NetApp Storage-Losungen fur Apache
Spark
NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/apache-
spark-solution-overview.html on February 12, 2026. Always check docs.netapp.com for the latest.

Inhalt

NetApp Storage-Lésungen fir Apache Spark
TR-4570: NetApp -Speicherlésungen fir Apache Spark: Architektur, Anwendungsfalle und

Leistungsergebnisse
Kundenherausforderungen
Warum NetApp?
Zielgruppe
Lésungstechnologie
Ubersicht tiber die NetApp Spark-Lésungen
Zusammenfassung des Anwendungsfalls
Streaming-Daten
Maschinelles Lernen
Tiefes Lernen
Interaktive Analyse
Empfehlungssystem
Verarbeitung natlrlicher Sprache
Wichtige Anwendungsfalle und Architekturen fir KI, ML und DL
Spark NLP-Pipelines und verteilte TensorFlow-Inferenz
Horovod verteiltes Training
Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage
Zur Validierung verwendete Architekturen
Testergebnisse
Finanzstimmungsanalyse
Verteiltes Training mit Horovod-Leistung
Deep-Learning-Modelle fiir die CTR-Vorhersageleistung
Hybrid-Cloud-L&sung
Python-Skripte fur jeden wichtigen Anwendungsfall
Abschluss
Wo Sie weitere Informationen finden

0 OO AN =

10
10
11
11
11
11
12
12
13
14
14
16
17
18
21
24
28
30
48
48

NetApp Storage-Losungen fur Apache Spark

TR-4570: NetApp -Speicherlosungen fur Apache Spark:
Architektur, Anwendungsfalle und Leistungsergebnisse

Rick Huang, Karthikeyan Nagalingam, NetApp

Der Schwerpunkt dieses Dokuments liegt auf der Apache Spark-Architektur,
Anwendungsfallen von Kunden und dem NetApp -Speicherportfolio im Zusammenhang
mit Big Data-Analysen und kunstlicher Intelligenz (Kl). Daruber hinaus werden
verschiedene Testergebnisse prasentiert, bei denen branchenubliche Kl-, Machine-
Learning- (ML) und Deep-Learning- (DL) Tools mit einem typischen Hadoop-System
verglichen wurden, sodass Sie die geeignete Spark-Losung auswahlen kénnen. Zu
Beginn bendtigen Sie eine Spark-Architektur, entsprechende Komponenten und zwei
Bereitstellungsmodi (Cluster und Client).

Dieses Dokument enthalt auRerdem Anwendungsfalle von Kunden zur Losung von Konfigurationsproblemen
und bietet einen Uberblick tiber das NetApp -Speicherportfolio, das fiir Big Data-Analysen sowie KI, ML und
DL mit Spark relevant ist. Abschliel3end prasentieren wir Testergebnisse aus Spark-spezifischen
Anwendungsfallen und dem NetApp Spark-Lésungsportfolio.

Kundenherausforderungen

Dieser Abschnitt konzentriert sich auf die Herausforderungen fiir Kunden im Zusammenhang mit Big Data
Analytics und KI/ML/DL in Datenwachstumsbranchen wie Einzelhandel, digitales Marketing, Bankwesen,
diskrete Fertigung, Prozessfertigung, Behdrden und professionelle Dienstleistungen.

Unvorhersehbare Leistung

Bei herkémmlichen Hadoop-Bereitstellungen wird normalerweise Standardhardware verwendet. Um die
Leistung zu verbessern, missen Sie das Netzwerk, das Betriebssystem, den Hadoop-Cluster,
Okosystemkomponenten wie Spark und die Hardware optimieren. Selbst wenn Sie jede Ebene optimieren,
kann es schwierig sein, das gewunschte Leistungsniveau zu erreichen, da Hadoop auf Standardhardware
ausgefuhrt wird, die nicht fiir hohe Leistung in Ihrer Umgebung ausgelegt ist.

Medien- und Knotenfehler

Selbst unter normalen Bedingungen ist Standardhardware anfallig fiir Ausfalle. Wenn eine Festplatte auf einem
Datenknoten ausfallt, betrachtet der Hadoop-Master diesen Knoten standardmagig als fehlerhaft.
Anschliel3end werden bestimmte Daten von diesem Knoten Uber das Netzwerk von Replikaten auf einen
fehlerfreien Knoten kopiert. Dieser Prozess verlangsamt die Netzwerkpakete fiir alle Hadoop-Jobs. Der Cluster
muss die Daten dann erneut zurlickkopieren und die Gberreplizierten Daten entfernen, wenn der fehlerhafte
Knoten wieder in einen fehlerfreien Zustand zurtickkehrt.

Hadoop-Anbieterbindung

Hadoop-Distributoren verfligen Uber ihre eigene Hadoop-Distribution mit eigener Versionierung, wodurch der
Kunde an diese Distributionen gebunden ist. Viele Kunden benétigen jedoch Unterstlitzung fir In-Memory-
Analysen, die den Kunden nicht an bestimmte Hadoop-Distributionen bindet. Sie missen die Freiheit haben,
die Verteilung zu andern und trotzdem ihre Analysen mitzunehmen.

Fehlende Unterstiitzung fiir mehr als eine Sprache

Kunden bendtigen zur Ausfiihrung ihrer Aufgaben haufig zusatzlich zu MapReduce-Java-Programmen
Unterstitzung fur mehrere Sprachen. Optionen wie SQL und Skripte bieten mehr Flexibilitat beim Erhalten von
Antworten, mehr Optionen zum Organisieren und Abrufen von Daten und schnellere Moglichkeiten zum
Verschieben von Daten in ein Analyseframework.

Schwierigkeit der Verwendung

Seit einiger Zeit beschweren sich Leute, dass Hadoop schwierig zu verwenden sei. Obwohl Hadoop mit jeder
neuen Version einfacher und leistungsfahiger geworden ist, halt sich diese Kritik hartnackig. Hadoop erfordert,
dass Sie die Programmiermuster von Java und MapReduce verstehen, was fir Datenbankadministratoren und
Personen mit herkdbmmlichen Skriptkenntnissen eine Herausforderung darstellt.

Komplizierte Frameworks und Tools

Kl-Teams in Unternehmen stehen vor zahlreichen Herausforderungen. Selbst mit Expertenwissen im Bereich
Data Science lassen sich Tools und Frameworks fur unterschiedliche Bereitstellungsdkosysteme und
Anwendungen maoglicherweise nicht einfach von einem zum anderen Ubertragen. Eine Data-Science-Plattform
sollte sich nahtlos in entsprechende Big-Data-Plattformen integrieren lassen, die auf Spark basieren, und
dabei einfache Datenbewegungen, wiederverwendbare Modelle, sofort einsatzbereiten Code und Tools bieten,
die Best Practices fur das Prototyping, Validieren, Versionieren, Teilen, Wiederverwenden und schnelle
Bereitstellen von Modellen in der Produktion unterstitzen.

Warum NetApp?

NetApp kann Ihr Spark-Erlebnis auf folgende Weise verbessern:

* Der direkte NetApp NFS-Zugriff (siehe Abbildung unten) ermdglicht es Kunden, Big-Data-Analysejobs auf
ihren vorhandenen oder neuen NFSv3- oder NFSv4-Daten auszufiihren, ohne die Daten zu verschieben
oder zu kopieren. Es verhindert mehrere Kopien der Daten und macht die Synchronisierung der Daten mit
einer Quelle Uberflissig.

« Effizientere Speicherung und weniger Serverreplikation. Beispielsweise erfordert die NetApp E-Series
Hadoop-L6sung zwei statt drei Replikate der Daten, und die FAS Hadoop-L6sung erfordert eine
Datenquelle, jedoch keine Replikation oder Kopien der Daten. NetApp -Speicherlésungen erzeugen
aullerdem weniger Server-zu-Server-Verkehr.

» Besseres Verhalten von Hadoop-Jobs und Clustern bei Laufwerk- und Knotenausfallen.

» Bessere Datenaufnahmeleistung.

Apache Spark

|
cluster Apache Spark cluster)

F 3

(NetApp NFS direct access |

v

| NetApp NFS direct access ‘

Configuration 1: NFS as primary storage Configuration 2: HDFS and NFS in single Spark cluster

Im Finanz- und Gesundheitssektor beispielsweise muss die Datentbertragung von einem Ort zum anderen
gesetzlichen Verpflichtungen entsprechen, was keine leichte Aufgabe ist. In diesem Szenario analysiert der
NetApp NFS-Direktzugriff die Finanz- und Gesundheitsdaten von ihrem urspriinglichen Speicherort aus. Ein
weiterer wichtiger Vorteil besteht darin, dass die Verwendung des direkten NetApp NFS-Zugriffs den Schutz
von Hadoop-Daten durch die Verwendung nativer Hadoop-Befehle vereinfacht und Datenschutz-Workflows mit
dem umfangreichen Datenverwaltungsportfolio von NetApp ermdglicht.

Der direkte NetApp NFS-Zugriff bietet zwei Arten von Bereitstellungsoptionen fur Hadoop/Spark-Cluster:

» Standardmafig verwenden Hadoop- oder Spark-Cluster das Hadoop Distributed File System (HDFS) zur
Datenspeicherung und als Standarddateisystem. Der direkte NetApp NFS-Zugriff kann das Standard-
HDFS durch NFS-Speicher als Standarddateisystem ersetzen und so eine direkte Analyse von NFS-Daten
ermoglichen.

* In einer weiteren Bereitstellungsoption unterstitzt der direkte NetApp NFS-Zugriff die Konfiguration von
NFS als zusatzlichen Speicher zusammen mit HDFS in einem einzelnen Hadoop- oder Spark-Cluster. In
diesem Fall kann der Kunde Daten Gber NFS-Exporte freigeben und zusammen mit HDFS-Daten vom
selben Cluster aus darauf zugreifen.

Zu den wichtigsten Vorteilen des NetApp NFS-Direktzugriffs zahlen die folgenden:
* Analysieren der Daten von ihrem aktuellen Standort aus, wodurch die zeit- und leistungsintensive Aufgabe
des Verschiebens von Analysedaten in eine Hadoop-Infrastruktur wie HDFS vermieden wird.

» Reduzierung der Anzahl der Replikate von drei auf eins.

* Ermoglicht Benutzern, Rechenleistung und Speicher zu entkoppeln, um sie unabhangig voneinander zu
skalieren.

* Bietet Unternehmensdatenschutz durch Nutzung der umfassenden Datenverwaltungsfunktionen von
ONTAP.

* Zertifizierung mit der Hortonworks-Datenplattform.

» Ermdglicht die Bereitstellung hybrider Datenanalysen.

* Verklrzung der Sicherungszeit durch Nutzung der dynamischen Multithread-Funktion.

Sehen"TR-4657: NetApp Hybrid Cloud-Datenlésungen — Spark und Hadoop basierend auf
Kundenanwendungsfallen" zum Sichern von Hadoop-Daten, zur Sicherung und Notfallwiederherstellung von
der Cloud vor Ort, zum Aktivieren von DevTest auf vorhandenen Hadoop-Daten, zum Datenschutz und zur
Multicloud-Konnektivitat sowie zum Beschleunigen von Analyse-Workloads.

In den folgenden Abschnitten werden Speicherfunktionen beschrieben, die flir Spark-Kunden wichtig sind.

Speicher-Tiering

Mit Hadoop Storage Tiering kénnen Sie Dateien gemal einer Speicherrichtlinie in verschiedenen
Speichertypen speichern. Zu den Speichertypen gehéren hot , cold, warm, all ssd, one ssd, Und
lazy persist.

Wir haben die Validierung der Hadoop-Speicherschichtung auf einem NetApp AFF Speichercontroller und
einem E-Series-Speichercontroller mit SSD- und SAS-Laufwerken mit unterschiedlichen Speicherrichtlinien
durchgeflhrt. Der Spark-Cluster mit AFF-A800 verflgt Uber vier Compute-Worker-Knoten, wahrend der Cluster
mit E-Series acht hat. Dabei geht es hauptsachlich darum, die Leistung von Solid-State-Laufwerken (SSDs)
mit der von Festplatten (HDDs) zu vergleichen.

Die folgende Abbildung zeigt die Leistung von NetApp -Lésungen fiir eine Hadoop-SSD.

Time to Sort 1 TB of Data

00:00.995

TeraSort
18:52.670
00:17.750
TeraGen
(04:38.000
00:00.000 02:52.800 05:45.600 08:38.400 11:31.200 14:24.000 17:16.800 20:03,600

Elapsed Time {mm:ss)
mAFF mE-Series

* Die NL-SAS-Basiskonfiguration verwendete acht Rechenknoten und 96 NL-SAS-Laufwerke. Diese
Konfiguration generierte 1 TB Daten in 4 Minuten und 38 Sekunden. Sehen "TR-3969 NetApp E-Series-
Losung fur Hadoop" fur Details zur Cluster- und Speicherkonfiguration.

» Mit TeraGen generierte die SSD-Konfiguration 1 TB Daten 15,66-mal schneller als die NL-SAS-
Konfiguration. Dartber hinaus verwendete die SSD-Konfiguration nur die Halfte der Rechenknoten und die
Halfte der Festplattenlaufwerke (insgesamt 24 SSD-Laufwerke). Basierend auf der Zeit, die fir die
Auftragserledigung bendtigt wurde, war es fast doppelt so schnell wie die NL-SAS-Konfiguration.

* Mit TeraSort sortierte die SSD-Konfiguration 1 TB Daten 1138,36-mal schneller als die NL-SAS-
Konfiguration. Dartber hinaus verwendete die SSD-Konfiguration nur die Halfte der Rechenknoten und die

hdcs-sh-solution-overview.html
hdcs-sh-solution-overview.html
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf

Halfte der Festplattenlaufwerke (insgesamt 24 SSD-Laufwerke). Daher war es pro Laufwerk ungefahr
dreimal schneller als die NL-SAS-Konfiguration.

* Das Fazit ist, dass die Umstellung von rotierenden Festplatten auf reine Flash-Speicher die Leistung
verbessert. Die Anzahl der Rechenknoten war nicht der Engpass. Mit dem All-Flash-Speicher von NetApp
I&sst sich die Laufzeitleistung gut skalieren.

* Mit NFS waren die Daten funktional gleichbedeutend mit einer gemeinsamen Blindelung, wodurch die
Anzahl der Rechenknoten je nach Arbeitslast reduziert werden kann. Die Benutzer des Apache Spark-
Clusters missen die Daten nicht manuell neu ausbalancieren, wenn sie die Anzahl der Compute-Knoten
andern.

Leistungsskalierung — Scale-Out

Wenn Sie mehr Rechenleistung von einem Hadoop-Cluster in einer AFF Lésung bendtigen, kénnen Sie
Datenknoten mit einer entsprechenden Anzahl von Speichercontrollern hinzufligen. NetApp empfiehlt, mit vier
Datenknoten pro Speichercontroller-Array zu beginnen und die Anzahl je nach Arbeitslastmerkmalen auf acht
Datenknoten pro Speichercontroller zu erhéhen.

AFF und FAS eignen sich perfekt fiir In-Place-Analysen. Basierend auf den Rechenanforderungen kénnen Sie
Knotenmanager hinzufiigen und unterbrechungsfreie Vorgange ermdéglichen Ihnen, bei Bedarf und ohne
Ausfallzeiten einen Speichercontroller hinzuzufiigen. Wir bieten umfangreiche Funktionen mit AFF und FAS,
wie z. B. NVME-Medienunterstutzung, garantierte Effizienz, Datenreduzierung, QOS, pradiktive Analysen,
Cloud-Tiering, Replikation, Cloud-Bereitstellung und Sicherheit. Um Kunden bei der Erflllung ihrer
Anforderungen zu unterstitzen, bietet NetApp Funktionen wie Dateisystemanalyse, Kontingente und On-Box-
Lastausgleich ohne zusatzliche Lizenzkosten. NetApp bietet eine bessere Leistung bei der Anzahl
gleichzeitiger Jobs, eine geringere Latenz, einfachere Vorgange und einen hdheren Durchsatz in Gigabyte pro
Sekunde als unsere Wettbewerber. Darlber hinaus lauft NetApp Cloud Volumes ONTAP auf allen drei grof3en
Cloud-Anbietern.

Leistungsskalierung — Hochskalieren

Mithilfe der Scale-up-Funktionen konnen Sie Festplattenlaufwerke zu AFF, FAS und E-Series-Systemen
hinzufiigen, wenn Sie zusatzliche Speicherkapazitat benétigen. Mit Cloud Volumes ONTAP ist die Skalierung
des Speichers auf PB-Ebene eine Kombination aus zwei Faktoren: der Auslagerung selten verwendeter Daten
aus dem Blockspeicher in den Objektspeicher und dem Stapeln von Cloud Volumes ONTAP -Lizenzen ohne
zusatzliche Rechenleistung.

Mehrere Protokolle

NetApp -Systeme unterstitzen die meisten Protokolle fir Hadoop-Bereitstellungen, einschliellich SAS, iSCSI,
FCP, InfiniBand und NFS.

Operative und unterstiitzte Losungen

Die in diesem Dokument beschriebenen Hadoop-Lésungen werden von NetApp unterstutzt. Diese Losungen
sind auch bei den wichtigsten Hadoop-Distributoren zertifiziert. Weitere Informationen finden Sie im
"Hortonworks" Site und die Cloudera "Zertifizierung" Und "Partner" Websites.

Zielgruppe

Die Welt der Analytik und Datenwissenschaft beruhrt mehrere Disziplinen in IT und
Wirtschaft:

http://hortonworks.com/partner/netapp/
http://www.cloudera.com/partners/partners-listing.html?q=netapp
http://www.cloudera.com/partners/solutions/netapp.html

» Der Datenwissenschaftler bendtigt die Flexibilitat, die Tools und Bibliotheken seiner Wahl zu verwenden.
 Der Dateningenieur muss wissen, wie die Daten flieRen und wo sie sich befinden.

» Ein DevOps-Ingenieur bendtigt die Tools, um neue Kl- und ML-Anwendungen in seine Cl- und CD-
Pipelines zu integrieren.

* Cloud-Administratoren und -Architekten missen in der Lage sein, Hybrid-Cloud-Ressourcen einzurichten
und zu verwalten.

» Geschaftsanwender mdchten Zugriff auf Analyse-, Kl-, ML- und DL-Anwendungen haben.

In diesem technischen Bericht beschreiben wir, wie NetApp AFF, E-Series, StorageGRID, NFS-Direktzugriff,
Apache Spark, Horovod und Keras jeder dieser Rollen dabei helfen, einen Mehrwert fir das Unternehmen zu
schaffen.

Losungstechnologie

Apache Spark ist ein beliebtes Programmierframework zum Schreiben von Hadoop-
Anwendungen, das direkt mit dem Hadoop Distributed File System (HDFS) arbeitet.
Spark ist produktionsbereit, unterstutzt die Verarbeitung von Streaming-Daten und ist
schneller als MapReduce. Spark verfugt Uber konfigurierbares In-Memory-Datencaching
fur effiziente Iteration und die Spark-Shell ist interaktiv zum Lernen und Erkunden von
Daten. Mit Spark konnen Sie Anwendungen in Python, Scala oder Java erstellen. Spark-
Anwendungen bestehen aus einem oder mehreren Jobs, die eine oder mehrere
Aufgaben haben.

Jede Spark-Anwendung verfluigt Gber einen Spark-Treiber. Im YARN-Client-Modus wird der Treiber lokal auf
dem Client ausgefiihrt. Im YARN-Cluster-Modus lauft der Treiber im Cluster auf dem Anwendungsmaster. Im
Clustermodus wird die Anwendung auch dann weiter ausgefiihrt, wenn die Verbindung zum Client getrennt
wird.

Yarn-Cluster Yarn-Client

YARN Container Client YARN Container

Spark Application Master > Spark Application Master

. > Spark Driver Spark Driver §
Client - n
Job

\ e NodeManager
Cluster Manager |‘I' _NodeManager : NodeManager
(Standalone / _1__ [/ NodeManager / _ Cluster Manager - NodeManager

Mesos / YARN) | (Standalone /

Mesos / YARN)

NodeManager

YARN Container

YARN Container

1 ; ———===
I | |

H I I
I 11 I ; I
I 11 I I
! i H I I

1
I N : Executor :
: Executor [|]

h I I
I 1 I I
I 11 I I
I 11 | |
I 11 | \
| H I Task I
| Task 11 : : -
I 1 I I
| Hi I -

1l
I i : !
I 1

- i H
‘.: | — =
H n
. M

Customer Data

A NetApp E/EF-Series NetApp FAS/AFF
NetApp E/EF-Series NetApp FAS/AFF

Es gibt drei Cluster-Manager:

» Eigensténdig. Dieser Manager ist Teil von Spark, wodurch die Einrichtung eines Clusters vereinfacht wird.

* Apache Mesos. Dies ist ein allgemeiner Cluster-Manager, der auch MapReduce und andere
Anwendungen ausflhrt.

* Hadoop YARN. Dies ist ein Ressourcenmanager in Hadoop 3.

Der widerstandsfahige verteilte Datensatz (RDD) ist die Hauptkomponente von Spark. RDD erstellt die
verlorenen und fehlenden Daten aus den im Speicher des Clusters gespeicherten Daten neu und speichert die
ursprunglichen Daten, die aus einer Datei stammen oder programmgesteuert erstellt werden. RDDs werden
aus Dateien, Daten im Speicher oder einem anderen RDD erstellt. Die Spark-Programmierung fihrt zwei
Vorgange aus: Transformation und Aktionen. Durch die Transformation wird ein neues RDD basierend auf
einem vorhandenen erstellt. Aktionen geben einen Wert aus einem RDD zurtick.

Transformationen und Aktionen gelten auch fir Spark-Datasets und DataFrames. Ein Dataset ist eine verteilte
Datensammlung, die die Vorteile von RDDs (starke Typisierung, Verwendung von Lambda-Funktionen) mit den
Vorteilen der optimierten Ausfihrungs-Engine von Spark SQL kombiniert. Ein Datensatz kann aus JVM-
Objekten erstellt und dann mithilfe funktionaler Transformationen (Map, FlatMap, Filter usw.) bearbeitet
werden. Ein DataFrame ist ein in benannte Spalten organisierter Datensatz. Es ist konzeptionell gleichwertig
mit einer Tabelle in einer relationalen Datenbank oder einem Datenrahmen in R/Python. DataFrames kénnen
aus einer Vielzahl von Quellen erstellt werden, beispielsweise strukturierten Datendateien, Tabellen in
Hive/HBase, externen Datenbanken vor Ort oder in der Cloud oder vorhandenen RDDs.

Spark-Anwendungen umfassen einen oder mehrere Spark-Jobs. Jobs fiihren Aufgaben in Executoren aus und
Executoren werden in YARN-Containern ausgefihrt. Jeder Executor wird in einem einzelnen Container
ausgefiihrt und Executoren existieren wahrend der gesamten Lebensdauer einer Anwendung. Ein Executor
wird nach dem Start der Anwendung fixiert und YARN andert die GrolRe des bereits zugewiesenen Containers
nicht. Ein Executor kann Aufgaben gleichzeitig auf Daten im Arbeitsspeicher ausfiihren.

Ubersicht liber die NetApp Spark-Lésungen

NetApp verfugt Gber drei Speicherportfolios: FAS/ AFF, E-Serie und Cloud Volumes
ONTAP. Wir haben AFF und die E-Serie mit ONTAP Speichersystem flur Hadoop-
Losungen mit Apache Spark validiert.

Das von NetApp betriebene Datengewebe integriert Datenverwaltungsdienste und Anwendungen (Bausteine)
fur Datenzugriff, -kontrolle, -schutz und -sicherheit, wie in der folgenden Abbildung dargestellit.

jSSSSSSsssssssssssss==s i -~ & Mjcrozaht
. ‘i amazon e ;
” webservices®
Apache Spark 4 \ | HEinsight f Databricks
cluster | Databricks o EMR 1\ HES

NFS

Express Route I Diatabricks

I

I

|

|

I

I

|

|

|

|

I

\ e .

i \
i ¢
1 - ! - Al E. i
1 ‘-'—':L \ e NES y
! by i o] r
! : Direct Connect ! e -

I / N .

I /

i r

I /

: y

I

I

|

|

I

I

I

Intercennect

Methpp SnapMirror®
- = o
EQUINIX

NetApp Private Storage

On premises

Zu den Bausteinen in der obigen Abbildung gehdren:

* * NetApp NFS-Direktzugriff.* Bietet den neuesten Hadoop- und Spark-Clustern direkten Zugriff auf NetApp
NFS-Volumes ohne zusatzliche Software- oder Treiberanforderungen.

* * NetApp Cloud Volumes ONTAP und Google Cloud NetApp Volumes.* Softwaredefinierter verbundener
Speicher basierend auf ONTAP , der in Amazon Web Services (AWS) oder Azure NetApp Files (ANF) in
Microsoft Azure-Clouddiensten ausgefihrt wird.

* * NetApp SnapMirror Technologie.* Bietet Datenschutzfunktionen zwischen lokalen und ONTAP Cloud-
oder NPS-Instanzen.

Cloud-Dienstanbieter. Zu diesen Anbietern gehéren AWS, Microsoft Azure, Google Cloud und IBM Cloud.

» PaaS. Cloudbasierte Analysedienste wie Amazon Elastic MapReduce (EMR) und Databricks in AWS sowie
Microsoft Azure HDInsight und Azure Databricks.

Die folgende Abbildung zeigt die Spark-Lésung mit NetApp Speicher.

AFF-A800 HA w/48x1.92t NVME Cisco 10GbE switch

I
4 % 10GbE ZEEmEEEmmmmmsmams

1 % 10 GbE per Node;
5 total for NFS direct
access

RHEL — Spark Cluster ~=---=-=-=--------------------

e o A e e i e e o . ——

Worker Nodes

1
I
I
I
]
]
I
I
I

Die ONTAP Spark-L6sung verwendet das NetApp NFS-Direktzugriffsprotokoll fir In-Place-Analysen und Ki-,
ML- und DL-Workflows unter Zugriff auf vorhandene Produktionsdaten. Fir Hadoop-Knoten verfiigbare
Produktionsdaten werden exportiert, um vor Ort analytische sowie Kl-, ML- und DL-Jobs auszufiihren. Sie
kénnen auf die zu verarbeitenden Daten in Hadoop-Knoten entweder mit oder ohne direkten NetApp NFS-
Zugriff zugreifen. In Spark mit dem Standalone- oder yarn Cluster-Manager kénnen Sie ein NFS-Volume
konfigurieren, indem Sie file://<target volume> . Wir haben drei Anwendungsfalle mit
unterschiedlichen Datensatzen validiert. Die Einzelheiten dieser Validierungen werden im Abschnitt
»lestergebnisse” vorgestellt. (xref)

Die folgende Abbildung zeigt die Speicherpositionierung von NetApp Apache Spark/Hadoop.

In-Place Analytics, AWML DL Workflows

Mew Scalable Deployment

& STORAGEQRID
HADODe 3 Jisdnes 16

¥ . ONTAR Smrage Contralier

L . .

T
Yarm
S =

- E-Series Sturage Alray
w' I T Wy S g . .

10GE

TEGbps SAG
cennsclions, |
oee por pode [

b
tmerned

Wir haben die einzigartigen Funktionen der E-Series Spark-Losung, der AFF/ FAS ONTAP Spark-Lésung und
der StorageGRID Spark-Lésung identifiziert und detaillierte Validierungen und Tests durchgefiihrt. Basierend
auf unseren Beobachtungen empfiehlt NetApp die E-Series-Lésung fir Greenfield-Installationen und neue
skalierbare Bereitstellungen sowie die AFF/ FAS -Losung fur In-Place-Analysen, Kl-, ML- und DL-Workloads
unter Verwendung vorhandener NFS-Daten und StorageGRID fiir Kl-, ML- und DL- und moderne
Datenanalysen, wenn Objektspeicher erforderlich ist.

User Jobs
Hadoop on NFS AFF/FAS Side by Side With E-Seriesand StorageGRID

v g . . 3 ’
MapReduce [MapReduce [! ' apReduce
— 1

STORAGEGRED

NetApp E-Series NetApp FAS NetApp E-Series AFF or FAS NetApp
(HDD, SSD) (HDD, S5D) (HDD, SSD) (HDD, S50) StorageGRID

Ein Data Lake ist ein Speicherrepository flr gro3e Datensatze in nativer Form, das fur Analyse-, Kl-, ML- und
DL-Aufgaben verwendet werden kann. Wir haben ein Data Lake-Repository fur die Spark-Lésungen E-Series,
AFF/ FAS und StorageGRID SG6060 erstellt. Das E-Series-System bietet HDFS-Zugriff auf den Hadoop
Spark-Cluster, wahrend auf vorhandene Produktionsdaten Gber das NFS-Direktzugriffsprotokoll auf den
Hadoop-Cluster zugegriffen wird. Fir Datensatze, die sich im Objektspeicher befinden, bietet NetApp
StorageGRID sicheren S3- und S3a-Zugriff.

Zusammenfassung des Anwendungsfalls

Auf dieser Seite werden die verschiedenen Bereiche beschrieben, in denen diese Losung
eingesetzt werden kann.

Streaming-Daten

Apache Spark kann Streaming-Daten verarbeiten, die fiir Streaming-Extract-, Transform- und Load-Prozesse
(ETL), Datenanreicherung, Auslésen von Ereigniserkennung und komplexe Sitzungsanalysen verwendet
werden:

« Streaming ETL. Daten werden kontinuierlich bereinigt und aggregiert, bevor sie in Datenspeicher
Ubertragen werden. Netflix verwendet Kafka- und Spark-Streaming, um eine Echtzeit-Ldsung fir Online-
Filmempfehlungen und Datenlberwachung zu erstellen, die taglich Milliarden von Ereignissen aus
verschiedenen Datenquellen verarbeiten kann. Traditionelles ETL flr die Stapelverarbeitung wird jedoch
anders behandelt. Diese Daten werden zuerst gelesen und dann in ein Datenbankformat konvertiert, bevor
sie in die Datenbank geschrieben werden.

» Datenanreicherung. Spark-Streaming reichert die Live-Daten mit statischen Daten an, um eine
Datenanalyse in Echtzeit zu ermoéglichen. Beispielsweise kdnnen Online-Werbetreibende personalisierte,
zielgerichtete Anzeigen schalten, die auf Informationen zum Kundenverhalten basieren.

* Ereigniserkennung auslésen. Mit Spark-Streaming kénnen Sie ungewodhnliches Verhalten, das auf
potenziell schwerwiegende Probleme hinweisen kénnte, schnell erkennen und darauf reagieren.
Finanzinstitute verwenden beispielsweise Trigger, um betrigerische Transaktionen zu erkennen und zu
stoppen, und Krankenhauser verwenden Trigger, um gefahrliche gesundheitliche Veranderungen anhand
der Vitalfunktionen eines Patienten zu erkennen.

+ Komplexe Sitzungsanalyse. Spark Streaming sammelt Ereignisse wie Benutzeraktivitadten nach der

10

Anmeldung bei einer Website oder Anwendung, die dann gruppiert und analysiert werden. Netflix nutzt
diese Funktion beispielsweise, um Filmempfehlungen in Echtzeit bereitzustellen.

Weitere Informationen zur Konfiguration von Streaming-Daten, zur Confluent Kafka-Verifizierung und zu
Leistungstests finden Sie unter"TR-4912: Best Practice-Richtlinien fir Confluent Kafka Tiered Storage mit
NetApp" .

Maschinelles Lernen

Das integrierte Spark-Framework unterstitzt Sie beim Ausfiihren wiederholter Abfragen von Datensatzen
mithilfe der Machine Learning-Bibliothek (MLIib). MLIib wird in Bereichen wie Clustering, Klassifizierung und
Dimensionsreduktion fur einige gangige Big-Data-Funktionen wie Predictive Intelligence,
Kundensegmentierung fir Marketingzwecke und Stimmungsanalyse verwendet. MLIlib wird in der
Netzwerksicherheit verwendet, um Datenpakete in Echtzeit auf Anzeichen boswilliger Aktivitaten zu
Uberprifen. Es hilft Sicherheitsanbietern, sich Uber neue Bedrohungen zu informieren, Hackern immer einen
Schritt voraus zu sein und gleichzeitig ihre Kunden in Echtzeit zu schitzen.

Tiefes Lernen

TensorFlow ist ein beliebtes Deep-Learning-Framework, das in der gesamten Branche verwendet wird.
TensorFlow unterstutzt das verteilte Training auf einem CPU- oder GPU-Cluster. Dieses verteilte Training
ermoglicht es Benutzern, es auf einer grolden Datenmenge mit vielen tiefen Schichten auszuftihren.

Wenn wir TensorFlow mit Apache Spark verwenden wollten, mussten wir bis vor Kurzem alle erforderlichen
ETL-Prozesse fir TensorFlow in PySpark durchflihren und dann die Daten in den Zwischenspeicher schreiben.
Diese Daten wirden dann flr den eigentlichen Trainingsprozess in den TensorFlow-Cluster geladen. Dieser
Workflow erforderte, dass der Benutzer zwei verschiedene Cluster verwaltete, einen flir ETL und einen flr das
verteilte Training von TensorFlow. Das Ausfiihren und Warten mehrerer Cluster war normalerweise mihsam
und zeitaufwandig.

DataFrames und RDD in friheren Spark-Versionen waren flr Deep Learning nicht gut geeignet, da der
wahlfreie Zugriff eingeschrankt war. In Spark 3.0 mit Project Hydrogen wird native Unterstiitzung flr die Deep-
Learning-Frameworks hinzugefligt. Dieser Ansatz ermdglicht eine nicht auf MapReduce basierende Planung
auf dem Spark-Cluster.

Interaktive Analyse

Apache Spark ist schnell genug, um explorative Abfragen ohne Sampling mit anderen Entwicklungssprachen
als Spark durchzufiihren, darunter SQL, R und Python. Spark verwendet Visualisierungstools, um komplexe
Daten zu verarbeiten und interaktiv zu visualisieren. Spark mit strukturiertem Streaming fuhrt interaktive
Abfragen flr Livedaten in der Webanalyse durch, die es lhnen ermdglichen, interaktive Abfragen fir die
aktuelle Sitzung eines Webbesuchers auszufihren.

Empfehlungssystem

Im Laufe der Jahre haben Empfehlungssysteme enorme Veranderungen in unser Leben gebracht, da
Unternehmen und Verbraucher auf dramatische Veranderungen beim Online-Shopping, der Online-
Unterhaltung und vielen anderen Branchen reagiert haben. Tatsachlich gehoren diese Systeme zu den
offensichtlichsten Erfolgsgeschichten der Kl in der Produktion. In vielen praktischen Anwendungsfallen werden
Empfehlungssysteme mit Konversations-Kl oder Chatbots kombiniert, die mit einem NLP-Backend verbunden
sind, um relevante Informationen zu erhalten und nitzliche Schlussfolgerungen zu ziehen.

Heutzutage setzen viele Einzelhandler auf neuere Geschaftsmodelle wie Online-Kauf und Abholung im
Geschaft, Abholung am Strallenrand, Self-Checkout, Scan-and-Go und mehr. Diese Modelle haben wahrend

11

confluent-kafka-introduction.html
confluent-kafka-introduction.html

der COVID-19-Pandemie an Bedeutung gewonnen, da sie das Einkaufen flir die Verbraucher sicherer und
bequemer machen. Kl ist fir diese wachsenden digitalen Trends von entscheidender Bedeutung, die vom
Verbraucherverhalten beeinflusst werden und umgekehrt. Um den wachsenden Anspriichen der Verbraucher
gerecht zu werden, das Kundenerlebnis zu verbessern, die Betriebseffizienz zu steigern und den Umsatz zu
steigern, unterstitzt NetApp seine Unternehmenskunden und Unternehmen dabei, mithilfe von Algorithmen fur
maschinelles Lernen und Deep Learning schnellere und prazisere Empfehlungssysteme zu entwickeln.

Es gibt mehrere gangige Techniken zum Bereitstellen von Empfehlungen, darunter kollaboratives Filtern,
inhaltsbasierte Systeme, das Deep Learning Recommender Model (DLRM) und Hybridtechniken. Kunden
nutzten PySpark zuvor, um kollaboratives Filtern zur Erstellung von Empfehlungssystemen zu implementieren.
Spark MLIib implementiert Alternating Least Squares (ALS) flr kollaboratives Filtern, einen in Unternehmen
vor dem Aufkommen von DLRM sehr beliebten Algorithmus.

Verarbeitung natirlicher Sprache

Konversations-KlI, die durch die Verarbeitung natirlicher Sprache (NLP) ermdéglicht wird, ist der Zweig der Kl,
der Computern bei der Kommunikation mit Menschen hilft. NLP ist in allen Branchen und vielen
Anwendungsfallen weit verbreitet, von intelligenten Assistenten und Chatbots bis hin zur Google-Suche und
Textvorhersage. Laut einer "Gartner" Prognosen zufolge werden bis 2022 70 % der Menschen taglich mit
Konversations-KI-Plattformen interagieren. Fir eine qualitativ hochwertige Konversation zwischen Mensch und
Maschine mussen die Antworten schnell, intelligent und natirlich klingen.

Kunden bendtigen groRe Datenmengen, um ihre NLP- und automatischen Spracherkennungsmodelle (ASR)
zu verarbeiten und zu trainieren. Sie missen aulerdem Daten zwischen Edge, Core und Cloud verschieben
und bendtigen die Fahigkeit, in Millisekunden Schlussfolgerungen zu ziehen, um eine natirliche
Kommunikation mit Menschen herzustellen. NetApp Al und Apache Spark sind eine ideale Kombination fir
Computing, Speicherung, Datenverarbeitung, Modelltraining, Feinabstimmung und Bereitstellung.

Die Stimmungsanalyse ist ein Forschungsgebiet innerhalb der NLP, in dem positive, negative oder neutrale
Stimmungen aus Texten extrahiert werden. Die Sentimentanalyse bietet vielfaltige Anwendungsfalle, von der
Ermittlung der Leistung von Supportcenter-Mitarbeitern in Gesprachen mit Anrufern bis hin zur Bereitstellung
geeigneter automatisierter Chatbot-Antworten. Es wurde auch verwendet, um den Aktienkurs eines
Unternehmens auf der Grundlage der Interaktionen zwischen Unternehmensvertretern und dem Publikum bei
vierteljahrlichen Telefonkonferenzen zu den Unternehmensergebnissen vorherzusagen. Dartber hinaus kann
mithilfe der Stimmungsanalyse die Meinung eines Kunden zu den Produkten, Dienstleistungen oder dem
Support der Marke ermittelt werden.

Wir nutzten die "Spark NLP" Bibliothek von "John Snow Labs" zum Laden vortrainierter Pipelines und
Bidirectional Encoder Representations from Transformers (BERT)-Modelle, einschlieRlich "Stimmung in den
Finanznachrichten" Und "FInBERT" , Durchfiihrung von Tokenisierung, Named Entity Recognition,
Modelltraining, Anpassung und Stimmungsanalyse im grofsen MaRstab. Spark NLP ist die einzige Open-
Source-NLP-Bibliothek in der Produktion, die hochmoderne Transformatoren wie BERT, ALBERT, ELECTRA,
XLNet, DistilBERT, RoBERTa, DeBERTa, XLM-RoBERTa, Longformer, ELMO, Universal Sentence Encoder,
Google T5, MarianMT und GPT2 bietet. Die Bibliothek funktioniert nicht nur in Python und R, sondern auch im
JVM-Okosystem (Java, Scala und Kotlin) im groRen MaRstab, indem sie Apache Spark nativ erweitert.

Wichtige Anwendungsfalle und Architekturen fur Kl, ML und
DL

Die wichtigsten Anwendungsfalle und Methoden fur Kl, ML und DL kdnnen in die
folgenden Abschnitte unterteilt werden:

12

https://www.forbes.com/sites/forbestechcouncil/2021/05/07/nice-chatbot-ing-with-you/?sh=7011eff571f4
https://www.johnsnowlabs.com/spark-nlp/
https://www.johnsnowlabs.com/
https://sparknlp.org/2023/01/12/classifierdl_bertwiki_finance_sentiment_pipeline_en.html
https://sparknlp.org/2023/01/12/classifierdl_bertwiki_finance_sentiment_pipeline_en.html
https://sparknlp.org/2022/04/11/bert_embeddings_finbert_pretrain_yiyanghkust_en_3_0.html

Spark NLP-Pipelines und verteilte TensorFlow-Inferenz

Die folgende Liste enthalt die beliebtesten Open-Source-NLP-Bibliotheken, die von der Data-Science-
Community in unterschiedlichen Entwicklungsstufen tibernommen wurden:

 "Toolkit fur naturliche Sprache (NLTK)" . Das komplette Toolkit fir alle NLP-Techniken. Es wird seit Anfang
der 2000er Jahre gepflegt.

« "TextBlob" . Eine benutzerfreundliche Python-API fir NLP-Tools, die auf NLTK und Pattern basiert.
» "Stanford Core NLP" . NLP-Dienste und -Pakete in Java, entwickelt von der Stanford NLP Group.

* "Gensim" . ,Topic Modelling for Humans® begann als Sammlung von Python-Skripten fiir das Projekt
,Czech Digital Mathematics Library*“.

* "SpaCy" . End-to-End-NLP-Workflows fiir die Industrie mit Python und Cython mit GPU-Beschleunigung fiir
Transformatoren.

« "Fasttext" . Eine kostenlose, leichtgewichtige Open-Source-NLP-Bibliothek zum Lernen von Wort-
Embeddings und zur Satzklassifizierung, die vom Al Research (FAIR)-Labor von Facebook erstellt wurde.

Spark NLP ist eine einzige, einheitliche Losung fur alle NLP-Aufgaben und -Anforderungen, die skalierbare,
leistungsstarke und hochprazise NLP-basierte Software flir echte Produktionsanwendungsfalle erméglicht. Es
nutzt Transferlernen und implementiert die neuesten hochmodernen Algorithmen und Modelle in der
Forschung und branchenubergreifend. Aufgrund der fehlenden vollstandigen Unterstitzung durch Spark fir die
oben genannten Bibliotheken wurde Spark NLP auf Basis von "Spark ML" um die Vorteile der universellen
verteilten In-Memory-Datenverarbeitungs-Engine von Spark als NLP-Bibliothek der Enterprise-Klasse fur
unternehmenskritische Produktionsablaufe zu nutzen. Seine Annotatoren nutzen regelbasierte Algorithmen,
maschinelles Lernen und TensorFlow, um Deep-Learning-Implementierungen zu unterstiitzen. Dies umfasst
gangige NLP-Aufgaben, einschlie3lich, aber nicht beschrankt auf Tokenisierung, Lemmatisierung, Stemming,
Part-of-Speech-Tagging, Named-Entity-Erkennung, Rechtschreibpriifung und Stimmungsanalyse.

Bidirectional Encoder Representations from Transformers (BERT) ist eine transformerbasierte maschinelle
Lerntechnik fr NLP. Es machte das Konzept des Vortrainings und der Feinabstimmung popular. Die
Transformer-Architektur in BERT stammt aus der maschinellen Ubersetzung, die langfristige Abhéngigkeiten
besser modelliert als auf rekurrenten neuronalen Netzwerken (RNN) basierende Sprachmodelle. Aul3erdem
wurde die Masked Language Modelling (MLM)-Aufgabe eingefihrt, bei der zuféllig 15 % aller Token maskiert
werden und das Modell sie vorhersagt, wodurch echte Bidirektionalitat ermoglicht wird.

Aufgrund der Fachsprache und des Mangels an gekennzeichneten Daten in diesem Bereich ist die Analyse
der Finanzstimmung eine Herausforderung. FinBERT, ein Sprachmodell basierend auf vortrainiertem BERT,
wurde domanenangepasst auf "Reuters TRC2" , ein Finanzkorpus, und mit gekennzeichneten Daten fein
abgestimmt ("Finanzielle PhraseBank") zur Klassifizierung der Finanzstimmung. Forscher extrahierten 4.500
Satze aus Nachrichtenartikeln mit Finanzbegriffen. AnschlieRend bewerteten 16 Experten und
Masterstudenten mit Finanzhintergrund die Satze als positiv, neutral und negativ. Wir haben einen End-to-End-
Spark-Workflow erstellt, um die Stimmung fir die Transkripte der Telefonkonferenzen zu den Top-10-
Gewinnzahlen der NASDAQ-Unternehmen von 2016 bis 2020 mithilfe von FInBERT und zwei weiteren
vortrainierten Pipelines zu analysieren. "Dokument DL erklaren") von Spark NLP.

Die zugrunde liegende Deep-Learning-Engine fiir Spark NLP ist TensorFlow, eine durchgéngige Open-Source-
Plattform fiir maschinelles Lernen, die eine einfache Modellerstellung, eine robuste ML-Produktion tberall und
leistungsstarke Experimente fur die Forschung ermdglicht. Daher, wenn wir unsere Pipelines in Spark
ausfihren yarn cluster Im Modus fihrten wir im Wesentlichen verteiltes TensorFlow mit Daten- und
Modellparallelisierung Uber einen Master- und mehrere Worker-Knoten sowie tUber einen auf dem Cluster
montierten Netzwerkspeicher aus.

13

https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://stanfordnlp.github.io/CoreNLP/
https://radimrehurek.com/gensim/
https://spacy.io/
https://fasttext.cc/
https://spark.apache.org/docs/latest/ml-guide.html
https://trec.nist.gov/data/reuters/reuters.html
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://nlp.johnsnowlabs.com/2020/03/19/explain_document_dl.html

Horovod verteiltes Training

Die zentrale Hadoop-Validierung fiir die MapReduce-bezogene Leistung wird mit TeraGen, TeraSort,
TeraValidate und DFSIO (Lesen und Schreiben) durchgefiihrt. Die Validierungsergebnisse von TeraGen und
TeraSort werden in "NetApp E-Series-Losung fur Hadoop" und im Abschnitt ,Storage Tiering“ fir AFF.

Aufgrund von Kundenanfragen betrachten wir das verteilte Training mit Spark als einen der wichtigsten der
verschiedenen Anwendungsfalle. In diesem Dokument haben wir die "Hovorod auf Spark" um die Spark-
Leistung mit lokalen, Cloud-nativen und Hybrid-Cloud-Lésungen von NetApp unter Verwendung von NetApp
All Flash FAS (AFF)-Speichercontrollern, Azure NetApp Files und StorageGRID zu validieren.

Das Horovod on Spark-Paket bietet einen praktischen Wrapper um Horovod, der die Ausfiihrung verteilter
Trainings-Workloads in Spark-Clustern vereinfacht und eine enge Modelldesignschleife ermdglicht, in der
Datenverarbeitung, Modelltraining und Modellbewertung alle in Spark erfolgen, wo sich die Trainings- und
Inferenzdaten befinden.

Es gibt zwei APls zum Ausflihren von Horovod auf Spark: eine Estimator-API auf hoher Ebene und eine Run-
API auf niedrigerer Ebene. Obwohl beide denselben zugrunde liegenden Mechanismus zum Starten von
Horovod auf Spark-Executoren verwenden, abstrahiert die Estimator-API die Datenverarbeitung, die
Modelltrainingsschleife, die Modellprifpunkte, die Metrikerfassung und das verteilte Training. Wir verwendeten
Horovod Spark Estimators, TensorFlow und Keras fir eine End-to-End-Datenaufbereitung und einen verteilten
Trainings-Workflow basierend auf dem "Kaggle Rossmann Store Sales" Wettbewerb.

Das Drehbuch keras spark horovod rossmann estimator.py finden Sie im Abschnitt"Python-Skripte
fur jeden wichtigen Anwendungsfall." Es besteht aus drei Teilen:

* Der erste Teil flihrt verschiedene Schritte zur Datenvorverarbeitung fiir einen ersten Satz von CSV-Dateien
durch, die von Kaggle bereitgestellt und von der Community gesammelt wurden. Die Eingabedaten werden
in einen Trainingssatz mit einem validation Teilmenge und ein Testdatensatz.

* Der zweite Teil definiert ein Keras Deep Neural Network (DNN)-Modell mit logarithmischer Sigmoid-
Aktivierungsfunktion und einem Adam-Optimierer und fihrt ein verteiltes Training des Modells mit Horovod
auf Spark durch.

* Der dritte Teil fuhrt eine Vorhersage fir den Testdatensatz durch, wobei das beste Modell verwendet wird,
das den mittleren absoluten Gesamtfehler des Validierungssatzes minimiert. Anschliel3end wird eine CSV-
Ausgabedatei erstellt.

Siehe den Abschnitt"Maschinelles Lernen” fur verschiedene Laufzeitvergleichsergebnisse.

Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage

Angesichts der jingsten Fortschritte bei ML-Plattformen und -Anwendungen richtet sich der Fokus nun stark
auf das Lernen im groRen Malstab. Die Klickrate (Click-Through-Rate, CTR) ist definiert als die
durchschnittliche Anzahl von Klicks pro hundert Online-Anzeigenimpressionen (ausgedrickt als Prozentsatz).
Es wird in zahlreichen Branchen und Anwendungsfallen, darunter digitales Marketing, Einzelhandel, E-
Commerce und Dienstleister, als Schlisselkennzahl eingesetzt. Weitere Einzelheiten zu den Anwendungen
von CTR und verteilten Trainingsleistungsergebnissen finden Sie im"Deep-Learning-Modelle fur die CTR-
Vorhersageleistung" Abschnitt.

In diesem technischen Bericht verwendeten wir eine Variante des "Criteo Terabyte Click Logs-Datensatz"
(siehe TR-4904) fir verteiltes Deep Learning mit mehreren Workern unter Verwendung von Keras zum
Erstellen eines Spark-Workflows mit Deep- und Cross-Network-Modellen (DCN), wobei die Leistung
hinsichtlich der Log-Loss-Fehlerfunktion mit einem Basismodell der logistischen Regression von Spark ML
verglichen wird. DCN erfasst effizient effektive Merkmalsinteraktionen begrenzten Grades, lernt hochgradig
nichtlineare Interaktionen, erfordert keine manuelle Merkmalsentwicklung oder umfassende Suche und weist

14

https://www.netapp.com/pdf.html?item=/media/16420-tr-3969pdf.pdf
https://horovod.readthedocs.io/en/stable/spark_include.html
https://www.kaggle.com/c/rossmann-store-sales
spark-python-scripts.html
spark-python-scripts.html
apache-spark-use-cases-summary.html#machine-learning
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

einen geringen Rechenaufwand auf.

Daten fur Empfehlungssysteme im Webmalstab sind grof3tenteils diskret und kategorisch, was zu einem
grofl3en und sparlichen Merkmalsraum fiihrt, der die Merkmalserkundung erschwert. Dies hat die meisten grof3
angelegten Systeme auf lineare Modelle wie die logistische Regression beschrankt. Der Schllssel zu guten
Vorhersagen liegt jedoch darin, haufig vorhersagbare Merkmale zu identifizieren und gleichzeitig ungesehene
oder seltene Kreuzmerkmale zu untersuchen. Lineare Modelle sind einfach, interpretierbar und leicht
skalierbar, ihre Ausdruckskraft ist jedoch begrenzt.

Andererseits hat sich gezeigt, dass Kreuzmerkmale fiir die Verbesserung der Ausdruckskraft der Modelle von
Bedeutung sind. Leider ist zur Identifizierung solcher Features haufig eine manuelle Feature-Entwicklung oder
eine umfassende Suche erforderlich. Die Verallgemeinerung auf unsichtbare Funktionsinteraktionen ist oft
schwierig. Durch die Verwendung eines gekreuzten neuronalen Netzwerks wie DCN wird
aufgabenspezifisches Feature Engineering vermieden, indem Feature-Crossing explizit und automatisch
angewendet wird. Das Kreuznetzwerk besteht aus mehreren Schichten, wobei der hdchste Grad an
Interaktionen nachweislich durch die Schichttiefe bestimmt wird. Jede Schicht erzeugt Interaktionen héherer
Ordnung auf der Grundlage bestehender Interaktionen und behalt die Interaktionen der vorherigen Schichten
bei.

Ein tiefes neuronales Netzwerk (DNN) verspricht, sehr komplexe Interaktionen zwischen Features zu erfassen.
Im Vergleich zu DCN erfordert es jedoch fast eine GréRenordnung mehr Parameter, kann keine
Kreuzmerkmale explizit bilden und kann einige Arten von Merkmalsinteraktionen moéglicherweise nicht effizient
erlernen. Das Cross-Network ist speichereffizient und einfach zu implementieren. Durch das gemeinsame
Training der Cross- und DNN-Komponenten werden pradiktive Feature-Interaktionen effizient erfasst und eine
hochmoderne Leistung im Criteo CTR-Datensatz erzielt.

Ein DCN-Modell beginnt mit einer Einbettungs- und Stapelschicht, gefolgt von einem Quernetzwerk und einem
tiefen Netzwerk parallel. Darauf folgt wiederum eine letzte Kombinationsschicht, die die Ausgaben der beiden
Netzwerke kombiniert. Ihre Eingabedaten kdnnen ein Vektor mit sparlichen und dichten Merkmalen sein. In
Spark enthalten die Bibliotheken den Typ SparseVector . Daher ist es flir Benutzer wichtig, zwischen den
beiden zu unterscheiden und beim Aufrufen der jeweiligen Funktionen und Methoden vorsichtig zu sein. In
webbasierten Empfehlungssystemen wie der CTR-Vorhersage sind die Eingaben meist kategorische
Merkmale, zum Beispiel ' country=usa' . Solche Merkmale werden oft als One-Hot-Vektoren kodiert, zum
Beispiel: ' [0,1,0, ..]1'.One-Hot-Encoding (OHE) mit SparseVector ist nltzlich, wenn Sie mit realen
Datensatzen mit sich stadndig anderndem und wachsendem Vokabular arbeiten. Wir haben Beispiele in
"DeepCTR" um grof3e Vokabulare zu verarbeiten und Einbettungsvektoren in der Einbettungs- und
Stapelschicht unseres DCN zu erstellen.

Der "Criteo Display Ads-Datensatz" sagt die Klickrate der Anzeigen voraus. Es verflgt Gber 13 ganzzahlige
Merkmale und 26 kategorische Merkmale, wobei jede Kategorie eine hohe Kardinalitat aufweist. Fir diesen
Datensatz ist aufgrund der grof3en Eingabegrofle eine Verbesserung des Logverlusts um 0,001 praktisch
signifikant. Eine kleine Verbesserung der Vorhersagegenauigkeit flr eine groRe Benutzerbasis kann
mdglicherweise zu einer erheblichen Steigerung des Umsatzes eines Unternehmens fluhren. Der Datensatz
enthalt 11 GB Benutzerprotokolle aus einem Zeitraum von 7 Tagen, was etwa 41 Millionen Datensatzen
entspricht. Wir haben Spark verwendet dataFrame.randomSplit () function die Daten nach dem
Zufallsprinzip fur das Training (80 %), die Kreuzvalidierung (10 %) und die restlichen 10 % fir Tests
aufzuteilen.

DCN wurde auf TensorFlow mit Keras implementiert. Bei der Implementierung des Modelltrainingsprozesses
mit DCN gibt es vier Hauptkomponenten:

« Datenverarbeitung und -einbettung. Realwertige Merkmale werden durch Anwenden einer Log-
Transformation normalisiert. Fur kategorische Merkmale betten wir die Merkmale in dichte Vektoren der
Dimension 6 x (Kategoriekardinalitat) 1/4 ein. Durch Verketten aller Einbettungen entsteht ein Vektor der
Dimension 1026.

15

https://github.com/shenweichen/DeepCTR
https://www.kaggle.com/competitions/criteo-display-ad-challenge/data

* Optimierung. Wir haben eine stochastische Mini-Batch-Optimierung mit dem Adam-Optimierer
angewendet. Die Batchgrofe wurde auf 512 festgelegt. Auf das tiefe Netzwerk wurde eine Batch-
Normalisierung angewendet und die Gradienten-Clip-Norm auf 100 festgelegt.

» Regularisierung. Wir haben ein friihes Stoppen verwendet, da sich die L2-Regularisierung oder das
Dropout als nicht wirksam erwiesen haben.

* Hyperparameter. Wir berichten Uber Ergebnisse, die auf einer Rastersuche Uber die Anzahl der
verborgenen Schichten, die GréRe der verborgenen Schichten, die anfangliche Lernrate und die Anzahl
der Kreuzschichten basieren. Die Anzahl der verborgenen Schichten lag zwischen 2 und 5, wobei die
GroRe der verborgenen Schichten zwischen 32 und 1024 lag. Bei DCN lag die Anzahl der Querschichten
zwischen 1 und 6. Die anfangliche Lernrate wurde in Schritten von 0,0001 von 0,0001 auf 0,001
eingestellt. Bei allen Experimenten wurde ein friihzeitiger Stopp bei Trainingsschritt 150.000 angewendet,
da ab diesem Zeitpunkt eine Uberanpassung eintrat.

Zusatzlich zu DCN haben wir auch andere beliebte Deep-Learning-Modelle zur CTR-Vorhersage getestet,
darunter "DeepFM" , "Autolnt" , Und "DCN v2" .

Zur Validierung verwendete Architekturen

Fir diese Validierung haben wir vier Worker-Knoten und einen Master-Knoten mit einem AFF-A800-HA-Paar
verwendet. Alle Clustermitglieder waren Uber 10GbE-Netzwerk-Switches verbunden.

Fir diese Validierung der NetApp Spark-Lésung haben wir drei verschiedene Speichercontroller verwendet:
den E5760, den E5724 und den AFF-A800. Die Speichercontroller der E-Serie wurden mit 12-Gbit/s-SAS-
Verbindungen an flnf Datenknoten angeschlossen. Der AFF HA-Paar-Speichercontroller stellt exportierte
NFS-Volumes Uber 10-GbE-Verbindungen fir Hadoop-Workerknoten bereit. Die Hadoop-Clustermitglieder
wurden tber 10-GbE-Verbindungen in den Hadoop-Ldsungen E-Series, AFF und StorageGRID verbunden.

16

https://www.ijcai.org/proceedings/2017/0239.pdf
https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/2008.13535

E-Series E-Series Storage Array

10GbE
o 10GbE Links
-TH Links o
12Ghps SAS [1) 3 |[——
connections, LA Six Hadoop Data Nodes
L = Name Node
one per node |]
] =
Standby Node
Resource Manager
SG6060
StorageGRID STORAGEGRID
<
12Gbps SAS | =
connections, E Name Node
one per node
i Standby Node

Resource Manager

AFF AFF-AB00
Architecture

Links

Six Hadoop Data Nodes

i

10GbE
Links

7
: = —
Rty

Name Node

Standby Node

— T

Resource Manager

Testergebnisse

Wir haben die Skripte TeraSort und TeraValidate im Benchmarking-Tool TeraGen

17

verwendet, um die Spark-Leistungsvalidierung mit den Konfigurationen E5760, E5724
und AFF-A800 zu messen. Daruber hinaus wurden drei wichtige Anwendungsfalle
getestet: Spark NLP-Pipelines und verteiltes TensorFlow-Training, verteiltes Horovod-
Training und Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage mit DeepFM.

Fir die Validierung sowohl der E-Serie als auch der StorageGRID haben wir den Hadoop-Replikationsfaktor 2
verwendet. Fur die AFF Validierung haben wir nur eine Datenquelle verwendet.

In der folgenden Tabelle ist die Hardwarekonfiguration fur die Spark-Leistungsvalidierung aufgefihrt.

Typ Hadoop- Antriebstyp Laufwerke pro Speichercontroller
Workerknoten Knoten

SG6060 4 SAS 12 Einzelnes
Hochverfiigbarkeitsp
aar (HA)

E5760 4 SAS 60 Einzelnes HA-Paar

E5724 4 SAS 24 Einzelnes HA-Paar

AFF800 4 SSD 6 Einzelnes HA-Paar

In der folgenden Tabelle sind die Softwareanforderungen aufgefihrt.

Software Version
RHEL 79
OpendDK-Laufzeitumgebung 1.8.0
OpenJDK 64-Bit-Server-VM 25,302
Git 2.241
GCC/G++ 11.2.1
Funke 3.2.1
PySpark 3.1.2
SparkNLP 34.2
TensorFlow 29.0
Keras 29.0
Horovod 0.24.3

Finanzstimmungsanalyse

Wir verdéffentlichten"TR-4910: Stimmungsanalyse aus der Kundenkommunikation mit NetApp Al", in dem eine
End-to-End-Konversations-KI-Pipeline mithilfe der "NetApp DataOps Toolkit" , AFF -Speicher und NVIDIA
DGX-System. Die Pipeline flhrt Batch-Audiosignalverarbeitung, automatische Spracherkennung (ASR),
Transferlernen und Stimmungsanalyse durch und nutzt dabei das DataOps Toolkit. "NVIDIA Riva SDK" und die
"Tao-Rahmen" . Wir haben den Anwendungsfall der Stimmungsanalyse auf die Finanzdienstleistungsbranche
ausgeweitet, einen SparkNLP-Workflow erstellt, drei BERT-Modelle fiir verschiedene NLP-Aufgaben wie die
Erkennung benannter Entitdten geladen und die Stimmung auf Satzebene fir die vierteljahrlichen
Gewinnaufrufe der Top 10-Unternehmen des NASDAQ ermittelt.

18

https://www.netapp.com/pdf.html?item=/media/17123-tr4910pdf.pdf
https://github.com/NetApp/netapp-dataops-toolkit
https://developer.nvidia.com/riva
https://developer.nvidia.com/tao

Das folgende Skript sentiment analysis spark. py verwendet das FinBERT-Modell, um Transkripte in
HDFS zu verarbeiten und positive, neutrale und negative Stimmungszahlen zu erzeugen, wie in der folgenden

Tabelle gezeigt:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

-—-packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

—--master yarn

--executor-memory 5g

-—executor-cores 1

—--num-executors 160

-—-conf spark.driver.extraJdJavaOptions="-Xssl0m -XX:MaxPermSize=1024M"
-—-conf spark.executor.extradavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
hdfs:///datal/Transcripts/

> ./sentiment analysis hdfs.log 2>&l

reall3ml4.300s

user557mll.319s

sysd4md7.676s

In der folgenden Tabelle ist die Stimmungsanalyse auf Satzebene zu den Gewinnaufrufen der Top 10-

Unternehmen des NASDAQ von 2016 bis 2020 aufgefihrt.

Stimmun Alle10 AAPL AMD AMZN Ccsco GOOGL INTC MSFT
gszahlun Unterneh

g und men

Prozents

atz

Positive 7447 1567 743 290 682 826 824 904
Zahlunge
n

Neutrale 64067 6856 7596 5086 6650 5914 6099 5715
Zahlunge
n

Negative 1787 253 213 84 189 97 282 202
Zahlunge
n

Nicht 196 0 0 76 0 0 0 1
kategorisi

erte

Zahlunge

n

(Gesamtz 73497 8676 8552 5536 7521 6837 7205 6822
ahl)

NVDA

417

6189

89

6695

Prozentual gesehen sind die meisten Satze der CEOs und CFOs sachlich und daher neutral. Wahrend einer
Telefonkonferenz zu den Quartalsergebnissen stellen Analysten Fragen, die eine positive oder negative
Stimmung zum Ausdruck bringen kénnen. Es lohnt sich, quantitativ weiter zu untersuchen, wie sich eine

19

negative oder positive Stimmung auf die Aktienkurse am selben oder am nachsten Handelstag auswirkt.

In der folgenden Tabelle ist die Stimmungsanalyse auf Satzebene fir die Top 10-Unternehmen des NASDAQ
in Prozent aufgefuhrt.

Stimmun Alle 10 AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA
gsproze Unterneh
ntsatz men

Positiv 10,13% 18,06% 869% 524% 907% 1208% 11,44% 1325% 6,23%

Neutral 87,17 % 79,02% 88,82% 91,87% 8842% 86,50% 84,65% 83,77 % 92,44 %
Negativ. 243% 292% 249% 152% 251% 142% 391% 29% 1,33%

Unkatego 0,27 % 0% 0% 1,37 % 0% 0% 0% 0,01 % 0 %
risiert

In Bezug auf die Workflow-Laufzeit konnten wir eine signifikante Verbesserung um das 4,78-fache gegeniber
local Modus zu einer verteilten Umgebung in HDFS und eine weitere Verbesserung von 0,14 % durch
Nutzung von NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

—--master yarn

-—executor-memory 5g

—-—executor-cores 1

--num-executors 160

-—-conf spark.driver.extraJdavaOptions="-Xssl0m -XX:MaxPermSize=1024M"
-—-conf spark.executor.extradavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment analysis nfs.log 2>&l

reall3ml3.149s

user537m50.148s

sys4m46.173s

Wie die folgende Abbildung zeigt, verbesserte die Daten- und Modellparallelitat die Geschwindigkeit der
Datenverarbeitung und der verteilten TensorFlow-Modellinferenz. Die Datenspeicherung in NFS flhrte zu einer
etwas besseren Laufzeit, da der Engpass im Workflow das Herunterladen vortrainierter Modelle ist. Wenn wir
die GroRe des Transkriptdatensatzes erhéhen, wird der Vorteil von NFS deutlicher.

20

Spark NLP Sentiment Analysis End-toEnd Workflow Runtime
(Lower is better)

ves [o0

Data Location

HDFS 0:13:14.300

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48 0:36:00 0:43:12 0:50:24 0:57:36 1:04:48 1:12:00
hh:mm:ss.sss

Verteiltes Training mit Horovod-Leistung

Der folgende Befehl erzeugte Laufzeitinformationen und eine Protokolldatei in unserem Spark-Cluster unter
Verwendung eines einzigen master Knoten mit 160 Executoren mit jeweils einem Kern. Der Executor-
Speicher wurde auf 5 GB begrenzt, um Speicherfehler zu vermeiden. Siehe den Abschnitt"Python-Skripte fur
jeden wichtigen Anwendungsfall" Weitere Einzelheiten zur Datenverarbeitung, zum Modelltraining und zur
Berechnung der Modellgenauigkeit in keras spark horovod rossmann estimator.py.

(base) [root@nl38 horovod]# time spark-submit

--master local

—-—executor-memory 5g

-—executor-cores 1

--num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
—-—-epochs 10

-—-data-dir file:///sparkusecase/horovod
--local-submission-csv /tmp/submission 0.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator local. log 2>&l

Die resultierende Laufzeit mit zehn Trainingsepochen war wie folgt:

reald4d3m34.608s
userl2m22.057s
sys2m30.127s

21

spark-python-scripts.html
spark-python-scripts.html

Es dauerte mehr als 43 Minuten, um Eingabedaten zu verarbeiten, ein DNN-Modell zu trainieren, die
Genauigkeit zu berechnen und TensorFlow-Checkpoints und eine CSV-Datei flr Vorhersageergebnisse zu
erstellen. Wir haben die Anzahl der Trainingsepochen auf 10 begrenzt, in der Praxis wird sie jedoch oft auf 100
gesetzt, um eine zufriedenstellende Modellgenauigkeit zu gewahrleisten. Die Trainingszeit skaliert
normalerweise linear mit der Anzahl der Epochen.

Als nachstes nutzten wir die vier im Cluster verfligbaren Worker-Knoten und fluhrten das gleiche Skript in yarn
Modus mit Daten in HDFS:

(base) [root@nl38 horovod]# time spark-submit

-—-master yarn

—-—executor-memory 5g

-—executor-cores 1 --num-executors 160
/sparkusecase/horovod/keras_spark horovod rossmann estimator.py
-—epochs 10

--data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod
--local-submission-csv /tmp/submission 1.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator yarn.log 2>&l1

Die resultierende Laufzeit wurde wie folgt verbessert:

real8ml3.728s
user/m48.421s
syslm26.063s

Mit Horovods Modell- und Datenparallelitat in Spark konnten wir eine 5,29-fache Laufzeitbeschleunigung von
yarn gegen local Modus mit zehn Trainingsepochen. Dies wird in der folgenden Abbildung mit den
Legenden dargestellt HDFS Und Local . Das Training des zugrunde liegenden TensorFlow-DNN-Modells kann
mit GPUs, sofern verfligbar, weiter beschleunigt werden. Wir planen, diese Tests durchzufliihren und die
Ergebnisse in einem zukunftigen technischen Bericht zu verdffentlichen.

Unser nachster Test verglich die Laufzeiten mit Eingabedaten in NFS und HDFS. Das NFS-Volume auf der
AFF A800 wurde gemountet auf /sparkdemo/horovod Uber die funf Knoten (ein Master, vier Worker) in
unserem Spark-Cluster. Wir haben einen ahnlichen Befehl wie bei den vorherigen Tests ausgefihrt, mit dem
--data- dir Parameter, der jetzt auf die NFS-Einbindung zeigt:

22

(base) [root@nl38 horovod]# time spark-submit

—--master yarn

-—executor-memory 5g

-—executor-cores 1

--num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
-—epochs 10

--data-dir file:///sparkdemo/horovod
--local-submission-csv /tmp/submission 2.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator nfs.log 2>&l

Die resultierende Laufzeit mit NFS war wie folgt:

real 5m46.229s
user 5m35.693s
sys 1m5.615s

Es kam zu einer weiteren Beschleunigung um das 1,43-Fache, wie in der folgenden Abbildung gezeigt. Daher
profitieren Kunden mit einem an ihren Cluster angeschlossenen NetApp All-Flash-Speicher von den Vorteilen
einer schnellen Datenubertragung und -verteilung fir Horovod Spark-Workflows und erreichen eine 7,55-fache
Beschleunigung im Vergleich zur Ausfuhrung auf einem einzelnen Knoten.

Horovod Spark Workflow Runtime
(Lower is better)

Seconds
0 500 1000 1500 2000 2500 3000

Input data location

NF'S - 346.229

23

Deep-Learning-Modelle fiir die CTR-Vorhersageleistung

Fir Empfehlungssysteme, die auf die Maximierung der Klickrate ausgelegt sind, miissen Sie die komplexen
Funktionsinteraktionen hinter dem Benutzerverhalten erlernen, die sich mathematisch von der niedrigsten bis
zur héchsten Ordnung berechnen lassen. Fir ein gutes Deep-Learning-Modell sollten sowohl
Merkmalsinteraktionen niedriger als auch héherer Ordnung gleichermafien wichtig sein, ohne dass das eine
oder das andere bevorzugt wird. Deep Factorization Machine (DeepFM), ein auf Faktorisierungsmaschinen
basierendes neuronales Netzwerk, kombiniert Faktorisierungsmaschinen fir Empfehlungen und Deep
Learning fur das Merkmalslernen in einer neuen neuronalen Netzwerkarchitektur.

Obwohl herkdmmliche Faktorisierungsmaschinen paarweise Merkmalsinteraktionen als inneres Produkt
latenter Vektoren zwischen Merkmalen modellieren und theoretisch Informationen héherer Ordnung erfassen
kénnen, verwenden Anwender des maschinellen Lernens in der Praxis aufgrund der hohen Rechen- und
Speicherkomplexitat normalerweise nur Merkmalsinteraktionen zweiter Ordnung. Varianten tiefer neuronaler
Netzwerke wie die von Google "Breite und tiefe Modelle" lernt andererseits anspruchsvolle
Merkmalsinteraktionen in einer hybriden Netzwerkstruktur durch die Kombination eines linearen breiten
Modells und eines tiefen Modells.

Es gibt zwei Eingaben fir dieses Wide & Deep-Modell, eine fir das zugrunde liegende Wide-Modell und die
andere fUr das Deep-Modell. Letzterer Teil erfordert noch immer eine fachmannische Feature-Entwicklung und
macht die Technik daher weniger auf andere Doméanen Ubertragbar. Anders als das Wide & Deep-Modell kann
DeepFM effizient mit Rohmerkmalen trainiert werden, ohne dass ein Feature-Engineering erforderlich ist, da
der breite und der tiefe Teil denselben Input und Einbettungsvektor verwenden.

Wir haben zunachst die Criteo train. txt (11 GB) in eine CSV-Datei mit dem Namen ctr train.csvin
einem NFS-Mount gespeichert /sparkdemo/tr-4570-data mit
run_classification criteo_ spark.py aus dem Abschnitt'Python-Skripte fur jeden wichtigen
Anwendungsfall." Innerhalb dieses Skripts wird die Funktion process input file fiuhrt mehrere String-
Methoden aus, um Tabs zu entfernen und einzufligen ', ' als Trennzeichen und '\n"' als Zeilenumbruch.
Beachten Sie, dass Sie nur das Original verarbeiten miissen train. txt einmal, sodass der Codeblock als
Kommentar angezeigt wird.

Fur die folgenden Tests verschiedener DL-Modelle verwendeten wir ctr train.csv als Eingabedatei. In
nachfolgenden Testlaufen wurde die CSV-Eingabedatei in einen Spark DataFrame mit Schema eingelesen,
das ein Feld von "1abel' , ganzzahlige dichte Merkmale ['11', 'I2', 'I3', .., '"I13'] und sparliche
Merkmale ['c1', 'c2', 'C3', .., 'C26'] .Die folgende spark-submit Der Befehl nimmt eine CSV-
Eingabe entgegen, trainiert DeepFM-Modelle mit 20 % Aufteilung fir die Kreuzvalidierung und wahlt nach zehn
Trainingsepochen das beste Modell aus, um die Vorhersagegenauigkeit im Testsatz zu berechnen:

(base) [root@nl38 ~]# time spark-submit --master yarn --executor-memory 5g
-—executor-cores 1 —--num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py --data
-dir file:///sparkdemo/tr-4570-data >

/tmp/run classification criteo spark local.log 2>&l

Beachten Sie, dass die Datendatei ctr train.csv Uber 11 GB liegt, missen Sie eine ausreichende
spark.driver.maxResultSize groRer als die DatensatzgroRRe, um Fehler zu vermeiden.

24

https://arxiv.org/abs/1606.07792
spark-python-scripts.html
spark-python-scripts.html

spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500"') \
.config('spark.driver.memoryOverhead', '1500'"') \
.config("spark.sgl.shuffle.partitions", "480") \
.config("spark.sqgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

Im obigen SparkSession.builder Konfiguration haben wir auch aktiviert "Apache-Pfeil" , das einen Spark
DataFrame in einen Pandas DataFrame mit dem df.toPandas () Verfahren.

22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at
/sparkusecase/DeepCTR/examples/run classification criteo spark.py:96, took
627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

Nach der zufalligen Aufteilung gibt es Giber 36 Millionen Zeilen im Trainingsdatensatz und 9 Millionen
Stichproben im Testdatensatz:

Training dataset size = 36672493
Testing dataset size = 9168124

Da sich dieser technische Bericht auf CPU-Tests ohne Verwendung von GPUs konzentriert, ist es zwingend
erforderlich, dass Sie TensorFlow mit entsprechenden Compiler-Flags erstellen. Dieser Schritt vermeidet den
Aufruf von GPU-beschleunigten Bibliotheken und nutzt die Advanced Vector Extensions (AVX) und AVX2-
Anweisungen von TensorFlow voll aus. Diese Funktionen sind fiir lineare algebraische Berechnungen wie
vektorisierte Addition, Matrixmultiplikationen innerhalb eines Feedforward- oder Backpropagation-DNN-
Trainings konzipiert. Der mit AVX2 verfligbare Fused Multiply Add (FMA)-Befehl mit 256-Bit-
Gleitkommaregistern (FP) ist ideal fiir ganzzahligen Code und Datentypen und fihrt zu einer bis zu zweifachen
Beschleunigung. Bei FP-Code und Datentypen erreicht AVX2 eine um 8 % héhere Geschwindigkeit als AVX.

2022-06-18 07:19:20.101478: I
tensorflow/core/platform/cpu feature guard.cc:151] This TensorFlow binary
is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the
following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the
appropriate compiler flags.

25

https://arrow.apache.org/

Um TensorFlow aus dem Quellcode zu erstellen, empfiehlt NetApp die Verwendung "Bazel" . Fir unsere
Umgebung haben wir die folgenden Befehle in der Shell-Eingabeaufforderung ausgefiihrt, um zu installieren
dnf , dnf-plugins und Bazel.

yum install dnf

dnf install 'dnf-command (copr)'
dnf copr enable vbatts/bazel
dnf install bazelb

Sie missen GCC 5 oder neuer aktivieren, um wahrend des Build-Prozesses C++17-Funktionen zu verwenden,
die von RHEL mit der Software Collections Library (SCL) bereitgestellt werden. Die folgenden Befehle
installieren devtoolset und GCC 11.2.1 auf unserem RHEL 7.9-Cluster:

subscription-manager repos --enable rhel-server-rhscl-7-rpms
yum install devtoolset-1l-toolchain
yum install devtoolset-1l-gcc-c++
yum update
scl enable devtoolset-11 bash
/opt/rh/devtoolset-11/enable

Beachten Sie, dass die letzten beiden Befehle devtoolset-11 , das verwendet /opt/rh/devtoolset-
11/root/usr/bin/gcc (GCC 11.2.1). Stellen Sie auRerdem sicher, dass Ihre git Version ist héher als
1.8.3 (diese wird mit RHEL 7.9 geliefert). Siehe hierzu "Artikel" zur Aktualisierung git bis 2.24.1.

Wir gehen davon aus, dass Sie das neueste TensorFlow-Master-Repo bereits geklont haben. Erstellen Sie
dann eine workspace Verzeichnis mit einem WORKSPACE Datei zum Erstellen von TensorFlow aus dem
Quellcode mit AVX, AVX2 und FMA. Fihren Sie den configure Datei und geben Sie den richtigen Python-
Binarspeicherort an. "CUDA" ist flr unsere Tests deaktiviert, da wir keine GPU verwendet haben. A .bazelrc
Die Datei wird entsprechend lhren Einstellungen generiert. Weiter haben wir die Datei bearbeitet und
eingestellt build --define=no hdfs support=false um die HDFS-Unterstutzung zu aktivieren. Siehe
.bazelrc im Abschnitt"Python-Skripte flr jeden wichtigen Anwendungsfall," fur eine vollstandige Liste der
Einstellungen und Flags.

./configure
bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=
-mfpmath=both -k //tensorflow/tools/pip package:build pip package

Nachdem Sie TensorFlow mit den richtigen Flags erstellt haben, fiihren Sie das folgende Skript aus, um den
Criteo Display Ads-Datensatz zu verarbeiten, ein DeepFM-Modell zu trainieren und die Flache unter der
Receiver Operating Characteristic Curve (ROC AUC) aus den Vorhersagewerten zu berechnen.

26

https://bazel.build/
https://travis.media/how-to-upgrade-git-on-rhel7-and-centos7/
https://developer.nvidia.com/cuda-toolkit
spark-python-scripts.html

(base) [root@nl38 examples]# ~/anaconda3/bin/spark-submit
—--master yarn

-—executor-memory 15g

—-—executor-cores 1

--num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py
--data-dir file:///sparkdemo/tr-4570-data

> . /run classification criteo spark nfs.log 2>&l

Nach zehn Trainingsepochen haben wir den AUC-Score fiir den Testdatensatz erhalten:

Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary crossentropy: 0.4974 - val loss:
0.4629 - val binary crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary crossentropy: 0.3271 - val loss:
0.5146 - val binary crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary crossentropy: 0.1928 - val loss:
0.6166 - val binary crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary crossentropy: 0.1383 - val loss:
0.7261 - val binary crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary crossentropy: 0.1102 - val loss:
0.7961 - val binary crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary crossentropy: 0.0921 - val loss:
0.9502 - val binary crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary crossentropy: 0.0750 - val loss:
1.1329 - val binary crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary crossentropy: 0.0622 - val loss:
1.3794 - val binary crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary crossentropy: 0.0527 - val loss:
1.6115 - val binary crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary crossentropy: 0.0442 - val loss:
1.6768 - val binary crossentropy: 1.6740

test AUC 0.6337

Ahnlich wie bei friheren Anwendungsfallen haben wir die Spark-Workflow-Laufzeit mit Daten verglichen, die

an verschiedenen Standorten gespeichert sind. Die folgende Abbildung zeigt einen Vergleich der Deep-
Learning-CTR-Vorhersage flr eine Spark-Workflow-Laufzeit.

Scala Spark Aggregation - Throughput MB/Sec
(Higher is better)

200

180

160
140
120
8
6
4
2
0

mJBOD mE-Series mEF-Series ®mAFF_NFS

MBps
)
o o o o

o

Hybrid-Cloud-Losung

Ein modernes Unternehmensrechenzentrum ist eine Hybrid-Cloud, die mehrere verteilte
Infrastrukturumgebungen Uber eine kontinuierliche Datenverwaltungsebene mit einem
konsistenten Betriebsmodell vor Ort und/oder in mehreren o6ffentlichen Clouds verbindet.
Um das Beste aus einer Hybrid Cloud herauszuholen, mussen Sie in der Lage sein,
Daten nahtlos zwischen lhren lokalen und Multi-Cloud-Umgebungen zu verschieben,
ohne dass Datenkonvertierungen oder Anwendungs-Refactoring erforderlich sind.

Kunden haben angegeben, dass sie ihre Reise in die Hybrid Cloud entweder mit der Verlagerung von
Sekundarspeichern in die Cloud fir Anwendungsfalle wie Datenschutz oder mit der Verlagerung weniger
geschaftskritischer Workloads wie Anwendungsentwicklung und DevOps in die Cloud beginnen. Anschlielend
wenden sie sich kritischeren Arbeitslasten zu. Zu den beliebtesten Hybrid-Cloud-Workloads gehéren Web- und
Content-Hosting, DevOps und Anwendungsentwicklung, Datenbanken, Analysen und containerisierte Apps.
Die Komplexitat, die Kosten und die Risiken von Kl-Projekten in Unternehmen haben in der Vergangenheit die
Einfihrung von Kl von der experimentellen Phase bis zur Produktion behindert.

Mit einer NetApp Hybrid-Cloud-Lésung profitieren Kunden von integrierten Tools fiir Sicherheit,
Datenverwaltung und Compliance mit einem einzigen Control Panel fur das Daten- und Workflow-Management

28

in verteilten Umgebungen und optimieren gleichzeitig die Gesamtbetriebskosten basierend auf ihrem
Verbrauch. Die folgende Abbildung zeigt eine Beispielldsung eines Cloud-Service-Partners, der die Aufgabe
hat, Multi-Cloud-Konnektivitat fur die Big-Data-Analysedaten der Kunden bereitzustellen.

Sensors :
.................. Euams + amazon
a
Spark ! Hadoop Cluster & Rest APt [l EC2VPC Spa.r"i{&; B2 Microsoft
atApp in-Piace Anslysics Moduks | Spark .{:} " | HDinsight
A A A 4 ﬂ - Kafka — Tjop OQ. ; NFS e

e
Direct Connect
L ————

.- » : '-_-\-] ¢ » m -
e
... S |
On-Promises Ui NetApp Private Storage /

EQUINIX | Keystone

Express Route

Snaphdirror®

B T e e T g e)

L.

In diesem Szenario werden loT-Daten, die in AWS aus verschiedenen Quellen empfangen werden, an einem
zentralen Ort im NetApp Private Storage (NPS) gespeichert. Der NPS-Speicher ist mit Spark- oder Hadoop-
Clustern in AWS und Azure verbunden, sodass Big-Data-Analyseanwendungen in mehreren Clouds
ausgefihrt werden kdnnen und auf dieselben Daten zugreifen. Zu den wichtigsten Anforderungen und
Herausforderungen fir diesen Anwendungsfall zahlen die folgenden:

* Kunden moéchten Analyseauftrage mit denselben Daten tGber mehrere Clouds ausfuhren.

» Daten miissen aus verschiedenen Quellen, beispielsweise lokalen und Cloud-Umgebungen, iber
verschiedene Sensoren und Hubs empfangen werden.

» Die Losung muss effizient und kostenguinstig sein.

 Die groRte Herausforderung besteht darin, eine kostengtinstige und effiziente Losung zu entwickeln, die
hybride Analysedienste zwischen verschiedenen lokalen und Cloud-Umgebungen bereitstellt.

Unsere Losung fur Datenschutz und Multicloud-Konnektivitat 16st das Problem, das entsteht, wenn Cloud-
Analyseanwendungen Uber mehrere Hyperscaler verteilt sind. Wie in der obigen Abbildung gezeigt, werden
Daten von Sensoren gestreamt und Uber Kafka in den AWS Spark-Cluster aufgenommen. Die Daten werden in
einer NFS-Freigabe gespeichert, die sich in NPS befindet, das sich auRerhalb des Cloud-Anbieters in einem
Equinix-Rechenzentrum befindet.

Da NetApp NPS Uber Direct Connect- bzw. Express Route-Verbindungen mit Amazon AWS und Microsoft
Azure verbunden ist, kdnnen Kunden das In-Place Analytics-Modul nutzen, um auf die Daten von Amazon-
und AWS-Analyseclustern zuzugreifen. Da sowohl der lokale als auch der NPS-Speicher mit ONTAP -Software
lauft, "SnapMirror" kann die NPS-Daten in den lokalen Cluster spiegeln und so Hybrid-Cloud-Analysen lGber
lokale und mehrere Clouds hinweg bereitstellen.

Fir eine optimale Leistung empfiehlt NetApp normalerweise die Verwendung mehrerer Netzwerkschnittstellen
und Direktverbindungen oder Expressrouten fiir den Zugriff auf die Daten von Cloud-Instanzen. Wir haben
andere Data Mover-Losungen, darunter "XCP" Und "BlueXP Kopieren und Synchronisieren" um Kunden beim
Aufbau anwendungsbewusster, sicherer und kostengunstiger Hybrid-Cloud-Spark-Cluster zu unterstitzen.

29

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service

Python-Skripte fur jeden wichtigen Anwendungsfall

Die folgenden drei Python-Skripte entsprechen den drei getesteten
Hauptanwendungsfallen. Erstens ist sentiment analysis sparknlp.py .

30

TR-4570 Refresh NLP testing by Rick Huang
from sys import argv

import os

import sparknlp

import pyspark.sqgl.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline
from sparknlp import Finisher

Start Spark Session with Spark NLP

spark = sparknlp.start()

print ("Spark NLP version:")

print (sparknlp.version())

print ("Apache Spark version:")

print (spark.version)

spark = sparknlp.SparkSession.builder \

.master ("yarn") \

.appName ("test hdfs read write") \

.config("spark.executor.cores", "1") \

.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-
nlp 2.12:3.4.3")\

.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1000")\
.config('spark.driver.memoryOverhead', '1000")\

.config("spark.sqgl.shuffle.partitions™, "480")\

.getOrCreate ()
sc = spark.sparkContext
from pyspark.sqgl import SQLContext
sgl = SQLContext (sc)
sglContext = SQLContext (sc)

Download pre-trained pipelines & sequence classifier

explain pipeline model = PretrainedPipeline('explain document dl',
lang='en') .model#pipeline sa =
PretrainedPipeline ("classifierdl bertwiki finance sentiment pipeline",
lang="en")

pipeline finbert =

BertForSequenceClassification.loadSavedModel ('/sparkusecase/bert sequence
classifier finbert en 3', spark)

sequenceClassifier = BertForSequenceClassification \
.pretrained('bert sequence classifier finbert', 'en') \
.setInputCols (['token', 'document']) \
.setOutputCol ('class') \
.setCaseSensitive (True) \
.setMaxSentencelLength (512)
def process sentence df (data):
Pre-process: begin
print ("1. Begin DataFrame pre-processing...\n")
print (f"\n\t2. Attaching DocumentAssembler Transformer to the
pipeline")
documentAssembler = DocumentAssembler () \
.setInputCol ("text™) \
.setOutputCol ("document™) \
.setCleanupMode ("inplace full")
#.setCleanupMode ("shrink", "inplace full")
doc_df = documentAssembler.transform(data)
doc_df.printSchema ()
doc_df.show (truncate=50)
Pre-process: get rid of blank lines
clean df = doc_df.withColumn ("tmp", F.explode ("document")) \
.select ("tmp.result") .where("tmp.end !=
-1") .withColumnRenamed ("result", "text") .dropna ()
print ("[OK!] DataFrame after initial cleanup:\n")
clean df.printSchema ()
clean df.show (truncate=80)
for FinBERT
tokenizer = Tokenizer () \
.setInputCols (['document']) \
.setOutputCol ('token')
print (f"\n\t3. Attaching Tokenizer Annotator to the pipeline")
pipeline finbert = Pipeline (stages=]|
documentAssembler,
tokenizer,
sequenceClassifier
1)
Use Finisher () & construct PySpark ML pipeline
finisher = Finisher () .setInputCols(["token", "lemma", "pos",
"entities"])
print (f"\n\t4. Attaching Finisher Transformer to the pipeline")
pipeline ex = Pipeline() \
.setStages ([
explain pipeline model,
finisher
1)
print ("\n\t\t\t ---- Pipeline Built Successfully ----")

31

32

Loading pipelines to annotate
#result ex df = pipeline ex.transform(clean df)
ex model = pipeline ex.fit (clean df)
annotations finished ex df = ex model.transform(clean df)
result sa df = pipeline sa.transform(clean df)
result finbert df = pipeline finbert.fit (clean df).transform(clean df)
print ("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT
Pipeline Fitted Successfully ----")
Check the result entities
print ("[OK!] Simple explain ML pipeline result:\n")
annotations finished ex df.printSchema ()
annotations finished ex df.select ('text',
'finished entities').show(truncate=False)
Check the result sentiment from FinBERT
print ("[OK!] Sentiment Analysis FinBERT pipeline result:\n")
result finbert df.printSchema()
result finbert df.select('text', 'class.result').show (80, False)
sentiment stats (result finbert df)

return
def sentiment stats(finbert df):

result df = finbert df.select('text', 'class.result')

sa df = result df.select('result')

sa df.groupBy ('result') .count () .show ()

total lines = result clean df.count()

num neutral = result clean df.where(result clean df.result ==
['neutral']) .count ()

num positive = result clean df.where(result clean df.result ==
['positive']) .count ()

num negative = result clean df.where(result clean df.result ==
['negative']) .count ()

print (f"\nRatio of neutral sentiment = {num neutral/total lines}")

print (f"Ratio of positive sentiment = {num positive / total lines}")

print (f"Ratio of negative sentiment = {num negative /
total lines}\n")

return

def process input file(file name) :
Turn input file to Spark DataFrame
print ("START processing input file...")
data df = spark.read.text (file name)
data df.show ()
rename first column 'text' for sparknlp
output df = data df.withColumnRenamed("value", "text") .dropna/()
output df.printSchema ()
return output dfdef process local dir(directory):
filelist = []
for subdir, dirs, files in os.walk(directory) :

def

def

for filename in files:
filepath = subdir + os.sep + filename
print ("[OK!] Will process the following files:")
if filepath.endswith(".txt"):
print (filepath)
filelist.append(filepath)
return filelist
process local dir or file(dir or file):
numfiles = 0
if os.path.isfile(dir or file):
input df = process input file(dir or file)
print ("Obtained input df.")
process sentence df (input df)
print ("Processed input df")
numfiles += 1
else:
filelist = process local dir(dir or file)
for file in filelist:
input df = process input file(file)
process_ sentence df (input df)
numfiles += 1
return numfiles
process hdfs dir (dir name) :
Turn input files to Spark DataFrame
print ("START processing input HDFS directory...")
data df = spark.read.option("recursiveFileLookup",

"true") .text (dir name)

data df.show ()

print (" [DEBUG] total lines in data df = ", data df.count())

rename first column 'text' for sparknlp

output df = data df.withColumnRenamed ("value", "text").dropna ()
print (" [DEBUG] output df looks like: \n")

output df.show (40, False)

print (" [DEBUG] HDFS dir resulting data df schema: \n")

output df.printSchema ()

process sentence df (output df)

print ("Processed HDFS directory: ", dir name)
returnif name == "' main ':
try:

if len(argv) ==
print ("Start processing input...\n")
except:
print (" [ERROR] Please enter input text file or path to

process!\n")

exit (1)
This is for local file, not hdfs:

33

numfiles = process local dir or file(str(argv[l]))

For HDFS single file & directory:

input df = process input file(str(argv[1l]))

print ("Obtained input df.")

process sentence df (input df)

print ("Processed input df")

numfiles += 1

For HDFS directory of subdirectories of files:

input parse list = str(argv[1l]) .split('/")

print (input parse list)

if input parse list[-2:-1] == ['Transcripts']:
print ("Start processing HDFS directory: ", str(argv([1l]))
process hdfs dir(str(argv([1l]))

print (£"[OK!] All done. Number of files processed = {numfiles}")

Das zweite Skript ist keras spark horovod rossmann estimator.py .

Copyright 2022 NetApp, Inc.
Authored by Rick Huang

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

H H= FH H H FH H H H H H H H= H H

The below code was modified from: https://www.kaggle.com/c/rossmann-—
store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sgl.types as T

import pyspark.sqgl.functions as F

from pyspark import SparkConf, Row

from pyspark.sqgl import SparkSession

34

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,
Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint

parser = argparse.ArgumentParser (description='Horovod Keras Spark Rossmann
Estimator Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--master',
help='spark cluster to use for training. If set to
None, uses current default cluster. Cluster'
'should be set up to provide a Spark task per
multiple CPU cores, or per GPU, e.g. by’
'supplying "-c <NUM GPUS>" in Spark Standalone
mode ')
parser.add argument ('--num-proc', type=int,
help="'number of worker processes for training,
default: “spark.default.parallelism ')
parser.add argument ('--learning rate', type=float, default=0.0001,
help='initial learning rate')
parser.add argument ('--batch-size', type=int, default=100,
help='batch size')
parser.add argument ('--epochs', type=int, default=100,
help="number of epochs to train')
parser.add argument ('--sample-rate', type=float,
help='desired sampling rate. Useful to set to low
number (e.g. 0.01) to make sure that '
'end-to-end process works')
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed
with file://) or on HDFS'")
parser.add argument ('--local-submission-csv', default='submission.csv',
help='output submission predictions CSV')
parser.add argument ('--local-checkpoint-file', default='checkpoint’,
help='model checkpoint')
parser.add argument ('--work-dir', default='/tmp',
help='temporary working directory to write
intermediate files (prefix with hdfs:// to use HDFS)')
if name == ' main ':

args = parser.parse_args ()

DATA PREPARATION

35

print ('Data preparation')

print ('================")

Create Spark session for data preparation.
conf = SparkConf () \

.setAppName ('Keras Spark Rossmann Estimator Example') \
.set ('spark.sgl.shuffle.partitions', '480') \

.set ("spark.executor.cores", "1") \

.set ('spark.executor.memory', '5gb') \

.set ('spark.executor.memoryOverhead', '1000")\
.set ('spark.driver.memoryOverhead', '1000")
if args.master:
conf.setMaster (args.master)
elif args.num proc:
conf.setMaster('local[{}]'.format (args.num proc))
spark = SparkSession.builder.config(conf=conf) .getOrCreate ()
train csv = spark.read.csv('$s/train.csv' % args.data dir,
header=True)
test csv = spark.read.csv('$s/test.csv' % args.data dir, header=True)
store csv = spark.read.csv('%$s/store.csv' % args.data dir,
header=True)
store states csv = spark.read.csv('%s/store states.csv' %
args.data dir, header=True)
state_names csv = spark.read.csv('%s/state names.csv' % args.data dir,
header=True)
google trend csv = spark.read.csv('$s/googletrend.csv' %
args.data dir, header=True)
weather csv = spark.read.csv('%s/weather.csv' % args.data dir,
header=True)
def expand date (df) :
df = df.withColumn ('Date', df.Date.cast (T.DateType()))
return df \
.withColumn ('Year', F.year (df.Date)) \
.withColumn ('Month', F.month (df.Date)) \
.withColumn ('Week', F.weekofyear (df.Date)) \
.withColumn ('Day', F.dayofmonth (df.Date))
def prepare google trend() :
Extract week start date and state.
google trend all = google trend csv \
.withColumn ('Date', F.regexp extract (google trend csv.week,
"(.*2) ="', 1)) \
.withColumn ('State', F.regexp extract(google trend csv.file,
'Rossmann DE (.*)', 1))
Map state NI -> HB,NI to align with other data sources.
google trend all = google trend all \

.withColumn ('State', F.when(google trend all.State == 'NI',
'"HB,NI') .otherwise(google trend all.State))
Expand dates.
return expand date (google trend all)
def add elapsed(df, cols):
def add elapsed column(col, asc):
def fn (rows):
last store, last date = None, None

for r in rows:

if last store != r.Store:
last store = r.Store
last date = r.Date
if rlcol]l:
last date = r.Date

fields = r.asDict () .copy ()
fields[('After' if asc else 'Before') + col] = (r.Date
- last date) .days
yield Row (**fields)
return fn
df = df.repartition(df.Store)
for asc in [False, True]:
sort col = df.Date.asc() if asc else df.Date.desc()
rdd = df.sortWithinPartitions (df.Store.asc(), sort col).rdd
for col in cols:
rdd = rdd.mapPartitions(add elapsed column(col, asc))
df = rdd.toDF ()
return df
def prepare df (df):
num rows = df.count ()
Expand dates.
df = expand date (df)

df = df \
.withColumn ('Open', df.Open != '0') \
.withColumn ('Promo', df.Promo != '0") \
.withColumn ('StateHoliday', df.StateHoliday != '0') \
.withColumn ('SchoolHoliday', df.SchoolHoliday !'= '0")

Merge in store information.

store = store csv.join(store states csv, 'Store')

df = df.join(store, 'Store')

Merge in Google Trend information.

google trend all = prepare google trend()

df = df.join(google trend all, ['State', 'Year',
'Week']) .select (df['*'], google trend all.trend)

Merge in Google Trend for whole Germany.

google trend de = google trend all[google trend all.file ==
'Rossmann DE'].withColumnRenamed ('trend', 'trend de')

df = df.join(google trend de, ['Year',K 'Week']).select(df['*'],
google trend de.trend de)
Merge in weather.
weather = weather csv.join(state names csv, weather csv.file ==
state names csv.StateName)
df = df.join(weather, ['State', 'Date'])
Fix null values.
df = df \
.withColumn ('CompetitionOpenSinceYear',
F.coalesce (df.CompetitionOpenSinceYear, F.1it(1900))) \
.withColumn ('CompetitionOpenSinceMonth',
F.coalesce (df.CompetitionOpenSinceMonth, F.lit(1l))) \
.withColumn ('Promo2SinceYear', F.coalesce (df.Promo2SinceYear,
F.1it(1900))) \
.withColumn ('Promo2SinceWeek', F.coalesce (df.Promo2SinceWeek,
F.lit(1)))
Days & months competition was open, cap to 2 years.
df = df.withColumn ('CompetitionOpenSince’,
F.to date(F.format string('%s-%s-15'",

df .CompetitionOpenSinceYear,

df.CompetitionOpenSinceMonth)))
df = df.withColumn ('CompetitionDaysOpen',
F.when (df.CompetitionOpenSinceYear > 1900,
F.greatest (F.1it (0), F.least(F.lit (360 *
2), F.datediff (df.Date, df.CompetitionOpenSince))))
.otherwise (0))
df = df.withColumn ('CompetitionMonthsOpen',
(df .CompetitionDaysOpen / 30) .cast(T.IntegerType()))
Days & weeks of promotion, cap to 25 weeks.
df = df.withColumn ('Promo2Since’',
F.expr('date add(format string("%s-01-01",
Promo2SinceYear), (cast (Promo2SinceWeek as int) - 1) * 7)"'))
df = df.withColumn ('Promo2Days',
F.when (df.Promo2SinceYear > 1900,
F.greatest (F.1it (0), F.least(F.lit (25 *
7), F.datediff (df.Date, df.Promo2Since))))
.otherwise (0))
df = df.withColumn ('Promo2Weeks', (df.Promo2Days /
7) .cast (T.IntegerType()))
Check that we did not lose any rows through inner joins.
assert num rows == df.count(), 'lost rows in joins'
return df
def build vocabulary(df, cols):
vocab = {}
for col in cols:

values = [r[0] for r in df.select(col) .distinct () .collect ()]

col type = type([x for x in values if x is not None] [0])
default value = col type()

vocab[col] = sorted(values, key=lambda x: x or default value)

return vocab
def cast columns (df, cols):
for col in cols:
df = df.withColumn (col,
F.coalesce(df[col].cast(T.FloatType()), F.1it(0.0)))
return df
def lookup columns (df, vocab):
def lookup (mapping) :
def fn(v) :
return mapping.index (v)
return F.udf (fn, returnType=T.IntegerType ())
for col, mapping in vocab.items() :
df = df.withColumn (col, lookup (mapping) (df[col]))
return df
if args.sample rate:
train csv = train csv.sample (withReplacement=False,
fraction=args.sample rate)
test csv = test csv.sample (withReplacement=False,
fraction=args.sample rate)
Prepare data frames from CSV files.
train df = prepare df (train csv) .cache ()

test df = prepare df (test csv) .cache()

Add elapsed times from holidays & promos, the data spanning training

& test datasets.
elapsed cols = ['Promo', 'StateHoliday', 'SchoolHoliday']

elapsed = add elapsed(train df.select('Date', 'Store', *elapsed cols)

.unionAll (test df.select('Date', 'Store',
*elapsed cols)),
elapsed cols)
Join with elapsed times.
train df = train df \

.Jjoin (elapsed, ['Date', 'Store']l) \
.select(train df['*'], *[prefix + col for prefix in ['Before',
'After'] for col in elapsed cols])
test df = test df \
.join(elapsed, ['Date', 'Store']) \

.select (test df['*'], *[prefix + col for prefix in ['Before',
'After'] for col in elapsed cols])
Filter out zero sales.
train df = train df.filter(train df.Sales > 0)

print ('Prepared data frame')

39

40

train df.show ()
categorical cols = [
'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',
'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',
'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',
'"Promo2SinceYear', 'Events', 'Promo',
'StateHoliday', 'SchoolHoliday'
]
continuous cols = |
'CompetitionDistance', 'Max TemperatureC', 'Mean TemperatureC',
'Min TemperatureC', 'Max Humidity',
'Mean Humidity', 'Min Humidity', 'Max Wind SpeedKm h',
'Mean Wind SpeedKm h', 'CloudCover', 'trend', 'trend de',
'BeforePromo', 'AfterPromo', 'AfterStateHoliday',
'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

]

all cols = categorical cols + continuous cols

Select features.

train df = train df.select(*(all cols + ['Sales', 'Date'])) .cache()
test df = test df.select(*(all cols + ['Id', 'Date'])) .cache()

Build vocabulary of categorical columns.
vocab = build vocabulary(train df.select (*categorical cols)

.unionAll (test df.select (*categorical cols)) .cache(),
categorical cols)
Cast continuous columns to float & lookup categorical columns.

train df = cast columns(train df, continuous cols + ['Sales'])
train df = lookup columns (train df, vocab)
test df = cast columns(test df, continuous cols)

test df = lookup columns (test df, vocab)

Split into training & validation.

Test set is in 2015, use the same period in 2014 from the training
set as a validation set.
test df.agg(F.min(test df.Date)).collect() [0][O0]
test df.agg(F.max(test df.Date)) .collect() [0][0]
one year = datetime.timedelta (365)
train df = train df.withColumn('Validation',

(train df.Date > test min date -

test min date

test max date

one year) & (train df.Date <= test max date - one year))
Determine max Sales number.
max sales = train df.agg(F.max(train df.Sales)).collect () [0][0O]
Convert Sales to log domain
train df = train df.withColumn('Sales', F.log(train df.Sales))

print ('Data frame with transformed columns')

print ('==s==============")

print ('Data frame sizes')

print ('=s=s==============")

train rows = train df.filter (~train df.Validation) .count ()
val rows = train df.filter(train df.Validation) .count ()
test rows = test df.count ()

print ('Training: %d' % train rows)
print ('Validation: %d' % val rows)
print ('Test: %d' % test rows)

============== {
MODEL TRAINING
==============
print ('==============")

print ('Model training')
print ('s=s============")
def exp rmspe(y true, y pred):
"""Competition evaluation metric, expects logarithic inputs."""
pct = tf.square((tf.exp(y true) - tf.exp(y pred)) /
tf.exp(y true))
Compute mean excluding stores with zero denominator.
x = tf.reduce sum(tf.where(y true > 0.001, pct,
tf.zeros like(pct)))
y = tf.reduce sum(tf.where(y true > 0.001, tf.ones like(pct),
tf.zeros like(pct)))
return tf.sqgrt(x / y)
def act sigmoid scaled(x):
"""Sigmoid scaled to logarithm of maximum sales scaled by 20%."""
return tf.nn.sigmoid(x) * tf.math.log(max sales) * 1.2
CUSTOM OBJECTS = {'exp rmspe': exp rmspe,
'act sigmoid scaled': act sigmoid scaled}
Disable GPUs when building the model to prevent memory leaks
if LooseVersion(tf. version) >= LooseVersion('2.0.0'):
See https://github.com/tensorflow/tensorflow/issues/33168
Os.environ['CUDA_VISIBLE_DEVICES'] = '-1"
else:

K.set session(tf.Session(config=tf.ConfigProto(device count={'GPU': 0})))
Build the model.
inputs = {col: Input (shape=(1,), name=col) for col in all cols}
embeddings = [Embedding (len(vocab[col]), 10, input length=1,
name='emb ' + col) (inputs[col])
for col in categorical cols]
continuous bn = Concatenate() ([Reshape((l, 1), name='reshape ' +
col) (inputs[col])

41

for col in continuous cols])

continuous bn = BatchNormalization () (continuous bn)

X Concatenate () (embeddings + [continuous bn])
Flatten () (x)

x = Dense (1000, activation='relu',

X

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.l12(0.00005)) (x)

x = Dense (500, activation='relu',
kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dropout (0.5) (x)
output = Dense(l, activation=act sigmoid scaled) (x)
model = tf.keras.Model ([inputs[f] for f in all cols], output)
model . summary ()
opt = tf.keras.optimizers.Adam(lr=args.learning rate, epsilon=le-3)

Checkpoint callback to specify options for the returned Keras model

ckpt callback = BestModelCheckpoint (monitor='val loss', mode='auto',
save freg='epoch')
Horovod: run training.
store = Store.create(args.work dir)
backend = SparkBackend (num proc=args.num proc,
stdout=sys.stdout, stderr=sys.stderr,
prefix output with timestamp=True)
keras estimator = hvd.KerasEstimator (backend=backend,
store=store,
model=model,
optimizer=opt,
loss="mae',
metrics=[exp rmspe],
custom objects=CUSTOM OBJECTS,
feature cols=all cols,
label cols=['Sales'],
validation='Validation',
batch size=args.batch size,
epochs=args.epochs,
verbose=2,

checkpoint callback=ckpt callback)
keras model =
keras estimator.fit (train df).setOutputCols(['Sales output'])
history = keras model.getHistory ()
best val rmspe = min(history['val exp rmspe'])
print ('Best RMSPE: %f' % best val rmspe)
Save the trained model.

keras model.save (args.local checkpoint file)

Q

print ('Written checkpoint to %s' % args.local checkpoint file)

B e
FINAL PREDICTION
B e
print ('================")

print ('Final prediction')

print ('================")

pred df=keras model.transform(test df)

pred df.printSchema ()

pred df.show(5)

Convert from log domain to real Sales numbers

pred df=pred df.withColumn('Sales pred', F.exp(pred df.Sales output))

submission df = pred df.select (pred df.Id.cast(T.IntegerType()),
pred df.Sales pred) .toPandas()

submission df.sort values (by=['Id']).to csv(args.local submission csv,
index=False)

print ('Saved predictions to %s' % args.local submission csv)

spark.stop ()

Das dritte Skript ist run_classification criteo spark.py.

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model selection import train test split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sqgl import SparkSession, SQLContext, Row, DataFrame
from pyspark.mllib import linalg as mllib linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector
from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as
mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark.ml import linalg as ml linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors
from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp # exp(-t) = e”-t

44

from operator import add
from pyspark.sqgl.functions import udf, split, 1lit
from pyspark.sqgl.functions import size, sum as sglsum
import pyspark.sgl.functions as F
import pyspark.sqgl.types as T
from pyspark.sqgl.types import ArrayType, StructType, StructField,
LongType, StringType, IntegerType, FloatType
from pyspark.sqgl.functions import explode, col, log, when
from collections import defaultdict
import pandas as pd
import pyspark.pandas as ps
from sklearn.metrics import log loss, roc_auc score
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from deepctr.models import DeepiM
from deepctr.feature column import SparseFeat, DenseFeat,
get feature names
spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500') \
.config('spark.driver.memoryOverhead', '1500') \
.config("spark.sqgl.shuffle.partitions", "480") \
.config("spark.sgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

spark.conf.set ("spark.sgl.execution.arrow.enabled", "true") # deprecated

print ("Apache Spark version:")

print (spark.version)

sc = spark.sparkContext

sglContext = SQLContext (sc)

parser = argparse.ArgumentParser (description='Spark DCN CTR Prediction
Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed
with file://) or on HDFS')
def process input file(file name, sparse feat, dense feat):
Need this preprocessing to turn Criteo raw file into CSV:
print ("START processing input file...")
only convert the file ONCE

sample open (file name)

sample '"\n'.join([str(x.replace('\n', '').replace('\t', ',')) for
X in sample])

Add header in data file and save as CSV

header = ', '.join(str(x) for x in (['label'] + dense feat +
sparse feat))

with open('/sparkdemo/tr-4570-data/ctr train.csv', mode='w'

encoding="utf-8") as f:
f.write (header + '\n' + sample)
f.close ()
print ("Raw training file processed and saved as CSV: ", f.name)
raw df = sglContext.read.option("header", True).csv(file name)

raw_df.show (5, False)
raw_df.printSchema ()
convert columns Il to I1l3 from string to integers
conv_df = raw df.select(col('label') .cast ("double"),
*(col (i) .cast ("float") .alias (i) for i in
raw df.columns if i in dense feat),
*(col(c) for c in raw df.columns if c in
sparse feat))
print ("Schema of raw df with integer columns type changed:")
conv_df.printSchema ()
result pdf = conv _df.select ("*").toPandas ()
tmp df = conv _df.na.fill (0, dense feat)
result df = tmp df.na.fill('-1', sparse feat)
result df.show()
return result df
if name == " main ":
args = parser.parse_args ()
Pandas read CSV

data = pd.read csv('%s/criteo sample.txt' % args.data dir)
print ("Obtained Pandas df.")

dense features = ['I' + str(i) for i in range(l, 14)]

sparse features = ['C' + str(i) for i1 in range(l, 27)]

Spark read CSV

process input file('%s/train.txt' % args.data dir, sparse features,
dense features) # run only ONCE

spark df = process input file('%s/data.txt' % args.data dir,
sparse features, dense features) # sample data

spark df = process input file('$s/ctr train.csv' % args.data dir,
sparse features, dense features)

print ("Obtained Spark df and filled in missing features.")

data = spark df

Pandas

#data[sparse_features] = data[sparse features].fillna('-1',)

#data[dense features] = data[dense features].fillna(0,)

target = ['label']
label npa = data.select ("label") .toPandas () .to numpy ()
print ("label numPy array has length = ", len(label npa)) # 45,840,617

w/ 11GB dataset

for

has

label npa.ravel()
label npa.reshape(len(label npa),)
1.Label Encoding for sparse features,and do simple Transformation
dense features
print ("Before LabelEncoder():")
data.printSchema () # label: float (nullable = true)
for feat in sparse features:
lbe = LabelEncoder ()
tmp pdf = data.select (feat) .toPandas () .to numpy ()
tmp ndarray = lbe.fit transform(tmp pdf)

print ("After LabelEncoder (), tmp ndarray[0] =", tmp ndarrayl[0])
print ("Data tmp PDF after lbe transformation, the output ndarray
length = ", len(tmp ndarray)) # 45,840,617 for 11GB dataset

tmp ndarray.ravel ()
tmp ndarray.reshape (len(tmp ndarray),)
out ndarray = np.column stack([label npa, tmp ndarray])
pdf = pd.DataFrame (out ndarray, columns=['label',6 feat])
s _df = spark.createDataFrame (pdf)
s_df.printSchema () # label: double (nullable = true)
print ("Before joining data df with s df, s df example rows:")
s _df.show(1l, False)
data = data.drop(feat).join(s_df, 'label').drop('label')
print ("After LabelEncoder (), data df example rows:")
data.show(l, False)
print ("Finished processing sparse features: ", feat)
print ("Data DF after label encoding: ")
data.show ()
data.printSchema ()
mms = MinMaxScaler (feature range=(0, 1))

data[dense features] = mms.fit transform(datal[dense features]) # for

Pandas df

46

tmp pdf = data.select (dense features) .toPandas () .to numpy ()
tmp ndarray = mms.fit transform(tmp pdf)

tmp ndarray.ravel ()

tmp ndarray.reshape (len (tmp ndarray), len(tmp ndarray[0]))
out ndarray = np.column stack([label npa, tmp ndarray])

pdf = pd.DataFrame (out ndarray, columns=['label'] + dense features)
s _df = spark.createDataFrame (pdf)

s_df.printSchema ()

data.drop (*dense features) .join(s _df, 'label').drop('label')
print ("Finished processing dense features: ", dense features)
print ("Data DF after MinMaxScaler: ")

data.show ()

2.count #unique features for each sparse field,and record dense
feature field name

fixlen feature columns = [SparseFeat (feat,
vocabulary size=data.select (feat) .distinct().count() + 1, embedding dim=4)
for i, feat in enumerate (sparse features)] +
\
[DenseFeat (feat, 1,) for feat in

dense features]

dnn_feature columns = fixlen feature columns

linear feature columns = fixlen feature columns

feature names = get feature names (linear feature columns +
dnn feature columns)

3.generate input data for model

train, test = train test split(data.toPandas(), test size=0.2,
random state=2020) # Pandas; might hang for 11GB data

train, test = data.randomSplit (weights=[0.8, 0.2], seed=200)

print ("Training dataset size = ", train.count())

print ("Testing dataset size = ", test.count())

Pandas:

train model input = {name: train[name] for name in feature names}
test model input = {name: test[name] for name in feature names}

Spark DF:

train model input = {}

test model input = {}
for name in feature names:

if name.startswith('I"'):

tr pdf = train.select (name) .toPandas ()

train model input[name] = pd.to numeric(tr pdf[name])
ts pdf = test.select (name) .toPandas ()

test model input[name] = pd.to numeric(ts pdf[name])

4.Define Model, train,predict and evaluate

model = DeepFM(linear feature columns, dnn feature columns,
task="binary"')

model.compile ("adam", "binary crossentropy",

metrics=['binary crossentropy'],)

lb pdf = train.select (target) .toPandas ()

history = model.fit (train model input,
pd.to numeric(lb pdf['label']) .values,

batch size=256, epochs=10, verbose=2,

validation split=0.2,)

pred ans = model.predict (test model input, batch size=256)

print ("test LogLoss",
round (log loss(pd.to numeric (test.select (target) .toPandas()) .values,
pred ans), 4))

round (roc_auc score (pd.to numeric(test.select (target) .toPandas()) .values,

print ("test AUC",

pred ans), 4))

Abschluss

In diesem Dokument besprechen wir die Apache Spark-Architektur, Anwendungsfalle von
Kunden und das NetApp -Speicherportfolio im Zusammenhang mit Big Data, moderner
Analytik sowie KI, ML und DL. In unseren Leistungsvalidierungstests auf Basis
brancheniblicher Benchmarking-Tools und der Kundennachfrage zeigten die NetApp
Spark-Lésungen eine hohere Leistung als native Hadoop-Systeme. Eine Kombination
aus den in diesem Bericht vorgestellten Anwendungsfallen und Leistungsergebnissen
von Kunden kann lhnen bei der Auswabhl einer geeigneten Spark-Ldsung flr lhre

Bereitstellung helfen.

Wo Sie weitere Informationen finden

Die folgenden Referenzen wurden in diesem TR verwendet:

48

Apache Spark-Architektur und -Komponenten
"http://spark.apache.org/docs/latest/cluster-overview.html"
Anwendungsfalle fir Apache Spark
"https://lwww.qubole.com/blog/big-data/apache-spark-use-cases/"
Spark NLP

"https://www.johnsnowlabs.com/spark-nlp/"

BERT

"https://arxiv.org/abs/1810.04805"

Tiefes und netzwerkibergreifendes Netzwerk fir Anzeigenklickvorhersagen
"https://arxiv.org/abs/1708.05123"

FlexGroup
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
Streaming-ETL
"https://www.infoq.com/articles/apache-spark-streaming"

NetApp E-Series-Losungen flir Hadoop

"https://www.netapp.com/media/16420-tr-3969.pdf"

http://spark.apache.org/docs/latest/cluster-overview.html
https://www.qubole.com/blog/big-data/apache-spark-use-cases/
https://www.johnsnowlabs.com/spark-nlp/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1708.05123
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
https://www.infoq.com/articles/apache-spark-streaming
https://www.netapp.com/media/16420-tr-3969.pdf

* Moderne Datenanalyseldsungen von NetApp
"Datenanalyseldsungen”
» SnapMirror
"https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html"
+ XCP
https://mysupport.netapp.com/documentation/docweb/index.html?productlD=63942&language=en-US
» BlueXP Kopieren und Synchronisieren
"https://cloud.netapp.com/cloud-sync-service"
» DataOps-Toolkit

"https://github.com/NetApp/netapp-dataops-toolkit"

49

https://docs.netapp.com/de-de/netapp-solutions-ai/data-analytics/index.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service
https://github.com/NetApp/netapp-dataops-toolkit

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

50

http://www.netapp.com/TM\

	NetApp Storage-Lösungen für Apache Spark : NetApp artificial intelligence solutions
	Inhalt
	NetApp Storage-Lösungen für Apache Spark
	TR-4570: NetApp -Speicherlösungen für Apache Spark: Architektur, Anwendungsfälle und Leistungsergebnisse
	Kundenherausforderungen
	Warum NetApp?

	Zielgruppe
	Lösungstechnologie
	Übersicht über die NetApp Spark-Lösungen
	Zusammenfassung des Anwendungsfalls
	Streaming-Daten
	Maschinelles Lernen
	Tiefes Lernen
	Interaktive Analyse
	Empfehlungssystem
	Verarbeitung natürlicher Sprache

	Wichtige Anwendungsfälle und Architekturen für KI, ML und DL
	Spark NLP-Pipelines und verteilte TensorFlow-Inferenz
	Horovod verteiltes Training
	Multi-Worker-Deep-Learning mit Keras zur CTR-Vorhersage
	Zur Validierung verwendete Architekturen

	Testergebnisse
	Finanzstimmungsanalyse
	Verteiltes Training mit Horovod-Leistung
	Deep-Learning-Modelle für die CTR-Vorhersageleistung

	Hybrid-Cloud-Lösung
	Python-Skripte für jeden wichtigen Anwendungsfall
	Abschluss
	Wo Sie weitere Informationen finden

