
Apache Kafka-Workloads mit NetApp NFS-
Speicher
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/kafka-
nfs-introduction.html on February 12, 2026. Always check docs.netapp.com for the latest.

Inhalt
Apache Kafka-Workloads mit NetApp NFS-Speicher . 1

TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher – Funktionale Validierung und Leistung 1

Warum NFS-Speicher für Kafka-Workloads verwenden? . 1

Warum NetApp für Kafka-Workloads? . 2

NetApp -Lösung für das dumme Umbenennungsproblem für NFS-zu-Kafka-Workloads 2

Funktionale Validierung – Dumme Umbenennungskorrektur. 3

Validierungs-Setup . 3

Architektonischer Fluss . 4

Testmethodik . 4

Warum NetApp NFS für Kafka-Workloads? . 8

Reduzierte CPU-Auslastung auf dem Kafka-Broker . 8

Schnellere Broker-Wiederherstellung . 13

Speichereffizienz . 17

Leistungsübersicht und -validierung in AWS . 20

Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP (Hochverfügbarkeitspaar und

Einzelknoten) . 20

Testmethodik . 31

Beobachtung . 31

Leistungsübersicht und -validierung in AWS FSx ONTAP . 33

Apache Kafka in AWS FSx ONTAP . 34

Leistungsübersicht und Validierung mit AFF A900 vor Ort. 41

Storage-Konfiguration . 42

Client-Tuning . 42

Kafka-Broker-Tuning . 42

Testmethodik für Workload-Generatoren . 43

Extreme Leistung und Ausloten der Speichergrenzen. 46

Größenberatung. 47

Abschluss. 48

Wo Sie weitere Informationen finden . 48

Apache Kafka-Workloads mit NetApp NFS-
Speicher

TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher
– Funktionale Validierung und Leistung

Shantanu Chakole, Karthikeyan Nagalingam und Joe Scott, NetApp

Kafka ist ein verteiltes Publish-Subscribe-Messaging-System mit einer robusten
Warteschlange, die große Mengen an Nachrichtendaten aufnehmen kann. Mit Kafka
können Anwendungen Daten sehr schnell in Themen schreiben und daraus lesen.
Aufgrund seiner Fehlertoleranz und Skalierbarkeit wird Kafka im Big Data-Bereich häufig
als zuverlässige Methode zum schnellen Aufnehmen und Verschieben vieler
Datenströme verwendet. Zu den Anwendungsfällen gehören Stream-Verarbeitung,
Website-Aktivitätsverfolgung, Erfassung und Überwachung von Metriken,
Protokollaggregation, Echtzeitanalysen usw.

Obwohl normale Kafka-Operationen auf NFS gut funktionieren, führt das dumme Umbenennungsproblem beim
Ändern der Größe oder Neupartitionieren eines auf NFS laufenden Kafka-Clusters zum Absturz der
Anwendung. Dies ist ein erhebliches Problem, da die Größe eines Kafka-Clusters zum Lastenausgleich oder
zu Wartungszwecken geändert oder neu partitioniert werden muss. Weitere Details finden Sie "hier," .

In diesem Dokument werden die folgenden Themen beschrieben:

• Das alberne Umbenennungsproblem und die Lösungsvalidierung

• Reduzierung der CPU-Auslastung zur Verkürzung der E/A-Wartezeit

• Schnellere Wiederherstellungszeit des Kafka-Brokers

• Leistung in der Cloud und vor Ort

Warum NFS-Speicher für Kafka-Workloads verwenden?

Kafka-Workloads in Produktionsanwendungen können riesige Datenmengen zwischen Anwendungen
streamen. Diese Daten werden in den Kafka-Broker-Knoten im Kafka-Cluster gehalten und gespeichert. Kafka
ist außerdem für seine Verfügbarkeit und Parallelität bekannt, die es durch die Aufteilung von Themen in
Partitionen und die anschließende Replikation dieser Partitionen im gesamten Cluster erreicht. Dies bedeutet
letztendlich, dass sich die enorme Datenmenge, die durch einen Kafka-Cluster fließt, im Allgemeinen
vervielfacht. NFS ermöglicht eine Neugewichtung der Daten bei Änderungen der Anzahl der Broker sehr
schnell und einfach. Bei großen Umgebungen ist die Neuverteilung der Daten über DAS bei einer Änderung
der Brokeranzahl sehr zeitaufwändig, und in den meisten Kafka-Umgebungen ändert sich die Anzahl der
Broker häufig.

Zu den weiteren Vorteilen zählen:

• Reife. NFS ist ein ausgereiftes Protokoll, was bedeutet, dass die meisten Aspekte seiner Implementierung,
Sicherung und Verwendung gut verstanden sind.

• Offen. NFS ist ein offenes Protokoll und seine Weiterentwicklung ist in Internetspezifikationen als freies
und offenes Netzwerkprotokoll dokumentiert.

1

https://www.netapp.com/blog/ontap-ready-for-streaming-applications/

• Kostengünstig. NFS ist eine kostengünstige Lösung für die gemeinsame Nutzung von Netzwerkdateien,
die einfach einzurichten ist, da sie die vorhandene Netzwerkinfrastruktur nutzt.

• Zentral verwaltet. Durch die zentrale Verwaltung von NFS verringert sich der Bedarf an zusätzlicher
Software und Speicherplatz auf den Systemen einzelner Benutzer.

• Verteilt. NFS kann als verteiltes Dateisystem verwendet werden, wodurch der Bedarf an
Wechselmedienspeichergeräten reduziert wird.

Warum NetApp für Kafka-Workloads?

Die NetApp NFS-Implementierung gilt als Goldstandard für das Protokoll und wird in zahllosen Enterprise-
NAS-Umgebungen verwendet. Neben der Glaubwürdigkeit von NetApp bietet es auch die folgenden Vorteile:

• Zuverlässigkeit und Effizienz

• Skalierbarkeit und Leistung

• Hohe Verfügbarkeit (HA-Partner in einem NetApp ONTAP Cluster)

• Datenschutz

◦ Notfallwiederherstellung (NetApp SnapMirror). Ihre Site ist ausgefallen oder Sie möchten auf einer
anderen Site weitermachen und dort fortfahren, wo Sie aufgehört haben.

◦ Verwaltbarkeit Ihres Speichersystems (Administration und Management mit NetApp OnCommand).

◦ Lastausgleich. Der Cluster ermöglicht Ihnen den Zugriff auf verschiedene Volumes von Daten-LIFs,
die auf verschiedenen Knoten gehostet werden.

◦ Unterbrechungsfreier Betrieb. LIFs oder Volume-Verschiebungen sind für die NFS-Clients
transparent.

NetApp -Lösung für das dumme Umbenennungsproblem für
NFS-zu-Kafka-Workloads

Kafka wird unter der Annahme erstellt, dass das zugrunde liegende Dateisystem POSIX-
kompatibel ist: beispielsweise XFS oder Ext4. Durch die Neuverteilung der Kafka-
Ressourcen werden Dateien entfernt, während die Anwendung sie noch verwendet. Ein
POSIX-kompatibles Dateisystem ermöglicht die Fortsetzung der
Verknüpfungsaufhebung. Die Datei wird jedoch erst entfernt, wenn alle Verweise auf die
Datei verschwunden sind. Wenn das zugrunde liegende Dateisystem an das Netzwerk
angeschlossen ist, fängt der NFS-Client die Unlink-Aufrufe ab und verwaltet den
Workflow. Da für die Datei, deren Verknüpfung aufgehoben wird, noch Öffnungsvorgänge
ausstehen, sendet der NFS-Client eine Umbenennungsanforderung an den NFS-Server
und führt beim letzten Schließen der aufgehobenen Datei einen Entfernungsvorgang für
die umbenannte Datei aus. Dieses Verhalten wird allgemein als „NFS Silly Rename“
bezeichnet und wird vom NFS-Client orchestriert.

Jeder Kafka-Broker, der Speicher von einem NFSv3-Server verwendet, stößt aufgrund dieses Verhaltens auf
Probleme. Das NFSv4.x-Protokoll verfügt jedoch über Funktionen zur Behebung dieses Problems, indem es
dem Server ermöglicht, die Verantwortung für die geöffneten, nicht verknüpften Dateien zu übernehmen. NFS-
Server, die diese optionale Funktion unterstützen, teilen dem NFS-Client beim Öffnen der Datei die
Eigentumsrechte mit. Der NFS-Client beendet dann die Verwaltung der Verknüpfungsaufhebung, wenn noch
Öffnungen ausstehen, und überlässt dem Server die Verwaltung des Datenflusses. Obwohl die NFSv4-

2

Spezifikation Richtlinien für die Implementierung bereitstellt, gab es bisher keine bekannten NFS-
Serverimplementierungen, die diese optionale Funktion unterstützten.

Um das Problem der dummen Umbenennung zu beheben, sind für den NFS-Server und den NFS-Client die
folgenden Änderungen erforderlich:

• Änderungen am NFS-Client (Linux). Beim Öffnen der Datei antwortet der NFS-Server mit einem Flag,
das die Fähigkeit anzeigt, die Verknüpfung geöffneter Dateien aufzuheben. Durch Änderungen auf der
NFS-Clientseite kann der NFS-Server die Aufhebung der Verknüpfung bei Vorhandensein des Flags
handhaben. NetApp hat den Open-Source-Linux-NFS-Client mit diesen Änderungen aktualisiert. Der
aktualisierte NFS-Client ist jetzt allgemein in RHEL8.7 und RHEL9.1 verfügbar.

• Änderungen am NFS-Server. Der NFS-Server verfolgt die Öffnungen. Das Aufheben der Verknüpfung
einer vorhandenen geöffneten Datei wird jetzt vom Server verwaltet, um der POSIX-Semantik zu
entsprechen. Wenn die letzte Öffnung geschlossen ist, leitet der NFS-Server das eigentliche Entfernen der
Datei ein und vermeidet so den albernen Umbenennungsprozess. Der ONTAP NFS-Server hat diese
Funktion in seiner neuesten Version, ONTAP 9.12.1, implementiert.

Mit den oben genannten Änderungen am NFS-Client und -Server kann Kafka alle Vorteile des
netzwerkgebundenen NFS-Speichers sicher nutzen.

Funktionale Validierung – Dumme Umbenennungskorrektur

Zur Funktionsvalidierung haben wir gezeigt, dass ein Kafka-Cluster mit einer NFSv3-
Einbindung für den Speicher keine Kafka-Operationen wie die Partitionsumverteilung
durchführen kann, während ein anderer, mit dem Fix auf NFSv4 eingebundener Cluster
dieselben Operationen ohne Unterbrechungen durchführen kann.

Validierungs-Setup

Das Setup wird auf AWS ausgeführt. Die folgende Tabelle zeigt die verschiedenen Plattformkomponenten und
Umgebungskonfigurationen, die für die Validierung verwendet wurden.

Plattformkomponente Umgebungskonfiguration

Confluent Platform Version 7.2.1 • 3 x Tierpfleger – t3.xlarge

• 4 x Broker-Server – r3.xlarge

• 1 x Grafana – t3.xlarge

• 1 x Kontrollzentrum – t3.xlarge

• 3 x Produzent/Konsument

Betriebssystem auf allen Knoten RHEL8.7 oder höher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz – M5.2xLarge

Die folgende Abbildung zeigt die Architekturkonfiguration für diese Lösung.

3

Architektonischer Fluss

• Berechnen. Wir haben einen Kafka-Cluster mit vier Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgeführt wird.

• Überwachung. Wir haben zwei Knoten für eine Prometheus-Grafana-Kombination verwendet.

• Arbeitsbelastung. Zum Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten
verwendet, der für diesen Kafka-Cluster produzieren und von diesem konsumieren kann.

• Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten verwendet, an die
zwei 500 GB große GP2 AWS-EBS-Volumes angeschlossen waren. Diese Volumes wurden dann über ein
LIF als einzelnes NFSv4.1-Volume dem Kafka-Cluster zugänglich gemacht.

Für alle Server wurden die Standardeigenschaften von Kafka gewählt. Dasselbe wurde für den
Zoowärterschwarm getan.

Testmethodik

1. Aktualisieren -is-preserve-unlink-enabled true zum Kafka-Band, wie folgt:

aws-shantanclastrecall-aws::*> volume create -vserver kafka_svm -volume

kafka_fg_vol01 -aggregate kafka_aggr -size 3500GB -state online -policy

kafka_policy -security-style unix -unix-permissions 0777 -junction-path

/kafka_fg_vol01 -type RW -is-preserve-unlink-enabled true

[Job 32] Job succeeded: Successful

4

2. Es wurden zwei ähnliche Kafka-Cluster mit folgendem Unterschied erstellt:

◦ Cluster 1. Der Backend-NFS v4.1-Server mit der produktionsbereiten ONTAP Version 9.12.1 wurde
von einer NetApp CVO-Instanz gehostet. Auf den Brokern wurden RHEL 8.7/RHEL 9.1 installiert.

◦ Cluster 2. Der Backend-NFS-Server war ein manuell erstellter generischer Linux-NFSv3-Server.

3. Auf beiden Kafka-Clustern wurde ein Demothema erstellt.

Cluster 1:

Cluster 2:

4. In diese neu erstellten Themen wurden für beide Cluster Daten geladen. Dies wurde mithilfe des Producer-
Perf-Test-Toolkits durchgeführt, das im Standardpaket von Kafka enthalten ist:

./kafka-producer-perf-test.sh --topic __a_demo_topic --throughput -1

--num-records 3000000 --record-size 1024 --producer-props acks=all

bootstrap.servers=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,

172.30.0.123:9092

5. Für Broker-1 wurde für jeden der Cluster per Telnet eine Integritätsprüfung durchgeführt:

◦ Telnet 172.30.0.160 9092

◦ Telnet 172.30.0.198 9092

Eine erfolgreiche Integritätsprüfung für Broker auf beiden Clustern wird im nächsten Screenshot
angezeigt:

5

6. Um den Fehlerzustand auszulösen, der zum Absturz von Kafka-Clustern mit NFSv3-Speichervolumes
führt, haben wir den Prozess zur Neuzuweisung der Partitionen auf beiden Clustern eingeleitet. Die
Neuzuweisung der Partitionen erfolgte mit kafka-reassign-partitions.sh . Der detaillierte Ablauf ist
wie folgt:

a. Um die Partitionen für ein Thema in einem Kafka-Cluster neu zuzuweisen, haben wir die
vorgeschlagene JSON-Konfiguration für die Neuzuweisung generiert (dies wurde für beide Cluster
durchgeführt).

kafka-reassign-partitions --bootstrap

-server=172.30.0.160:9092,172.30.0.172:9092,172.30.0.188:9092,172.30.

0.123:9092 --broker-list "1,2,3,4" --topics-to-move-json-file

/tmp/topics.json --generate

b. Das generierte Neuzuweisungs-JSON wurde dann gespeichert in /tmp/reassignment-
file.json .

c. Der eigentliche Partitionsneuzuweisungsprozess wurde durch den folgenden Befehl ausgelöst:

kafka-reassign-partitions --bootstrap

-server=172.30.0.198:9092,172.30.0.163:9092,172.30.0.221:9092,172.30.

0.204:9092 --reassignment-json-file /tmp/reassignment-file.json

–execute

7. Einige Minuten nach Abschluss der Neuzuweisung zeigte eine weitere Integritätsprüfung der Broker, dass
bei Clustern mit NFSv3-Speichervolumes ein dummes Umbenennungsproblem aufgetreten war und diese
abgestürzt waren, während Cluster 1 mit NetApp ONTAP NFSv4.1-Speichervolumes und dem Fix den
Betrieb ohne Unterbrechungen fortsetzte.

6

◦ Cluster1-Broker-1 ist aktiv.

◦ Cluster2-Broker-1 ist tot.

8. Beim Überprüfen der Kafka-Protokollverzeichnisse war klar, dass Cluster 1, der NetApp ONTAP NFSv4.1-
Speichervolumes mit dem Fix verwendet, über eine saubere Partitionszuweisung verfügte, während dies
bei Cluster 2, der generischen NFSv3-Speicher verwendet, aufgrund von dummen
Umbenennungsproblemen, die zum Absturz führten, nicht der Fall war. Das folgende Bild zeigt die
Neuverteilung der Partitionen von Cluster 2, die zu einem dummen Umbenennungsproblem im NFSv3-
Speicher führte.

Das folgende Bild zeigt eine saubere Neuverteilung der Partitionen von Cluster 1 unter Verwendung von
NetApp NFSv4.1-Speicher.

7

Warum NetApp NFS für Kafka-Workloads?

Da es jetzt eine Lösung für das alberne Umbenennungsproblem im NFS-Speicher mit
Kafka gibt, können Sie robuste Bereitstellungen erstellen, die NetApp ONTAP -Speicher
für Ihre Kafka-Workload nutzen. Dies reduziert nicht nur den Betriebsaufwand erheblich,
sondern bringt Ihren Kafka-Clustern auch die folgenden Vorteile:

• Reduzierte CPU-Auslastung bei Kafka-Brokern. Durch die Verwendung disaggregierter NetApp ONTAP
-Speicher werden Festplatten-E/A-Vorgänge vom Broker getrennt und so dessen CPU-Bedarf reduziert.

• Schnellere Wiederherstellungszeit des Brokers. Da der disaggregierte NetApp ONTAP Speicher über
alle Kafka-Broker-Knoten hinweg gemeinsam genutzt wird, kann eine neue Compute-Instanz einen
fehlerhaften Broker jederzeit in einem Bruchteil der Zeit ersetzen, die bei herkömmlichen Kafka-
Bereitstellungen benötigt wird, ohne dass die Daten neu erstellt werden müssen.

• Speichereffizienz. Da die Speicherebene der Anwendung jetzt über NetApp ONTAP bereitgestellt wird,
können Kunden alle Vorteile der Speichereffizienz von ONTAP nutzen, wie beispielsweise Inline-
Datenkomprimierung, Deduplizierung und Kompaktierung.

Diese Vorteile wurden in Testfällen getestet und validiert, die wir in diesem Abschnitt ausführlich besprechen.

Reduzierte CPU-Auslastung auf dem Kafka-Broker

Wir haben festgestellt, dass die allgemeine CPU-Auslastung niedriger ist als beim DAS-Gegenstück, als wir
ähnliche Workloads auf zwei separaten Kafka-Clustern ausführten, die in ihren technischen Spezifikationen
identisch waren, sich aber in ihren Speichertechnologien unterschieden. Wenn der Kafka-Cluster ONTAP
Speicher verwendet, ist nicht nur die allgemeine CPU-Auslastung geringer, sondern auch der Anstieg der
CPU-Auslastung weist einen sanfteren Verlauf auf als in einem DAS-basierten Kafka-Cluster.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration, die verwendet wurde, um eine reduzierte CPU-
Auslastung zu demonstrieren.

8

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 Benchmarking-Tool: OpenMessaging • 3 x Tierpfleger – t2.small

• 3 x Broker-Server – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Produzent/Verbraucher — c5n.2xlarge

Betriebssystem auf allen Knoten RHEL 8.7 oder höher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz – M5.2xLarge

Benchmarking-Tool

Das in diesem Testfall verwendete Benchmarking-Tool ist das "OpenMessaging" Rahmen. OpenMessaging ist
anbieter- und sprachunabhängig; es bietet Branchenrichtlinien für Finanzen, E-Commerce, IoT und Big Data
und unterstützt die Entwicklung von Messaging- und Streaming-Anwendungen über heterogene Systeme und
Plattformen hinweg. Die folgende Abbildung zeigt die Interaktion von OpenMessaging-Clients mit einem Kafka-
Cluster.

• Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgeführt wird. Jeder Broker verfügte über zwei NFSv4.1-
Mount-Punkte zu einem einzelnen Volume auf der NetApp CVO-Instanz über ein dediziertes LIF.

• Überwachung. Wir haben zwei Knoten für eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads verfügen wir über einen separaten Cluster mit drei Knoten, der für diesen
Kafka-Cluster produzieren und von diesem konsumieren kann.

9

https://openmessaging.cloud/

• Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der
Instanz gemounteten 250 GB GP2 AWS-EBS-Volumes verwendet. Diese Volumes wurden dann dem
Kafka-Cluster als sechs NFSv4.1-Volumes über dedizierte LIFs zugänglich gemacht.

• Konfiguration. Die beiden konfigurierbaren Elemente in diesem Testfall waren Kafka-Broker und
OpenMessaging-Workloads.

◦ Broker-Konfiguration. Für die Kafka-Broker wurden folgende Spezifikationen gewählt. Wir haben für
alle Messungen einen Replikationsfaktor von 3 verwendet, wie unten hervorgehoben.

• OpenMessaging-Benchmark (OMB)-Workload-Konfiguration. Die folgenden Spezifikationen wurden
bereitgestellt. Wir haben eine Zielproduzentenrate festgelegt, die unten hervorgehoben ist.

Testmethodik

1. Es wurden zwei ähnliche Cluster erstellt, die jeweils über einen eigenen Satz von Benchmarking-Cluster-
Schwärmen verfügten.

10

◦ Cluster 1. NFS-basierter Kafka-Cluster.

◦ Cluster 2. DAS-basierter Kafka-Cluster.

2. Mithilfe eines OpenMessaging-Befehls wurden auf jedem Cluster ähnliche Workloads ausgelöst.

sudo bin/benchmark --drivers driver-kafka/kafka-group-all.yaml

workloads/1-topic-100-partitions-1kb.yaml

3. Die Produktionsratenkonfiguration wurde in vier Iterationen erhöht und die CPU-Auslastung mit Grafana
aufgezeichnet. Die Produktionsrate wurde auf folgende Stufen festgelegt:

◦ 10.000

◦ 40.000

◦ 80.000

◦ 100.000

Beobachtung

Die Verwendung von NetApp NFS-Speicher mit Kafka bietet zwei Hauptvorteile:

• Sie können die CPU-Auslastung um fast ein Drittel reduzieren. Die allgemeine CPU-Auslastung war
bei ähnlichen Arbeitslasten bei NFS niedriger als bei DAS-SSDs; die Einsparungen reichen von 5 % bei
niedrigeren Produktionsraten bis zu 32 % bei höheren Produktionsraten.

• Eine dreifache Reduzierung der CPU-Auslastungsabweichung bei höheren Produktionsraten. Wie
erwartet gab es mit der Erhöhung der Produktionsraten einen Aufwärtstrend bei der Erhöhung der CPU-
Auslastung. Allerdings stieg die CPU-Auslastung bei Kafka-Brokern, die DAS verwenden, von 31 % bei der
niedrigeren Produktionsrate auf 70 % bei der höheren Produktionsrate, also um 39 %. Mit einem NFS-
Speicher-Backend stieg die CPU-Auslastung jedoch von 26 % auf 38 %, eine Steigerung um 12 %.

11

Außerdem weist DAS bei 100.000 Nachrichten eine höhere CPU-Auslastung auf als ein NFS-Cluster.

12

Schnellere Broker-Wiederherstellung

Wir haben festgestellt, dass Kafka-Broker schneller wiederhergestellt werden, wenn sie gemeinsam genutzten
NetApp NFS-Speicher verwenden. Wenn ein Broker in einem Kafka-Cluster abstürzt, kann dieser Broker durch
einen fehlerfreien Broker mit derselben Broker-ID ersetzt werden. Bei der Durchführung dieses Testfalls
stellten wir fest, dass im Fall eines DAS-basierten Kafka-Clusters der Cluster die Daten auf einem neu
hinzugefügten, fehlerfreien Broker neu aufbaut, was zeitaufwändig ist. Im Fall eines NetApp NFS-basierten
Kafka-Clusters liest der ersetzende Broker weiterhin Daten aus dem vorherigen Protokollverzeichnis und stellt
die Daten viel schneller wieder her.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration für einen Kafka-Cluster mit NAS.

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 • 3 x Tierpfleger – t2.small

• 3 x Broker-Server – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Produzent/Verbraucher – c5n.2xlarge

• 1 x Backup-Kafka-Knoten – i3en.2xlarge

Betriebssystem auf allen Knoten RHEL8.7 oder höher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz – M5.2xLarge

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

13

• Berechnen. Ein Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei Knoten, das auf
dedizierten Servern ausgeführt wird. Jeder Broker verfügt über zwei NFS-Mount-Punkte zu einem
einzelnen Volume auf der NetApp CVO-Instanz über ein dediziertes LIF.

• Überwachung. Zwei Knoten für eine Prometheus-Grafana-Kombination. Zum Generieren von Workloads
verwenden wir einen separaten Cluster mit drei Knoten, der für diesen Kafka-Cluster produzieren und
konsumieren kann.

• Lagerung. Eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der Instanz
gemounteten 250 GB GP2 AWS-EBS-Volumes. Diese Volumes werden dann dem Kafka-Cluster über
dedizierte LIFs als sechs NFS-Volumes zur Verfügung gestellt.

• Broker-Konfiguration. Das einzige konfigurierbare Element in diesem Testfall sind Kafka-Broker. Für die
Kafka-Broker wurden folgende Spezifikationen gewählt. Der replica.lag.time.mx.ms wird auf einen
hohen Wert eingestellt, da dieser bestimmt, wie schnell ein bestimmter Knoten aus der ISR-Liste entfernt
wird. Wenn Sie zwischen fehlerhaften und fehlerfreien Knoten wechseln, möchten Sie nicht, dass diese
Broker-ID von der ISR-Liste ausgeschlossen wird.

14

Testmethodik

1. Es wurden zwei ähnliche Cluster erstellt:

◦ Ein EC2-basierter konfluenter Cluster.

◦ Ein NetApp NFS-basierter Confluent-Cluster.

2. Es wurde ein Standby-Kafka-Knoten mit einer Konfiguration erstellt, die mit den Knoten des ursprünglichen
Kafka-Clusters identisch ist.

3. Auf jedem der Cluster wurde ein Beispielthema erstellt und auf jedem der Broker wurden ungefähr 110 GB
Daten gespeichert.

◦ EC2-basierter Cluster. Ein Kafka-Broker-Datenverzeichnis ist abgebildet auf /mnt/data-2 (In der
folgenden Abbildung Broker-1 von Cluster1 [linkes Terminal]).

◦ * NetApp NFS-basierter Cluster.* Ein Kafka-Broker-Datenverzeichnis ist auf einem NFS-Punkt
gemountet /mnt/data (In der folgenden Abbildung Broker-1 von Cluster2 [rechtes Terminal]).

4. In jedem der Cluster wurde Broker-1 beendet, um einen fehlgeschlagenen Broker-
Wiederherstellungsprozess auszulösen.

5. Nachdem der Broker beendet wurde, wurde die Broker-IP-Adresse dem Standby-Broker als sekundäre IP
zugewiesen. Dies war notwendig, da ein Broker in einem Kafka-Cluster durch Folgendes identifiziert wird:

◦ IP-Adresse. Zugewiesen durch Neuzuweisung der ausgefallenen Broker-IP an den Standby-Broker.

◦ Broker-ID. Dies wurde im Standby-Broker konfiguriert server.properties .

6. Bei der IP-Zuweisung wurde der Kafka-Dienst auf dem Standby-Broker gestartet.

7. Nach einer Weile wurden die Serverprotokolle abgerufen, um die zum Erstellen der Daten auf dem
Ersatzknoten im Cluster benötigte Zeit zu überprüfen.

15

Beobachtung

Die Wiederherstellung des Kafka-Brokers war fast neunmal schneller. Die zur Wiederherstellung eines
ausgefallenen Broker-Knotens benötigte Zeit war bei Verwendung des gemeinsam genutzten NetApp NFS-
Speichers deutlich kürzer als bei Verwendung von DAS-SSDs in einem Kafka-Cluster. Bei 1 TB Themendaten
betrug die Wiederherstellungszeit für einen DAS-basierten Cluster 48 Minuten, verglichen mit weniger als 5
Minuten für einen NetApp-NFS-basierten Kafka-Cluster.

Wir haben festgestellt, dass der EC2-basierte Cluster 10 Minuten benötigte, um die 110 GB Daten auf dem
neuen Broker-Knoten wiederherzustellen, während der NFS-basierte Cluster die Wiederherstellung in 3
Minuten abschloss. Wir haben in den Protokollen auch festgestellt, dass die Consumer-Offsets für die
Partitionen für EC2 0 waren, während im NFS-Cluster die Consumer-Offsets vom vorherigen Broker
übernommen wurden.

[2022-10-31 09:39:17,747] INFO [LogLoader partition=test-topic-51R3EWs-

0000-55, dir=/mnt/kafka-data/broker2] Reloading from producer snapshot and

rebuilding producer state from offset 583999 (kafka.log.UnifiedLog$)

[2022-10-31 08:55:55,170] INFO [LogLoader partition=test-topic-qbVsEZg-

0000-8, dir=/mnt/data-1] Loading producer state till offset 0 with message

format version 2 (kafka.log.UnifiedLog$)

DAS-basierter Cluster

1. Der Sicherungsknoten wurde um 08:55:53.730 gestartet.

2. Der Datenwiederherstellungsprozess endete um 09:05:24.860. Die Verarbeitung von 110 GB Daten
dauerte ungefähr 10 Minuten.

NFS-basierter Cluster

1. Der Backup-Knoten wurde um 09:39:17,213 gestartet. Der Startprotokolleintrag ist unten hervorgehoben.

16

2. Der Datenwiederherstellungsprozess endete um 09:42:29,115. Die Verarbeitung von 110 GB Daten
dauerte ungefähr 3 Minuten.

Der Test wurde für Broker mit etwa 1 TB Daten wiederholt, was für das DAS ungefähr 48 Minuten und für
NFS 3 Minuten dauerte. Die Ergebnisse sind in der folgenden Grafik dargestellt.

Speichereffizienz

Da die Speicherschicht des Kafka-Clusters über NetApp ONTAP bereitgestellt wurde, konnten wir alle
Speichereffizienzfunktionen von ONTAP nutzen. Dies wurde getestet, indem eine erhebliche Datenmenge auf
einem Kafka-Cluster mit NFS-Speicher generiert wurde, der auf Cloud Volumes ONTAP bereitgestellt wurde.
Wir konnten feststellen, dass es aufgrund der ONTAP -Funktionen zu einer erheblichen Platzreduzierung kam.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration für einen Kafka-Cluster mit NAS.

17

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 • 3 x Tierpfleger – t2.small

• 3 x Broker-Server – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Produzent/Verbraucher — c5n.2xlarge *

Betriebssystem auf allen Knoten RHEL8.7 oder höher

NetApp Cloud Volumes ONTAP Instanz Einzelknoteninstanz – M5.2xLarge

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

• Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgeführt wird. Jeder Broker verfügte über zwei NFS-
Mount-Punkte zu einem einzelnen Volume auf der NetApp CVO-Instanz über ein dediziertes LIF.

• Überwachung. Wir haben zwei Knoten für eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der für diesen
Kafka-Cluster produzieren und konsumieren konnte.

• Lagerung. Wir haben eine NetApp Cloud Volumes ONTAP Instanz mit einem Knoten und sechs auf der
Instanz gemounteten 250 GB GP2 AWS-EBS-Volumes verwendet. Diese Volumes wurden dann über
dedizierte LIFs als sechs NFS-Volumes dem Kafka-Cluster zugänglich gemacht.

• Konfiguration. Die konfigurierbaren Elemente in diesem Testfall waren die Kafka-Broker.

Die Komprimierung wurde auf der Produzentenseite abgeschaltet, wodurch die Produzenten einen hohen

18

Durchsatz erzielen konnten. Die Speichereffizienz wurde stattdessen von der Rechenschicht übernommen.

Testmethodik

1. Ein Kafka-Cluster wurde mit den oben genannten Spezifikationen bereitgestellt.

2. Auf dem Cluster wurden mithilfe des OpenMessaging Benchmarking-Tools etwa 350 GB Daten erstellt.

3. Nachdem die Arbeitslast abgeschlossen war, wurden die Statistiken zur Speichereffizienz mithilfe von
ONTAP System Manager und der CLI erfasst.

Beobachtung

Bei Daten, die mit dem OMB-Tool generiert wurden, konnten wir eine Platzersparnis von ca. 33 % bei einem
Speichereffizienzverhältnis von 1,70:1 feststellen. Wie aus den folgenden Abbildungen hervorgeht, betrug der
von den erzeugten Daten verwendete logische Speicherplatz 420,3 GB und der zum Speichern der Daten
verwendete physische Speicherplatz 281,7 GB.

19

Leistungsübersicht und -validierung in AWS

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich
seiner Leistung in der AWS-Cloud getestet. Die Benchmarking-Beispiele werden in den
folgenden Abschnitten beschrieben.

Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP
(Hochverfügbarkeitspaar und Einzelknoten)

Ein Kafka-Cluster mit NetApp Cloud Volumes ONTAP (HA-Paar) wurde hinsichtlich seiner Leistung in der
AWS-Cloud getestet. Dieses Benchmarking wird in den folgenden Abschnitten beschrieben.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration für einen Kafka-Cluster mit NAS.

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 • 3 x Tierpfleger – t2.small

• 3 x Broker-Server – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Produzent/Verbraucher — c5n.2xlarge *

Betriebssystem auf allen Knoten RHEL8.6

NetApp Cloud Volumes ONTAP Instanz HA-Paarinstanz – m5dn.12xLarge x 2 Knoten
Einzelknoteninstanz – m5dn.12xLarge x 1 Knoten

NetApp Cluster Volume ONTAP Setup

1. Für das Cloud Volumes ONTAP HA-Paar haben wir zwei Aggregate mit jeweils drei Volumes auf jedem
Aggregat auf jedem Speichercontroller erstellt. Für den einzelnen Cloud Volumes ONTAP -Knoten erstellen
wir sechs Volumes in einem Aggregat.

20

2. Um eine bessere Netzwerkleistung zu erzielen, haben wir Hochgeschwindigkeitsnetzwerke sowohl für das
HA-Paar als auch für den einzelnen Knoten aktiviert.

21

3. Wir haben festgestellt, dass der ONTAP NVRAM mehr IOPS hatte, also haben wir die IOPS für das Cloud
Volumes ONTAP Stammvolume auf 2350 geändert. Die Root-Volume-Festplatte in Cloud Volumes ONTAP
hatte eine Größe von 47 GB. Der folgende ONTAP -Befehl gilt für das HA-Paar und der gleiche Schritt ist
für den einzelnen Knoten anwendbar.

22

statistics start -object vnvram -instance vnvram -counter

backing_store_iops -sample-id sample_555

kafka_nfs_cvo_ha1::*> statistics show -sample-id sample_555

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-01

 Counter Value

 -------------------------------- --------------------------------

 backing_store_iops 1479

Object: vnvram

Instance: vnvram

Start-time: 1/18/2023 18:03:11

End-time: 1/18/2023 18:03:13

Elapsed-time: 2s

Scope: kafka_nfs_cvo_ha1-02

 Counter Value

 -------------------------------- --------------------------------

 backing_store_iops 1210

2 entries were displayed.

kafka_nfs_cvo_ha1::*>

23

Die folgende Abbildung zeigt die Architektur eines NAS-basierten Kafka-Clusters.

• Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgeführt wird. Jeder Broker verfügte über zwei NFS-
Mount-Punkte zu einem einzelnen Volume auf der Cloud Volumes ONTAP Instanz über ein dediziertes LIF.

• Überwachung. Wir haben zwei Knoten für eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der für diesen
Kafka-Cluster produzieren und konsumieren konnte.

• Lagerung. Wir haben eine HA-Pair-Cloud-Volumes ONTAP Instanz mit einem auf der Instanz
gemounteten 6-TB-GP3-AWS-EBS-Volume verwendet. Anschließend wurde das Volume mit einem NFS-
Mount zum Kafka-Broker exportiert.

24

OpenMessage Benchmarking-Konfigurationen

1. Für eine bessere NFS-Leistung benötigen wir mehr Netzwerkverbindungen zwischen dem NFS-Server und
dem NFS-Client, die mit nconnect erstellt werden können. Mounten Sie die NFS-Volumes auf den Broker-
Knoten mit der Option „nconnect“, indem Sie den folgenden Befehl ausführen:

25

[root@ip-172-30-0-121 ~]# cat /etc/fstab

UUID=eaa1f38e-de0f-4ed5-a5b5-2fa9db43bb38/xfsdefaults00

/dev/nvme1n1 /mnt/data-1 xfs defaults,noatime,nodiscard 0 0

/dev/nvme2n1 /mnt/data-2 xfs defaults,noatime,nodiscard 0 0

172.30.0.233:/kafka_aggr3_vol1 /kafka_aggr3_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol2 /kafka_aggr3_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.233:/kafka_aggr3_vol3 /kafka_aggr3_vol3 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol1 /kafka_aggr22_vol1 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol2 /kafka_aggr22_vol2 nfs

defaults,nconnect=16 0 0

172.30.0.242:/kafka_aggr22_vol3 /kafka_aggr22_vol3 nfs

defaults,nconnect=16 0 0

[root@ip-172-30-0-121 ~]# mount -a

[root@ip-172-30-0-121 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 31G 0 31G 0% /dev

tmpfs 31G 249M 31G 1% /run

tmpfs 31G 0 31G 0% /sys/fs/cgroup

/dev/nvme0n1p2 10G 2.8G 7.2G 28% /

/dev/nvme1n1 2.3T 248G 2.1T 11% /mnt/data-1

/dev/nvme2n1 2.3T 245G 2.1T 11% /mnt/data-2

172.30.0.233:/kafka_aggr3_vol1 1.0T 12G 1013G 2% /kafka_aggr3_vol1

172.30.0.233:/kafka_aggr3_vol2 1.0T 5.5G 1019G 1% /kafka_aggr3_vol2

172.30.0.233:/kafka_aggr3_vol3 1.0T 8.9G 1016G 1% /kafka_aggr3_vol3

172.30.0.242:/kafka_aggr22_vol1 1.0T 7.3G 1017G 1%

/kafka_aggr22_vol1

172.30.0.242:/kafka_aggr22_vol2 1.0T 6.9G 1018G 1%

/kafka_aggr22_vol2

172.30.0.242:/kafka_aggr22_vol3 1.0T 5.9G 1019G 1%

/kafka_aggr22_vol3

tmpfs 6.2G 0 6.2G 0% /run/user/1000

[root@ip-172-30-0-121 ~]#

2. Überprüfen Sie die Netzwerkverbindungen in Cloud Volumes ONTAP. Der folgende ONTAP -Befehl wird
vom einzelnen Cloud Volumes ONTAP Knoten verwendet. Derselbe Schritt gilt für das Cloud Volumes
ONTAP HA-Paar.

Last login time: 1/20/2023 00:16:29

kafka_nfs_cvo_sn::> network connections active show -service nfs*

-fields remote-host

node cid vserver remote-host

26

------------------- ---------- -------------------- ------------

kafka_nfs_cvo_sn-01 2315762628 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762629 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762630 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762631 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762632 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762633 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762634 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762635 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762636 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762637 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762639 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762640 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762641 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762642 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762643 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762644 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762645 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762646 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762647 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762648 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762649 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762650 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762651 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762652 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762653 svm_kafka_nfs_cvo_sn 172.30.0.121

kafka_nfs_cvo_sn-01 2315762656 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762657 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762658 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762659 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762660 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762661 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762662 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762663 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762664 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762665 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762666 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762667 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762668 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762669 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762670 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762671 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762672 svm_kafka_nfs_cvo_sn 172.30.0.72

kafka_nfs_cvo_sn-01 2315762673 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762674 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762676 svm_kafka_nfs_cvo_sn 172.30.0.121

27

kafka_nfs_cvo_sn-01 2315762677 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762678 svm_kafka_nfs_cvo_sn 172.30.0.223

kafka_nfs_cvo_sn-01 2315762679 svm_kafka_nfs_cvo_sn 172.30.0.223

48 entries were displayed.

kafka_nfs_cvo_sn::>

3. Wir verwenden folgende Kafka server.properties in allen Kafka-Brokern für das Cloud Volumes
ONTAP HA-Paar. Der log.dirs Die Eigenschaft ist für jeden Broker unterschiedlich und die übrigen
Eigenschaften sind für alle Broker gleich. Für Broker1 ist die log.dirs Der Wert lautet wie folgt:

[root@ip-172-30-0-121 ~]# cat /opt/kafka/config/server.properties

broker.id=0

advertised.listeners=PLAINTEXT://172.30.0.121:9092

#log.dirs=/mnt/data-1/d1,/mnt/data-1/d2,/mnt/data-1/d3,/mnt/data-

2/d1,/mnt/data-2/d2,/mnt/data-2/d3

log.dirs=/kafka_aggr3_vol1/broker1,/kafka_aggr3_vol2/broker1,/kafka_aggr

3_vol3/broker1,/kafka_aggr22_vol1/broker1,/kafka_aggr22_vol2/broker1,/ka

fka_aggr22_vol3/broker1

zookeeper.connect=172.30.0.12:2181,172.30.0.30:2181,172.30.0.178:2181

num.network.threads=64

num.io.threads=64

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

num.partitions=1

num.recovery.threads.per.data.dir=1

offsets.topic.replication.factor=1

transaction.state.log.replication.factor=1

transaction.state.log.min.isr=1

replica.fetch.max.bytes=524288000

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

[root@ip-172-30-0-121 ~]#

◦ Für Broker2 ist die log.dirs Der Eigenschaftswert lautet wie folgt:

log.dirs=/kafka_aggr3_vol1/broker2,/kafka_aggr3_vol2/broker2,/kafka_a

ggr3_vol3/broker2,/kafka_aggr22_vol1/broker2,/kafka_aggr22_vol2/broke

r2,/kafka_aggr22_vol3/broker2

◦ Für Broker3 ist die log.dirs Der Eigenschaftswert lautet wie folgt:

28

log.dirs=/kafka_aggr3_vol1/broker3,/kafka_aggr3_vol2/broker3,/kafka_a

ggr3_vol3/broker3,/kafka_aggr22_vol1/broker3,/kafka_aggr22_vol2/broke

r3,/kafka_aggr22_vol3/broker3

4. Für den einzelnen Cloud Volumes ONTAP -Knoten: Der Kafka servers.properties ist das gleiche wie
für das Cloud Volumes ONTAP HA-Paar, außer der log.dirs Eigentum.

◦ Für Broker1 ist die log.dirs Der Wert lautet wie folgt:

log.dirs=/kafka_aggr2_vol1/broker1,/kafka_aggr2_vol2/broker1,/kafka_a

ggr2_vol3/broker1,/kafka_aggr2_vol4/broker1,/kafka_aggr2_vol5/broker1

,/kafka_aggr2_vol6/broker1

◦ Für Broker2 ist die log.dirs Der Wert lautet wie folgt:

log.dirs=/kafka_aggr2_vol1/broker2,/kafka_aggr2_vol2/broker2,/kafka_a

ggr2_vol3/broker2,/kafka_aggr2_vol4/broker2,/kafka_aggr2_vol5/broker2

,/kafka_aggr2_vol6/broker2

◦ Für Broker3 ist die log.dirs Der Eigenschaftswert lautet wie folgt:

log.dirs=/kafka_aggr2_vol1/broker3,/kafka_aggr2_vol2/broker3,/kafka_a

ggr2_vol3/broker3,/kafka_aggr2_vol4/broker3,/kafka_aggr2_vol5/broker3

,/kafka_aggr2_vol6/broker3

5. Die Arbeitslast im OMB ist mit den folgenden Eigenschaften konfiguriert:
(/opt/benchmark/workloads/1-topic-100-partitions-1kb.yaml) .

topics: 4

partitionsPerTopic: 100

messageSize: 32768

useRandomizedPayloads: true

randomBytesRatio: 0.5

randomizedPayloadPoolSize: 100

subscriptionsPerTopic: 1

consumerPerSubscription: 80

producersPerTopic: 40

producerRate: 1000000

consumerBacklogSizeGB: 0

testDurationMinutes: 5

Der messageSize kann je nach Anwendungsfall unterschiedlich sein. In unserem Leistungstest haben wir

29

3K verwendet.

Wir haben zwei verschiedene Treiber, Sync oder Throughput, von OMB verwendet, um die Arbeitslast auf
dem Kafka-Cluster zu generieren.

◦ Die für die Sync-Treibereigenschaften verwendete YAML-Datei lautet wie folgt
(/opt/benchmark/driver- kafka/kafka-sync.yaml) :

name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

 min.insync.replicas=2

 flush.messages=1

 flush.ms=0

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

producerConfig: |

 acks=all

 linger.ms=1

 batch.size=1048576

consumerConfig: |

 auto.offset.reset=earliest

 enable.auto.commit=false

 max.partition.fetch.bytes=10485760

◦ Die für die Durchsatztreibereigenschaften verwendete YAML-Datei lautet wie folgt
(/opt/benchmark/driver- kafka/kafka-throughput.yaml) :

30

name: Kafka

driverClass:

io.openmessaging.benchmark.driver.kafka.KafkaBenchmarkDriver

Kafka client-specific configuration

replicationFactor: 3

topicConfig: |

 min.insync.replicas=2

commonConfig: |

bootstrap.servers=172.30.0.121:9092,172.30.0.72:9092,172.30.0.223:909

2

 default.api.timeout.ms=1200000

 request.timeout.ms=1200000

producerConfig: |

 acks=all

 linger.ms=1

 batch.size=1048576

consumerConfig: |

 auto.offset.reset=earliest

 enable.auto.commit=false

 max.partition.fetch.bytes=10485760

Testmethodik

1. Ein Kafka-Cluster wurde gemäß der oben beschriebenen Spezifikation mit Terraform und Ansible
bereitgestellt. Terraform wird verwendet, um die Infrastruktur mithilfe von AWS-Instanzen für den Kafka-
Cluster aufzubauen, und Ansible baut den Kafka-Cluster darauf auf.

2. Mit der oben beschriebenen Workload-Konfiguration und dem Sync-Treiber wurde eine OMB-Workload
ausgelöst.

Sudo bin/benchmark –drivers driver-kafka/kafka- sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Mit dem Throughput-Treiber wurde eine weitere Workload mit derselben Workload-Konfiguration ausgelöst.

sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

Beobachtung

Zum Generieren von Workloads wurden zwei verschiedene Treibertypen verwendet, um die Leistung einer auf
NFS laufenden Kafka-Instanz zu vergleichen. Der Unterschied zwischen den Treibern liegt in der Log-Flush-
Eigenschaft.

31

Für ein Cloud Volumes ONTAP HA-Paar:

• Gesamtdurchsatz, der durchgängig vom Sync-Treiber generiert wird: ~1236 MBps.

• Gesamtdurchsatz, der für den Durchsatztreiber generiert wurde: Spitze ~1412 MBps.

Für einen einzelnen Cloud Volumes ONTAP Knoten:

• Gesamtdurchsatz, der durchgängig vom Sync-Treiber generiert wird: ~ 1962 MBps.

• Gesamtdurchsatz, der vom Durchsatztreiber generiert wird: Spitze ~1660 MBps

Der Sync-Treiber kann einen konsistenten Durchsatz generieren, da Protokolle sofort auf die Festplatte
geschrieben werden, während der Throughput-Treiber Durchsatzschübe generiert, da Protokolle in großen
Mengen auf die Festplatte geschrieben werden.

Diese Durchsatzzahlen werden für die jeweilige AWS-Konfiguration generiert. Bei höheren
Leistungsanforderungen können die Instanztypen hochskaliert und für bessere Durchsatzzahlen weiter
optimiert werden. Der Gesamtdurchsatz oder die Gesamtrate ist die Kombination aus Produzenten- und
Verbraucherrate.

Überprüfen Sie unbedingt den Speicherdurchsatz, wenn Sie ein Durchsatz- oder Synchronisierungstreiber-
Benchmarking durchführen.

32

Leistungsübersicht und -validierung in AWS FSx ONTAP

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich
seiner Leistung im AWS FSx ONTAP getestet. Die Benchmarking-Beispiele werden in
den folgenden Abschnitten beschrieben.

33

Apache Kafka in AWS FSx ONTAP

Network File System (NFS) ist ein weit verbreitetes Netzwerkdateisystem zum Speichern großer
Datenmengen. In den meisten Organisationen werden Daten zunehmend durch Streaming-Anwendungen wie
Apache Kafka generiert. Diese Workloads erfordern Skalierbarkeit, geringe Latenz und eine robuste
Datenaufnahmearchitektur mit modernen Speicherfunktionen. Um Echtzeitanalysen zu ermöglichen und
umsetzbare Erkenntnisse zu liefern, ist eine gut konzipierte und hochleistungsfähige Infrastruktur erforderlich.

Kafka arbeitet konstruktionsbedingt mit POSIX-kompatiblen Dateisystemen und verlässt sich bei der
Verarbeitung von Dateivorgängen auf das Dateisystem. Beim Speichern von Daten auf einem NFSv3-
Dateisystem kann der NFS-Client des Kafka-Brokers Dateivorgänge jedoch anders interpretieren als ein
lokales Dateisystem wie XFS oder Ext4. Ein häufiges Beispiel ist die NFS Silly-Umbenennung, die zum Ausfall
von Kafka-Brokern beim Erweitern von Clustern und Neuzuordnen von Partitionen führte. Um diese
Herausforderung zu bewältigen, hat NetApp den Open-Source-Linux-NFS-Client mit Änderungen aktualisiert,
die jetzt allgemein in RHEL8.7 und RHEL9.1 verfügbar sind und ab der aktuellen FSx ONTAP Version ONTAP
9.12.1 unterstützt werden.

Amazon FSx ONTAP bietet ein vollständig verwaltetes, skalierbares und leistungsstarkes NFS-Dateisystem in
der Cloud. Kafka-Daten auf FSx ONTAP können skaliert werden, um große Datenmengen zu verarbeiten und
Fehlertoleranz zu gewährleisten. NFS bietet zentrales Speichermanagement und Datenschutz für kritische und
sensible Datensätze.

Diese Verbesserungen ermöglichen es AWS-Kunden, die Vorteile von FSx ONTAP zu nutzen, wenn sie Kafka-
Workloads auf AWS-Rechendiensten ausführen. Diese Vorteile sind: * Reduzierung der CPU-Auslastung zur
Verkürzung der E/A-Wartezeit * Schnellere Wiederherstellungszeit des Kafka-Brokers. * Zuverlässigkeit und
Effizienz. * Skalierbarkeit und Leistung. * Verfügbarkeit in mehreren Verfügbarkeitszonen. * Datenschutz.

Leistungsübersicht und -validierung in AWS FSx ONTAP

Ein Kafka-Cluster mit der auf NetApp NFS montierten Speicherschicht wurde hinsichtlich seiner Leistung in der
AWS-Cloud getestet. Die Benchmarking-Beispiele werden in den folgenden Abschnitten beschrieben.

Kafka in AWS FSx ONTAP

Ein Kafka-Cluster mit AWS FSx ONTAP wurde hinsichtlich seiner Leistung in der AWS-Cloud getestet. Dieses
Benchmarking wird in den folgenden Abschnitten beschrieben.

Architektonischer Aufbau

Die folgende Tabelle zeigt die Umgebungskonfiguration für einen Kafka-Cluster mit AWS FSx ONTAP.

Plattformkomponente Umgebungskonfiguration

Kafka 3.2.3 • 3 x Tierpfleger – t2.small

• 3 x Broker-Server – i3en.2xlarge

• 1 x Grafana – c5n.2xlarge

• 4 x Produzent/Verbraucher — c5n.2xlarge *

Betriebssystem auf allen Knoten RHEL8.6

AWS FSx ONTAP Multi-AZ mit 4 GB/Sek. Durchsatz und 160.000 IOPS

34

NetApp FSx ONTAP Setup

1. Für unsere ersten Tests haben wir ein FSx ONTAP Dateisystem mit 2 TB Kapazität und 40.000 IOPs für
einen Durchsatz von 2 GB/s erstellt.

[root@ip-172-31-33-69 ~]# aws fsx create-file-system --region us-east-2

--storage-capacity 2048 --subnet-ids <desired subnet 1> subnet-<desired

subnet 2> --file-system-type ONTAP --ontap-configuration

DeploymentType=MULTI_AZ_HA_1,ThroughputCapacity=2048,PreferredSubnetId=<

desired primary subnet>,FsxAdminPassword=<new

password>,DiskIopsConfiguration="{Mode=USER_PROVISIONED,Iops=40000"}

In unserem Beispiel stellen wir FSx ONTAP über die AWS CLI bereit. Sie müssen den Befehl in Ihrer
Umgebung nach Bedarf weiter anpassen. FSx ONTAP kann zusätzlich über die AWS-Konsole
bereitgestellt und verwaltet werden, um eine einfachere und optimierte Bereitstellung mit weniger
Befehlszeileneingaben zu ermöglichen.

Dokumentation: In FSx ONTAP beträgt der maximal erreichbare IOPS-Wert für ein Dateisystem mit 2 GB/s
Durchsatz in unserer Testregion (US-Ost-1) 80.000 IOPS. Die maximalen Gesamt-IOPS für ein FSx
ONTAP -Dateisystem betragen 160.000 IOPS. Um dies zu erreichen, ist eine Bereitstellung mit einem
Durchsatz von 4 GB/s erforderlich, was wir später in diesem Dokument demonstrieren werden.

Weitere Informationen zu den Leistungsspezifikationen von FSx ONTAP finden Sie hier in der AWS FSx
ONTAP -Dokumentation: https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html .

Eine detaillierte Befehlszeilensyntax für FSx „create-file-system“ finden Sie hier:
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

Sie können beispielsweise einen bestimmten KMS-Schlüssel angeben, im Gegensatz zum
standardmäßigen AWS FSx-Hauptschlüssel, der verwendet wird, wenn kein KMS-Schlüssel angegeben
ist.

2. Warten Sie beim Erstellen des FSx ONTAP Dateisystems, bis sich der Status „LifeCycle“ in Ihrer JSON-
Rückgabe in „AVAILABLE“ ändert, nachdem Sie Ihr Dateisystem wie folgt beschrieben haben:

[root@ip-172-31-33-69 ~]# aws fsx describe-file-systems --region us-

east-1 --file-system-ids fs-02ff04bab5ce01c7c

3. Bestätigen Sie die Anmeldeinformationen, indem Sie sich mit dem Benutzer fsxadmin bei FSx ONTAP
SSH anmelden: Fsxadmin ist das Standardadministratorkonto für FSx ONTAP Dateisysteme bei der
Erstellung. Das Kennwort für fsxadmin ist das Kennwort, das beim ersten Erstellen des Dateisystems
entweder in der AWS-Konsole oder mit der AWS CLI konfiguriert wurde, wie wir es in Schritt 1
abgeschlossen haben.

35

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/performance.html
https://docs.aws.amazon.com/cli/latest/reference/fsx/create-file-system.html

[root@ip-172-31-33-69 ~]# ssh fsxadmin@198.19.250.244

The authenticity of host '198.19.250.244 (198.19.250.244)' can't be

established.

ED25519 key fingerprint is

SHA256:mgCyRXJfWRc2d/jOjFbMBsUcYOWjxoIky0ltHvVDL/Y.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '198.19.250.244' (ED25519) to the list of

known hosts.

(fsxadmin@198.19.250.244) Password:

This is your first recorded login.

4. Sobald Ihre Anmeldeinformationen validiert wurden, erstellen Sie die virtuelle Speichermaschine auf dem
FSx ONTAP Dateisystem

[root@ip-172-31-33-69 ~]# aws fsx --region us-east-1 create-storage-

virtual-machine --name svmkafkatest --file-system-id fs-

02ff04bab5ce01c7c

Eine Storage Virtual Machine (SVM) ist ein isolierter Dateiserver mit eigenen
Administratoranmeldeinformationen und Endpunkten zum Verwalten und Zugreifen auf Daten in FSx
ONTAP Volumes und bietet FSx ONTAP Multi-Tenancy.

5. Nachdem Sie Ihre primäre Storage Virtual Machine konfiguriert haben, greifen Sie per SSH auf das neu
erstellte FSx ONTAP Dateisystem zu und erstellen Sie Volumes in der Storage Virtual Machine mit dem
folgenden Beispielbefehl. Auf ähnliche Weise erstellen wir 6 Volumes für diese Validierung. Behalten Sie
basierend auf unserer Validierung die Standardkomponente (8) oder weniger Komponenten bei, was zu
einer besseren Leistung von Kafka führt.

FsxId02ff04bab5ce01c7c::*> volume create -volume kafkafsxN1 -state

online -policy default -unix-permissions ---rwxr-xr-x -junction-active

true -type RW -snapshot-policy none -junction-path /kafkafsxN1 -aggr

-list aggr1

6. Für unsere Tests benötigen wir zusätzliche Kapazitäten in unseren Volumina. Erweitern Sie die Größe des
Volumes auf 2 TB und mounten Sie es auf dem Verbindungspfad.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN1 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN1" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN2 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN2" size set to 2.10t.

36

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN3 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN3" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN4 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN4" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN5 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN5" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume size -volume kafkafsxN6 -new-size +2TB

vol size: Volume "svmkafkatest:kafkafsxN6" size set to 2.10t.

FsxId02ff04bab5ce01c7c::*> volume show -vserver svmkafkatest -volume *

Vserver Volume Aggregate State Type Size

Available Used%

--------- ------------ ------------ ---------- ---- ----------

---------- -----

svmkafkatest

 kafkafsxN1 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN2 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN3 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN4 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN5 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 kafkafsxN6 - online RW 2.10TB

1.99TB 0%

svmkafkatest

 svmkafkatest_root

 aggr1 online RW 1GB

968.1MB 0%

7 entries were displayed.

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN1 -junction

-path /kafkafsxN1

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN2 -junction

-path /kafkafsxN2

37

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN3 -junction

-path /kafkafsxN3

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN4 -junction

-path /kafkafsxN4

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN5 -junction

-path /kafkafsxN5

FsxId02ff04bab5ce01c7c::*> volume mount -volume kafkafsxN6 -junction

-path /kafkafsxN6

In FSx ONTAP können Volumes per Thin Provisioning bereitgestellt werden. In unserem Beispiel übersteigt
die Gesamtkapazität des erweiterten Volumes die Gesamtkapazität des Dateisystems. Daher müssen wir
die Gesamtkapazität des Dateisystems erweitern, um zusätzliche bereitgestellte Volumekapazität
freizugeben, was wir im nächsten Schritt demonstrieren werden.

7. Als nächstes erweitern wir für zusätzliche Leistung und Kapazität die FSx ONTAP Durchsatzkapazität von
2 GB/Sek. auf 4 GB/Sek. und IOPS auf 160000 und die Kapazität auf 5 TB

[root@ip-172-31-33-69 ~]# aws fsx update-file-system --region us-east-1

--storage-capacity 5120 --ontap-configuration

'ThroughputCapacity=4096,DiskIopsConfiguration={Mode=USER_PROVISIONED,Io

ps=160000}' --file-system-id fs-02ff04bab5ce01c7c

Eine detaillierte Befehlszeilensyntax für FSx „update-file-system“ finden Sie
hier:https://docs.aws.amazon.com/cli/latest/reference/fsx/update-file-system.html[]

8. Die FSx ONTAP -Volumes werden mit nconnect und Standardoptionen in Kafka-Brokern gemountet

Das folgende Bild zeigt unsere endgültige Architektur eines auf FSx ONTAP basierenden Kafka-Clusters:

38

◦ Berechnen. Wir haben einen Kafka-Cluster mit drei Knoten und einem Zookeeper-Ensemble mit drei
Knoten verwendet, das auf dedizierten Servern ausgeführt wird. Jeder Broker hatte sechs NFS-Mount-
Punkte für sechs Volumes auf der FSx ONTAP Instanz.

◦ Überwachung. Wir haben zwei Knoten für eine Prometheus-Grafana-Kombination verwendet. Zum
Generieren von Workloads haben wir einen separaten Cluster mit drei Knoten verwendet, der für
diesen Kafka-Cluster produzieren und verbrauchen konnte.

◦ Lagerung. Wir haben ein FSx ONTAP mit sechs gemounteten 2-TB-Volumes verwendet. Das Volume
wurde dann mit einem NFS-Mount zum Kafka-Broker exportiert. Die FSx ONTAP Volumes werden mit
16 Nconnect-Sitzungen und Standardoptionen in Kafka-Brokern gemountet.

OpenMessage-Benchmarking-Konfigurationen.

Wir haben dieselbe Konfiguration verwendet, die für die NetApp Cloud Volumes ONTAP verwendet wurde. Die
Details dazu finden Sie hier: Link:kafka-nfs-performance-overview-and-validation-in-aws.html#architectural-
setup

Testmethodik

1. Ein Kafka-Cluster wurde gemäß der oben beschriebenen Spezifikation mithilfe von Terraform und Ansible
bereitgestellt. Terraform wird verwendet, um die Infrastruktur mithilfe von AWS-Instanzen für den Kafka-
Cluster aufzubauen, und Ansible erstellt den Kafka-Cluster darauf.

2. Mit der oben beschriebenen Workload-Konfiguration und dem Sync-Treiber wurde eine OMB-Workload
ausgelöst.

sudo bin/benchmark –drivers driver-kafka/kafka-sync.yaml workloads/1-

topic-100-partitions-1kb.yaml

3. Mit dem Throughput-Treiber wurde eine weitere Workload mit derselben Workload-Konfiguration ausgelöst.

39

sudo bin/benchmark –drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

Beobachtung

Zum Generieren von Workloads wurden zwei verschiedene Treibertypen verwendet, um die Leistung einer auf
NFS laufenden Kafka-Instanz zu vergleichen. Der Unterschied zwischen den Treibern liegt in der Log-Flush-
Eigenschaft.

Für einen Kafka-Replikationsfaktor 1 und den FSx ONTAP:

• Gesamtdurchsatz, der durchgängig vom Sync-Treiber generiert wird: ~ 3218 MBps und Spitzenleistung bei
~ 3652 MBps.

• Gesamtdurchsatz, der durchgängig vom Durchsatztreiber generiert wird: ~ 3679 MBps und Spitzenleistung
bei ~ 3908 MBps.

Für Kafka mit Replikationsfaktor 3 und FSx ONTAP :

• Gesamtdurchsatz, der durchgängig vom Sync-Treiber generiert wird: ~ 1252 MBps und Spitzenleistung bei
~ 1382 MBps.

• Gesamtdurchsatz, der durch den Durchsatztreiber konstant generiert wird: ~ 1218 MBps und
Spitzenleistung bei ~ 1328 MBps.

Beim Kafka-Replikationsfaktor 3 erfolgte der Lese- und Schreibvorgang dreimal auf dem FSx ONTAP. Beim
Kafka-Replikationsfaktor 1 erfolgt der Lese- und Schreibvorgang einmal auf dem FSx ONTAP, sodass wir bei
beiden Validierungen den maximalen Durchsatz von 4 GB/s erreichen konnten.

Der Sync-Treiber kann einen konsistenten Durchsatz generieren, da Protokolle sofort auf die Festplatte
geschrieben werden, während der Throughput-Treiber Durchsatzschübe generiert, da Protokolle in großen
Mengen auf die Festplatte geschrieben werden.

Diese Durchsatzzahlen werden für die jeweilige AWS-Konfiguration generiert. Bei höheren
Leistungsanforderungen können die Instanztypen hochskaliert und für bessere Durchsatzzahlen weiter
optimiert werden. Der Gesamtdurchsatz oder die Gesamtrate ist die Kombination aus Produzenten- und
Verbraucherrate.

Das folgende Diagramm zeigt die Leistung von 2 GB/s für FSx ONTAP und 4 GB/s für den Kafka-
Replikationsfaktor 3. Der Replikationsfaktor 3 führt den Lese- und Schreibvorgang dreimal auf dem FSx

40

ONTAP Speicher aus. Die Gesamtrate für den Durchsatztreiber beträgt 881 MB/s, was Lese- und
Schreibvorgänge für Kafka mit ungefähr 2,64 GB/s auf dem FSx ONTAP Dateisystem mit 2 GB/s ausführt, und
die Gesamtrate für den Durchsatztreiber beträgt 1328 MB/s, was Lese- und Schreibvorgänge für Kafka mit
ungefähr 3,98 GB/s ausführt. Die Kafka-Leistung ist linear und basierend auf dem FSx ONTAP Durchsatz
skalierbar.

Das folgende Diagramm zeigt die Leistung zwischen EC2-Instanz und FSx ONTAP (Kafka-Replikationsfaktor:
3).

Leistungsübersicht und Validierung mit AFF A900 vor Ort

Vor Ort haben wir den NetApp AFF A900 Speichercontroller mit ONTAP 9.12.1RC1
verwendet, um die Leistung und Skalierung eines Kafka-Clusters zu validieren. Wir
haben dasselbe Testbed wie bei unseren vorherigen Best Practices für Tiered Storage
mit ONTAP und AFF verwendet.

Zur Evaluierung des AFF A900 haben wir Confluent Kafka 6.2.0 verwendet. Der Cluster verfügt über acht
Broker-Knoten und drei Zookeeper-Knoten. Für Leistungstests haben wir fünf OMB-Workerknoten verwendet.

41

Storage-Konfiguration

Wir haben NetApp FlexGroups-Instanzen verwendet, um einen einzigen Namespace für
Protokollverzeichnisse bereitzustellen und so die Wiederherstellung und Konfiguration zu vereinfachen. Wir
haben NFSv4.1 und pNFS verwendet, um einen direkten Pfadzugriff auf die Daten des Protokollsegments zu
ermöglichen.

Client-Tuning

Jeder Client hat die FlexGroup -Instanz mit dem folgenden Befehl gemountet.

mount -t nfs -o vers=4.1,nconnect=16 172.30.0.121:/kafka_vol01

/data/kafka_vol01

Darüber hinaus erhöhten wir die max_session_slots` von der Standardeinstellung 64 Zu 180 . Dies
entspricht dem Standardlimit für Sitzungsslots in ONTAP.

Kafka-Broker-Tuning

Um den Durchsatz im Testsystem zu maximieren, haben wir die Standardparameter für bestimmte wichtige
Thread-Pools deutlich erhöht. Wir empfehlen, für die meisten Konfigurationen die Best Practices von Confluent
Kafka zu befolgen. Diese Optimierung wurde verwendet, um die Parallelität ausstehender E/A-Vorgänge zum
Speicher zu maximieren. Diese Parameter können angepasst werden, um den Rechenressourcen und
Speicherattributen Ihres Brokers zu entsprechen.

42

num.io.threads=96

num.network.threads=96

background.threads=20

num.replica.alter.log.dirs.threads=40

num.replica.fetchers=20

queued.max.requests=2000

Testmethodik für Workload-Generatoren

Wir haben für den Durchsatztreiber und die Themenkonfiguration dieselben OMB-Konfigurationen wie für
Cloud-Tests verwendet.

1. Eine FlexGroup -Instanz wurde mit Ansible auf einem AFF Cluster bereitgestellt.

43

- name: Set up kafka broker processes

 hosts: localhost

 vars:

 ntap_hostname: 'hostname'

 ntap_username: 'user'

 ntap_password: 'password'

 size: 10

 size_unit: tb

 vserver: vs1

 state: present

 https: true

 export_policy: default

 volumes:

 - name: kafka_fg_vol01

 aggr: ["aggr1_a", "aggr2_a", "aggr1_b", "aggr2_b"]

 path: /kafka_fg_vol01

 tasks:

 - name: Edit volumes

 netapp.ontap.na_ontap_volume:

 state: "{{ state }}"

 name: "{{ item.name }}"

 aggr_list: "{{ item.aggr }}"

 aggr_list_multiplier: 8

 size: "{{ size }}"

 size_unit: "{{ size_unit }}"

 vserver: "{{ vserver }}"

 snapshot_policy: none

 export_policy: default

 junction_path: "{{ item.path }}"

 qos_policy_group: none

 wait_for_completion: True

 hostname: "{{ ntap_hostname }}"

 username: "{{ ntap_username }}"

 password: "{{ ntap_password }}"

 https: "{{ https }}"

 validate_certs: false

 connection: local

 with_items: "{{ volumes }}"

2. pNFS wurde auf dem ONTAP SVM aktiviert.

vserver modify -vserver vs1 -v4.1-pnfs enabled -tcp-max-xfer-size 262144

44

3. Die Arbeitslast wurde mit dem Throughput-Treiber ausgelöst, wobei dieselbe Arbeitslastkonfiguration wie
für Cloud Volumes ONTAP verwendet wurde. Siehe Abschnitt "Steady-State-Leistung " unten. Die
Arbeitslast verwendete einen Replikationsfaktor von 3, was bedeutet, dass drei Kopien der
Protokollsegmente in NFS verwaltet wurden.

sudo bin/benchmark --drivers driver-kafka/kafka-throughput.yaml

workloads/1-topic-100-partitions-1kb.yaml

4. Abschließend haben wir Messungen mithilfe eines Rückstands durchgeführt, um die Fähigkeit der
Verbraucher zu messen, die neuesten Nachrichten nachzuholen. OMB baut einen Rückstand auf, indem
es Verbraucher zu Beginn einer Messung anhält. Dadurch entstehen drei verschiedene Phasen: die
Erstellung eines Rückstands (Verkehr nur für Produzenten), der Abbau des Rückstands (eine Phase mit
vielen Konsumenten, in der Konsumenten verpasste Ereignisse zu einem Thema nachholen) und der
stationäre Zustand. Siehe Abschnitt "Extreme Leistung und Ausloten der Speichergrenzen " für weitere
Informationen.

Steady-State-Leistung

Wir haben die AFF A900 mithilfe des OpenMessaging Benchmarks bewertet, um einen ähnlichen Vergleich
wie für Cloud Volumes ONTAP in AWS und DAS in AWS zu ermöglichen. Alle Leistungswerte stellen den
Durchsatz des Kafka-Clusters auf Produzenten- und Verbraucherebene dar.

Die konstante Leistung mit Confluent Kafka und dem AFF A900 erreichte einen durchschnittlichen Durchsatz
von über 3,4 GBps für Produzenten und Verbraucher. Das sind über 3,4 Millionen Nachrichten im gesamten
Kafka-Cluster. Durch die Visualisierung des anhaltenden Durchsatzes in Bytes pro Sekunde für
BrokerTopicMetrics sehen wir die hervorragende Dauerleistung und den Datenverkehr, die vom AFF A900
unterstützt werden.

Dies passt gut zur Ansicht der pro Thema übermittelten Nachrichten. Das folgende Diagramm bietet eine
Aufschlüsselung nach Themen. In der getesteten Konfiguration haben wir fast 900.000 Nachrichten pro Thema
in vier Themenbereichen gesehen.

45

Extreme Leistung und Ausloten der Speichergrenzen

Für AFF haben wir auch mit OMB unter Verwendung der Backlog-Funktion getestet. Die Backlog-Funktion
pausiert Verbraucherabonnements, während sich im Kafka-Cluster ein Rückstand an Ereignissen aufbaut.
Während dieser Phase tritt nur Produzentenverkehr auf, der Ereignisse generiert, die in Protokollen
festgehalten werden. Dies emuliert am ehesten die Stapelverarbeitung oder Offline-Analyse-Workflows. In
diesen Workflows werden Verbraucherabonnements gestartet und müssen historische Daten lesen, die bereits
aus dem Broker-Cache entfernt wurden.

Um die Speicherbeschränkungen für den Verbraucherdurchsatz in dieser Konfiguration zu verstehen, haben
wir die reine Produzentenphase gemessen, um zu verstehen, wie viel Schreibverkehr der A900 aufnehmen
kann. Siehe den nächsten Abschnitt "Größenberatung ", um zu verstehen, wie diese Daten genutzt werden
können.

Während des Nur-Produzenten-Teils dieser Messung sahen wir einen hohen Spitzendurchsatz, der die
Grenzen der A900-Leistung ausreizte (wenn andere Broker-Ressourcen nicht durch die Bedienung des
Produzenten- und Verbraucherverkehrs ausgelastet waren).

46

Wir haben die Nachrichtengröße für diese Messung auf 16 KB erhöht, um den Overhead pro
Nachricht zu begrenzen und den Speicherdurchsatz zu NFS-Mountpunkten zu maximieren.

messageSize: 16384

consumerBacklogSizeGB: 4096

Der Confluent Kafka-Cluster erreichte einen Spitzenproduzentendurchsatz von 4,03 GBps.

18:12:23.833 [main] INFO WorkloadGenerator - Pub rate 257759.2 msg/s /

4027.5 MB/s | Pub err 0.0 err/s …

Nachdem OMB das Auffüllen des Eventbacklogs abgeschlossen hatte, wurde der Verbraucherverkehr neu
gestartet. Bei Messungen mit Backlog-Drainage konnten wir einen Spitzendurchsatz der Verbraucher von über
20 GBits/s bei allen Themen feststellen. Der kombinierte Durchsatz zum NFS-Volume, auf dem die OMB-
Protokolldaten gespeichert sind, lag bei etwa 30 GBits/s.

Größenberatung

Amazon Web Services bietet eine "Größentabelle" zur Größenbestimmung und Skalierung von Kafka-Clustern.

Diese Größenbestimmung bietet eine nützliche Formel zur Bestimmung des Speicherdurchsatzbedarfs für
Ihren Kafka-Cluster:

Bei einem aggregierten Durchsatz, der mit einem Replikationsfaktor von r in den Cluster von tcluster erzeugt
wird, beträgt der vom Broker-Speicher empfangene Durchsatz:

t[storage] = t[cluster]/#brokers + t[cluster]/#brokers * (r-1)

 = t[cluster]/#brokers * r

Dies lässt sich noch weiter vereinfachen:

max(t[cluster]) <= max(t[storage]) * #brokers/r

Mithilfe dieser Formel können Sie die geeignete ONTAP Plattform für Ihre Kafka-Hot-Tier-Anforderungen
auswählen.

Die folgende Tabelle erläutert den erwarteten Herstellerdurchsatz für den A900 mit unterschiedlichen
Replikationsfaktoren:

Replikationsfaktor Produzentendurchsatz (GPps)

3 (gemessen) 3,4

2 5,1

1 10,2

47

https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/

Abschluss

Die NetApp -Lösung für das Silly-Rename-Problem bietet eine einfache, kostengünstige
und zentral verwaltete Speicherform für Workloads, die zuvor mit NFS nicht kompatibel
waren.

Dieses neue Paradigma ermöglicht es Kunden, besser verwaltbare Kafka-Cluster zu erstellen, die sich zum
Zweck der Notfallwiederherstellung und des Datenschutzes einfacher migrieren und spiegeln lassen. Wir
haben außerdem festgestellt, dass NFS zusätzliche Vorteile bietet, wie etwa eine geringere CPU-Auslastung
und eine schnellere Wiederherstellungszeit, eine deutlich verbesserte Speichereffizienz und eine bessere
Leistung durch NetApp ONTAP.

Wo Sie weitere Informationen finden

Weitere Informationen zu den in diesem Dokument beschriebenen Informationen finden
Sie in den folgenden Dokumenten und/oder auf den folgenden Websites:

• Was ist Apache Kafka?

"https://www.confluent.io/what-is-apache-kafka/"

• Was ist eine dumme Umbenennung?

"https://linux-nfs.org/wiki/index.php/Server-side_silly_rename"

• ONATP wird für Streaming-Anwendungen gelesen.

"https://www.netapp.com/blog/ontap-ready-for-streaming-applications/"

• NetApp Produktdokumentation

"https://www.netapp.com/support-and-training/documentation/"

• Was ist NFS?

"https://en.wikipedia.org/wiki/Network_File_System"

• Was ist eine Kafka-Partitionsneuzuweisung?

"https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-
overview.html"

• Was ist der OpenMessaging-Benchmark?

"https://openmessaging.cloud/"

• Wie migriert man einen Kafka-Broker?

"https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058"

• Wie überwachen Sie den Kafka-Broker mit Prometheus?

https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

48

https://www.confluent.io/what-is-apache-kafka/
https://linux-nfs.org/wiki/index.php/Server-side_silly_rename
https://www.netapp.com/blog/ontap-ready-for-streaming-applications/
https://www.netapp.com/support-and-training/documentation/
https://en.wikipedia.org/wiki/Network_File_System
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/kafka-manage-cli-reassign-overview.html
https://openmessaging.cloud/
https://medium.com/@sanchitbansal26/how-to-migrate-kafka-cluster-with-no-downtime-58c216129058
https://www.confluent.io/blog/monitor-kafka-clusters-with-prometheus-grafana-and-confluent/

• Verwaltete Plattform für Apache Kafka

https://www.instaclustr.com/platform/managed-apache-kafka/

• Unterstützung für Apache Kafka

https://www.instaclustr.com/support-solutions/kafka-support/

• Beratungsleistungen für Apache Kafka

https://www.instaclustr.com/services/consulting/

49

https://www.instaclustr.com/platform/managed-apache-kafka/
https://www.instaclustr.com/support-solutions/kafka-support/
https://www.instaclustr.com/services/consulting/

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

50

http://www.netapp.com/TM\

	Apache Kafka-Workloads mit NetApp NFS-Speicher : NetApp artificial intelligence solutions
	Inhalt
	Apache Kafka-Workloads mit NetApp NFS-Speicher
	TR-4947: Apache Kafka-Workload mit NetApp NFS-Speicher – Funktionale Validierung und Leistung
	Warum NFS-Speicher für Kafka-Workloads verwenden?
	Warum NetApp für Kafka-Workloads?

	NetApp -Lösung für das dumme Umbenennungsproblem für NFS-zu-Kafka-Workloads
	Funktionale Validierung – Dumme Umbenennungskorrektur
	Validierungs-Setup
	Architektonischer Fluss
	Testmethodik

	Warum NetApp NFS für Kafka-Workloads?
	Reduzierte CPU-Auslastung auf dem Kafka-Broker
	Schnellere Broker-Wiederherstellung
	Speichereffizienz

	Leistungsübersicht und -validierung in AWS
	Kafka in der AWS-Cloud mit NetApp Cloud Volumes ONTAP (Hochverfügbarkeitspaar und Einzelknoten)
	Testmethodik
	Beobachtung

	Leistungsübersicht und -validierung in AWS FSx ONTAP
	Apache Kafka in AWS FSx ONTAP

	Leistungsübersicht und Validierung mit AFF A900 vor Ort
	Storage-Konfiguration
	Client-Tuning
	Kafka-Broker-Tuning
	Testmethodik für Workload-Generatoren
	Extreme Leistung und Ausloten der Speichergrenzen
	Größenberatung

	Abschluss
	Wo Sie weitere Informationen finden

