:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 message: "New MOTD"

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 message: "New MOTD"

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

50

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ peer_cluster_name }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ peer_cluster_name }}"

◦ Option 2: Verwenden Sie eine Jinja-Vorlage, um die Anforderung zu definieren:

Sie können auch das folgende Jinja-Vorlagenformat verwenden, um den Wert zu erhalten
raw_service_request.

raw_service_request: "{{ cluster_initial }}"

4. Führen Sie die Erstkonfiguration des Clusters für das erste Cluster durch:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

51

Vergewissern Sie sich, dass keine Fehler vorliegen, bevor Sie fortfahren.

5. Wiederholen Sie den Befehl für das zweite Cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

Vergewissern Sie sich, dass beim zweiten Cluster keine Fehler auftreten.

Wenn Sie zu Beginn der Ansible-Ausgabe nach oben scrollen, sollten Sie die an das Framework
gesendete Anforderung sehen, wie im folgenden Beispiel gezeigt:

52

Beispiel anzeigen

TASK [Show the raw_service_request]

**

**

ok: [localhost] => {

 "raw_service_request": {

 "operation": "create",

 "req_details": {

 "ontap_aggr": [

 {

 "disk_count": 24,

 "hostname": "Cluster_01",

 "name": "n01_aggr1",

 "nodes": "Cluster_01-01",

 "raid_type": "raid4"

 }

],

 "ontap_license": [

 {

 "hostname": "Cluster_01",

 "license_codes": [

 "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

53

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

]

 }

],

 "ontap_motd": [

 {

 "hostname": "Cluster_01",

 "message": "New MOTD",

 "vserver": "Cluster_01"

 }

]

 },

 "service": "cluster_initial",

 "std_name": "none"

 }

}

6. Melden Sie sich bei jeder ONTAP-Instanz an und überprüfen Sie, ob die Anforderung erfolgreich war.

Schritt 2: Konfigurieren der Intercluster LIFs

Sie können jetzt die Intercluster LIFs konfigurieren, indem Sie der Anforderung die LIF-Definitionen hinzufügen
cluster_initial und den Microservice definieren ontap_interface.

Die Servicedefinition und die Anforderung arbeiten zusammen, um die Aktion zu bestimmen:

• Wenn Sie eine Service-Anfrage für einen Microservice bereitstellen, der nicht in den Servicedefinitionen
enthalten ist, wird die Anforderung nicht ausgeführt.

• Wenn Sie eine Service-Anfrage mit einer oder mehreren in den Servicedefinitionen definierten
Microservices bereitstellen, aber aus der Anfrage ausgelassen werden, wird die Anforderung nicht
ausgeführt.

Das execution.yml Playbook wertet die Dienstdefinition aus, indem die Liste der Microservices in der
aufgeführten Reihenfolge durchsucht wird:

• Wenn in der Anfrage ein Eintrag mit einem Wörterbuchschlüssel vorhanden ist, der dem Eintrag in den
Microservice-Definitionen entspricht args, wird die Anforderung ausgeführt.

• Wenn in der Service-Anfrage kein übereinstimmender Eintrag vorhanden ist, wird die Anforderung

54

fehlerfrei übersprungen.

Schritte

1. Navigieren Sie zu der cluster_initial.yml zuvor erstellten Datei, und ändern Sie die Anforderung,
indem Sie den Anforderungsdefinitionen die folgenden Zeilen hinzufügen:

55

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

56

2. Führen Sie den Befehl aus:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. Melden Sie sich bei jeder Instanz an, um zu überprüfen, ob die LIFs dem Cluster hinzugefügt wurden:

Beispiel anzeigen

Cluster_01::> net int show

 (network interface show)

 Logical Status Network Current

Current Is

Vserver Interface Admin/Oper Address/Mask Node

Port Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

 Cluster_01-01_mgmt up/up 10.0.0.101/24 Cluster_01-01

e0c true

 Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

 cluster_mgmt up/up 10.0.0.110/24 Cluster_01-01

e0c true

5 entries were displayed.

Die Ausgabe zeigt an, dass die LIFs nicht hinzugefügt wurden. Der Grund dafür ist, dass der
ontap_interface Microservice noch in der Datei definiert werden services.yml muss.

4. Vergewissern Sie sich, dass die LIFs der Variable hinzugefügt wurden raw_service_request.

57

Beispiel anzeigen

Im folgenden Beispiel werden die LIFs zur Anforderung hinzugefügt:

 "ontap_interface": [

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 },

 {

 "address": "10.0.0.126",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

58

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 }

],

5. Definieren Sie den ontap_interface Microservice unter cluster_initial in der services.yml
Datei.

Kopieren Sie die folgenden Zeilen in die Datei, um den Microservice zu definieren:

 - name: ontap_interface

 args: ontap_interface

 role: na/ontap_interface

6. Nachdem nun der ontap_interface Microservice in der Anfrage und der Datei definiert wurde
services.yml, führen Sie die Anforderung erneut aus:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. Loggen Sie sich bei jeder ONTAP Instanz ein und überprüfen Sie, ob die LIFs hinzugefügt wurden.

Schritt 3: Optional mehrere Cluster konfigurieren

Bei Bedarf können Sie mehrere Cluster in derselben Anforderung konfigurieren. Sie müssen beim Definieren
der Anforderung für jedes Cluster Variablennamen angeben.

Schritte

1. Fügen Sie einen Eintrag für das zweite Cluster in der Datei hinzu cluster_initial.yml, um beide
Cluster in derselben Anforderung zu konfigurieren.

Im folgenden Beispiel wird das Feld angezeigt ontap_aggr, nachdem der zweite Eintrag hinzugefügt
wurde.

59

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

2. Übernehmen Sie die Änderungen für alle anderen Elemente unter cluster_initial.

3. Fügen Sie Cluster-Peering zur Anforderung hinzu, indem Sie die folgenden Zeilen in die Datei kopieren:

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ cluster_peer }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ cluster_peer }}"

4. Ansible-Anforderung ausführen:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

Schritt 4: Anfängliche SVM-Konfiguration

An dieser Stelle des Verfahrens konfigurieren Sie die SVMs im Cluster.

Schritte

1. Anforderung tutorial-requests.yml zur Konfiguration einer SVM- und SVM-Peer-Beziehung
aktualisieren svm_initial

Sie müssen Folgendes konfigurieren:

◦ Das SVM

60

◦ Die SVM-Peer-Beziehung

◦ Die SVM-Schnittstelle für jede SVM

2. Aktualisieren Sie die Variablendefinitionen in den svm_initial Anforderungsdefinitionen. Sie müssen die
folgenden Variablendefinitionen ändern:

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

Um die Definitionen zu aktualisieren, entfernen Sie das ‘{}’ nach req_details für die svm_initial
Definition und fügen Sie die korrekte Definition hinzu.

3. Erstellen Sie eine Datei im logic-tasks Ordner für die Service-Anfrage. Erstellen Sie beispielsweise
eine Datei mit dem Namen svm_initial.yml.

Kopieren Sie die folgenden Zeilen in die Datei:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

4. Definieren Sie die raw_service_request Variable.

Sie können eine der folgenden Optionen verwenden, um die Variable für svm_initial im Ordner zu
logic-tasks definieren raw_service_request:

◦ Option 1: Variable manuell definieren raw_service_request.

Öffnen Sie die tutorial-requests.yml Datei mit einem Editor und kopieren Sie den Inhalt von

61

Zeile 179 in Zeile 222. Fügen Sie den Inhalt unter der Variablen in der neuen svm_initial.yml
Datei ein raw service request, wie in den folgenden Beispielen gezeigt:

62

Beispiel anzeigen

Beispieldatei svm_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

 service: svm_initial

 operation: create

 std_name: none

 req_details:

 ontap_vserver:

 - hostname: "{{ cluster_name }}"

 name: "{{ vserver_name }}"

 root_volume_aggregate: n01_aggr1

 - hostname: "{{ peer_cluster_name }}"

 name: "{{ peer_vserver }}"

 root_volume_aggregate: n01_aggr1

 ontap_vserver_peer:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 peer_vserver: "{{ peer_vserver }}"

 applications: snapmirror

 peer_options:

 hostname: "{{ peer_cluster_name }}"

 ontap_interface:

63

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 interface_name: data01

 role: data

 address: 10.0.0.200

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_vserver }}"

 interface_name: data01

 role: data

 address: 10.0.0.201

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

◦ Option 2: Verwenden Sie eine Jinja-Vorlage, um die Anforderung zu definieren:

Sie können auch das folgende Jinja-Vorlagenformat verwenden, um den Wert zu erhalten
raw_service_request.

raw_service_request: "{{ svm_initial }}"

5. Anforderung ausführen:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

6. Melden Sie sich bei jeder ONTAP Instanz an und validieren Sie die Konfiguration.

7. Fügen Sie die SVM-Schnittstellen hinzu.

Definieren Sie den ontap_interface Dienst unter svm_initial in der services.yml Datei und
führen Sie die Anforderung erneut aus:

64

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

8. Loggen Sie sich bei jeder ONTAP Instanz ein und überprüfen Sie, ob die SVM-Schnittstellen konfiguriert
sind.

Schritt 5: Optional können Sie eine Service-Anfrage dynamisch definieren

In den vorherigen Schritten ist die raw_service_request Variable hartcodiert. Dies ist nützlich für Lernen,
Entwicklung und Tests. Sie können auch eine Serviceanfrage dynamisch generieren.

Der folgende Abschnitt bietet eine Option zum dynamischen Erstellen des erforderlichen
raw_service_request, wenn Sie es nicht in höhere Systeme integrieren möchten.

• Wenn die logic_operation Variable im Befehl nicht definiert ist, importiert die
logic.yml Datei keine Datei aus dem logic-tasks Ordner. Das bedeutet, dass die
raw_service_request außerhalb von Ansible definiert und bei der Ausführung dem
Framework zur Verfügung gestellt werden muss.

• Ein Aufgabendateiname im logic-tasks Ordner muss mit dem Wert der Variablen ohne
die Erweiterung .yml übereinstimmen logic_operation.

• Die Aufgabendateien im logic-tasks Ordner definieren dynamisch ein
raw_service_request. die einzige Voraussetzung ist, dass ein gültiges
raw_service_request als letzte Aufgabe in der entsprechenden Datei definiert wird.

Dynamische Definition von Service-Anfragen

Es gibt mehrere Möglichkeiten, eine logische Aufgabe anzuwenden, um eine Service-Anfrage dynamisch zu
definieren. Einige dieser Optionen sind unten aufgeführt:

• Verwenden einer Ansible-Aufgabendatei aus dem logic-tasks Ordner

• Aufrufen einer benutzerdefinierten Rolle, die Daten zurückgibt, die für die Konvertierung in eine Variable
geeignet raw_service_request sind.

• Aufruf eines weiteren Tools außerhalb der Ansible-Umgebung, um die erforderlichen Daten bereitzustellen
Beispielsweise ein REST-API-Aufruf an Active IQ Unified Manager.

Mit den folgenden Beispielbefehlen können Sie mithilfe der Datei für jedes Cluster eine Service-Anfrage
dynamisch definieren tutorial-requests.yml:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

65

Schritt 6: Implementierung der ONTAP-Lösung Tag 0/1

In dieser Phase sollten Sie bereits Folgendes abgeschlossen haben:

• Alle Dateien in wurden entsprechend Ihren Anforderungen überprüft und geändert
playbooks/inventory/group_vars/all. Jede Datei enthält detaillierte Kommentare, mit denen Sie
die Änderungen vornehmen können.

• Erforderliche Aufgabendateien wurden dem Verzeichnis hinzugefügt logic-tasks.

• Alle erforderlichen Datendateien wurden dem Verzeichnis hinzugefügt playbook/vars.

Verwenden Sie die folgenden Befehle, um die ONTAP Day 0/1-Lösung bereitzustellen und den Zustand Ihrer
Bereitstellung zu überprüfen:

Zu diesem Zeitpunkt sollten Sie die Datei bereits entschlüsselt und geändert haben vault.yml
und sie muss mit Ihrem neuen Passwort verschlüsselt werden.

• Führen Sie den ONTAP-Tag-0-Service aus:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Führen Sie den ONTAP Day 1-Service aus:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Clusterweite Einstellungen anwenden:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• Führen Sie Zustandsprüfungen durch:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

Passen Sie die ONTAP Day 0/1-Lösung an

Zur Anpassung der ONTAP-Day-0/1-Lösung an Ihre Anforderungen können Sie Ansible-
Rollen hinzufügen oder ändern.

66

Rollen stellen die Microservices im Ansible-Framework dar. Jeder Microservice führt einen Vorgang durch.
Beispielsweise ist ONTAP Tag 0 ein Service, der mehrere Microservices umfasst.

Ansible-Rollen hinzufügen

Sie können Ansible-Rollen hinzufügen, um die Lösung an Ihre Umgebung anzupassen. Erforderliche Rollen
werden durch Servicedefinitionen im Ansible Framework definiert.

Eine Rolle muss die folgenden Anforderungen erfüllen, um als Microservice verwendet werden zu können:

• Akzeptieren Sie eine Liste der Argumente in der args Variablen.

• Nutzen Sie die Ansible-Struktur „Block, Rescue, Always“ mit bestimmten Anforderungen für jeden Block.

• Verwenden Sie ein einzelnes Ansible-Modul und definieren Sie eine einzelne Aufgabe innerhalb des
Blocks.

• Implementieren Sie alle verfügbaren Modulparameter gemäß den in diesem Abschnitt beschriebenen
Anforderungen.

Erforderliche Microservice-Struktur

Jede Rolle muss die folgenden Variablen unterstützen:

• mode: Wenn der Modus auf die Rolle eingestellt ist test, versucht der zu importieren, der test.yml
zeigt, was die Rolle tut, ohne sie tatsächlich auszuführen.

Dies ist aufgrund bestimmter Abhängigkeiten nicht immer möglich.

• status: Der Gesamtstatus der Ausführung des Playbooks. Wenn der Wert nicht auf die Rolle gesetzt
success ist, wird nicht ausgeführt.

• args : Eine Liste rollenspezifischer Wörterbücher mit Schlüsseln, die den Rollenparameternamen
entsprechen.

• global_log_messages: Sammelt Protokollmeldungen während der Ausführung des Playbooks. Bei
jeder Ausführung der Rolle wird ein Eintrag generiert.

• log_name: Der Name, der auf die Rolle innerhalb der Einträge verweist global_log_messages.

• task_descr: Eine kurze Beschreibung dessen, was die Rolle tut.

• service_start_time: Der Zeitstempel, der verwendet wird, um die Zeit zu verfolgen, zu der jede Rolle
ausgeführt wird.

• playbook_status: Der Status des Ansible-Playbooks.

• role_result: Die Variable, die die Rollenausgabe enthält und in jeder Nachricht innerhalb der Einträge
enthalten global_log_messages ist.

Beispiel für eine Rollenstruktur

Das folgende Beispiel zeigt die grundlegende Struktur einer Rolle, die einen Microservice implementiert. Sie
müssen die Variablen in diesem Beispiel für Ihre Konfiguration ändern.

67

Beispiel anzeigen

Grundlegende Rollenstruktur:

- name: Set some role attributes

 set_fact:

 log_name: "<LOG_NAME>"

 task_descr: "<TASK_DESCRIPTION>"

- name: "{{ log_name }}"

 block:

 - set_fact:

 service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

 - name: "Provision the new user"

 <MODULE_NAME>:

#---

 # COMMON ATTRIBUTES

#---

 hostname: "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

 username: "{{

clusters[loop_arg['hostname']]['username'] }}"

 password: "{{

clusters[loop_arg['hostname']]['password'] }}"

 cert_filepath: "{{ loop_arg['cert_filepath']

| default(omit) }}"

 feature_flags: "{{ loop_arg['feature_flags']

| default(omit) }}"

 http_port: "{{ loop_arg['http_port']

| default(omit) }}"

 https: "{{ loop_arg['https']

| default('true') }}"

 ontapi: "{{ loop_arg['ontapi']

| default(omit) }}"

 key_filepath: "{{ loop_arg['key_filepath']

| default(omit) }}"

 use_rest: "{{ loop_arg['use_rest']

| default(omit) }}"

 validate_certs: "{{ loop_arg['validate_certs']

| default('false') }}"

68

 <MODULE_SPECIFIC_PARAMETERS>

#---

 # REQUIRED ATTRIBUTES

#---

 required_parameter: "{{ loop_arg['required_parameter']

}}"

#---

 # ATTRIBUTES w/ DEFAULTS

#---

 defaulted_parameter: "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

#---

 # OPTIONAL ATTRIBUTES

#---

 optional_parameter: "{{ loop_arg['optional_parameter']

| default(omit) }}"

 loop: "{{ args }}"

 loop_control:

 loop_var: loop_arg

 register: role_result

 rescue:

 - name: Set role status to FAIL

 set_fact:

 playbook_status: "failed"

 always:

 - name: add log msg

 vars:

 role_log:

 role: "{{ log_name }}"

 timestamp:

 start_time: "{{service_start_time}}"

 end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

 service_status: "{{ playbook_status }}"

 result: "{{role_result}}"

 set_fact:

 global_log_msgs: "{{ global_log_msgs + [role_log] }}"

69

Variablen, die in der Beispielrolle verwendet werden:

• <NAME>: Ein austauschbarer Wert, der für jeden Microservice bereitgestellt werden muss.

• <LOG_NAME>: Der Kurzname der Rolle, die für Protokollierungszwecke verwendet wird.
`ONTAP_VOLUME`Beispiel: .

• <TASK_DESCRIPTION>: Eine kurze Beschreibung dessen, was der Microservice tut.

• <MODULE_NAME>: Der Ansible-Modulname für die Aufgabe.

Im Playbook der obersten Ebene execute.yml wird die Sammlung angegeben
netapp.ontap. Wenn das Modul Teil der Sammlung ist netapp.ontap, muss der
Modulname nicht vollständig angegeben werden.

• <MODULE_SPECIFIC_PARAMETERS>: Ansible-Modulparameter, die spezifisch für das Modul sind, das zur
Implementierung des Microservices verwendet wird. In der folgenden Liste werden die Parametertypen
und deren Gruppierung beschrieben.

◦ Erforderliche Parameter: Alle erforderlichen Parameter werden ohne Standardwert angegeben.

◦ Parameter, die einen für den Microservice spezifischen Standardwert haben (nicht der gleiche Wert wie
ein in der Moduldokumentation spezifizierter Standardwert).

◦ Alle verbleibenden Parameter werden als Standardwert verwendet default(omit).

Verwendung von mehrstufigen Wörterbüchern als Modulparameter

Einige von NetApp bereitgestellte Ansible-Module verwenden mehrstufige Wörterbücher für Modulparameter
(z. B. feste und adaptive QoS-Richtliniengruppen).

Allein zu verwenden default(omit) funktioniert nicht, wenn diese Wörterbücher verwendet werden,
besonders wenn es mehrere gibt und sie sich gegenseitig ausschließen.

Wenn Sie Multi-Level-Wörterbücher als Modulparameter verwenden müssen, sollten Sie die Funktionalität in
mehrere Microservices (Rollen) aufteilen, so dass jeder garantiert mindestens einen Second-Level-
Wörterbuchwert für das jeweilige Wörterbuch liefern kann.

Die folgenden Beispiele zeigen feste und anpassungsfähige QoS-Richtliniengruppen, die sich auf zwei
Microservices verteilen.

Der erste Microservice enthält feste QoS-Richtliniengruppenwerte:

70

fixed_qos_options:

 capacity_shared: "{{

loop_arg['fixed_qos_options']['capacity_shared'] | default(omit)

}}"

 max_throughput_iops: "{{

loop_arg['fixed_qos_options']['max_throughput_iops'] | default(omit)

}}"

 min_throughput_iops: "{{

loop_arg['fixed_qos_options']['min_throughput_iops'] | default(omit)

}}"

 max_throughput_mbps: "{{

loop_arg['fixed_qos_options']['max_throughput_mbps'] | default(omit)

}}"

 min_throughput_mbps: "{{

loop_arg['fixed_qos_options']['min_throughput_mbps'] | default(omit)

}}"

Der zweite Microservice enthält die Werte der adaptiven QoS-Richtliniengruppe:

adaptive_qos_options:

 absolute_min_iops: "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

 expected_iops: "{{

loop_arg['adaptive_qos_options']['expected_iops'] | default(omit) }}"

 peak_iops: "{{

loop_arg['adaptive_qos_options']['peak_iops'] | default(omit) }}"

71

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

72

http://www.netapp.com/TM\

	NetApp Console Automatisierungszentrale : NetApp Automation
	Inhalt
	NetApp Console Automatisierungszentrale
	Überblick über den NetApp Console Automatisierungshub
	Amazon FSx for NetApp ONTAP -Verwaltung
	Amazon FSx for NetApp ONTAP Management – ​​Burst to Cloud
	Amazon FSx for NetApp ONTAP Management – ​​Notfallwiederherstellung

	Azure NetApp Dateien
	Installieren Sie Oracle mit Azure NetApp Files

	Cloud Volumes ONTAP für AWS
	Cloud Volumes ONTAP für AWS – Burst in die Cloud

	Cloud Volumes ONTAP für Azure
	Cloud Volumes ONTAP für Azure – Burst in die Cloud

	Cloud Volumes ONTAP für Google Cloud
	Cloud Volumes ONTAP für Google Cloud – Burst in die Cloud

	ONTAP
	Tag 0/1

