Best Practices fiir Confluent Kafka

NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/data-
analytics/confluent-kafka-introduction.html on February 12, 2026. Always check docs.netapp.com for the

latest.

Inhalt

Best Practices fur Confluent Kafka
TR-4912: Best Practice-Richtlinien fiir Confluent Kafka Tiered Storage mit NetApp
Warum Confluent Tiered Storage?
Warum NetApp StorageGRID fir Tiered Storage?
Aktivieren von Confluent Tiered Storage
Details zur Lésungsarchitektur
Technologieubersicht
NetApp StorageGRID
Apache Kafka
Zusammenflielend
Konfluente Uberpriifung
Einrichtung der Confluent-Plattform
Confluent-Tiered-Storage-Konfiguration
NetApp Objektspeicher — StorageGRID
Verifizierungstests
Leistungstests mit Skalierbarkeit
Confluent S3-Anschluss
Instaclustr Kafka Connect Connectors
Konfluente, selbstausgleichende Cluster
Best Practice-Richtlinien
Grolien
Einfach
Abschluss
Wo Sie weitere Informationen finden

o P D ON_A A A

W W NN DNDNDN=2 A& A A 4 A
O O NN O o o1 OO & WN 2~ 2

Best Practices fur Confluent Kafka

TR-4912: Best Practice-Richtlinien fur Confluent Kafka
Tiered Storage mit NetApp

Karthikeyan Nagalingam, Joseph Kandatilparambil, NetApp Rankesh Kumar, Confluent

Apache Kafka ist eine von der Community verteilte Event-Streaming-Plattform, die
Billionen von Ereignissen pro Tag verarbeiten kann. Kafka wurde urspringlich als
Nachrichtenwarteschlange konzipiert und basiert auf der Abstraktion eines verteilten
Commit-Protokolls. Seit seiner Erstellung und Open-Source-Veroffentlichung durch
LinkedIn im Jahr 2011 hat sich Kafka von einer Nachrichtenwarteschlange zu einer
vollwertigen Event-Streaming-Plattform entwickelt. Confluent liefert die Distribution von
Apache Kafka mit der Confluent-Plattform. Die Confluent-Plattform erganzt Kafka um
zusatzliche Community- und kommerzielle Funktionen, die das Streaming-Erlebnis von
Betreibern und Entwicklern in der Produktion in grolem Malstab verbessern sollen.

Dieses Dokument beschreibt die Best-Practice-Richtlinien fir die Verwendung von Confluent Tiered Storage
auf einem Object Storage-Angebot von NetApp und stellt die folgenden Inhalte bereit:

» Konfluente Verifizierung mit NetApp Object Storage — NetApp StorageGRID
* Leistungstests flir mehrstufigen Speicher

 Best-Practice-Richtlinien fir Confluent auf NetApp -Speichersystemen

Warum Confluent Tiered Storage?

Confluent hat sich zur Standard-Echtzeit-Streaming-Plattform fur viele Anwendungen entwickelt, insbesondere
fur Big Data-, Analyse- und Streaming-Workloads. Mit Tiered Storage kdnnen Benutzer in der Confluent-
Plattform Rechenleistung und Speicher trennen. Es macht die Datenspeicherung kostengtinstiger, ermoglicht
Ihnen die Speicherung nahezu unbegrenzter Datenmengen und die Skalierung von Arbeitslasten nach Bedarf
nach oben (oder unten) und vereinfacht Verwaltungsaufgaben wie die Neuverteilung von Daten und
Mandanten. S3-kompatible Speichersysteme kénnen alle diese Funktionen nutzen, um Daten mit allen
Ereignissen an einem Ort zu demokratisieren, wodurch die Notwendigkeit einer komplexen Datentechnik
entfallt. Weitere Informationen dazu, warum Sie Tiered Storage fiir Kafka verwenden sollten, finden Sie
unter"dieser Artikel von Confluent" .

NetApp instaclustr unterstiitzt Kafka ab Version 3.8.1 auch mit Tiered Storage. Weitere Details finden Sie hier.
"Instaclust nutzt Kafka-Tiered Storage"

Warum NetApp StorageGRID fiir Tiered Storage?

StorageGRID ist eine branchenfiihrende Objektspeicherplattform von NetApp. StorageGRID ist eine
softwaredefinierte, objektbasierte Speicherlésung, die branchenibliche Objekt-APIs untersttitzt, einschlieRlich
der Amazon Simple Storage Service (S3)-API. StorageGRID speichert und verwaltet unstrukturierte Daten in
grollem Umfang, um einen sicheren, dauerhaften Objektspeicher bereitzustellen. Inhalte werden zur richtigen
Zeit am richtigen Ort und auf der richtigen Speicherebene platziert, wodurch Arbeitsablaufe optimiert und die
Kosten fiir global verteilte Rich Media gesenkt werden.

Das grofte Unterscheidungsmerkmal von StorageGRID ist die Policy-Engine fur Information Lifecycle

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/

Management (ILM), die ein richtliniengesteuertes Datenlebenszyklusmanagement ermdéglicht. Die Richtlinien-
Engine kann Metadaten verwenden, um zu verwalten, wie Daten wahrend ihrer gesamten Lebensdauer
gespeichert werden, um zunachst die Leistung zu optimieren und mit zunehmendem Alter der Daten
automatisch die Kosten und Haltbarkeit zu optimieren.

Aktivieren von Confluent Tiered Storage

Die Grundidee des Tiered Storage besteht darin, die Aufgaben der Datenspeicherung von denen der
Datenverarbeitung zu trennen. Durch diese Trennung wird es fiir die Datenspeicherungsebene und die
Datenverarbeitungsebene wesentlich einfacher, unabhangig voneinander zu skalieren.

Eine mehrstufige Speicherldésung fur Confluent muss zwei Faktoren berucksichtigen. Erstens miissen
allgemeine Konsistenz- und Verfligbarkeitseigenschaften von Objektspeichern, wie etwa Inkonsistenzen bei
LIST-Operationen und gelegentliche Nichtverfligbarkeit von Objekten, umgangen oder vermieden werden.
Zweitens muss die Interaktion zwischen mehrstufigem Speicher und dem Replikations- und
Fehlertoleranzmodell von Kafka korrekt gehandhabt werden, einschlie3lich der Mdglichkeit, dass Zombie-
Leader weiterhin Offset-Bereiche stufen. NetApp Object Storage bietet sowohl die konsistente
Objektverfligbarkeit als auch das HA-Modell und stellt den erschopften Speicher fiir Tier-Offset-Bereiche zur
Verfliigung. NetApp Objektspeicher bietet konsistente Objektverfligbarkeit und ein HA-Modell, um den
erschopften Speicher fur Tier-Offset-Bereiche verfigbar zu machen.

Mit Tiered Storage kdnnen Sie Hochleistungsplattformen fir Lese- und Schreibvorgange mit geringer Latenz
am Ende lhrer Streaming-Daten verwenden. AuRerdem kdnnen Sie gunstigere, skalierbare Objektspeicher wie
NetApp StorageGRID fiir historische Lesevorgange mit hohem Durchsatz nutzen. Wir haben auch eine
technische Losung fiir Spark mit NetApp-Speichercontroller. Einzelheiten finden Sie hier. Die folgende
Abbildung zeigt, wie Kafka in eine Echtzeit-Analyse-Pipeline passt.

{r_-—"'_._'___"‘-._\
\.H__‘___‘_____'__d__f
Lacatio ; -
' ‘ﬁz : = 15 Grafana
Spar : NoSQL
; MLIib ! -
ovYneE | ; o
Social media : : [
i : “g.- HIVE ki
] : & > ibana
camera E i .._,._I*s‘
; A Jupyter | splunk> :
Kafka : SpOf © Real-time
Network a : ! = dashboard
@ : : elasticsearch
web
Data Source Ingest Real-time processing Storage Visualization

Die folgende Abbildung zeigt, wie NetApp StorageGRID als Objektspeicherebene von Confluent Kafka passt.

Monitoring system

' I l L
' | 1 :
;]] ' : it x Conflugnt |,
: Applications Applications Applications §§ Kafka Connect - i rafana) control center :
s s BT . s . N ER Nowmmemmm—
3, Schema
@Rm Poosy HE Registry l l

i o e S e S e A ' R P T T ey i

4 Kafka Brokers ! ' ZooKeeper Servers 1

I 1 = = = [

B ———————— | | FE—]

¥ %g Brokerl §€ Broker? §g Broker3 % Brokerd §g Brokers | ¥ f 'F 2krl ‘F 2hr2 ? zkr3 |y

1 1 LI £ - i

i ' 1 1

Tiered da

Tiered data

= == L
[eall e

Tiered Storage | Object storage)

Details zur Losungsarchitektur

Dieser Abschnitt behandelt die fur die Confluent-Verifizierung verwendete Hardware und
Software. Diese Informationen gelten flr die Bereitstellung der Confluent Platform mit
NetApp -Speicher. Die folgende Tabelle umfasst die getestete Losungsarchitektur und die

Basiskomponenten.

Léosungskomponenten

Confluent Kafka Version 6.2

Linux (Ubuntu 18.04)
NetApp StorageGRID fir Tiered Storage

15 Fujitsu PRIMERGY RX2540 Server

Details
* Drei Tierpfleger

» FUnf Broker-Server

Finf Tools-Server

e Ein Grafana

Ein Kontrollzentrum

Alle Server

» StorageGRID -Software

* 1 x SG1000 (Lastverteiler)
* 4 x SGF6024

* 4 x 24 x 800 SSDs

» S3-Protokoll

* 4 x 100 GbE (Netzwerkkonnektivitat zwischen
Broker- und StorageGRID Instanzen)

Jedes ist ausgestattet mit: * 2 CPUs, insgesamt 16
physischen Kernen * Intel Xeon * 256 GB physischem
Speicher * 100 GbE Dual-Port

Technologieubersicht

In diesem Abschnitt wird die in dieser Losung verwendete Technologie beschrieben.

NetApp StorageGRID

NetApp StorageGRID ist eine leistungsstarke und kostenglinstige Objektspeicherplattform. Durch die
Verwendung von mehrstufigem Speicher werden die meisten Daten auf Confluent Kafka, die im lokalen
Speicher oder im SAN-Speicher des Brokers gespeichert sind, in den Remote-Objektspeicher ausgelagert.
Diese Konfiguration flhrt zu erheblichen Betriebsverbesserungen, da Zeit und Kosten fiir die Neuausrichtung,
Erweiterung oder Verkleinerung von Clustern oder den Austausch eines ausgefallenen Brokers reduziert
werden. Der Objektspeicher spielt eine wichtige Rolle bei der Verwaltung von Daten, die sich auf der
Objektspeicherebene befinden. Deshalb ist die Auswahl des richtigen Objektspeichers wichtig.

StorageGRID bietet intelligentes, richtliniengesteuertes globales Datenmanagement mithilfe einer verteilten,
knotenbasierten Grid-Architektur. Es vereinfacht die Verwaltung von Petabytes unstrukturierter Daten und
Milliarden von Objekten durch seinen allgegenwartigen globalen Objekt-Namespace in Kombination mit
ausgefeilten Datenverwaltungsfunktionen. Der Objektzugriff per Einzelaufruf erstreckt sich Gber mehrere
Standorte und vereinfacht Hochverfugbarkeitsarchitekturen, wahrend gleichzeitig ein kontinuierlicher
Objektzugriff unabhangig von Standort- oder Infrastrukturausfallen gewahrleistet wird.

Durch die Mandantenfahigkeit kénnen mehrere unstrukturierte Cloud- und Unternehmensdatenanwendungen
sicher im selben Grid verwaltet werden, wodurch sich der ROl und die Anwendungsfalle fir NetApp
StorageGRID erhdhen. Sie kdnnen mehrere Service-Levels mit metadatengesteuerten Objekt-
Lebenszyklusrichtlinien erstellen und so Haltbarkeit, Schutz, Leistung und Lokalitadt GUber mehrere geografische
Regionen hinweg optimieren. Benutzer kdnnen Datenverwaltungsrichtlinien anpassen und
Verkehrsbeschrankungen Uberwachen und anwenden, um sich unterbrechungsfrei an die Datenlandschaft
anzupassen, wenn sich ihre Anforderungen in sich standig verandernden IT-Umgebungen andern.

Einfache Verwaltung mit Grid Manager

Der StorageGRID Grid Manager ist eine browserbasierte grafische Benutzeroberflache, mit der Sie lhr
StorageGRID -System an weltweit verteilten Standorten in einer einzigen Fensteransicht konfigurieren,
verwalten und GUberwachen kénnen.

eoe® [0 - < L)] « 10.63.150.17 : h + =

B NetApp® Storage.. | 45 Grid-Gra.. (Data Lake, I understa..) hitps:fiw._. & FeeCalcu. [hitpsfw... & Event-dri..) Hadoop a.) Applicatio.. @ Backupi.
NetApp® StorageGRID® Halp = | Root = | Sign Oul
Dashboard & Alers - MNodes Tenants ILM = Confi tan = [} - Suppor =
Dashboard
Heaith © #Avallable Storage ©
o_ Overall =
icense Status

1

Reocontly resclved alerts (3) Legacy alarms (3) @ License

Information Lifecycle Management (ILM) ©

Awaiting - Cllent 0 objects
Awaiting - Evaluation Rate 0 objects / secand
Scan Poriod - Estimated 58 seconds

EEE

Protocol Operations &

51 rate 0 oparations / sacond
Swift rate 0 operations / secand

EE

Mit der StorageGRID Grid Manager-Schnittstelle konnen Sie die folgenden Aufgaben ausflihren:

» Verwalten Sie global verteilte Repositories im Petabyte-Bereich mit Objekten wie Bildern, Videos und
Aufzeichnungen.

+ Uberwachen Sie Grid-Knoten und -Dienste, um die Objektverfligbarkeit sicherzustellen.

* Verwalten Sie die Platzierung von Objektdaten im Laufe der Zeit mithilfe von Regeln fiir das Information
Lifecycle Management (ILM). Diese Regeln legen fest, was mit den Daten eines Objekts nach der
Aufnahme geschieht, wie sie vor Verlust geschitzt werden, wo und wie lange die Objektdaten gespeichert
werden.

+ Uberwachen Sie Transaktionen, Leistung und Vorgange innerhalb des Systems.

Richtlinien fiir das Information Lifecycle Management

StorageGRID verflugt Uber flexible Datenverwaltungsrichtlinien, die das Aufbewahren von Replikatkopien lhrer
Objekte und die Verwendung von EC-Schemata (Erasure Coding) wie 2+1 und 4+2 (unter anderem) zum
Speichern lhrer Objekte umfassen, abhangig von spezifischen Leistungs- und Datenschutzanforderungen. Da
sich Arbeitslasten und Anforderungen im Laufe der Zeit andern, ist es Ublich, dass sich auch die ILM-
Richtlinien im Laufe der Zeit andern miissen. Das Andern von ILM-Richtlinien ist eine Kernfunktion, die es
StorageGRID Kunden ermdglicht, sich schnell und einfach an ihre sich standig andernde Umgebung
anzupassen.

Performance

StorageGRID skaliert die Leistung durch Hinzufligen weiterer Speicherknoten, die VMs, Bare Metal oder
speziell entwickelte Gerate wie die"SG5712, SG5760, SG6060 oder SGF6024" . In unseren Tests haben wir
die wichtigsten Leistungsanforderungen von Apache Kafka mit einem Drei-Knoten-Raster der Mindestgrée
unter Verwendung des SGF6024-Gerats Ubertroffen. Wenn Kunden ihren Kafka-Cluster mit zusatzlichen
Brokern skalieren, kdnnen sie weitere Speicherknoten hinzufligen, um Leistung und Kapazitat zu erhéhen.

https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf

Load Balancer und Endpunktkonfiguration

Admin-Knoten in StorageGRID bieten die Grid Manager-Benutzeroberflache (Benutzeroberflache) und den
REST-API-Endpunkt zum Anzeigen, Konfigurieren und Verwalten lhres StorageGRID -Systems sowie
Prifprotokolle zum Verfolgen der Systemaktivitat. Um einen hochverfligbaren S3-Endpunkt fir den
mehrstufigen Confluent Kafka-Speicher bereitzustellen, haben wir den StorageGRID Load Balancer
implementiert, der als Dienst auf Admin-Knoten und Gateway-Knoten ausgeflhrt wird. Dartiber hinaus
verwaltet der Load Balancer auch den lokalen Datenverkehr und kommuniziert mit dem GSLB (Global Server
Load Balancing), um bei der Notfallwiederherstellung zu helfen.

Um die Endpunktkonfiguration weiter zu verbessern, bietet StorageGRID im Admin-Knoten integrierte
Richtlinien zur Verkehrsklassifizierung, erméglicht Innen die Uberwachung lhres Workload-Verkehrs und
wendet verschiedene Quality-of-Service-Grenzwerte (QoS) auf lhre Workloads an. Richtlinien zur
Verkehrsklassifizierung werden auf Endpunkte des StorageGRID Load Balancer-Dienstes fir Gateway-Knoten
und Admin-Knoten angewendet. Diese Richtlinien kdnnen bei der Verkehrsgestaltung und -lUberwachung
helfen.

Verkehrsklassifizierung in StorageGRID

StorageGRID verfligt Uber eine integrierte QoS-Funktionalitat. Richtlinien zur Verkehrsklassifizierung kbnnen
dabei helfen, verschiedene Arten von S3-Verkehr zu Uberwachen, der von einer Clientanwendung kommt. Sie
kénnen dann Richtlinien erstellen und anwenden, um diesen Datenverkehr basierend auf der Eingangs-
/Ausgangsbandbreite, der Anzahl gleichzeitiger Lese-/Schreibanforderungen oder der Lese-
/Schreibanforderungsrate zu begrenzen.

Apache Kafka

Apache Kafka ist eine Framework-Implementierung eines Softwarebusses mit Stream-Verarbeitung,
geschrieben in Java und Scala. Ziel ist es, eine einheitliche Plattform mit hohem Durchsatz und geringer
Latenz fur die Verarbeitung von Echtzeit-Datenfeeds bereitzustellen. Kafka kann tber Kafka Connect eine
Verbindung zu einem externen System zum Datenexport und -import herstellen und bietet Kafka Streams, eine
Java-Stream-Verarbeitungsbibliothek. Kafka verwendet ein binares, TCP-basiertes Protokoll, das auf Effizienz
optimiert ist und auf einer ,Nachrichtensatz*-Abstraktion basiert, die Nachrichten auf natirliche Weise
gruppiert, um den Overhead des Netzwerk-Roundtrips zu reduzieren. Dies ermdglicht gréRere sequenzielle
Festplattenvorgange, groRere Netzwerkpakete und zusammenhangende Speicherblécke, wodurch Kafka
einen stoRweisen Strom zufalliger Nachrichtenschreibvorgénge in lineare Schreibvorgange umwandeln kann.
Die folgende Abbildung zeigt den grundlegenden Datenfluss von Apache Kafka.

Producer Producer Producer

Kafka Cluster

] I
] I
] I
.
' Topic Topic Topic |
] |
i i
: Partitions Partitions Partitions !
] I
I I
I i
i I
. . i
: Partitions Partitions Partitions I
I i
i i
i i
i i
I i
i Partitions Partitions Partitions :
I
I i
I i
AN S N
Consume Consumer Consumer

Kafka speichert Schllissel-Wert-Nachrichten, die von einer beliebigen Anzahl von Prozessen, sogenannten
Produzenten, stammen. Die Daten kénnen innerhalb verschiedener Themen in verschiedene Partitionen
aufgeteilt werden. Innerhalb einer Partition werden Nachrichten streng nach ihren Offsets (der Position einer
Nachricht innerhalb einer Partition) geordnet und zusammen mit einem Zeitstempel indiziert und gespeichert.
Andere Prozesse, sogenannte Verbraucher, kénnen Nachrichten aus Partitionen lesen. Fur die Stream-
Verarbeitung bietet Kafka die Streams-API, die das Schreiben von Java-Anwendungen ermoglicht, die Daten
von Kafka nutzen und Ergebnisse zurlick an Kafka schreiben. Apache Kafka funktioniert auch mit externen
Stream-Verarbeitungssystemen wie Apache Apex, Apache Flink, Apache Spark, Apache Storm und Apache
NiFi.

Kafka lauft auf einem Cluster aus einem oder mehreren Servern (Brokern genannt) und die Partitionen aller
Themen werden auf die Clusterknoten verteilt. Dartber hinaus werden Partitionen auf mehrere Broker
repliziert. Diese Architektur ermdglicht es Kafka, riesige Nachrichtenstrome fehlertolerant zu Ubermitteln und
einige der herkdmmlichen Nachrichtensysteme wie Java Message Service (JMS), Advanced Message
Queuing Protocol (AMQP) usw. zu ersetzen. Seit der Version 0.11.0.0 bietet Kafka transaktionale
Schreibvorgange, die mithilfe der Streams-API eine exakt einmalige Stream-Verarbeitung ermdglichen.

Kafka unterstltzt zwei Arten von Themen: regular und kompakt. Regulére Themen kénnen mit einer
Aufbewahrungsdauer oder einer Platzbegrenzung konfiguriert werden. Wenn Datensatze vorhanden sind, die
alter als die angegebene Aufbewahrungszeit sind, oder wenn die Speicherplatzgrenze flr eine Partition
Uberschritten wird, darf Kafka alte Daten I6schen, um Speicherplatz freizugeben. Standardmafig sind Themen
mit einer Aufbewahrungszeit von 7 Tagen konfiguriert, es ist jedoch auch mdéglich, Daten unbegrenzt zu
speichern. Bei komprimierten Themen verfallen Datensatze nicht aufgrund von Zeit- oder
Speicherplatzbeschrankungen. Stattdessen behandelt Kafka spatere Nachrichten als Aktualisierungen alterer
Nachrichten mit demselben Schllssel und garantiert, dass die neueste Nachricht pro Schlissel niemals
geldscht wird. Benutzer kbnnen Nachrichten vollstandig I6schen, indem sie eine sogenannte Tombstone-
Nachricht mit dem Nullwert fir einen bestimmten Schllssel schreiben.

Es gibt finf wichtige APIs in Kafka:

* Produzenten-API. Ermoglicht einer Anwendung, Datensatzstrome zu verdffentlichen.

« Consumer-APIl. Ermdglicht einer Anwendung, Themen zu abonnieren und Datensatzstrome zu
verarbeiten.

e Connector-API. Fuhrt die wiederverwendbaren Producer- und Consumer-APls aus, die die Themen mit
den vorhandenen Anwendungen verknupfen kénnen.

» Streams-API. Diese API konvertiert die Eingabestréme in Ausgaben und erzeugt das Ergebnis.

* Admin-API. Wird zum Verwalten von Kafka-Themen, Brokern und anderen Kafka-Objekten verwendet.

Die Consumer- und Producer-APls bauen auf dem Kafka-Messaging-Protokoll auf und bieten eine
Referenzimplementierung fur Kafka-Consumer- und Producer-Clients in Java. Das zugrunde liegende
Nachrichtenprotokoll ist ein Binarprotokoll, das Entwickler verwenden kénnen, um ihre eigenen Consumer-
oder Producer-Clients in jeder beliebigen Programmiersprache zu schreiben. Dadurch wird Kafka aus dem
Okosystem der Java Virtual Machine (JVM) entsperrt. Eine Liste der verfliigbaren Nicht-Java-Clients wird im
Apache Kafka-Wiki verwaltet.

Apache Kafka-Anwendungsfalle

Apache Kafka wird am haufigsten fiir Messaging, Website-Aktivitatsverfolgung, Metriken, Protokollaggregation,
Stream-Verarbeitung, Event Sourcing und Commit-Protokollierung verwendet.

« Kafka verfugt tGber einen verbesserten Durchsatz, integrierte Partitionierung, Replikation und
Fehlertoleranz, was es zu einer guten Losung fur grol3 angelegte Nachrichtenverarbeitungsanwendungen
macht.

» Kafka kann die Aktivitaten eines Benutzers (Seitenaufrufe, Suchvorgange) in einer Tracking-Pipeline als
eine Reihe von Publish-Subscribe-Feeds in Echtzeit wiederherstellen.

Kafka wird haufig fir Betriebsiiberwachungsdaten verwendet. Dabei werden Statistiken aus verteilten
Anwendungen aggregiert, um zentralisierte Feeds mit Betriebsdaten zu erstellen.

Viele Leute verwenden Kafka als Ersatz fiir eine Protokollaggregationsldésung. Bei der Protokollaggregation
werden in der Regel physische Protokolldateien von Servern gesammelt und zur Verarbeitung an einem
zentralen Ort (z. B. einem Dateiserver oder HDFS) abgelegt. Kafka abstrahiert Dateidetails und bietet eine
sauberere Abstraktion von Protokoll- oder Ereignisdaten als Nachrichtenstrom. Dies ermdglicht eine
Verarbeitung mit geringerer Latenz und eine einfachere Unterstitzung mehrerer Datenquellen und einer
verteilten Datennutzung.

Viele Kafka-Benutzer verarbeiten Daten in Verarbeitungspipelines, die aus mehreren Phasen bestehen, in
denen Roheingabedaten aus Kafka-Themen verwendet und dann aggregiert, angereichert oder
anderweitig in neue Themen zur weiteren Verwendung oder Weiterverarbeitung umgewandelt werden.
Beispielsweise konnte eine Verarbeitungspipeline zum Empfehlen von Nachrichtenartikeln Artikelinhalte
aus RSS-Feeds crawlen und in einem ,Artikel“-Thema verdffentlichen. Bei der weiteren Verarbeitung kann
dieser Inhalt normalisiert oder dedupliziert und der bereinigte Artikelinhalt in einem neuen Thema
veroffentlicht werden. In einer letzten Verarbeitungsphase kann versucht werden, den Benutzern diesen
Inhalt zu empfehlen. Solche Verarbeitungspipelines erstellen Diagramme von Echtzeit-Datenfliissen
basierend auf den einzelnen Themen.

« Event Sourcing ist ein Anwendungsdesignstil, bei dem Statusanderungen als zeitlich geordnete Abfolge
von Datensatzen protokolliert werden. Die Unterstitzung von Kafka fiir sehr groRe gespeicherte
Protokolldaten macht es zu einem hervorragenden Backend fiir eine in diesem Stil erstellte Anwendung.

« Kafka kann als eine Art externes Commit-Log fir ein verteiltes System dienen. Das Protokoll hilft bei der
Replikation von Daten zwischen Knoten und fungiert als Neusynchronisierungsmechanismus fir
ausgefallene Knoten, um ihre Daten wiederherzustellen. Die Protokollkomprimierungsfunktion in Kafka
unterstitzt diesen Anwendungsfall.

ZusammenflieRend

Confluent Platform ist eine unternehmensreife Plattform, die Kafka um erweiterte Funktionen erganzt, die die
Anwendungsentwicklung und Konnektivitat beschleunigen, Transformationen durch Stream-Verarbeitung

ermoglichen, Unternehmensablaufe im groRen Malstab vereinfachen und strenge Architekturanforderungen
erfillen sollen. Confluent wurde von den urspriinglichen Entwicklern von Apache Kafka entwickelt und
erweitert die Vorteile von Kafka um Funktionen auf Unternehmensniveau, wahrend es gleichzeitig den
Aufwand fur die Verwaltung oder Uberwachung von Kafka verringert. Heute nutzen (iber 80 % der Fortune
100-Unternehmen Datenstreaming-Technologie — und die meisten von ihnen verwenden Confluent.

Warum Confluent?

Durch die Integration historischer und Echtzeitdaten in eine einzige, zentrale Quelle der Wahrheit erleichtert
Confluent den Aufbau einer vollig neuen Kategorie moderner, ereignisgesteuerter Anwendungen, den Aufbau
einer universellen Datenpipeline und die Erschliefung leistungsstarker neuer Anwendungsfalle mit voller
Skalierbarkeit, Leistung und Zuverlassigkeit.

Wofiir wird Confluent verwendet?

Mit der Confluent Platform kdnnen Sie sich darauf konzentrieren, wie Sie aus Ihren Daten geschéftlichen
Nutzen ziehen, anstatt sich um die zugrunde liegenden Mechanismen zu kimmern, beispielsweise darum, wie
Daten zwischen unterschiedlichen Systemen transportiert oder integriert werden. Insbesondere vereinfacht die
Confluent Platform die Verbindung von Datenquellen mit Kafka, die Erstellung von Streaming-Anwendungen
sowie die Sicherung, Uberwachung und Verwaltung Ihrer Kafka-Infrastruktur. Heute wird die Confluent
Platform fiir eine breite Palette von Anwendungsfallen in zahlreichen Branchen eingesetzt, von
Finanzdienstleistungen, Omnichannel-Einzelhandel und autonomen Autos bis hin zu Betrugserkennung,
Microservices und loT.

Die folgende Abbildung zeigt die Komponenten der Confluent Kafka-Plattform.

Datobase Changes | Leg Events leT Events | { Waeb Events | { Other Events
' + + 4 4
DATA CONFLUENT PLATFORM REAL-TIME

INTEGRATION APPLICATIONS

SECURITY & RESILIENCY
S RBAC | Audit Logs | Schema Validation | Multi-Region Clusters | Replicator | Cluster Linking ety
| Hodoop 1 | Customer 340

PERFORMANCE & SCALABILITY

| Tiered Storoge | Self-Baloncing Clusters | KBs Operator |

I Database Fraud Datection

— MANAGEMENT & MONITORING
! Data Warshouse | Control Center | Proocctive Support

Inventory Management

|' - J DEVELOPMENT & CONNECTIVITY | PR T
| Connectors | Non-Java Clients | REST Proxy | Schema Registry | ksqlDB i
‘ Other | APACHE KAFKA® | Othse

Core | Connect API | Streams API =

| A

Customer self-managed Confluent fully managed
DATACENTER PUBLIC CLOUD °CON_FLUENT cLoup
@ Commercial Features Cemmunity Features O Open Source Features

Uberblick iiber die Event-Streaming-Technologie von Confluent

Der Kern der Confluent Platform ist "Apache Kafka" , die beliebteste Open-Source-Plattform fir verteiltes
Streaming. Die wichtigsten Funktionen von Kafka sind:

https://kafka.apache.org/

» Veroffentlichen und abonnieren Sie Datensatz-Streams.

» Speichern Sie Datensatzstrome fehlertolerant.

» Verarbeiten Sie Datensatzstrome.

Die Confluent Platform umfasst standardmafig auch Schema Registry, REST Proxy, insgesamt Giber 100
vorgefertigte Kafka-Konnektoren und ksqlDB.

Ubersicht iiber die Enterprise-Funktionen der Confluent-Plattform

+ Confluent-Kontrollzentrum. Ein GUI-basiertes System zur Verwaltung und Uberwachung von Kafka. Es

10

ermoglicht Ihnen die einfache Verwaltung von Kafka Connect und das Erstellen, Bearbeiten und Verwalten
von Verbindungen zu anderen Systemen.

Confluent fiir Kubernetes. Confluent fur Kubernetes ist ein Kubernetes-Operator. Kubernetes-Operatoren
erweitern die Orchestrierungsfunktionen von Kubernetes, indem sie die einzigartigen Funktionen und
Anforderungen fir eine bestimmte Plattformanwendung bereitstellen. Fir die Confluent Platform bedeutet
dies eine erhebliche Vereinfachung des Bereitstellungsprozesses von Kafka auf Kubernetes und die
Automatisierung typischer Aufgaben im Lebenszyklus der Infrastruktur.

Konfluente Konnektoren zu Kafka. Konnektoren verwenden die Kafka Connect-API, um Kafka mit
anderen Systemen wie Datenbanken, Schlussel-Wert-Speichern, Suchindizes und Dateisystemen zu
verbinden. Confluent Hub verfiigt Gber herunterladbare Konnektoren fiir die gangigsten Datenquellen und
-senken, einschlieBlich vollstdndig getesteter und unterstitzter Versionen dieser Konnektoren mit
Confluent Platform. Weitere Details finden Sie "hier," .

Selbstausgleichende Cluster. Bietet automatisierten Lastausgleich, Fehlererkennung und Selbstheilung.
Es bietet Unterstlitzung fiir das Hinzufligen oder Aufderbetriebnehmen von Brokern nach Bedarf, ohne
dass eine manuelle Anpassung erforderlich ist.

Konfluente Clusterverkniipfung. Verbindet Cluster direkt miteinander und spiegelt Themen von einem
Cluster zum anderen Uber eine Linkbricke. Die Clusterverknlpfung vereinfacht die Einrichtung von Multi-
Datacenter-, Multi-Cluster- und Hybrid-Cloud-Bereitstellungen.

Confluent automatischer Datenausgleich. Uberwacht lhren Cluster hinsichtlich der Anzahl der Broker,
der Grole der Partitionen, der Anzahl der Partitionen und der Anzahl der Leader innerhalb des Clusters.
Sie kénnen Daten verschieben, um eine gleichmaflige Arbeitslast in Ihrem Cluster zu erreichen, und
gleichzeitig den Datenverkehr drosseln, um die Auswirkungen auf die Produktionsarbeitslasten wahrend
der Neuverteilung zu minimieren.

Konfluenter Replikator. Macht es einfacher als je zuvor, mehrere Kafka-Cluster in mehreren
Rechenzentren zu verwalten.

Stufenspeicher. Bietet Optionen zum Speichern groRer Mengen von Kafka-Daten bei lhrem bevorzugten
Cloud-Anbieter und reduziert so den Betriebsaufwand und die Kosten. Mit Tiered Storage konnen Sie
Daten auf kostengiinstigem Objektspeicher aufbewahren und Broker nur dann skalieren, wenn Sie mehr
Rechenressourcen bendtigen.

Confluent JMS-Client. Confluent Platform enthalt einen JMS-kompatiblen Client fiir Kafka. Dieser Kafka-
Client implementiert die JMS 1.1-Standard-API und verwendet Kafka-Broker als Backend. Dies ist nitzlich,
wenn Sie Uber altere Anwendungen verfligen, die JMS verwenden, und Sie den vorhandenen JMS-
Nachrichtenbroker durch Kafka ersetzen mochten.

Confluent MQTT-Proxy. Bietet eine Mdglichkeit, Daten von MQTT-Geraten und -Gateways direkt an Kafka
zu veroffentlichen, ohne dass ein MQTT-Broker dazwischengeschaltet werden muss.

Confluent-Sicherheits-Plugins. Confluent-Sicherheits-Plugins werden verwendet, um verschiedenen
Tools und Produkten der Confluent-Plattform Sicherheitsfunktionen hinzuzufiigen. Derzeit ist ein Plug-In flr
den Confluent REST-Proxy verfiigbar, das bei der Authentifizierung eingehender Anfragen hilft und den
authentifizierten Auftraggeber an Anfragen an Kafka weitergibt. Dadurch kdénnen Confluent REST-Proxy-

https://docs.confluent.io/home/connect/userguide.html

Clients die Multitenant-Sicherheitsfunktionen des Kafka-Brokers nutzen.

Konfluente Uberpriifung

Wir haben die Uberpriifung mit Confluent Platform 6.2 Tiered Storage in NetApp
StorageGRID durchgeflhrt. Die Teams von NetApp und Confluent arbeiteten gemeinsam
an dieser Verifizierung und fuhrten die fur die Verifizierung erforderlichen Testfalle aus.

Einrichtung der Confluent-Plattform

Zur Uberpriifung haben wir das folgende Setup verwendet.

Zur Uberpriifung verwendeten wir drei Zookeeper, fiinf Broker, fiinf Testskript-Ausfiihrungsserver, benannte
Tool-Server mit 256 GB RAM und 16 CPUs. Fur den NetApp -Speicher haben wir StorageGRID mit einem
SG1000-Load Balancer mit vier SGF6024 verwendet. Die Speicher und Broker wurden tiber 100GbE-
Verbindungen verbunden.

Die folgende Abbildung zeigt die Netzwerktopologie der fur die Confluent-Verifizierung verwendeten
Konfiguration.

(m = B= | q 581000 i

Eeismi=isis
4 x 24 x 800 GB
SSDs
R
7 -‘/ rd ; P { 7 _\ -\ T ~.\ -. \ .. 1GUGbE

Toaols Servers

I'

"

B e e T i e e e e

|
b
|
L
H
L
i
\

b .
/ 1

Grafana . I Confluent control center Confluent Nodes = Canfluent brokers

Die Tool-Server fungieren als Anwendungsclients, die Anfragen an Confluent-Knoten senden.

Confluent-Tiered-Storage-Konfiguration

Die mehrstufige Speicherkonfiguration erfordert die folgenden Parameter in Kafka:

11

Confluent.tier.
confluent.tier.
confluent.tier.
confluent.tier.

confluent.tier
confluent.tier
confluent.tier

confluent.tier.
confluent.tier.

10444/

confluent.tier.

archiver.num.threads=16

fetcher.num.threads=32

enable=true

feature=true

s3.
s3.

s3.

.backend=S83
.s3.
.s3.

bucket=kafkasgdbucketl-2

region=us-west-2
cred.file.path=/data/kafka/.ssh/credentials
aws.endpoint.override=http://kafkasgd.rtpppe.netapp.com:

force.path.style.access=true

Zur Uberprifung haben wir StorageGRID mit dem HTTP-Protokoll verwendet, aber auch HTTPS funktioniert.
Der Zugriffsschliissel und der geheime Schlissel werden in der Datei mit dem angegebenen Namen
gespeichert. confluent.tier.s3.cred.file.path Parameter.

NetApp Objektspeicher — StorageGRID

Zur Uberprifung haben wir die Single-Site-Konfiguration in StorageGRID konfiguriert.

12

Confluent
control center

Tiered
ObjectStore
Compatible

Checker tests

Confluent
Platform

=
! % Brokerl
l:x; Zookeeper |¢— —

I
: §g Broker2
|
|
I
|
I

Tiered storage

@ Grafana

Tiered Storage (Object storage)

NetApp

Verifizierungstests

Zur Verifizierung haben wir die folgenden funf Testfalle durchgefuhrt. Diese Tests werden auf dem Trogdor-

Framework ausgeflihrt. Bei den ersten beiden handelte es sich um Funktionstests und bei den restlichen drei

um Leistungstests.

13

Korrektheitstest des Objektspeichers

Dieser Test ermittelt, ob alle grundlegenden Vorgange (z. B. Get/Put/Delete) der Objektspeicher-API
entsprechend den Anforderungen des mehrstufigen Speichers gut funktionieren. Es handelt sich um einen
grundlegenden Test, den jeder Objektspeicherdienst vor den folgenden Tests bestehen sollte. Es handelt sich
um einen Aussagetest, der entweder bestanden oder nicht bestanden wird.

Korrektheitstest der Tiering-Funktionalitét

Dieser Test ermittelt mit einem Assertivtest, der entweder erfolgreich ist oder fehlschlagt, ob die End-to-End-
Tiered-Storage-Funktionalitat gut funktioniert. Der Test erstellt ein Testthema, das standardmafRig mit
aktiviertem Tiering und stark reduzierter Hotset-GréRRe konfiguriert ist. Es erzeugt einen Ereignisstrom zum neu
erstellten Testthema, wartet darauf, dass die Broker die Segmente im Objektspeicher archivieren, verbraucht
dann den Ereignisstrom und Uberprift, ob der verbrauchte Strom mit dem erzeugten Strom lbereinstimmt. Die
Anzahl der an den Ereignisstrom gesendeten Nachrichten ist konfigurierbar, sodass der Benutzer je nach
Testbedarf eine ausreichend grolRe Arbeitslast generieren kann. Die reduzierte Hotset-GroRe stellt sicher, dass
die Abrufe des Verbrauchers aulRerhalb des aktiven Segments nur aus dem Objektspeicher erfolgen. Dies hilft
beim Testen der Richtigkeit des Objektspeichers flr Lesevorgange. Wir haben diesen Test mit und ohne
Fehlerinjektion im Objektspeicher durchgefihrt. Wir haben einen Knotenausfall simuliert, indem wir den
Service Manager-Dienst in einem der Knoten in StorageGRID gestoppt und Uberprift haben, ob die End-to-
End-Funktionalitat mit dem Objektspeicher funktioniert.

Benchmark fiir den Tier-Abruf

Dieser Test validierte die Leseleistung des mehrstufigen Objektspeichers und lGberprifte die Range-Fetch-
Leseanforderungen unter hoher Last von Segmenten, die durch den Benchmark generiert wurden. In diesem
Benchmark hat Confluent benutzerdefinierte Clients entwickelt, um die Tier-Fetch-Anfragen zu erflllen.

Benchmark fiir die Arbeitslast ,,Produzieren und Konsumieren*

Dieser Test erzeugte durch die Archivierung von Segmenten indirekt eine Schreiblast im Objektspeicher. Die
Lesearbeitslast (gelesene Segmente) wurde aus dem Objektspeicher generiert, als Verbrauchergruppen die
Segmente abgerufen haben. Diese Arbeitslast wurde durch das Testskript generiert. Dieser Test Uberprifte die
Leistung beim Lesen und Schreiben im Objektspeicher in parallelen Threads. Wir haben mit und ohne
Fehlerinjektion im Objektspeicher getestet, wie wir es fiir den Korrektheitstest der Tiering-Funktionalitat getan
haben.

Benchmark fiir die Aufbewahrungsarbeitslast

Dieser Test prifte die Loschleistung eines Objektspeichers unter einer hohen Themenaufbewahrungslast. Der
Aufbewahrungsaufwand wurde mithilfe eines Testskripts generiert, das viele Nachrichten parallel zu einem
Testthema produziert. Das Testthema war die Konfiguration mit einer aggressiven grof3en- und zeitbasierten
Aufbewahrungseinstellung, die dazu fihrte, dass der Ereignisstrom kontinuierlich aus dem Objektspeicher
geldscht wurde. Anschlielend wurden die Segmente archiviert. Dies fuhrte zu einer gro3en Anzahl von
Ldschungen im Objektspeicher durch den Broker und zur Erfassung der Leistung der Loschvorgange im
Objektspeicher.

Leistungstests mit Skalierbarkeit

Wir haben die Tiered-Storage-Tests mit drei bis vier Knoten fur Producer- und Consumer-
Workloads mit dem NetApp StorageGRID Setup durchgefluhrt. Unseren Tests zufolge
waren die Zeit bis zur Fertigstellung und die Leistungsergebnisse direkt proportional zur
Anzahl der StorageGRID Knoten. Fur die Einrichtung von StorageGRID waren

14

mindestens drei Knoten erforderlich.

 Die Zeit zum AbschlieRen des Produktions- und Verbrauchervorgangs verringerte sich linear, wenn die
Anzahl der Speicherknoten zunahm.

Time to complete trends
(Lower is better)

8300 8241

8200 -

8100 S 8011
8000 ;
7900

7800

7700

7600

7500

.
-
ey
*ey.
.
.....
.....
‘e,
e
L
.
.......
ey
e,
e

Tiem in seconds

3 SGDs 4 SGDs 55SGDs 6 SGDs
Number of StorageGrid Nodes

* Die Leistung fir den S3-Abrufvorgang stieg linear basierend auf der Anzahl der StorageGRID Knoten.
StorageGRID unterstitzt bis zu 200 StorgeGRID-Knoten.

15

S3 - Retrieve peformance Trend
(Higher is better)

16
14
12 10 ...
¢ 10
@
&8
o
O ¢
a4
2
0
3 SGDs 4 SGDs 5 SGDs 6 SGDs

Number of Storage Grid Nodes

Confluent S3-Anschluss

Der Amazon S3 Sink-Connector exportiert Daten aus Apache Kafka-Themen in S3-
Objekte im Avro-, JSON- oder Bytes-Format. Der Amazon S3-Sink-Connector fragt
regelmafig Daten von Kafka ab und Iadt sie wiederum zu S3 hoch. Ein Partitionierer wird
verwendet, um die Daten jeder Kafka-Partition in Blocke aufzuteilen. Jeder Datenblock
wird als S3-Objekt dargestellt. Der Schlisselname kodiert das Thema, die Kafka-Partition
und den Start-Offset dieses Datenblocks.

In diesem Setup zeigen wir Ihnen, wie Sie Themen im Objektspeicher von Kafka direkt mithilfe des Kafka s3-
Sink-Connectors lesen und schreiben. Fur diesen Test haben wir einen eigenstandigen Confluent-Cluster
verwendet, dieses Setup ist jedoch auch auf einen verteilten Cluster anwendbar.

1. Laden Sie Confluent Kafka von der Confluent-Website herunter.

2. Entpacken Sie das Paket in einen Ordner auf lhrem Server.

3. Exportieren Sie zwei Variablen.

Export CONFLUENT HOME=/data/confluent/confluent-6.2.0
export PATH=S$PATH:/data/confluent/confluent-6.2.0/bin

4. Fur ein eigenstandiges Confluent Kafka-Setup erstellt der Cluster einen temporéren Stammordner in /tmp
. Es erstellt auRerdem Zookeeper, Kafka, ein Schema-Registry, Connect, einen KSQL-Server und Control-
Center-Ordner und kopiert die jeweiligen Konfigurationsdateien von $CONFLUENT HOME . Siehe das
folgende Beispiel:

16

root@stlrx2540ml-108:~# 1ls -ltr /tmp/confluent.406980/
total 28
drwxr—-xr-x root root 4096 Oct 29 19:01 zookeeper

root root 4096 Oct 29 19:37 kafka

root root 4096 Oct 29 19:40 schema-registry
root root 4096 Oct 29 19:45 kafka-rest

root root 4096 Oct 29 19:47 connect

root root 4096 Oct 29 19:48 ksgl-server
drwxr-xr-x 4 root root 4096 Oct 29 19:53 control-center

root@stlrx2540ml1-108:~4#

drwxr—-xr-x
drwxr—-xr-x
drwxr-xr-x

drwxr—-xr-x

N N N N A)

drwxr—-xr-x

5. Konfigurieren Sie Zookeeper. Wenn Sie die Standardparameter verwenden, missen Sie nichts andern.

root@stlrx2540m1-108:~# cat
/tmp/confluent.406980/zoo0keeper/zookeeper.properties | grep -iv *#
dataDir=/tmp/confluent.406980/zookeeper/data
clientPort=2181

maxClientCnxns=0

admin.enableServer=false

tickTime=2000

initLimit=5

syncLimit=2
server.l79=controlcenter:2888:3888
root@stlrx2540ml-108:~#

In der obigen Konfiguration haben wir die server. xxx Eigentum. Standardmafig bendtigen Sie drei
Zookeeper fur die Kafka-Leader-Auswahl.

6. Wir haben eine Myid-Datei erstellt in /tmp/confluent.406980/zookeeper/data mit einer
eindeutigen ID:

root@stlrx2540m1-108:~# cat /tmp/confluent.406980/zookeeper/data/myid
179
root@stlrx2540ml1-108:~4#

Wir haben die letzte Nummer der IP-Adressen fur die MylD-Datei verwendet. Wir haben Standardwerte fur
die Konfigurationen Kafka, Connect, Control-Center, Kafka, Kafka-Rest, KSQL-Server und Schema-
Registry verwendet.

7. Starten Sie die Kafka-Dienste.

17

root@stlrx2540ml1-108:/data/confluent/confluent-6.2.0/bin# confluent
local services start

The local commands are intended for a single-node development
environment only,

NOT for production usage.

Using CONFLUENT CURRENT: /tmp/confluent.406980

ZooKeeper is [UP]

Kafka 1is [UP]

Schema Registry is [UP]

Kafka REST is [UP]

Connect 1s [UP]

ksglDB Server is [UP]

Control Center is [UP]
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin#

Fur jede Konfiguration gibt es einen Protokollordner, der bei der Fehlerbehebung hilft. In einigen Fallen
dauert der Start der Dienste langer. Stellen Sie sicher, dass alle Dienste aktiv sind und ausgefiihrt werden.

8. Installieren Sie Kafka Connect mit confluent-hub .

root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin# ./confluent-
hub install confluentinc/kafka-connect-s3:latest
The component can be installed in any of the following Confluent
Platform installations:

1. /data/confluent/confluent-6.2.0 (based on SCONFLUENT HOME)

2. /data/confluent/confluent-6.2.0 (where this tool is installed)
Choose one of these to continue the installation (1-2): 1
Do you want to install this into /data/confluent/confluent-
6.2.0/share/confluent-hub-components? (yN) y

Component's license:
Confluent Community License
http://www.confluent.io/confluent-community-license
I agree to the software license agreement (yN) vy
Downloading component Kafka Connect S3 10.0.3, provided by Confluent,
Inc. from Confluent Hub and installing into /data/confluent/confluent-
6.2.0/share/confluent-hub-components
Do you want to uninstall existing version 10.0.3? (yN) vy
Detected Worker's configs:

1. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-
distributed.properties

2. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-
standalone.properties

3. Standard: /data/confluent/confluent-6.2.0/etc/schema-

18

registry/connect-avro-distributed.properties
4. Standard: /data/confluent/confluent-6.2.0/etc/schema-
registry/connect-avro-standalone.properties
5. Based on CONFLUENT CURRENT:
/tmp/confluent.406980/connect/connect.properties
6. Used by Connect process with PID 15904:
/tmp/confluent.406980/connect/connect.properties
Do you want to update all detected configs? (yN) vy
Adding installation directory to plugin path in the following files:
/data/confluent/confluent-6.2.0/etc/kafka/connect-
distributed.properties
/data/confluent/confluent-6.2.0/etc/kafka/connect-
standalone.properties
/data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-
distributed.properties
/data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-
standalone.properties
/tmp/confluent.406980/connect/connect.properties
/tmp/confluent.406980/connect/connect.properties

Completed
root@stlrx2540ml1-108:/data/confluent/confluent-6.2.0/bin#

Sie kdnnen auch eine bestimmte Version installieren, indem Sie confluent-hub install
confluentinc/kafka-connect-s3:10.0.3.

9. StandardmafRig confluentinc-kafka-connect-s3 istinstalliertin /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3.

10. Aktualisieren Sie den Plug-In-Pfad mit dem neuen confluentinc-kafka-connect-s3.

root@stlrx2540ml-108:~# cat /data/confluent/confluent-
6.2.0/etc/kafka/connect-distributed.properties | grep plugin.path

#

plugin.path=/usr/local/share/Jjava, /usr/local/share/kafka/plugins, /opt/co
nnectors,

plugin.path=/usr/share/java, /data/zookeeper/confluent/confluent-
6.2.0/share/confluent-hub-components, /data/confluent/confluent-
6.2.0/share/confluent-hub-components, /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3
root@stlrx2540ml-108:~4#

11. Stoppen Sie die Confluent-Dienste und starten Sie sie neu.

19

confluent local services stop

confluent local services start
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin# confluent
local services status

The local commands are intended for a single-node development
environment only,

NOT for production usage.

Using CONFLUENT CURRENT: /tmp/confluent.406980

Connect is [UP]

Control Center is [UP]

Kafka is [UP]

Kafka REST is [UP]

ksglDB Server is [UP]

Schema Registry is [UP]

ZooKeeper is [UP]
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin#

12. Konfigurieren Sie die Zugriffs-ID und den geheimen Schllissel im /root/.aws/credentials Datei.

root@stlrx2540ml1-108:~# cat /root/.aws/credentials

[default]
aws_access key 1d = XXXXXXXXXXXX
aws_secret_acces s_key = XXXXXXXXXXXXXXXXXXXXXXXXXX

root@stlrx2540ml1-108:~#

13. Uberprifen Sie, ob der Bucket erreichbar ist.

root@stlrx2540m4-01:~# aws s3 —endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 1s kafkasgdbucketl-2

2021-10-29 21:04:18 1388 1
2021-10-29 21:04:20 1388 2
2021-10-29 21:04:22 1388 3

root@stlrx2540m4-01:~#

14. Konfigurieren Sie die S3-Sink-Eigenschaftendatei fir die S3- und Bucket-Konfiguration.

20

root@stlrx2540m1-108:~# cat /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-
s3/etc/quickstart-s3.properties | grep -v #

name=s3-sink
connector.class=io.confluent.connect.s3.5S3SinkConnector
tasks.max=1

topics=s3 testtopic

s3.region=us-west-2

s3.bucket.name=kafkasgdbucketl-2
store.url=http://kafkasgd.rtpppe.netapp.com:10444/
s3.part.size=5242880

flush.size=3
storage.class=io.confluent.connect.s3.storage.S3Storage
format.class=io.confluent.connect.s3.format.avro.AvroFormat
partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartit
ioner

schema.compatibility=NONE

root@stlrx2540ml1-108:~#

15. Importieren Sie einige Datensatze in den S3-Bucket.

kafka-avro-console-producer --broker-list localhost:9092 --topic

s3 topic \

—-—property
value.schema="'{"type":"record", "name" : "myrecord","fields": [{"name":"f1",

"type" . "String" }] } '

{"f1": "valuel"}
{"f1": "value2"}
{"f1": "value3"}
{"f1": "valued"}
{"f1": "valueb"}
{"f1l": "value6"}
{"f1": "value7"}
{"f1": "value8"}
{"f1": "value9"}

16. Laden Sie den S3-Sink-Connector.

root@stlrx2540ml1-108:~# confluent local services connect connector load
s3-sink --config /data/confluent/confluent-6.2.0/share/confluent-hub-
components/confluentinc-kafka-connect-s3/etc/quickstart-s3.properties
The local commands are intended for a single-node development
environment only,

NOT for production usage.
https://docs.confluent.io/current/cli/index.html

{

"name": "s3-sink",

"config": {
"connector.class": "io.confluent.connect.s3.53SinkConnector",
"flush.size": "3",
"format.class": "io.confluent.connect.s3.format.avro.AvroFormat",

"partitioner.class":
"io.confluent.connect.storage.partitioner.DefaultPartitioner",
"s3.bucket.name": "kafkasgdbucketl-2",
"s3.part.size": "5242880",
"s3.region": "us-west-2",
"schema.compatibility": "NONE",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"store.url": "http://kafkasgd.rtpppe.netapp.com:10444/",
"tasks.max": "1",
"topics": "s3 testtopic",
"name": "s3-sink"
by
"tasks": [1,
"type": "sink"
}
root@stlrx2540ml-108:~#

17. Uberprifen Sie den S3-Sink-Status.

22

root@stlrx2540ml1-108:~# confluent local services connect connector
status s3-sink

The local commands are intended for a single-node development
environment only,

NOT for production usage.
https://docs.confluent.io/current/cli/index.html

{

"name": "s3-sink",
"connector": {
"state": "RUNNING",

"worker id": "10.63.150.185:8083"
by
"tasks": [
{
Picl¥Ws Q,
"state": "RUNNING",
"worker id": "10.63.150.185:8083"
}
I
"type": "sink"
}
root@stlrx2540ml1-108:~4#

18. Uberpriifen Sie das Protokoll, um sicherzustellen, dass s3-sink bereit ist, Themen anzunehmen.

root@stlrx2540ml1-108:~# confluent local services connect log

19. Sehen Sie sich die Themen in Kafka an.

kafka-topics --list —--bootstrap-server localhost:9092

connect-configs
connect-offsets
connect-statuses
default ksgl processing log
s3 testtopic

s3 topic

s3 topic new
root@stlrx2540ml1-108:~4#

20. Uberpriifen Sie die Objekte im S3-Bucket.

root@stlrx2540ml-108:~# aws s3 --endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 1s --recursive kafkasgdbucketl-

2/topics/

2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro
2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000003.avro
2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000006.avro
2021-10-29 21:24:08 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000009.avro
2021-10-29 21:24:08 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000012.avro
2021-10-29 21:24:09 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000015.avro
root@stlrx2540ml1-108:~4#

21. Um den Inhalt zu Uberprifen, kopieren Sie jede Datei von S3 in lhr lokales Dateisystem, indem Sie den
folgenden Befehl ausfihren:

root@stlrx2540ml-108:~# aws s3 --endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 cp s3://kafkasgdbucketl-
2/topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro
tes.avro

download: s3://kafkasgdbucketl-

2/topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro to
./tes.avro

root@stlrx2540ml-108:~4#

22. Um die Datensatze auszudrucken, verwenden Sie avro-tools-1.11.0.1.jar (verfigbar im "Apache-Archive").

root@stlrx2540ml-108:~# java -jar /usr/src/avro-tools-1.11.0.1.Jjar
tojson tes.avro

21/10/30 00:20:24 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable

{"f1":"valuel"}

{"f1":"value2"}

{"f1":"value3"}

root@stlrx2540ml-108:~#

24

http://mirror.metrocast.net/apache/avro/stable/java/

Instaclustr Kafka Connect Connectors

Instaclustr unterstiitzt Kafka Connect Connectors und deren Details - "Weitere Details"Die Instaclustr bietet
zusatzliche Konnektoren. "ihre Details"

Konfluente, selbstausgleichende Cluster

Wenn Sie bereits einen Kafka-Cluster verwaltet haben, sind Sie wahrscheinlich mit den
Herausforderungen vertraut, die mit der manuellen Neuzuweisung von Partitionen an
verschiedene Broker einhergehen, um sicherzustellen, dass die Arbeitslast im gesamten
Cluster ausgeglichen ist. Fur Organisationen mit grolRen Kafka-Bereitstellungen kann die
Neuordnung grofRer Datenmengen entmutigend, mihsam und riskant sein, insbesondere
wenn unternehmenskritische Anwendungen auf dem Cluster erstellt werden. Allerdings
ist der Prozess selbst bei den kleinsten Kafka-Anwendungsfallen zeitaufwandig und
anfallig fir menschliche Fehler.

In unserem Labor haben wir die Funktion zum selbstausgleichenden Cluster von Confluent getestet, die den
Neuausgleich basierend auf Anderungen der Clustertopologie oder ungleichmaRiger Last automatisiert. Der
Confluent-Neuausgleichstest hilft dabei, die Zeit zu messen, die zum Hinzufligen eines neuen Brokers bendtigt
wird, wenn ein Knotenausfall vorliegt oder der Skalierungsknoten einen Neuausgleich der Daten zwischen den
Brokern erfordert. In klassischen Kafka-Konfigurationen wachst die Menge der neu auszugleichenden Daten
mit dem Wachstum des Clusters, bei mehrstufigem Speicher ist die Neuausgleichung jedoch auf eine kleine
Datenmenge beschrankt. Basierend auf unserer Validierung dauert die Neuausrichtung im mehrstufigen
Speicher in einer klassischen Kafka-Architektur Sekunden oder Minuten und wachst linear mit dem Wachstum
des Clusters.

In selbstausgleichenden Clustern werden Partitionsneuausgleiche vollstandig automatisiert, um den Durchsatz
von Kafka zu optimieren, die Broker-Skalierung zu beschleunigen und den Betriebsaufwand fir den Betrieb
eines grolRen Clusters zu reduzieren. Im stationdren Zustand tUberwachen selbstausgleichende Cluster die
Datenabweichung zwischen den Brokern und weisen Partitionen kontinuierlich neu zu, um die Clusterleistung
zu optimieren. Beim Hoch- oder Herunterskalieren der Plattform erkennen selbstausgleichende Cluster
automatisch das Vorhandensein neuer Broker oder das Entfernen alter Broker und |I6sen eine anschlielende
Neuzuweisung der Partition aus. Dadurch kdnnen Sie Broker einfach hinzufiigen und aul3er Betrieb nehmen,
wodurch lhre Kafka-Cluster wesentlich elastischer werden. Diese Vorteile ergeben sich ohne manuelle
Eingriffe, komplexe Berechnungen oder das Risiko menschlicher Fehler, das bei Partitionsneuzuweisungen
normalerweise auftritt. Dadurch werden Datenneuausrichtungen in wesentlich kiirzerer Zeit abgeschlossen
und Sie kénnen sich auf hdherwertige Event-Streaming-Projekte konzentrieren, anstatt Ihre Cluster standig
Uberwachen zu mussen.

Instaclustr unterstitzt auerdem Funktionen zur automatischen Neuausrichtung und wurde bereits fir mehrere
Kunden implementiert.

Best Practice-Richtlinien
In diesem Abschnitt werden die Erkenntnisse aus dieser Zertifizierung vorgestellt.

» Basierend auf unserer Validierung ist der S3-Objektspeicher fir Confluent am besten geeignet, um Daten
aufzubewahren.

* Wir kénnen ein Hochdurchsatz-SAN (insbesondere FC) verwenden, um die Hot Data des Brokers oder die
lokale Festplatte aufzubewahren, da in der mehrstufigen Speicherkonfiguration von Confluent die GroRle
der im Datenverzeichnis des Brokers gespeicherten Daten auf der Segmentgrée und der

25

https://github.com/instaclustr/kafka-connect-connectors
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/

Aufbewahrungszeit basiert, wenn die Daten in den Objektspeicher verschoben werden.
* Objektspeicher bieten eine bessere Leistung, wenn segment.bytes hoher ist; wir haben 512 MB getestet.

 In Kafka wird die Lange des Schlissels oder Wertes (in Bytes) flr jeden zum Thema erstellten Datensatz
durch die length.key.value Parameter. Fir StorageGRID wurde die Leistung beim Aufnehmen und
Abrufen von S3-Objekten auf hdhere Werte erhdht. Beispielsweise ermoglichten 512 Bytes einen Abruf
von 5,8 GBps, 1024 Bytes einen S3-Abruf von 7,5 GBps und 2048 Bytes fast 10 GBps.

Die folgende Abbildung zeigt die Aufnahme und den Abruf von S3-Objekten basierend auf
length.key.value.

S3 Ingest and Retrieve

10.0 GBs

0Bs

== |ngest rate == Retrieve rate

Kafka-Tuning. Um die Leistung des mehrstufigen Speichers zu verbessern, kbnnen Sie
TierFetcherNumThreads und TierArchiverNumThreads erhdhen. Als allgemeine Richtlinie sollten Sie
TierFetcherNumThreads erhdhen, um es an die Anzahl der physischen CPU-Kerne anzupassen, und
TierArchiverNumThreads auf die Halfte der Anzahl der CPU-Kerne erhdhen. Wenn Sie beispielsweise Uber
eine Maschine mit acht physischen Kernen verfligen, legen Sie in den Servereigenschaften
confluent.tier.fetcher.num.threads = 8 und confluent.tier.archiver.num.threads = 4 fest.

Zeitintervall fiir Themenléschungen. Wenn ein Thema geldscht wird, beginnt das Léschen der
Protokollsegmentdateien im Objektspeicher nicht sofort. Vielmehr gibt es ein Zeitintervall mit einem
Standardwert von 3 Stunden, bevor die Léschung dieser Dateien erfolgt. Sie kdnnen die Konfiguration
confluent.tier.topic.delete.check.interval.ms dndern, um den Wert dieses Intervalls zu andern. Wenn Sie ein
Thema oder einen Cluster I6schen, kénnen Sie die Objekte im jeweiligen Bucket auch manuell 16schen.

ACLs zu internen Themen des Tiered Storage. Eine empfohlene Best Practice fiir lokale
Bereitstellungen besteht darin, einen ACL-Autorisierer fir die internen Themen zu aktivieren, die fir
mehrstufigen Speicher verwendet werden. Legen Sie ACL-Regeln fest, um den Zugriff auf diese Daten auf
den Broker-Benutzer zu beschranken. Dies sichert die internen Themen und verhindert den unbefugten
Zugriff auf Tiered-Storage-Daten und Metadaten.

kafka-acls —--bootstrap-server localhost:9092 --command-config adminclient-
configs.conf \

-—-add --allow-principal User:<kafka> --operation All --topic " confluent-
tier-state"

26

@ Ersetzen Sie den Benutzer <kafka> mit dem tatsachlichen Broker-Prinzipal in lhrer
Bereitstellung.

Beispielsweise der Befehl confluent-tier-state legt ACLs fir das interne Thema fur mehrstufigen
Speicher fest. Derzeit gibt es nur ein einziges internes Thema zum Thema Tiered Storage. Das Beispiel erstellt
eine ACL, die dem Kafka-Prinzip die Berechtigung fiir alle Vorgange am internen Thema erteilt.

GrofRen

Die Kafka-Dimensionierung kann mit vier Konfigurationsmodi durchgefuhrt werden:
einfach, granular, umgekehrt und Partitionen.

Einfach

Der einfache Modus eignet sich fir Erstbenutzer von Apache Kafka oder Anwendungsfalle im Frihstadium.
Fir diesen Modus geben Sie Anforderungen wie Durchsatz-MBps, Lese-Fanout, Aufbewahrung und den
Prozentsatz der Ressourcennutzung an (60 % ist der Standard). Sie geben auch die Umgebung ein, z. B. vor
Ort (Bare-Metal, VMware, Kubernetes oder OpenStack) oder in der Cloud. Basierend auf diesen Informationen
liefert die Dimensionierung eines Kafka-Clusters die Anzahl der Server, die flr den Broker, den Zookeeper, die
Apache Kafka Connect Worker, das Schema-Register, einen REST-Proxy, ksqlDB und das Confluent-
Kontrollzentrum erforderlich sind.

Berticksichtigen Sie bei mehrstufigem Speicher den granularen Konfigurationsmodus zur GréRenbestimmung
eines Kafka-Clusters. Der Granularmodus eignet sich fiir erfahrene Apache Kafka-Benutzer oder klar definierte
Anwendungsfalle. In diesem Abschnitt wird die Dimensionierung fir Produzenten, Stream-Prozessoren und
Konsumenten beschrieben.

Produzenten

Um die Produzenten fir Apache Kafka zu beschreiben (z. B. einen nativen Client, einen REST-Proxy oder
einen Kafka-Connector), geben Sie die folgenden Informationen an:
* Name. Funke.

* Produzententyp. Anwendung oder Dienst, Proxy (REST, MQTT, andere) und vorhandene Datenbank
(RDBMS, NOSQL, andere). Sie kdnnen auch ,Ich weil} nicht* auswahlen.

* Durchschnittlicher Durchsatz. In Ereignissen pro Sekunde (z. B. 1.000.000).
» Spitzendurchsatz. In Ereignissen pro Sekunde (z. B. 4.000.000).
* Durchschnittliche NachrichtengroBe. In Bytes, unkomprimiert (max. 1 MB; beispielsweise 1000).

* Nachrichtenformat. Zu den Optionen gehéren Avro, JSON, Protokollpuffer, Binar, Text, ,Ich weil} nicht*
und andere.

* Replikationsfaktor. Optionen sind 1, 2, 3 (Confluent-Empfehlung), 4, 5 oder 6.

+ Aufbewahrungszeit. Eines Tages (zum Beispiel). Wie lange sollen lhre Daten in Apache Kafka
gespeichert werden? Geben Sie -1 mit einer beliebigen Einheit flr eine unendliche Zeit ein. Der Rechner
geht bei unbegrenzter Aufbewahrung von einer Aufbewahrungsdauer von 10 Jahren aus.

 Aktivieren Sie das Kontrollkastchen ,Tiered Storage aktivieren, um die Anzahl der Broker zu verringern und
unbegrenzten Speicher zu ermoglichen?”

» Wenn die mehrstufige Speicherung aktiviert ist, steuern die Aufbewahrungsfelder den Hotset der Daten,
der lokal auf dem Broker gespeichert wird. Die Felder fir die Archivaufbewahrung steuern, wie lange Daten

27

im Archivobjektspeicher gespeichert werden.

Archivspeicherung. Ein Jahr (zum Beispiel). Wie lange sollen Ihre Daten im Archivspeicher aufbewahrt
werden? Geben Sie -1 mit einer beliebigen Einheit fir eine unendliche Dauer ein. Der Rechner geht bei
unbegrenzter Aufbewahrung von einer Aufbewahrungsdauer von 10 Jahren aus.

Wachstumsmultiplikator. 1 (zum Beispiel). Wenn der Wert dieses Parameters auf dem aktuellen
Durchsatz basiert, setzen Sie ihn auf 1. Um die Gréle auf Grundlage zusatzlichen Wachstums
anzupassen, legen Sie diesen Parameter auf einen Wachstumsmultiplikator fest.

Anzahl der Produzenteninstanzen. 10 (zum Beispiel). Wie viele Produzenteninstanzen werden
ausgefuhrt? Diese Eingabe ist erforderlich, um die CPU-Auslastung in die GréRenberechnung
einzubeziehen. Ein leerer Wert zeigt an, dass die CPU-Auslastung nicht in die Berechnung einbezogen
wird.

Basierend auf dieser Beispieleingabe hat die GréRenanpassung die folgenden Auswirkungen auf die
Hersteller:

* Durchschnittlicher Durchsatz in unkomprimierten Bytes: 1 GBps. Spitzendurchsatz in unkomprimierten

Bytes: 4 GB/s. Durchschnittlicher Durchsatz in komprimierten Bytes: 400 MB/s. Spitzendurchsatz in
komprimierten Bytes: 1,6 GB/s. Dies basiert auf einer Standardkomprimierungsrate von 60 % (Sie kénnen
diesen Wert andern).

o Gesamter On-Broker-Hotset-Speicher erforderlich: 31.104 TB, einschlieldlich Replikation, komprimiert.
Gesamter Off-Broker-Archivspeicherbedarf: 378.432 TB, komprimiert.
Verwenden"https://fusion.netapp.com" zur StorageGRID -Dimensionierung.

Stream-Prozessoren mussen ihre Anwendungen oder Dienste beschreiben, die Daten von Apache Kafka
verbrauchen und wieder in Apache Kafka produzieren. In den meisten Fallen werden diese in ksqlDB oder
Kafka Streams erstellt.

* Name. Spark-Streamer.

» Bearbeitungszeit. Wie lange braucht dieser Prozessor, um eine einzelne Nachricht zu verarbeiten?

> 1 ms (einfache, zustandslose Transformation) [Beispiel], 10 ms (zustandsbehafteter In-Memory-
Vorgang).

> 100 ms (zustandsbehafteter Netzwerk- oder Festplattenvorgang), 1000 ms (REST-Aufruf eines
Drittanbieters).

o Ich habe diesen Parameter getestet und weill genau, wie lange es dauert.

» Ausgabeaufbewahrung. 1 Tag (Beispiel). Ein Stream-Prozessor gibt seine Ausgabe an Apache Kafka

28

zurlick. Wie lange sollen diese Ausgabedaten in Apache Kafka gespeichert werden? Geben Sie -1 mit
einer beliebigen Einheit fur eine unendliche Dauer ein.

Aktivieren Sie das Kontrollkastchen ,Tiered Storage aktivieren, um die Anzahl der Broker zu verringern und
unbegrenzten Speicher zu ermoglichen?”

Archivspeicherung. 1 Jahr (zum Beispiel). Wie lange sollen Ihre Daten im Archivspeicher aufbewahrt
werden? Geben Sie -1 mit einer beliebigen Einheit fir eine unendliche Dauer ein. Der Rechner geht bei
unbegrenzter Aufbewahrung von einer Aufbewahrungsdauer von 10 Jahren aus.

Prozentsatz der Ausgabeweiterleitung. 100 (zum Beispiel). Ein Stream-Prozessor gibt seine Ausgabe
an Apache Kafka zurlick. Welcher Prozentsatz des eingehenden Durchsatzes wird zurlick an Apache
Kafka ausgegeben? Wenn beispielsweise der eingehende Durchsatz 20 MBps betragt und dieser Wert 10
ist, betragt der Ausgangsdurchsatz 2 MBps.

Aus welchen Anwendungen wird dies gelesen? Wahlen Sie ,Spark®, den Namen, der bei der
herstellertypbasierten Groflenbestimmung verwendet wird. Basierend auf den obigen Eingaben kénnen
Sie die folgenden Auswirkungen der Grolkenanpassung auf Stream-Prozessor-Instanzen und

https://fusion.netapp.com

Themenpartitionsschatzungen erwarten:

* Diese Stream-Prozessor-Anwendung erfordert die folgende Anzahl von Instanzen. Die eingehenden
Themen erfordern wahrscheinlich auch diese Anzahl an Partitionen. Wenden Sie sich an Confluent, um
diesen Parameter zu bestatigen.

> 1.000 fur durchschnittlichen Durchsatz ohne Wachstumsmultiplikator
> 4.000 fur Spitzendurchsatz ohne Wachstumsmultiplikator
> 1.000 fur durchschnittlichen Durchsatz mit einem Wachstumsmultiplikator

o 4.000 fur Spitzendurchsatz mit Wachstumsmultiplikator

Verbraucher

Beschreiben Sie lhre Anwendungen oder Dienste, die Daten von Apache Kafka nutzen und nicht wieder in
Apache Kafka produzieren; beispielsweise ein nativer Client oder Kafka Connector.
* Name. Spark-Verbraucher.
» Bearbeitungszeit. Wie lange braucht dieser Verbraucher, um eine einzelne Nachricht zu verarbeiten?
> 1 ms (z. B. eine einfache und zustandslose Aufgabe wie das Protokollieren)
> 10 ms (schnelles Schreiben in einen Datenspeicher)
> 100 ms (langsames Schreiben in einen Datenspeicher)
> 1000 ms (REST-Aufruf eines Drittanbieters)
o Ein anderer Benchmark-Prozess mit bekannter Dauer.

* Verbrauchertyp. Anwendung, Proxy oder Sink zu einem vorhandenen Datenspeicher (RDBMS, NoSQL,
andere).

* Aus welchen Anwendungen wird dies gelesen? Verbinden Sie diesen Parameter mit der zuvor ermittelten
Produzenten- und Streamgrolie.

Basierend auf den obigen Eingaben missen Sie die Grole fur Verbraucherinstanzen und
Themenpartitionsschatzungen bestimmen. Eine Consumer-Anwendung erfordert die folgende Anzahl von
Instanzen.

 2.000 fur durchschnittlichen Durchsatz, kein Wachstumsmultiplikator

» 8.000 fur Spitzendurchsatz, kein Wachstumsmultiplikator

 2.000 fur durchschnittlichen Durchsatz, einschlieRlich Wachstumsmultiplikator

+ 8.000 fur Spitzendurchsatz, einschlief3lich Wachstumsmultiplikator

Die eingehenden Themen bendtigen wahrscheinlich auch diese Anzahl von Partitionen. Wenden Sie sich zur
Bestatigung an Confluent.

Zusatzlich zu den Anforderungen fir Produzenten, Stream-Prozessoren und Konsumenten missen Sie die
folgenden zusatzlichen Anforderungen erfullen:

» Zeit zum Wiederaufbau. Zum Beispiel 4 Stunden. Wenn ein Apache Kafka-Broker-Host ausfallt, seine
Daten verloren gehen und ein neuer Host bereitgestellt wird, um den ausgefallenen Host zu ersetzen, wie
schnell muss sich dieser neue Host selbst wiederherstellen? Lassen Sie diesen Parameter leer, wenn der
Wert unbekannt ist.

* Ressourcennutzungsziel (Prozentsatz). Zum Beispiel 60. Wie ausgelastet sollen Ihre Hosts bei
durchschnittlichem Durchsatz sein? Confluent empfiehlt eine Auslastung von 60 %, es sei denn, Sie

29

verwenden selbstausgleichende Confluent-Cluster. In diesem Fall kann die Auslastung héher sein.

Beschreiben Sie lhre Umgebung

* In welcher Umgebung wird lhr Cluster ausgefiihrt? Amazon Web Services, Microsoft Azure, Google
Cloud Platform, Bare-Metal vor Ort, VMware vor Ort, OpenStack vor Ort oder Kubernates vor Ort?

* Hostdetails. Anzahl der Kerne: 48 (zum Beispiel), Netzwerkkartentyp (10GbE, 40GbE, 16GbE, 1GbE oder
ein anderer Typ).

* Speichervolumes. Host: 12 (zum Beispiel). Wie viele Festplatten oder SSDs werden pro Host unterstitzt?
Confluent empfiehlt 12 Festplatten pro Host.

» Speicherkapazitat/-volumen (in GB). 1000 (zum Beispiel). Wie viel Speicherplatz in Gigabyte kann ein
einzelnes Volume speichern? Confluent empfiehlt 1-TB-Festplatten.

« Speicherkonfiguration. Wie werden Speichervolumes konfiguriert? Confluent empfiehlt RAID10, um alle
Confluent-Funktionen zu nutzen. JBOD, SAN, RAID 1, RAID 0, RAID 5 und andere Typen werden
ebenfalls unterstitzt.

* Durchsatz einzelner Datentrager (MBps). 125 (zum Beispiel). Wie schnell kann ein einzelnes
Speichervolumen in Megabyte pro Sekunde lesen oder schreiben? Confluent empfiehlt
Standardfestplatten, die normalerweise einen Durchsatz von 125 MB/s haben.

» Speicherkapazitat (GB). 64 (zum Beispiel).

Nachdem Sie Ihre Umgebungsvariablen ermittelt haben, wahlen Sie ,Size my Cluster” (GréRe meines Clusters
festlegen). Basierend auf den oben angegebenen Beispielparametern haben wir die folgende Dimensionierung
fur Confluent Kafka ermittelt:

« Apache Kafka. Anzahl der Makler: 22. lhr Cluster ist speichergebunden. Erwagen Sie die Aktivierung von
Tiered Storage, um die Anzahl lhrer Hosts zu verringern und unbegrenzten Speicherplatz zu ermdéglichen.

» Apache ZooKeeper. Anzahl: 5; Apache Kafka Connect Workers: Anzahl: 2; Schema Registry: Anzahl: 2;
REST-Proxy: Anzahl: 2; ksqIDB: Anzahl: 2; Confluent Control Center: Anzahl: 1.

Verwenden Sie den umgekehrten Modus flr Plattformteams ohne einen Anwendungsfall im Sinn. Verwenden
Sie den Partitionsmodus, um zu berechnen, wie viele Partitionen ein einzelnes Thema bendtigt. Sehen
https://eventsizer.io zur Grolenbestimmung basierend auf den Reverse- und Partitionsmodi.

Abschluss

Dieses Dokument enthalt Best-Practice-Richtlinien fur die Verwendung von Confluent
Tiered Storage mit NetApp -Speicher, einschlieBlich Verifizierungstests,
Leistungsergebnissen fur Tiered Storage, Optimierung, Confluent S3-Konnektoren und
der Selbstausgleichsfunktion. Unter Berticksichtigung von ILM-Richtlinien, Confluent-
Leistung mit mehreren Leistungstests zur Uberpriifung und brancheniiblichen S3-APIs ist
der NetApp StorageGRID Objektspeicher die optimale Wahl fur Confluent-Tiered-
Storage.

Wo Sie weitere Informationen finden

Weitere Informationen zu den in diesem Dokument beschriebenen Informationen finden Sie in den folgenden
Dokumenten und/oder auf den folgenden Websites:

* Was ist Apache Kafka

30

https://eventsizer.io

"https://lwww.confluent.io/what-is-apache-kafka/"
* NetApp Produktdokumentation
"https://www.netapp.com/support-and-training/documentation/"
» S3-Sink-Parameterdetails

"https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-
options"

» Apache Kafka
"https://en.wikipedia.org/wiki/Apache_Kafka"

» Unbegrenzter Speicherplatz in der Confluent-Plattform
"https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/"

* Confluent Tiered Storage — Best Practices und Dimensionierung
"https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations”

* Amazon S3-Sink-Connector fiir die Confluent-Plattform
"https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html"

» Kafka-Dimensionierung
"https://eventsizer.io"

» StorageGRID -Dimensionierung
"https://fusion.netapp.com/"

» Kafka-Anwendungsfalle
"https://kafka.apache.org/uses"

» Selbstausgleichende Kafka-Cluster in der Confluent-Plattform 6.0
"https://lwww.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/"

"https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-
to-date/"

+ Beispielhafte Instaclustr-Kunden und Details zu ihren Anwendungsfallen

https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/,
https://www.instaclustr.com/wp-content/uploads/Insta_Case_Study_Pegasystems_1_21sep25.pdf

https://www.instaclustr.com/resources/customer-case-study-pubnub/

https://www.instaclustr.com/resources/customer-case-study-tesouro/

31

https://www.confluent.io/what-is-apache-kafka/
https://www.netapp.com/support-and-training/documentation/
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://en.wikipedia.org/wiki/Apache_Kafka
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations
https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html
https://eventsizer.io
https://fusion.netapp.com/
https://kafka.apache.org/uses
https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/
https://www.instaclustr.com/wp-content/uploads/Insta_Case_Study_Pegasystems_1_21sep25.pdf
https://www.instaclustr.com/resources/customer-case-study-pubnub/
https://www.instaclustr.com/resources/customer-case-study-tesouro/

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

32

http://www.netapp.com/TM\

	Best Practices für Confluent Kafka : NetApp artificial intelligence solutions
	Inhalt
	Best Practices für Confluent Kafka
	TR-4912: Best Practice-Richtlinien für Confluent Kafka Tiered Storage mit NetApp
	Warum Confluent Tiered Storage?
	Warum NetApp StorageGRID für Tiered Storage?
	Aktivieren von Confluent Tiered Storage

	Details zur Lösungsarchitektur
	Technologieübersicht
	NetApp StorageGRID
	Apache Kafka
	Zusammenfließend

	Konfluente Überprüfung
	Einrichtung der Confluent-Plattform
	Confluent-Tiered-Storage-Konfiguration
	NetApp Objektspeicher – StorageGRID
	Verifizierungstests

	Leistungstests mit Skalierbarkeit
	Confluent S3-Anschluss
	Instaclustr Kafka Connect Connectors

	Konfluente, selbstausgleichende Cluster
	Best Practice-Richtlinien
	Größen
	Einfach

	Abschluss
	Wo Sie weitere Informationen finden

