
NetApp Storage-Lösungen für Apache
Spark
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/apache-
spark-solution-overview.html on February 12, 2026. Always check docs.netapp.com for the latest.

Inhalt
NetApp Storage-Lösungen für Apache Spark . 1

TR-4570: NetApp -Speicherlösungen für Apache Spark: Architektur, Anwendungsfälle und

Leistungsergebnisse . 1

Kundenherausforderungen . 1

Warum NetApp?. 2

Zielgruppe . 5

Lösungstechnologie . 6

Übersicht über die NetApp Spark-Lösungen . 8

Zusammenfassung des Anwendungsfalls . 10

Streaming-Daten . 10

Maschinelles Lernen . 11

Tiefes Lernen . 11

Interaktive Analyse . 11

Empfehlungssystem . 11

Verarbeitung natürlicher Sprache . 12

Wichtige Anwendungsfälle und Architekturen für KI, ML und DL . 12

Spark NLP-Pipelines und verteilte TensorFlow-Inferenz . 13

Horovod verteiltes Training . 14

Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage . 14

Zur Validierung verwendete Architekturen . 16

Testergebnisse . 17

Finanzstimmungsanalyse. 18

Verteiltes Training mit Horovod-Leistung . 21

Deep-Learning-Modelle für die CTR-Vorhersageleistung . 24

Hybrid-Cloud-Lösung . 28

Python-Skripte für jeden wichtigen Anwendungsfall . 30

Abschluss. 48

Wo Sie weitere Informationen finden . 48

NetApp Storage-Lösungen für Apache Spark

TR-4570: NetApp -Speicherlösungen für Apache Spark:
Architektur, Anwendungsfälle und Leistungsergebnisse

Rick Huang, Karthikeyan Nagalingam, NetApp

Der Schwerpunkt dieses Dokuments liegt auf der Apache Spark-Architektur,
Anwendungsfällen von Kunden und dem NetApp -Speicherportfolio im Zusammenhang
mit Big Data-Analysen und künstlicher Intelligenz (KI). Darüber hinaus werden
verschiedene Testergebnisse präsentiert, bei denen branchenübliche KI-, Machine-
Learning- (ML) und Deep-Learning- (DL) Tools mit einem typischen Hadoop-System
verglichen wurden, sodass Sie die geeignete Spark-Lösung auswählen können. Zu
Beginn benötigen Sie eine Spark-Architektur, entsprechende Komponenten und zwei
Bereitstellungsmodi (Cluster und Client).

Dieses Dokument enthält außerdem Anwendungsfälle von Kunden zur Lösung von Konfigurationsproblemen
und bietet einen Überblick über das NetApp -Speicherportfolio, das für Big Data-Analysen sowie KI, ML und
DL mit Spark relevant ist. Abschließend präsentieren wir Testergebnisse aus Spark-spezifischen
Anwendungsfällen und dem NetApp Spark-Lösungsportfolio.

Kundenherausforderungen

Dieser Abschnitt konzentriert sich auf die Herausforderungen für Kunden im Zusammenhang mit Big Data
Analytics und KI/ML/DL in Datenwachstumsbranchen wie Einzelhandel, digitales Marketing, Bankwesen,
diskrete Fertigung, Prozessfertigung, Behörden und professionelle Dienstleistungen.

Unvorhersehbare Leistung

Bei herkömmlichen Hadoop-Bereitstellungen wird normalerweise Standardhardware verwendet. Um die
Leistung zu verbessern, müssen Sie das Netzwerk, das Betriebssystem, den Hadoop-Cluster,
Ökosystemkomponenten wie Spark und die Hardware optimieren. Selbst wenn Sie jede Ebene optimieren,
kann es schwierig sein, das gewünschte Leistungsniveau zu erreichen, da Hadoop auf Standardhardware
ausgeführt wird, die nicht für hohe Leistung in Ihrer Umgebung ausgelegt ist.

Medien- und Knotenfehler

Selbst unter normalen Bedingungen ist Standardhardware anfällig für Ausfälle. Wenn eine Festplatte auf einem
Datenknoten ausfällt, betrachtet der Hadoop-Master diesen Knoten standardmäßig als fehlerhaft.
Anschließend werden bestimmte Daten von diesem Knoten über das Netzwerk von Replikaten auf einen
fehlerfreien Knoten kopiert. Dieser Prozess verlangsamt die Netzwerkpakete für alle Hadoop-Jobs. Der Cluster
muss die Daten dann erneut zurückkopieren und die überreplizierten Daten entfernen, wenn der fehlerhafte
Knoten wieder in einen fehlerfreien Zustand zurückkehrt.

Hadoop-Anbieterbindung

Hadoop-Distributoren verfügen über ihre eigene Hadoop-Distribution mit eigener Versionierung, wodurch der
Kunde an diese Distributionen gebunden ist. Viele Kunden benötigen jedoch Unterstützung für In-Memory-
Analysen, die den Kunden nicht an bestimmte Hadoop-Distributionen bindet. Sie müssen die Freiheit haben,
die Verteilung zu ändern und trotzdem ihre Analysen mitzunehmen.

1

Fehlende Unterstützung für mehr als eine Sprache

Kunden benötigen zur Ausführung ihrer Aufgaben häufig zusätzlich zu MapReduce-Java-Programmen
Unterstützung für mehrere Sprachen. Optionen wie SQL und Skripte bieten mehr Flexibilität beim Erhalten von
Antworten, mehr Optionen zum Organisieren und Abrufen von Daten und schnellere Möglichkeiten zum
Verschieben von Daten in ein Analyseframework.

Schwierigkeit der Verwendung

Seit einiger Zeit beschweren sich Leute, dass Hadoop schwierig zu verwenden sei. Obwohl Hadoop mit jeder
neuen Version einfacher und leistungsfähiger geworden ist, hält sich diese Kritik hartnäckig. Hadoop erfordert,
dass Sie die Programmiermuster von Java und MapReduce verstehen, was für Datenbankadministratoren und
Personen mit herkömmlichen Skriptkenntnissen eine Herausforderung darstellt.

Komplizierte Frameworks und Tools

KI-Teams in Unternehmen stehen vor zahlreichen Herausforderungen. Selbst mit Expertenwissen im Bereich
Data Science lassen sich Tools und Frameworks für unterschiedliche Bereitstellungsökosysteme und
Anwendungen möglicherweise nicht einfach von einem zum anderen übertragen. Eine Data-Science-Plattform
sollte sich nahtlos in entsprechende Big-Data-Plattformen integrieren lassen, die auf Spark basieren, und
dabei einfache Datenbewegungen, wiederverwendbare Modelle, sofort einsatzbereiten Code und Tools bieten,
die Best Practices für das Prototyping, Validieren, Versionieren, Teilen, Wiederverwenden und schnelle
Bereitstellen von Modellen in der Produktion unterstützen.

Warum NetApp?

NetApp kann Ihr Spark-Erlebnis auf folgende Weise verbessern:

• Der direkte NetApp NFS-Zugriff (siehe Abbildung unten) ermöglicht es Kunden, Big-Data-Analysejobs auf
ihren vorhandenen oder neuen NFSv3- oder NFSv4-Daten auszuführen, ohne die Daten zu verschieben
oder zu kopieren. Es verhindert mehrere Kopien der Daten und macht die Synchronisierung der Daten mit
einer Quelle überflüssig.

• Effizientere Speicherung und weniger Serverreplikation. Beispielsweise erfordert die NetApp E-Series
Hadoop-Lösung zwei statt drei Replikate der Daten, und die FAS Hadoop-Lösung erfordert eine
Datenquelle, jedoch keine Replikation oder Kopien der Daten. NetApp -Speicherlösungen erzeugen
außerdem weniger Server-zu-Server-Verkehr.

• Besseres Verhalten von Hadoop-Jobs und Clustern bei Laufwerk- und Knotenausfällen.

• Bessere Datenaufnahmeleistung.

2

Im Finanz- und Gesundheitssektor beispielsweise muss die Datenübertragung von einem Ort zum anderen
gesetzlichen Verpflichtungen entsprechen, was keine leichte Aufgabe ist. In diesem Szenario analysiert der
NetApp NFS-Direktzugriff die Finanz- und Gesundheitsdaten von ihrem ursprünglichen Speicherort aus. Ein
weiterer wichtiger Vorteil besteht darin, dass die Verwendung des direkten NetApp NFS-Zugriffs den Schutz
von Hadoop-Daten durch die Verwendung nativer Hadoop-Befehle vereinfacht und Datenschutz-Workflows mit
dem umfangreichen Datenverwaltungsportfolio von NetApp ermöglicht.

Der direkte NetApp NFS-Zugriff bietet zwei Arten von Bereitstellungsoptionen für Hadoop/Spark-Cluster:

• Standardmäßig verwenden Hadoop- oder Spark-Cluster das Hadoop Distributed File System (HDFS) zur
Datenspeicherung und als Standarddateisystem. Der direkte NetApp NFS-Zugriff kann das Standard-
HDFS durch NFS-Speicher als Standarddateisystem ersetzen und so eine direkte Analyse von NFS-Daten
ermöglichen.

• In einer weiteren Bereitstellungsoption unterstützt der direkte NetApp NFS-Zugriff die Konfiguration von
NFS als zusätzlichen Speicher zusammen mit HDFS in einem einzelnen Hadoop- oder Spark-Cluster. In
diesem Fall kann der Kunde Daten über NFS-Exporte freigeben und zusammen mit HDFS-Daten vom
selben Cluster aus darauf zugreifen.

Zu den wichtigsten Vorteilen des NetApp NFS-Direktzugriffs zählen die folgenden:

• Analysieren der Daten von ihrem aktuellen Standort aus, wodurch die zeit- und leistungsintensive Aufgabe
des Verschiebens von Analysedaten in eine Hadoop-Infrastruktur wie HDFS vermieden wird.

• Reduzierung der Anzahl der Replikate von drei auf eins.

• Ermöglicht Benutzern, Rechenleistung und Speicher zu entkoppeln, um sie unabhängig voneinander zu
skalieren.

• Bietet Unternehmensdatenschutz durch Nutzung der umfassenden Datenverwaltungsfunktionen von
ONTAP.

• Zertifizierung mit der Hortonworks-Datenplattform.

• Ermöglicht die Bereitstellung hybrider Datenanalysen.

3

• Verkürzung der Sicherungszeit durch Nutzung der dynamischen Multithread-Funktion.

Sehen"TR-4657: NetApp Hybrid Cloud-Datenlösungen – Spark und Hadoop basierend auf
Kundenanwendungsfällen" zum Sichern von Hadoop-Daten, zur Sicherung und Notfallwiederherstellung von
der Cloud vor Ort, zum Aktivieren von DevTest auf vorhandenen Hadoop-Daten, zum Datenschutz und zur
Multicloud-Konnektivität sowie zum Beschleunigen von Analyse-Workloads.

In den folgenden Abschnitten werden Speicherfunktionen beschrieben, die für Spark-Kunden wichtig sind.

Speicher-Tiering

Mit Hadoop Storage Tiering können Sie Dateien gemäß einer Speicherrichtlinie in verschiedenen
Speichertypen speichern. Zu den Speichertypen gehören hot , cold , warm , all_ssd , one_ssd , Und
lazy_persist .

Wir haben die Validierung der Hadoop-Speicherschichtung auf einem NetApp AFF Speichercontroller und
einem E-Series-Speichercontroller mit SSD- und SAS-Laufwerken mit unterschiedlichen Speicherrichtlinien
durchgeführt. Der Spark-Cluster mit AFF-A800 verfügt über vier Compute-Worker-Knoten, während der Cluster
mit E-Series acht hat. Dabei geht es hauptsächlich darum, die Leistung von Solid-State-Laufwerken (SSDs)
mit der von Festplatten (HDDs) zu vergleichen.

Die folgende Abbildung zeigt die Leistung von NetApp -Lösungen für eine Hadoop-SSD.

• Die NL-SAS-Basiskonfiguration verwendete acht Rechenknoten und 96 NL-SAS-Laufwerke. Diese
Konfiguration generierte 1 TB Daten in 4 Minuten und 38 Sekunden. Sehen "TR-3969 NetApp E-Series-
Lösung für Hadoop" für Details zur Cluster- und Speicherkonfiguration.

• Mit TeraGen generierte die SSD-Konfiguration 1 TB Daten 15,66-mal schneller als die NL-SAS-
Konfiguration. Darüber hinaus verwendete die SSD-Konfiguration nur die Hälfte der Rechenknoten und die
Hälfte der Festplattenlaufwerke (insgesamt 24 SSD-Laufwerke). Basierend auf der Zeit, die für die
Auftragserledigung benötigt wurde, war es fast doppelt so schnell wie die NL-SAS-Konfiguration.

• Mit TeraSort sortierte die SSD-Konfiguration 1 TB Daten 1138,36-mal schneller als die NL-SAS-
Konfiguration. Darüber hinaus verwendete die SSD-Konfiguration nur die Hälfte der Rechenknoten und die

4

hdcs-sh-solution-overview.html
hdcs-sh-solution-overview.html
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf

Hälfte der Festplattenlaufwerke (insgesamt 24 SSD-Laufwerke). Daher war es pro Laufwerk ungefähr
dreimal schneller als die NL-SAS-Konfiguration.

• Das Fazit ist, dass die Umstellung von rotierenden Festplatten auf reine Flash-Speicher die Leistung
verbessert. Die Anzahl der Rechenknoten war nicht der Engpass. Mit dem All-Flash-Speicher von NetApp
lässt sich die Laufzeitleistung gut skalieren.

• Mit NFS waren die Daten funktional gleichbedeutend mit einer gemeinsamen Bündelung, wodurch die
Anzahl der Rechenknoten je nach Arbeitslast reduziert werden kann. Die Benutzer des Apache Spark-
Clusters müssen die Daten nicht manuell neu ausbalancieren, wenn sie die Anzahl der Compute-Knoten
ändern.

Leistungsskalierung – Scale-Out

Wenn Sie mehr Rechenleistung von einem Hadoop-Cluster in einer AFF Lösung benötigen, können Sie
Datenknoten mit einer entsprechenden Anzahl von Speichercontrollern hinzufügen. NetApp empfiehlt, mit vier
Datenknoten pro Speichercontroller-Array zu beginnen und die Anzahl je nach Arbeitslastmerkmalen auf acht
Datenknoten pro Speichercontroller zu erhöhen.

AFF und FAS eignen sich perfekt für In-Place-Analysen. Basierend auf den Rechenanforderungen können Sie
Knotenmanager hinzufügen und unterbrechungsfreie Vorgänge ermöglichen Ihnen, bei Bedarf und ohne
Ausfallzeiten einen Speichercontroller hinzuzufügen. Wir bieten umfangreiche Funktionen mit AFF und FAS,
wie z. B. NVME-Medienunterstützung, garantierte Effizienz, Datenreduzierung, QOS, prädiktive Analysen,
Cloud-Tiering, Replikation, Cloud-Bereitstellung und Sicherheit. Um Kunden bei der Erfüllung ihrer
Anforderungen zu unterstützen, bietet NetApp Funktionen wie Dateisystemanalyse, Kontingente und On-Box-
Lastausgleich ohne zusätzliche Lizenzkosten. NetApp bietet eine bessere Leistung bei der Anzahl
gleichzeitiger Jobs, eine geringere Latenz, einfachere Vorgänge und einen höheren Durchsatz in Gigabyte pro
Sekunde als unsere Wettbewerber. Darüber hinaus läuft NetApp Cloud Volumes ONTAP auf allen drei großen
Cloud-Anbietern.

Leistungsskalierung – Hochskalieren

Mithilfe der Scale-up-Funktionen können Sie Festplattenlaufwerke zu AFF, FAS und E-Series-Systemen
hinzufügen, wenn Sie zusätzliche Speicherkapazität benötigen. Mit Cloud Volumes ONTAP ist die Skalierung
des Speichers auf PB-Ebene eine Kombination aus zwei Faktoren: der Auslagerung selten verwendeter Daten
aus dem Blockspeicher in den Objektspeicher und dem Stapeln von Cloud Volumes ONTAP -Lizenzen ohne
zusätzliche Rechenleistung.

Mehrere Protokolle

NetApp -Systeme unterstützen die meisten Protokolle für Hadoop-Bereitstellungen, einschließlich SAS, iSCSI,
FCP, InfiniBand und NFS.

Operative und unterstützte Lösungen

Die in diesem Dokument beschriebenen Hadoop-Lösungen werden von NetApp unterstützt. Diese Lösungen
sind auch bei den wichtigsten Hadoop-Distributoren zertifiziert. Weitere Informationen finden Sie im
"Hortonworks" Site und die Cloudera "Zertifizierung" Und "Partner" Websites.

Zielgruppe

Die Welt der Analytik und Datenwissenschaft berührt mehrere Disziplinen in IT und
Wirtschaft:

5

http://hortonworks.com/partner/netapp/
http://www.cloudera.com/partners/partners-listing.html?q=netapp
http://www.cloudera.com/partners/solutions/netapp.html

• Der Datenwissenschaftler benötigt die Flexibilität, die Tools und Bibliotheken seiner Wahl zu verwenden.

• Der Dateningenieur muss wissen, wie die Daten fließen und wo sie sich befinden.

• Ein DevOps-Ingenieur benötigt die Tools, um neue KI- und ML-Anwendungen in seine CI- und CD-
Pipelines zu integrieren.

• Cloud-Administratoren und -Architekten müssen in der Lage sein, Hybrid-Cloud-Ressourcen einzurichten
und zu verwalten.

• Geschäftsanwender möchten Zugriff auf Analyse-, KI-, ML- und DL-Anwendungen haben.

In diesem technischen Bericht beschreiben wir, wie NetApp AFF, E-Series, StorageGRID, NFS-Direktzugriff,
Apache Spark, Horovod und Keras jeder dieser Rollen dabei helfen, einen Mehrwert für das Unternehmen zu
schaffen.

Lösungstechnologie

Apache Spark ist ein beliebtes Programmierframework zum Schreiben von Hadoop-
Anwendungen, das direkt mit dem Hadoop Distributed File System (HDFS) arbeitet.
Spark ist produktionsbereit, unterstützt die Verarbeitung von Streaming-Daten und ist
schneller als MapReduce. Spark verfügt über konfigurierbares In-Memory-Datencaching
für effiziente Iteration und die Spark-Shell ist interaktiv zum Lernen und Erkunden von
Daten. Mit Spark können Sie Anwendungen in Python, Scala oder Java erstellen. Spark-
Anwendungen bestehen aus einem oder mehreren Jobs, die eine oder mehrere
Aufgaben haben.

Jede Spark-Anwendung verfügt über einen Spark-Treiber. Im YARN-Client-Modus wird der Treiber lokal auf
dem Client ausgeführt. Im YARN-Cluster-Modus läuft der Treiber im Cluster auf dem Anwendungsmaster. Im
Clustermodus wird die Anwendung auch dann weiter ausgeführt, wenn die Verbindung zum Client getrennt
wird.

6

Es gibt drei Cluster-Manager:

• Eigenständig. Dieser Manager ist Teil von Spark, wodurch die Einrichtung eines Clusters vereinfacht wird.

• Apache Mesos. Dies ist ein allgemeiner Cluster-Manager, der auch MapReduce und andere
Anwendungen ausführt.

• Hadoop YARN. Dies ist ein Ressourcenmanager in Hadoop 3.

Der widerstandsfähige verteilte Datensatz (RDD) ist die Hauptkomponente von Spark. RDD erstellt die
verlorenen und fehlenden Daten aus den im Speicher des Clusters gespeicherten Daten neu und speichert die
ursprünglichen Daten, die aus einer Datei stammen oder programmgesteuert erstellt werden. RDDs werden
aus Dateien, Daten im Speicher oder einem anderen RDD erstellt. Die Spark-Programmierung führt zwei
Vorgänge aus: Transformation und Aktionen. Durch die Transformation wird ein neues RDD basierend auf
einem vorhandenen erstellt. Aktionen geben einen Wert aus einem RDD zurück.

Transformationen und Aktionen gelten auch für Spark-Datasets und DataFrames. Ein Dataset ist eine verteilte
Datensammlung, die die Vorteile von RDDs (starke Typisierung, Verwendung von Lambda-Funktionen) mit den
Vorteilen der optimierten Ausführungs-Engine von Spark SQL kombiniert. Ein Datensatz kann aus JVM-
Objekten erstellt und dann mithilfe funktionaler Transformationen (Map, FlatMap, Filter usw.) bearbeitet
werden. Ein DataFrame ist ein in benannte Spalten organisierter Datensatz. Es ist konzeptionell gleichwertig
mit einer Tabelle in einer relationalen Datenbank oder einem Datenrahmen in R/Python. DataFrames können
aus einer Vielzahl von Quellen erstellt werden, beispielsweise strukturierten Datendateien, Tabellen in
Hive/HBase, externen Datenbanken vor Ort oder in der Cloud oder vorhandenen RDDs.

7

Spark-Anwendungen umfassen einen oder mehrere Spark-Jobs. Jobs führen Aufgaben in Executoren aus und
Executoren werden in YARN-Containern ausgeführt. Jeder Executor wird in einem einzelnen Container
ausgeführt und Executoren existieren während der gesamten Lebensdauer einer Anwendung. Ein Executor
wird nach dem Start der Anwendung fixiert und YARN ändert die Größe des bereits zugewiesenen Containers
nicht. Ein Executor kann Aufgaben gleichzeitig auf Daten im Arbeitsspeicher ausführen.

Übersicht über die NetApp Spark-Lösungen

NetApp verfügt über drei Speicherportfolios: FAS/ AFF, E-Serie und Cloud Volumes
ONTAP. Wir haben AFF und die E-Serie mit ONTAP Speichersystem für Hadoop-
Lösungen mit Apache Spark validiert.

Das von NetApp betriebene Datengewebe integriert Datenverwaltungsdienste und Anwendungen (Bausteine)
für Datenzugriff, -kontrolle, -schutz und -sicherheit, wie in der folgenden Abbildung dargestellt.

Zu den Bausteinen in der obigen Abbildung gehören:

• * NetApp NFS-Direktzugriff.* Bietet den neuesten Hadoop- und Spark-Clustern direkten Zugriff auf NetApp
NFS-Volumes ohne zusätzliche Software- oder Treiberanforderungen.

• * NetApp Cloud Volumes ONTAP und Google Cloud NetApp Volumes.* Softwaredefinierter verbundener
Speicher basierend auf ONTAP , der in Amazon Web Services (AWS) oder Azure NetApp Files (ANF) in
Microsoft Azure-Clouddiensten ausgeführt wird.

• * NetApp SnapMirror Technologie.* Bietet Datenschutzfunktionen zwischen lokalen und ONTAP Cloud-
oder NPS-Instanzen.

• Cloud-Dienstanbieter. Zu diesen Anbietern gehören AWS, Microsoft Azure, Google Cloud und IBM Cloud.

• PaaS. Cloudbasierte Analysedienste wie Amazon Elastic MapReduce (EMR) und Databricks in AWS sowie
Microsoft Azure HDInsight und Azure Databricks.

Die folgende Abbildung zeigt die Spark-Lösung mit NetApp Speicher.

8

Die ONTAP Spark-Lösung verwendet das NetApp NFS-Direktzugriffsprotokoll für In-Place-Analysen und KI-,
ML- und DL-Workflows unter Zugriff auf vorhandene Produktionsdaten. Für Hadoop-Knoten verfügbare
Produktionsdaten werden exportiert, um vor Ort analytische sowie KI-, ML- und DL-Jobs auszuführen. Sie
können auf die zu verarbeitenden Daten in Hadoop-Knoten entweder mit oder ohne direkten NetApp NFS-
Zugriff zugreifen. In Spark mit dem Standalone- oder yarn Cluster-Manager können Sie ein NFS-Volume
konfigurieren, indem Sie file://<target_volume> . Wir haben drei Anwendungsfälle mit
unterschiedlichen Datensätzen validiert. Die Einzelheiten dieser Validierungen werden im Abschnitt
„Testergebnisse“ vorgestellt. (xref)

Die folgende Abbildung zeigt die Speicherpositionierung von NetApp Apache Spark/Hadoop.

Wir haben die einzigartigen Funktionen der E-Series Spark-Lösung, der AFF/ FAS ONTAP Spark-Lösung und
der StorageGRID Spark-Lösung identifiziert und detaillierte Validierungen und Tests durchgeführt. Basierend
auf unseren Beobachtungen empfiehlt NetApp die E-Series-Lösung für Greenfield-Installationen und neue
skalierbare Bereitstellungen sowie die AFF/ FAS -Lösung für In-Place-Analysen, KI-, ML- und DL-Workloads
unter Verwendung vorhandener NFS-Daten und StorageGRID für KI-, ML- und DL- und moderne
Datenanalysen, wenn Objektspeicher erforderlich ist.

9

Ein Data Lake ist ein Speicherrepository für große Datensätze in nativer Form, das für Analyse-, KI-, ML- und
DL-Aufgaben verwendet werden kann. Wir haben ein Data Lake-Repository für die Spark-Lösungen E-Series,
AFF/ FAS und StorageGRID SG6060 erstellt. Das E-Series-System bietet HDFS-Zugriff auf den Hadoop
Spark-Cluster, während auf vorhandene Produktionsdaten über das NFS-Direktzugriffsprotokoll auf den
Hadoop-Cluster zugegriffen wird. Für Datensätze, die sich im Objektspeicher befinden, bietet NetApp
StorageGRID sicheren S3- und S3a-Zugriff.

Zusammenfassung des Anwendungsfalls

Auf dieser Seite werden die verschiedenen Bereiche beschrieben, in denen diese Lösung
eingesetzt werden kann.

Streaming-Daten

Apache Spark kann Streaming-Daten verarbeiten, die für Streaming-Extract-, Transform- und Load-Prozesse
(ETL), Datenanreicherung, Auslösen von Ereigniserkennung und komplexe Sitzungsanalysen verwendet
werden:

• Streaming ETL. Daten werden kontinuierlich bereinigt und aggregiert, bevor sie in Datenspeicher
übertragen werden. Netflix verwendet Kafka- und Spark-Streaming, um eine Echtzeit-Lösung für Online-
Filmempfehlungen und Datenüberwachung zu erstellen, die täglich Milliarden von Ereignissen aus
verschiedenen Datenquellen verarbeiten kann. Traditionelles ETL für die Stapelverarbeitung wird jedoch
anders behandelt. Diese Daten werden zuerst gelesen und dann in ein Datenbankformat konvertiert, bevor
sie in die Datenbank geschrieben werden.

• Datenanreicherung. Spark-Streaming reichert die Live-Daten mit statischen Daten an, um eine
Datenanalyse in Echtzeit zu ermöglichen. Beispielsweise können Online-Werbetreibende personalisierte,
zielgerichtete Anzeigen schalten, die auf Informationen zum Kundenverhalten basieren.

• Ereigniserkennung auslösen. Mit Spark-Streaming können Sie ungewöhnliches Verhalten, das auf
potenziell schwerwiegende Probleme hinweisen könnte, schnell erkennen und darauf reagieren.
Finanzinstitute verwenden beispielsweise Trigger, um betrügerische Transaktionen zu erkennen und zu
stoppen, und Krankenhäuser verwenden Trigger, um gefährliche gesundheitliche Veränderungen anhand
der Vitalfunktionen eines Patienten zu erkennen.

• Komplexe Sitzungsanalyse. Spark Streaming sammelt Ereignisse wie Benutzeraktivitäten nach der

10

Anmeldung bei einer Website oder Anwendung, die dann gruppiert und analysiert werden. Netflix nutzt
diese Funktion beispielsweise, um Filmempfehlungen in Echtzeit bereitzustellen.

Weitere Informationen zur Konfiguration von Streaming-Daten, zur Confluent Kafka-Verifizierung und zu
Leistungstests finden Sie unter"TR-4912: Best Practice-Richtlinien für Confluent Kafka Tiered Storage mit
NetApp" .

Maschinelles Lernen

Das integrierte Spark-Framework unterstützt Sie beim Ausführen wiederholter Abfragen von Datensätzen
mithilfe der Machine Learning-Bibliothek (MLlib). MLlib wird in Bereichen wie Clustering, Klassifizierung und
Dimensionsreduktion für einige gängige Big-Data-Funktionen wie Predictive Intelligence,
Kundensegmentierung für Marketingzwecke und Stimmungsanalyse verwendet. MLlib wird in der
Netzwerksicherheit verwendet, um Datenpakete in Echtzeit auf Anzeichen böswilliger Aktivitäten zu
überprüfen. Es hilft Sicherheitsanbietern, sich über neue Bedrohungen zu informieren, Hackern immer einen
Schritt voraus zu sein und gleichzeitig ihre Kunden in Echtzeit zu schützen.

Tiefes Lernen

TensorFlow ist ein beliebtes Deep-Learning-Framework, das in der gesamten Branche verwendet wird.
TensorFlow unterstützt das verteilte Training auf einem CPU- oder GPU-Cluster. Dieses verteilte Training
ermöglicht es Benutzern, es auf einer großen Datenmenge mit vielen tiefen Schichten auszuführen.

Wenn wir TensorFlow mit Apache Spark verwenden wollten, mussten wir bis vor Kurzem alle erforderlichen
ETL-Prozesse für TensorFlow in PySpark durchführen und dann die Daten in den Zwischenspeicher schreiben.
Diese Daten würden dann für den eigentlichen Trainingsprozess in den TensorFlow-Cluster geladen. Dieser
Workflow erforderte, dass der Benutzer zwei verschiedene Cluster verwaltete, einen für ETL und einen für das
verteilte Training von TensorFlow. Das Ausführen und Warten mehrerer Cluster war normalerweise mühsam
und zeitaufwändig.

DataFrames und RDD in früheren Spark-Versionen waren für Deep Learning nicht gut geeignet, da der
wahlfreie Zugriff eingeschränkt war. In Spark 3.0 mit Project Hydrogen wird native Unterstützung für die Deep-
Learning-Frameworks hinzugefügt. Dieser Ansatz ermöglicht eine nicht auf MapReduce basierende Planung
auf dem Spark-Cluster.

Interaktive Analyse

Apache Spark ist schnell genug, um explorative Abfragen ohne Sampling mit anderen Entwicklungssprachen
als Spark durchzuführen, darunter SQL, R und Python. Spark verwendet Visualisierungstools, um komplexe
Daten zu verarbeiten und interaktiv zu visualisieren. Spark mit strukturiertem Streaming führt interaktive
Abfragen für Livedaten in der Webanalyse durch, die es Ihnen ermöglichen, interaktive Abfragen für die
aktuelle Sitzung eines Webbesuchers auszuführen.

Empfehlungssystem

Im Laufe der Jahre haben Empfehlungssysteme enorme Veränderungen in unser Leben gebracht, da
Unternehmen und Verbraucher auf dramatische Veränderungen beim Online-Shopping, der Online-
Unterhaltung und vielen anderen Branchen reagiert haben. Tatsächlich gehören diese Systeme zu den
offensichtlichsten Erfolgsgeschichten der KI in der Produktion. In vielen praktischen Anwendungsfällen werden
Empfehlungssysteme mit Konversations-KI oder Chatbots kombiniert, die mit einem NLP-Backend verbunden
sind, um relevante Informationen zu erhalten und nützliche Schlussfolgerungen zu ziehen.

Heutzutage setzen viele Einzelhändler auf neuere Geschäftsmodelle wie Online-Kauf und Abholung im
Geschäft, Abholung am Straßenrand, Self-Checkout, Scan-and-Go und mehr. Diese Modelle haben während

11

confluent-kafka-introduction.html
confluent-kafka-introduction.html

der COVID-19-Pandemie an Bedeutung gewonnen, da sie das Einkaufen für die Verbraucher sicherer und
bequemer machen. KI ist für diese wachsenden digitalen Trends von entscheidender Bedeutung, die vom
Verbraucherverhalten beeinflusst werden und umgekehrt. Um den wachsenden Ansprüchen der Verbraucher
gerecht zu werden, das Kundenerlebnis zu verbessern, die Betriebseffizienz zu steigern und den Umsatz zu
steigern, unterstützt NetApp seine Unternehmenskunden und Unternehmen dabei, mithilfe von Algorithmen für
maschinelles Lernen und Deep Learning schnellere und präzisere Empfehlungssysteme zu entwickeln.

Es gibt mehrere gängige Techniken zum Bereitstellen von Empfehlungen, darunter kollaboratives Filtern,
inhaltsbasierte Systeme, das Deep Learning Recommender Model (DLRM) und Hybridtechniken. Kunden
nutzten PySpark zuvor, um kollaboratives Filtern zur Erstellung von Empfehlungssystemen zu implementieren.
Spark MLlib implementiert Alternating Least Squares (ALS) für kollaboratives Filtern, einen in Unternehmen
vor dem Aufkommen von DLRM sehr beliebten Algorithmus.

Verarbeitung natürlicher Sprache

Konversations-KI, die durch die Verarbeitung natürlicher Sprache (NLP) ermöglicht wird, ist der Zweig der KI,
der Computern bei der Kommunikation mit Menschen hilft. NLP ist in allen Branchen und vielen
Anwendungsfällen weit verbreitet, von intelligenten Assistenten und Chatbots bis hin zur Google-Suche und
Textvorhersage. Laut einer "Gartner" Prognosen zufolge werden bis 2022 70 % der Menschen täglich mit
Konversations-KI-Plattformen interagieren. Für eine qualitativ hochwertige Konversation zwischen Mensch und
Maschine müssen die Antworten schnell, intelligent und natürlich klingen.

Kunden benötigen große Datenmengen, um ihre NLP- und automatischen Spracherkennungsmodelle (ASR)
zu verarbeiten und zu trainieren. Sie müssen außerdem Daten zwischen Edge, Core und Cloud verschieben
und benötigen die Fähigkeit, in Millisekunden Schlussfolgerungen zu ziehen, um eine natürliche
Kommunikation mit Menschen herzustellen. NetApp AI und Apache Spark sind eine ideale Kombination für
Computing, Speicherung, Datenverarbeitung, Modelltraining, Feinabstimmung und Bereitstellung.

Die Stimmungsanalyse ist ein Forschungsgebiet innerhalb der NLP, in dem positive, negative oder neutrale
Stimmungen aus Texten extrahiert werden. Die Sentimentanalyse bietet vielfältige Anwendungsfälle, von der
Ermittlung der Leistung von Supportcenter-Mitarbeitern in Gesprächen mit Anrufern bis hin zur Bereitstellung
geeigneter automatisierter Chatbot-Antworten. Es wurde auch verwendet, um den Aktienkurs eines
Unternehmens auf der Grundlage der Interaktionen zwischen Unternehmensvertretern und dem Publikum bei
vierteljährlichen Telefonkonferenzen zu den Unternehmensergebnissen vorherzusagen. Darüber hinaus kann
mithilfe der Stimmungsanalyse die Meinung eines Kunden zu den Produkten, Dienstleistungen oder dem
Support der Marke ermittelt werden.

Wir nutzten die "Spark NLP" Bibliothek von "John Snow Labs" zum Laden vortrainierter Pipelines und
Bidirectional Encoder Representations from Transformers (BERT)-Modelle, einschließlich "Stimmung in den
Finanznachrichten" Und "FinBERT" , Durchführung von Tokenisierung, Named Entity Recognition,
Modelltraining, Anpassung und Stimmungsanalyse im großen Maßstab. Spark NLP ist die einzige Open-
Source-NLP-Bibliothek in der Produktion, die hochmoderne Transformatoren wie BERT, ALBERT, ELECTRA,
XLNet, DistilBERT, RoBERTa, DeBERTa, XLM-RoBERTa, Longformer, ELMO, Universal Sentence Encoder,
Google T5, MarianMT und GPT2 bietet. Die Bibliothek funktioniert nicht nur in Python und R, sondern auch im
JVM-Ökosystem (Java, Scala und Kotlin) im großen Maßstab, indem sie Apache Spark nativ erweitert.

Wichtige Anwendungsfälle und Architekturen für KI, ML und
DL

Die wichtigsten Anwendungsfälle und Methoden für KI, ML und DL können in die
folgenden Abschnitte unterteilt werden:

12

https://www.forbes.com/sites/forbestechcouncil/2021/05/07/nice-chatbot-ing-with-you/?sh=7011eff571f4
https://www.johnsnowlabs.com/spark-nlp/
https://www.johnsnowlabs.com/
https://sparknlp.org/2023/01/12/classifierdl_bertwiki_finance_sentiment_pipeline_en.html
https://sparknlp.org/2023/01/12/classifierdl_bertwiki_finance_sentiment_pipeline_en.html
https://sparknlp.org/2022/04/11/bert_embeddings_finbert_pretrain_yiyanghkust_en_3_0.html

Spark NLP-Pipelines und verteilte TensorFlow-Inferenz

Die folgende Liste enthält die beliebtesten Open-Source-NLP-Bibliotheken, die von der Data-Science-
Community in unterschiedlichen Entwicklungsstufen übernommen wurden:

• "Toolkit für natürliche Sprache (NLTK)" . Das komplette Toolkit für alle NLP-Techniken. Es wird seit Anfang
der 2000er Jahre gepflegt.

• "TextBlob" . Eine benutzerfreundliche Python-API für NLP-Tools, die auf NLTK und Pattern basiert.

• "Stanford Core NLP" . NLP-Dienste und -Pakete in Java, entwickelt von der Stanford NLP Group.

• "Gensim" . „Topic Modelling for Humans“ begann als Sammlung von Python-Skripten für das Projekt
„Czech Digital Mathematics Library“.

• "SpaCy" . End-to-End-NLP-Workflows für die Industrie mit Python und Cython mit GPU-Beschleunigung für
Transformatoren.

• "Fasttext" . Eine kostenlose, leichtgewichtige Open-Source-NLP-Bibliothek zum Lernen von Wort-
Embeddings und zur Satzklassifizierung, die vom AI Research (FAIR)-Labor von Facebook erstellt wurde.

Spark NLP ist eine einzige, einheitliche Lösung für alle NLP-Aufgaben und -Anforderungen, die skalierbare,
leistungsstarke und hochpräzise NLP-basierte Software für echte Produktionsanwendungsfälle ermöglicht. Es
nutzt Transferlernen und implementiert die neuesten hochmodernen Algorithmen und Modelle in der
Forschung und branchenübergreifend. Aufgrund der fehlenden vollständigen Unterstützung durch Spark für die
oben genannten Bibliotheken wurde Spark NLP auf Basis von "Spark ML" um die Vorteile der universellen
verteilten In-Memory-Datenverarbeitungs-Engine von Spark als NLP-Bibliothek der Enterprise-Klasse für
unternehmenskritische Produktionsabläufe zu nutzen. Seine Annotatoren nutzen regelbasierte Algorithmen,
maschinelles Lernen und TensorFlow, um Deep-Learning-Implementierungen zu unterstützen. Dies umfasst
gängige NLP-Aufgaben, einschließlich, aber nicht beschränkt auf Tokenisierung, Lemmatisierung, Stemming,
Part-of-Speech-Tagging, Named-Entity-Erkennung, Rechtschreibprüfung und Stimmungsanalyse.

Bidirectional Encoder Representations from Transformers (BERT) ist eine transformerbasierte maschinelle
Lerntechnik für NLP. Es machte das Konzept des Vortrainings und der Feinabstimmung populär. Die
Transformer-Architektur in BERT stammt aus der maschinellen Übersetzung, die langfristige Abhängigkeiten
besser modelliert als auf rekurrenten neuronalen Netzwerken (RNN) basierende Sprachmodelle. Außerdem
wurde die Masked Language Modelling (MLM)-Aufgabe eingeführt, bei der zufällig 15 % aller Token maskiert
werden und das Modell sie vorhersagt, wodurch echte Bidirektionalität ermöglicht wird.

Aufgrund der Fachsprache und des Mangels an gekennzeichneten Daten in diesem Bereich ist die Analyse
der Finanzstimmung eine Herausforderung. FinBERT, ein Sprachmodell basierend auf vortrainiertem BERT,
wurde domänenangepasst auf "Reuters TRC2" , ein Finanzkorpus, und mit gekennzeichneten Daten fein
abgestimmt ("Finanzielle PhraseBank") zur Klassifizierung der Finanzstimmung. Forscher extrahierten 4.500
Sätze aus Nachrichtenartikeln mit Finanzbegriffen. Anschließend bewerteten 16 Experten und
Masterstudenten mit Finanzhintergrund die Sätze als positiv, neutral und negativ. Wir haben einen End-to-End-
Spark-Workflow erstellt, um die Stimmung für die Transkripte der Telefonkonferenzen zu den Top-10-
Gewinnzahlen der NASDAQ-Unternehmen von 2016 bis 2020 mithilfe von FinBERT und zwei weiteren
vortrainierten Pipelines zu analysieren. "Dokument DL erklären") von Spark NLP.

Die zugrunde liegende Deep-Learning-Engine für Spark NLP ist TensorFlow, eine durchgängige Open-Source-
Plattform für maschinelles Lernen, die eine einfache Modellerstellung, eine robuste ML-Produktion überall und
leistungsstarke Experimente für die Forschung ermöglicht. Daher, wenn wir unsere Pipelines in Spark
ausführen yarn cluster Im Modus führten wir im Wesentlichen verteiltes TensorFlow mit Daten- und
Modellparallelisierung über einen Master- und mehrere Worker-Knoten sowie über einen auf dem Cluster
montierten Netzwerkspeicher aus.

13

https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://stanfordnlp.github.io/CoreNLP/
https://radimrehurek.com/gensim/
https://spacy.io/
https://fasttext.cc/
https://spark.apache.org/docs/latest/ml-guide.html
https://trec.nist.gov/data/reuters/reuters.html
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://nlp.johnsnowlabs.com/2020/03/19/explain_document_dl.html

Horovod verteiltes Training

Die zentrale Hadoop-Validierung für die MapReduce-bezogene Leistung wird mit TeraGen, TeraSort,
TeraValidate und DFSIO (Lesen und Schreiben) durchgeführt. Die Validierungsergebnisse von TeraGen und
TeraSort werden in "NetApp E-Series-Lösung für Hadoop" und im Abschnitt „Storage Tiering“ für AFF.

Aufgrund von Kundenanfragen betrachten wir das verteilte Training mit Spark als einen der wichtigsten der
verschiedenen Anwendungsfälle. In diesem Dokument haben wir die "Hovorod auf Spark" um die Spark-
Leistung mit lokalen, Cloud-nativen und Hybrid-Cloud-Lösungen von NetApp unter Verwendung von NetApp
All Flash FAS (AFF)-Speichercontrollern, Azure NetApp Files und StorageGRID zu validieren.

Das Horovod on Spark-Paket bietet einen praktischen Wrapper um Horovod, der die Ausführung verteilter
Trainings-Workloads in Spark-Clustern vereinfacht und eine enge Modelldesignschleife ermöglicht, in der
Datenverarbeitung, Modelltraining und Modellbewertung alle in Spark erfolgen, wo sich die Trainings- und
Inferenzdaten befinden.

Es gibt zwei APIs zum Ausführen von Horovod auf Spark: eine Estimator-API auf hoher Ebene und eine Run-
API auf niedrigerer Ebene. Obwohl beide denselben zugrunde liegenden Mechanismus zum Starten von
Horovod auf Spark-Executoren verwenden, abstrahiert die Estimator-API die Datenverarbeitung, die
Modelltrainingsschleife, die Modellprüfpunkte, die Metrikerfassung und das verteilte Training. Wir verwendeten
Horovod Spark Estimators, TensorFlow und Keras für eine End-to-End-Datenaufbereitung und einen verteilten
Trainings-Workflow basierend auf dem "Kaggle Rossmann Store Sales" Wettbewerb.

Das Drehbuch keras_spark_horovod_rossmann_estimator.py finden Sie im Abschnitt"Python-Skripte
für jeden wichtigen Anwendungsfall." Es besteht aus drei Teilen:

• Der erste Teil führt verschiedene Schritte zur Datenvorverarbeitung für einen ersten Satz von CSV-Dateien
durch, die von Kaggle bereitgestellt und von der Community gesammelt wurden. Die Eingabedaten werden
in einen Trainingssatz mit einem Validation Teilmenge und ein Testdatensatz.

• Der zweite Teil definiert ein Keras Deep Neural Network (DNN)-Modell mit logarithmischer Sigmoid-
Aktivierungsfunktion und einem Adam-Optimierer und führt ein verteiltes Training des Modells mit Horovod
auf Spark durch.

• Der dritte Teil führt eine Vorhersage für den Testdatensatz durch, wobei das beste Modell verwendet wird,
das den mittleren absoluten Gesamtfehler des Validierungssatzes minimiert. Anschließend wird eine CSV-
Ausgabedatei erstellt.

Siehe den Abschnitt"Maschinelles Lernen" für verschiedene Laufzeitvergleichsergebnisse.

Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage

Angesichts der jüngsten Fortschritte bei ML-Plattformen und -Anwendungen richtet sich der Fokus nun stark
auf das Lernen im großen Maßstab. Die Klickrate (Click-Through-Rate, CTR) ist definiert als die
durchschnittliche Anzahl von Klicks pro hundert Online-Anzeigenimpressionen (ausgedrückt als Prozentsatz).
Es wird in zahlreichen Branchen und Anwendungsfällen, darunter digitales Marketing, Einzelhandel, E-
Commerce und Dienstleister, als Schlüsselkennzahl eingesetzt. Weitere Einzelheiten zu den Anwendungen
von CTR und verteilten Trainingsleistungsergebnissen finden Sie im"Deep-Learning-Modelle für die CTR-
Vorhersageleistung" Abschnitt.

In diesem technischen Bericht verwendeten wir eine Variante des "Criteo Terabyte Click Logs-Datensatz"
(siehe TR-4904) für verteiltes Deep Learning mit mehreren Workern unter Verwendung von Keras zum
Erstellen eines Spark-Workflows mit Deep- und Cross-Network-Modellen (DCN), wobei die Leistung
hinsichtlich der Log-Loss-Fehlerfunktion mit einem Basismodell der logistischen Regression von Spark ML
verglichen wird. DCN erfasst effizient effektive Merkmalsinteraktionen begrenzten Grades, lernt hochgradig
nichtlineare Interaktionen, erfordert keine manuelle Merkmalsentwicklung oder umfassende Suche und weist

14

https://www.netapp.com/pdf.html?item=/media/16420-tr-3969pdf.pdf
https://horovod.readthedocs.io/en/stable/spark_include.html
https://www.kaggle.com/c/rossmann-store-sales
spark-python-scripts.html
spark-python-scripts.html
apache-spark-use-cases-summary.html#machine-learning
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

einen geringen Rechenaufwand auf.

Daten für Empfehlungssysteme im Webmaßstab sind größtenteils diskret und kategorisch, was zu einem
großen und spärlichen Merkmalsraum führt, der die Merkmalserkundung erschwert. Dies hat die meisten groß
angelegten Systeme auf lineare Modelle wie die logistische Regression beschränkt. Der Schlüssel zu guten
Vorhersagen liegt jedoch darin, häufig vorhersagbare Merkmale zu identifizieren und gleichzeitig ungesehene
oder seltene Kreuzmerkmale zu untersuchen. Lineare Modelle sind einfach, interpretierbar und leicht
skalierbar, ihre Ausdruckskraft ist jedoch begrenzt.

Andererseits hat sich gezeigt, dass Kreuzmerkmale für die Verbesserung der Ausdruckskraft der Modelle von
Bedeutung sind. Leider ist zur Identifizierung solcher Features häufig eine manuelle Feature-Entwicklung oder
eine umfassende Suche erforderlich. Die Verallgemeinerung auf unsichtbare Funktionsinteraktionen ist oft
schwierig. Durch die Verwendung eines gekreuzten neuronalen Netzwerks wie DCN wird
aufgabenspezifisches Feature Engineering vermieden, indem Feature-Crossing explizit und automatisch
angewendet wird. Das Kreuznetzwerk besteht aus mehreren Schichten, wobei der höchste Grad an
Interaktionen nachweislich durch die Schichttiefe bestimmt wird. Jede Schicht erzeugt Interaktionen höherer
Ordnung auf der Grundlage bestehender Interaktionen und behält die Interaktionen der vorherigen Schichten
bei.

Ein tiefes neuronales Netzwerk (DNN) verspricht, sehr komplexe Interaktionen zwischen Features zu erfassen.
Im Vergleich zu DCN erfordert es jedoch fast eine Größenordnung mehr Parameter, kann keine
Kreuzmerkmale explizit bilden und kann einige Arten von Merkmalsinteraktionen möglicherweise nicht effizient
erlernen. Das Cross-Network ist speichereffizient und einfach zu implementieren. Durch das gemeinsame
Training der Cross- und DNN-Komponenten werden prädiktive Feature-Interaktionen effizient erfasst und eine
hochmoderne Leistung im Criteo CTR-Datensatz erzielt.

Ein DCN-Modell beginnt mit einer Einbettungs- und Stapelschicht, gefolgt von einem Quernetzwerk und einem
tiefen Netzwerk parallel. Darauf folgt wiederum eine letzte Kombinationsschicht, die die Ausgaben der beiden
Netzwerke kombiniert. Ihre Eingabedaten können ein Vektor mit spärlichen und dichten Merkmalen sein. In
Spark enthalten die Bibliotheken den Typ SparseVector . Daher ist es für Benutzer wichtig, zwischen den
beiden zu unterscheiden und beim Aufrufen der jeweiligen Funktionen und Methoden vorsichtig zu sein. In
webbasierten Empfehlungssystemen wie der CTR-Vorhersage sind die Eingaben meist kategorische
Merkmale, zum Beispiel 'country=usa' . Solche Merkmale werden oft als One-Hot-Vektoren kodiert, zum
Beispiel: '[0,1,0, …]' . One-Hot-Encoding (OHE) mit SparseVector ist nützlich, wenn Sie mit realen
Datensätzen mit sich ständig änderndem und wachsendem Vokabular arbeiten. Wir haben Beispiele in
"DeepCTR" um große Vokabulare zu verarbeiten und Einbettungsvektoren in der Einbettungs- und
Stapelschicht unseres DCN zu erstellen.

Der "Criteo Display Ads-Datensatz" sagt die Klickrate der Anzeigen voraus. Es verfügt über 13 ganzzahlige
Merkmale und 26 kategorische Merkmale, wobei jede Kategorie eine hohe Kardinalität aufweist. Für diesen
Datensatz ist aufgrund der großen Eingabegröße eine Verbesserung des Logverlusts um 0,001 praktisch
signifikant. Eine kleine Verbesserung der Vorhersagegenauigkeit für eine große Benutzerbasis kann
möglicherweise zu einer erheblichen Steigerung des Umsatzes eines Unternehmens führen. Der Datensatz
enthält 11 GB Benutzerprotokolle aus einem Zeitraum von 7 Tagen, was etwa 41 Millionen Datensätzen
entspricht. Wir haben Spark verwendet dataFrame.randomSplit()function die Daten nach dem
Zufallsprinzip für das Training (80 %), die Kreuzvalidierung (10 %) und die restlichen 10 % für Tests
aufzuteilen.

DCN wurde auf TensorFlow mit Keras implementiert. Bei der Implementierung des Modelltrainingsprozesses
mit DCN gibt es vier Hauptkomponenten:

• Datenverarbeitung und -einbettung. Realwertige Merkmale werden durch Anwenden einer Log-
Transformation normalisiert. Für kategorische Merkmale betten wir die Merkmale in dichte Vektoren der
Dimension 6 × (Kategoriekardinalität) 1/4 ein. Durch Verketten aller Einbettungen entsteht ein Vektor der
Dimension 1026.

15

https://github.com/shenweichen/DeepCTR
https://www.kaggle.com/competitions/criteo-display-ad-challenge/data

• Optimierung. Wir haben eine stochastische Mini-Batch-Optimierung mit dem Adam-Optimierer
angewendet. Die Batchgröße wurde auf 512 festgelegt. Auf das tiefe Netzwerk wurde eine Batch-
Normalisierung angewendet und die Gradienten-Clip-Norm auf 100 festgelegt.

• Regularisierung. Wir haben ein frühes Stoppen verwendet, da sich die L2-Regularisierung oder das
Dropout als nicht wirksam erwiesen haben.

• Hyperparameter. Wir berichten über Ergebnisse, die auf einer Rastersuche über die Anzahl der
verborgenen Schichten, die Größe der verborgenen Schichten, die anfängliche Lernrate und die Anzahl
der Kreuzschichten basieren. Die Anzahl der verborgenen Schichten lag zwischen 2 und 5, wobei die
Größe der verborgenen Schichten zwischen 32 und 1024 lag. Bei DCN lag die Anzahl der Querschichten
zwischen 1 und 6. Die anfängliche Lernrate wurde in Schritten von 0,0001 von 0,0001 auf 0,001
eingestellt. Bei allen Experimenten wurde ein frühzeitiger Stopp bei Trainingsschritt 150.000 angewendet,
da ab diesem Zeitpunkt eine Überanpassung eintrat.

Zusätzlich zu DCN haben wir auch andere beliebte Deep-Learning-Modelle zur CTR-Vorhersage getestet,
darunter "DeepFM" , "AutoInt" , Und "DCN v2" .

Zur Validierung verwendete Architekturen

Für diese Validierung haben wir vier Worker-Knoten und einen Master-Knoten mit einem AFF-A800-HA-Paar
verwendet. Alle Clustermitglieder waren über 10GbE-Netzwerk-Switches verbunden.

Für diese Validierung der NetApp Spark-Lösung haben wir drei verschiedene Speichercontroller verwendet:
den E5760, den E5724 und den AFF-A800. Die Speichercontroller der E-Serie wurden mit 12-Gbit/s-SAS-
Verbindungen an fünf Datenknoten angeschlossen. Der AFF HA-Paar-Speichercontroller stellt exportierte
NFS-Volumes über 10-GbE-Verbindungen für Hadoop-Workerknoten bereit. Die Hadoop-Clustermitglieder
wurden über 10-GbE-Verbindungen in den Hadoop-Lösungen E-Series, AFF und StorageGRID verbunden.

16

https://www.ijcai.org/proceedings/2017/0239.pdf
https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/2008.13535

Testergebnisse

Wir haben die Skripte TeraSort und TeraValidate im Benchmarking-Tool TeraGen

17

verwendet, um die Spark-Leistungsvalidierung mit den Konfigurationen E5760, E5724
und AFF-A800 zu messen. Darüber hinaus wurden drei wichtige Anwendungsfälle
getestet: Spark NLP-Pipelines und verteiltes TensorFlow-Training, verteiltes Horovod-
Training und Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage mit DeepFM.

Für die Validierung sowohl der E-Serie als auch der StorageGRID haben wir den Hadoop-Replikationsfaktor 2
verwendet. Für die AFF Validierung haben wir nur eine Datenquelle verwendet.

In der folgenden Tabelle ist die Hardwarekonfiguration für die Spark-Leistungsvalidierung aufgeführt.

Typ Hadoop-
Workerknoten

Antriebstyp Laufwerke pro
Knoten

Speichercontroller

SG6060 4 SAS 12 Einzelnes
Hochverfügbarkeitsp
aar (HA)

E5760 4 SAS 60 Einzelnes HA-Paar

E5724 4 SAS 24 Einzelnes HA-Paar

AFF800 4 SSD 6 Einzelnes HA-Paar

In der folgenden Tabelle sind die Softwareanforderungen aufgeführt.

Software Version

RHEL 7,9

OpenJDK-Laufzeitumgebung 1.8.0

OpenJDK 64-Bit-Server-VM 25,302

Git 2.24.1

GCC/G++ 11.2.1

Funke 3.2.1

PySpark 3.1.2

SparkNLP 3.4.2

TensorFlow 2.9.0

Keras 2.9.0

Horovod 0.24.3

Finanzstimmungsanalyse

Wir veröffentlichten"TR-4910: Stimmungsanalyse aus der Kundenkommunikation mit NetApp AI" , in dem eine
End-to-End-Konversations-KI-Pipeline mithilfe der "NetApp DataOps Toolkit" , AFF -Speicher und NVIDIA
DGX-System. Die Pipeline führt Batch-Audiosignalverarbeitung, automatische Spracherkennung (ASR),
Transferlernen und Stimmungsanalyse durch und nutzt dabei das DataOps Toolkit. "NVIDIA Riva SDK" und die
"Tao-Rahmen" . Wir haben den Anwendungsfall der Stimmungsanalyse auf die Finanzdienstleistungsbranche
ausgeweitet, einen SparkNLP-Workflow erstellt, drei BERT-Modelle für verschiedene NLP-Aufgaben wie die
Erkennung benannter Entitäten geladen und die Stimmung auf Satzebene für die vierteljährlichen
Gewinnaufrufe der Top 10-Unternehmen des NASDAQ ermittelt.

18

https://www.netapp.com/pdf.html?item=/media/17123-tr4910pdf.pdf
https://github.com/NetApp/netapp-dataops-toolkit
https://developer.nvidia.com/riva
https://developer.nvidia.com/tao

Das folgende Skript sentiment_analysis_spark. py verwendet das FinBERT-Modell, um Transkripte in
HDFS zu verarbeiten und positive, neutrale und negative Stimmungszahlen zu erzeugen, wie in der folgenden
Tabelle gezeigt:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

hdfs:///data1/Transcripts/

> ./sentiment_analysis_hdfs.log 2>&1

real13m14.300s

user557m11.319s

sys4m47.676s

In der folgenden Tabelle ist die Stimmungsanalyse auf Satzebene zu den Gewinnaufrufen der Top 10-
Unternehmen des NASDAQ von 2016 bis 2020 aufgeführt.

Stimmun
gszählun
g und
Prozents
atz

Alle 10
Unterneh
men

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positive
Zählunge
n

7447 1567 743 290 682 826 824 904 417

Neutrale
Zählunge
n

64067 6856 7596 5086 6650 5914 6099 5715 6189

Negative
Zählunge
n

1787 253 213 84 189 97 282 202 89

Nicht
kategorisi
erte
Zählunge
n

196 0 0 76 0 0 0 1 0

(Gesamtz
ahl)

73497 8676 8552 5536 7521 6837 7205 6822 6695

Prozentual gesehen sind die meisten Sätze der CEOs und CFOs sachlich und daher neutral. Während einer
Telefonkonferenz zu den Quartalsergebnissen stellen Analysten Fragen, die eine positive oder negative
Stimmung zum Ausdruck bringen können. Es lohnt sich, quantitativ weiter zu untersuchen, wie sich eine

19

negative oder positive Stimmung auf die Aktienkurse am selben oder am nächsten Handelstag auswirkt.

In der folgenden Tabelle ist die Stimmungsanalyse auf Satzebene für die Top 10-Unternehmen des NASDAQ
in Prozent aufgeführt.

Stimmun
gsproze
ntsatz

Alle 10
Unterneh
men

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positiv 10,13 % 18,06 % 8,69 % 5,24 % 9,07 % 12,08 % 11,44 % 13,25 % 6,23 %

Neutral 87,17 % 79,02 % 88,82 % 91,87 % 88,42 % 86,50 % 84,65 % 83,77 % 92,44 %

Negativ 2,43 % 2,92 % 2,49 % 1,52 % 2,51 % 1,42 % 3,91 % 2,96 % 1,33 %

Unkatego
risiert

0,27 % 0 % 0 % 1,37 % 0 % 0 % 0 % 0,01 % 0 %

In Bezug auf die Workflow-Laufzeit konnten wir eine signifikante Verbesserung um das 4,78-fache gegenüber
local Modus zu einer verteilten Umgebung in HDFS und eine weitere Verbesserung von 0,14 % durch
Nutzung von NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment_analysis_nfs.log 2>&1

real13m13.149s

user537m50.148s

sys4m46.173s

Wie die folgende Abbildung zeigt, verbesserte die Daten- und Modellparallelität die Geschwindigkeit der
Datenverarbeitung und der verteilten TensorFlow-Modellinferenz. Die Datenspeicherung in NFS führte zu einer
etwas besseren Laufzeit, da der Engpass im Workflow das Herunterladen vortrainierter Modelle ist. Wenn wir
die Größe des Transkriptdatensatzes erhöhen, wird der Vorteil von NFS deutlicher.

20

Verteiltes Training mit Horovod-Leistung

Der folgende Befehl erzeugte Laufzeitinformationen und eine Protokolldatei in unserem Spark-Cluster unter
Verwendung eines einzigen master Knoten mit 160 Executoren mit jeweils einem Kern. Der Executor-
Speicher wurde auf 5 GB begrenzt, um Speicherfehler zu vermeiden. Siehe den Abschnitt"Python-Skripte für
jeden wichtigen Anwendungsfall" Weitere Einzelheiten zur Datenverarbeitung, zum Modelltraining und zur
Berechnung der Modellgenauigkeit in keras_spark_horovod_rossmann_estimator.py .

(base) [root@n138 horovod]# time spark-submit

--master local

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkusecase/horovod

--local-submission-csv /tmp/submission_0.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_local. log 2>&1

Die resultierende Laufzeit mit zehn Trainingsepochen war wie folgt:

real43m34.608s

user12m22.057s

sys2m30.127s

21

spark-python-scripts.html
spark-python-scripts.html

Es dauerte mehr als 43 Minuten, um Eingabedaten zu verarbeiten, ein DNN-Modell zu trainieren, die
Genauigkeit zu berechnen und TensorFlow-Checkpoints und eine CSV-Datei für Vorhersageergebnisse zu
erstellen. Wir haben die Anzahl der Trainingsepochen auf 10 begrenzt, in der Praxis wird sie jedoch oft auf 100
gesetzt, um eine zufriedenstellende Modellgenauigkeit zu gewährleisten. Die Trainingszeit skaliert
normalerweise linear mit der Anzahl der Epochen.

Als nächstes nutzten wir die vier im Cluster verfügbaren Worker-Knoten und führten das gleiche Skript in yarn
Modus mit Daten in HDFS:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod

--local-submission-csv /tmp/submission_1.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_yarn.log 2>&1

Die resultierende Laufzeit wurde wie folgt verbessert:

real8m13.728s

user7m48.421s

sys1m26.063s

Mit Horovods Modell- und Datenparallelität in Spark konnten wir eine 5,29-fache Laufzeitbeschleunigung von
yarn gegen local Modus mit zehn Trainingsepochen. Dies wird in der folgenden Abbildung mit den
Legenden dargestellt HDFS Und Local . Das Training des zugrunde liegenden TensorFlow-DNN-Modells kann
mit GPUs, sofern verfügbar, weiter beschleunigt werden. Wir planen, diese Tests durchzuführen und die
Ergebnisse in einem zukünftigen technischen Bericht zu veröffentlichen.

Unser nächster Test verglich die Laufzeiten mit Eingabedaten in NFS und HDFS. Das NFS-Volume auf der
AFF A800 wurde gemountet auf /sparkdemo/horovod über die fünf Knoten (ein Master, vier Worker) in
unserem Spark-Cluster. Wir haben einen ähnlichen Befehl wie bei den vorherigen Tests ausgeführt, mit dem
--data- dir Parameter, der jetzt auf die NFS-Einbindung zeigt:

22

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkdemo/horovod

--local-submission-csv /tmp/submission_2.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_nfs.log 2>&1

Die resultierende Laufzeit mit NFS war wie folgt:

real 5m46.229s

user 5m35.693s

sys 1m5.615s

Es kam zu einer weiteren Beschleunigung um das 1,43-Fache, wie in der folgenden Abbildung gezeigt. Daher
profitieren Kunden mit einem an ihren Cluster angeschlossenen NetApp All-Flash-Speicher von den Vorteilen
einer schnellen Datenübertragung und -verteilung für Horovod Spark-Workflows und erreichen eine 7,55-fache
Beschleunigung im Vergleich zur Ausführung auf einem einzelnen Knoten.

23

Deep-Learning-Modelle für die CTR-Vorhersageleistung

Für Empfehlungssysteme, die auf die Maximierung der Klickrate ausgelegt sind, müssen Sie die komplexen
Funktionsinteraktionen hinter dem Benutzerverhalten erlernen, die sich mathematisch von der niedrigsten bis
zur höchsten Ordnung berechnen lassen. Für ein gutes Deep-Learning-Modell sollten sowohl
Merkmalsinteraktionen niedriger als auch höherer Ordnung gleichermaßen wichtig sein, ohne dass das eine
oder das andere bevorzugt wird. Deep Factorization Machine (DeepFM), ein auf Faktorisierungsmaschinen
basierendes neuronales Netzwerk, kombiniert Faktorisierungsmaschinen für Empfehlungen und Deep
Learning für das Merkmalslernen in einer neuen neuronalen Netzwerkarchitektur.

Obwohl herkömmliche Faktorisierungsmaschinen paarweise Merkmalsinteraktionen als inneres Produkt
latenter Vektoren zwischen Merkmalen modellieren und theoretisch Informationen höherer Ordnung erfassen
können, verwenden Anwender des maschinellen Lernens in der Praxis aufgrund der hohen Rechen- und
Speicherkomplexität normalerweise nur Merkmalsinteraktionen zweiter Ordnung. Varianten tiefer neuronaler
Netzwerke wie die von Google "Breite und tiefe Modelle" lernt andererseits anspruchsvolle
Merkmalsinteraktionen in einer hybriden Netzwerkstruktur durch die Kombination eines linearen breiten
Modells und eines tiefen Modells.

Es gibt zwei Eingaben für dieses Wide & Deep-Modell, eine für das zugrunde liegende Wide-Modell und die
andere für das Deep-Modell. Letzterer Teil erfordert noch immer eine fachmännische Feature-Entwicklung und
macht die Technik daher weniger auf andere Domänen übertragbar. Anders als das Wide & Deep-Modell kann
DeepFM effizient mit Rohmerkmalen trainiert werden, ohne dass ein Feature-Engineering erforderlich ist, da
der breite und der tiefe Teil denselben Input und Einbettungsvektor verwenden.

Wir haben zunächst die Criteo train.txt (11 GB) in eine CSV-Datei mit dem Namen ctr_train.csv in
einem NFS-Mount gespeichert /sparkdemo/tr-4570-data mit
run_classification_criteo_spark.py aus dem Abschnitt"Python-Skripte für jeden wichtigen
Anwendungsfall." Innerhalb dieses Skripts wird die Funktion process_input_file führt mehrere String-
Methoden aus, um Tabs zu entfernen und einzufügen ',' als Trennzeichen und '\n' als Zeilenumbruch.
Beachten Sie, dass Sie nur das Original verarbeiten müssen train.txt einmal, sodass der Codeblock als
Kommentar angezeigt wird.

Für die folgenden Tests verschiedener DL-Modelle verwendeten wir ctr_train.csv als Eingabedatei. In
nachfolgenden Testläufen wurde die CSV-Eingabedatei in einen Spark DataFrame mit Schema eingelesen,
das ein Feld von 'label' , ganzzahlige dichte Merkmale ['I1', 'I2', 'I3', …, 'I13'] und spärliche
Merkmale ['C1', 'C2', 'C3', …, 'C26'] . Die folgende spark-submit Der Befehl nimmt eine CSV-
Eingabe entgegen, trainiert DeepFM-Modelle mit 20 % Aufteilung für die Kreuzvalidierung und wählt nach zehn
Trainingsepochen das beste Modell aus, um die Vorhersagegenauigkeit im Testsatz zu berechnen:

(base) [root@n138 ~]# time spark-submit --master yarn --executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py --data

-dir file:///sparkdemo/tr-4570-data >

/tmp/run_classification_criteo_spark_local.log 2>&1

Beachten Sie, dass die Datendatei ctr_train.csv über 11 GB liegt, müssen Sie eine ausreichende
spark.driver.maxResultSize größer als die Datensatzgröße, um Fehler zu vermeiden.

24

https://arxiv.org/abs/1606.07792
spark-python-scripts.html
spark-python-scripts.html

 spark = SparkSession.builder \

 .master("yarn") \

 .appName("deep_ctr_classification") \

 .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

 .config("spark.executor.cores", "1") \

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead', '1500') \

 .config('spark.driver.memoryOverhead', '1500') \

 .config("spark.sql.shuffle.partitions", "480") \

 .config("spark.sql.execution.arrow.enabled", "true") \

 .config("spark.driver.maxResultSize", "50gb") \

 .getOrCreate()

Im obigen SparkSession.builder Konfiguration haben wir auch aktiviert "Apache-Pfeil" , das einen Spark
DataFrame in einen Pandas DataFrame mit dem df.toPandas() Verfahren.

22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py:96, took

627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

Nach der zufälligen Aufteilung gibt es über 36 Millionen Zeilen im Trainingsdatensatz und 9 Millionen
Stichproben im Testdatensatz:

Training dataset size = 36672493

Testing dataset size = 9168124

Da sich dieser technische Bericht auf CPU-Tests ohne Verwendung von GPUs konzentriert, ist es zwingend
erforderlich, dass Sie TensorFlow mit entsprechenden Compiler-Flags erstellen. Dieser Schritt vermeidet den
Aufruf von GPU-beschleunigten Bibliotheken und nutzt die Advanced Vector Extensions (AVX) und AVX2-
Anweisungen von TensorFlow voll aus. Diese Funktionen sind für lineare algebraische Berechnungen wie
vektorisierte Addition, Matrixmultiplikationen innerhalb eines Feedforward- oder Backpropagation-DNN-
Trainings konzipiert. Der mit AVX2 verfügbare Fused Multiply Add (FMA)-Befehl mit 256-Bit-
Gleitkommaregistern (FP) ist ideal für ganzzahligen Code und Datentypen und führt zu einer bis zu zweifachen
Beschleunigung. Bei FP-Code und Datentypen erreicht AVX2 eine um 8 % höhere Geschwindigkeit als AVX.

2022-06-18 07:19:20.101478: I

tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary

is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the

following CPU instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the

appropriate compiler flags.

25

https://arrow.apache.org/

Um TensorFlow aus dem Quellcode zu erstellen, empfiehlt NetApp die Verwendung "Bazel" . Für unsere
Umgebung haben wir die folgenden Befehle in der Shell-Eingabeaufforderung ausgeführt, um zu installieren
dnf , dnf-plugins und Bazel.

yum install dnf

dnf install 'dnf-command(copr)'

dnf copr enable vbatts/bazel

dnf install bazel5

Sie müssen GCC 5 oder neuer aktivieren, um während des Build-Prozesses C++17-Funktionen zu verwenden,
die von RHEL mit der Software Collections Library (SCL) bereitgestellt werden. Die folgenden Befehle
installieren devtoolset und GCC 11.2.1 auf unserem RHEL 7.9-Cluster:

subscription-manager repos --enable rhel-server-rhscl-7-rpms

yum install devtoolset-11-toolchain

yum install devtoolset-11-gcc-c++

yum update

scl enable devtoolset-11 bash

. /opt/rh/devtoolset-11/enable

Beachten Sie, dass die letzten beiden Befehle devtoolset-11 , das verwendet /opt/rh/devtoolset-
11/root/usr/bin/gcc (GCC 11.2.1). Stellen Sie außerdem sicher, dass Ihre git Version ist höher als
1.8.3 (diese wird mit RHEL 7.9 geliefert). Siehe hierzu "Artikel" zur Aktualisierung git bis 2.24.1.

Wir gehen davon aus, dass Sie das neueste TensorFlow-Master-Repo bereits geklont haben. Erstellen Sie
dann eine workspace Verzeichnis mit einem WORKSPACE Datei zum Erstellen von TensorFlow aus dem
Quellcode mit AVX, AVX2 und FMA. Führen Sie den configure Datei und geben Sie den richtigen Python-
Binärspeicherort an. "CUDA" ist für unsere Tests deaktiviert, da wir keine GPU verwendet haben. A .bazelrc
Die Datei wird entsprechend Ihren Einstellungen generiert. Weiter haben wir die Datei bearbeitet und
eingestellt build --define=no_hdfs_support=false um die HDFS-Unterstützung zu aktivieren. Siehe
.bazelrc im Abschnitt"Python-Skripte für jeden wichtigen Anwendungsfall," für eine vollständige Liste der
Einstellungen und Flags.

./configure

bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=

-mfpmath=both -k //tensorflow/tools/pip_package:build_pip_package

Nachdem Sie TensorFlow mit den richtigen Flags erstellt haben, führen Sie das folgende Skript aus, um den
Criteo Display Ads-Datensatz zu verarbeiten, ein DeepFM-Modell zu trainieren und die Fläche unter der
Receiver Operating Characteristic Curve (ROC AUC) aus den Vorhersagewerten zu berechnen.

26

https://bazel.build/
https://travis.media/how-to-upgrade-git-on-rhel7-and-centos7/
https://developer.nvidia.com/cuda-toolkit
spark-python-scripts.html

(base) [root@n138 examples]# ~/anaconda3/bin/spark-submit

--master yarn

--executor-memory 15g

--executor-cores 1

--num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py

--data-dir file:///sparkdemo/tr-4570-data

> . /run_classification_criteo_spark_nfs.log 2>&1

Nach zehn Trainingsepochen haben wir den AUC-Score für den Testdatensatz erhalten:

Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary_crossentropy: 0.4974 - val_loss:

0.4629 - val_binary_crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary_crossentropy: 0.3271 - val_loss:

0.5146 - val_binary_crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary_crossentropy: 0.1928 - val_loss:

0.6166 - val_binary_crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary_crossentropy: 0.1383 - val_loss:

0.7261 - val_binary_crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary_crossentropy: 0.1102 - val_loss:

0.7961 - val_binary_crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary_crossentropy: 0.0921 - val_loss:

0.9502 - val_binary_crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary_crossentropy: 0.0750 - val_loss:

1.1329 - val_binary_crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary_crossentropy: 0.0622 - val_loss:

1.3794 - val_binary_crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary_crossentropy: 0.0527 - val_loss:

1.6115 - val_binary_crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary_crossentropy: 0.0442 - val_loss:

1.6768 - val_binary_crossentropy: 1.6740

test AUC 0.6337

Ähnlich wie bei früheren Anwendungsfällen haben wir die Spark-Workflow-Laufzeit mit Daten verglichen, die

27

an verschiedenen Standorten gespeichert sind. Die folgende Abbildung zeigt einen Vergleich der Deep-
Learning-CTR-Vorhersage für eine Spark-Workflow-Laufzeit.

Hybrid-Cloud-Lösung

Ein modernes Unternehmensrechenzentrum ist eine Hybrid-Cloud, die mehrere verteilte
Infrastrukturumgebungen über eine kontinuierliche Datenverwaltungsebene mit einem
konsistenten Betriebsmodell vor Ort und/oder in mehreren öffentlichen Clouds verbindet.
Um das Beste aus einer Hybrid Cloud herauszuholen, müssen Sie in der Lage sein,
Daten nahtlos zwischen Ihren lokalen und Multi-Cloud-Umgebungen zu verschieben,
ohne dass Datenkonvertierungen oder Anwendungs-Refactoring erforderlich sind.

Kunden haben angegeben, dass sie ihre Reise in die Hybrid Cloud entweder mit der Verlagerung von
Sekundärspeichern in die Cloud für Anwendungsfälle wie Datenschutz oder mit der Verlagerung weniger
geschäftskritischer Workloads wie Anwendungsentwicklung und DevOps in die Cloud beginnen. Anschließend
wenden sie sich kritischeren Arbeitslasten zu. Zu den beliebtesten Hybrid-Cloud-Workloads gehören Web- und
Content-Hosting, DevOps und Anwendungsentwicklung, Datenbanken, Analysen und containerisierte Apps.
Die Komplexität, die Kosten und die Risiken von KI-Projekten in Unternehmen haben in der Vergangenheit die
Einführung von KI von der experimentellen Phase bis zur Produktion behindert.

Mit einer NetApp Hybrid-Cloud-Lösung profitieren Kunden von integrierten Tools für Sicherheit,
Datenverwaltung und Compliance mit einem einzigen Control Panel für das Daten- und Workflow-Management

28

in verteilten Umgebungen und optimieren gleichzeitig die Gesamtbetriebskosten basierend auf ihrem
Verbrauch. Die folgende Abbildung zeigt eine Beispiellösung eines Cloud-Service-Partners, der die Aufgabe
hat, Multi-Cloud-Konnektivität für die Big-Data-Analysedaten der Kunden bereitzustellen.

In diesem Szenario werden IoT-Daten, die in AWS aus verschiedenen Quellen empfangen werden, an einem
zentralen Ort im NetApp Private Storage (NPS) gespeichert. Der NPS-Speicher ist mit Spark- oder Hadoop-
Clustern in AWS und Azure verbunden, sodass Big-Data-Analyseanwendungen in mehreren Clouds
ausgeführt werden können und auf dieselben Daten zugreifen. Zu den wichtigsten Anforderungen und
Herausforderungen für diesen Anwendungsfall zählen die folgenden:

• Kunden möchten Analyseaufträge mit denselben Daten über mehrere Clouds ausführen.

• Daten müssen aus verschiedenen Quellen, beispielsweise lokalen und Cloud-Umgebungen, über
verschiedene Sensoren und Hubs empfangen werden.

• Die Lösung muss effizient und kostengünstig sein.

• Die größte Herausforderung besteht darin, eine kostengünstige und effiziente Lösung zu entwickeln, die
hybride Analysedienste zwischen verschiedenen lokalen und Cloud-Umgebungen bereitstellt.

Unsere Lösung für Datenschutz und Multicloud-Konnektivität löst das Problem, das entsteht, wenn Cloud-
Analyseanwendungen über mehrere Hyperscaler verteilt sind. Wie in der obigen Abbildung gezeigt, werden
Daten von Sensoren gestreamt und über Kafka in den AWS Spark-Cluster aufgenommen. Die Daten werden in
einer NFS-Freigabe gespeichert, die sich in NPS befindet, das sich außerhalb des Cloud-Anbieters in einem
Equinix-Rechenzentrum befindet.

Da NetApp NPS über Direct Connect- bzw. Express Route-Verbindungen mit Amazon AWS und Microsoft
Azure verbunden ist, können Kunden das In-Place Analytics-Modul nutzen, um auf die Daten von Amazon-
und AWS-Analyseclustern zuzugreifen. Da sowohl der lokale als auch der NPS-Speicher mit ONTAP -Software
läuft, "SnapMirror" kann die NPS-Daten in den lokalen Cluster spiegeln und so Hybrid-Cloud-Analysen über
lokale und mehrere Clouds hinweg bereitstellen.

Für eine optimale Leistung empfiehlt NetApp normalerweise die Verwendung mehrerer Netzwerkschnittstellen
und Direktverbindungen oder Expressrouten für den Zugriff auf die Daten von Cloud-Instanzen. Wir haben
andere Data Mover-Lösungen, darunter "XCP" Und "BlueXP Kopieren und Synchronisieren" um Kunden beim
Aufbau anwendungsbewusster, sicherer und kostengünstiger Hybrid-Cloud-Spark-Cluster zu unterstützen.

29

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service

Python-Skripte für jeden wichtigen Anwendungsfall

Die folgenden drei Python-Skripte entsprechen den drei getesteten
Hauptanwendungsfällen. Erstens ist sentiment_analysis_sparknlp.py .

TR-4570 Refresh NLP testing by Rick Huang

from sys import argv

import os

import sparknlp

import pyspark.sql.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline

from sparknlp import Finisher

Start Spark Session with Spark NLP

spark = sparknlp.start()

print("Spark NLP version:")

print(sparknlp.version())

print("Apache Spark version:")

print(spark.version)

spark = sparknlp.SparkSession.builder \

 .master("yarn") \

 .appName("test_hdfs_read_write") \

 .config("spark.executor.cores", "1") \

 .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-

nlp_2.12:3.4.3")\

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead','1000')\

 .config('spark.driver.memoryOverhead','1000')\

 .config("spark.sql.shuffle.partitions", "480")\

 .getOrCreate()

sc = spark.sparkContext

from pyspark.sql import SQLContext

sql = SQLContext(sc)

sqlContext = SQLContext(sc)

Download pre-trained pipelines & sequence classifier

explain_pipeline_model = PretrainedPipeline('explain_document_dl',

lang='en').model#pipeline_sa =

PretrainedPipeline("classifierdl_bertwiki_finance_sentiment_pipeline",

lang="en")

pipeline_finbert =

BertForSequenceClassification.loadSavedModel('/sparkusecase/bert_sequence_

classifier_finbert_en_3', spark)

30

sequenceClassifier = BertForSequenceClassification \

 .pretrained('bert_sequence_classifier_finbert', 'en') \

 .setInputCols(['token', 'document']) \

 .setOutputCol('class') \

 .setCaseSensitive(True) \

 .setMaxSentenceLength(512)

def process_sentence_df(data):

 # Pre-process: begin

 print("1. Begin DataFrame pre-processing...\n")

 print(f"\n\t2. Attaching DocumentAssembler Transformer to the

pipeline")

 documentAssembler = DocumentAssembler() \

 .setInputCol("text") \

 .setOutputCol("document") \

 .setCleanupMode("inplace_full")

 #.setCleanupMode("shrink", "inplace_full")

 doc_df = documentAssembler.transform(data)

 doc_df.printSchema()

 doc_df.show(truncate=50)

 # Pre-process: get rid of blank lines

 clean_df = doc_df.withColumn("tmp", F.explode("document")) \

 .select("tmp.result").where("tmp.end !=

-1").withColumnRenamed("result", "text").dropna()

 print("[OK!] DataFrame after initial cleanup:\n")

 clean_df.printSchema()

 clean_df.show(truncate=80)

 # for FinBERT

 tokenizer = Tokenizer() \

 .setInputCols(['document']) \

 .setOutputCol('token')

 print(f"\n\t3. Attaching Tokenizer Annotator to the pipeline")

 pipeline_finbert = Pipeline(stages=[

 documentAssembler,

 tokenizer,

 sequenceClassifier

])

 # Use Finisher() & construct PySpark ML pipeline

 finisher = Finisher().setInputCols(["token", "lemma", "pos",

"entities"])

 print(f"\n\t4. Attaching Finisher Transformer to the pipeline")

 pipeline_ex = Pipeline() \

 .setStages([

 explain_pipeline_model,

 finisher

])

 print("\n\t\t\t ---- Pipeline Built Successfully ----")

31

 # Loading pipelines to annotate

 #result_ex_df = pipeline_ex.transform(clean_df)

 ex_model = pipeline_ex.fit(clean_df)

 annotations_finished_ex_df = ex_model.transform(clean_df)

 # result_sa_df = pipeline_sa.transform(clean_df)

 result_finbert_df = pipeline_finbert.fit(clean_df).transform(clean_df)

 print("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT

Pipeline Fitted Successfully ----")

 # Check the result entities

 print("[OK!] Simple explain ML pipeline result:\n")

 annotations_finished_ex_df.printSchema()

 annotations_finished_ex_df.select('text',

'finished_entities').show(truncate=False)

 # Check the result sentiment from FinBERT

 print("[OK!] Sentiment Analysis FinBERT pipeline result:\n")

 result_finbert_df.printSchema()

 result_finbert_df.select('text', 'class.result').show(80, False)

 sentiment_stats(result_finbert_df)

 return

def sentiment_stats(finbert_df):

 result_df = finbert_df.select('text', 'class.result')

 sa_df = result_df.select('result')

 sa_df.groupBy('result').count().show()

 # total_lines = result_clean_df.count()

 # num_neutral = result_clean_df.where(result_clean_df.result ==

['neutral']).count()

 # num_positive = result_clean_df.where(result_clean_df.result ==

['positive']).count()

 # num_negative = result_clean_df.where(result_clean_df.result ==

['negative']).count()

 # print(f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

 # print(f"Ratio of positive sentiment = {num_positive / total_lines}")

 # print(f"Ratio of negative sentiment = {num_negative /

total_lines}\n")

 return

def process_input_file(file_name):

 # Turn input file to Spark DataFrame

 print("START processing input file...")

 data_df = spark.read.text(file_name)

 data_df.show()

 # rename first column 'text' for sparknlp

 output_df = data_df.withColumnRenamed("value", "text").dropna()

 output_df.printSchema()

 return output_dfdef process_local_dir(directory):

 filelist = []

 for subdir, dirs, files in os.walk(directory):

32

 for filename in files:

 filepath = subdir + os.sep + filename

 print("[OK!] Will process the following files:")

 if filepath.endswith(".txt"):

 print(filepath)

 filelist.append(filepath)

 return filelist

def process_local_dir_or_file(dir_or_file):

 numfiles = 0

 if os.path.isfile(dir_or_file):

 input_df = process_input_file(dir_or_file)

 print("Obtained input_df.")

 process_sentence_df(input_df)

 print("Processed input_df")

 numfiles += 1

 else:

 filelist = process_local_dir(dir_or_file)

 for file in filelist:

 input_df = process_input_file(file)

 process_sentence_df(input_df)

 numfiles += 1

 return numfiles

def process_hdfs_dir(dir_name):

 # Turn input files to Spark DataFrame

 print("START processing input HDFS directory...")

 data_df = spark.read.option("recursiveFileLookup",

"true").text(dir_name)

 data_df.show()

 print("[DEBUG] total lines in data_df = ", data_df.count())

 # rename first column 'text' for sparknlp

 output_df = data_df.withColumnRenamed("value", "text").dropna()

 print("[DEBUG] output_df looks like: \n")

 output_df.show(40, False)

 print("[DEBUG] HDFS dir resulting data_df schema: \n")

 output_df.printSchema()

 process_sentence_df(output_df)

 print("Processed HDFS directory: ", dir_name)

 returnif __name__ == '__main__':

 try:

 if len(argv) == 2:

 print("Start processing input...\n")

 except:

 print("[ERROR] Please enter input text file or path to

process!\n")

 exit(1)

 # This is for local file, not hdfs:

33

 numfiles = process_local_dir_or_file(str(argv[1]))

 # For HDFS single file & directory:

 input_df = process_input_file(str(argv[1]))

 print("Obtained input_df.")

 process_sentence_df(input_df)

 print("Processed input_df")

 numfiles += 1

 # For HDFS directory of subdirectories of files:

 input_parse_list = str(argv[1]).split('/')

 print(input_parse_list)

 if input_parse_list[-2:-1] == ['Transcripts']:

 print("Start processing HDFS directory: ", str(argv[1]))

 process_hdfs_dir(str(argv[1]))

 print(f"[OK!] All done. Number of files processed = {numfiles}")

Das zweite Skript ist keras_spark_horovod_rossmann_estimator.py .

Copyright 2022 NetApp, Inc.

Authored by Rick Huang

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

==

====

The below code was modified from: https://www.kaggle.com/c/rossmann-

store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sql.types as T

import pyspark.sql.functions as F

from pyspark import SparkConf, Row

from pyspark.sql import SparkSession

34

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,

Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint

parser = argparse.ArgumentParser(description='Horovod Keras Spark Rossmann

Estimator Example',

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--master',

 help='spark cluster to use for training. If set to

None, uses current default cluster. Cluster'

 'should be set up to provide a Spark task per

multiple CPU cores, or per GPU, e.g. by'

 'supplying `-c <NUM_GPUS>` in Spark Standalone

mode')

parser.add_argument('--num-proc', type=int,

 help='number of worker processes for training,

default: `spark.default.parallelism`')

parser.add_argument('--learning_rate', type=float, default=0.0001,

 help='initial learning rate')

parser.add_argument('--batch-size', type=int, default=100,

 help='batch size')

parser.add_argument('--epochs', type=int, default=100,

 help='number of epochs to train')

parser.add_argument('--sample-rate', type=float,

 help='desired sampling rate. Useful to set to low

number (e.g. 0.01) to make sure that '

 'end-to-end process works')

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

 help='location of data on local filesystem (prefixed

with file://) or on HDFS')

parser.add_argument('--local-submission-csv', default='submission.csv',

 help='output submission predictions CSV')

parser.add_argument('--local-checkpoint-file', default='checkpoint',

 help='model checkpoint')

parser.add_argument('--work-dir', default='/tmp',

 help='temporary working directory to write

intermediate files (prefix with hdfs:// to use HDFS)')

if __name__ == '__main__':

 args = parser.parse_args()

 # ================ #

 # DATA PREPARATION #

35

 # ================ #

 print('================')

 print('Data preparation')

 print('================')

 # Create Spark session for data preparation.

 conf = SparkConf() \

 .setAppName('Keras Spark Rossmann Estimator Example') \

 .set('spark.sql.shuffle.partitions', '480') \

 .set("spark.executor.cores", "1") \

 .set('spark.executor.memory', '5gb') \

 .set('spark.executor.memoryOverhead','1000')\

 .set('spark.driver.memoryOverhead','1000')

 if args.master:

 conf.setMaster(args.master)

 elif args.num_proc:

 conf.setMaster('local[{}]'.format(args.num_proc))

 spark = SparkSession.builder.config(conf=conf).getOrCreate()

 train_csv = spark.read.csv('%s/train.csv' % args.data_dir,

header=True)

 test_csv = spark.read.csv('%s/test.csv' % args.data_dir, header=True)

 store_csv = spark.read.csv('%s/store.csv' % args.data_dir,

header=True)

 store_states_csv = spark.read.csv('%s/store_states.csv' %

args.data_dir, header=True)

 state_names_csv = spark.read.csv('%s/state_names.csv' % args.data_dir,

header=True)

 google_trend_csv = spark.read.csv('%s/googletrend.csv' %

args.data_dir, header=True)

 weather_csv = spark.read.csv('%s/weather.csv' % args.data_dir,

header=True)

 def expand_date(df):

 df = df.withColumn('Date', df.Date.cast(T.DateType()))

 return df \

 .withColumn('Year', F.year(df.Date)) \

 .withColumn('Month', F.month(df.Date)) \

 .withColumn('Week', F.weekofyear(df.Date)) \

 .withColumn('Day', F.dayofmonth(df.Date))

 def prepare_google_trend():

 # Extract week start date and state.

 google_trend_all = google_trend_csv \

 .withColumn('Date', F.regexp_extract(google_trend_csv.week,

'(.*?) -', 1)) \

 .withColumn('State', F.regexp_extract(google_trend_csv.file,

'Rossmann_DE_(.*)', 1))

 # Map state NI -> HB,NI to align with other data sources.

 google_trend_all = google_trend_all \

36

 .withColumn('State', F.when(google_trend_all.State == 'NI',

'HB,NI').otherwise(google_trend_all.State))

 # Expand dates.

 return expand_date(google_trend_all)

 def add_elapsed(df, cols):

 def add_elapsed_column(col, asc):

 def fn(rows):

 last_store, last_date = None, None

 for r in rows:

 if last_store != r.Store:

 last_store = r.Store

 last_date = r.Date

 if r[col]:

 last_date = r.Date

 fields = r.asDict().copy()

 fields[('After' if asc else 'Before') + col] = (r.Date

- last_date).days

 yield Row(**fields)

 return fn

 df = df.repartition(df.Store)

 for asc in [False, True]:

 sort_col = df.Date.asc() if asc else df.Date.desc()

 rdd = df.sortWithinPartitions(df.Store.asc(), sort_col).rdd

 for col in cols:

 rdd = rdd.mapPartitions(add_elapsed_column(col, asc))

 df = rdd.toDF()

 return df

 def prepare_df(df):

 num_rows = df.count()

 # Expand dates.

 df = expand_date(df)

 df = df \

 .withColumn('Open', df.Open != '0') \

 .withColumn('Promo', df.Promo != '0') \

 .withColumn('StateHoliday', df.StateHoliday != '0') \

 .withColumn('SchoolHoliday', df.SchoolHoliday != '0')

 # Merge in store information.

 store = store_csv.join(store_states_csv, 'Store')

 df = df.join(store, 'Store')

 # Merge in Google Trend information.

 google_trend_all = prepare_google_trend()

 df = df.join(google_trend_all, ['State', 'Year',

'Week']).select(df['*'], google_trend_all.trend)

 # Merge in Google Trend for whole Germany.

 google_trend_de = google_trend_all[google_trend_all.file ==

'Rossmann_DE'].withColumnRenamed('trend', 'trend_de')

37

 df = df.join(google_trend_de, ['Year', 'Week']).select(df['*'],

google_trend_de.trend_de)

 # Merge in weather.

 weather = weather_csv.join(state_names_csv, weather_csv.file ==

state_names_csv.StateName)

 df = df.join(weather, ['State', 'Date'])

 # Fix null values.

 df = df \

 .withColumn('CompetitionOpenSinceYear',

F.coalesce(df.CompetitionOpenSinceYear, F.lit(1900))) \

 .withColumn('CompetitionOpenSinceMonth',

F.coalesce(df.CompetitionOpenSinceMonth, F.lit(1))) \

 .withColumn('Promo2SinceYear', F.coalesce(df.Promo2SinceYear,

F.lit(1900))) \

 .withColumn('Promo2SinceWeek', F.coalesce(df.Promo2SinceWeek,

F.lit(1)))

 # Days & months competition was open, cap to 2 years.

 df = df.withColumn('CompetitionOpenSince',

 F.to_date(F.format_string('%s-%s-15',

df.CompetitionOpenSinceYear,

df.CompetitionOpenSinceMonth)))

 df = df.withColumn('CompetitionDaysOpen',

 F.when(df.CompetitionOpenSinceYear > 1900,

 F.greatest(F.lit(0), F.least(F.lit(360 *

2), F.datediff(df.Date, df.CompetitionOpenSince))))

 .otherwise(0))

 df = df.withColumn('CompetitionMonthsOpen',

(df.CompetitionDaysOpen / 30).cast(T.IntegerType()))

 # Days & weeks of promotion, cap to 25 weeks.

 df = df.withColumn('Promo2Since',

 F.expr('date_add(format_string("%s-01-01",

Promo2SinceYear), (cast(Promo2SinceWeek as int) - 1) * 7)'))

 df = df.withColumn('Promo2Days',

 F.when(df.Promo2SinceYear > 1900,

 F.greatest(F.lit(0), F.least(F.lit(25 *

7), F.datediff(df.Date, df.Promo2Since))))

 .otherwise(0))

 df = df.withColumn('Promo2Weeks', (df.Promo2Days /

7).cast(T.IntegerType()))

 # Check that we did not lose any rows through inner joins.

 assert num_rows == df.count(), 'lost rows in joins'

 return df

 def build_vocabulary(df, cols):

 vocab = {}

 for col in cols:

38

 values = [r[0] for r in df.select(col).distinct().collect()]

 col_type = type([x for x in values if x is not None][0])

 default_value = col_type()

 vocab[col] = sorted(values, key=lambda x: x or default_value)

 return vocab

 def cast_columns(df, cols):

 for col in cols:

 df = df.withColumn(col,

F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))

 return df

 def lookup_columns(df, vocab):

 def lookup(mapping):

 def fn(v):

 return mapping.index(v)

 return F.udf(fn, returnType=T.IntegerType())

 for col, mapping in vocab.items():

 df = df.withColumn(col, lookup(mapping)(df[col]))

 return df

 if args.sample_rate:

 train_csv = train_csv.sample(withReplacement=False,

fraction=args.sample_rate)

 test_csv = test_csv.sample(withReplacement=False,

fraction=args.sample_rate)

 # Prepare data frames from CSV files.

 train_df = prepare_df(train_csv).cache()

 test_df = prepare_df(test_csv).cache()

 # Add elapsed times from holidays & promos, the data spanning training

& test datasets.

 elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']

 elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)

 .unionAll(test_df.select('Date', 'Store',

*elapsed_cols)),

 elapsed_cols)

 # Join with elapsed times.

 train_df = train_df \

 .join(elapsed, ['Date', 'Store']) \

 .select(train_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

 test_df = test_df \

 .join(elapsed, ['Date', 'Store']) \

 .select(test_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

 # Filter out zero sales.

 train_df = train_df.filter(train_df.Sales > 0)

 print('===================')

 print('Prepared data frame')

39

 print('===================')

 train_df.show()

 categorical_cols = [

 'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',

'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',

 'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',

'Promo2SinceYear', 'Events', 'Promo',

 'StateHoliday', 'SchoolHoliday'

]

 continuous_cols = [

 'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC',

'Min_TemperatureC', 'Max_Humidity',

 'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h',

'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_de',

 'BeforePromo', 'AfterPromo', 'AfterStateHoliday',

'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

]

 all_cols = categorical_cols + continuous_cols

 # Select features.

 train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()

 test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

 # Build vocabulary of categorical columns.

 vocab = build_vocabulary(train_df.select(*categorical_cols)

.unionAll(test_df.select(*categorical_cols)).cache(),

 categorical_cols)

 # Cast continuous columns to float & lookup categorical columns.

 train_df = cast_columns(train_df, continuous_cols + ['Sales'])

 train_df = lookup_columns(train_df, vocab)

 test_df = cast_columns(test_df, continuous_cols)

 test_df = lookup_columns(test_df, vocab)

 # Split into training & validation.

 # Test set is in 2015, use the same period in 2014 from the training

set as a validation set.

 test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]

 test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]

 one_year = datetime.timedelta(365)

 train_df = train_df.withColumn('Validation',

 (train_df.Date > test_min_date -

one_year) & (train_df.Date <= test_max_date - one_year))

 # Determine max Sales number.

 max_sales = train_df.agg(F.max(train_df.Sales)).collect()[0][0]

 # Convert Sales to log domain

 train_df = train_df.withColumn('Sales', F.log(train_df.Sales))

 print('===================================')

 print('Data frame with transformed columns')

40

 print('===================================')

 train_df.show()

 print('================')

 print('Data frame sizes')

 print('================')

 train_rows = train_df.filter(~train_df.Validation).count()

 val_rows = train_df.filter(train_df.Validation).count()

 test_rows = test_df.count()

 print('Training: %d' % train_rows)

 print('Validation: %d' % val_rows)

 print('Test: %d' % test_rows)

 # ============== #

 # MODEL TRAINING #

 # ============== #

 print('==============')

 print('Model training')

 print('==============')

 def exp_rmspe(y_true, y_pred):

 """Competition evaluation metric, expects logarithic inputs."""

 pct = tf.square((tf.exp(y_true) - tf.exp(y_pred)) /

tf.exp(y_true))

 # Compute mean excluding stores with zero denominator.

 x = tf.reduce_sum(tf.where(y_true > 0.001, pct,

tf.zeros_like(pct)))

 y = tf.reduce_sum(tf.where(y_true > 0.001, tf.ones_like(pct),

tf.zeros_like(pct)))

 return tf.sqrt(x / y)

 def act_sigmoid_scaled(x):

 """Sigmoid scaled to logarithm of maximum sales scaled by 20%."""

 return tf.nn.sigmoid(x) * tf.math.log(max_sales) * 1.2

 CUSTOM_OBJECTS = {'exp_rmspe': exp_rmspe,

 'act_sigmoid_scaled': act_sigmoid_scaled}

 # Disable GPUs when building the model to prevent memory leaks

 if LooseVersion(tf.__version__) >= LooseVersion('2.0.0'):

 # See https://github.com/tensorflow/tensorflow/issues/33168

 os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

 else:

K.set_session(tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})))

 # Build the model.

 inputs = {col: Input(shape=(1,), name=col) for col in all_cols}

 embeddings = [Embedding(len(vocab[col]), 10, input_length=1,

name='emb_' + col)(inputs[col])

 for col in categorical_cols]

 continuous_bn = Concatenate()([Reshape((1, 1), name='reshape_' +

col)(inputs[col])

41

 for col in continuous_cols])

 continuous_bn = BatchNormalization()(continuous_bn)

 x = Concatenate()(embeddings + [continuous_bn])

 x = Flatten()(x)

 x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(500, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dropout(0.5)(x)

 output = Dense(1, activation=act_sigmoid_scaled)(x)

 model = tf.keras.Model([inputs[f] for f in all_cols], output)

 model.summary()

 opt = tf.keras.optimizers.Adam(lr=args.learning_rate, epsilon=1e-3)

 # Checkpoint callback to specify options for the returned Keras model

 ckpt_callback = BestModelCheckpoint(monitor='val_loss', mode='auto',

save_freq='epoch')

 # Horovod: run training.

 store = Store.create(args.work_dir)

 backend = SparkBackend(num_proc=args.num_proc,

 stdout=sys.stdout, stderr=sys.stderr,

 prefix_output_with_timestamp=True)

 keras_estimator = hvd.KerasEstimator(backend=backend,

 store=store,

 model=model,

 optimizer=opt,

 loss='mae',

 metrics=[exp_rmspe],

 custom_objects=CUSTOM_OBJECTS,

 feature_cols=all_cols,

 label_cols=['Sales'],

 validation='Validation',

 batch_size=args.batch_size,

 epochs=args.epochs,

 verbose=2,

checkpoint_callback=ckpt_callback)

 keras_model =

keras_estimator.fit(train_df).setOutputCols(['Sales_output'])

 history = keras_model.getHistory()

 best_val_rmspe = min(history['val_exp_rmspe'])

 print('Best RMSPE: %f' % best_val_rmspe)

 # Save the trained model.

42

 keras_model.save(args.local_checkpoint_file)

 print('Written checkpoint to %s' % args.local_checkpoint_file)

 # ================ #

 # FINAL PREDICTION #

 # ================ #

 print('================')

 print('Final prediction')

 print('================')

 pred_df=keras_model.transform(test_df)

 pred_df.printSchema()

 pred_df.show(5)

 # Convert from log domain to real Sales numbers

 pred_df=pred_df.withColumn('Sales_pred', F.exp(pred_df.Sales_output))

 submission_df = pred_df.select(pred_df.Id.cast(T.IntegerType()),

pred_df.Sales_pred).toPandas()

 submission_df.sort_values(by=['Id']).to_csv(args.local_submission_csv,

index=False)

 print('Saved predictions to %s' % args.local_submission_csv)

 spark.stop()

Das dritte Skript ist run_classification_criteo_spark.py .

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sql import SparkSession, SQLContext, Row, DataFrame

from pyspark.mllib import linalg as mllib_linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector

from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as

mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD

from pyspark.ml import linalg as ml_linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp # exp(-t) = e^-t

43

from operator import add

from pyspark.sql.functions import udf, split, lit

from pyspark.sql.functions import size, sum as sqlsum

import pyspark.sql.functions as F

import pyspark.sql.types as T

from pyspark.sql.types import ArrayType, StructType, StructField,

LongType, StringType, IntegerType, FloatType

from pyspark.sql.functions import explode, col, log, when

from collections import defaultdict

import pandas as pd

import pyspark.pandas as ps

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.models import DeepFM

from deepctr.feature_column import SparseFeat, DenseFeat,

get_feature_names

spark = SparkSession.builder \

 .master("yarn") \

 .appName("deep_ctr_classification") \

 .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

 .config("spark.executor.cores", "1") \

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead', '1500') \

 .config('spark.driver.memoryOverhead', '1500') \

 .config("spark.sql.shuffle.partitions", "480") \

 .config("spark.sql.execution.arrow.enabled", "true") \

 .config("spark.driver.maxResultSize", "50gb") \

 .getOrCreate()

spark.conf.set("spark.sql.execution.arrow.enabled", "true") # deprecated

print("Apache Spark version:")

print(spark.version)

sc = spark.sparkContext

sqlContext = SQLContext(sc)

parser = argparse.ArgumentParser(description='Spark DCN CTR Prediction

Example',

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

 help='location of data on local filesystem (prefixed

with file://) or on HDFS')

def process_input_file(file_name, sparse_feat, dense_feat):

 # Need this preprocessing to turn Criteo raw file into CSV:

 print("START processing input file...")

 # only convert the file ONCE

44

 # sample = open(file_name)

 # sample = '\n'.join([str(x.replace('\n', '').replace('\t', ',')) for

x in sample])

 # # Add header in data file and save as CSV

 # header = ','.join(str(x) for x in (['label'] + dense_feat +

sparse_feat))

 # with open('/sparkdemo/tr-4570-data/ctr_train.csv', mode='w',

encoding="utf-8") as f:

 # f.write(header + '\n' + sample)

 # f.close()

 # print("Raw training file processed and saved as CSV: ", f.name)

 raw_df = sqlContext.read.option("header", True).csv(file_name)

 raw_df.show(5, False)

 raw_df.printSchema()

 # convert columns I1 to I13 from string to integers

 conv_df = raw_df.select(col('label').cast("double"),

 *(col(i).cast("float").alias(i) for i in

raw_df.columns if i in dense_feat),

 *(col(c) for c in raw_df.columns if c in

sparse_feat))

 print("Schema of raw_df with integer columns type changed:")

 conv_df.printSchema()

 # result_pdf = conv_df.select("*").toPandas()

 tmp_df = conv_df.na.fill(0, dense_feat)

 result_df = tmp_df.na.fill('-1', sparse_feat)

 result_df.show()

 return result_df

if __name__ == "__main__":

 args = parser.parse_args()

 # Pandas read CSV

 # data = pd.read_csv('%s/criteo_sample.txt' % args.data_dir)

 # print("Obtained Pandas df.")

 dense_features = ['I' + str(i) for i in range(1, 14)]

 sparse_features = ['C' + str(i) for i in range(1, 27)]

 # Spark read CSV

 # process_input_file('%s/train.txt' % args.data_dir, sparse_features,

dense_features) # run only ONCE

 spark_df = process_input_file('%s/data.txt' % args.data_dir,

sparse_features, dense_features) # sample data

 # spark_df = process_input_file('%s/ctr_train.csv' % args.data_dir,

sparse_features, dense_features)

 print("Obtained Spark df and filled in missing features.")

 data = spark_df

 # Pandas

 #data[sparse_features] = data[sparse_features].fillna('-1',)

 #data[dense_features] = data[dense_features].fillna(0,)

45

 target = ['label']

 label_npa = data.select("label").toPandas().to_numpy()

 print("label numPy array has length = ", len(label_npa)) # 45,840,617

w/ 11GB dataset

 label_npa.ravel()

 label_npa.reshape(len(label_npa),)

 # 1.Label Encoding for sparse features,and do simple Transformation

for dense features

 print("Before LabelEncoder():")

 data.printSchema() # label: float (nullable = true)

 for feat in sparse_features:

 lbe = LabelEncoder()

 tmp_pdf = data.select(feat).toPandas().to_numpy()

 tmp_ndarray = lbe.fit_transform(tmp_pdf)

 print("After LabelEncoder(), tmp_ndarray[0] =", tmp_ndarray[0])

 # print("Data tmp PDF after lbe transformation, the output ndarray

has length = ", len(tmp_ndarray)) # 45,840,617 for 11GB dataset

 tmp_ndarray.ravel()

 tmp_ndarray.reshape(len(tmp_ndarray),)

 out_ndarray = np.column_stack([label_npa, tmp_ndarray])

 pdf = pd.DataFrame(out_ndarray, columns=['label', feat])

 s_df = spark.createDataFrame(pdf)

 s_df.printSchema() # label: double (nullable = true)

 print("Before joining data df with s_df, s_df example rows:")

 s_df.show(1, False)

 data = data.drop(feat).join(s_df, 'label').drop('label')

 print("After LabelEncoder(), data df example rows:")

 data.show(1, False)

 print("Finished processing sparse_features: ", feat)

 print("Data DF after label encoding: ")

 data.show()

 data.printSchema()

 mms = MinMaxScaler(feature_range=(0, 1))

 # data[dense_features] = mms.fit_transform(data[dense_features]) # for

Pandas df

 tmp_pdf = data.select(dense_features).toPandas().to_numpy()

 tmp_ndarray = mms.fit_transform(tmp_pdf)

 tmp_ndarray.ravel()

 tmp_ndarray.reshape(len(tmp_ndarray), len(tmp_ndarray[0]))

 out_ndarray = np.column_stack([label_npa, tmp_ndarray])

 pdf = pd.DataFrame(out_ndarray, columns=['label'] + dense_features)

 s_df = spark.createDataFrame(pdf)

 s_df.printSchema()

 data.drop(*dense_features).join(s_df, 'label').drop('label')

 print("Finished processing dense_features: ", dense_features)

 print("Data DF after MinMaxScaler: ")

46

 data.show()

 # 2.count #unique features for each sparse field,and record dense

feature field name

 fixlen_feature_columns = [SparseFeat(feat,

vocabulary_size=data.select(feat).distinct().count() + 1, embedding_dim=4)

 for i, feat in enumerate(sparse_features)] +

\

 [DenseFeat(feat, 1,) for feat in

dense_features]

 dnn_feature_columns = fixlen_feature_columns

 linear_feature_columns = fixlen_feature_columns

 feature_names = get_feature_names(linear_feature_columns +

dnn_feature_columns)

 # 3.generate input data for model

 # train, test = train_test_split(data.toPandas(), test_size=0.2,

random_state=2020) # Pandas; might hang for 11GB data

 train, test = data.randomSplit(weights=[0.8, 0.2], seed=200)

 print("Training dataset size = ", train.count())

 print("Testing dataset size = ", test.count())

 # Pandas:

 # train_model_input = {name: train[name] for name in feature_names}

 # test_model_input = {name: test[name] for name in feature_names}

 # Spark DF:

 train_model_input = {}

 test_model_input = {}

 for name in feature_names:

 if name.startswith('I'):

 tr_pdf = train.select(name).toPandas()

 train_model_input[name] = pd.to_numeric(tr_pdf[name])

 ts_pdf = test.select(name).toPandas()

 test_model_input[name] = pd.to_numeric(ts_pdf[name])

 # 4.Define Model,train,predict and evaluate

 model = DeepFM(linear_feature_columns, dnn_feature_columns,

task='binary')

 model.compile("adam", "binary_crossentropy",

 metrics=['binary_crossentropy'],)

 lb_pdf = train.select(target).toPandas()

 history = model.fit(train_model_input,

pd.to_numeric(lb_pdf['label']).values,

 batch_size=256, epochs=10, verbose=2,

validation_split=0.2,)

 pred_ans = model.predict(test_model_input, batch_size=256)

 print("test LogLoss",

round(log_loss(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

47

 print("test AUC",

round(roc_auc_score(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

Abschluss

In diesem Dokument besprechen wir die Apache Spark-Architektur, Anwendungsfälle von
Kunden und das NetApp -Speicherportfolio im Zusammenhang mit Big Data, moderner
Analytik sowie KI, ML und DL. In unseren Leistungsvalidierungstests auf Basis
branchenüblicher Benchmarking-Tools und der Kundennachfrage zeigten die NetApp
Spark-Lösungen eine höhere Leistung als native Hadoop-Systeme. Eine Kombination
aus den in diesem Bericht vorgestellten Anwendungsfällen und Leistungsergebnissen
von Kunden kann Ihnen bei der Auswahl einer geeigneten Spark-Lösung für Ihre
Bereitstellung helfen.

Wo Sie weitere Informationen finden

Die folgenden Referenzen wurden in diesem TR verwendet:

• Apache Spark-Architektur und -Komponenten

"http://spark.apache.org/docs/latest/cluster-overview.html"

• Anwendungsfälle für Apache Spark

"https://www.qubole.com/blog/big-data/apache-spark-use-cases/"

• Spark NLP

"https://www.johnsnowlabs.com/spark-nlp/"

• BERT

"https://arxiv.org/abs/1810.04805"

• Tiefes und netzwerkübergreifendes Netzwerk für Anzeigenklickvorhersagen

"https://arxiv.org/abs/1708.05123"

• FlexGroup

https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf

• Streaming-ETL

"https://www.infoq.com/articles/apache-spark-streaming"

• NetApp E-Series-Lösungen für Hadoop

"https://www.netapp.com/media/16420-tr-3969.pdf"

48

http://spark.apache.org/docs/latest/cluster-overview.html
https://www.qubole.com/blog/big-data/apache-spark-use-cases/
https://www.johnsnowlabs.com/spark-nlp/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1708.05123
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
https://www.infoq.com/articles/apache-spark-streaming
https://www.netapp.com/media/16420-tr-3969.pdf

• Moderne Datenanalyselösungen von NetApp

"Datenanalyselösungen"

• SnapMirror

"https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html"

• XCP

https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US

• BlueXP Kopieren und Synchronisieren

"https://cloud.netapp.com/cloud-sync-service"

• DataOps-Toolkit

"https://github.com/NetApp/netapp-dataops-toolkit"

49

https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/index.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service
https://github.com/NetApp/netapp-dataops-toolkit

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

50

http://www.netapp.com/TM\

	NetApp Storage-Lösungen für Apache Spark : NetApp artificial intelligence solutions
	Inhalt
	NetApp Storage-Lösungen für Apache Spark
	TR-4570: NetApp -Speicherlösungen für Apache Spark: Architektur, Anwendungsfälle und Leistungsergebnisse
	Kundenherausforderungen
	Warum NetApp?

	Zielgruppe
	Lösungstechnologie
	Übersicht über die NetApp Spark-Lösungen
	Zusammenfassung des Anwendungsfalls
	Streaming-Daten
	Maschinelles Lernen
	Tiefes Lernen
	Interaktive Analyse
	Empfehlungssystem
	Verarbeitung natürlicher Sprache

	Wichtige Anwendungsfälle und Architekturen für KI, ML und DL
	Spark NLP-Pipelines und verteilte TensorFlow-Inferenz
	Horovod verteiltes Training
	Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage
	Zur Validierung verwendete Architekturen

	Testergebnisse
	Finanzstimmungsanalyse
	Verteiltes Training mit Horovod-Leistung
	Deep-Learning-Modelle für die CTR-Vorhersageleistung

	Hybrid-Cloud-Lösung
	Python-Skripte für jeden wichtigen Anwendungsfall
	Abschluss
	Wo Sie weitere Informationen finden

