
Vector Datenbanklösung mit NetApp
NetApp artificial intelligence solutions
NetApp
December 04, 2025

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on December 04, 2025. Always check docs.netapp.com for the latest.

Inhalt

Vector Datenbanklösung mit NetApp . 1

Vector Datenbanklösung mit NetApp . 1

Einführung . 2

Einführung . 2

Lösungsübersicht . 2

Lösungsübersicht . 3

Vektordatenbank . 3

Vektordatenbank . 3

Technologieanforderungen. 7

Technologieanforderungen. 7

Hardwareanforderungen . 7

Softwareanforderungen . 7

Bereitstellungsverfahren . 7

Bereitstellungsverfahren . 8

Lösungsüberprüfung . 9

Lösungsübersicht . 9

Milvus-Cluster-Setup mit Kubernetes vor Ort . 10

Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität 17

Vector-Datenbankschutz mit SnapCenter . 24

Disaster Recovery mit NetApp SnapMirror . 35

Leistungsvalidierung der Vektordatenbank . 37

Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector . 45

Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector . 45

Anwendungsfälle für Vektordatenbanken. 45

Anwendungsfälle für Vektordatenbanken . 45

Abschluss. 48

Abschluss. 48

Anhang A: Values.yaml . 49

Anhang A: Values.yaml . 49

Anhang B: prepare_data_netapp_new.py . 70

Anhang B: prepare_data_netapp_new.py . 70

Anhang C: verify_data_netapp.py . 74

Anhang C: verify_data_netapp.py . 74

Anhang D: docker-compose.yml . 77

Anhang D: docker-compose.yml . 77

Vector Datenbanklösung mit NetApp

Vector Datenbanklösung mit NetApp

Karthikeyan Nagalingam und Rodrigo Nascimento, NetApp

Dieses Dokument bietet eine umfassende Untersuchung der Bereitstellung und
Verwaltung von Vektordatenbanken wie Milvus und pgvecto, einer Open-Source-
PostgreSQL-Erweiterung, unter Verwendung der Speicherlösungen von NetApp. Es
beschreibt detailliert die Infrastrukturrichtlinien für die Verwendung von NetApp ONTAP
und StorageGRID Objektspeicher und validiert die Anwendung der Milvus-Datenbank in
AWS FSx ONTAP. Das Dokument erläutert die Datei-Objekt-Dualität von NetApp und
ihren Nutzen für Vektordatenbanken und Anwendungen, die Vektoreinbettungen
unterstützen. Es betont die Fähigkeiten von SnapCenter, dem Enterprise-Management-
Produkt von NetApp, das Sicherungs- und Wiederherstellungsfunktionen für
Vektordatenbanken bietet und so die Datenintegrität und -verfügbarkeit sicherstellt. Das
Dokument befasst sich eingehender mit der Hybrid-Cloud-Lösung von NetApp und
erörtert ihre Rolle bei der Datenreplikation und -sicherung in lokalen und Cloud-
Umgebungen. Es enthält Einblicke in die Leistungsvalidierung von Vektordatenbanken
auf NetApp ONTAP und schließt mit zwei praktischen Anwendungsfällen zur generativen
KI: RAG mit LLM und NetApps internem ChatAI. Dieses Dokument dient als umfassender
Leitfaden zur Nutzung der Speicherlösungen von NetApp für die Verwaltung von
Vektordatenbanken.

Der Schwerpunkt der Referenzarchitektur liegt auf Folgendem:

1. "Einführung"

2. "Lösungsübersicht"

3. "Vektordatenbank"

4. "Technologieanforderungen"

5. "Bereitstellungsverfahren"

6. "Übersicht zur Lösungsüberprüfung"

◦ "Milvus-Cluster-Setup mit Kubernetes vor Ort"

◦ Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität

◦ "Vector-Datenbankschutz mit NetApp SnapCenter."

◦ "Disaster Recovery mit NetApp SnapMirror"

◦ "Leistungsvalidierung"

7. "Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector"

8. "Anwendungsfälle für Vektordatenbanken"

9. "Abschluss"

10. "Anhang A: values.yaml"

11. "Anhang B: prepare_data_netapp_new.py"

1

https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

12. "Anhang C: verify_data_netapp.py"

13. "Anhang D: docker-compose.yml"

Einführung

Dieser Abschnitt bietet eine Einführung in die Vektordatenbanklösung für NetApp.

Einführung

Vektordatenbanken bewältigen effektiv die Herausforderungen, die für die Bewältigung der Komplexität der
semantischen Suche in Large Language Models (LLMs) und generativer künstlicher Intelligenz (KI) entwickelt
wurden. Im Gegensatz zu herkömmlichen Datenverwaltungssystemen können Vektordatenbanken
verschiedene Datentypen verarbeiten und durchsuchen, darunter Bilder, Videos, Text, Audio und andere
Formen unstrukturierter Daten, indem sie den Inhalt der Daten selbst und nicht Beschriftungen oder Tags
verwenden.

Die Einschränkungen relationaler Datenbankmanagementsysteme (RDBMS) sind gut dokumentiert,
insbesondere ihre Probleme mit hochdimensionalen Datendarstellungen und unstrukturierten Daten, die in KI-
Anwendungen üblich sind. RDBMS erfordern häufig einen zeitaufwändigen und fehleranfälligen Prozess zur
Vereinfachung der Daten in besser handhabbare Strukturen, was zu Verzögerungen und Ineffizienzen bei der
Suche führt. Vektordatenbanken sind jedoch darauf ausgelegt, diese Probleme zu umgehen. Sie bieten eine
effizientere und genauere Lösung für die Verwaltung und Suche in komplexen und hochdimensionalen Daten
und erleichtern so die Weiterentwicklung von KI-Anwendungen.

Dieses Dokument dient als umfassender Leitfaden für Kunden, die derzeit Vektordatenbanken verwenden oder
dies planen. Es beschreibt die Best Practices für die Verwendung von Vektordatenbanken auf Plattformen wie
NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP für NetApp ONTAP und SnapCenter. Die hier
bereitgestellten Inhalte decken eine Reihe von Themen ab:

• Infrastrukturrichtlinien für Vektordatenbanken wie Milvus, bereitgestellt von NetApp Storage über NetApp
ONTAP und StorageGRID Objektspeicher.

• Validierung der Milvus-Datenbank in AWS FSx ONTAP durch Datei- und Objektspeicher.

• Befasst sich eingehend mit der Datei-Objekt-Dualität von NetApp und demonstriert deren Nutzen für Daten
in Vektordatenbanken sowie anderen Anwendungen.

• So bietet SnapCenter, das Data Protection Management-Produkt von NetApp, Sicherungs- und
Wiederherstellungsfunktionen für Vektordatenbankdaten.

• So bietet die Hybrid Cloud von NetApp Datenreplikation und -schutz in lokalen und Cloud-Umgebungen.

• Bietet Einblicke in die Leistungsvalidierung von Vektordatenbanken wie Milvus und pgvector auf NetApp
ONTAP.

• Zwei konkrete Anwendungsfälle: Retrieval Augmented Generation (RAG) mit Large Language Models
(LLM) und ChatAI des NetApp IT-Teams, die praktische Beispiele für die beschriebenen Konzepte und
Praktiken bieten.

Lösungsübersicht

Dieser Abschnitt bietet einen Überblick über die NetApp Vector-Datenbanklösung.

2

Lösungsübersicht

Diese Lösung demonstriert die besonderen Vorteile und Fähigkeiten, die NetApp mitbringt, um die
Herausforderungen zu bewältigen, vor denen Kunden von Vektordatenbanken stehen. Durch die Nutzung von
NetApp ONTAP, StorageGRID, den Cloud-Lösungen von NetApp und SnapCenter können Kunden ihren
Geschäftsbetrieb erheblich aufwerten. Diese Tools lösen nicht nur bestehende Probleme, sondern steigern
auch die Effizienz und Produktivität und tragen so zum allgemeinen Unternehmenswachstum bei.

Warum NetApp?

• Die Angebote von NetApp, wie ONTAP und StorageGRID, ermöglichen die Trennung von Speicher und
Rechenleistung und ermöglichen so eine optimale Ressourcennutzung basierend auf spezifischen
Anforderungen. Diese Flexibilität ermöglicht es Kunden, ihren Speicher mithilfe von NetApp
Speicherlösungen unabhängig zu skalieren.

• Durch die Nutzung der Speichercontroller von NetApp können Kunden mithilfe der Protokolle NFS und S3
effizient Daten an ihre Vektordatenbank übermitteln. Diese Protokolle erleichtern die Speicherung von
Kundendaten und verwalten den Vektordatenbankindex, sodass nicht mehr mehrere Kopien der Daten
benötigt werden, auf die über Datei- und Objektmethoden zugegriffen wird.

• NetApp ONTAP bietet native Unterstützung für NAS- und Objektspeicher bei führenden Cloud-Service-
Anbietern wie AWS, Azure und Google Cloud. Diese umfassende Kompatibilität gewährleistet eine
nahtlose Integration und ermöglicht Kundendatenmobilität, globale Zugänglichkeit,
Notfallwiederherstellung, dynamische Skalierbarkeit und hohe Leistung.

• Dank der robusten Datenverwaltungsfunktionen von NetApp können Kunden sicher sein, dass ihre Daten
gut vor potenziellen Risiken und Bedrohungen geschützt sind. NetApp legt größten Wert auf
Datensicherheit und bietet seinen Kunden die Gewissheit, dass ihre wertvollen Informationen sicher und
intakt sind.

Vektordatenbank

Dieser Abschnitt behandelt die Definition und Verwendung einer Vektordatenbank in
NetApp KI-Lösungen.

Vektordatenbank

Eine Vektordatenbank ist ein spezialisierter Datenbanktyp, der für die Verarbeitung, Indizierung und Suche
unstrukturierter Daten mithilfe von Einbettungen aus Modellen des maschinellen Lernens konzipiert ist. Anstatt
Daten in einem herkömmlichen Tabellenformat zu organisieren, werden sie als hochdimensionale Vektoren
angeordnet, die auch als Vektoreinbettungen bezeichnet werden. Diese einzigartige Struktur ermöglicht es der
Datenbank, komplexe, mehrdimensionale Daten effizienter und genauer zu verarbeiten.

Eine der wichtigsten Fähigkeiten einer Vektordatenbank ist die Verwendung generativer KI zur Durchführung
von Analysen. Hierzu gehören Ähnlichkeitssuchen, bei denen die Datenbank Datenpunkte identifiziert, die
einer bestimmten Eingabe ähneln, und die Anomalieerkennung, bei der sie Datenpunkte erkennen kann, die
erheblich von der Norm abweichen.

Darüber hinaus eignen sich Vektordatenbanken gut für die Verarbeitung zeitlicher Daten oder mit Zeitstempeln
versehener Daten. Diese Art von Daten liefert Informationen darüber, „was“ passiert ist und wann es passiert
ist, in der Reihenfolge und im Verhältnis zu allen anderen Ereignissen innerhalb eines bestimmten IT-Systems.
Diese Fähigkeit, zeitliche Daten zu verarbeiten und zu analysieren, macht Vektordatenbanken besonders
nützlich für Anwendungen, die ein Verständnis von Ereignissen im Zeitverlauf erfordern.

3

Vorteile der Vektordatenbank für ML und KI:

• Hochdimensionale Suche: Vektordatenbanken eignen sich hervorragend zum Verwalten und Abrufen
hochdimensionaler Daten, die häufig in KI- und ML-Anwendungen generiert werden.

• Skalierbarkeit: Sie können effizient skaliert werden, um große Datenmengen zu verarbeiten und so das
Wachstum und die Expansion von KI- und ML-Projekten zu unterstützen.

• Flexibilität: Vektordatenbanken bieten ein hohes Maß an Flexibilität und ermöglichen die Aufnahme
unterschiedlicher Datentypen und -strukturen.

• Leistung: Sie bieten leistungsstarkes Datenmanagement und -abruf, was für die Geschwindigkeit und
Effizienz von KI- und ML-Operationen entscheidend ist.

• Anpassbare Indizierung: Vector-Datenbanken bieten anpassbare Indizierungsoptionen, die eine optimierte
Datenorganisation und -abfrage basierend auf spezifischen Anforderungen ermöglichen.

Vektordatenbanken und Anwendungsfälle.

Dieser Abschnitt enthält verschiedene Vektordatenbanken und Einzelheiten zu ihren Anwendungsfällen.

Faiss und ScaNN

Es handelt sich um Bibliotheken, die als wichtige Werkzeuge im Bereich der Vektorsuche dienen. Diese
Bibliotheken bieten Funktionen, die für die Verwaltung und Suche in Vektordaten von entscheidender
Bedeutung sind, und stellen somit unschätzbare Ressourcen in diesem speziellen Bereich der
Datenverwaltung dar.

Elasticsearch

Es handelt sich um eine weit verbreitete Such- und Analyse-Engine, die seit kurzem auch über eine
Vektorsuchfunktion verfügt. Diese neue Funktion erweitert die Funktionalität und ermöglicht eine effektivere
Verarbeitung und Suche in Vektordaten.

Tannenzapfen

Es handelt sich um eine robuste Vektordatenbank mit einem einzigartigen Funktionsumfang. Es unterstützt in
seiner Indexierungsfunktionalität sowohl dichte als auch spärliche Vektoren, was seine Flexibilität und
Anpassungsfähigkeit verbessert. Eine seiner Hauptstärken liegt in der Fähigkeit, traditionelle Suchmethoden
mit KI-basierter dichter Vektorsuche zu kombinieren und so einen hybriden Suchansatz zu schaffen, der das
Beste aus beiden Welten nutzt.

Pinecone ist hauptsächlich cloudbasiert, für Anwendungen des maschinellen Lernens konzipiert und lässt sich
gut in eine Vielzahl von Plattformen integrieren, darunter GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut
Plus, Elasticsearch, Haystack und mehr. Es ist wichtig zu beachten, dass Pinecone eine Closed-Source-
Plattform ist und als Software-as-a-Service-Angebot (SaaS) verfügbar ist.

Aufgrund seiner erweiterten Funktionen eignet sich Pinecone besonders gut für die Cybersicherheitsbranche,
wo seine hochdimensionalen Such- und Hybridsuchfunktionen effektiv genutzt werden können, um
Bedrohungen zu erkennen und darauf zu reagieren.

Chroma

Es handelt sich um eine Vektordatenbank mit einer Core-API mit vier Hauptfunktionen, von denen eine einen
In-Memory-Dokumentenvektorspeicher umfasst. Es nutzt außerdem die Face Transformers-Bibliothek zum
Vektorisieren von Dokumenten und verbessert so seine Funktionalität und Vielseitigkeit. Chroma ist für den
Betrieb sowohl in der Cloud als auch vor Ort konzipiert und bietet Flexibilität basierend auf den

4

Benutzeranforderungen. Es zeichnet sich insbesondere bei Audioanwendungen aus und ist daher eine
ausgezeichnete Wahl für audiobasierte Suchmaschinen, Musikempfehlungssysteme und andere
audiobezogene Anwendungsfälle.

Weaviate

Es handelt sich um eine vielseitige Vektordatenbank, die es Benutzern ermöglicht, ihre Inhalte entweder
mithilfe der integrierten oder benutzerdefinierten Module zu vektorisieren und so Flexibilität basierend auf
spezifischen Anforderungen zu bieten. Es bietet sowohl vollständig verwaltete als auch selbst gehostete
Lösungen und berücksichtigt dabei eine Vielzahl von Bereitstellungspräferenzen.

Eine der Hauptfunktionen von Weaviate ist die Fähigkeit, sowohl Vektoren als auch Objekte zu speichern,
wodurch die Datenverarbeitungsfunktionen verbessert werden. Es wird häufig für eine Reihe von
Anwendungen verwendet, darunter semantische Suche und Datenklassifizierung in ERP-Systemen. Im E-
Commerce-Sektor treibt es Such- und Empfehlungsmaschinen an. Weaviate wird auch für die Bildsuche,
Anomalieerkennung, automatisierte Datenharmonisierung und Cybersicherheitsbedrohungsanalyse verwendet
und zeigt damit seine Vielseitigkeit in mehreren Bereichen.

Redis

Redis ist eine leistungsstarke Vektordatenbank, die für ihre schnelle In-Memory-Speicherung bekannt ist und
eine geringe Latenz für Lese-/Schreibvorgänge bietet. Dies macht es zu einer ausgezeichneten Wahl für
Empfehlungssysteme, Suchmaschinen und Datenanalyseanwendungen, die einen schnellen Datenzugriff
erfordern.

Redis unterstützt verschiedene Datenstrukturen für Vektoren, einschließlich Listen, Mengen und sortierte
Mengen. Es bietet auch Vektoroperationen wie das Berechnen von Abständen zwischen Vektoren oder das
Finden von Schnittpunkten und Vereinigungen. Diese Funktionen sind besonders nützlich für die
Ähnlichkeitssuche, Clustering und inhaltsbasierte Empfehlungssysteme.

In Bezug auf Skalierbarkeit und Verfügbarkeit zeichnet sich Redis durch die Verarbeitung von Workloads mit
hohem Durchsatz aus und bietet Datenreplikation. Es lässt sich auch gut in andere Datentypen integrieren,
einschließlich herkömmlicher relationaler Datenbanken (RDBMS). Redis enthält eine Publish/Subscribe-
Funktion (Pub/Sub) für Echtzeit-Updates, die für die Verwaltung von Echtzeit-Vektoren von Vorteil ist. Darüber
hinaus ist Redis leichtgewichtig und einfach zu verwenden, was es zu einer benutzerfreundlichen Lösung für
die Verwaltung von Vektordaten macht.

Milvus

Es handelt sich um eine vielseitige Vektordatenbank, die eine API wie einen Dokumentenspeicher bietet,
ähnlich wie MongoDB. Es zeichnet sich durch die Unterstützung einer Vielzahl von Datentypen aus und ist
daher eine beliebte Wahl in den Bereichen Datenwissenschaft und maschinelles Lernen.

Eine der einzigartigen Funktionen von Milvus ist die Multivektorisierungsfunktion, die es Benutzern ermöglicht,
zur Laufzeit den für die Suche zu verwendenden Vektortyp anzugeben. Darüber hinaus nutzt es Knowwhere,
eine Bibliothek, die auf anderen Bibliotheken wie Faiss aufbaut, um die Kommunikation zwischen Abfragen
und den Vektorsuchalgorithmen zu verwalten.

Dank seiner Kompatibilität mit PyTorch und TensorFlow bietet Milvus außerdem eine nahtlose Integration in
Machine-Learning-Workflows. Dies macht es zu einem hervorragenden Tool für eine Reihe von Anwendungen,
darunter E-Commerce, Bild- und Videoanalyse, Objekterkennung, Bildähnlichkeitssuche und inhaltsbasierte
Bildabfrage. Im Bereich der natürlichen Sprachverarbeitung wird Milvus für die Dokumentenclusterung,
semantische Suche und Frage-Antwort-Systeme verwendet.

Für diese Lösung haben wir Milvus zur Lösungsvalidierung ausgewählt. Aus Leistungsgründen haben wir

5

sowohl Milvus als auch Postgres (pgvecto.rs) verwendet.

Warum haben wir uns für diese Lösung für Milvus entschieden?

• Open Source: Milvus ist eine Open-Source-Vektordatenbank, die eine von der Community gesteuerte
Entwicklung und Verbesserung fördert.

• KI-Integration: Es nutzt die Einbettung von Ähnlichkeitssuchen und KI-Anwendungen, um die Funktionalität
der Vektordatenbank zu verbessern.

• Handhabung großer Datenmengen: Milvus verfügt über die Kapazität, über eine Milliarde
Einbettungsvektoren zu speichern, zu indizieren und zu verwalten, die von Deep Neural Networks (DNN)
und Machine Learning (ML)-Modellen generiert werden.

• Benutzerfreundlich: Die Verwendung ist einfach, die Einrichtung dauert weniger als eine Minute. Milvus
bietet auch SDKs für verschiedene Programmiersprachen an.

• Geschwindigkeit: Es bietet blitzschnelle Abrufgeschwindigkeiten, bis zu 10-mal schneller als einige
Alternativen.

• Skalierbarkeit und Verfügbarkeit: Milvus ist hochgradig skalierbar und bietet Optionen zur Skalierung nach
oben und unten nach Bedarf.

• Funktionsreich: Es unterstützt verschiedene Datentypen, Attributfilterung, benutzerdefinierte Funktionen
(UDF), konfigurierbare Konsistenzstufen und Reisezeiten und ist somit ein vielseitiges Tool für
verschiedene Anwendungen.

Milvus-Architekturübersicht

Dieser Abschnitt stellt Komponenten und Dienste höherer Ebene bereit, die in der Milvus-Architektur
verwendet werden. * Zugriffsebene – Sie besteht aus einer Gruppe zustandsloser Proxys und dient als
Frontebene des Systems und Endpunkt für Benutzer. * Koordinatordienst – er weist die Aufgaben den
Arbeitsknoten zu und fungiert als Gehirn des Systems. Es gibt drei Koordinatortypen: Stammkoordinate,
Datenkoordinate und Abfragekoordinate. * Worker-Knoten: Es folgt den Anweisungen des Koordinatordienstes

6

und führt vom Benutzer ausgelöste DML/DDL-Befehle aus. Es gibt drei Arten von Worker-Knoten, nämlich
Abfrageknoten, Datenknoten und Indexknoten. * Speicher: Er ist für die Datenpersistenz verantwortlich. Es
umfasst Metaspeicher, Log Broker und Objektspeicher. NetApp Speicher wie ONTAP und StorageGRID bieten
Milvus Objektspeicher und dateibasierten Speicher sowohl für Kundendaten als auch für
Vektordatenbankdaten.

Technologieanforderungen

Dieser Abschnitt bietet einen Überblick über die Anforderungen für die NetApp Vector-
Datenbanklösung.

Technologieanforderungen

Für die Mehrzahl der in diesem Dokument durchgeführten Validierungen wurden die unten beschriebenen
Hardware- und Softwarekonfigurationen verwendet, mit Ausnahme der Leistung. Diese Konfigurationen dienen
als Richtlinie und helfen Ihnen beim Einrichten Ihrer Umgebung. Bitte beachten Sie jedoch, dass die konkreten
Komponenten je nach individuellen Kundenanforderungen variieren können.

Hardwareanforderungen

Hardware Details

NetApp AFF Storage-Array HA-Paar * A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Zwei flexible Gruppenvolumes: Metadaten und Daten.
* Das Metadaten-NFS-Volume verfügt über 12
persistente Volumes mit 250 GB. * Daten sind ein
ONTAP NAS S3-Volume

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPUs * Intel® Xeon® Gold 6142 CPU @ 2,60
GHz * 256 GM physischer Speicher * 1 x 100GbE
Netzwerkanschluss

Vernetzung 100 GbE

StorageGRID * 1 x SG100, 3 x SGF6024 * 3 x 24 x 7,68 TB

Softwareanforderungen

Software Details

Milvus-Cluster * DIAGRAMM - milvus-4.1.11. * APP-Version – 2.3.4 *
Abhängige Pakete wie Bookkeeper, Zookeeper,
Pulsar, etcd, Proxy, Querynode, Worker

Kubernetes * 5-Knoten-K8s-Cluster * 1 Masterknoten und 4
Workerknoten * Version – 1.7.2

Python *3.10.12.

Bereitstellungsverfahren

In diesem Abschnitt wird das Bereitstellungsverfahren für die Vektordatenbanklösung für
NetApp erläutert.

7

Bereitstellungsverfahren

In diesem Bereitstellungsabschnitt haben wir die Milvus-Vektordatenbank mit Kubernetes für die
Laboreinrichtung wie unten beschrieben verwendet.

Der NetApp-Speicher stellt den Speicherplatz für den Cluster bereit, um Kundendaten und Milvus-Clusterdaten
aufzubewahren.

NetApp -Speichereinrichtung – ONTAP

• Initialisierung des Speichersystems

• Erstellen einer virtuellen Speichermaschine (SVM)

• Zuordnung logischer Netzwerkschnittstellen

• NFS, S3-Konfiguration und -Lizenzierung

Bitte befolgen Sie die folgenden Schritte für NFS (Network File System):

1. Erstellen Sie ein FlexGroup -Volume für NFSv4. In unserem Setup für diese Validierung haben wir 48
SSDs verwendet, 1 SSD speziell für das Root-Volume des Controllers und 47 SSDs verteilt für
NFSv4]].Überprüfen Sie, ob die NFS-Exportrichtlinie für das FlexGroup -Volume Lese-
/Schreibberechtigungen für das Kubernetes-Knotennetzwerk (K8s) hat. Wenn diese Berechtigungen nicht
vorhanden sind, erteilen Sie Lese-/Schreibberechtigungen (rw) für das K8s-Knotennetzwerk.

8

2. Erstellen Sie auf allen K8s-Knoten einen Ordner und mounten Sie das FlexGroup Volume über eine
logische Schnittstelle (LIF) auf jedem K8s-Knoten in diesen Ordner.

Bitte befolgen Sie die folgenden Schritte für NAS S3 (Network Attached Storage Simple Storage Service):

1. Erstellen Sie ein FlexGroup -Volume für NFS.

2. Richten Sie mit dem Befehl „vserver object-store-server create“ einen Object-Store-Server mit aktiviertem
HTTP und dem Administratorstatus „up“ ein. Sie haben die Möglichkeit, HTTPS zu aktivieren und einen
benutzerdefinierten Listener-Port festzulegen.

3. Erstellen Sie einen Object-Store-Server-Benutzer mit dem Befehl „vserver object-store-server user create
-user <Benutzername>“.

4. Um den Zugriffsschlüssel und den geheimen Schlüssel zu erhalten, können Sie den folgenden Befehl
ausführen: „set diag; vserver object-store-server user show -user <Benutzername>“. In Zukunft werden
diese Schlüssel jedoch während des Benutzererstellungsprozesses bereitgestellt oder können mithilfe von
REST-API-Aufrufen abgerufen werden.

5. Richten Sie mit dem in Schritt 2 erstellten Benutzer eine Object-Store-Server-Gruppe ein und gewähren
Sie Zugriff. In diesem Beispiel haben wir „FullAccess“ bereitgestellt.

6. Erstellen Sie einen NAS-Bucket, indem Sie seinen Typ auf „nas“ festlegen und den Pfad zum NFSv3-
Volume angeben. Es ist auch möglich, zu diesem Zweck einen S3-Bucket zu verwenden.

NetApp -Speichereinrichtung – StorageGRID

1. Installieren Sie die storageGRID-Software.

2. Erstellen Sie einen Mandanten und einen Bucket.

3. Erstellen Sie einen Benutzer mit der erforderlichen Berechtigung.

Weitere Einzelheiten finden Sie in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Lösungsüberprüfung

Lösungsübersicht

Wir haben eine umfassende Lösungsvalidierung mit Schwerpunkt auf fünf
Schlüsselbereichen durchgeführt, deren Einzelheiten im Folgenden aufgeführt sind.
Jeder Abschnitt befasst sich eingehend mit den Herausforderungen, vor denen die
Kunden stehen, den von NetApp bereitgestellten Lösungen und den daraus
resultierenden Vorteilen für den Kunden.

1. "Milvus-Cluster-Setup mit Kubernetes vor Ort"Kunden stehen vor der Herausforderung, Speicher und
Rechenleistung unabhängig zu skalieren und die Infrastruktur und Daten effektiv zu verwalten. In diesem
Abschnitt beschreiben wir detailliert den Prozess der Installation eines Milvus-Clusters auf Kubernetes
unter Verwendung eines NetApp -Speichercontrollers sowohl für Clusterdaten als auch für Kundendaten.

2. Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität In diesem Abschnitt
erfahren Sie, warum wir die Vektordatenbank in der Cloud bereitstellen müssen, sowie die Schritte zur
Bereitstellung der Vektordatenbank (Milvus Standalone) in Amazon FSx ONTAP für NetApp ONTAP
innerhalb von Docker-Containern.

3. "Vector-Datenbankschutz mit NetApp SnapCenter."In diesem Abschnitt gehen wir näher darauf ein, wie
SnapCenter die in ONTAP gespeicherten Vektordatenbankdaten und Milvus-Daten schützt. Für dieses

9

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html
https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

Beispiel haben wir einen NAS-Bucket (milvusdbvol1) verwendet, der aus einem NFS- ONTAP Volume
(vol1) für Kundendaten abgeleitet wurde, und ein separates NFS-Volume (vectordbpv) für Milvus-Cluster-
Konfigurationsdaten.

4. "Disaster Recovery mit NetApp SnapMirror"In diesem Abschnitt besprechen wir die Bedeutung der
Notfallwiederherstellung (DR) für die Vektordatenbank und wie das NetApp-
Notfallwiederherstellungsprodukt SnapMirror eine DR-Lösung für die Vektordatenbank bereitstellt.

5. "Leistungsvalidierung"In diesem Abschnitt möchten wir uns eingehend mit der Leistungsvalidierung von
Vektordatenbanken wie Milvus und pgvecto.rs befassen und uns dabei auf ihre
Speicherleistungsmerkmale wie E/A-Profil und Verhalten des NetApp-Speichercontrollers zur
Unterstützung von RAG- und Inferenz-Workloads innerhalb des LLM-Lebenszyklus konzentrieren. Wir
werden alle Leistungsunterschiede bewerten und identifizieren, wenn diese Datenbanken mit der ONTAP
Speicherlösung kombiniert werden. Unsere Analyse basiert auf wichtigen Leistungsindikatoren,
beispielsweise der Anzahl der pro Sekunde verarbeiteten Abfragen (QPS).

Milvus-Cluster-Setup mit Kubernetes vor Ort

In diesem Abschnitt wird die Einrichtung des Milvus-Clusters für die Vector-
Datenbanklösung für NetApp erläutert.

Milvus-Cluster-Setup mit Kubernetes vor Ort

Kunden stehen vor der Herausforderung, Speicher und Rechenleistung unabhängig zu skalieren und eine
effektive Infrastruktur- und Datenverwaltung zu gewährleisten. Kubernetes und Vektordatenbanken bilden
zusammen eine leistungsstarke, skalierbare Lösung für die Verwaltung großer Datenvorgänge. Kubernetes
optimiert Ressourcen und verwaltet Container, während Vektordatenbanken hochdimensionale Daten und
Ähnlichkeitssuchen effizient verarbeiten. Diese Kombination ermöglicht die schnelle Verarbeitung komplexer
Abfragen großer Datensätze und lässt sich nahtlos mit wachsenden Datenmengen skalieren, was sie ideal für
Big-Data-Anwendungen und KI-Workloads macht.

1. In diesem Abschnitt beschreiben wir detailliert den Prozess der Installation eines Milvus-Clusters auf
Kubernetes unter Verwendung eines NetApp -Speichercontrollers sowohl für Clusterdaten als auch für
Kundendaten.

2. Zur Installation eines Milvus-Clusters sind Persistent Volumes (PVs) zum Speichern von Daten aus
verschiedenen Milvus-Clusterkomponenten erforderlich. Zu diesen Komponenten gehören etcd (drei
Instanzen), pulsar-bookie-journal (drei Instanzen), pulsar-bookie-ledgers (drei Instanzen) und pulsar-
zookeeper-data (drei Instanzen).

Im Milvus-Cluster können wir entweder Pulsar oder Kafka als zugrunde liegende Engine
verwenden, die die zuverlässige Speicherung und Veröffentlichung/Abonnementierung von
Nachrichtenströmen im Milvus-Cluster unterstützt. Für Kafka mit NFS hat NetApp
Verbesserungen in ONTAP 9.12.1 und höher vorgenommen. Diese Verbesserungen sowie
NFSv4.1- und Linux-Änderungen, die in RHEL 8.7 oder 9.1 und höher enthalten sind,
beheben das Problem der „dummen Umbenennung“, das beim Ausführen von Kafka über
NFS auftreten kann. Wenn Sie an ausführlicheren Informationen zum Ausführen von Kafka
mit der NetApp NFS-Lösung interessiert sind, lesen Sie bitte -"dieser Link" .

3. Wir haben ein einzelnes NFS-Volume von NetApp ONTAP erstellt und 12 persistente Volumes mit jeweils
250 GB Speicher eingerichtet. Die Speichergröße kann je nach Clustergröße variieren. Beispielsweise
haben wir einen anderen Cluster, bei dem jedes PV über 50 GB verfügt. Weitere Einzelheiten finden Sie
unten in einer der PV-YAML-Dateien. Insgesamt hatten wir 12 solcher Dateien. In jeder Datei ist der
storageClassName auf „default“ gesetzt und Speicher und Pfad sind für jedes PV eindeutig.

10

../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Führen Sie den Befehl „kubectl apply“ für jede PV-YAML-Datei aus, um die persistenten Volumes zu
erstellen, und überprüfen Sie anschließend deren Erstellung mit „kubectl get pv“.

11

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. Zum Speichern von Kundendaten unterstützt Milvus Objektspeicherlösungen wie MinIO, Azure Blob und
S3. In dieser Anleitung verwenden wir S3. Die folgenden Schritte gelten sowohl für den ONTAP S3- als
auch für den StorageGRID Objektspeicher. Wir verwenden Helm, um den Milvus-Cluster bereitzustellen.
Laden Sie die Konfigurationsdatei values.yaml vom Milvus-Download-Speicherort herunter. Die Datei
values.yaml, die wir in diesem Dokument verwendet haben, finden Sie im Anhang.

6. Stellen Sie sicher, dass die „storageClass“ in jedem Abschnitt auf „default“ gesetzt ist, einschließlich der
Abschnitte für Protokoll, etcd, Zookeeper und Bookkeeper.

7. Deaktivieren Sie MinIO im Abschnitt MinIO.

8. Erstellen Sie einen NAS-Bucket aus dem ONTAP oder StorageGRID Objektspeicher und fügen Sie ihn mit
den Objektspeicher-Anmeldeinformationen in ein externes S3 ein.

12

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

9. Stellen Sie vor dem Erstellen des Milvus-Clusters sicher, dass der PersistentVolumeClaim (PVC) keine
bereits vorhandenen Ressourcen enthält.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Verwenden Sie Helm und die Konfigurationsdatei values.yaml, um den Milvus-Cluster zu installieren und
zu starten.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Überprüfen Sie den Status der PersistentVolumeClaims (PVCs).

13

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Überprüfen Sie den Status der Pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Bitte stellen Sie sicher, dass der Pod-Status „läuft“ lautet und wie erwartet funktioniert.

13. Testen Sie das Schreiben und Lesen von Daten im Milvus- und NetApp Objektspeicher.

◦ Schreiben Sie Daten mit dem Python-Programm „prepare_data_netapp_new.py“.

14

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Lesen Sie die Daten mithilfe der Python-Datei „verify_data_netapp.py“.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

15

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Basierend auf der obigen Validierung bietet die Integration von Kubernetes mit einer Vektordatenbank,
wie durch die Bereitstellung eines Milvus-Clusters auf Kubernetes unter Verwendung eines NetApp
-Speichercontrollers demonstriert, Kunden eine robuste, skalierbare und effiziente Lösung für die
Verwaltung umfangreicher Datenvorgänge. Dieses Setup bietet Kunden die Möglichkeit,
hochdimensionale Daten zu verarbeiten und komplexe Abfragen schnell und effizient auszuführen, was
es zu einer idealen Lösung für Big-Data-Anwendungen und KI-Workloads macht. Die Verwendung von
Persistent Volumes (PVs) für verschiedene Clusterkomponenten sowie die Erstellung eines einzelnen
NFS-Volumes aus NetApp ONTAP gewährleisten eine optimale Ressourcennutzung und

16

Datenverwaltung. Der Prozess der Überprüfung des Status von PersistentVolumeClaims (PVCs) und
Pods sowie das Testen des Schreibens und Lesens von Daten bietet Kunden die Gewissheit
zuverlässiger und konsistenter Datenvorgänge. Die Verwendung von ONTAP oder StorageGRID
-Objektspeicher für Kundendaten verbessert die Datenzugänglichkeit und -sicherheit zusätzlich.
Insgesamt bietet diese Konfiguration den Kunden eine robuste und leistungsstarke
Datenverwaltungslösung, die sich nahtlos an ihren wachsenden Datenbedarf anpassen lässt.

Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität

In diesem Abschnitt wird die Einrichtung des Milvus-Clusters mit Amazon FSx ONTAP für
die Vektordatenbanklösung für NetApp erläutert.

Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität

In diesem Abschnitt erfahren Sie, warum wir die Vektordatenbank in der Cloud bereitstellen müssen, sowie die
Schritte zum Bereitstellen der Vektordatenbank (Milvus Standalone) in Amazon FSx ONTAP für NetApp
ONTAP innerhalb von Docker-Containern.

Die Bereitstellung einer Vektordatenbank in der Cloud bietet mehrere bedeutende Vorteile, insbesondere für
Anwendungen, bei denen hochdimensionale Daten verarbeitet und Ähnlichkeitssuchen ausgeführt werden
müssen. Erstens bietet die Cloud-basierte Bereitstellung Skalierbarkeit und ermöglicht eine einfache
Anpassung der Ressourcen an die wachsenden Datenmengen und Abfragelasten. Dadurch wird sichergestellt,
dass die Datenbank die erhöhte Nachfrage effizient bewältigen und gleichzeitig eine hohe Leistung
aufrechterhalten kann. Zweitens bietet die Cloud-Bereitstellung hohe Verfügbarkeit und
Notfallwiederherstellung, da Daten über verschiedene geografische Standorte hinweg repliziert werden
können, wodurch das Risiko eines Datenverlusts minimiert und ein kontinuierlicher Dienst auch bei
unerwarteten Ereignissen sichergestellt wird. Drittens ist es kosteneffizient, da Sie nur für die Ressourcen
zahlen, die Sie tatsächlich nutzen, und je nach Bedarf hoch- oder herunterskalieren können, sodass keine
erheblichen Vorabinvestitionen in Hardware erforderlich sind. Und schließlich kann die Bereitstellung einer
Vektordatenbank in der Cloud die Zusammenarbeit verbessern, da von überall auf die Daten zugegriffen und
diese geteilt werden können, was die teambasierte Arbeit und datengesteuerte Entscheidungsfindung
erleichtert. Bitte überprüfen Sie die Architektur des Milvus-Standalone mit Amazon FSx ONTAP für NetApp
ONTAP , das bei dieser Validierung verwendet wird.

17

1. Erstellen Sie eine Amazon FSx ONTAP für NetApp ONTAP Instanz und notieren Sie die Details der VPC,
der VPC-Sicherheitsgruppen und des Subnetzes. Diese Informationen werden beim Erstellen einer EC2-
Instanz benötigt. Weitere Details finden Sie hier - https://us-east-1.console.aws.amazon.com/fsx/home?
region=us-east-1#file-system-create

2. Erstellen Sie eine EC2-Instance und stellen Sie sicher, dass VPC, Sicherheitsgruppen und Subnetz mit
denen der Amazon FSx ONTAP für NetApp ONTAP -Instance übereinstimmen.

3. Installieren Sie nfs-common mit dem Befehl „apt-get install nfs-common“ und aktualisieren Sie die
Paketinformationen mit „sudo apt-get update“.

4. Erstellen Sie einen Mount-Ordner und mounten Sie Amazon FSx ONTAP für NetApp ONTAP darin.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Installieren Sie Docker und Docker Compose mit „apt-get install“.

6. Richten Sie einen Milvus-Cluster basierend auf der Datei docker-compose.yaml ein, die von der Milvus-
Website heruntergeladen werden kann.

18

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. Ordnen Sie im Abschnitt „Volumes“ der Datei docker-compose.yml den NetApp NFS-Mount-Punkt dem
entsprechenden Milvus-Containerpfad zu, insbesondere in etcd, minio und standalone.Check"Anhang D:
docker-compose.yml" für Details zu Änderungen in YML

8. Überprüfen Sie die bereitgestellten Ordner und Dateien.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Führen Sie „docker-compose up -d“ aus dem Verzeichnis aus, das die Datei docker-compose.yml enthält.

10. Überprüfen Sie den Status des Milvus-Containers.

19

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. Um die Lese- und Schreibfunktionalität der Vektordatenbank und ihrer Daten in Amazon FSx ONTAP für
NetApp ONTAP zu validieren, haben wir das Python Milvus SDK und ein Beispielprogramm von PyMilvus
verwendet. Installieren Sie die erforderlichen Pakete mit „apt-get install python3-numpy python3-pip“ und
installieren Sie PyMilvus mit „pip3 install pymilvus“.

12. Validieren Sie Datenschreib- und -lesevorgänge von Amazon FSx ONTAP für NetApp ONTAP in der
Vektordatenbank.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Überprüfen Sie den Lesevorgang mit dem Skript verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

21

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

22

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. Wenn der Kunde für KI-Workloads über das S3-Protokoll auf in der Vektordatenbank getestete NFS-Daten
zugreifen (lesen) möchte, kann dies mit einem einfachen Python-Programm validiert werden. Ein Beispiel
hierfür könnte eine Ähnlichkeitssuche von Bildern aus einer anderen Anwendung sein, wie im Bild am
Anfang dieses Abschnitts erwähnt.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

Dieser Abschnitt zeigt effektiv, wie Kunden ein eigenständiges Milvus-Setup in Docker-Containern
bereitstellen und betreiben können, indem sie Amazons NetApp FSx ONTAP für die NetApp ONTAP
Datenspeicherung nutzen. Mit diesem Setup können Kunden die Leistungsfähigkeit von
Vektordatenbanken für die Verarbeitung hochdimensionaler Daten und die Ausführung komplexer
Abfragen nutzen – und das alles in der skalierbaren und effizienten Umgebung von Docker-Containern.
Durch die Erstellung einer Amazon FSx ONTAP für NetApp ONTAP -Instanz und einer passenden EC2-
Instanz können Kunden eine optimale Ressourcennutzung und Datenverwaltung sicherstellen. Die
erfolgreiche Validierung von Datenschreib- und -lesevorgängen von FSx ONTAP in der Vektordatenbank
bietet Kunden die Gewissheit zuverlässiger und konsistenter Datenvorgänge. Darüber hinaus bietet die
Möglichkeit, Daten von KI-Workloads über das S3-Protokoll aufzulisten (lesen), eine verbesserte
Datenzugänglichkeit. Dieser umfassende Prozess bietet Kunden daher eine robuste und effiziente Lösung
für die Verwaltung ihrer groß angelegten Datenvorgänge und nutzt dabei die Funktionen von Amazons FSx
ONTAP für NetApp ONTAP.

Vector-Datenbankschutz mit SnapCenter

In diesem Abschnitt wird beschrieben, wie Sie mit NetApp SnapCenter Datenschutz für
die Vektordatenbank bereitstellen.

Vector-Datenbankschutz mit NetApp SnapCenter.

In der Filmproduktionsbranche beispielsweise verfügen Kunden häufig über kritische eingebettete Daten wie
Video- und Audiodateien. Der Verlust dieser Daten aufgrund von Problemen wie Festplattenausfällen kann

24

erhebliche Auswirkungen auf den Betrieb haben und möglicherweise Multimillionen-Dollar-Projekte gefährden.
Wir sind auf Fälle gestoßen, in denen wertvolle Inhalte verloren gingen, was zu erheblichen Störungen und
finanziellen Verlusten führte. Die Gewährleistung der Sicherheit und Integrität dieser wichtigen Daten ist daher
in dieser Branche von größter Bedeutung. In diesem Abschnitt gehen wir näher darauf ein, wie SnapCenter die
in ONTAP gespeicherten Vektordatenbankdaten und Milvus-Daten schützt. Für dieses Beispiel haben wir einen
NAS-Bucket (milvusdbvol1) verwendet, der von einem NFS ONTAP Volume (vol1) für Kundendaten abgeleitet
wurde, und ein separates NFS-Volume (vectordbpv) für Milvus-Cluster-Konfigurationsdaten. Bitte überprüfen
Sie die"hier," für den Snapcenter-Backup-Workflow

1. Richten Sie den Host ein, der zum Ausführen von SnapCenter -Befehlen verwendet wird.

2. Installieren und konfigurieren Sie das Speicher-Plugin. Wählen Sie beim hinzugefügten Host „Weitere
Optionen“ aus. Navigieren Sie zum heruntergeladenen Speicher-Plugin und wählen Sie es aus
dem"NetApp Automation Store" . Installieren Sie das Plugin und speichern Sie die Konfiguration.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Richten Sie das Speichersystem und das Volume ein: Fügen Sie unter „Speichersystem“ das
Speichersystem hinzu und wählen Sie die SVM (Storage Virtual Machine) aus. In diesem Beispiel haben
wir „vs_nvidia“ gewählt.

4. Richten Sie eine Ressource für die Vektordatenbank ein, die eine Sicherungsrichtlinie und einen
benutzerdefinierten Snapshot-Namen enthält.

◦ Aktivieren Sie die Konsistenzgruppensicherung mit Standardwerten und aktivieren Sie SnapCenter
ohne Dateisystemkonsistenz.

◦ Wählen Sie im Abschnitt „Speicherbedarf“ die Volumes aus, die mit den Kundendaten der
Vektordatenbank und den Milvus-Clusterdaten verknüpft sind. In unserem Beispiel sind dies „vol1“ und
„vectordbpv“.

◦ Erstellen Sie eine Richtlinie zum Schutz der Vektordatenbank und schützen Sie die
Vektordatenbankressource mithilfe der Richtlinie.

26

5. Fügen Sie mithilfe eines Python-Skripts Daten in den S3 NAS-Bucket ein. In unserem Fall haben wir das
von Milvus bereitgestellte Sicherungsskript „prepare_data_netapp.py“ geändert und den Befehl „sync“
ausgeführt, um die Daten aus dem Betriebssystem zu löschen.

27

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Überprüfen Sie die Daten im S3 NAS-Bucket. In unserem Beispiel wurden die Dateien mit dem Zeitstempel
„2024-04-08 21:22“ vom Skript „prepare_data_netapp.py“ erstellt.

28

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Starten Sie eine Sicherung mithilfe des Consistency Group (CG)-Snapshots aus der Ressource „milvusdb“.

29

8. Um die Sicherungsfunktionalität zu testen, haben wir nach dem Sicherungsvorgang entweder eine neue
Tabelle hinzugefügt oder einige Daten aus dem NFS (S3 NAS-Bucket) entfernt.

Stellen Sie sich für diesen Test ein Szenario vor, in dem jemand nach der Sicherung eine neue, unnötige
oder unangemessene Sammlung erstellt hat. In einem solchen Fall müssten wir die Vektordatenbank auf
den Zustand vor dem Hinzufügen der neuen Sammlung zurücksetzen. Beispielsweise wurden neue
Sammlungen wie „hello_milvus_netapp_sc_testnew“ und „hello_milvus_netapp_sc_testnew2“ eingefügt.

30

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Führen Sie eine vollständige Wiederherstellung des S3 NAS-Buckets aus dem vorherigen Snapshot durch.

31

10. Verwenden Sie ein Python-Skript, um die Daten aus den Sammlungen „hello_milvus_netapp_sc_test“ und
„hello_milvus_netapp_sc_test2“ zu überprüfen.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Stellen Sie sicher, dass die unnötige oder unangemessene Sammlung nicht mehr in der Datenbank
vorhanden ist.

34

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

Zusammenfassend lässt sich sagen, dass die Verwendung von NetApp SnapCenter zum Schutz von
Vektordatenbankdaten und Milvus-Daten in ONTAP den Kunden erhebliche Vorteile bietet, insbesondere in
Branchen, in denen die Datenintegrität von größter Bedeutung ist, wie beispielsweise in der Filmproduktion.
Die Fähigkeit von SnapCenter, konsistente Backups zu erstellen und vollständige Datenwiederherstellungen
durchzuführen, stellt sicher, dass kritische Daten wie eingebettete Video- und Audiodateien vor Verlust durch
Festplattenausfälle oder andere Probleme geschützt sind. Dadurch werden nicht nur Betriebsstörungen
vermieden, sondern auch erhebliche finanzielle Verluste vermieden.

In diesem Abschnitt haben wir gezeigt, wie SnapCenter zum Schutz von in ONTAP gespeicherten Daten
konfiguriert werden kann, einschließlich der Einrichtung von Hosts, der Installation und Konfiguration von
Speicher-Plugins und der Erstellung einer Ressource für die Vektordatenbank mit einem benutzerdefinierten
Snapshot-Namen. Wir haben auch gezeigt, wie man mithilfe des Consistency Group-Snapshots ein Backup
durchführt und die Daten im S3 NAS-Bucket überprüft.

Darüber hinaus haben wir ein Szenario simuliert, in dem nach der Sicherung eine unnötige oder
unangemessene Sammlung erstellt wurde. In solchen Fällen stellt die Fähigkeit von SnapCenter, eine
vollständige Wiederherstellung von einem vorherigen Snapshot durchzuführen, sicher, dass die
Vektordatenbank in den Zustand vor dem Hinzufügen der neuen Sammlung zurückgesetzt werden kann,
wodurch die Integrität der Datenbank gewahrt bleibt. Diese Möglichkeit, Daten zu einem bestimmten Zeitpunkt
wiederherzustellen, ist für Kunden von unschätzbarem Wert, da sie ihnen die Gewissheit gibt, dass ihre Daten
nicht nur sicher, sondern auch ordnungsgemäß verwaltet werden. Somit bietet das SnapCenter -Produkt von
NetApp Kunden eine robuste und zuverlässige Lösung für Datenschutz und -verwaltung.

Disaster Recovery mit NetApp SnapMirror

In diesem Abschnitt wird DR (Disaster Recovery) mit SnapMirror für die
Vektordatenbanklösung für NetApp erläutert.

35

Disaster Recovery mit NetApp SnapMirror

Die Notfallwiederherstellung ist für die Aufrechterhaltung der Integrität und Verfügbarkeit einer
Vektordatenbank von entscheidender Bedeutung, insbesondere angesichts ihrer Rolle bei der Verwaltung
hochdimensionaler Daten und der Durchführung komplexer Ähnlichkeitssuchen. Eine gut geplante und
implementierte Notfallwiederherstellungsstrategie stellt sicher, dass bei unvorhergesehenen Vorfällen wie
Hardwareausfällen, Naturkatastrophen oder Cyberangriffen keine Daten verloren gehen oder gefährdet
werden. Dies ist insbesondere für Anwendungen von Bedeutung, die auf Vektordatenbanken basieren, bei
denen der Verlust oder die Beschädigung von Daten zu erheblichen Betriebsstörungen und finanziellen
Verlusten führen kann. Darüber hinaus gewährleistet ein robuster Notfallwiederherstellungsplan auch die
Geschäftskontinuität, indem er Ausfallzeiten minimiert und eine schnelle Wiederherstellung der Dienste
ermöglicht. Dies wird durch das NetApp Datenreplikationsprodukt SnapMirrror über verschiedene geografische
Standorte, regelmäßige Backups und Failover-Mechanismen erreicht. Daher ist die Notfallwiederherstellung
nicht nur eine Schutzmaßnahme, sondern ein entscheidender Bestandteil einer verantwortungsvollen und
effizienten Vektordatenbankverwaltung.

SnapMirror von NetApp ermöglicht die Datenreplikation von einem NetApp ONTAP Speichercontroller zu
einem anderen und wird hauptsächlich für Disaster Recovery (DR) und Hybridlösungen verwendet. Im Kontext
einer Vektordatenbank erleichtert dieses Tool den reibungslosen Datenübergang zwischen lokalen und Cloud-
Umgebungen. Dieser Übergang wird ohne die Notwendigkeit von Datenkonvertierungen oder
Anwendungsrefactoring erreicht, wodurch die Effizienz und Flexibilität der Datenverwaltung über mehrere
Plattformen hinweg verbessert wird.

Die NetApp Hybrid-Lösung in einem Vektordatenbankszenario kann weitere Vorteile bringen:

1. Skalierbarkeit: Die Hybrid-Cloud-Lösung von NetApp bietet die Möglichkeit, Ihre Ressourcen entsprechend
Ihren Anforderungen zu skalieren. Sie können lokale Ressourcen für regelmäßige, vorhersehbare
Workloads und Cloud-Ressourcen wie Amazon FSx ONTAP für NetApp ONTAP und Google Cloud NetApp
Volume (NetApp Volumes) für Spitzenzeiten oder unerwartete Belastungen nutzen.

2. Kosteneffizienz: Mit dem Hybrid-Cloud-Modell von NetApp können Sie Ihre Kosten optimieren, indem Sie
lokale Ressourcen für regelmäßige Workloads verwenden und nur dann für Cloud-Ressourcen zahlen,
wenn Sie sie benötigen. Dieses Pay-as-you-go-Modell kann mit einem NetApp Instaclustr-Serviceangebot
recht kostengünstig sein. Für On-Premise- und große Cloud-Service-Anbieter bietet instaclustr Support
und Beratung.

36

3. Flexibilität: Die Hybrid Cloud von NetApp bietet Ihnen die Flexibilität, den Ort der Datenverarbeitung zu
wählen. Sie können sich beispielsweise dafür entscheiden, komplexe Vektoroperationen vor Ort
durchzuführen, wo Sie über leistungsfähigere Hardware verfügen, und weniger intensive Operationen in
der Cloud.

4. Geschäftskontinuität: Im Katastrophenfall kann die Speicherung Ihrer Daten in einer NetApp Hybrid Cloud
die Geschäftskontinuität sicherstellen. Sie können schnell auf die Cloud umsteigen, wenn Ihre lokalen
Ressourcen betroffen sind. Wir können NetApp SnapMirror nutzen, um die Daten vor Ort in die Cloud und
umgekehrt zu verschieben.

5. Innovation: Die Hybrid-Cloud-Lösungen von NetApp ermöglichen außerdem schnellere Innovationen,
indem sie Zugriff auf hochmoderne Cloud-Dienste und -Technologien bieten. NetApp Innovationen in der
Cloud wie Amazon FSx ONTAP für NetApp ONTAP, Azure NetApp Files und Google Cloud NetApp
Volumes sind innovative Produkte und bevorzugte NAS der Cloud-Service-Anbieter.

Leistungsvalidierung der Vektordatenbank

In diesem Abschnitt wird die Leistungsvalidierung hervorgehoben, die an der
Vektordatenbank durchgeführt wurde.

Leistungsvalidierung

Die Leistungsvalidierung spielt sowohl bei Vektordatenbanken als auch bei Speichersystemen eine
entscheidende Rolle und ist ein Schlüsselfaktor für die Gewährleistung eines optimalen Betriebs und einer
effizienten Ressourcennutzung. Vektordatenbanken, die für die Verarbeitung hochdimensionaler Daten und die
Durchführung von Ähnlichkeitssuchen bekannt sind, müssen ein hohes Leistungsniveau aufrechterhalten, um
komplexe Abfragen schnell und genau verarbeiten zu können. Mithilfe der Leistungsvalidierung können
Engpässe identifiziert und Konfigurationen optimiert werden. Außerdem wird sichergestellt, dass das System
die erwartete Belastung ohne Leistungseinbußen bewältigen kann. Ebenso ist bei Speichersystemen eine
Leistungsvalidierung unerlässlich, um sicherzustellen, dass Daten effizient gespeichert und abgerufen werden,
ohne dass es zu Latenzproblemen oder Engpässen kommt, die die Gesamtleistung des Systems
beeinträchtigen könnten. Es hilft auch dabei, fundierte Entscheidungen über notwendige Upgrades oder
Änderungen der Speicherinfrastruktur zu treffen. Daher ist die Leistungsvalidierung ein entscheidender Aspekt
des Systemmanagements und trägt erheblich zur Aufrechterhaltung einer hohen Servicequalität,
Betriebseffizienz und allgemeinen Systemzuverlässigkeit bei.

In diesem Abschnitt möchten wir uns eingehend mit der Leistungsvalidierung von Vektordatenbanken wie
Milvus und pgvecto.rs befassen und uns dabei auf ihre Speicherleistungsmerkmale wie E/A-Profil und
Verhalten des NetApp-Speichercontrollers zur Unterstützung von RAG- und Inferenz-Workloads innerhalb des
LLM-Lebenszyklus konzentrieren. Wir werden alle Leistungsunterschiede bewerten und identifizieren, wenn
diese Datenbanken mit der ONTAP Speicherlösung kombiniert werden. Unsere Analyse basiert auf wichtigen
Leistungsindikatoren, beispielsweise der Anzahl der pro Sekunde verarbeiteten Abfragen (QPS).

Bitte überprüfen Sie unten die für Milvus und den Fortschritt verwendete Methodik.

Details Milvus (Standalone und Cluster) Postgres(pgvecto.rs) #

Version 2.3.2 0.2.0

Dateisystem XFS auf iSCSI-LUNs

Arbeitslastgenerator "VectorDB-Bench"– Version 0.0.5

Datensätze LAION-Datensatz * 10 Millionen
Einbettungen * 768 Dimensionen *
~300 GB Datensatzgröße

37

https://github.com/zilliztech/VectorDBBench

Speichercontroller AFF 800 * Version – 9.14.1 * 4 x
100GbE – für Milvus und 2x
100GbE für Postgres * iscsi

VectorDB-Bench mit Milvus-Standalone-Cluster

Wir haben die folgende Leistungsvalidierung auf dem eigenständigen Milvus-Cluster mit VectorDB-Bench
durchgeführt. Die Netzwerk- und Serverkonnektivität des eigenständigen Milvus-Clusters ist unten aufgeführt.

In diesem Abschnitt teilen wir unsere Beobachtungen und Ergebnisse aus dem Testen der eigenständigen
Milvus-Datenbank. . Für diese Tests haben wir DiskANN als Indextyp ausgewählt. . Das Aufnehmen,
Optimieren und Erstellen von Indizes für einen Datensatz von etwa 100 GB dauerte etwa 5 Stunden. Während
des größten Teils dieser Dauer lief der mit 20 Kernen ausgestattete Milvus-Server (was bei aktiviertem Hyper-
Threading 40 vcpus entspricht) mit seiner maximalen CPU-Kapazität von 100 %. Wir haben festgestellt, dass
DiskANN besonders wichtig für große Datensätze ist, die die Größe des Systemspeichers überschreiten. . In
der Abfragephase beobachteten wir eine Abfragerate pro Sekunde (QPS) von 10,93 mit einem Rückruf von
0,9987. Die Latenzzeit für Abfragen im 99. Perzentil wurde mit 708,2 Millisekunden gemessen.

Aus Speichersicht gab die Datenbank während der Aufnahme-, Post-Insert-Optimierungs- und
Indexerstellungsphasen etwa 1.000 Operationen/Sekunde aus. In der Abfragephase waren 32.000
Operationen/Sek. erforderlich.

Der folgende Abschnitt stellt die Speicherleistungsmetriken vor.

Arbeitslastphase Metrisch Wert

Datenaufnahme und Optimierung
nach dem Einfügen

IOPS < 1.000

Latenz < 400 µs

Arbeitsbelastung Lese-/Schreib-Mix, hauptsächlich
Schreibvorgänge

IO-Größe 64 KB

38

Arbeitslastphase Metrisch Wert

Abfrage IOPS Höchststand bei 32.000

Latenz < 400 µs

Arbeitsbelastung 100 % zwischengespeicherte
Lesevorgänge

IO-Größe Hauptsächlich 8 KB

Das VectorDB-Bench-Ergebnis ist unten.

Aus der Leistungsvalidierung der eigenständigen Milvus-Instanz geht hervor, dass die aktuelle Konfiguration
nicht ausreicht, um einen Datensatz von 5 Millionen Vektoren mit einer Dimensionalität von 1536 zu
unterstützen. Wir haben festgestellt, dass der Speicher über ausreichende Ressourcen verfügt und keinen
Engpass im System darstellt.

39

VectorDB-Bench mit Milvus-Cluster

In diesem Abschnitt besprechen wir die Bereitstellung eines Milvus-Clusters in einer Kubernetes-Umgebung.
Dieses Kubernetes-Setup wurde auf einer VMware vSphere-Bereitstellung erstellt, die die Kubernetes-Master-
und Worker-Knoten hostete.

Die Details der VMware vSphere- und Kubernetes-Bereitstellungen werden in den folgenden Abschnitten
vorgestellt.

40

In diesem Abschnitt stellen wir unsere Beobachtungen und Ergebnisse aus dem Testen der Milvus-Datenbank
vor. * Der verwendete Indextyp war DiskANN. * Die folgende Tabelle bietet einen Vergleich zwischen den
Standalone- und Cluster-Bereitstellungen bei der Arbeit mit 5 Millionen Vektoren bei einer Dimensionalität von
1536. Wir haben festgestellt, dass die für die Datenaufnahme und die Optimierung nach dem Einfügen
benötigte Zeit bei der Clusterbereitstellung kürzer war. Die Latenzzeit für Abfragen im 99. Perzentil wurde im
Cluster-Einsatz im Vergleich zum Standalone-Setup um das Sechsfache reduziert. * Obwohl die Abfragerate
pro Sekunde (QPS) bei der Clusterbereitstellung höher war, lag sie nicht auf dem gewünschten Niveau.

Die folgenden Bilder bieten eine Ansicht verschiedener Speichermetriken, einschließlich der
Speicherclusterlatenz und der gesamten IOPS (Input/Output Operations Per Second).

41

Der folgende Abschnitt stellt die wichtigsten Leistungskennzahlen für den Speicher vor.

Arbeitslastphase Metrisch Wert

Datenaufnahme und Optimierung
nach dem Einfügen

IOPS < 1.000

Latenz < 400 µs

Arbeitsbelastung Lese-/Schreib-Mix, hauptsächlich
Schreibvorgänge

IO-Größe 64 KB

Abfrage IOPS Höchststand bei 147.000

Latenz < 400 µs

Arbeitsbelastung 100 % zwischengespeicherte
Lesevorgänge

IO-Größe Hauptsächlich 8 KB

Basierend auf der Leistungsvalidierung sowohl des eigenständigen Milvus als auch des Milvus-Clusters
präsentieren wir die Details des Speicher-E/A-Profils. * Wir haben festgestellt, dass das E/A-Profil sowohl bei
eigenständigen als auch bei Cluster-Bereitstellungen konsistent bleibt. * Der beobachtete Unterschied bei den
Spitzen-IOPS kann auf die größere Anzahl von Clients in der Clusterbereitstellung zurückgeführt werden.

vectorDB-Bench mit Postgres (pgvecto.rs)

Wir haben die folgenden Aktionen mit VectorDB-Bench an PostgreSQL (pgvecto.rs) durchgeführt: Die Details
zur Netzwerk- und Serverkonnektivität von PostgreSQL (insbesondere pgvecto.rs) lauten wie folgt:

42

In diesem Abschnitt teilen wir unsere Beobachtungen und Ergebnisse aus dem Testen der PostgreSQL-
Datenbank, insbesondere mit pgvecto.rs. * Wir haben HNSW als Indextyp für diese Tests ausgewählt, da
DiskANN zum Zeitpunkt des Tests für pgvecto.rs nicht verfügbar war. * Während der Datenaufnahmephase
haben wir den Cohere-Datensatz geladen, der aus 10 Millionen Vektoren mit einer Dimensionalität von 768
besteht. Dieser Vorgang dauerte ungefähr 4,5 Stunden. * In der Abfragephase haben wir eine Abfragerate pro
Sekunde (QPS) von 1.068 mit einem Rückruf von 0,6344 beobachtet. Die Latenzzeit für Abfragen im 99.
Perzentil wurde mit 20 Millisekunden gemessen. Während des größten Teils der Laufzeit war die CPU des
Clients zu 100 % ausgelastet.

Die folgenden Bilder bieten eine Ansicht verschiedener Speichermetriken, einschließlich der Gesamt-IOPS
(Input/Output Operations Per Second) der Speicherclusterlatenz.

 The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["Abbildung, die einen Eingabe-

/Ausgabedialog zeigt oder schriftlichen Inhalt darstellt"]

Leistungsvergleich zwischen Milvus und Postgres auf Vector DB Bench

43

Basierend auf unserer Leistungsvalidierung von Milvus und PostgreSQL mit VectorDBBench haben wir
Folgendes beobachtet:

• Indextyp: HNSW

• Datensatz: Cohere mit 10 Millionen Vektoren in 768 Dimensionen

Wir haben festgestellt, dass pgvecto.rs eine Abfragen-pro-Sekunde-Rate (QPS) von 1.068 mit einem Recall
von 0,6344 erreichte, während Milvus eine QPS-Rate von 106 mit einem Recall von 0,9842 erreichte.

Wenn hohe Präzision bei Ihren Abfragen Priorität hat, ist Milvus besser als pgvecto.rs, da es einen höheren
Anteil relevanter Elemente pro Abfrage abruft. Wenn jedoch die Anzahl der Abfragen pro Sekunde ein
entscheidenderer Faktor ist, übertrifft pgvecto.rs Milvus. Es ist jedoch wichtig zu beachten, dass die Qualität
der über pgvecto.rs abgerufenen Daten geringer ist, da etwa 37 % der Suchergebnisse irrelevante Elemente
sind.

Beobachtung basierend auf unseren Leistungsvalidierungen:

Basierend auf unseren Leistungsvalidierungen haben wir folgende Beobachtungen gemacht:

44

In Milvus ähnelt das E/A-Profil stark einer OLTP-Workload, wie sie beispielsweise bei Oracle SLOB auftritt. Der
Benchmark besteht aus drei Phasen: Datenaufnahme, Nachoptimierung und Abfrage. Die Anfangsphasen sind
hauptsächlich durch 64-KB-Schreibvorgänge gekennzeichnet, während die Abfragephase überwiegend 8-KB-
Lesevorgänge umfasst. Wir erwarten, dass ONTAP die Milvus-E/A-Last effizient bewältigt.

Das PostgreSQL-E/A-Profil stellt keine anspruchsvolle Speicherarbeitslast dar. Angesichts der derzeit
laufenden In-Memory-Implementierung konnten wir während der Abfragephase keine Festplatten-E/A
beobachten.

DiskANN erweist sich als entscheidende Technologie zur Speicherdifferenzierung. Es ermöglicht die effiziente
Skalierung der Vektor-DB-Suche über die Systemspeichergrenze hinaus. Es ist jedoch unwahrscheinlich, dass
mit In-Memory-Vektor-DB-Indizes wie HNSW eine Differenzierung der Speicherleistung erreicht wird.

Es ist auch erwähnenswert, dass der Speicher während der Abfragephase keine kritische Rolle spielt, wenn
der Indextyp HSNW ist. Dies ist die wichtigste Betriebsphase für Vektordatenbanken, die RAG-Anwendungen
unterstützen. Dies bedeutet, dass die Speicherleistung keinen signifikanten Einfluss auf die Gesamtleistung
dieser Anwendungen hat.

Vektordatenbank mit Instaclustr unter Verwendung von
PostgreSQL: pgvector

In diesem Abschnitt werden die Einzelheiten der Integration des Instaclustr-Produkts mit
PostgreSQL über die Pgvector-Funktionalität in der Vektordatenbanklösung für NetApp
erläutert.

Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector

In diesem Abschnitt gehen wir näher auf die Einzelheiten der Integration des Instaclustr-Produkts mit
PostgreSQL auf der Grundlage der PgVector-Funktionalität ein. Wir haben ein Beispiel für „So verbessern Sie
die Genauigkeit und Leistung Ihres LLM mit PGVector und PostgreSQL: Einführung in Einbettungen und die
Rolle von PGVector“. Bitte überprüfen Sie die"Blog" um weitere Informationen zu erhalten.

Anwendungsfälle für Vektordatenbanken

Dieser Abschnitt bietet einen Überblick über die Anwendungsfälle für die NetApp Vector-
Datenbanklösung.

Anwendungsfälle für Vektordatenbanken

In diesem Abschnitt besprechen wir zwei Anwendungsfälle, nämlich Retrieval Augmented Generation mit
großen Sprachmodellen und NetApp IT-Chatbot.

Retrieval Augmented Generation (RAG) mit großen Sprachmodellen (LLMs)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

Der NVIDIA Enterprise RAG LLM Operator ist ein nützliches Tool zur Implementierung von RAG im
Unternehmen. Mit diesem Operator kann eine vollständige RAG-Pipeline bereitgestellt werden. Die RAG-
Pipeline kann angepasst werden, um entweder Milvus oder pgvecto als Vektordatenbank zum Speichern von
Wissensdatenbank-Einbettungen zu verwenden. Weitere Einzelheiten finden Sie in der Dokumentation.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Abbildung 1) Enterprise RAG mit NVIDIA NeMo Microservices und NetApp

Anwendungsfall für den NetApp IT-Chatbot

Der Chatbot von NetApp dient als weiterer Echtzeit-Anwendungsfall für die Vektordatenbank. In diesem Fall
bietet die NetApp Private OpenAI Sandbox eine effektive, sichere und effiziente Plattform für die Verwaltung
von Abfragen interner NetApp-Benutzer. Durch die Integration strenger Sicherheitsprotokolle, effizienter
Datenverwaltungssysteme und ausgefeilter KI-Verarbeitungsfunktionen werden den Benutzern über die SSO-
Authentifizierung qualitativ hochwertige und präzise Antworten basierend auf ihren Rollen und
Verantwortlichkeiten in der Organisation garantiert. Diese Architektur unterstreicht das Potenzial der

46

Zusammenführung fortschrittlicher Technologien zur Schaffung benutzerorientierter, intelligenter Systeme.

Der Anwendungsfall kann in vier Hauptabschnitte unterteilt werden.

Benutzerauthentifizierung und -verifizierung:

• Benutzeranfragen durchlaufen zunächst den NetApp Single Sign-On (SSO)-Prozess, um die Identität des
Benutzers zu bestätigen.

• Nach erfolgreicher Authentifizierung prüft das System die VPN-Verbindung, um eine sichere
Datenübertragung zu gewährleisten.

Datenübertragung und -verarbeitung:

• Sobald das VPN validiert ist, werden die Daten über die Webanwendungen NetAIChat oder NetAICreate
an MariaDB gesendet. MariaDB ist ein schnelles und effizientes Datenbanksystem zum Verwalten und
Speichern von Benutzerdaten.

• MariaDB sendet die Informationen dann an die NetApp Azure-Instanz, die die Benutzerdaten mit der KI-
Verarbeitungseinheit verbindet.

Interaktion mit OpenAI und Inhaltsfilterung:

• Die Azure-Instanz sendet die Fragen des Benutzers an ein Inhaltsfiltersystem. Dieses System bereinigt die
Abfrage und bereitet sie für die Verarbeitung vor.

• Die bereinigte Eingabe wird dann an das Azure OpenAI-Basismodell gesendet, das basierend auf der
Eingabe eine Antwort generiert.

Antwortgenerierung und -moderation:

• Die Antwort des Basismodells wird zunächst überprüft, um sicherzustellen, dass sie korrekt ist und den
Inhaltsstandards entspricht.

• Nach bestandener Prüfung wird die Antwort an den Benutzer zurückgesendet. Dieser Prozess stellt sicher,

47

dass der Benutzer eine klare, genaue und angemessene Antwort auf seine Anfrage erhält.

Abschluss

Dieser Abschnitt schließt die Vektordatenbanklösung für NetApp ab.

Abschluss

Zusammenfassend bietet dieses Dokument einen umfassenden Überblick über die Bereitstellung und
Verwaltung von Vektordatenbanken wie Milvus und pgvector auf NetApp -Speicherlösungen. Wir haben die
Infrastrukturrichtlinien für die Nutzung von NetApp ONTAP und StorageGRID Objektspeicher besprochen und
die Milvus-Datenbank in AWS FSx ONTAP über Datei- und Objektspeicher validiert.

Wir haben die Datei-Objekt-Dualität von NetApp untersucht und ihren Nutzen nicht nur für Daten in
Vektordatenbanken, sondern auch für andere Anwendungen demonstriert. Wir haben auch hervorgehoben,
wie SnapCenter, das Enterprise-Management-Produkt von NetApp, Sicherungs-, Wiederherstellungs- und
Klonfunktionen für Vektordatenbankdaten bietet und so die Datenintegrität und -verfügbarkeit gewährleistet.

Das Dokument erläutert außerdem, wie die Hybrid Cloud-Lösung von NetApp Datenreplikation und -schutz in
lokalen und Cloud-Umgebungen bietet und so ein nahtloses und sicheres Datenmanagement ermöglicht. Wir
gaben Einblicke in die Leistungsvalidierung von Vektordatenbanken wie Milvus und pgvecto auf NetApp
ONTAP und lieferten wertvolle Informationen zu ihrer Effizienz und Skalierbarkeit.

Abschließend haben wir zwei Anwendungsfälle für generative KI besprochen: RAG mit LLM und die interne
ChatAI von NetApp. Diese praktischen Beispiele unterstreichen die realen Anwendungen und Vorteile der in
diesem Dokument beschriebenen Konzepte und Praktiken. Insgesamt dient dieses Dokument als umfassender
Leitfaden für alle, die die leistungsstarken Speicherlösungen von NetApp für die Verwaltung von
Vektordatenbanken nutzen möchten.

Danksagung

Der Autor möchte den unten aufgeführten Mitwirkenden und anderen Personen, die durch ihr Feedback und
ihre Kommentare dazu beigetragen haben, dass dieses Dokument für NetApp Kunden und NetApp Bereiche
wertvoll ist, herzlich danken.

1. Sathish Thyagarajan, technischer Marketingingenieur, ONTAP AI & Analytics, NetApp

2. Mike Oglesby, Technischer Marketingingenieur, NetApp

3. AJ Mahajan, Senior Director, NetApp

4. Joe Scott, Manager, Workload Performance Engineering, NetApp

5. Puneet Dhawan, Senior Director, Produktmanagement Fsx, NetApp

6. Yuval Kalderon, Senior Product Manager, FSx-Produktteam, NetApp

Wo Sie weitere Informationen finden

Weitere Informationen zu den in diesem Dokument beschriebenen Informationen finden Sie in den folgenden
Dokumenten und/oder auf den folgenden Websites:

• Milvus-Dokumentation - https://milvus.io/docs/overview.md

• Eigenständige Milvus-Dokumentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• NetApp Produktdokumentationhttps://www.netapp.com/support-and-training/documentation/[]

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• instaclustr -"Installclustr-Dokumentation"

Versionsverlauf

Version Datum Dokumentversionsverlauf

Version 1.0 April 2024 Erstveröffentlichung

Anhang A: Values.yaml

Dieser Abschnitt enthält Beispiel-YAML-Code für die in der NetApp
-Vektordatenbanklösung verwendeten Werte.

Anhang A: Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations

tolerations: []

49

https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

 labels: {}

 ## List of IP addresses at which the Milvus service is available

50

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

 enabled: true

 serviceMonitor:

51

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

52

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

53

 ##

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

54

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

55

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

56

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

57

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

58

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

minio:

 enabled: false

 name: minio

59

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 enabled: true

60

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

61

 enabled: true

 timeoutSeconds: 10

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

 anti_affinity: false

enableAntiAffinity: no

62

 components:

 zookeeper: true

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

 zookeeper:

 volumes:

63

 persistence: true

 data:

 name: data

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

64

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

65

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

66

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

67

 size: 300Gi

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

68

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

externalKafka:

 enabled: false

 brokerList: localhost:9092

69

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

 username: ""

 password: ""

root@node2:~#

Anhang B: prepare_data_netapp_new.py

Dieser Abschnitt enthält ein Beispiel-Python-Skript zum Vorbereiten von Daten für die
Vektordatenbank.

Anhang B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

70

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

|

+-+------------+------------+------------------

+------------------------------+

71

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

72

create another collection

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

73

Anhang C: verify_data_netapp.py

Dieser Abschnitt enthält ein Python-Beispielskript, das zur Validierung der
Vektordatenbank in der NetApp Vektordatenbanklösung verwendet werden kann.

Anhang C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

74

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

75

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

76

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Anhang D: docker-compose.yml

Dieser Abschnitt enthält Beispiel-YAML-Code für die Vektordatenbanklösung für NetApp.

Anhang D: docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

 MINIO_SECRET_KEY: minioadmin

77

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

78

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

79

http://www.netapp.com/TM\

	Vector Datenbanklösung mit NetApp : NetApp artificial intelligence solutions
	Inhalt
	Vector Datenbanklösung mit NetApp
	Vector Datenbanklösung mit NetApp
	Einführung
	Einführung

	Lösungsübersicht
	Lösungsübersicht

	Vektordatenbank
	Vektordatenbank

	Technologieanforderungen
	Technologieanforderungen
	Hardwareanforderungen
	Softwareanforderungen

	Bereitstellungsverfahren
	Bereitstellungsverfahren

	Lösungsüberprüfung
	Lösungsübersicht
	Milvus-Cluster-Setup mit Kubernetes vor Ort
	Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität
	Vector-Datenbankschutz mit SnapCenter
	Disaster Recovery mit NetApp SnapMirror
	Leistungsvalidierung der Vektordatenbank

	Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector
	Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector

	Anwendungsfälle für Vektordatenbanken
	Anwendungsfälle für Vektordatenbanken

	Abschluss
	Abschluss

	Anhang A: Values.yaml
	Anhang A: Values.yaml

	Anhang B: prepare_data_netapp_new.py
	Anhang B: prepare_data_netapp_new.py

	Anhang C: verify_data_netapp.py
	Anhang C: verify_data_netapp.py

	Anhang D: docker-compose.yml
	Anhang D: docker-compose.yml

