
ONTAP

NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/de-de/netapp-automation/solutions/ontap-day01-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

Inhalt
ONTAP . 1

Tag 0/1 . 1

Überblick über die ONTAP-Tag-0/1-Lösung. 1

Bereiten Sie sich auf die Verwendung der Lösung für den ONTAP Tag 0/1 vor . 3

Implementieren Sie den ONTAP Cluster mit der Lösung. 6

Passen Sie die ONTAP Day 0/1-Lösung an. 27

ONTAP

Tag 0/1

Überblick über die ONTAP-Tag-0/1-Lösung

Mit der ONTAP Day 0/1 Automatisierungslösung können Sie einen ONTAP Cluster
mithilfe von Ansible bereitstellen und konfigurieren. Die Lösung ist erhältlich bei "NetApp
Console Automatisierungszentrale"Die

Flexible Implementierungsoptionen für ONTAP

Je nach Ihren Anforderungen können Sie lokale Hardware verwenden oder ONTAP simulieren, um einen
ONTAP Cluster mithilfe von Ansible zu implementieren und zu konfigurieren.

On-Premises-Hardware

Sie können diese Lösung mit On-Premises-Hardware mit ONTAP wie einem FAS oder einem AFF System
implementieren. Sie müssen eine Linux VM verwenden, um den ONTAP-Cluster mit Ansible zu implementieren
und zu konfigurieren.

ONTAP simulieren

Um diese Lösung mit einem ONTAP-Simulator implementieren zu können, müssen Sie die aktuellste Version
von Simulate ONTAP von der NetApp Support-Website herunterladen. Simulieren ONTAP ist ein virtueller
Simulator für ONTAP Software. Simulieren Sie ONTAP in einem VMware Hypervisor auf einem Windows-,
Linux- oder Mac-System. Für Windows- und Linux-Hosts müssen Sie den VMware Workstation-Hypervisor
verwenden, um diese Lösung auszuführen. Wenn Sie über ein Mac-Betriebssystem verfügen, verwenden Sie
den VMware Fusion-Hypervisor.

Mehrlagiges Design

Das Ansible-Framework vereinfacht die Entwicklung und Wiederverwendung von Automatisierungsausführung
und logischen Aufgaben. Das Framework unterscheidet zwischen den Entscheidungsaufgaben (Logikschicht)
und den Ausführungsschritten (Ausführungsebene) in der Automatisierung. Wenn Sie verstehen, wie diese
Ebenen funktionieren, können Sie die Konfiguration anpassen.

In einem Ansible-„Playbook“ werden verschiedene Aufgaben vom Anfang bis zum Ende ausgeführt. Das
site.yml Playbook enthält das logic.yml Playbook und das execution.yml Playbook.

Wenn eine Anfrage ausgeführt wird, ruft das site.yml Playbook zuerst in das logic.yml Playbook auf und
ruft dann das Playbook zur Ausführung der Service-Anfrage auf execution.yml.

Sie müssen die logische Schicht des Frameworks nicht verwenden. Die Logikebene bietet Optionen zur
Erweiterung der Funktionalität des Frameworks über die hartcodierten Werte für die Ausführung hinaus. Auf
diese Weise können Sie die Framework-Funktionen bei Bedarf anpassen.

Logische Ebene

Die Logikschicht besteht aus folgenden Komponenten:

• Das Playbook logic.yml

• Logische Aufgabendateien im logic-tasks Verzeichnis

1

https://console.netapp.com/automationHub
https://console.netapp.com/automationHub

Die Logikebene bietet die Möglichkeit für komplexe Entscheidungen, ohne dass eine umfassende
benutzerdefinierte Integration erforderlich ist (z. B. eine Verbindung zu ServiceNow). Die Logikebene ist
konfigurierbar und liefert die Eingabe zu Microservices.

Die Möglichkeit, die Logikschicht zu umgehen, wird ebenfalls bereitgestellt. Wenn Sie die logische Ebene
umgehen möchten, definieren Sie die Variable nicht logic_operation. Der direkte Aufruf des logic.yml
Playbooks ermöglicht es, ein gewisses Maß an Debugging ohne Ausführung durchzuführen. Sie können eine
„Debug“-Anweisung verwenden, um zu überprüfen, ob der Wert des raw_service_request korrekt ist.

Wichtige Überlegungen:

• Das logic.yml Playbook sucht nach der logic_operation Variablen. Wenn die Variable in der
Anfrage definiert ist, wird eine Aufgabendatei aus dem Verzeichnis geladen logic-tasks. Die Task-Datei
muss eine .yml-Datei sein. Wenn keine passende Task-Datei vorhanden ist und die logic_operation
Variable definiert ist, schlägt die Logikebene fehl.

• Der Standardwert der logic_operation Variable ist no-op. Wenn die Variable nicht explizit definiert ist,
wird standardmäßig auf, gesetzt no-op, das keine Operationen ausführt.

• Wenn die raw_service_request Variable bereits definiert ist, wird die Ausführung zur
Ausführungsebene fortgesetzt. Wenn die Variable nicht definiert ist, schlägt die logische Ebene fehl.

Ausführungsebene

Die Ausführungsebene besteht aus folgenden Komponenten:

• Das Playbook execution.yml

Die Ausführungsebene führt die API-Aufrufe zum Konfigurieren eines ONTAP-Clusters durch. Das
execution.yml Playbook setzt voraus, dass die raw_service_request Variable bei der Ausführung
definiert ist.

Unterstützung für Anpassungen

Sie können diese Lösung auf verschiedene Weise an Ihre Anforderungen anpassen.

Die Anpassungsoptionen umfassen:

• Ändern von Ansible Playbooks

• Hinzufügen von Rollen

Ansible-Dateien anpassen

In der folgenden Tabelle werden die in dieser Lösung enthaltenen anpassbaren Ansible-Dateien beschrieben.

Standort Beschreibung

playbooks/inventory

/hosts

Enthält eine einzelne Datei mit einer Liste von Hosts und Gruppen.

playbooks/group_var

s/all/*

Ansible bietet eine praktische Möglichkeit, Variablen auf mehrere Hosts
gleichzeitig anzuwenden. Sie können alle oder alle Dateien in diesem Ordner
ändern, einschließlich cfg.yml, , , clusters.yml defaults.yml ,
services.yml standards.yml und vault.yml.

2

Standort Beschreibung

playbooks/logic-

tasks

Unterstützung von Entscheidungsaufgaben innerhalb von Ansible und
Beibehaltung der Trennung von Logik und Ausführung Sie können diesem Ordner
Dateien hinzufügen, die dem entsprechenden Dienst entsprechen.

playbooks/vars/* Dynamische Werte, die in Ansible Playbooks und Rollen verwendet werden, um
Anpassungen, Flexibilität und Wiederverwendbarkeit von Konfigurationen zu
ermöglichen. Bei Bedarf können Sie alle oder alle Dateien in diesem Ordner
ändern.

Anpassen von Rollen

Sie können die Lösung auch anpassen, indem Sie Ansible-Rollen, auch Microservices genannt, hinzufügen
oder ändern. Weitere Informationen finden Sie unter "Anpassen".

Bereiten Sie sich auf die Verwendung der Lösung für den ONTAP Tag 0/1 vor

Vor der Implementierung der Automatisierungslösung müssen Sie die ONTAP-Umgebung
vorbereiten und Ansible installieren und konfigurieren.

Erste Überlegungen zur Planung

Lesen Sie sich die folgenden Anforderungen und Überlegungen durch, bevor Sie diese Lösung zum
Bereitstellen eines ONTAP-Clusters verwenden.

Grundvoraussetzungen

Sie müssen die folgenden grundlegenden Anforderungen erfüllen, um diese Lösung verwenden zu können:

• Sie müssen auf die ONTAP-Software zugreifen können – entweder vor Ort oder über einen ONTAP-
Simulator.

• Sie müssen wissen, wie Sie die ONTAP Software nutzen.

• Sie müssen wissen, wie Sie die Automatisierungssoftware-Tools von Ansible verwenden können.

Überlegungen zur Planung

Vor der Implementierung dieser Automatisierungslösung müssen Sie folgende Entscheidungen treffen:

• Der Speicherort, an dem der Ansible-Steuerungsknoten ausgeführt werden soll.

• Dem ONTAP System, entweder vor Ort Hardware oder einem ONTAP Simulator.

• Ob Sie eine Anpassung benötigen.

Bereiten Sie das ONTAP-System vor

Unabhängig davon, ob Sie ein lokales ONTAP System nutzen oder ONTAP simulieren, müssen Sie die
Umgebung vorbereiten, bevor die Automatisierungslösung implementiert werden kann.

Optional können Sie Simulate ONTAP installieren und konfigurieren

Wenn Sie diese Lösung über einen ONTAP Simulator bereitstellen möchten, müssen Sie Simulate ONTAP
herunterladen und ausführen.

Bevor Sie beginnen

3

• Sie müssen den VMware Hypervisor herunterladen und installieren, den Sie verwenden werden, um
Simulate ONTAP auszuführen.

◦ Wenn Sie über ein Windows- oder Linux-Betriebssystem verfügen, verwenden Sie VMware
Workstation.

◦ Wenn Sie ein Mac-Betriebssystem verwenden, verwenden Sie VMware Fusion.

Wenn Sie ein Mac-Betriebssystem verwenden, benötigen Sie einen Intel-Prozessor.

Schritte

Gehen Sie wie folgt vor, um zwei ONTAP Simulatoren in Ihrer lokalen Umgebung zu installieren:

1. Laden Sie Simulate ONTAP aus dem "NetApp Support Website".

Obwohl Sie zwei ONTAP Simulatoren installieren, müssen Sie nur eine Kopie der Software
herunterladen.

2. Wenn die Anwendung noch nicht ausgeführt wird, starten Sie die VMware-Anwendung.

3. Suchen Sie die heruntergeladene Simulatordatei, und klicken Sie mit der rechten Maustaste, um sie mit
der VMware-Anwendung zu öffnen.

4. Legen Sie den Namen der ersten ONTAP-Instanz fest.

5. Warten Sie, bis der Simulator hochgefahren ist, und befolgen Sie die Anweisungen zum Erstellen eines
einzelnen Node-Clusters.

Wiederholen Sie die Schritte für die zweite ONTAP-Instanz.

6. Fügen Sie optional eine vollständige Datenträgerergänzung hinzu.

Führen Sie in jedem Cluster die folgenden Befehle aus:

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

Der Status des ONTAP Systems

Sie müssen den Anfangsstatus des ONTAP Systems überprüfen, unabhängig davon, ob es sich vor Ort
befindet oder über einen ONTAP Simulator ausgeführt wird.

Stellen Sie sicher, dass die folgenden ONTAP-Systemanforderungen erfüllt sind:

• ONTAP ist installiert und läuft ohne Cluster definiert.

• ONTAP wird gebootet und zeigt die IP-Adresse für den Zugriff auf das Cluster an.

• Das Netzwerk ist erreichbar.

• Sie haben Admin-Anmeldedaten.

4

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

• Das MOTD-Banner (Message of the Day) wird mit der Managementadresse angezeigt.

Installieren Sie die erforderliche Automatisierungssoftware

Dieser Abschnitt enthält Informationen über die Installation von Ansible und die Vorbereitung der
Automatisierungslösung für die Implementierung.

Installation Von Ansible

Ansible kann auf Linux oder Windows Systemen installiert werden.

Die standardmäßige Kommunikationsmethode, die Ansible für die Kommunikation mit einem ONTAP-Cluster
verwendet, ist SSH.

Informationen zur Installation von Ansible finden Sie unter"Erste Schritte mit NetApp und Ansible – Installation
von Ansible".

Ansible muss auf dem Steuerungsknoten des Systems installiert sein.

Laden Sie die Automatisierungslösung herunter und bereiten Sie sie vor

Sie können die Automatisierungslösung mit den folgenden Schritten herunterladen und für die
Implementierung vorbereiten.

1. Laden Sie die "ONTAP - Tag 0/1 Health Checks" Automatisierungslösung über die Web-
Benutzeroberfläche der Konsole. Die Lösung ist verpackt als `ONTAP_DAY0_DAY1.zip`Die

2. Extrahieren Sie den ZIP-Ordner und kopieren Sie die Dateien an den gewünschten Speicherort auf dem
Steuerknoten in Ihrer Ansible-Umgebung.

Anfängliche Ansible-Framework-Konfiguration

Führen Sie die Erstkonfiguration des Ansible-Frameworks durch:

1. Navigieren Sie zu playbooks/inventory/group_vars/all.

2. Entschlüsseln der vault.yml Datei:

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

Wenn Sie zur Eingabe des Vault-Passworts aufgefordert werden, geben Sie das folgende temporäre
Passwort ein:

NetApp123!

„NetApp123!“ ist ein temporäres Kennwort zum Entschlüsseln der vault.yml Datei und
des entsprechenden Vault-Passworts. Nach der ersten Verwendung müssen Sie die Datei
mit Ihrem eigenen Passwort verschlüsseln.

3. Ändern Sie die folgenden Ansible-Dateien:

◦ clusters.yml - Ändern Sie die Werte in dieser Datei, um Ihre Umgebung anzupassen.

◦ vault.yml - Nach der Entschlüsselung der Datei, ändern Sie die ONTAP-Cluster, Benutzername und
Passwort-Werte, um Ihre Umgebung anzupassen.

5

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://console.netapp.com/automationHub

◦ cfg.yml - Setzen Sie den Dateipfad für log2file und show_request unter cfg auf True, um die
anzuzeigen raw_service_request.

Die raw_service_request Variable wird in den Protokolldateien und während der Ausführung
angezeigt.

Jede aufgeführte Datei enthält Kommentare mit Anweisungen, wie sie entsprechend Ihren
Anforderungen geändert werden kann.

4. Verschlüsseln Sie die Datei erneut vault.yml:

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

Sie werden bei der Verschlüsselung aufgefordert, ein neues Passwort für den Tresor
auszuwählen.

5. Navigieren Sie zu playbooks/inventory/hosts einem gültigen Python Interpreter und legen Sie ihn
fest.

6. Bereitstellung des framework_test Service:

Mit dem folgenden Befehl wird das Modul mit dem gather_subset Wert cluster_identity_info
ausgeführt na_ontap_info. Dadurch wird überprüft, ob die Grundkonfiguration korrekt ist und ob Sie mit
dem Cluster kommunizieren können.

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

Führen Sie den Befehl für jedes Cluster aus.

Wenn der Erfolg erfolgreich ist, sollte die Ausgabe wie im folgenden Beispiel angezeigt werden:

PLAY RECAP

**

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

Implementieren Sie den ONTAP Cluster mit der Lösung

Nach Abschluss der Vorbereitung und Planung sind Sie bereit, mit der ONTAP Day 0/1
Lösung schnell einen ONTAP Cluster mithilfe von Ansible zu konfigurieren.

Sie können jederzeit während der Schritte in diesem Abschnitt auswählen, ob Sie eine Anforderung testen
möchten, anstatt sie tatsächlich auszuführen. Um eine Anforderung zu testen, ändern Sie das site.yml
Playbook in der Befehlszeile in logic.yml.

6

Der docs/tutorial-requests.txt Speicherort enthält die endgültige Version aller Service-
Requests, die während dieses Verfahrens verwendet werden. Wenn Sie Schwierigkeiten bei der
Ausführung einer Service-Anfrage haben, können Sie die entsprechende Anforderung aus der
Datei an den playbooks/inventory/group_vars/all/tutorial-requests.yml
Speicherort kopieren tutorial-requests.txt und die hartcodierten Werte nach Bedarf
ändern (IP-Adresse, Aggregatnamen usw.). Die Anforderung sollte dann erfolgreich ausgeführt
werden können.

Bevor Sie beginnen

• Ansible muss installiert sein.

• Sie müssen die ONTAP Day 0/1-Lösung heruntergeladen und den Ordner an den gewünschten
Speicherort auf dem Ansible-Steuerungsknoten extrahiert haben.

• Der ONTAP-Systemstatus muss die Anforderungen erfüllen und Sie müssen über die erforderlichen
Anmeldedaten verfügen.

• Sie müssen alle erforderlichen Aufgaben abgeschlossen haben, die im Abschnitt beschrieben
"Vorbereiten"sind.

Die Beispiele in dieser Lösung verwenden „Cluster_01“ und „Cluster_02“ als Namen für die
beiden Cluster. Sie müssen diese Werte durch die Namen der Cluster in Ihrer Umgebung
ersetzen.

Schritt: Erstkonfiguration des Clusters

In dieser Phase müssen Sie zunächst einige Schritte zur Cluster-Konfiguration durchführen.

Schritte

1. Navigieren Sie zum playbooks/inventory/group_vars/all/tutorial-requests.yml
Speicherort und prüfen Sie die cluster_initial Anforderung in der Datei. Nehmen Sie alle
erforderlichen Änderungen an Ihrer Umgebung vor.

2. Erstellen Sie eine Datei im logic-tasks Ordner für die Service-Anfrage. Erstellen Sie beispielsweise
eine Datei mit dem Namen cluster_initial.yml.

Kopieren Sie die folgenden Zeilen in die neue Datei:

7

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

3. Definieren Sie die raw_service_request Variable.

Sie können eine der folgenden Optionen verwenden, um die Variable in der Datei zu
cluster_initial.yml definieren raw_service_request, die Sie im Ordner erstellt logic-tasks
haben:

◦ Option 1: Variable manuell definieren raw_service_request.

Öffnen Sie die tutorial-requests.yml Datei mit einem Editor und kopieren Sie den Inhalt von
Zeile 11 in Zeile 165. Fügen Sie den Inhalt unter der Variablen in der neuen cluster_initial.yml
Datei ein raw service request, wie in den folgenden Beispielen gezeigt:

8

Beispiel anzeigen

Beispieldatei cluster_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

 service: cluster_initial

 operation: create

 std_name: none

 req_details:

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

 ontap_license:

 - hostname: "{{ cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

9

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - hostname: "{{ peer_cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

10

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 ontap_motd:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 message: "New MOTD"

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 message: "New MOTD"

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

11

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ peer_cluster_name }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ peer_cluster_name }}"

◦ Option 2: Verwenden Sie eine Jinja-Vorlage, um die Anforderung zu definieren:

Sie können auch das folgende Jinja-Vorlagenformat verwenden, um den Wert zu erhalten
raw_service_request.

raw_service_request: "{{ cluster_initial }}"

4. Führen Sie die Erstkonfiguration des Clusters für das erste Cluster durch:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

12

Vergewissern Sie sich, dass keine Fehler vorliegen, bevor Sie fortfahren.

5. Wiederholen Sie den Befehl für das zweite Cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

Vergewissern Sie sich, dass beim zweiten Cluster keine Fehler auftreten.

Wenn Sie zu Beginn der Ansible-Ausgabe nach oben scrollen, sollten Sie die an das Framework
gesendete Anforderung sehen, wie im folgenden Beispiel gezeigt:

13

Beispiel anzeigen

TASK [Show the raw_service_request]

**

**

ok: [localhost] => {

 "raw_service_request": {

 "operation": "create",

 "req_details": {

 "ontap_aggr": [

 {

 "disk_count": 24,

 "hostname": "Cluster_01",

 "name": "n01_aggr1",

 "nodes": "Cluster_01-01",

 "raid_type": "raid4"

 }

],

 "ontap_license": [

 {

 "hostname": "Cluster_01",

 "license_codes": [

 "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

14

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

]

 }

],

 "ontap_motd": [

 {

 "hostname": "Cluster_01",

 "message": "New MOTD",

 "vserver": "Cluster_01"

 }

]

 },

 "service": "cluster_initial",

 "std_name": "none"

 }

}

6. Melden Sie sich bei jeder ONTAP-Instanz an und überprüfen Sie, ob die Anforderung erfolgreich war.

Schritt 2: Konfigurieren der Intercluster LIFs

Sie können jetzt die Intercluster LIFs konfigurieren, indem Sie der Anforderung die LIF-Definitionen hinzufügen
cluster_initial und den Microservice definieren ontap_interface.

Die Servicedefinition und die Anforderung arbeiten zusammen, um die Aktion zu bestimmen:

• Wenn Sie eine Service-Anfrage für einen Microservice bereitstellen, der nicht in den Servicedefinitionen
enthalten ist, wird die Anforderung nicht ausgeführt.

• Wenn Sie eine Service-Anfrage mit einer oder mehreren in den Servicedefinitionen definierten
Microservices bereitstellen, aber aus der Anfrage ausgelassen werden, wird die Anforderung nicht
ausgeführt.

Das execution.yml Playbook wertet die Dienstdefinition aus, indem die Liste der Microservices in der
aufgeführten Reihenfolge durchsucht wird:

• Wenn in der Anfrage ein Eintrag mit einem Wörterbuchschlüssel vorhanden ist, der dem Eintrag in den
Microservice-Definitionen entspricht args, wird die Anforderung ausgeführt.

• Wenn in der Service-Anfrage kein übereinstimmender Eintrag vorhanden ist, wird die Anforderung

15

fehlerfrei übersprungen.

Schritte

1. Navigieren Sie zu der cluster_initial.yml zuvor erstellten Datei, und ändern Sie die Anforderung,
indem Sie den Anforderungsdefinitionen die folgenden Zeilen hinzufügen:

16

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

17

2. Führen Sie den Befehl aus:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. Melden Sie sich bei jeder Instanz an, um zu überprüfen, ob die LIFs dem Cluster hinzugefügt wurden:

Beispiel anzeigen

Cluster_01::> net int show

 (network interface show)

 Logical Status Network Current

Current Is

Vserver Interface Admin/Oper Address/Mask Node

Port Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

 Cluster_01-01_mgmt up/up 10.0.0.101/24 Cluster_01-01

e0c true

 Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

 cluster_mgmt up/up 10.0.0.110/24 Cluster_01-01

e0c true

5 entries were displayed.

Die Ausgabe zeigt an, dass die LIFs nicht hinzugefügt wurden. Der Grund dafür ist, dass der
ontap_interface Microservice noch in der Datei definiert werden services.yml muss.

4. Vergewissern Sie sich, dass die LIFs der Variable hinzugefügt wurden raw_service_request.

18

Beispiel anzeigen

Im folgenden Beispiel werden die LIFs zur Anforderung hinzugefügt:

 "ontap_interface": [

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 },

 {

 "address": "10.0.0.126",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

19

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 }

],

5. Definieren Sie den ontap_interface Microservice unter cluster_initial in der services.yml
Datei.

Kopieren Sie die folgenden Zeilen in die Datei, um den Microservice zu definieren:

 - name: ontap_interface

 args: ontap_interface

 role: na/ontap_interface

6. Nachdem nun der ontap_interface Microservice in der Anfrage und der Datei definiert wurde
services.yml, führen Sie die Anforderung erneut aus:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. Loggen Sie sich bei jeder ONTAP Instanz ein und überprüfen Sie, ob die LIFs hinzugefügt wurden.

Schritt 3: Optional mehrere Cluster konfigurieren

Bei Bedarf können Sie mehrere Cluster in derselben Anforderung konfigurieren. Sie müssen beim Definieren
der Anforderung für jedes Cluster Variablennamen angeben.

Schritte

1. Fügen Sie einen Eintrag für das zweite Cluster in der Datei hinzu cluster_initial.yml, um beide
Cluster in derselben Anforderung zu konfigurieren.

Im folgenden Beispiel wird das Feld angezeigt ontap_aggr, nachdem der zweite Eintrag hinzugefügt
wurde.

20

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

2. Übernehmen Sie die Änderungen für alle anderen Elemente unter cluster_initial.

3. Fügen Sie Cluster-Peering zur Anforderung hinzu, indem Sie die folgenden Zeilen in die Datei kopieren:

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ cluster_peer }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ cluster_peer }}"

4. Ansible-Anforderung ausführen:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

Schritt 4: Anfängliche SVM-Konfiguration

An dieser Stelle des Verfahrens konfigurieren Sie die SVMs im Cluster.

Schritte

1. Anforderung tutorial-requests.yml zur Konfiguration einer SVM- und SVM-Peer-Beziehung
aktualisieren svm_initial

Sie müssen Folgendes konfigurieren:

◦ Das SVM

21

◦ Die SVM-Peer-Beziehung

◦ Die SVM-Schnittstelle für jede SVM

2. Aktualisieren Sie die Variablendefinitionen in den svm_initial Anforderungsdefinitionen. Sie müssen die
folgenden Variablendefinitionen ändern:

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

Um die Definitionen zu aktualisieren, entfernen Sie das ‘{}’ nach req_details für die svm_initial
Definition und fügen Sie die korrekte Definition hinzu.

3. Erstellen Sie eine Datei im logic-tasks Ordner für die Service-Anfrage. Erstellen Sie beispielsweise
eine Datei mit dem Namen svm_initial.yml.

Kopieren Sie die folgenden Zeilen in die Datei:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

4. Definieren Sie die raw_service_request Variable.

Sie können eine der folgenden Optionen verwenden, um die Variable für svm_initial im Ordner zu
logic-tasks definieren raw_service_request:

◦ Option 1: Variable manuell definieren raw_service_request.

Öffnen Sie die tutorial-requests.yml Datei mit einem Editor und kopieren Sie den Inhalt von

22

Zeile 179 in Zeile 222. Fügen Sie den Inhalt unter der Variablen in der neuen svm_initial.yml
Datei ein raw service request, wie in den folgenden Beispielen gezeigt:

23

Beispiel anzeigen

Beispieldatei svm_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

 service: svm_initial

 operation: create

 std_name: none

 req_details:

 ontap_vserver:

 - hostname: "{{ cluster_name }}"

 name: "{{ vserver_name }}"

 root_volume_aggregate: n01_aggr1

 - hostname: "{{ peer_cluster_name }}"

 name: "{{ peer_vserver }}"

 root_volume_aggregate: n01_aggr1

 ontap_vserver_peer:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 peer_vserver: "{{ peer_vserver }}"

 applications: snapmirror

 peer_options:

 hostname: "{{ peer_cluster_name }}"

 ontap_interface:

24

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 interface_name: data01

 role: data

 address: 10.0.0.200

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_vserver }}"

 interface_name: data01

 role: data

 address: 10.0.0.201

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

◦ Option 2: Verwenden Sie eine Jinja-Vorlage, um die Anforderung zu definieren:

Sie können auch das folgende Jinja-Vorlagenformat verwenden, um den Wert zu erhalten
raw_service_request.

raw_service_request: "{{ svm_initial }}"

5. Anforderung ausführen:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

6. Melden Sie sich bei jeder ONTAP Instanz an und validieren Sie die Konfiguration.

7. Fügen Sie die SVM-Schnittstellen hinzu.

Definieren Sie den ontap_interface Dienst unter svm_initial in der services.yml Datei und
führen Sie die Anforderung erneut aus:

25

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

8. Loggen Sie sich bei jeder ONTAP Instanz ein und überprüfen Sie, ob die SVM-Schnittstellen konfiguriert
sind.

Schritt 5: Optional können Sie eine Service-Anfrage dynamisch definieren

In den vorherigen Schritten ist die raw_service_request Variable hartcodiert. Dies ist nützlich für Lernen,
Entwicklung und Tests. Sie können auch eine Serviceanfrage dynamisch generieren.

Der folgende Abschnitt bietet eine Option zum dynamischen Erstellen des erforderlichen
raw_service_request, wenn Sie es nicht in höhere Systeme integrieren möchten.

• Wenn die logic_operation Variable im Befehl nicht definiert ist, importiert die
logic.yml Datei keine Datei aus dem logic-tasks Ordner. Das bedeutet, dass die
raw_service_request außerhalb von Ansible definiert und bei der Ausführung dem
Framework zur Verfügung gestellt werden muss.

• Ein Aufgabendateiname im logic-tasks Ordner muss mit dem Wert der Variablen ohne
die Erweiterung .yml übereinstimmen logic_operation.

• Die Aufgabendateien im logic-tasks Ordner definieren dynamisch ein
raw_service_request. die einzige Voraussetzung ist, dass ein gültiges
raw_service_request als letzte Aufgabe in der entsprechenden Datei definiert wird.

Dynamische Definition von Service-Anfragen

Es gibt mehrere Möglichkeiten, eine logische Aufgabe anzuwenden, um eine Service-Anfrage dynamisch zu
definieren. Einige dieser Optionen sind unten aufgeführt:

• Verwenden einer Ansible-Aufgabendatei aus dem logic-tasks Ordner

• Aufrufen einer benutzerdefinierten Rolle, die Daten zurückgibt, die für die Konvertierung in eine Variable
geeignet raw_service_request sind.

• Aufruf eines weiteren Tools außerhalb der Ansible-Umgebung, um die erforderlichen Daten bereitzustellen
Beispielsweise ein REST-API-Aufruf an Active IQ Unified Manager.

Mit den folgenden Beispielbefehlen können Sie mithilfe der Datei für jedes Cluster eine Service-Anfrage
dynamisch definieren tutorial-requests.yml:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

26

Schritt 6: Implementierung der ONTAP-Lösung Tag 0/1

In dieser Phase sollten Sie bereits Folgendes abgeschlossen haben:

• Alle Dateien in wurden entsprechend Ihren Anforderungen überprüft und geändert
playbooks/inventory/group_vars/all. Jede Datei enthält detaillierte Kommentare, mit denen Sie
die Änderungen vornehmen können.

• Erforderliche Aufgabendateien wurden dem Verzeichnis hinzugefügt logic-tasks.

• Alle erforderlichen Datendateien wurden dem Verzeichnis hinzugefügt playbook/vars.

Verwenden Sie die folgenden Befehle, um die ONTAP Day 0/1-Lösung bereitzustellen und den Zustand Ihrer
Bereitstellung zu überprüfen:

Zu diesem Zeitpunkt sollten Sie die Datei bereits entschlüsselt und geändert haben vault.yml
und sie muss mit Ihrem neuen Passwort verschlüsselt werden.

• Führen Sie den ONTAP-Tag-0-Service aus:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Führen Sie den ONTAP Day 1-Service aus:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Clusterweite Einstellungen anwenden:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• Führen Sie Zustandsprüfungen durch:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

Passen Sie die ONTAP Day 0/1-Lösung an

Zur Anpassung der ONTAP-Day-0/1-Lösung an Ihre Anforderungen können Sie Ansible-

27

Rollen hinzufügen oder ändern.

Rollen stellen die Microservices im Ansible-Framework dar. Jeder Microservice führt einen Vorgang durch.
Beispielsweise ist ONTAP Tag 0 ein Service, der mehrere Microservices umfasst.

Ansible-Rollen hinzufügen

Sie können Ansible-Rollen hinzufügen, um die Lösung an Ihre Umgebung anzupassen. Erforderliche Rollen
werden durch Servicedefinitionen im Ansible Framework definiert.

Eine Rolle muss die folgenden Anforderungen erfüllen, um als Microservice verwendet werden zu können:

• Akzeptieren Sie eine Liste der Argumente in der args Variablen.

• Nutzen Sie die Ansible-Struktur „Block, Rescue, Always“ mit bestimmten Anforderungen für jeden Block.

• Verwenden Sie ein einzelnes Ansible-Modul und definieren Sie eine einzelne Aufgabe innerhalb des
Blocks.

• Implementieren Sie alle verfügbaren Modulparameter gemäß den in diesem Abschnitt beschriebenen
Anforderungen.

Erforderliche Microservice-Struktur

Jede Rolle muss die folgenden Variablen unterstützen:

• mode: Wenn der Modus auf die Rolle eingestellt ist test, versucht der zu importieren, der test.yml
zeigt, was die Rolle tut, ohne sie tatsächlich auszuführen.

Dies ist aufgrund bestimmter Abhängigkeiten nicht immer möglich.

• status: Der Gesamtstatus der Ausführung des Playbooks. Wenn der Wert nicht auf die Rolle gesetzt
success ist, wird nicht ausgeführt.

• args : Eine Liste rollenspezifischer Wörterbücher mit Schlüsseln, die den Rollenparameternamen
entsprechen.

• global_log_messages: Sammelt Protokollmeldungen während der Ausführung des Playbooks. Bei
jeder Ausführung der Rolle wird ein Eintrag generiert.

• log_name: Der Name, der auf die Rolle innerhalb der Einträge verweist global_log_messages.

• task_descr: Eine kurze Beschreibung dessen, was die Rolle tut.

• service_start_time: Der Zeitstempel, der verwendet wird, um die Zeit zu verfolgen, zu der jede Rolle
ausgeführt wird.

• playbook_status: Der Status des Ansible-Playbooks.

• role_result: Die Variable, die die Rollenausgabe enthält und in jeder Nachricht innerhalb der Einträge
enthalten global_log_messages ist.

Beispiel für eine Rollenstruktur

Das folgende Beispiel zeigt die grundlegende Struktur einer Rolle, die einen Microservice implementiert. Sie
müssen die Variablen in diesem Beispiel für Ihre Konfiguration ändern.

28

Beispiel anzeigen

Grundlegende Rollenstruktur:

- name: Set some role attributes

 set_fact:

 log_name: "<LOG_NAME>"

 task_descr: "<TASK_DESCRIPTION>"

- name: "{{ log_name }}"

 block:

 - set_fact:

 service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

 - name: "Provision the new user"

 <MODULE_NAME>:

#---

 # COMMON ATTRIBUTES

#---

 hostname: "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

 username: "{{

clusters[loop_arg['hostname']]['username'] }}"

 password: "{{

clusters[loop_arg['hostname']]['password'] }}"

 cert_filepath: "{{ loop_arg['cert_filepath']

| default(omit) }}"

 feature_flags: "{{ loop_arg['feature_flags']

| default(omit) }}"

 http_port: "{{ loop_arg['http_port']

| default(omit) }}"

 https: "{{ loop_arg['https']

| default('true') }}"

 ontapi: "{{ loop_arg['ontapi']

| default(omit) }}"

 key_filepath: "{{ loop_arg['key_filepath']

| default(omit) }}"

 use_rest: "{{ loop_arg['use_rest']

| default(omit) }}"

 validate_certs: "{{ loop_arg['validate_certs']

| default('false') }}"

29

 <MODULE_SPECIFIC_PARAMETERS>

#---

 # REQUIRED ATTRIBUTES

#---

 required_parameter: "{{ loop_arg['required_parameter']

}}"

#---

 # ATTRIBUTES w/ DEFAULTS

#---

 defaulted_parameter: "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

#---

 # OPTIONAL ATTRIBUTES

#---

 optional_parameter: "{{ loop_arg['optional_parameter']

| default(omit) }}"

 loop: "{{ args }}"

 loop_control:

 loop_var: loop_arg

 register: role_result

 rescue:

 - name: Set role status to FAIL

 set_fact:

 playbook_status: "failed"

 always:

 - name: add log msg

 vars:

 role_log:

 role: "{{ log_name }}"

 timestamp:

 start_time: "{{service_start_time}}"

 end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

 service_status: "{{ playbook_status }}"

 result: "{{role_result}}"

 set_fact:

 global_log_msgs: "{{ global_log_msgs + [role_log] }}"

30

Variablen, die in der Beispielrolle verwendet werden:

• <NAME>: Ein austauschbarer Wert, der für jeden Microservice bereitgestellt werden muss.

• <LOG_NAME>: Der Kurzname der Rolle, die für Protokollierungszwecke verwendet wird.
`ONTAP_VOLUME`Beispiel: .

• <TASK_DESCRIPTION>: Eine kurze Beschreibung dessen, was der Microservice tut.

• <MODULE_NAME>: Der Ansible-Modulname für die Aufgabe.

Im Playbook der obersten Ebene execute.yml wird die Sammlung angegeben
netapp.ontap. Wenn das Modul Teil der Sammlung ist netapp.ontap, muss der
Modulname nicht vollständig angegeben werden.

• <MODULE_SPECIFIC_PARAMETERS>: Ansible-Modulparameter, die spezifisch für das Modul sind, das zur
Implementierung des Microservices verwendet wird. In der folgenden Liste werden die Parametertypen
und deren Gruppierung beschrieben.

◦ Erforderliche Parameter: Alle erforderlichen Parameter werden ohne Standardwert angegeben.

◦ Parameter, die einen für den Microservice spezifischen Standardwert haben (nicht der gleiche Wert wie
ein in der Moduldokumentation spezifizierter Standardwert).

◦ Alle verbleibenden Parameter werden als Standardwert verwendet default(omit).

Verwendung von mehrstufigen Wörterbüchern als Modulparameter

Einige von NetApp bereitgestellte Ansible-Module verwenden mehrstufige Wörterbücher für Modulparameter
(z. B. feste und adaptive QoS-Richtliniengruppen).

Allein zu verwenden default(omit) funktioniert nicht, wenn diese Wörterbücher verwendet werden,
besonders wenn es mehrere gibt und sie sich gegenseitig ausschließen.

Wenn Sie Multi-Level-Wörterbücher als Modulparameter verwenden müssen, sollten Sie die Funktionalität in
mehrere Microservices (Rollen) aufteilen, so dass jeder garantiert mindestens einen Second-Level-
Wörterbuchwert für das jeweilige Wörterbuch liefern kann.

Die folgenden Beispiele zeigen feste und anpassungsfähige QoS-Richtliniengruppen, die sich auf zwei
Microservices verteilen.

Der erste Microservice enthält feste QoS-Richtliniengruppenwerte:

31

fixed_qos_options:

 capacity_shared: "{{

loop_arg['fixed_qos_options']['capacity_shared'] | default(omit)

}}"

 max_throughput_iops: "{{

loop_arg['fixed_qos_options']['max_throughput_iops'] | default(omit)

}}"

 min_throughput_iops: "{{

loop_arg['fixed_qos_options']['min_throughput_iops'] | default(omit)

}}"

 max_throughput_mbps: "{{

loop_arg['fixed_qos_options']['max_throughput_mbps'] | default(omit)

}}"

 min_throughput_mbps: "{{

loop_arg['fixed_qos_options']['min_throughput_mbps'] | default(omit)

}}"

Der zweite Microservice enthält die Werte der adaptiven QoS-Richtliniengruppe:

adaptive_qos_options:

 absolute_min_iops: "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

 expected_iops: "{{

loop_arg['adaptive_qos_options']['expected_iops'] | default(omit) }}"

 peak_iops: "{{

loop_arg['adaptive_qos_options']['peak_iops'] | default(omit) }}"

32

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

33

http://www.netapp.com/TM\

	ONTAP : NetApp Automation
	Inhalt
	ONTAP
	Tag 0/1
	Überblick über die ONTAP-Tag-0/1-Lösung
	Bereiten Sie sich auf die Verwendung der Lösung für den ONTAP Tag 0/1 vor
	Implementieren Sie den ONTAP Cluster mit der Lösung
	Passen Sie die ONTAP Day 0/1-Lösung an

