Apache Kafka-Workloads mit NetApp NFS-
Speicher

NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/kafka-
nfs-introduction.html on February 12, 2026. Always check docs.netapp.com for the latest.

Inhalt

Apache Kafka-Workloads mit NetApp NFS-Speicher
TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher — Funktionale Validierung und Leistung

Warum NFS-Speicher fiir Kafka-Workloads verwenden?
Warum NetApp fir Kafka-Workloads?
NetApp -Ldsung fur das dumme Umbenennungsproblem fur NFS-zu-Kafka-Workloads
Funktionale Validierung — Dumme Umbenennungskorrektur
Validierungs-Setup
Architektonischer Fluss
Testmethodik
Warum NetApp NFS fir Kafka-Workloads?
Reduzierte CPU-Auslastung auf dem Kafka-Broker
Schnellere Broker-Wiederherstellung
Speichereffizienz
Leistungsubersicht und -validierung in AWS
Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP (Hochverfligbarkeitspaar und
Einzelknoten)
Testmethodik
Beobachtung
Leistungsubersicht und -validierung in AWS FSx ONTAP
Apache Kafka in AWS FSx ONTAP
Leistungsubersicht und Validierung mit AFF A900 vor Ort
Storage-Konfiguration
Client-Tuning
Kafka-Broker-Tuning
Testmethodik fur Workload-Generatoren
Extreme Leistung und Ausloten der Speichergrenzen
Grofienberatung
Abschluss
Wo Sie weitere Informationen finden

O B B W WOWDNDND-_2 2~ -

20
31
31
33
34
41
42
42
42
43
46
47
48
48

Apache Kafka-Workloads mit NetApp NFS-
Speicher

TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher
— Funktionale Validierung und Leistung

Shantanu Chakole, Karthikeyan Nagalingam und Joe Scott, NetApp

Kafka ist ein verteiltes Publish-Subscribe-Messaging-System mit einer robusten
Warteschlange, die grofe Mengen an Nachrichtendaten aufnehmen kann. Mit Kafka
konnen Anwendungen Daten sehr schnell in Themen schreiben und daraus lesen.
Aufgrund seiner Fehlertoleranz und Skalierbarkeit wird Kafka im Big Data-Bereich haufig
als zuverlassige Methode zum schnellen Aufnehmen und Verschieben vieler
Datenstrome verwendet. Zu den Anwendungsfallen gehdren Stream-Verarbeitung,
Website-Aktivitatsverfolgung, Erfassung und Uberwachung von Metriken,
Protokollaggregation, Echtzeitanalysen usw.

Obwohl normale Kafka-Operationen auf NFS gut funktionieren, fihrt das dumme Umbenennungsproblem beim
Andern der GroRe oder Neupartitionieren eines auf NFS laufenden Kafka-Clusters zum Absturz der
Anwendung. Dies ist ein erhebliches Problem, da die GroRe eines Kafka-Clusters zum Lastenausgleich oder
zu Wartungszwecken geandert oder neu partitioniert werden muss. Weitere Details finden Sie "hier," .

In diesem Dokument werden die folgenden Themen beschrieben:

* Das alberne Umbenennungsproblem und die Lésungsvalidierung
» Reduzierung der CPU-Auslastung zur Verklrzung der E/A-Wartezeit
» Schnellere Wiederherstellungszeit des Kafka-Brokers

* Leistung in der Cloud und vor Ort

Warum NFS-Speicher fur Kafka-Workloads verwenden?

Kafka-Workloads in Produktionsanwendungen kénnen riesige Datenmengen zwischen Anwendungen
streamen. Diese Daten werden in den Kafka-Broker-Knoten im Kafka-Cluster gehalten und gespeichert. Kafka
ist auBerdem fur seine Verfugbarkeit und Parallelitdt bekannt, die es durch die Aufteilung von Themen in
Partitionen und die anschlieRende Replikation dieser Partitionen im gesamten Cluster erreicht. Dies bedeutet
letztendlich, dass sich die enorme Datenmenge, die durch einen Kafka-Cluster flie3t, im Allgemeinen
vervielfacht. NFS ermdglicht eine Neugewichtung der Daten bei Anderungen der Anzahl der Broker sehr
schnell und einfach. Bei groRen Umgebungen ist die Neuverteilung der Daten tiber DAS bei einer Anderung
der Brokeranzahl sehr zeitaufwandig, und in den meisten Kafka-Umgebungen andert sich die Anzahl der
Broker haufig.

Zu den weiteren Vorteilen zahlen:

* Reife. NFS ist ein ausgereiftes Protokoll, was bedeutet, dass die meisten Aspekte seiner Implementierung,
Sicherung und Verwendung gut verstanden sind.

» Offen. NFS ist ein offenes Protokoll und seine Weiterentwicklung ist in Internetspezifikationen als freies
und offenes Netzwerkprotokoll dokumentiert.

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

* Kostengiinstig. NFS ist eine kostenglnstige Losung fir die gemeinsame Nutzung von Netzwerkdateien,
die einfach einzurichten ist, da sie die vorhandene Netzwerkinfrastruktur nutzt.

» Zentral verwaltet. Durch die zentrale Verwaltung von NFS verringert sich der Bedarf an zusatzlicher
Software und Speicherplatz auf den Systemen einzelner Benutzer.

» Verteilt. NFS kann als verteiltes Dateisystem verwendet werden, wodurch der Bedarf an
Wechselmedienspeichergeraten reduziert wird.

Warum NetApp fur Kafka-Workloads?

Die NetApp NFS-Implementierung gilt als Goldstandard flir das Protokoll und wird in zahllosen Enterprise-
NAS-Umgebungen verwendet. Neben der Glaubwurdigkeit von NetApp bietet es auch die folgenden Vorteile:

» Zuverlassigkeit und Effizienz

» Skalierbarkeit und Leistung

* Hohe Verfugbarkeit (HA-Partner in einem NetApp ONTAP Cluster)
» Datenschutz

o Notfallwiederherstellung (NetApp SnapMirror). Ihre Site ist ausgefallen oder Sie méchten auf einer
anderen Site weitermachen und dort fortfahren, wo Sie aufgehort haben.

> Verwaltbarkeit Ihres Speichersystems (Administration und Management mit NetApp OnCommand).

o Lastausgleich. Der Cluster ermoglicht Innen den Zugriff auf verschiedene Volumes von Daten-LIFs,
die auf verschiedenen Knoten gehostet werden.

o Unterbrechungsfreier Betrieb. LIFs oder Volume-Verschiebungen sind fiir die NFS-Clients
transparent.

NetApp -Losung fur das dumme Umbenennungsproblem fur
NFS-zu-Kafka-Workloads

Kafka wird unter der Annahme erstellt, dass das zugrunde liegende Dateisystem POSIX-
kompatibel ist: beispielsweise XFS oder Ext4. Durch die Neuverteilung der Kafka-
Ressourcen werden Dateien entfernt, wahrend die Anwendung sie noch verwendet. Ein
POSIX-kompatibles Dateisystem ermaoglicht die Fortsetzung der
Verknupfungsaufhebung. Die Datei wird jedoch erst entfernt, wenn alle Verweise auf die
Datei verschwunden sind. Wenn das zugrunde liegende Dateisystem an das Netzwerk
angeschlossen ist, fangt der NFS-Client die Unlink-Aufrufe ab und verwaltet den
Workflow. Da fiir die Datei, deren Verknlipfung aufgehoben wird, noch Offnungsvorgange
ausstehen, sendet der NFS-Client eine Umbenennungsanforderung an den NFS-Server
und fuhrt beim letzten Schlie3en der aufgehobenen Datei einen Entfernungsvorgang fur
die umbenannte Datei aus. Dieses Verhalten wird allgemein als ,NFS Silly Rename*
bezeichnet und wird vom NFS-Client orchestriert.

Jeder Kafka-Broker, der Speicher von einem NFSv3-Server verwendet, stoRt aufgrund dieses Verhaltens auf
Probleme. Das NFSv4.x-Protokoll verfliigt jedoch tUber Funktionen zur Behebung dieses Problems, indem es
dem Server ermdglicht, die Verantwortung fur die gedffneten, nicht verknlpften Dateien zu Gbernehmen. NFS-
Server, die diese optionale Funktion unterstiitzen, teilen dem NFS-Client beim Offnen der Datei die
Eigentumsrechte mit. Der NFS-Client beendet dann die Verwaltung der Verknlpfungsaufhebung, wenn noch
Offnungen ausstehen, und iiberldsst dem Server die Verwaltung des Datenflusses. Obwohl die NFSv4-

Spezifikation Richtlinien fir die Implementierung bereitstellt, gab es bisher keine bekannten NFS-
Serverimplementierungen, die diese optionale Funktion unterstitzten.

Um das Problem der dummen Umbenennung zu beheben, sind flir den NFS-Server und den NFS-Client die
folgenden Anderungen erforderlich:

+ Anderungen am NFS-Client (Linux). Beim Offnen der Datei antwortet der NFS-Server mit einem Flag,
das die Fahigkeit anzeigt, die Verkniipfung gedffneter Dateien aufzuheben. Durch Anderungen auf der
NFS-Clientseite kann der NFS-Server die Aufhebung der Verknlpfung bei Vorhandensein des Flags
handhaben. NetApp hat den Open-Source-Linux-NFS-Client mit diesen Anderungen aktualisiert. Der
aktualisierte NFS-Client ist jetzt allgemein in RHEL8.7 und RHEL9.1 verflugbar.

« Anderungen am NFS-Server. Der NFS-Server verfolgt die Offnungen. Das Aufheben der Verkniipfung
einer vorhandenen gedffneten Datei wird jetzt vom Server verwaltet, um der POSIX-Semantik zu
entsprechen. Wenn die letzte Offnung geschlossen ist, leitet der NFS-Server das eigentliche Entfernen der
Datei ein und vermeidet so den albernen Umbenennungsprozess. Der ONTAP NFS-Server hat diese
Funktion in seiner neuesten Version, ONTAP 9.12.1, implementiert.

Mit den oben genannten Anderungen am NFS-Client und -Server kann Kafka alle Vorteile des
netzwerkgebundenen NFS-Speichers sicher nutzen.

Funktionale Validierung — Dumme Umbenennungskorrektur

Zur Funktionsvalidierung haben wir gezeigt, dass ein Kafka-Cluster mit einer NFSv3-
Einbindung fur den Speicher keine Kafka-Operationen wie die Partitionsumverteilung
durchfuhren kann, wahrend ein anderer, mit dem Fix auf NFSv4 eingebundener Cluster
dieselben Operationen ohne Unterbrechungen durchfuhren kann.

Validierungs-Setup

Das Setup wird auf AWS ausgefihrt. Die folgende Tabelle zeigt die verschiedenen Plattformkomponenten und
Umgebungskonfigurationen, die fir die Validierung verwendet wurden.
Plattformkomponente Umgebungskonfiguration
Confluent Platform Version 7.2.1 » 3 x Tierpfleger — t3.xlarge
* 4 x Broker-Server — r3.xlarge
* 1 x Grafana — t3.xlarge
* 1 x Kontrollzentrum — t3.xlarge

e 3 x Produzent/Konsument

Betriebssystem auf allen Knoten RHELS8.7 oder héher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz — M5.2xLarge

Die folgende Abbildung zeigt die Architekturkonfiguration fiir diese Lésung.

Text

el Private subnat Private subneat [ER] Private subnet

e { | ks

NN

Mb5a

TTTTT

feemance basting.

200GB volume

Kafka cluster . " 500G8
ProducarCorneUmer SWanm ri.xiarpe = Cloud Volumes
o ONTAP
NetApp

@ B B

W
et ‘ | o

Architektonischer Fluss

» Berechnen. Wir haben einen Kafka-Cluster mit vier Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgefihrt wird.

+ Uberwachung. Wir haben zwei Knoten fiir eine Prometheus-Grafana-Kombination verwendet.

* Arbeitsbelastung. Zum Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten
verwendet, der fur diesen Kafka-Cluster produzieren und von diesem konsumieren kann.

» Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten verwendet, an die
zwei 500 GB groRe GP2 AWS-EBS-Volumes angeschlossen waren. Diese Volumes wurden dann Uber ein
LIF als einzelnes NFSv4.1-Volume dem Kafka-Cluster zugénglich gemacht.

Fir alle Server wurden die Standardeigenschaften von Kafka gewahlt. Dasselbe wurde flr den
Zoowarterschwarm getan.

Testmethodik

1. Aktualisieren -is-preserve-unlink-enabled true zum Kafka-Band, wie folgt:

aws—-shantanclastrecall-aws::*> volume create -vserver kafka svm -volume
kafka fg vol0l -aggregate kafka aggr -size 3500GB -state online -policy
kafka policy -security-style unix -unix-permissions 0777 -junction-path
/kafka fg vol0l -type RW -is-preserve-unlink-enabled true

[Job 32] Job succeeded: Successful

2. Es wurden zwei dhnliche Kafka-Cluster mit folgendem Unterschied erstellt:

o Cluster 1. Der Backend-NFS v4.1-Server mit der produktionsbereiten ONTAP Version 9.12.1 wurde
von einer NetApp CVO-Instanz gehostet. Auf den Brokern wurden RHEL 8.7/RHEL 9.1 installiert.

o Cluster 2. Der Backend-NFS-Server war ein manuell erstellter generischer Linux-NFSv3-Server.

3. Auf beiden Kafka-Clustern wurde ein Demothema erstellt.

Cluster 1:

.188:90

Leader:
Leader: 2
pic 0 g Leader: 3
Topic: a_demo_topic Parti) Leader: 1

topics bootstrap-server=1 30.90.198
C op1C
Topicld: A eMI) PartitionCount: 4

--describe --

c: topic art : @ Leader: 2 Replicas:
Topic: __a_demo_topic Rep
Topic: _a_d topic Parti 2 Leader: 1 Repl
Topic: topic Parti 3 Leader: 4

4. In diese neu erstellten Themen wurden fiir beide Cluster Daten geladen. Dies wurde mithilfe des Producer-
Perf-Test-Toolkits durchgefiihrt, das im Standardpaket von Kafka enthalten ist:

./kafka-producer-perf-test.sh --topic a demo topic --throughput -1
—-—-num-records 3000000 --record-size 1024 --producer-props acks=all
bootstrap.servers=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,

172.30.0.123:9092

5. Fur Broker-1 wurde fiir jeden der Cluster per Telnet eine Integritatsprifung durchgefihrt:

° Telnet 172.30.0.160 9092

° Telnet 172.30.0.198 9092

Eine erfolgreiche Integritatspriifung fir Broker auf beiden Clustern wird im nachsten Screenshot
angezeigt:

~ % telnet 172.30.0.160 9€92

1 closed by foreign host
mac-@ ~ % telnet 17

6. Um den Fehlerzustand auszuldsen, der zum Absturz von Kafka-Clustern mit NFSv3-Speichervolumes
fuhrt, haben wir den Prozess zur Neuzuweisung der Partitionen auf beiden Clustern eingeleitet. Die
Neuzuweisung der Partitionen erfolgte mit kafka-reassign-partitions.sh . Der detaillierte Ablauf ist
wie folgt:

a. Um die Partitionen fur ein Thema in einem Kafka-Cluster neu zuzuweisen, haben wir die
vorgeschlagene JSON-Konfiguration fir die Neuzuweisung generiert (dies wurde fir beide Cluster
durchgefihrt).

kafka-reassign-partitions --bootstrap
-server=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,172.30.
0.123:9092 --broker-1list "1,2,3,4" --topics-to-move-json-file

/tmp/topics.json --generate

b. Das generierte Neuzuweisungs-JSON wurde dann gespeichert in /tmp/reassignment-
file.json.

c. Der eigentliche Partitionsneuzuweisungsprozess wurde durch den folgenden Befehl ausgeldst:

kafka-reassign-partitions --bootstrap
-server=172.30.0.198:9092,172.30.0.163:9092,172.30.0.221:9092,172.30.
0.204:9092 --reassignment-json-file /tmp/reassignment-file.json

—execute

7. Einige Minuten nach Abschluss der Neuzuweisung zeigte eine weitere Integritatsprifung der Broker, dass
bei Clustern mit NFSv3-Speichervolumes ein dummes Umbenennungsproblem aufgetreten war und diese
abgestlrzt waren, wahrend Cluster 1 mit NetApp ONTAP NFSv4.1-Speichervolumes und dem Fix den
Betrieb ohne Unterbrechungen fortsetzte.

antanu@shantanc-mac-8 ~ % telnet 172.30.0.168 9992
Trying 172.30.0.160...
Connected to 172.30.90.160.
Escape character is "A]°

A [

Connection closed by foreign host.
shantanu®shantanc-mac-8 ~ % telnet
Trying 172.30.0.198...

telnet: connect to address 17Z2.368
telnet: Unable to connect to remote hos

o Cluster1-Broker-1 ist aktiv.
o Cluster2-Broker-1 ist tot.

8. Beim Uberpriifen der Kafka-Protokollverzeichnisse war klar, dass Cluster 1, der NetApp ONTAP NFSv4.1-
Speichervolumes mit dem Fix verwendet, Uber eine saubere Partitionszuweisung verflgte, wahrend dies
bei Cluster 2, der generischen NFSv3-Speicher verwendet, aufgrund von dummen
Umbenennungsproblemen, die zum Absturz fiihrten, nicht der Fall war. Das folgende Bild zeigt die
Neuverteilung der Partitionen von Cluster 2, die zu einem dummen Umbenennungsproblem im NFSv3-
Speicher flhrte.

@ Sep 19

10:22 .nfs0000000025F91d5500000046
19 10:25 .nfsO000R00025FI1f ceddORO0I7

19 18:24 200 RO . index

19 10:24 20000

16 leader-epoch

5 partition.metodata

Das folgende Bild zeigt eine saubere Neuverteilung der Partitionen von Cluster 1 unter Verwendung von
NetApp NFSv4.1-Speicher.

Warum NetApp NFS fur Kafka-Workloads?

Da es jetzt eine Lésung fur das alberne Umbenennungsproblem im NFS-Speicher mit
Kafka gibt, konnen Sie robuste Bereitstellungen erstellen, die NetApp ONTAP -Speicher
fur Ihre Kafka-Workload nutzen. Dies reduziert nicht nur den Betriebsaufwand erheblich,
sondern bringt Ihren Kafka-Clustern auch die folgenden Vorteile:

* Reduzierte CPU-Auslastung bei Kafka-Brokern. Durch die Verwendung disaggregierter NetApp ONTAP
-Speicher werden Festplatten-E/A-Vorgange vom Broker getrennt und so dessen CPU-Bedarf reduziert.

» Schnellere Wiederherstellungszeit des Brokers. Da der disaggregierte NetApp ONTAP Speicher Uber
alle Kafka-Broker-Knoten hinweg gemeinsam genutzt wird, kann eine neue Compute-Instanz einen
fehlerhaften Broker jederzeit in einem Bruchteil der Zeit ersetzen, die bei herkdmmlichen Kafka-
Bereitstellungen bendtigt wird, ohne dass die Daten neu erstellt werden missen.

» Speichereffizienz. Da die Speicherebene der Anwendung jetzt iber NetApp ONTAP bereitgestellt wird,
kénnen Kunden alle Vorteile der Speichereffizienz von ONTAP nutzen, wie beispielsweise Inline-
Datenkomprimierung, Deduplizierung und Kompaktierung.

Diese Vorteile wurden in Testfallen getestet und validiert, die wir in diesem Abschnitt ausflihrlich besprechen.

Reduzierte CPU-Auslastung auf dem Kafka-Broker

Wir haben festgestellt, dass die allgemeine CPU-Auslastung niedriger ist als beim DAS-Gegenstick, als wir
ahnliche Workloads auf zwei separaten Kafka-Clustern ausfiihrten, die in ihren technischen Spezifikationen
identisch waren, sich aber in ihren Speichertechnologien unterschieden. Wenn der Kafka-Cluster ONTAP
Speicher verwendet, ist nicht nur die allgemeine CPU-Auslastung geringer, sondern auch der Anstieg der
CPU-Auslastung weist einen sanfteren Verlauf auf als in einem DAS-basierten Kafka-Cluster.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration, die verwendet wurde, um eine reduzierte CPU-
Auslastung zu demonstrieren.

Plattformkomponente

Kafka 3.2.3 Benchmarking-Tool: OpenMessaging

Betriebssystem auf allen Knoten

NetApp Cloud Volumes ONTAP Instanz

Benchmarking-Tool

Umgebungskonfiguration
» 3 x Tierpfleger — t2.small

» 3 x Broker-Server — i3en.2xlarge

* 1 x Grafana — c5n.2xlarge

* 4 x Produzent/Verbraucher — c5n.2xlarge

RHEL 8.7 oder hoher

Einzelknoteninstanz — M5.2xLarge

Das in diesem Testfall verwendete Benchmarking-Tool ist das "OpenMessaging" Rahmen. OpenMessaging ist
anbieter- und sprachunabhangig; es bietet Branchenrichtlinien fir Finanzen, E-Commerce, loT und Big Data
und unterstitzt die Entwicklung von Messaging- und Streaming-Anwendungen Uber heterogene Systeme und
Plattformen hinweg. Die folgende Abbildung zeigt die Interaktion von OpenMessaging-Clients mit einem Kafka-

Cluster.

E AWS Cloud

il Private subnet

Zookeepar l

&
& ‘;ﬁ

H—__'_‘-—-purlrmnnm tasting

ProducaConsuman Swanm

(=]
g]._p
v
OPENMESSAGING CLIENTS l

canfiugnt kafka cluster
i3an.2xargn

EE B8
E

ohn 2xlarge

moniforing

. alirge

[f:l:laﬁt:l:)t:l]

o
=¥
>
bl

ms. 2xlarge

w
k=1
153

TTTIT

250GE each

* Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgefuhrt wird. Jeder Broker verflgte tUber zwei NFSv4.1-

Mount-Punkte zu einem einzelnen Volume auf der NetApp CVO-Instanz Uber ein dediziertes LIF.

+ Uberwachung. Wir haben zwei Knoten fiir eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads verfligen wir tber einen separaten Cluster mit drei Knoten, der fir diesen

Kafka-Cluster produzieren und von diesem konsumieren kann.

https://openmessaging.cloud/

* Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der
Instanz gemounteten 250 GB GP2 AWS-EBS-Volumes verwendet. Diese Volumes wurden dann dem
Kafka-Cluster als sechs NFSv4.1-Volumes Uber dedizierte LIFs zuganglich gemacht.

» Konfiguration. Die beiden konfigurierbaren Elemente in diesem Testfall waren Kafka-Broker und
OpenMessaging-Workloads.

o Broker-Konfiguration. Fur die Kafka-Broker wurden folgende Spezifikationen gewahlt. Wir haben fir
alle Messungen einen Replikationsfaktor von 3 verwendet, wie unten hervorgehoben.

broker.id=1

advertised. listeners=PLAINTEXT://172.30.0.185:9092
log.dirs=/mnt/data-1
zookeeper.connect=172.30.0.13:2181,172.30.0.108:2181,172.30.0.253:2181
num.replica. fetchers=8

message.max.bytes=10485760
replica.fetch.max.bytes=10485760
num.network.threads=8

default.replication. factor=3|

replica. lag.time.max.ms=100000000

replica. fetch.max.bytes=1048576

replica. fetch.wait.max.ms=500

num.replica. fetchers=1
replica.high.watermark.checkpoint.interval.ms=5000
fetch.purgatory.purge.interval.requests=1000
producer.purgatory.purge.interval.requests=1000
replica.socket.timeout.ms=30000
replica.socket.receive.buffer.bytes=65536

* OpenMessaging-Benchmark (OMB)-Workload-Konfiguration. Die folgenden Spezifikationen wurden
bereitgestellt. Wir haben eine Zielproduzentenrate festgelegt, die unten hervorgehoben ist.

name: 4 producer / 4 consumers on 1 topic
topics: 1

partitionsPerTopic: 100

messageSize: 1024

payloadFile: "payload/payload-1Kb.data"
subscriptionsPerTopic: 1
consumerPerSubscription: 4
producersPerTopic: 4

producerRate: 40000
consumerBacklogSizeGB: @
testDurationMinutes: 5

Testmethodik

1. Es wurden zwei ahnliche Cluster erstellt, die jeweils iber einen eigenen Satz von Benchmarking-Cluster-
Schwarmen verfugten.

10

o Cluster 1. NFS-basierter Kafka-Cluster.
o Cluster 2. DAS-basierter Kafka-Cluster.

2. Mithilfe eines OpenMessaging-Befehls wurden auf jedem Cluster ahnliche Workloads ausgeldst.

sudo bin/benchmark --drivers driver-kafka/kafka-group-all.yaml
workloads/1l-topic-100-partitions—-1kb.yaml

3. Die Produktionsratenkonfiguration wurde in vier Iterationen erhdht und die CPU-Auslastung mit Grafana
aufgezeichnet. Die Produktionsrate wurde auf folgende Stufen festgelegt:

> 10.000
> 40.000
> 80.000
> 100.000

Beobachtung

Die Verwendung von NetApp NFS-Speicher mit Kafka bietet zwei Hauptvorteile:

+ Sie kénnen die CPU-Auslastung um fast ein Drittel reduzieren. Die allgemeine CPU-Auslastung war
bei ahnlichen Arbeitslasten bei NFS niedriger als bei DAS-SSDs; die Einsparungen reichen von 5 % bei
niedrigeren Produktionsraten bis zu 32 % bei héheren Produktionsraten.

* Eine dreifache Reduzierung der CPU-Auslastungsabweichung bei hoheren Produktionsraten. Wie
erwartet gab es mit der Erhéhung der Produktionsraten einen Aufwartstrend bei der Erhéhung der CPU-
Auslastung. Allerdings stieg die CPU-Auslastung bei Kafka-Brokern, die DAS verwenden, von 31 % bei der
niedrigeren Produktionsrate auf 70 % bei der hoheren Produktionsrate, also um 39 %. Mit einem NFS-
Speicher-Backend stieg die CPU-Auslastung jedoch von 26 % auf 38 %, eine Steigerung um 12 %.

11

AuRerdem weist DAS bei 100.000 Nachrichten eine hohere CPU-Auslastung auf als ein NFS-Cluster.

Schnellere Broker-Wiederherstellung

Wir haben festgestellt, dass Kafka-Broker schneller wiederhergestellt werden, wenn sie gemeinsam genutzten
NetApp NFS-Speicher verwenden. Wenn ein Broker in einem Kafka-Cluster abstirzt, kann dieser Broker durch

einen fehlerfreien Broker mit derselben Broker-ID ersetzt werden. Bei der Durchflihrung dieses Testfalls
stellten wir fest, dass im Fall eines DAS-basierten Kafka-Clusters der Cluster die Daten auf einem neu
hinzugeflgten, fehlerfreien Broker neu aufbaut, was zeitaufwandig ist. Im Fall eines NetApp NFS-basierten

Kafka-Clusters liest der ersetzende Broker weiterhin Daten aus dem vorherigen Protokollverzeichnis und stellt

die Daten viel schneller wieder her.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration fir einen Kafka-Cluster mit NAS.

Plattformkomponente Umgebungskonfiguration
Kafka 3.2.3 » 3 x Tierpfleger — t2.small
» 3 x Broker-Server — i3en.2xlarge
* 1 x Grafana — ¢5n.2xlarge
* 4 x Produzent/Verbraucher — c5n.2xlarge

» 1 x Backup-Kafka-Knoten — i3en.2xlarge

Betriebssystem auf allen Knoten RHELBS8.7 oder héher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz — M5.2xLarge

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

13

Zookeepar [

‘-—__“k—\‘wrlrxmnm tsting

FTHENCE 0]
—_—

BE BE

‘‘_'_'_‘—'—-—.

two mounts for each broker

I
=0

—=

—Le

=)

BB 'E BB

canfiuent kafka cluster,
i3an 2xiargo _{j‘
Product Consumen swirm o |
—
OPENMESSAGING CLIENTS] 52
Tomionng

CEEEETS)

w
=
ha

T

25068 each

* Berechnen. Ein Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei Knoten, das auf
dedizierten Servern ausgefihrt wird. Jeder Broker verflgt Uber zwei NFS-Mount-Punkte zu einem

einzelnen Volume auf der NetApp CVO-Instanz lber ein dediziertes LIF.

+ Uberwachung. Zwei Knoten fir eine Prometheus-Grafana-Kombination. Zum Generieren von Workloads
verwenden wir einen separaten Cluster mit drei Knoten, der fiir diesen Kafka-Cluster produzieren und

konsumieren kann.

» Lagerung. Eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der Instanz
gemounteten 250 GB GP2 AWS-EBS-Volumes. Diese Volumes werden dann dem Kafka-Cluster tber

dedizierte LIFs als sechs NFS-Volumes zur Verfigung gestellt.

* Broker-Konfiguration. Das einzige konfigurierbare Element in diesem Testfall sind Kafka-Broker. Fur die
Kafka-Broker wurden folgende Spezifikationen gewahlt. Der replica.lag.time.mx.ms wird auf einen
hohen Wert eingestellt, da dieser bestimmt, wie schnell ein bestimmter Knoten aus der ISR-Liste entfernt
wird. Wenn Sie zwischen fehlerhaften und fehlerfreien Knoten wechseln, méchten Sie nicht, dass diese

Broker-ID von der ISR-Liste ausgeschlossen wird.

14

broker.id=1

advertised. listeners=PLAINTEXT://172.30.0.185:9892
log.dirs=/mnt/data-1
zookeeper.connect=172.30.0.13:2181,172.30.9.108:2181,172.30.6.253: 2181
num.replica. fetchers=8

message. max. bytes=10485768

replica, fetch.max.bytes=18485760

num.network. threads=8

default.replication. factor=3

replica, lag. time.max.ms=188800800

replica, fetch.max.bytes=1048576

replica. fetch.wait.max.ms=500

num, replica, fetchers=1
replica.high.watermark.checkpoint. interval.ms=5808
fetch.purgatory.purge.interval. requests=190@9
producer.purgatory.purge.interval, requests=1008
replica.socket. timeout.ms=300080

replica. socket. receive.buffer.bytes=65536

Testmethodik

1. Es wurden zwei ahnliche Cluster erstellt:
o Ein EC2-basierter konfluenter Cluster.
o Ein NetApp NFS-basierter Confluent-Cluster.

2. Es wurde ein Standby-Kafka-Knoten mit einer Konfiguration erstellt, die mit den Knoten des urspriinglichen
Kafka-Clusters identisch ist.

3. Auf jedem der Cluster wurde ein Beispielthema erstellt und auf jedem der Broker wurden ungeféhr 110 GB
Daten gespeichert.

° EC2-basierter Cluster. Ein Kafka-Broker-Datenverzeichnis ist abgebildet auf /mnt/data-2 (In der
folgenden Abbildung Broker-1 von Cluster1 [linkes Terminal]).

o * NetApp NFS-basierter Cluster.* Ein Kafka-Broker-Datenverzeichnis ist auf einem NFS-Punkt
gemountet /mnt/data (In der folgenden Abbildung Broker-1 von Cluster2 [rechtes Terminal]).

[root@ip-172-30-8-185 /J& of <hT [root®ip-172-30-9-133 /]# df -hT

Filesystem ype Size Used Avoil UseX Mounted on Filesystem Type Size Used Avall UseX Mounted on
devinpfs devimpfs 316 0 316 O /dev devtmpfs devispfs 316 0 316 O Jdev

tepfs fs 36 0 3G 9 /dev/she trpfs tepfs 16 ® 3G N fdev/shm

tmpfs trpfs 316 6™ 316 IN Jrun tmpfs tmpfs 36 2 361X frun

trpfs tmpfs ne @ 3G ¥ Jsys/felcgroup trpfs trpfs 6 @ 316 % fsys/fs/cgroup

Jdev/mvmednlp? xfs

3,16 7.6 31% / Adev/mvmednlp? xfs 186 316 7.06 3%/
g i 5N Adev/mmelnl xfs 2,37 176 2.3T 1% /ment/data-1

trofs twpfs 6.26 626 % Jrun/user/1008 e /mmezn xts 2.
[root#ip-172-38-8-185 /] tmpfs topfs 6,26 ? 6,20 9% Srunfuser/1000
e

3T 176 2.37 IN /ent/date-2

172.39.8.18: Mafka nfse
[root®ip-172-30-0-139 /18

4. In jedem der Cluster wurde Broker-1 beendet, um einen fehlgeschlagenen Broker-
Wiederherstellungsprozess auszuldsen.

5. Nachdem der Broker beendet wurde, wurde die Broker-IP-Adresse dem Standby-Broker als sekundare IP
zugewiesen. Dies war notwendig, da ein Broker in einem Kafka-Cluster durch Folgendes identifiziert wird:

o IP-Adresse. Zugewiesen durch Neuzuweisung der ausgefallenen Broker-IP an den Standby-Broker.
° Broker-ID. Dies wurde im Standby-Broker konfiguriert server.properties .
6. Bei der IP-Zuweisung wurde der Kafka-Dienst auf dem Standby-Broker gestartet.

7. Nach einer Weile wurden die Serverprotokolle abgerufen, um die zum Erstellen der Daten auf dem
Ersatzknoten im Cluster bendétigte Zeit zu Uberprfen.

15

Beobachtung

Die Wiederherstellung des Kafka-Brokers war fast neunmal schneller. Die zur Wiederherstellung eines
ausgefallenen Broker-Knotens bendtigte Zeit war bei Verwendung des gemeinsam genutzten NetApp NFS-
Speichers deutlich kirzer als bei Verwendung von DAS-SSDs in einem Kafka-Cluster. Bei 1 TB Themendaten
betrug die Wiederherstellungszeit fir einen DAS-basierten Cluster 48 Minuten, verglichen mit weniger als 5
Minuten fir einen NetApp-NFS-basierten Kafka-Cluster.

Wir haben festgestellt, dass der EC2-basierte Cluster 10 Minuten benétigte, um die 110 GB Daten auf dem
neuen Broker-Knoten wiederherzustellen, wahrend der NFS-basierte Cluster die Wiederherstellung in 3
Minuten abschloss. Wir haben in den Protokollen auch festgestellt, dass die Consumer-Offsets fiir die
Partitionen fur EC2 0 waren, wahrend im NFS-Cluster die Consumer-Offsets vom vorherigen Broker
ubernommen wurden.

[2022-10-31 09:39:17,747] INFO [LogLoader partition=test-topic-51R3EWs-
0000-55, dir=/mnt/kafka-data/broker2] Reloading from producer snapshot and
rebuilding producer state from offset 583999 (kafka.log.UnifiedLog$)
[2022-10-31 08:55:55,170] INFO [LogLoader partition=test-topic-gbVsEZg-
0000-8, dir=/mnt/data-1] Loading producer state till offset 0 with message
format version 2 (kafka.log.UnifiedLog$)

DAS-basierter Cluster

1. Der Sicherungsknoten wurde um 08:55:53.730 gestartet.

12022-10-31 ©08:55:53,661] INFO Setting -D jdk.tls.rejectClientInitiatedRenegotia
[2022-10-31 08:55:53,727] INFO Registered signal handlers for TERM, INT, HUP (ory
[2022-10-31 08:55:53,730] INFO starting (kafka.server.KafkaServer)

[2022-10-31 08:55:53,730] INFO Connecting to zookeeper on 172.30.0.17:2181,172.3!
[?20272-10-31 AR:858:82 7881 TNFN [7nnKeenerllient Kafka caruverl Tnitializina a new

U B WM

2. Der Datenwiederherstellungsprozess endete um 09:05:24.860. Die Verarbeitung von 110 GB Daten
dauerte ungefahr 10 Minuten.

[2022-19-31 @9:05:24,860] INFO [ReplicaFetcherManager on broker 1] Removed fetcher for
partitions HashSet(test-topic-qbVsEZg-8888-95, test-topic-gqbVsEZg-0008-5,
test-topic-qbVsEZg-80@80-41, test-topic-gbVsEZg-0080-23, test-topic-gbVsEZg-0808-11,
test-topic-qbVsEZg-@000-47, test-topic-qbVsEZg-@000-83, test-topic-qbVsEZg-8080-35,
test-topic-qbVsEZg-@080-89, test-topic-qbVsEZg-0000-71, gggj-topic-qb¥5E29-BGBE-53,|
test-topic-qbVsEZg-2080-29, test-topic-qbVsEZg-0000-59, test-topic-gqbVsEZg-@eee-77,
test-topic-qbVsEZg-0080-65, test-topic-qbVsEZg-00008-17)
(kafka.server.ReplicaFetcherManager)

NFS-basierter Cluster

1. Der Backup-Knoten wurde um 09:39:17,213 gestartet. Der Startprotokolleintrag ist unten hervorgehoben.

16

o e

[2022-10-31
[2022-10-31
[2022-10-31
[2022-10-31
[2022-18-31
[2022-10-31
[2022-10-31
[20272-18-321

S~ AW

I R |

©9:39:17,142]
©9:39:17,211]
09:39:17,213]
©9:39:17,214]
©9:39:17,238]
©9:39:17,244]

©9:39:17,244]
na-30:17 244l

INFO
INFO
INFO
INFO
INFO
INFO

INFO
TNFA

PN M M R ENME R RAMA R W J e TR T R R Mg 7 WA M W M M f A

Setting -D jdk.tls. rEJectCllentInltlatedRenegot1at1
Registered signal handlers for TERM, INT, HUP (org.
starting (kafka.server.KafkaServer)

Connecting to zookeeper on 172.30.0.22:2181,172.30.
[ZooKeeperClient Kafka server] Initializing a new s
Client environment:zookeeper.version=3.6.3—6401leda

Client environment:host.name=ip-172-30-0-110.ec2.in
flient envirnnment:iava_versinn=11_08.17 (nrn_anarhe

2. Der Datenwiederherstellungsprozess endete um 09:42:29,115. Die Verarbeitung von 110 GB Daten
dauerte ungefahr 3 Minuten.

[2022-10-31 39:42:25[11'5] INFO {Groupr‘letad;tal':‘lanager brokerId=1] Finished loading offsets

and group metadata from

__consumer_offsets-20 in 28478 milliseconds for epoch 3, of which

28478 milliseconds was spent in the scheduler.
(kafka.coordinator.group.GroupMetadataManager)

Der Test wurde flr Broker mit etwa 1 TB Daten wiederholt, was fir das DAS ungefahr 48 Minuten und fir
NFS 3 Minuten dauerte. Die Ergebnisse sind in der folgenden Grafik dargestellt.

50 minutes

40 minutes

30 mimies

20 minutes

10 minutes

0 minutes

Speichereffizienz

Time Taken for broker Recovery

DAS Based Cluster

MFS Based Cluster

e ——

110GE

1100GB

Data loaded on the broker

Da die Speicherschicht des Kafka-Clusters tber NetApp ONTAP bereitgestellt wurde, konnten wir alle
Speichereffizienzfunktionen von ONTAP nutzen. Dies wurde getestet, indem eine erhebliche Datenmenge auf
einem Kafka-Cluster mit NFS-Speicher generiert wurde, der auf Cloud Volumes ONTAP bereitgestellt wurde.
Wir konnten feststellen, dass es aufgrund der ONTAP -Funktionen zu einer erheblichen Platzreduzierung kam.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration fir einen Kafka-Cluster mit NAS.

17

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 3 x Tierpfleger — t2.small
» 3 x Broker-Server — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge

* 4 x Produzent/Verbraucher —c5n.2xlarge *

Betriebssystem auf allen Knoten RHELS8.7 oder héher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz — M5.2xLarge

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

! AWS Cloud

[l Frivale subnet

Zockionps l]
3 go2
wo mounis for each broker " a—
= =) D _.
il i
: E:[EJ} = L—— D mS5.2xlarge i
| — 10—
‘ oimanca ke 0 i ibasn
B | L {0 —
confiuent katka cluster, B
i3an Zxige EIE; _{} > D —
FreducarCensumar swamm ;]’_’ _if \ _-
a5 Bearge =0
¥ N
OPENMESSAGING CLIENTS 5. 2drge " —
ONTAP

moniforing

* Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgefuhrt wird. Jeder Broker verfugte tber zwei NFS-
Mount-Punkte zu einem einzelnen Volume auf der NetApp CVO-Instanz Uber ein dediziertes LIF.

+ Uberwachung. Wir haben zwei Knoten fiir eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der flr diesen
Kafka-Cluster produzieren und konsumieren konnte.

» Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der
Instanz gemounteten 250 GB GP2 AWS-EBS-Volumes verwendet. Diese Volumes wurden dann tber
dedizierte LIFs als sechs NFS-Volumes dem Kafka-Cluster zuganglich gemacht.

» Konfiguration. Die konfigurierbaren Elemente in diesem Testfall waren die Kafka-Broker.

Die Komprimierung wurde auf der Produzentenseite abgeschaltet, wodurch die Produzenten einen hohen

18

Durchsatz erzielen konnten. Die Speichereffizienz wurde stattdessen von der Rechenschicht ibernommen.

Testmethodik

1. Ein Kafka-Cluster wurde mit den oben genannten Spezifikationen bereitgestellt.
2. Auf dem Cluster wurden mithilfe des OpenMessaging Benchmarking-Tools etwa 350 GB Daten erstellt.

3. Nachdem die Arbeitslast abgeschlossen war, wurden die Statistiken zur Speichereffizienz mithilfe von
ONTAP System Manager und der CLI erfasst.

Beobachtung

Bei Daten, die mit dem OMB-Tool generiert wurden, konnten wir eine Platzersparnis von ca. 33 % bei einem
Speichereffizienzverhaltnis von 1,70:1 feststellen. Wie aus den folgenden Abbildungen hervorgeht, betrug der
von den erzeugten Daten verwendete logische Speicherplatz 420,3 GB und der zum Speichern der Daten
verwendete physische Speicherplatz 281,7 GB.

VMDISK Set Media Cost
263 GiB 644 GiB
USED AND RESERVED AVAILABLE

0% 10% 20% 30% 40% 50% B0% T0% ED% 30% 100%

1.7 to 1 Data Reduction
420 GiB logical used

LE L]

aggrl
263 GiB 644 GiB
USED AND RESERVED AVAILABLE
0% 25% 50% T5% 100%

1.7 to 1 Data Reduction
420 GiB logical used

I0PS: 3 | Latency: 1.00 ms

Throughput: 0.22 MB/s

0 Bytes
S3Bucket

19

shantanuCV0instancenew: :> df -h -S

Warning: The "-S" parameter is deprecated and may be removed in a future release. To show the efficiency ratio use "aggr show-efficiency"”
command .

Filesystem used total-saved %total-saved deduplicated %deduplicated compressed %¥compressed Vserver
/vol/vole/ 7319MB o% o% @% shantanuCvOinstancenew-01
/vol/kafka_vol/ 281GB 33% 33% @% svm_shantanuCVOinstancenew
/vol/svm_shantanuCV0instancenew_root/

660KB o% o% @% svm_shantanuCVOinstancenew
3 entries were displayed.

Name of the Aggregate: aggrl
Node where Aggregate Resides: shantanuCVOinstancenew-01
Total Storage Efficiency Ratio: 1.70:1
Total Data Reduction Efficiency Ratio Without Snapshots: 1.70:1
Total Data Reduction Efficiency Ratio without snapshots and flexclones: 1.70:1
Logical Space Used for ALl Volumes: 420.3GB
Physical Space Used for ALl Volumes: 281.7GB

Leistungsubersicht und -validierung in AWS

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich
seiner Leistung in der AWS-Cloud getestet. Die Benchmarking-Beispiele werden in den
folgenden Abschnitten beschrieben.

Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP
(Hochverfugbarkeitspaar und Einzelknoten)

Ein Kafka-Cluster mit NetApp Cloud Volumes ONTAP (HA-Paar) wurde hinsichtlich seiner Leistung in der
AWS-Cloud getestet. Dieses Benchmarking wird in den folgenden Abschnitten beschrieben.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration fir einen Kafka-Cluster mit NAS.

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 » 3 x Tierpfleger — t2.small
» 3 x Broker-Server — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge

* 4 x Produzent/Verbraucher — c5n.2xlarge *

Betriebssystem auf allen Knoten RHELS8.6

NetApp Cloud Volumes ONTAP Instanz HA-Paarinstanz — m5dn.12xLarge x 2 Knoten
Einzelknoteninstanz — m5dn.12xLarge x 1 Knoten

NetApp Cluster Volume ONTAP Setup

1. Fir das Cloud Volumes ONTAP HA-Paar haben wir zwei Aggregate mit jeweils drei Volumes auf jedem
Aggregat auf jedem Speichercontroller erstellt. Fir den einzelnen Cloud Volumes ONTAP -Knoten erstellen
wir sechs Volumes in einem Aggregat.

20

aggr3

EBS Allocated Capacity: 5.05T8 AWS Disk Size: 278
pacty aggr22
EBS Used Capacity: 298.21 GB Underlying AWS Capacity: 128
EBS Allocated Capacity: 6.73T8 AWS Disk Size: 2718
Volumes: 3 ~ Encryption Type:
EBS Used Capacity: 280.95GB Underlying AWS Capacity: 16TB
kafka_aggr3 vol1 (1 T8)
Home Node: Kafka_nfs_cvo_hal-01
Volumes: 3 ~ Encryption Type:
kafka_aggr3_vol2 (1 T8) eV
Provisioned IOPS: 80000 kafka_aggr22_vol1 (1 T8)
kafka_aggr3_vol3 (1 T8) Home Node: kafka_nfs_cvo_ha1-02
kafka_aggr22 vol2 (1 T8)
Provisioned I0PS: 20000
AWS Disks: 8 4 kafka_aggr22_vol3 (1 TB)
State: online
AWS Disks: 8 v
Underlying AWS Tier: Provisioned |OPS SSD (io1)
State; online

Clos:
Underlying AWS Tier: Provisioned |OPS SSD (io1)
Close

aggr2

EBS Allocated Capacity: 5.327B AWS Disk Size: 278
EBS Used Capacity: 209.90 GB Underlying AWS Capacity: 6TB
Volumes: 6 ~ Encryption Type:

kafka_aggr2 vol2 (1 TB)

Home Node: kafka_nfs_cvo_sn-01
kafka_aggr2 vol3 (1 TB)

Provisioned |OPS: 80000
kafka_aggr2 _vol4 (1 TB)

AWS Disks: 4 v
State: online
Underlying AWS Tier: Provisioned IOPS SSD (io1)

Close

2. Um eine bessere Netzwerkleistung zu erzielen, haben wir Hochgeschwindigkeitsnetzwerke sowohl fir das
HA-Paar als auch fiir den einzelnen Knoten aktiviert.

21

H [T AWS TVIETTagET TTICT yPuroTT

O ¢ © 4 =
i Information

. Support registration

3 8 CAOLOMENNE DT ST O IR R 81

% Bookmaris] orache £ pocoy computer. £33 sick £ meri 3 body katiiing WALIE002 B hwemntha ES) perscral B3
il 53 Storage Classes : [n] -

M NetApp BlueXP
B License

- @:] kafka_nfs_cvo_ha? sige avatasiiey zone
Change instance -
Volumes HA Status Cost Replications
v

v

@ Delete *D Write Speed

- Norrmal

¥

¥ Advanced Daita s wrritten directly to disk, reducing the likelhood of data fass in the event of an unplanned system outage
«il

= High

ta is buffered in memory before it 2 written to ih provides faster wiite perdformance. Due to this cachan
W Ta Duata ts buffered bl sk, which prowides | et ou his cachang.
there is the petential for data loss in the event of an unplanned system outage.

< CIFS setup HE s seped
©@ Configuration backups
* Setpassword

£ Advanced allocation

3. Wir haben festgestellt, dass der ONTAP NVRAM mehr IOPS hatte, also haben wir die IOPS fir das Cloud
Volumes ONTAP Stammvolume auf 2350 geandert. Die Root-Volume-Festplatte in Cloud Volumes ONTAP
hatte eine Groflke von 47 GB. Der folgende ONTAP -Befehl gilt fir das HA-Paar und der gleiche Schritt ist
fur den einzelnen Knoten anwendbar.

22

statistics start -object vnvram -instance vnvram
backing store iops -sample-id sample 555
kafka nfs cvo hal::*> statistics show -sample-id
Object: vnvram
Instance: vnvram
Start-time: 1/18/2023 18:03:11
End-time: 1/18/2023 18:03:13
Elapsed-time: 2s
Scope: kafka nfs cvo hal-01
Counter

backing store iops
Object: vnvram
Instance: vnvram
Start-time: 1/18/2023 18:03:11
End-time: 1/18/2023 18:03:13
Elapsed-time: 2s
Scope: kafka nfs cvo hal-02
Counter

backing store iops
2 entries were displayed.
kafka nfs cvo hal::*>

—counter

sample 555

23

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

Volumes (1/1)

| -Q Search

| Volume ID = vol-023c38a39e599a184 | X | | Clear filters |

Name % | Volume ID v | Type
l boot:kafka_nfs_cvo_hal vol-023c98a39e599a184 iel

v

Size

47 GiB

v

EC2 » Volumes » wvol-023c95a35e59%a184 3 Modify volume

Modify volume .

Modify the type, size, and performance of an EBS volume.

Volume details

Volume 1D

3 wol-023c9823%059% 184 (boot:kafka_nis_cvo_hal)

Volume type Iafa

Provisionad IGPS 550 (iel) v

Size {GiB) tnfo

47

Mirc 4 Gill, Max 16354 GIIL The value rmunt Be an integes
10PS info

2350

#ir: 100 WOPS, M T550 1095 fus

I0PS ¥ | Throughput ¥

Create volume
Modify valume
Create snapshot

Create snapshot lifecycle policy

Detach volume
Force detach volume
Manage auto-enabled 1/O

Manage tags

* Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei

Knoten verwendet, das auf dedizierten Servern ausgefuhrt wird. Jeder Broker verfugte Uber zwei NFS-
Mount-Punkte zu einem einzelnen Volume auf der Cloud Volumes ONTAP Instanz tber ein dediziertes LIF.

+ Uberwachung. Wir haben zwei Knoten fiir eine Prometheus-Grafana-Kombination verwendet. Zum

Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der fir diesen
Kafka-Cluster produzieren und konsumieren konnte.

» Lagerung. Wir haben eine HA-Pair-Cloud-Volumes ONTAP Instanz mit einem auf der Instanz

24

gemounteten 6-TB-GP3-AWS-EBS-Volume verwendet. Anschlielend wurde das Volume mit einem NFS-
Mount zum Kafka-Broker exportiert.

OpenMessage Benchmarking-Konfigurationen

1. FuUr eine bessere NFS-Leistung bendtigen wir mehr Netzwerkverbindungen zwischen dem NFS-Server und
dem NFS-Client, die mit nconnect erstellt werden kdnnen. Mounten Sie die NFS-Volumes auf den Broker-
Knoten mit der Option ,nconnect®, indem Sie den folgenden Befehl ausfiihren:

25

[root@ip-172-30-0-121 ~]# cat /etc/fstab
UUID=eaalf38e-de0f-4ed5-a5b5-2fa9db43bb38/xfsdefaults00
/dev/nvmelnl /mnt/data-1 xfs defaults,noatime,nodiscard 0 0
/dev/nvme2nl /mnt/data-2 xfs defaults,noatime,nodiscard 0 0
172.30.0.233:/kafka aggr3 voll /kafka aggr3 voll nfs
defaults, nconnect=16 0 O

172.30.0.233:/kafka aggr3 vol2 /kafka aggr3 vol2 nfs
defaults, nconnect=16 0 O

172.30.0.233:/kafka aggr3 vol3 /kafka aggr3 vol3 nfs
defaults,nconnect=16 0 O

172.30.0.242:/kafka aggr22 voll /kafka aggr22 voll nfs
defaults, nconnect=16 0 O

172.30.0.242:/kafka aggr22 vol2 /kafka aggr22 vol2 nfs
defaults, nconnect=16 0 0

172.30.0.242:/kafka aggr22 vol3 /kafka aggr22 vol3 nfs
defaults,nconnect=16 0 O

[root@Rip-172-30-0-121 ~]# mount -a

[root@ip-172-30-0-121 ~]# df -h

Filesystem Size Used Avail Use% Mounted on
devtmpfs 31G 0 31G 0% /dev

tmpfs 31G 249M 31G 1% /run

tmpfs 31G 0 31G 0% /sys/fs/cgroup
/dev/nvmeOnlp2 106G 2.8G 7.2G 28% /

/dev/nvmelnl 2.3T 248G 2.1T 11% /mnt/data-1
/dev/nvme2nl 2.3T 245G 2.1T 11% /mnt/data-2
172.30.0.233:/kafka _aggr3 voll 1.0T 12G 1013G 2% /kafka aggr3 voll
172.30.0.233:/kafka aggr3 vol2 1.0T 5.5G 1019G % /kafka aggr3 vol2
172.30.0.233:/kafka aggr3 vol3 1.0T 8.9G 1016G % /kafka aggr3 vol3
172.30.0.242:/kafka aggr22 voll 1.0T 7.3G 1017G %

/kafka aggr22 voll

172.30.0.242:/kafka aggr22 vol2 1.0T 6.9G 1018G 1%

/kafka aggr22 vol2

172.30.0.242:/kafka _aggr22 vol3 1.0T 5.9G 1019G 1%

/kafka aggr22 vol3

tmpfs 6.2G 0 6.2G 0% /run/user/1000

[root@ip-172-30-0-121 ~1#

2. Uberpriifen Sie die Netzwerkverbindungen in Cloud Volumes ONTAP. Der folgende ONTAP -Befehl wird

26

vom einzelnen Cloud Volumes ONTAP Knoten verwendet. Derselbe Schritt gilt fir das Cloud Volumes
ONTAP HA-Paar.

Last login time: 1/20/2023 00:16:29
kafka nfs cvo sn::> network connections active show -service nfs*
-fields remote-host

node cid vserver remote-host

kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01
kafka nfs cvo sn-01

2315762628
2315762629
2315762630
2315762631
2315762632
2315762633
2315762634
2315762635
2315762636
2315762637
2315762639
2315762640
2315762641
2315762642
2315762643
2315762644
2315762645
2315762646
2315762647
2315762648
2315762649
2315762650
2315762651
2315762652
2315762653
2315762656
2315762657
2315762658
2315762659
2315762660
2315762661
2315762662
2315762663
2315762664
2315762665
2315762666
2315762667
2315762668
2315762669
2315762670
2315762671
2315762672
2315762673
2315762674
2315762676

svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm _kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm _kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm _kafka nfs cvo sn
svm _kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svmm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svim _kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_ kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn
svm_kafka nfs cvo sn
svm kafka nfs cvo sn
svm kafka nfs cvo sn

svm_kafka nfs cvo sn

O o o o o o o o o o o

.223
.223
.121

27

3.

28

kafka nfs cvo sn-01 2315762677 svm kafka nfs cvo sn 172.30.0.223
kafka nfs cvo sn-01 2315762678 svm kafka nfs cvo sn 172.30.0.223
kafka nfs cvo sn-01 2315762679 svm kafka nfs cvo sn 172.30.0.223
48 entries were displayed.

kafka nfs cvo sn::>

Wir verwenden folgende Kafka server.properties in allen Kafka-Brokern fur das Cloud Volumes
ONTAP HA-Paar. Der 1o0g.dirs Die Eigenschaft ist fur jeden Broker unterschiedlich und die tbrigen
Eigenschaften sind fur alle Broker gleich. Fir Broker1 ist die 1og.dirs Der Wert lautet wie folgt:

[root@ip-172-30-0-121 ~]1# cat /opt/kafka/config/server.properties
broker.id=0

advertised.listeners=PLAINTEXT://172.30.0.121:9092
#log.dirs=/mnt/data-1/d1l, /mnt/data-1/d2, /mnt/data-1/d3, /mnt/data-
2/dl, /mnt/data-2/d2, /mnt/data-2/d3

log.dirs=/kafka aggr3 voll/brokerl,/kafka aggr3 vol2/brokerl, /kafka aggr
3 vol3/brokerl, /kafka aggr22 voll/brokerl, /kafka aggr22 vol2/brokerl, /ka
fka aggr22 vol3/brokerl
zookeeper.connect=172.30.0.12:2181,172.30.0.30:2181,172.30.0.178:2181
num.network.threads=64

num.io.threads=64

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

num.partitions=1

num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

replica.fetch.max.bytes=524288000

background. threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

[root@ip-172-30-0-121 ~1#

° Fur Broker2 ist die 1og.dirs Der Eigenschaftswert lautet wie folgt:

log.dirs=/kafka aggr3 voll/broker2,/kafka aggr3 vol2/broker2,/kafka a
ggr3 vol3/broker2, /kafka aggr22 voll/broker2,/kafka aggr22 vol2/broke
r2,/kafka _aggr22 vol3/broker?2

° Fur Broker3 ist die 1og.dirs Der Eigenschaftswert lautet wie folgt:

log.dirs=/kafka aggr3 voll/broker3, /kafka aggr3 vol2/broker3, /kafka a
ggr3 vol3/broker3, /kafka aggr22 voll/broker3, /kafka aggr22 vol2/broke
r3,/kafka aggr22 vol3/broker3

4. Fur den einzelnen Cloud Volumes ONTAP -Knoten: Der Kafka servers.properties ist das gleiche wie
fur das Cloud Volumes ONTAP HA-Paar, auller der 1og.dirs Eigentum.

° Fur Broker1 ist die 1og.dirs Der Wert lautet wie folgt:

log.dirs=/kafka aggr2 voll/brokerl,/kafka aggr2 vol2/brokerl,/kafka a
ggr2 vol3/brokerl, /kafka aggr2 vold/brokerl, /kafka aggr2 vol5/brokerl
,/kafka aggr2 volé/brokerl

° FUr Broker2 ist die 1og.dirs Der Wert lautet wie folgt:

log.dirs=/kafka aggr2 voll/broker2,/kafka aggr2 vol2/broker2,/kafka a
ggr2 vol3/broker2, /kafka aggr2 vold/broker2, /kafka aggr2 vol5/broker?2
,/kafka aggr2 volé6/broker2

° Fur Broker3 ist die 1og.dirs Der Eigenschaftswert lautet wie folgt:

log.dirs=/kafka aggr2 voll/broker3,/kafka aggr2 vol2/broker3,/kafka a
ggr2 vol3/broker3, /kafka aggr2 vold4/broker3, /kafka aggr2 vol5/broker3
,/kafka aggr2 volé/broker3

5. Die Arbeitslast im OMB ist mit den folgenden Eigenschaften konfiguriert:
(/opt/benchmark/workloads/l-topic-100-partitions-1kb.yaml) .

topics: 4
partitionsPerTopic: 100
messageSize: 32768
useRandomizedPayloads: true
randomBytesRatio: 0.5
randomizedPayloadPoolSize: 100
subscriptionsPerTopic: 1
consumerPerSubscription: 80
producersPerTopic: 40
producerRate: 1000000
consumerBacklogSizeGB: 0

testDurationMinutes: 5

Der messageSize kann je nach Anwendungsfall unterschiedlich sein. In unserem Leistungstest haben wir

29

30

3K verwendet.

Wir haben zwei verschiedene Treiber, Sync oder Throughput, von OMB verwendet, um die Arbeitslast auf
dem Kafka-Cluster zu generieren.

o Die fir die Sync-Treibereigenschaften verwendete YAML-Datei lautet wie folgt
(/opt/benchmark/driver- kafka/kafka-sync.yaml) :

name: Kafka
driverClass:
io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver
Kafka client-specific configuration
replicationFactor: 3
topicConfig: |

min.insync.replicas=2

flush.messages=1

flush.ms=0

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909
2
producerConfig: |
acks=all
linger.ms=1
batch.size=1048576
consumerConfig: |
auto.offset.reset=earliest
enable.auto.commit=false
max.partition.fetch.bytes=10485760

o Die fur die Durchsatztreibereigenschaften verwendete YAML-Datei lautet wie folgt
(/opt/benchmark/driver- kafka/kafka-throughput.yaml) :

name: Kafka
driverClass:
io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver
Kafka client-specific configuration
replicationFactor: 3
topicConfig: |

min.insync.replicas=2

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909
2
default.api.timeout.ms=1200000
request.timeout.ms=1200000
producerConfig: |
acks=all
linger.ms=1
batch.size=1048576
consumerConfig: |
auto.offset.reset=earliest
enable.auto.commit=false
max.partition.fetch.bytes=10485760

Testmethodik

1. Ein Kafka-Cluster wurde gemaf der oben beschriebenen Spezifikation mit Terraform und Ansible
bereitgestellt. Terraform wird verwendet, um die Infrastruktur mithilfe von AWS-Instanzen fir den Kafka-
Cluster aufzubauen, und Ansible baut den Kafka-Cluster darauf auf.

2. Mit der oben beschriebenen Workload-Konfiguration und dem Sync-Treiber wurde eine OMB-Workload
ausgelost.

Sudo bin/benchmark -drivers driver-kafka/kafka- sync.yaml workloads/1-
topic-100-partitions-1kb.yaml

3. Mit dem Throughput-Treiber wurde eine weitere Workload mit derselben Workload-Konfiguration ausgeldst.

sudo bin/benchmark -drivers driver-kafka/kafka-throughput.yaml
workloads/1l-topic-100-partitions-1kb.yaml

Beobachtung
Zum Generieren von Workloads wurden zwei verschiedene Treibertypen verwendet, um die Leistung einer auf

NFS laufenden Kafka-Instanz zu vergleichen. Der Unterschied zwischen den Treibern liegt in der Log-Flush-
Eigenschaft.

31

Fir ein Cloud Volumes ONTAP HA-Paar:

» Gesamtdurchsatz, der durchgangig vom Sync-Treiber generiert wird: ~1236 MBps.

» Gesamtdurchsatz, der fur den Durchsatztreiber generiert wurde: Spitze ~1412 MBps.
Fir einen einzelnen Cloud Volumes ONTAP Knoten:

» Gesamtdurchsatz, der durchgangig vom Sync-Treiber generiert wird: ~ 1962 MBps.

* Gesamtdurchsatz, der vom Durchsatztreiber generiert wird: Spitze ~1660 MBps

Der Sync-Treiber kann einen konsistenten Durchsatz generieren, da Protokolle sofort auf die Festplatte
geschrieben werden, wahrend der Throughput-Treiber Durchsatzschiibe generiert, da Protokolle in grof3en
Mengen auf die Festplatte geschrieben werden.

Diese Durchsatzzahlen werden flr die jeweilige AWS-Konfiguration generiert. Bei héheren
Leistungsanforderungen kénnen die Instanztypen hochskaliert und flr bessere Durchsatzzahlen weiter
optimiert werden. Der Gesamtdurchsatz oder die Gesamtrate ist die Kombination aus Produzenten- und
Verbraucherrate.

CVO — HA Pair : Throughput driver CVO — HA Pair : Sync driver
(Higher is better) (Higher is better)
1600 1400 1263
100 1340 14132 1236
1200
1200
E 500 Eg: 1000
& & 800
S a0 670 706 g70 706 = 652 B4 612 592
2 s 2 &00
L 2 400
200 200
o 4]
Producer Rate Consumer rate Total rate Producer Rate Consumer rabe Total rate
WEC2 - Throughput = CVOD - HA - Throughtput WEC2- sync driver ®CVO - HA - Sync
CVO - Single Node : Throughput driver CVO - Single Node : Sync driver
(Higher is better) (Higher is better)
1800 2500
1600
1962
1400 1340 2 2000
g 1200 g i
< il £ 1500
g 1000 830 830 E 1263
. 800 670 670 E ame 981 981
[: W 3
5 600 5 652 612
400 ' 500
0 4]
Producer Rate Consumer rate Total rate Producer Rate Consumer rabe Total rate
WEC2-Throughput ®CVO - SN - Throughput [mEc2-syncdriver wovo-sn-syne |

Uberpriifen Sie unbedingt den Speicherdurchsatz, wenn Sie ein Durchsatz- oder Synchronisierungstreiber-
Benchmarking durchfihren.

32

e

Performance
Haur Day Week Month Year
Latency 2.99 ms
4
2
4] L A
19:00 19:15 19:30 19:45
IOPS 32.16k
75k
50k
25k
i
19:00 19:15 19:30 19:45
Throughput 1,906.55 MB/s
Ak
2k
li]
19:15 19:30 19:45

19:00

Leistungsubersicht und -validierung in AWS FSx ONTAP

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich

seiner Leistung im AWS FSx ONTAP getestet. Die Benchmarking-Beispiele werden in

den folgenden Abschnitten beschrieben.

33

Apache Kafka in AWS FSx ONTAP

Network File System (NFS) ist ein weit verbreitetes Netzwerkdateisystem zum Speichern grof3er
Datenmengen. In den meisten Organisationen werden Daten zunehmend durch Streaming-Anwendungen wie
Apache Kafka generiert. Diese Workloads erfordern Skalierbarkeit, geringe Latenz und eine robuste
Datenaufnahmearchitektur mit modernen Speicherfunktionen. Um Echtzeitanalysen zu ermoglichen und
umsetzbare Erkenntnisse zu liefern, ist eine gut konzipierte und hochleistungsfahige Infrastruktur erforderlich.

Kafka arbeitet konstruktionsbedingt mit POSIX-kompatiblen Dateisystemen und verlasst sich bei der
Verarbeitung von Dateivorgéngen auf das Dateisystem. Beim Speichern von Daten auf einem NFSv3-
Dateisystem kann der NFS-Client des Kafka-Brokers Dateivorgange jedoch anders interpretieren als ein
lokales Dateisystem wie XFS oder Ext4. Ein haufiges Beispiel ist die NFS Silly-Umbenennung, die zum Ausfall
von Kafka-Brokern beim Erweitern von Clustern und Neuzuordnen von Partitionen fuhrte. Um diese
Herausforderung zu bewaltigen, hat NetApp den Open-Source-Linux-NFS-Client mit Anderungen aktualisiert,
die jetzt allgemein in RHEL8.7 und RHEL9.1 verfiigbar sind und ab der aktuellen FSx ONTAP Version ONTAP
9.12.1 unterstitzt werden.

Amazon FSx ONTAP bietet ein vollstandig verwaltetes, skalierbares und leistungsstarkes NFS-Dateisystem in
der Cloud. Kafka-Daten auf FSx ONTAP konnen skaliert werden, um groRe Datenmengen zu verarbeiten und
Fehlertoleranz zu gewahrleisten. NFS bietet zentrales Speichermanagement und Datenschutz fur kritische und
sensible Datensatze.

Diese Verbesserungen ermdglichen es AWS-Kunden, die Vorteile von FSx ONTAP zu nutzen, wenn sie Kafka-
Workloads auf AWS-Rechendiensten ausfliihren. Diese Vorteile sind: * Reduzierung der CPU-Auslastung zur
Verkirzung der E/A-Wartezeit * Schnellere Wiederherstellungszeit des Kafka-Brokers. * Zuverlassigkeit und
Effizienz. * Skalierbarkeit und Leistung. * Verfligbarkeit in mehreren Verfigbarkeitszonen. * Datenschutz.

Leistungsiibersicht und -validierung in AWS FSx ONTAP

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich seiner Leistung in der
AWS-Cloud getestet. Die Benchmarking-Beispiele werden in den folgenden Abschnitten beschrieben.

Kafka in AWS FSx ONTAP

Ein Kafka-Cluster mit AWS FSx ONTAP wurde hinsichtlich seiner Leistung in der AWS-Cloud getestet. Dieses
Benchmarking wird in den folgenden Abschnitten beschrieben.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration fir einen Kafka-Cluster mit AWS FSx ONTAP.

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 » 3 x Tierpfleger — t2.small
» 3 x Broker-Server — i3en.2xlarge
* 1 x Grafana — c5n.2xlarge

* 4 x Produzent/Verbraucher — c5n.2xlarge *

Betriebssystem auf allen Knoten RHELS8.6
AWS FSx ONTAP Multi-AZ mit 4 GB/Sek. Durchsatz und 160.000 IOPS

34

NetApp FSx ONTAP Setup

1. Fur unsere ersten Tests haben wir ein FSx ONTAP Dateisystem mit 2 TB Kapazitat und 40.000 IOPs fur
einen Durchsatz von 2 GB/s erstellt.

[root@ip-172-31-33-69 ~]# aws fsx create-file-system --region us-east-2
--storage-capacity 2048 --subnet-ids <desired subnet 1> subnet-<desired
subnet 2> --file-system-type ONTAP --ontap-configuration
DeploymentType=MULTI AZ HA 1, ThroughputCapacity=2048, PreferredSubnetId=<
desired primary subnet>, FsxAdminPassword=<new

password>, DiskIopsConfiguration="{Mode=USER PROVISIONED, Iops=40000"}

In unserem Beispiel stellen wir FSx ONTAP Uber die AWS CLI bereit. Sie missen den Befehl in |hrer
Umgebung nach Bedarf weiter anpassen. FSx ONTAP kann zuséatzlich Uber die AWS-Konsole
bereitgestellt und verwaltet werden, um eine einfachere und optimierte Bereitstellung mit weniger
Befehlszeileneingaben zu ermoglichen.

Dokumentation: In FSx ONTAP betragt der maximal erreichbare IOPS-Wert fir ein Dateisystem mit 2 GB/s
Durchsatz in unserer Testregion (US-Ost-1) 80.000 IOPS. Die maximalen Gesamt-IOPS fur ein FSx
ONTAP -Dateisystem betragen 160.000 IOPS. Um dies zu erreichen, ist eine Bereitstellung mit einem
Durchsatz von 4 GB/s erforderlich, was wir spater in diesem Dokument demonstrieren werden.

Weitere Informationen zu den Leistungsspezifikationen von FSx ONTAP finden Sie hier in der AWS FSx
ONTAP -Dokumentation: https://docs.aws.amazon.com/fsx/latest/ ONTAPGuide/performance.html .

Eine detaillierte Befehlszeilensyntax fur FSx ,create-file-system® finden Sie hier:
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

Sie kénnen beispielsweise einen bestimmten KMS-Schlissel angeben, im Gegensatz zum
standardmaRigen AWS FSx-Hauptschlissel, der verwendet wird, wenn kein KMS-Schliissel angegeben
ist.

2. Warten Sie beim Erstellen des FSx ONTAP Dateisystems, bis sich der Status ,LifeCycle” in Ihrer JSON-
Rickgabe in ,AVAILABLE" andert, nachdem Sie |hr Dateisystem wie folgt beschrieben haben:

[root@ip-172-31-33-69 ~]# aws fsx describe-file-systems --region us-
east-1 --file-system-ids fs-02ff04bab5cellcic

3. Bestatigen Sie die Anmeldeinformationen, indem Sie sich mit dem Benutzer fsxadmin bei FSx ONTAP
SSH anmelden: Fsxadmin ist das Standardadministratorkonto fiir FSx ONTAP Dateisysteme bei der
Erstellung. Das Kennwort fir fsxadmin ist das Kennwort, das beim ersten Erstellen des Dateisystems
entweder in der AWS-Konsole oder mit der AWS CLI konfiguriert wurde, wie wir es in Schritt 1
abgeschlossen haben.

35

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

4.

6.

36

[root@ip-172-31-33-69 ~]# ssh fsxadmin@198.19.250.244

The authenticity of host '198.19.250.244 (198.19.250.244)"' can't be
established.

ED25519 key fingerprint is

SHA256 :mgCyRXJfWRc2d/jOjFbMBsUcYOW xoIky0ltHVVDL/Y.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '198.19.250.244' (ED25519) to the list of
known hosts.

(fsxadmin@198.19.250.244) Password:

This is your first recorded login.

Sobald Ihre Anmeldeinformationen validiert wurden, erstellen Sie die virtuelle Speichermaschine auf dem
FSx ONTAP Dateisystem

[root@ip-172-31-33-69 ~]# aws fsx --region us-east-1 create-storage-
virtual-machine --name svmkafkatest --file-system-id fs-
02ff04babbcellc7c

Eine Storage Virtual Machine (SVM) ist ein isolierter Dateiserver mit eigenen
Administratoranmeldeinformationen und Endpunkten zum Verwalten und Zugreifen auf Daten in FSx
ONTAP Volumes und bietet FSx ONTAP Multi-Tenancy.

. Nachdem Sie lhre primare Storage Virtual Machine konfiguriert haben, greifen Sie per SSH auf das neu

erstellte FSx ONTAP Dateisystem zu und erstellen Sie Volumes in der Storage Virtual Machine mit dem
folgenden Beispielbefehl. Auf ahnliche Weise erstellen wir 6 Volumes flr diese Validierung. Behalten Sie
basierend auf unserer Validierung die Standardkomponente (8) oder weniger Komponenten bei, was zu
einer besseren Leistung von Kafka fuhrt.

FsxId02ff04bab5cellc7c::*> volume create -volume kafkafsxNl -state
online -policy default -unix-permissions ---rwxr-xr-x —-junction-active
true -type RW -snapshot-policy none -junction-path /kafkafsxN1l -aggr
-list aggrl

Fir unsere Tests bendtigen wir zusatzliche Kapazitaten in unseren Volumina. Erweitern Sie die Grof3e des
Volumes auf 2 TB und mounten Sie es auf dem Verbindungspfad.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxNl -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxN1" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN2 -new-size +2TB
vol size: Volume "svmkafkatest:kafkafsxN2" size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN3 -new-size +2TB

vol size: Volume

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN4
"svmkafkatest:kafkafsxN4"

vol size: Volume

"svmkafkatest:kafkafsxN3"

size set to 2.10t.

-new-size +2TB

size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN5 -new-size +2TB

vol size: Volume

"svmkafkatest:kafkafsxN5H"

size set to 2.10t.

FsxId02ff04bab5cellc7c: :*> volume size -volume kafkafsxN6 -new-size +2TB

vol size: Volume

FsxId02ff04bab5cellc7c: :*> volume

Vserver Volume

Available Used$%

svimkafkatest
kafkafsxN1
1.99TB 0%
svimkafkatest
kafkafsxN2
1.99TB 0%
svmkafkatest
kafkafsxN3
1.99TB 0%
svmkafkatest
kafkafsxN4
1.99TB 0%
svimkafkatest
kafkafsxN5
1.99TB 0%
svmkafkatest
kafkafsxN6
1.99TB 0%
svmkafkatest

Aggregate

svmkafkatest root

968.1MB 0%

aggrl

7 entries were displayed.

FsxId02ff04bab5cellc7c: :*> volume

-path /kafkafsxN1

"svmkafkatest:kafkafsxNo"

size set to 2.10t.

show -vserver svmkafkatest -volume *

State

online

online

online

online

online

online

online

Type

RW

RW

RW

RW

RW

RW

RW

Size

2.10TB

2.10TB

2.10TB

2.10TB

2.10TB

2.10TB

1GB

mount -volume kafkafsxNl -junction

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN2 -junction

-path /kafkafsxN2

38

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN3 -junction
-path /kafkafsxN3

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN4 -junction
-path /kafkafsxN4

FsxId02ff04bab5cellc7c::*> volume mount -volume kafkafsxN5 -junction
-path /kafkafsxN5

FsxId02ff04bab5cellc7/c::*> volume mount -volume kafkafsxN6 —-junction
-path /kafkafsxN6

In FSx ONTAP kénnen Volumes per Thin Provisioning bereitgestellt werden. In unserem Beispiel tGbersteigt
die Gesamtkapazitat des erweiterten Volumes die Gesamtkapazitat des Dateisystems. Daher missen wir
die Gesamtkapazitat des Dateisystems erweitern, um zusatzliche bereitgestellte Volumekapazitat
freizugeben, was wir im nachsten Schritt demonstrieren werden.

. Als nachstes erweitern wir fir zusatzliche Leistung und Kapazitat die FSx ONTAP Durchsatzkapazitat von

2 GB/Sek. auf 4 GB/Sek. und IOPS auf 160000 und die Kapazitat auf 5 TB

[root@ip-172-31-33-69 ~]# aws fsx update-file-system --region us-east-1
--storage-capacity 5120 --ontap-configuration
'ThroughputCapacity=4096,DiskIopsConfiguration={Mode=USER PROVISIONED, Io
ps=160000}" --file-system-id fs-02ff04bab5cellc7c

Eine detaillierte Befehlszeilensyntax fur FSx ,update-file-system* finden Sie
hier:https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html[]

. Die FSx ONTAP -Volumes werden mit nconnect und Standardoptionen in Kafka-Brokern gemountet

Das folgende Bild zeigt unsere endgliltige Architektur eines auf FSx ONTAP basierenden Kafka-Clusters:

Private subngl
Zookespat _ _} t2.smail
| mnxr.-:le; I'::a: aach baokir _\\
L S ——
fa |)

1 E ‘. I
{___‘-———__|...,,,,.,.;:;‘--——_,_= E. ! | = Amazon FSx
. e L m= for MetApp ONTAP
| Sl | L

L, = ! \ P ————
: WL{ FS¥a

- Kalka clus) i
— Iﬁimr;-:.:?;.m EE‘I% e adi J/
. - r
Predusnt Oonsienss swarem — L8
Son2dange I
OPENMESSAGING CLIENTS l EETy }
B |
montonng

o Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgefihrt wird. Jeder Broker hatte sechs NFS-Mount-
Punkte fur sechs Volumes auf der FSx ONTAP Instanz.

> Uberwachung. Wir haben zwei Knoten fiir eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der fir
diesen Kafka-Cluster produzieren und verbrauchen konnte.

o Lagerung. Wir haben ein FSx ONTAP mit sechs gemounteten 2-TB-Volumes verwendet. Das Volume
wurde dann mit einem NFS-Mount zum Kafka-Broker exportiert. Die FSx ONTAP Volumes werden mit
16 Nconnect-Sitzungen und Standardoptionen in Kafka-Brokern gemountet.

OpenMessage-Benchmarking-Konfigurationen.

Wir haben dieselbe Konfiguration verwendet, die fir die NetApp Cloud Volumes ONTAP verwendet wurde. Die
Details dazu finden Sie hier: Link:kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-

setup

Testmethodik

1. Ein Kafka-Cluster wurde gemal’ der oben beschriebenen Spezifikation mithilfe von Terraform und Ansible
bereitgestellt. Terraform wird verwendet, um die Infrastruktur mithilfe von AWS-Instanzen fir den Kafka-
Cluster aufzubauen, und Ansible erstellt den Kafka-Cluster darauf.

2. Mit der oben beschriebenen Workload-Konfiguration und dem Sync-Treiber wurde eine OMB-Workload
ausgelost.

sudo bin/benchmark -drivers driver-kafka/kafka-sync.yaml workloads/1l-

topic-100-partitions-1kb.yaml

3. Mit dem Throughput-Treiber wurde eine weitere Workload mit derselben Workload-Konfiguration ausgeldst.

39

sudo bin/benchmark -drivers driver-kafka/kafka-throughput.yaml
workloads/1l-topic-100-partitions-1kb.yaml

Beobachtung

Zum Generieren von Workloads wurden zwei verschiedene Treibertypen verwendet, um die Leistung einer auf
NFS laufenden Kafka-Instanz zu vergleichen. Der Unterschied zwischen den Treibern liegt in der Log-Flush-
Eigenschaft.

Fur einen Kafka-Replikationsfaktor 1 und den FSx ONTAP:

» Gesamtdurchsatz, der durchgangig vom Sync-Treiber generiert wird: ~ 3218 MBps und Spitzenleistung bei
~ 3652 MBps.

* Gesamtdurchsatz, der durchgangig vom Durchsatztreiber generiert wird: ~ 3679 MBps und Spitzenleistung
bei ~ 3908 MBps.

Fir Kafka mit Replikationsfaktor 3 und FSx ONTAP :

* Gesamtdurchsatz, der durchgangig vom Sync-Treiber generiert wird: ~ 1252 MBps und Spitzenleistung bei
~ 1382 MBps.

* Gesamtdurchsatz, der durch den Durchsatztreiber konstant generiert wird: ~ 1218 MBps und
Spitzenleistung bei ~ 1328 MBps.

Beim Kafka-Replikationsfaktor 3 erfolgte der Lese- und Schreibvorgang dreimal auf dem FSx ONTAP. Beim
Kafka-Replikationsfaktor 1 erfolgt der Lese- und Schreibvorgang einmal auf dem FSx ONTAP, sodass wir bei
beiden Validierungen den maximalen Durchsatz von 4 GB/s erreichen konnten.

Der Sync-Treiber kann einen konsistenten Durchsatz generieren, da Protokolle sofort auf die Festplatte
geschrieben werden, wahrend der Throughput-Treiber Durchsatzschiibe generiert, da Protokolle in grof3en
Mengen auf die Festplatte geschrieben werden.

Diese Durchsatzzahlen werden fur die jeweilige AWS-Konfiguration generiert. Bei héheren
Leistungsanforderungen kénnen die Instanztypen hochskaliert und flir bessere Durchsatzzahlen weiter
optimiert werden. Der Gesamtdurchsatz oder die Gesamtrate ist die Kombination aus Produzenten- und
Verbraucherrate.

Performance : Kafka RF : 1 Performance : Kafka RF : 3
A500 1800
4000 3508 — o0 1328 1382
3500 1300
” .
§ 3000 3:1 1004
o 2500 =
. 1997 g5 1911 1836 2 s 565 692 ey 690
z o
3 1%00 & 0
1000 4w
S00 200
o o
Producer Rate Consumer raie Total rate Producer Rate Consumer rate Tota rate
B FSe for NetApp ONTAP - Throughtput B FSx for Netipp ONTAP - Sync driver W FSx for MetApp ONTAP - Throwghtput B FSx for MetApp ONTAP - Sync driver

Das folgende Diagramm zeigt die Leistung von 2 GB/s fur FSx ONTAP und 4 GB/s fur den Kafka-
Replikationsfaktor 3. Der Replikationsfaktor 3 fiihrt den Lese- und Schreibvorgang dreimal auf dem FSx

40

ONTAP Speicher aus. Die Gesamtrate flr den Durchsatztreiber betragt 881 MB/s, was Lese- und
Schreibvorgange fur Kafka mit ungefahr 2,64 GB/s auf dem FSx ONTAP Dateisystem mit 2 GB/s ausfuhrt, und
die Gesamtrate fur den Durchsatztreiber betragt 1328 MB/s, was Lese- und Schreibvorgange fur Kafka mit
ungefahr 3,98 GB/s ausfiihrt. Die Kafka-Leistung ist linear und basierend auf dem FSx ONTAP Durchsatz

skalierbar.

Kafka Performance : Throughput driver Kafka Performance : Sync driver

2000 2500
@ 1500 1328 et 2200
@ - e B
= e = 1500 1382 .
g 1000 881 .. @
B 3 1000
= =

a o
2 GRfsec 4 GB/Sec 2 GB/Sec 4 GB/Sec

FSx for NetApp ONTAP Filesystern Thoughput FSx for NetApp ONTAP Filesystem Thoughput

Das folgende Diagramm zeigt die Leistung zwischen EC2-Instanz und FSx ONTAP (Kafka-Replikationsfaktor:

Throughput Driver - MB/Sec Sync Driver - MB/Sec
1600 1600
1395
1400 1771 1400 1263
1300 1200
:_.l o
& 1000 1000
o m
Z 300 E 200 gep 97 TG 698
a D.I
= 600 m 600
o o
400 A0
200 200
o o
Producer Rate Consumer rate Total rate 1 2 3
M EC2 - Throug hput m F5x for NetApp ONTAP - Throughtput S ECZ- sync driver B FSx for NetApp ONTAP - Sync driver

Leistungsubersicht und Validierung mit AFF A900 vor Ort

Vor Ort haben wir den NetApp AFF A900 Speichercontroller mit ONTAP 9.12.1RC1
verwendet, um die Leistung und Skalierung eines Kafka-Clusters zu validieren. Wir
haben dasselbe Testbed wie bei unseren vorherigen Best Practices fur Tiered Storage
mit ONTAP und AFF verwendet.

Zur Evaluierung des AFF A900 haben wir Confluent Kafka 6.2.0 verwendet. Der Cluster verfiigt tiber acht
Broker-Knoten und drei Zookeeper-Knoten. Fur Leistungstests haben wir finf OMB-Workerknoten verwendet.

41

AS00 with 24 x 1.75 TB
58Ds

= 7\ S . 100GbE
F
== 10GbE
e Network

Confluent Nodes = Confluent brokers

Grafana I Icunﬂuantmnlmlcentgf

Wir haben NetApp FlexGroups-Instanzen verwendet, um einen einzigen Namespace flr
Protokollverzeichnisse bereitzustellen und so die Wiederherstellung und Konfiguration zu vereinfachen. Wir
haben NFSv4.1 und pNFS verwendet, um einen direkten Pfadzugriff auf die Daten des Protokollsegments zu
ermdglichen.

Storage-Konfiguration

Client-Tuning

Jeder Client hat die FlexGroup -Instanz mit dem folgenden Befehl gemountet.

mount -t nfs -o vers=4.1,nconnect=16 172.30.0.121:/kafka volO1l
/data/kafka vol01l

Daruber hinaus erhohten wir die max session slots’ von der Standardeinstellung 64 Zu 180 . Dies
entspricht dem Standardlimit fur Sitzungsslots in ONTAP.

Kafka-Broker-Tuning

Um den Durchsatz im Testsystem zu maximieren, haben wir die Standardparameter fiir bestimmte wichtige
Thread-Pools deutlich erhéht. Wir empfehlen, fir die meisten Konfigurationen die Best Practices von Confluent
Kafka zu befolgen. Diese Optimierung wurde verwendet, um die Parallelitat ausstehender E/A-Vorgange zum
Speicher zu maximieren. Diese Parameter kdnnen angepasst werden, um den Rechenressourcen und
Speicherattributen lhres Brokers zu entsprechen.

42

num.io.threads=96
num.network.threads=96
background.threads=20
num.replica.alter.log.dirs.threads=40
num.replica.fetchers=20
queued.max.requests=2000

Testmethodik fiir Workload-Generatoren

Wir haben fur den Durchsatztreiber und die Themenkonfiguration dieselben OMB-Konfigurationen wie fir
Cloud-Tests verwendet.

1. Eine FlexGroup -Instanz wurde mit Ansible auf einem AFF Cluster bereitgestellit.

43

- name: Set up kafka broker processes
hosts: localhost
vars:
ntap hostname: 'hostname'
ntap username: 'user'
ntap password: 'password'
size: 10
size unit: tb
vserver: vsl
state: present
https: true
export policy: default
volumes:
- name: kafka fg volOl
aggr: ["aggrl a", "aggr2 a", "aggrl b", "aggr2 b"]
path: /kafka fg volOl
tasks:
- name: Edit volumes
netapp.ontap.na ontap volume:
state: "{{ state }}I"
name: "{{ item.name }}"
aggr list: "{{ item.aggr }}"
aggr list multiplier: 8

size: "{{ size }}"
size unit: "{{ size unit }}"
vserver: "{{ vserver }}"

snapshot policy: none

export policy: default

junction path: "{{ item.path }}"
gos_policy group: none

wait for completion: True

hostname: "{{ ntap hostname }}"
username: "{{ ntap username }}"
password: "{{ ntap password }}"

https: "{{ https }}"
validate certs: false
connection: local

with items: "{{ volumes }}"

2. pNFS wurde auf dem ONTAP SVM aktiviert.

vserver modify -vserver vsl -v4.l-pnfs enabled -tcp-max-xfer-size 262144

44

3. Die Arbeitslast wurde mit dem Throughput-Treiber ausgeldst, wobei dieselbe Arbeitslastkonfiguration wie
fur Cloud Volumes ONTAP verwendet wurde. Siehe Abschnitt "Steady-State-Leistung " unten. Die
Arbeitslast verwendete einen Replikationsfaktor von 3, was bedeutet, dass drei Kopien der
Protokollsegmente in NFS verwaltet wurden.

sudo bin/benchmark --drivers driver-kafka/kafka-throughput.yaml
workloads/l-topic-100-partitions-1kb.yaml

4. AbschlieRend haben wir Messungen mithilfe eines Riickstands durchgefiihrt, um die Fahigkeit der
Verbraucher zu messen, die neuesten Nachrichten nachzuholen. OMB baut einen Rickstand auf, indem
es Verbraucher zu Beginn einer Messung anhalt. Dadurch entstehen drei verschiedene Phasen: die
Erstellung eines Rickstands (Verkehr nur fur Produzenten), der Abbau des Rickstands (eine Phase mit
vielen Konsumenten, in der Konsumenten verpasste Ereignisse zu einem Thema nachholen) und der
stationare Zustand. Siehe Abschnitt "Extreme Leistung und Ausloten der Speichergrenzen " fur weitere
Informationen.

Steady-State-Leistung

Wir haben die AFF A900 mithilfe des OpenMessaging Benchmarks bewertet, um einen ahnlichen Vergleich
wie fir Cloud Volumes ONTAP in AWS und DAS in AWS zu ermdglichen. Alle Leistungswerte stellen den
Durchsatz des Kafka-Clusters auf Produzenten- und Verbraucherebene dar.

Die konstante Leistung mit Confluent Kaftka und dem AFF A900 erreichte einen durchschnittlichen Durchsatz
von uber 3,4 GBps fur Produzenten und Verbraucher. Das sind tGber 3,4 Millionen Nachrichten im gesamten
Kafka-Cluster. Durch die Visualisierung des anhaltenden Durchsatzes in Bytes pro Sekunde fur
BrokerTopicMetrics sehen wir die hervorragende Dauerleistung und den Datenverkehr, die vom AFF A900
unterstltzt werden.

Broker network throughput

500 MB/s

Dies passt gut zur Ansicht der pro Thema Ubermittelten Nachrichten. Das folgende Diagramm bietet eine
Aufschlisselung nach Themen. In der getesteten Konfiguration haben wir fast 900.000 Nachrichten pro Thema
in vier Themenbereichen gesehen.

45

Messages In Per Topic

BOOK ks

500K hofs

Messages/s

400K iofs

200K hofs

Wiofs
16:43 1644 1645 16:46 16247 16:48 1649 16:50 16:51 16:52 16:53 16:54 15:55

= _consumer.offsels == _confluent-license == _confluenttalemetry-metrics == est-lopic-0000000-otyOqqe best-topic-00000071-5QIwNiU test-1opic-0000002-7mBtiGg
test-1oplc-0000003-uZ3XBl

Extreme Leistung und Ausloten der Speichergrenzen

Fir AFF haben wir auch mit OMB unter Verwendung der Backlog-Funktion getestet. Die Backlog-Funktion
pausiert Verbraucherabonnements, wahrend sich im Kafka-Cluster ein Riickstand an Ereignissen aufbaut.
Wahrend dieser Phase tritt nur Produzentenverkehr auf, der Ereignisse generiert, die in Protokollen
festgehalten werden. Dies emuliert am ehesten die Stapelverarbeitung oder Offline-Analyse-Workflows. In
diesen Workflows werden Verbraucherabonnements gestartet und missen historische Daten lesen, die bereits
aus dem Broker-Cache entfernt wurden.

Um die Speicherbeschrankungen fir den Verbraucherdurchsatz in dieser Konfiguration zu verstehen, haben
wir die reine Produzentenphase gemessen, um zu verstehen, wie viel Schreibverkehr der A900 aufnehmen
kann. Siehe den nachsten Abschnitt "Grolkenberatung ", um zu verstehen, wie diese Daten genutzt werden
koénnen.

Wahrend des Nur-Produzenten-Teils dieser Messung sahen wir einen hohen Spitzendurchsatz, der die

Grenzen der A900-Leistung ausreizte (wenn andere Broker-Ressourcen nicht durch die Bedienung des
Produzenten- und Verbraucherverkehrs ausgelastet waren).

Broker network throughput ~

25 GB/s

20 GB/s

15GB/s

10 GB/s

0B/s
21:58

== Bytesin == Bytes out

@ Wir haben die Nachrichtengrof3e fiir diese Messung auf 16 KB erhoht, um den Overhead pro
Nachricht zu begrenzen und den Speicherdurchsatz zu NFS-Mountpunkten zu maximieren.

messageSize: 16384
consumerBacklogSizeGB: 4096

Der Confluent Kafka-Cluster erreichte einen Spitzenproduzentendurchsatz von 4,03 GBps.

18:12:23.833 [main] INFO WorkloadGenerator - Pub rate 257759.2 msg/s /
4027.5 MB/s | Pub err 0.0 err/s ..

Nachdem OMB das Auffiillen des Eventbacklogs abgeschlossen hatte, wurde der Verbraucherverkehr neu
gestartet. Bei Messungen mit Backlog-Drainage konnten wir einen Spitzendurchsatz der Verbraucher von ber
20 GBits/s bei allen Themen feststellen. Der kombinierte Durchsatz zum NFS-Volume, auf dem die OMB-
Protokolldaten gespeichert sind, lag bei etwa 30 GBits/s.

GroRenberatung

Amazon Web Services bietet eine "Grolkentabelle" zur Gréflenbestimmung und Skalierung von Kafka-Clustern.

Diese Groflenbestimmung bietet eine nitzliche Formel zur Bestimmung des Speicherdurchsatzbedarfs fir
Ihren Kafka-Cluster:

Bei einem aggregierten Durchsatz, der mit einem Replikationsfaktor von r in den Cluster von tcluster erzeugt

wird, betragt der vom Broker-Speicher empfangene Durchsatz:

t[storage] = t[cluster]/#brokers + t[cluster]/#brokers * (r-1)
= t[cluster]/#brokers * r

Dies lasst sich noch weiter vereinfachen:
max (t[cluster]) <= max(t[storage]) * #brokers/r
Mithilfe dieser Formel kdnnen Sie die geeignete ONTAP Plattform fiir lhre Kafka-Hot-Tier-Anforderungen

auswahlen.

Die folgende Tabelle erldutert den erwarteten Herstellerdurchsatz flr den A900 mit unterschiedlichen
Replikationsfaktoren:

Replikationsfaktor Produzentendurchsatz (GPps)
3 (gemessen) 3,4

2 51

1 10,2

47

https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/

Abschluss

Die NetApp -Loésung fur das Silly-Rename-Problem bietet eine einfache, kostenglnstige
und zentral verwaltete Speicherform flr Workloads, die zuvor mit NFS nicht kompatibel
waren.

Dieses neue Paradigma ermoglicht es Kunden, besser verwaltbare Kafka-Cluster zu erstellen, die sich zum
Zweck der Notfallwiederherstellung und des Datenschutzes einfacher migrieren und spiegeln lassen. Wir
haben aulRerdem festgestellt, dass NFS zusatzliche Vorteile bietet, wie etwa eine geringere CPU-Auslastung

und eine schnellere Wiederherstellungszeit, eine deutlich verbesserte Speichereffizienz und eine bessere
Leistung durch NetApp ONTAP.

Wo Sie weitere Informationen finden

Weitere Informationen zu den in diesem Dokument beschriebenen Informationen finden
Sie in den folgenden Dokumenten und/oder auf den folgenden Websites:

* Was ist Apache Kafka?
"https://lwww.confluent.io/what-is-apache-kafka/"

» Was ist eine dumme Umbenennung?
"https://linux-nfs.org/wiki/index.php/Server-side_silly_rename"

* ONATP wird fir Streaming-Anwendungen gelesen.
"https://www.netapp.com/blog/ontap-ready-for-streaming-applications/"

* NetApp Produktdokumentation
"https://www.netapp.com/support-and-training/documentation/"

* Was ist NFS?
"https://en.wikipedia.org/wiki/Network_File System"

* Was ist eine Kafka-Partitionsneuzuweisung?

"https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-
overview.htm!"

* Was ist der OpenMessaging-Benchmark?
"https://openmessaging.cloud/"
* Wie migriert man einen Kafka-Broker?
"https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058"
» Wie Uberwachen Sie den Kafka-Broker mit Prometheus?

https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

48

https://www.confluent.io/what-is-apache-kafka/
https://linux-nfs.org/wiki/index.php/Server-side_silly_rename
https://www.netapp.com/blog/ontap-ready-for-streaming-applications/
https://www.netapp.com/support-and-training/documentation/
https://en.wikipedia.org/wiki/Network_File_System
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://openmessaging.cloud/
https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058
https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

» Verwaltete Plattform fiir Apache Kafka
https://www.instaclustr.com/platform/managed-apache-kafka/
» Unterstitzung fur Apache Kafka
https://www.instaclustr.com/support-solutions/kafka-support/
» Beratungsleistungen fir Apache Kafka

https://www.instaclustr.com/services/consulting/

49

https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/support-solutions/kafka-support/
https://www.instaclustr.com/services/consulting/

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

50

http://www.netapp.com/TM\

	Apache Kafka-Workloads mit NetApp NFS-Speicher : NetApp artificial intelligence solutions
	Inhalt
	Apache Kafka-Workloads mit NetApp NFS-Speicher
	TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher – Funktionale Validierung und Leistung
	Warum NFS-Speicher für Kafka-Workloads verwenden?
	Warum NetApp für Kafka-Workloads?

	NetApp -Lösung für das dumme Umbenennungsproblem für NFS-zu-Kafka-Workloads
	Funktionale Validierung – Dumme Umbenennungskorrektur
	Validierungs-Setup
	Architektonischer Fluss
	Testmethodik

	Warum NetApp NFS für Kafka-Workloads?
	Reduzierte CPU-Auslastung auf dem Kafka-Broker
	Schnellere Broker-Wiederherstellung
	Speichereffizienz

	Leistungsübersicht und -validierung in AWS
	Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP (Hochverfügbarkeitspaar und Einzelknoten)
	Testmethodik
	Beobachtung

	Leistungsübersicht und -validierung in AWS FSx ONTAP
	Apache Kafka in AWS FSx ONTAP

	Leistungsübersicht und Validierung mit AFF A900 vor Ort
	Storage-Konfiguration
	Client-Tuning
	Kafka-Broker-Tuning
	Testmethodik für Workload-Generatoren
	Extreme Leistung und Ausloten der Speichergrenzen
	Größenberatung

	Abschluss
	Wo Sie weitere Informationen finden

