Vector Datenbanklosung mit NetApp

NetApp artificial intelligence solutions

NetApp
December 04, 2025

This PDF was generated from https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on December 04, 2025. Always check docs.netapp.com for the latest.

Inhalt

Vector Datenbanklésung mit NetApp
Vector Datenbanklésung mit NetApp
Einfihrung
Einfihrung
Losungsubersicht
Losungsubersicht
Vektordatenbank
Vektordatenbank
Technologieanforderungen
Technologieanforderungen
Hardwareanforderungen
Softwareanforderungen
Bereitstellungsverfahren
Bereitstellungsverfahren
Lésungsuberprifung
Lésungsubersicht
Milvus-Cluster-Setup mit Kubernetes vor Ort
Milvus mit Amazon FSx ONTAP fir NetApp ONTAP — Datei- und Objektdualitat
Vector-Datenbankschutz mit SnapCenter
Disaster Recovery mit NetApp SnapMirror
Leistungsvalidierung der Vektordatenbank
Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector
Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL.: pgvector
Anwendungsfalle flr Vektordatenbanken
Anwendungsfalle flr Vektordatenbanken
Abschluss
Abschluss
Anhang A: Values.yaml
Anhang A: Values.yaml
Anhang B: prepare_data_netapp_new.py
Anhang B: prepare_data_netapp_new.py
Anhang C: verify_data_netapp.py
Anhang C: verify_data_netapp.py
Anhang D: docker-compose.yml
Anhang D: docker-compose.yml

© © 0 N N N N N W W WDNDNDNDNDDN-A -

NN NN NSRS A DA DRNDNDNOWON
NNhABROO©©O®WOoOooNoO SO

Vector Datenbanklosung mit NetApp
Vector Datenbanklosung mit NetApp

Karthikeyan Nagalingam und Rodrigo Nascimento, NetApp

Dieses Dokument bietet eine umfassende Untersuchung der Bereitstellung und
Verwaltung von Vektordatenbanken wie Milvus und pgvecto, einer Open-Source-
PostgreSQL-Erweiterung, unter Verwendung der Speicherlésungen von NetApp. Es
beschreibt detailliert die Infrastrukturrichtlinien fur die Verwendung von NetApp ONTAP
und StorageGRID Objektspeicher und validiert die Anwendung der Milvus-Datenbank in
AWS FSx ONTAP. Das Dokument erlautert die Datei-Objekt-Dualitat von NetApp und
ihren Nutzen fur Vektordatenbanken und Anwendungen, die Vektoreinbettungen
unterstltzen. Es betont die Fahigkeiten von SnapCenter, dem Enterprise-Management-
Produkt von NetApp, das Sicherungs- und Wiederherstellungsfunktionen fur
Vektordatenbanken bietet und so die Datenintegritat und -verfligbarkeit sicherstellt. Das
Dokument befasst sich eingehender mit der Hybrid-Cloud-Lésung von NetApp und
erortert ihre Rolle bei der Datenreplikation und -sicherung in lokalen und Cloud-
Umgebungen. Es enthalt Einblicke in die Leistungsvalidierung von Vektordatenbanken
auf NetApp ONTAP und schlie3t mit zwei praktischen Anwendungsfallen zur generativen
Kl: RAG mit LLM und NetApps internem ChatAl. Dieses Dokument dient als umfassender
Leitfaden zur Nutzung der Speicherlésungen von NetApp fur die Verwaltung von
Vektordatenbanken.

Der Schwerpunkt der Referenzarchitektur liegt auf Folgendem:

"EinfGhrung"
"Lésungsubersicht"
"Vektordatenbank"
"Technologieanforderungen”

"Bereitstellungsverfahren”

o o k~ w0 N =

"Ubersicht zur Lésungsiberpriifung”
o "Milvus-Cluster-Setup mit Kubernetes vor Ort"
o Milvus mit Amazon FSx ONTAP fir NetApp ONTAP — Datei- und Objektdualitat
o "Vector-Datenbankschutz mit NetApp SnapCenter."
o "Disaster Recovery mit NetApp SnapMirror"
o "Leistungsvalidierung"
7. "Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL.: pgvector"
8. "Anwendungsfalle fir Vektordatenbanken"
9. "Abschluss"
10. "Anhang A: values.yam|"

11. "Anhang B: prepare_data_netapp_new.py"

https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

12. "Anhang C: verify _data_netapp.py"

13. "Anhang D: docker-compose.yml"

Einfuhrung
Dieser Abschnitt bietet eine Einflhrung in die Vektordatenbankldsung fur NetApp.

Einflihrung

Vektordatenbanken bewaltigen effektiv die Herausforderungen, die fiir die Bewaltigung der Komplexitat der
semantischen Suche in Large Language Models (LLMs) und generativer kunstlicher Intelligenz (Kl) entwickelt
wurden. Im Gegensatz zu herkdmmlichen Datenverwaltungssystemen kénnen Vektordatenbanken
verschiedene Datentypen verarbeiten und durchsuchen, darunter Bilder, Videos, Text, Audio und andere
Formen unstrukturierter Daten, indem sie den Inhalt der Daten selbst und nicht Beschriftungen oder Tags
verwenden.

Die Einschrankungen relationaler Datenbankmanagementsysteme (RDBMS) sind gut dokumentiert,
insbesondere ihre Probleme mit hochdimensionalen Datendarstellungen und unstrukturierten Daten, die in Kl-
Anwendungen Ublich sind. RDBMS erfordern haufig einen zeitaufwandigen und fehleranfalligen Prozess zur
Vereinfachung der Daten in besser handhabbare Strukturen, was zu Verzégerungen und Ineffizienzen bei der
Suche flihrt. Vektordatenbanken sind jedoch darauf ausgelegt, diese Probleme zu umgehen. Sie bieten eine
effizientere und genauere Losung fur die Verwaltung und Suche in komplexen und hochdimensionalen Daten
und erleichtern so die Weiterentwicklung von Kl-Anwendungen.

Dieses Dokument dient als umfassender Leitfaden fir Kunden, die derzeit Vektordatenbanken verwenden oder
dies planen. Es beschreibt die Best Practices fur die Verwendung von Vektordatenbanken auf Plattformen wie
NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP fiir NetApp ONTAP und SnapCenter. Die hier
bereitgestellten Inhalte decken eine Reihe von Themen ab:

« Infrastrukturrichtlinien fir Vektordatenbanken wie Milvus, bereitgestellt von NetApp Storage iber NetApp
ONTAP und StorageGRID Objektspeicher.
« Validierung der Milvus-Datenbank in AWS FSx ONTAP durch Datei- und Objektspeicher.

» Befasst sich eingehend mit der Datei-Objekt-Dualitat von NetApp und demonstriert deren Nutzen fir Daten
in Vektordatenbanken sowie anderen Anwendungen.

» So bietet SnapCenter, das Data Protection Management-Produkt von NetApp, Sicherungs- und
Wiederherstellungsfunktionen fur Vektordatenbankdaten.

« So bietet die Hybrid Cloud von NetApp Datenreplikation und -schutz in lokalen und Cloud-Umgebungen.

* Bietet Einblicke in die Leistungsvalidierung von Vektordatenbanken wie Milvus und pgvector auf NetApp
ONTAP.

« Zwei konkrete Anwendungsfalle: Retrieval Augmented Generation (RAG) mit Large Language Models
(LLM) und ChatAl des NetApp IT-Teams, die praktische Beispiele fiir die beschriebenen Konzepte und
Praktiken bieten.

Losungsubersicht
Dieser Abschnitt bietet einen Uberblick Uiber die NetApp Vector-Datenbanklésung.

Losungsubersicht

Diese Losung demonstriert die besonderen Vorteile und Fahigkeiten, die NetApp mitbringt, um die
Herausforderungen zu bewaltigen, vor denen Kunden von Vektordatenbanken stehen. Durch die Nutzung von
NetApp ONTAP, StorageGRID, den Cloud-Lésungen von NetApp und SnapCenter kdnnen Kunden ihren
Geschaftsbetrieb erheblich aufwerten. Diese Tools |6sen nicht nur bestehende Probleme, sondern steigern
auch die Effizienz und Produktivitat und tragen so zum allgemeinen Unternehmenswachstum bei.

Warum NetApp?

» Die Angebote von NetApp, wie ONTAP und StorageGRID, ermdglichen die Trennung von Speicher und
Rechenleistung und ermdglichen so eine optimale Ressourcennutzung basierend auf spezifischen
Anforderungen. Diese Flexibilitat ermdglicht es Kunden, ihren Speicher mithilfe von NetApp
Speicherldsungen unabhangig zu skalieren.

» Durch die Nutzung der Speichercontroller von NetApp kénnen Kunden mithilfe der Protokolle NFS und S3
effizient Daten an ihre Vektordatenbank tUbermitteln. Diese Protokolle erleichtern die Speicherung von
Kundendaten und verwalten den Vektordatenbankindex, sodass nicht mehr mehrere Kopien der Daten
bendtigt werden, auf die Uber Datei- und Objektmethoden zugegriffen wird.

* NetApp ONTAP bietet native Unterstitzung fir NAS- und Objektspeicher bei fuhrenden Cloud-Service-
Anbietern wie AWS, Azure und Google Cloud. Diese umfassende Kompatibilitat gewahrleistet eine
nahtlose Integration und ermoglicht Kundendatenmobilitét, globale Zuganglichkeit,
Notfallwiederherstellung, dynamische Skalierbarkeit und hohe Leistung.

* Dank der robusten Datenverwaltungsfunktionen von NetApp kdnnen Kunden sicher sein, dass ihre Daten
gut vor potenziellen Risiken und Bedrohungen geschitzt sind. NetApp legt groften Wert auf
Datensicherheit und bietet seinen Kunden die Gewissheit, dass ihre wertvollen Informationen sicher und
intakt sind.

Vektordatenbank

Dieser Abschnitt behandelt die Definition und Verwendung einer Vektordatenbank in
NetApp KI-Losungen.

Vektordatenbank

Eine Vektordatenbank ist ein spezialisierter Datenbanktyp, der fur die Verarbeitung, Indizierung und Suche
unstrukturierter Daten mithilfe von Einbettungen aus Modellen des maschinellen Lernens konzipiert ist. Anstatt
Daten in einem herkdmmlichen Tabellenformat zu organisieren, werden sie als hochdimensionale Vektoren
angeordnet, die auch als Vektoreinbettungen bezeichnet werden. Diese einzigartige Struktur ermdglicht es der
Datenbank, komplexe, mehrdimensionale Daten effizienter und genauer zu verarbeiten.

Eine der wichtigsten Fahigkeiten einer Vektordatenbank ist die Verwendung generativer Kl zur Durchfiihrung
von Analysen. Hierzu gehéren Ahnlichkeitssuchen, bei denen die Datenbank Datenpunkte identifiziert, die
einer bestimmten Eingabe ahneln, und die Anomalieerkennung, bei der sie Datenpunkte erkennen kann, die
erheblich von der Norm abweichen.

Darlber hinaus eignen sich Vektordatenbanken gut fir die Verarbeitung zeitlicher Daten oder mit Zeitstempeln
versehener Daten. Diese Art von Daten liefert Informationen darlber, ,was” passiert ist und wann es passiert
ist, in der Reihenfolge und im Verhaltnis zu allen anderen Ereignissen innerhalb eines bestimmten IT-Systems.
Diese Fahigkeit, zeitliche Daten zu verarbeiten und zu analysieren, macht Vektordatenbanken besonders
nitzlich fir Anwendungen, die ein Verstéandnis von Ereignissen im Zeitverlauf erfordern.

Vorteile der Vektordatenbank fiir ML und KI:

* Hochdimensionale Suche: Vektordatenbanken eignen sich hervorragend zum Verwalten und Abrufen
hochdimensionaler Daten, die haufig in KlI- und ML-Anwendungen generiert werden.

« Skalierbarkeit: Sie konnen effizient skaliert werden, um grof3e Datenmengen zu verarbeiten und so das
Wachstum und die Expansion von Kl- und ML-Projekten zu unterstitzen.

* Flexibilitat: Vektordatenbanken bieten ein hohes Mal an Flexibilitat und erméglichen die Aufnahme
unterschiedlicher Datentypen und -strukturen.

* Leistung: Sie bieten leistungsstarkes Datenmanagement und -abruf, was fir die Geschwindigkeit und
Effizienz von Kl- und ML-Operationen entscheidend ist.

« Anpassbare Indizierung: Vector-Datenbanken bieten anpassbare Indizierungsoptionen, die eine optimierte
Datenorganisation und -abfrage basierend auf spezifischen Anforderungen ermdglichen.

Vektordatenbanken und Anwendungsfille.

Dieser Abschnitt enthalt verschiedene Vektordatenbanken und Einzelheiten zu ihren Anwendungsfallen.

Faiss und ScaNN

Es handelt sich um Bibliotheken, die als wichtige Werkzeuge im Bereich der Vektorsuche dienen. Diese
Bibliotheken bieten Funktionen, die fir die Verwaltung und Suche in Vektordaten von entscheidender
Bedeutung sind, und stellen somit unschatzbare Ressourcen in diesem speziellen Bereich der
Datenverwaltung dar.

Elasticsearch

Es handelt sich um eine weit verbreitete Such- und Analyse-Engine, die seit kurzem auch Uber eine
Vektorsuchfunktion verfiigt. Diese neue Funktion erweitert die Funktionalitat und ermdglicht eine effektivere
Verarbeitung und Suche in Vektordaten.

Tannenzapfen

Es handelt sich um eine robuste Vektordatenbank mit einem einzigartigen Funktionsumfang. Es unterstitzt in
seiner Indexierungsfunktionalitat sowohl dichte als auch sparliche Vektoren, was seine Flexibilitat und
Anpassungsfahigkeit verbessert. Eine seiner Hauptstarken liegt in der Fahigkeit, traditionelle Suchmethoden
mit Kl-basierter dichter Vektorsuche zu kombinieren und so einen hybriden Suchansatz zu schaffen, der das
Beste aus beiden Welten nutzt.

Pinecone ist hauptsachlich cloudbasiert, fir Anwendungen des maschinellen Lernens konzipiert und lasst sich
gut in eine Vielzahl von Plattformen integrieren, darunter GCP, AWS, Open Al, GPT-3, GPT-3.5, GPT-4, Catgut
Plus, Elasticsearch, Haystack und mehr. Es ist wichtig zu beachten, dass Pinecone eine Closed-Source-
Plattform ist und als Software-as-a-Service-Angebot (SaaS) verflgbar ist.

Aufgrund seiner erweiterten Funktionen eignet sich Pinecone besonders gut fiir die Cybersicherheitsbranche,
wo seine hochdimensionalen Such- und Hybridsuchfunktionen effektiv genutzt werden kénnen, um
Bedrohungen zu erkennen und darauf zu reagieren.

Chroma

Es handelt sich um eine Vektordatenbank mit einer Core-API mit vier Hauptfunktionen, von denen eine einen
In-Memory-Dokumentenvektorspeicher umfasst. Es nutzt auRerdem die Face Transformers-Bibliothek zum
Vektorisieren von Dokumenten und verbessert so seine Funktionalitat und Vielseitigkeit. Chroma ist fir den
Betrieb sowohl in der Cloud als auch vor Ort konzipiert und bietet Flexibilitat basierend auf den

Benutzeranforderungen. Es zeichnet sich insbesondere bei Audioanwendungen aus und ist daher eine
ausgezeichnete Wahl fir audiobasierte Suchmaschinen, Musikempfehlungssysteme und andere
audiobezogene Anwendungsfalle.

Weaviate

Es handelt sich um eine vielseitige Vektordatenbank, die es Benutzern erméglicht, ihre Inhalte entweder
mithilfe der integrierten oder benutzerdefinierten Module zu vektorisieren und so Flexibilitat basierend auf
spezifischen Anforderungen zu bieten. Es bietet sowohl vollstadndig verwaltete als auch selbst gehostete
Ldsungen und berlcksichtigt dabei eine Vielzahl von Bereitstellungspraferenzen.

Eine der Hauptfunktionen von Weaviate ist die Fahigkeit, sowohl Vektoren als auch Objekte zu speichern,
wodurch die Datenverarbeitungsfunktionen verbessert werden. Es wird haufig fir eine Reihe von
Anwendungen verwendet, darunter semantische Suche und Datenklassifizierung in ERP-Systemen. Im E-
Commerce-Sektor treibt es Such- und Empfehlungsmaschinen an. Weaviate wird auch fir die Bildsuche,
Anomalieerkennung, automatisierte Datenharmonisierung und Cybersicherheitsbedrohungsanalyse verwendet
und zeigt damit seine Vielseitigkeit in mehreren Bereichen.

Redis

Redis ist eine leistungsstarke Vektordatenbank, die flr ihre schnelle In-Memory-Speicherung bekannt ist und
eine geringe Latenz fir Lese-/Schreibvorgange bietet. Dies macht es zu einer ausgezeichneten Wahl fur
Empfehlungssysteme, Suchmaschinen und Datenanalyseanwendungen, die einen schnellen Datenzugriff
erfordern.

Redis unterstitzt verschiedene Datenstrukturen fir Vektoren, einschlielich Listen, Mengen und sortierte
Mengen. Es bietet auch Vektoroperationen wie das Berechnen von Abstanden zwischen Vektoren oder das
Finden von Schnittpunkten und Vereinigungen. Diese Funktionen sind besonders nutzlich fiir die
Ahnlichkeitssuche, Clustering und inhaltsbasierte Empfehlungssysteme.

In Bezug auf Skalierbarkeit und Verfugbarkeit zeichnet sich Redis durch die Verarbeitung von Workloads mit
hohem Durchsatz aus und bietet Datenreplikation. Es I&sst sich auch gut in andere Datentypen integrieren,
einschliel3lich herkémmlicher relationaler Datenbanken (RDBMS). Redis enthalt eine Publish/Subscribe-
Funktion (Pub/Sub) fir Echtzeit-Updates, die fir die Verwaltung von Echtzeit-Vektoren von Vorteil ist. Dartber
hinaus ist Redis leichtgewichtig und einfach zu verwenden, was es zu einer benutzerfreundlichen Losung fur
die Verwaltung von Vektordaten macht.

Milvus

Es handelt sich um eine vielseitige Vektordatenbank, die eine APl wie einen Dokumentenspeicher bietet,
ahnlich wie MongoDB. Es zeichnet sich durch die Unterstlitzung einer Vielzahl von Datentypen aus und ist
daher eine beliebte Wahl in den Bereichen Datenwissenschaft und maschinelles Lernen.

Eine der einzigartigen Funktionen von Milvus ist die Multivektorisierungsfunktion, die es Benutzern erméglicht,
zur Laufzeit den fur die Suche zu verwendenden Vektortyp anzugeben. Dariliber hinaus nutzt es Knowwhere,
eine Bibliothek, die auf anderen Bibliotheken wie Faiss aufbaut, um die Kommunikation zwischen Abfragen
und den Vektorsuchalgorithmen zu verwalten.

Dank seiner Kompatibilitdt mit PyTorch und TensorFlow bietet Milvus auf3erdem eine nahtlose Integration in
Machine-Learning-Workflows. Dies macht es zu einem hervorragenden Tool fir eine Reihe von Anwendungen,
darunter E-Commerce, Bild- und Videoanalyse, Objekterkennung, Bildahnlichkeitssuche und inhaltsbasierte
Bildabfrage. Im Bereich der naturlichen Sprachverarbeitung wird Milvus fur die Dokumentenclusterung,
semantische Suche und Frage-Antwort-Systeme verwendet.

Fir diese Losung haben wir Milvus zur Lésungsvalidierung ausgewahlt. Aus Leistungsgriinden haben wir

sowohl Milvus als auch Postgres (pgvecto.rs) verwendet.

Warum haben wir uns fiir diese Lésung fiir Milvus entschieden?

» Open Source: Milvus ist eine Open-Source-Vektordatenbank, die eine von der Community gesteuerte
Entwicklung und Verbesserung fordert.

+ Kl-Integration: Es nutzt die Einbettung von Ahnlichkeitssuchen und KI-Anwendungen, um die Funktionalitat
der Vektordatenbank zu verbessern.

* Handhabung groRer Datenmengen: Milvus verfligt Uber die Kapazitat, iber eine Milliarde
Einbettungsvektoren zu speichern, zu indizieren und zu verwalten, die von Deep Neural Networks (DNN)
und Machine Learning (ML)-Modellen generiert werden.

» Benutzerfreundlich: Die Verwendung ist einfach, die Einrichtung dauert weniger als eine Minute. Milvus
bietet auch SDKs fiir verschiedene Programmiersprachen an.

» Geschwindigkeit: Es bietet blitzschnelle Abrufgeschwindigkeiten, bis zu 10-mal schneller als einige

Alternativen.

 Skalierbarkeit und Verflgbarkeit: Milvus ist hochgradig skalierbar und bietet Optionen zur Skalierung nach

oben und unten nach Bedarf.

* Funktionsreich: Es unterstitzt verschiedene Datentypen, Attributfilterung, benutzerdefinierte Funktionen
(UDF), konfigurierbare Konsistenzstufen und Reisezeiten und ist somit ein vielseitiges Tool fiir

verschiedene Anwendungen.
Milvus-Architekturiibersicht

| coardinator Services

LR]
SOK | resthul AP : Mita Store

Arcans Layer

Prosy
Lopd Balancod
Frowy

Saarch [Query 1
| Workir Hodes

Buady Medes
- e

Load
| Dbject Storage

Data Files

Duitalag

Rootcgard Datacoard

BDL J OCL
Missage Storago [WAL

Ealka 7" Padsar
S

DML | Praduco

oS

¥
Data Hodes
[A e

Wit Biamsd Wit

Inddox Files

Statslog Binlog Index Indiox

T

¥

CHepryoonnd

All-Flash FAS -

MitApp StorageGRID - Obleet storaga

T T

ONTAP

Controds

Dieser Abschnitt stellt Komponenten und Dienste héherer Ebene bereit, die in der Milvus-Architektur
verwendet werden. * Zugriffsebene — Sie besteht aus einer Gruppe zustandsloser Proxys und dient als
Frontebene des Systems und Endpunkt fir Benutzer. * Koordinatordienst — er weist die Aufgaben den
Arbeitsknoten zu und fungiert als Gehirn des Systems. Es gibt drei Koordinatortypen: Stammkoordinate,
Datenkoordinate und Abfragekoordinate. * Worker-Knoten: Es folgt den Anweisungen des Koordinatordienstes

und fuhrt vom Benutzer ausgeléste DML/DDL-Befehle aus. Es gibt drei Arten von Worker-Knoten, namlich
Abfrageknoten, Datenknoten und Indexknoten. * Speicher: Er ist fir die Datenpersistenz verantwortlich. Es
umfasst Metaspeicher, Log Broker und Objektspeicher. NetApp Speicher wie ONTAP und StorageGRID bieten
Milvus Objektspeicher und dateibasierten Speicher sowohl fur Kundendaten als auch fur
Vektordatenbankdaten.

Technologieanforderungen

Dieser Abschnitt bietet einen Uberblick Gber die Anforderungen fir die NetApp Vector-
Datenbanklosung.

Technologieanforderungen

Fir die Mehrzahl der in diesem Dokument durchgefiihrten Validierungen wurden die unten beschriebenen
Hardware- und Softwarekonfigurationen verwendet, mit Ausnahme der Leistung. Diese Konfigurationen dienen
als Richtlinie und helfen Ihnen beim Einrichten lhrer Umgebung. Bitte beachten Sie jedoch, dass die konkreten
Komponenten je nach individuellen Kundenanforderungen variieren konnen.

Hardwareanforderungen

Hardware Details

NetApp AFF Storage-Array HA-Paar *A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Zwei flexible Gruppenvolumes: Metadaten und Daten.
* Das Metadaten-NFS-Volume verfiigt iber 12
persistente Volumes mit 250 GB. * Daten sind ein
ONTAP NAS S3-Volume

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPUs * Intel® Xeon® Gold 6142 CPU @ 2,60
GHz * 256 GM physischer Speicher * 1 x 100GbE
Netzwerkanschluss

Vernetzung 100 GbE
StorageGRID *1xSG100, 3 x SGF6024 * 3 x24 x 7,68 TB

Softwareanforderungen

Software Details

Milvus-Cluster * DIAGRAMM - milvus-4.1.11. * APP-Version —2.3.4 *
Abhangige Pakete wie Bookkeeper, Zookeeper,
Pulsar, etcd, Proxy, Querynode, Worker

Kubernetes * 5-Knoten-K8s-Cluster * 1 Masterknoten und 4
Workerknoten * Version — 1.7.2
Python *3.10.12.

Bereitstellungsverfahren

In diesem Abschnitt wird das Bereitstellungsverfahren fur die Vektordatenbankldsung fur
NetApp erlautert.

Bereitstellungsverfahren

In diesem Bereitstellungsabschnitt haben wir die Milvus-Vektordatenbank mit Kubernetes fir die
Laboreinrichtung wie unten beschrieben verwendet.

O
O

A

Milvus Cluster

e e e e e

0

e e e

Q0

Bucket File StorageGRID { Object storage)
BT o
Storage

R T R R ool

Der NetApp-Speicher stellt den Speicherplatz fir den Cluster bereit, um Kundendaten und Milvus-Clusterdaten
aufzubewahren.

NetApp -Speichereinrichtung — ONTAP

* Initialisierung des Speichersystems
« Erstellen einer virtuellen Speichermaschine (SVM)
« Zuordnung logischer Netzwerkschnittstellen

* NFS, S3-Konfiguration und -Lizenzierung
Bitte befolgen Sie die folgenden Schritte fir NFS (Network File System):

1. Erstellen Sie ein FlexGroup -Volume fir NFSv4. In unserem Setup fiir diese Validierung haben wir 48
SSDs verwendet, 1 SSD speziell fur das Root-Volume des Controllers und 47 SSDs verteilt fur
NFSv4]].Uberpriifen Sie, ob die NFS-Exportrichtlinie fiir das FlexGroup -Volume Lese-
/Schreibberechtigungen fir das Kubernetes-Knotennetzwerk (K8s) hat. Wenn diese Berechtigungen nicht
vorhanden sind, erteilen Sie Lese-/Schreibberechtigungen (rw) fir das K8s-Knotennetzwerk.

2. Erstellen Sie auf allen K8s-Knoten einen Ordner und mounten Sie das FlexGroup Volume Uber eine
logische Schnittstelle (LIF) auf jedem K8s-Knoten in diesen Ordner.

Bitte befolgen Sie die folgenden Schritte flir NAS S3 (Network Attached Storage Simple Storage Service):

1. Erstellen Sie ein FlexGroup -Volume flr NFS.

2. Richten Sie mit dem Befehl ,vserver object-store-server create” einen Object-Store-Server mit aktiviertem
HTTP und dem Administratorstatus ,up“ ein. Sie haben die Mdglichkeit, HTTPS zu aktivieren und einen
benutzerdefinierten Listener-Port festzulegen.

3. Erstellen Sie einen Object-Store-Server-Benutzer mit dem Befehl ,vserver object-store-server user create
-user <Benutzername>*.

4. Um den Zugriffsschlissel und den geheimen Schllssel zu erhalten, kénnen Sie den folgenden Befehl
ausfuhren: ,set diag; vserver object-store-server user show -user <Benutzername>“. In Zukunft werden
diese Schlissel jedoch wahrend des Benutzererstellungsprozesses bereitgestellt oder kdnnen mithilfe von
REST-API-Aufrufen abgerufen werden.

5. Richten Sie mit dem in Schritt 2 erstellten Benutzer eine Object-Store-Server-Gruppe ein und gewahren
Sie Zugriff. In diesem Beispiel haben wir ,FullAccess” bereitgestellt.

6. Erstellen Sie einen NAS-Bucket, indem Sie seinen Typ auf ,nas* festlegen und den Pfad zum NFSv3-
Volume angeben. Es ist auch mdglich, zu diesem Zweck einen S3-Bucket zu verwenden.

NetApp -Speichereinrichtung — StorageGRID

1. Installieren Sie die storageGRID-Software.
2. Erstellen Sie einen Mandanten und einen Bucket.

3. Erstellen Sie einen Benutzer mit der erforderlichen Berechtigung.

Weitere Einzelheiten finden Sie in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Losungsuberprufung

Losungsubersicht

Wir haben eine umfassende Losungsvalidierung mit Schwerpunkt auf funf
SchlUsselbereichen durchgefihrt, deren Einzelheiten im Folgenden aufgefihrt sind.
Jeder Abschnitt befasst sich eingehend mit den Herausforderungen, vor denen die
Kunden stehen, den von NetApp bereitgestellten Losungen und den daraus
resultierenden Vorteilen fur den Kunden.

1. "Milvus-Cluster-Setup mit Kubernetes vor Ort"Kunden stehen vor der Herausforderung, Speicher und
Rechenleistung unabhangig zu skalieren und die Infrastruktur und Daten effektiv zu verwalten. In diesem
Abschnitt beschreiben wir detailliert den Prozess der Installation eines Milvus-Clusters auf Kubernetes
unter Verwendung eines NetApp -Speichercontrollers sowohl fiir Clusterdaten als auch flir Kundendaten.

2. Milvus mit Amazon FSx ONTAP fiir NetApp ONTAP — Datei- und Objektdualitat In diesem Abschnitt
erfahren Sie, warum wir die Vektordatenbank in der Cloud bereitstellen missen, sowie die Schritte zur
Bereitstellung der Vektordatenbank (Milvus Standalone) in Amazon FSx ONTAP fir NetApp ONTAP
innerhalb von Docker-Containern.

3. "Vector-Datenbankschutz mit NetApp SnapCenter."In diesem Abschnitt gehen wir naher darauf ein, wie
SnapCenter die in ONTAP gespeicherten Vektordatenbankdaten und Milvus-Daten schutzt. Fir dieses

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html
https://docs.netapp.com/de-de/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

Beispiel haben wir einen NAS-Bucket (milvusdbvol1) verwendet, der aus einem NFS- ONTAP Volume
(vol1) fur Kundendaten abgeleitet wurde, und ein separates NFS-Volume (vectordbpv) fur Milvus-Cluster-
Konfigurationsdaten.

4. "Disaster Recovery mit NetApp SnapMirror"In diesem Abschnitt besprechen wir die Bedeutung der
Notfallwiederherstellung (DR) fiir die Vektordatenbank und wie das NetApp-
Notfallwiederherstellungsprodukt SnapMirror eine DR-L6sung fiir die Vektordatenbank bereitstellt.

5. "Leistungsvalidierung"In diesem Abschnitt méchten wir uns eingehend mit der Leistungsvalidierung von
Vektordatenbanken wie Milvus und pgvecto.rs befassen und uns dabei auf ihre
Speicherleistungsmerkmale wie E/A-Profil und Verhalten des NetApp-Speichercontrollers zur
Unterstitzung von RAG- und Inferenz-Workloads innerhalb des LLM-Lebenszyklus konzentrieren. Wir
werden alle Leistungsunterschiede bewerten und identifizieren, wenn diese Datenbanken mit der ONTAP
Speicherlésung kombiniert werden. Unsere Analyse basiert auf wichtigen Leistungsindikatoren,
beispielsweise der Anzahl der pro Sekunde verarbeiteten Abfragen (QPS).

Milvus-Cluster-Setup mit Kubernetes vor Ort

In diesem Abschnitt wird die Einrichtung des Milvus-Clusters fur die Vector-
Datenbanklésung fur NetApp erlautert.

Milvus-Cluster-Setup mit Kubernetes vor Ort

Kunden stehen vor der Herausforderung, Speicher und Rechenleistung unabhangig zu skalieren und eine
effektive Infrastruktur- und Datenverwaltung zu gewahrleisten. Kubernetes und Vektordatenbanken bilden
zusammen eine leistungsstarke, skalierbare Lésung fir die Verwaltung grof3er Datenvorgange. Kubernetes
optimiert Ressourcen und verwaltet Container, wahrend Vektordatenbanken hochdimensionale Daten und
Ahnlichkeitssuchen effizient verarbeiten. Diese Kombination ermdglicht die schnelle Verarbeitung komplexer
Abfragen grofRer Datensatze und lasst sich nahtlos mit wachsenden Datenmengen skalieren, was sie ideal fiir
Big-Data-Anwendungen und KI-Workloads macht.

1. In diesem Abschnitt beschreiben wir detailliert den Prozess der Installation eines Milvus-Clusters auf
Kubernetes unter Verwendung eines NetApp -Speichercontrollers sowohl fir Clusterdaten als auch fir
Kundendaten.

2. Zur Installation eines Milvus-Clusters sind Persistent Volumes (PVs) zum Speichern von Daten aus
verschiedenen Milvus-Clusterkomponenten erforderlich. Zu diesen Komponenten gehoéren etcd (drei
Instanzen), pulsar-bookie-journal (drei Instanzen), pulsar-bookie-ledgers (drei Instanzen) und pulsar-
zookeeper-data (drei Instanzen).

Im Milvus-Cluster kénnen wir entweder Pulsar oder Kafka als zugrunde liegende Engine
verwenden, die die zuverlassige Speicherung und Veroffentlichung/Abonnementierung von
Nachrichtenstromen im Milvus-Cluster unterstitzt. Fir Kafka mit NFS hat NetApp

@ Verbesserungen in O_NTAP 9.12.1 und héher vorgenommen. Diese Verbesserungen sowie
NFSv4.1- und Linux-Anderungen, die in RHEL 8.7 oder 9.1 und hoher enthalten sind,
beheben das Problem der ,dummen Umbenennung®, das beim Ausflhren von Kafka Uiber
NFS auftreten kann. Wenn Sie an ausfihrlicheren Informationen zum Ausfihren von Kafka
mit der NetApp NFS-LOsung interessiert sind, lesen Sie bitte -"dieser Link" .

3. Wir haben ein einzelnes NFS-Volume von NetApp ONTAP erstellt und 12 persistente Volumes mit jeweils
250 GB Speicher eingerichtet. Die Speichergrofie kann je nach ClustergroRe variieren. Beispielsweise
haben wir einen anderen Cluster, bei dem jedes PV uUber 50 GB verfugt. Weitere Einzelheiten finden Sie
unten in einer der PV-YAML-Dateien. Insgesamt hatten wir 12 solcher Dateien. In jeder Datei ist der
storageClassName auf ,default* gesetzt und Speicher und Pfad sind fir jedes PV eindeutig.

10

../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai nfs to default pvl.yaml
apiVersion: vl
kind: PersistentVolume
metadata:
name: karthik-pvl
spec:
capacity:
storage: 250Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: default
local:
path: /vectordbsc/milvus/milvusl
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- node?2
- node3
- node4
- nodeb
- nodeo6
root@node2:~#

4. Fuhren Sie den Befehl ,kubectl apply® fur jede PV-YAML-Datei aus, um die persistenten Volumes zu
erstellen, und Uberprifen Sie anschlieliend deren Erstellung mit ,kubectl get pv*.

11

12

root@node2:~# for i in $(seq 1 12); do kubectl apply -f
sai nfs to default pv$Si.yaml; done
persistentvolume/karthik-pvl created
persistentvolume/karthik-pv2 created
persistentvolume/karthik-pv3 created
persistentvolume/karthik-pv4 created
persistentvolume/karthik-pv5 created
persistentvolume/karthik-pv6 created
persistentvolume/karthik-pv7 created
persistentvolume/karthik-pv8 created
persistentvolume/karthik-pv9 created
persistentvolume/karthik-pvl0 created
persistentvolume/karthik-pvll created
persistentvolume/karthik-pvl2 created
root@node?2: ~#

. Zum Speichern von Kundendaten unterstitzt Milvus Objektspeicherlésungen wie MinlO, Azure Blob und

S3. In dieser Anleitung verwenden wir S3. Die folgenden Schritte gelten sowohl fir den ONTAP S3- als
auch fur den StorageGRID Objektspeicher. Wir verwenden Helm, um den Milvus-Cluster bereitzustellen.
Laden Sie die Konfigurationsdatei values.yaml vom Milvus-Download-Speicherort herunter. Die Datei
values.yaml, die wir in diesem Dokument verwendet haben, finden Sie im Anhang.

. Stellen Sie sicher, dass die ,storageClass” in jedem Abschnitt auf ,default” gesetzt ist, einschlieRlich der

Abschnitte fur Protokoll, etcd, Zookeeper und Bookkeeper.

. Deaktivieren Sie MinlO im Abschnitt MinlO.
. Erstellen Sie einen NAS-Bucket aus dem ONTAP oder StorageGRID Objektspeicher und figen Sie ihn mit

den Objektspeicher-Anmeldeinformationen in ein externes S3 ein.

FHAHHHEHHH A AR A AR S
External S3
- these configs are only used when “externalS3.enabled’ is true
FHAFH AR H A AR A AR S
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "Zd28p43rgZaU44PX ftT279z9nt4jBSro97387Bx"
useSSL: false
bucketName: "milvusdbvoll"
rootPath: ""
useIAM: false

cloudProvider:

" "

aws
iamEndpoint: ""
nmn

region:
useVirtualHost: false

9. Stellen Sie vor dem Erstellen des Milvus-Clusters sicher, dass der PersistentVolumeClaim (PVC) keine

bereits vorhandenen Ressourcen enthalt.

root@node2:~# kubectl get pvc
No resources found in default namespace.
root@node2:~#

10. Verwenden Sie Helm und die Konfigurationsdatei values.yaml, um den Milvus-Cluster zu installieren und

zu starten.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.
NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node?2: ~#

11. Uberpriifen Sie den Status der PersistentVolumeClaims (PVCs).

13

root@node2:~# kubectl get pvc

NAME

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-my-release-etcd-0

karthik-pv8 250G1 RWO default 3s
data-my-release-etcd-1

karthik-pv5 250G1 RWO default 2s
data-my-release-etcd-2

karthik-pv4 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0
karthik-pv10 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1
karthik-pv3 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2
karthik-pvl 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0
karthik-pv2 250G1i RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1
karthik-pv9 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2
karthik-pvll 250G1 RWO default 3s
my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0
karthik-pv7 250G1i RWO default 3s

root@node2:~#

12. Uberpriifen Sie den Status der Pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

<content removed to save page space>

Bitte stellen Sie sicher, dass der Pod-Status ,lauft” lautet und wie erwartet funktioniert.

13. Testen Sie das Schreiben und Lesen von Daten im Milvus- und NetApp Objektspeicher.

14

o Schreiben Sie Daten mit dem Python-Programm ,prepare_data_netapp_new.py*.

STATUS

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

root@node2:~# date;python3 prepare data netapp new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew update2 sc exist in Milvus:
False

=== Drop collection - hello milvus ntapnew update2 sc ===

=== Drop collection - hello milvus ntapnew update2 sc2 ===

=== Create collection "hello milvus ntapnew update2 sc’ ===

=== Start inserting entities ==
Number of entities in hello milvus ntapnew update2 sc: 3000
Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

o Lesen Sie die Daten mithilfe der Python-Datei ,verify_data_netapp.py“.

root@node2:~# python3 verify data netapp.py
=== start connecting to Milvus ===
=== Milvus host: localhost ===

Does collection hello milvus ntapnew updateZ sc exist in Milvus: True

{'auto_id': False, 'description': 'hello milvus ntapnew update2Z sc',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': False}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',
'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello milvus ntapnew update2 sc : 3000

=== Start Creating index IVF FLAT ===
=== Start loading ===
=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':
0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':
0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':
0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with “random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,
0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.8236044¢0,
0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,
0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with “random > 0.5 ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':
0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':
0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':
0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':
0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello milvus ntapnew updateZ sc2 exist in Milvus:

True

{'auto id': True, 'description': 'hello milvus ntapnew update2 sc2',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': True}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Basierend auf der obigen Validierung bietet die Integration von Kubernetes mit einer Vektordatenbank,
wie durch die Bereitstellung eines Milvus-Clusters auf Kubernetes unter Verwendung eines NetApp
-Speichercontrollers demonstriert, Kunden eine robuste, skalierbare und effiziente Losung fiir die
Verwaltung umfangreicher Datenvorgange. Dieses Setup bietet Kunden die Mdéglichkeit,
hochdimensionale Daten zu verarbeiten und komplexe Abfragen schnell und effizient auszuflihren, was
es zu einer idealen Lésung fur Big-Data-Anwendungen und Kl-Workloads macht. Die Verwendung von
Persistent Volumes (PVs) flir verschiedene Clusterkomponenten sowie die Erstellung eines einzelnen
NFS-Volumes aus NetApp ONTAP gewahrleisten eine optimale Ressourcennutzung und

Datenverwaltung. Der Prozess der Uberpriifung des Status von PersistentVolumeClaims (PVCs) und
Pods sowie das Testen des Schreibens und Lesens von Daten bietet Kunden die Gewissheit
zuverlassiger und konsistenter Datenvorgange. Die Verwendung von ONTAP oder StorageGRID
-Objektspeicher fur Kundendaten verbessert die Datenzuganglichkeit und -sicherheit zusatzlich.
Insgesamt bietet diese Konfiguration den Kunden eine robuste und leistungsstarke
Datenverwaltungslosung, die sich nahtlos an ihren wachsenden Datenbedarf anpassen lasst.

Milvus mit Amazon FSx ONTAP fir NetApp ONTAP — Datei- und Objektdualitat

In diesem Abschnitt wird die Einrichtung des Milvus-Clusters mit Amazon FSx ONTAP fur
die Vektordatenbanklosung fur NetApp erlautert.

Milvus mit Amazon FSx ONTAP fiir NetApp ONTAP — Datei- und Objektdualitat

In diesem Abschnitt erfahren Sie, warum wir die Vektordatenbank in der Cloud bereitstellen miissen, sowie die
Schritte zum Bereitstellen der Vektordatenbank (Milvus Standalone) in Amazon FSx ONTAP fiir NetApp
ONTAP innerhalb von Docker-Containern.

Die Bereitstellung einer Vektordatenbank in der Cloud bietet mehrere bedeutende Vorteile, insbesondere flr
Anwendungen, bei denen hochdimensionale Daten verarbeitet und Ahnlichkeitssuchen ausgefiihrt werden
mussen. Erstens bietet die Cloud-basierte Bereitstellung Skalierbarkeit und ermdglicht eine einfache
Anpassung der Ressourcen an die wachsenden Datenmengen und Abfragelasten. Dadurch wird sichergestellt,
dass die Datenbank die erh6hte Nachfrage effizient bewaltigen und gleichzeitig eine hohe Leistung
aufrechterhalten kann. Zweitens bietet die Cloud-Bereitstellung hohe Verfligbarkeit und
Notfallwiederherstellung, da Daten Uber verschiedene geografische Standorte hinweg repliziert werden
kénnen, wodurch das Risiko eines Datenverlusts minimiert und ein kontinuierlicher Dienst auch bei
unerwarteten Ereignissen sichergestellt wird. Drittens ist es kosteneffizient, da Sie nur fiir die Ressourcen
zahlen, die Sie tatsachlich nutzen, und je nach Bedarf hoch- oder herunterskalieren kdnnen, sodass keine
erheblichen Vorabinvestitionen in Hardware erforderlich sind. Und schlieBlich kann die Bereitstellung einer
Vektordatenbank in der Cloud die Zusammenarbeit verbessern, da von Uberall auf die Daten zugegriffen und
diese geteilt werden kdnnen, was die teambasierte Arbeit und datengesteuerte Entscheidungsfindung
erleichtert. Bitte Uberprifen Sie die Architektur des Milvus-Standalone mit Amazon FSx ONTAP fiir NetApp
ONTAP , das bei dieser Validierung verwendet wird.

17

FS)«’QP

Customer Data and Milvus config data /

Amazon FSXn for
NetApp ONTAP

1. Erstellen Sie eine Amazon FSx ONTAP fiur NetApp ONTAP Instanz und notieren Sie die Details der VPC,
der VPC-Sicherheitsgruppen und des Subnetzes. Diese Informationen werden beim Erstellen einer EC2-
Instanz bendtigt. Weitere Details finden Sie hier - https://us-east-1.console.aws.amazon.com/fsx/home?
region=us-east-1#file-system-create

2. Erstellen Sie eine EC2-Instance und stellen Sie sicher, dass VPC, Sicherheitsgruppen und Subnetz mit
denen der Amazon FSx ONTAP fir NetApp ONTAP -Instance Ubereinstimmen.

3. Installieren Sie nfs-common mit dem Befehl ,apt-get install nfs-common® und aktualisieren Sie die
Paketinformationen mit ,sudo apt-get update®.

4. Erstellen Sie einen Mount-Ordner und mounten Sie Amazon FSx ONTAP fiir NetApp ONTAP darin.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/voll
/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on
172.31.255.228:/voll 973G 126G 848G 13% /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~5

5. Installieren Sie Docker und Docker Compose mit ,apt-get install®.

6. Richten Sie einen Milvus-Cluster basierend auf der Datei docker-compose.yaml ein, die von der Milvus-
Website heruntergeladen werden kann.

18

Subcomponents
Query Coord Data Coord Index Coord Root Coord
uery Node Data Node Index Node Pro
) ity | | | Fiony Al Workloads
o
1
O ’ e
" 1
Reliable States ' 9
1
' [User requests (image)]
| Object Storage Key-Value-Meta-Store |
. . : !
: [Recommendation system]
i
1
il AP calls for Similarity Similar images
L 4 4 T \| embeddings search recommended to user
h. 4 Y A 4 ¥ 3 H
1
1
Bucket File \ ! .
E Milvus cluster
1

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
-0 docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
<removed some output to save page space>

7. Ordnen Sie im Abschnitt ,Volumes* der Datei docker-compose.yml den NetApp NFS-Mount-Punkt dem
entsprechenden Milvus-Containerpfad zu, insbesondere in etcd, minio und standalone.Check"Anhang D:
docker-compose.yml" fiir Details zu Anderungen in YML

8. Uberpriifen Sie die bereitgestellten Ordner und Dateien.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -1ltrh
/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3 access.py
drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes
ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -ltrh
/home/ubuntu/milvusvectordb/volumes/

total O

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
ubuntu@ip-172-31-29-98:~$ 1s

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb
vectordbvoll

ubuntu@ip-172-31-29-98:~$

9. Fuhren Sie ,docker-compose up -d“ aus dem Verzeichnis aus, das die Datei docker-compose.yml enthalt

10. Uberprifen Sie den Status des Milvus-Containers.

19

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

Name Command State
Ports
milvus-etcd etcd -advertise-client-url ... Up (healthy)
2379/tcp, 2380/tcp
milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp, :::9000->9000/tcp, 0.0.0.0:9001-
>9001/tcp, :::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)
0.0.0.0:19530->19530/tcp, :::19530->19530/tcp, 0.0.0.0:9091-
>9091/tcp, :::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ 1s -ltrh /home/ubuntu/milvusvectordb/volumes/
total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milwvus
ubuntu@ip-172-31-29-98:~$

11. Um die Lese- und Schreibfunktionalitat der Vektordatenbank und ihrer Daten in Amazon FSx ONTAP fur
NetApp ONTAP zu validieren, haben wir das Python Milvus SDK und ein Beispielprogramm von PyMilvus
verwendet. Installieren Sie die erforderlichen Pakete mit ,apt-get install python3-numpy python3-pip“ und
installieren Sie PyMilvus mit ,,pip3 install pymilvus®.

12. Validieren Sie Datenschreib- und -lesevorgange von Amazon FSx ONTAP fir NetApp ONTAP in der
Vektordatenbank.

root@ip-172-31-29-98:~/pymilvus/examples# python3
prepare data netapp new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True
=== Drop collection - hello milvus ntapnew sc ===
=== Drop collection - hello milvus ntapnew sc2 ===
=== Create collection "hello milvus ntapnew sc ===
=== Start inserting entities ===

Number of entities in hello milvus ntapnew sc: 9000
root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/
<removed content to save page space >

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-cl117-4fba-8256-96cb7557cd6e
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-c117-4fba-8256-96cb7557cdéc/part.1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920/x1.meta

13. Uberprifen Sie den Lesevorgang mit dem Skript verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify data netapp.py
=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True

{'auto id': False, 'description': 'hello milvus ntapnew sc', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':

L}
14

'"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',

21

22

'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, ({'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}
Number of entities in Milvus: hello milvus ntapnew sc : 9000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},
random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':
0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with ‘random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,
0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],
"'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with “random > 0.5° ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':
0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':
0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello milvus ntapnew sc2 exist in Milvus: True

{'auto id': True, 'description': 'hello milvus ntapnew sc2', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is primary': True, 'auto id': True}, {'name': 'random', 'description':
'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}

14. Wenn der Kunde fur KI-Workloads Uber das S3-Protokoll auf in der Vektordatenbank getestete NFS-Daten
zugreifen (lesen) mochte, kann dies mit einem einfachen Python-Programm validiert werden. Ein Beispiel
hierfiir kdnnte eine Ahnlichkeitssuche von Bildern aus einer anderen Anwendung sein, wie im Bild am
Anfang dieses Abschnitts erwahnt.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3
/home/ubuntu/milvusvectordb/s3 access.py -i 172.31.255.228 --bucket
milvusnasvol —--access-key PY6UF318996I86NBYNDD --secret-key
hoPctr9aD88clj0SkIYZ2uPal03v1bgKAOc5feKo6F

OBJECTS in the bucket milvusnasvol are

R R i e i b b db b b b b 2 b b db b i dh b b b b b b 2 S b dE b 2b b I i Y

<output content removed to save page space>

bucket/files/insert 1og/448789845791611912/448789845791611913/4487898457
91611920/0/448789845791411917/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/1/448789845791411918/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411913/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/101/448789845791411914/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/102/448789845791411915/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/1c48abbe-
1546-4503-9084-28c629216¢c33/part.1

volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/0/448789845791411924/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/1/448789845791411925/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/101/448789845791411921/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/102/448789845791411922/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913,/448789845791611939/103/448789845791411923/b3def25f-
cll17-4fba-8256-96cb7557cd6ec/part.1
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/103/448789845791411923/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791211880
/448789845791211881,/448789845791411889/100/1/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791211880
/448789845791211881,/448789845791411889,/100/448789845791411912/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/1/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411919/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791611912
/448789845791611913/448789845791611939/100/1/x1.meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611939/100/448789845791411926/x1 .meta

RR IR b b b b b b b b b b b b b I b 4

root@ip-172-31-29-98:~/pymilvus/examples

Dieser Abschnitt zeigt effektiv, wie Kunden ein eigenstandiges Milvus-Setup in Docker-Containern
bereitstellen und betreiben kénnen, indem sie Amazons NetApp FSx ONTAP fiir die NetApp ONTAP
Datenspeicherung nutzen. Mit diesem Setup kénnen Kunden die Leistungsfahigkeit von
Vektordatenbanken fir die Verarbeitung hochdimensionaler Daten und die Ausfihrung komplexer
Abfragen nutzen — und das alles in der skalierbaren und effizienten Umgebung von Docker-Containern.
Durch die Erstellung einer Amazon FSx ONTAP flr NetApp ONTAP -Instanz und einer passenden EC2-
Instanz kdnnen Kunden eine optimale Ressourcennutzung und Datenverwaltung sicherstellen. Die
erfolgreiche Validierung von Datenschreib- und -lesevorgangen von FSx ONTAP in der Vektordatenbank
bietet Kunden die Gewissheit zuverlassiger und konsistenter Datenvorgange. Darliber hinaus bietet die
Madglichkeit, Daten von Kl-Workloads Uber das S3-Protokoll aufzulisten (lesen), eine verbesserte
Datenzuganglichkeit. Dieser umfassende Prozess bietet Kunden daher eine robuste und effiziente Losung
fur die Verwaltung ihrer grof3 angelegten Datenvorgange und nutzt dabei die Funktionen von Amazons FSx
ONTAP fur NetApp ONTAP.

Vector-Datenbankschutz mit SnapCenter

In diesem Abschnitt wird beschrieben, wie Sie mit NetApp SnapCenter Datenschutz fur
die Vektordatenbank bereitstellen.

Vector-Datenbankschutz mit NetApp SnapCenter.

In der Filmproduktionsbranche beispielsweise verfligen Kunden haufig Uber kritische eingebettete Daten wie
Video- und Audiodateien. Der Verlust dieser Daten aufgrund von Problemen wie Festplattenausfallen kann

24

erhebliche Auswirkungen auf den Betrieb haben und mdglicherweise Multimillionen-Dollar-Projekte gefahrden.
Wir sind auf Falle gestolRen, in denen wertvolle Inhalte verloren gingen, was zu erheblichen Stérungen und
finanziellen Verlusten fuhrte. Die Gewahrleistung der Sicherheit und Integritat dieser wichtigen Daten ist daher
in dieser Branche von grofiter Bedeutung. In diesem Abschnitt gehen wir ndher darauf ein, wie SnapCenter die
in ONTAP gespeicherten Vektordatenbankdaten und Milvus-Daten schiitzt. Fir dieses Beispiel haben wir einen
NAS-Bucket (milvusdbvol1) verwendet, der von einem NFS ONTAP Volume (vol1) fir Kundendaten abgeleitet
wurde, und ein separates NFS-Volume (vectordbpv) fir Milvus-Cluster-Konfigurationsdaten. Bitte Uberprifen
Sie die"hier," fir den Snapcenter-Backup-Workflow

1. Richten Sie den Host ein, der zum Ausfiihren von SnapCenter -Befehlen verwendet wird.

e _ 9 10,182 83.137 - shiva snapoonler

v [snepCenter x =+

= » 2 O Mot seoure Bitpslocalhost@ 146, Hoste

M NetApp SnapCenter®
| Managed Hosts
Host Details
Host MName nodal

MName
HostIP 10.63,150.204

Dverall Staties @ Running

OOZ055L4-1 i
Systemn Stand-alone
Credentials ’

Plug-ins SnapCemter Plug-ins package 1.0 for Linux

Slorage Bk

£ More Optiens | Port, Inseall Pach, Add Flug-ins...

|
Submit Cancel || Resst

it s recommended to configurs Credentia! with non-root wuser aof
fram waing the oot Credentisl 1o & non-rogt Credential snd dai

Total §

2. Installieren und konfigurieren Sie das Speicher-Plugin. Wahlen Sie beim hinzugefiigten Host ,Weitere
Optionen® aus. Navigieren Sie zum heruntergeladenen Speicher-Plugin und wahlen Sie es aus
dem"NetApp Automation Store" . Installieren Sie das Plugin und speichern Sie die Konfiguration.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

[R
@ Open ®

10.192.83.137 - shiva snapcenter

4 e snapeenter [5) » SC-ANF » Plug v & asrch custom-plugir r

Organize v Hew folder . m e
& Downlosds # A Hame
5 Documents i oz
Pt # i Maos
“ il mysat
ORASCPM
8 This PC -

B so ki 1 Postgrest
ject

More Options

| SnapCenter Plug-in for DPGLUE
B Desiaop 1 SnapCenter Plug-in for MengeDe
4] Documents 1 storage

& Downloads 1 svease

b Music

& Pictures

B Videos

ha Local Disk (C)
= snapcenter (\\rty v

File name: || - ‘ Al Files

3. Richten Sie das Speichersystem und das Volume ein: Fligen Sie unter ,Speichersystem*” das

4.

26

Speichersystem hinzu und wahlen Sie die SVM (Storage Virtual Machine) aus. In diesem Beispiel haben
wir ,vs_nvidia“ gewahlt.

A NetApp Snaplenter®
[EXTEER

ez Tiziags Tppooe)

.....

Richten Sie eine Ressource fur die Vektordatenbank ein, die eine Sicherungsrichtlinie und einen
benutzerdefinierten Snapshot-Namen enthalt.

o Aktivieren Sie die Konsistenzgruppensicherung mit Standardwerten und aktivieren Sie SnapCenter
ohne Dateisystemkonsistenz.

o Wahlen Sie im Abschnitt ,Speicherbedarf‘ die Volumes aus, die mit den Kundendaten der
Vektordatenbank und den Milvus-Clusterdaten verknipft sind. In unserem Beispiel sind dies ,vol1“ und
,vectordbpv*.

o Erstellen Sie eine Richtlinie zum Schutz der Vektordatenbank und schiitzen Sie die
Vektordatenbankressource mithilfe der Richtlinie.

o hrarns Summary
o Storage Footprint Name
Type
o Raspurce Settings
Host srgletaryer] masglanfiocal
| 4 Summary Mount Points

Credential Name

Storage Footpring

Storage System Volums LUN/Qtres

Custom Resource Parameters o

Modify Storage Storage Resource X

-

rrevos

5. Fugen Sie mithilfe eines Python-Skripts Daten in den S3 NAS-Bucket ein. In unserem Fall haben wir das
von Milvus bereitgestellte Sicherungsskript ,prepare_data_netapp.py“ gedndert und den Befehl ,sync®
ausgefiihrt, um die Daten aus dem Betriebssystem zu I6schen.

27

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost
Does collection hello milvus netapp sc test exist in Milvus: False

=== Create collection "hello milvus netapp sc test ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc test: 3000
=== Create collection "hello milvus netapp sc test2 ===

Number of entities in hello milvus netapp sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo
'sync executed';" ; done
node?2

sync executed
node3
sync executed
node4
sync executed
nodeb
sync executed
nodeb6
sync executed
root@node2 :~#

6. Uberpriifen Sie die Daten im S3 NAS-Bucket. In unserem Beispiel wurden die Dateien mit dem Zeitstempel
,2024-04-08 21:22" vom Skript ,prepare_data_netapp.py“ erstellt.

28

root@node2:~# aws s3 1s —--profile ontaps3 s3://milvusdbvoll/
--recursive | grep '2024-04-08"

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/1
2024-04-08 21:18:12 5654

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/4
48950615990800869

2024-04-08 21:18:17 5656

stats 10g/448950615991000809/448950615991000810/448950615991001872/100/1
2024-04-08 21:18:15 5654

stats 1og/448950615991000809/448950615991000810/448950615991001872/100/4
48950615990800876

2024-04-08 21:22:46 5625

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/1
2024-04-08 21:22:45 5623

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/4
48950615990800899

2024-04-08 21:22:49 5656

stats 1og/448950615991003408/448950615991003409/448950615991003416/100/1
2024-04-08 21:22:47 5654

stats 10g/448950615991003408/448950615991003409/448950615991003416/100/4
48950615990800906

2024-04-08 21:22:52 5656

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/1
2024-04-08 21:22:50 5654

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/4
48950615990800913

root@node2:~#

7. Starten Sie eine Sicherung mithilfe des Consistency Group (CG)-Snapshots aus der Ressource ,milvusdb®.

29

v [snapCenter x +
£+ r O O Notsecure Rigsy flocalhost8146/PluginCreatorinventoryProtect/Protectindex?Resource Type = Storage 20 ResourcefiHost= nul & PlugmMame=Storage# b+ o 2

I NetApp SnapCenter® B - 1 mssqlanfiadministrator SnapCent

Storage ‘ Resource - Details

u 2 Marme Details for selected resource
> Name
e’ 20 mitiusdb
Type
ﬁ 2a mikusnode2
Host Hame
| 20 vectordb
. Mount Points
2 volumebackupl
:-l e = Credantisl Name
— plug-in name
Last backup 082024 2 34 PM (Completed)
A Resource Groups aleserver] mssola cal_starage_ milvusdt
Folicy vactordbbackuppe
Storage Footprint
S Wolume Junction Path LUNiGtras
iby
Custorn Resource Parameters
Key Value
Total &

. Um die Sicherungsfunktionalitat zu testen, haben wir nach dem Sicherungsvorgang entweder eine neue
Tabelle hinzugefiigt oder einige Daten aus dem NFS (S3 NAS-Bucket) entfernt.

Stellen Sie sich fiir diesen Test ein Szenario vor, in dem jemand nach der Sicherung eine neue, unnétige
oder unangemessene Sammlung erstellt hat. In einem solchen Fall missten wir die Vektordatenbank auf
den Zustand vor dem Hinzufiigen der neuen Sammlung zuriicksetzen. Beispielsweise wurden neue

Sammlungen wie ,hello_milvus_netapp_sc_testnew* und ,hello_milvus_netapp_sc_testnew2 eingefiigt.

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===
Does collection hello milvus netapp sc testnew exist in Milvus: False

=== Create collection "hello milvus netapp sc testnew ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc testnew: 3000
=== Create collection "hello milvus netapp sc testnew2 ===

Number of entities in hello milvus netapp sc testnew2: 6000
root@node2:~#

9. Fuhren Sie eine vollstandige Wiederherstellung des S3 NAS-Buckets aus dem vorherigen Snapshot durch.

Job Details &

Restore 'scaleserver1.mssglanf.local\Storage\milvusdb’

v ¥ Restore ‘scaleserveri.mssqlanflocal\Starageimilvusdb’

v v scaleserverl.mssqlanf.lacal
v Restore
W * Validate Plugin Parameters
v * Pre Restore Application
vy » File or Volume Restore
W * Recover Application
v » Cleaning Storage Resources
W * Clear Catalog on Server
v » Application Clean-Up -
© Task Name: Restore Start Time: 04/08/2024 2:37:21 PM End Time; 04/08/2024 2:37:55 PM =

1 1
View Logs Close |

31

10. Verwenden Sie ein Python-Skript, um die Daten aus den Sammlungen ,hello_milvus_netapp_sc_test* und
»hello_milvus_netapp_sc_test2“ zu Uberprifen.

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus netapp sc test exist in Milvus: True

{'auto id': False, 'description': 'hello milvus netapp sc test', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':
'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1]}

Number of entities in Milvus: hello milvus netapp sc _test : 3000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':
0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':
0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},
random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':
0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with “random > 0.5 ===
query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],
'pk': 0}
search latency = 0.2257s

=== Start hybrid searching with "random > 0.5° ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':
0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':
0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':
0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':
0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello milvus netapp sc test2 exist in Milvus: True
{'auto_id': True, 'description': 'hello milvus netapp sc test2', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': True}, {'name': 'random', 'description':
v 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',
'"type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1}

Number of entities in Milvus: hello milvus netapp sc test2 : 6000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {
'"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {
"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {
"random': 0.7864676926688837}, random field: 0.7864676926688837
hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {
'random': 0.2209597460821181}, random field: 0.2209597460821181
hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

11. Stellen Sie sicher, dass die unnétige oder unangemessene Sammlung nicht mehr in der Datenbank

34

'random': 0.2209597460821181}, random
hit: id: 448950615990640004, distance:
"random': 0.7765521996186631}, random

search latency = 0.2381s

Start querying with
query result:
-{'embeddings': [0.15983285,
0.50356466, 0.8750043,
0.7820620141382767}
0.3106s

'random':

search latency =

Start hybrid searching with

hit:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:

'random':

0.5326684390871348}, random

0.5326684390871348}, random

0.7864676926688837}, random
448950615990640004,
0.7765521996186631}, random
0.7765521996186631}, random
448950615990640402,
0.9742541034109935},

0.4906s

random
search latency =
root@node2 :~#

vorhanden ist.

‘random > 0.5°

0.72214717,
0.316556, 0.7871702],

‘random > 0.5°

id: 448950615990642008, distance:

448950615990645009, distance:

448950615990640618, distance:

distance:

448950615990643005, distance:

distance:

field: 0.2209597460821181
0.11571306735277176, entity:
field: 0.7765521996186631

0.7414838,
'pk':

0.44471496,

0.07805602252483368, entity:
field: 0.5326684390871348
0.07805602252483368, entity:
field: 0.5326684390871348
0.13562293350696564, entity:
field: 0.7864676926688837
0.11571306735277176, entity:
field: 0.7765521996186631
0.11571306735277176, entity:
field: 0.7765521996186631
0.13665105402469635, entity:
field: 0.9742541034109935

448950615990639798,

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost

Does collection hello milvus netapp sc testnew exist in Milvus: False
Traceback (most recent call last):
File "/root/verify data netapp.py", line 37, in <module>
recover collection = Collection(recover collection name)
File "/usr/local/lib/python3.10/dist-
packages/pymilvus/orm/collection.py"”, line 137, in init
raise SchemaNotReadyException (
pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:
(code=1, message=Collection 'hello milvus netapp sc testnew' not exist,
or you can pass in schema to create one.)>
root@node?2 : ~4

Zusammenfassend lasst sich sagen, dass die Verwendung von NetApp SnapCenter zum Schutz von
Vektordatenbankdaten und Milvus-Daten in ONTAP den Kunden erhebliche Vorteile bietet, insbesondere in
Branchen, in denen die Datenintegritat von groter Bedeutung ist, wie beispielsweise in der Filmproduktion.
Die Fahigkeit von SnapCenter, konsistente Backups zu erstellen und vollstdndige Datenwiederherstellungen
durchzuflihren, stellt sicher, dass kritische Daten wie eingebettete Video- und Audiodateien vor Verlust durch
Festplattenausfalle oder andere Probleme geschiitzt sind. Dadurch werden nicht nur Betriebsstérungen
vermieden, sondern auch erhebliche finanzielle Verluste vermieden.

In diesem Abschnitt haben wir gezeigt, wie SnapCenter zum Schutz von in ONTAP gespeicherten Daten
konfiguriert werden kann, einschlieflich der Einrichtung von Hosts, der Installation und Konfiguration von
Speicher-Plugins und der Erstellung einer Ressource fiir die Vektordatenbank mit einem benutzerdefinierten
Snapshot-Namen. Wir haben auch gezeigt, wie man mithilfe des Consistency Group-Snapshots ein Backup
durchfihrt und die Daten im S3 NAS-Bucket tGberpruft.

DarUber hinaus haben wir ein Szenario simuliert, in dem nach der Sicherung eine unnétige oder
unangemessene Sammlung erstellt wurde. In solchen Fallen stellt die Fahigkeit von SnapCenter, eine
vollstandige Wiederherstellung von einem vorherigen Snapshot durchzufiihren, sicher, dass die
Vektordatenbank in den Zustand vor dem Hinzufligen der neuen Sammlung zurlickgesetzt werden kann,
wodurch die Integritat der Datenbank gewahrt bleibt. Diese Mdglichkeit, Daten zu einem bestimmten Zeitpunkt
wiederherzustellen, ist fir Kunden von unschatzbarem Wert, da sie ihnen die Gewissheit gibt, dass ihre Daten
nicht nur sicher, sondern auch ordnungsgemaf verwaltet werden. Somit bietet das SnapCenter -Produkt von
NetApp Kunden eine robuste und zuverlassige Losung fir Datenschutz und -verwaltung.

Disaster Recovery mit NetApp SnapMirror

In diesem Abschnitt wird DR (Disaster Recovery) mit SnapMirror fur die
Vektordatenbanklosung fur NetApp erlautert.

35

Disaster Recovery mit NetApp SnapMirror

Milvus Cluster Milvus Cluster
o= it bl . — Ay e

Subcompanants Subcomponants

ety Coodd Dt Caard i Coond Rool Coard Ty Coodd Bata Coafd et G oot Coard

| Gy Noda | Dota Moda Indaa tode | Praxy | Crmry Nos | Pota tode Indiz Nods Proxy
Reilable Stotos = - - Relioble Stoles

Dbjecs Jooroge | - Koy~ Yok~ Wiabo~Fhoe e Cberc S0 by -V Lieta- Sose
ik 4 & E [B YR T YR T Y W

Y v VeryVyvg? ¥
Buckat Fila

'.'«‘.75:—
[l |

= Cloud

Providers

MetApp SnapMirror i eemmm g :
/ Data Mover :r Foity m !

Die Notfallwiederherstellung ist fur die Aufrechterhaltung der Integritat und Verfligbarkeit einer
Vektordatenbank von entscheidender Bedeutung, insbesondere angesichts ihrer Rolle bei der Verwaltung
hochdimensionaler Daten und der Durchfiihrung komplexer Ahnlichkeitssuchen. Eine gut geplante und
implementierte Notfallwiederherstellungsstrategie stellt sicher, dass bei unvorhergesehenen Vorfallen wie
Hardwareausfallen, Naturkatastrophen oder Cyberangriffen keine Daten verloren gehen oder gefahrdet
werden. Dies ist insbesondere fir Anwendungen von Bedeutung, die auf Vektordatenbanken basieren, bei
denen der Verlust oder die Beschadigung von Daten zu erheblichen Betriebsstérungen und finanziellen
Verlusten flihren kann. Darlber hinaus gewahrleistet ein robuster Notfallwiederherstellungsplan auch die
Geschaftskontinuitat, indem er Ausfallzeiten minimiert und eine schnelle Wiederherstellung der Dienste
ermoglicht. Dies wird durch das NetApp Datenreplikationsprodukt SnapMirrror (iber verschiedene geografische
Standorte, regelmaRige Backups und Failover-Mechanismen erreicht. Daher ist die Notfallwiederherstellung
nicht nur eine Schutzmaflnahme, sondern ein entscheidender Bestandteil einer verantwortungsvollen und
effizienten Vektordatenbankverwaltung.

SnapMirror von NetApp ermoglicht die Datenreplikation von einem NetApp ONTAP Speichercontroller zu
einem anderen und wird hauptsachlich fiir Disaster Recovery (DR) und Hybridldsungen verwendet. Im Kontext
einer Vektordatenbank erleichtert dieses Tool den reibungslosen Datentibergang zwischen lokalen und Cloud-
Umgebungen. Dieser Ubergang wird ohne die Notwendigkeit von Datenkonvertierungen oder
Anwendungsrefactoring erreicht, wodurch die Effizienz und Flexibilitdt der Datenverwaltung Gber mehrere
Plattformen hinweg verbessert wird.

Die NetApp Hybrid-Losung in einem Vektordatenbankszenario kann weitere Vorteile bringen:

1. Skalierbarkeit: Die Hybrid-Cloud-L&sung von NetApp bietet die Méglichkeit, Ihre Ressourcen entsprechend
Ihren Anforderungen zu skalieren. Sie kdnnen lokale Ressourcen fir regelmaRige, vorhersehbare
Workloads und Cloud-Ressourcen wie Amazon FSx ONTAP fir NetApp ONTAP und Google Cloud NetApp
Volume (NetApp Volumes) fiir Spitzenzeiten oder unerwartete Belastungen nutzen.

2. Kosteneffizienz: Mit dem Hybrid-Cloud-Modell von NetApp kénnen Sie lhre Kosten optimieren, indem Sie
lokale Ressourcen fur regelmafige Workloads verwenden und nur dann fir Cloud-Ressourcen zahlen,
wenn Sie sie bendtigen. Dieses Pay-as-you-go-Modell kann mit einem NetApp Instaclustr-Serviceangebot
recht kostenglinstig sein. Fir On-Premise- und grof3e Cloud-Service-Anbieter bietet instaclustr Support
und Beratung.

36

3. Flexibilitat: Die Hybrid Cloud von NetApp bietet Ihnen die Flexibilitat, den Ort der Datenverarbeitung zu
wahlen. Sie kénnen sich beispielsweise dafiir entscheiden, komplexe Vektoroperationen vor Ort
durchzufiihren, wo Sie Uber leistungsfahigere Hardware verfiigen, und weniger intensive Operationen in
der Cloud.

4. Geschaftskontinuitat: Im Katastrophenfall kann die Speicherung Ihrer Daten in einer NetApp Hybrid Cloud
die Geschaftskontinuitat sicherstellen. Sie kdnnen schnell auf die Cloud umsteigen, wenn lhre lokalen
Ressourcen betroffen sind. Wir kbnnen NetApp SnapMirror nutzen, um die Daten vor Ort in die Cloud und
umgekehrt zu verschieben.

5. Innovation: Die Hybrid-Cloud-Lésungen von NetApp ermoglichen auRerdem schnellere Innovationen,
indem sie Zugriff auf hochmoderne Cloud-Dienste und -Technologien bieten. NetApp Innovationen in der
Cloud wie Amazon FSx ONTAP fur NetApp ONTAP, Azure NetApp Files und Google Cloud NetApp
Volumes sind innovative Produkte und bevorzugte NAS der Cloud-Service-Anbieter.

Leistungsvalidierung der Vektordatenbank

In diesem Abschnitt wird die Leistungsvalidierung hervorgehoben, die an der
Vektordatenbank durchgefuhrt wurde.

Leistungsvalidierung

Die Leistungsvalidierung spielt sowohl bei Vektordatenbanken als auch bei Speichersystemen eine
entscheidende Rolle und ist ein Schlisselfaktor fur die Gewahrleistung eines optimalen Betriebs und einer
effizienten Ressourcennutzung. Vektordatenbanken, die fur die Verarbeitung hochdimensionaler Daten und die
Durchfiihrung von Ahnlichkeitssuchen bekannt sind, missen ein hohes Leistungsniveau aufrechterhalten, um
komplexe Abfragen schnell und genau verarbeiten zu kdnnen. Mithilfe der Leistungsvalidierung kénnen
Engpasse identifiziert und Konfigurationen optimiert werden. Auf3erdem wird sichergestellt, dass das System
die erwartete Belastung ohne Leistungseinbuf3en bewaltigen kann. Ebenso ist bei Speichersystemen eine
Leistungsvalidierung unerlasslich, um sicherzustellen, dass Daten effizient gespeichert und abgerufen werden,
ohne dass es zu Latenzproblemen oder Engpassen kommt, die die Gesamtleistung des Systems
beeintrachtigen konnten. Es hilft auch dabei, fundierte Entscheidungen tber notwendige Upgrades oder
Anderungen der Speicherinfrastruktur zu treffen. Daher ist die Leistungsvalidierung ein entscheidender Aspekt
des Systemmanagements und tragt erheblich zur Aufrechterhaltung einer hohen Servicequalitat,
Betriebseffizienz und allgemeinen Systemzuverlassigkeit bei.

In diesem Abschnitt méchten wir uns eingehend mit der Leistungsvalidierung von Vektordatenbanken wie
Milvus und pgvecto.rs befassen und uns dabei auf ihre Speicherleistungsmerkmale wie E/A-Profil und
Verhalten des NetApp-Speichercontrollers zur Unterstiitzung von RAG- und Inferenz-Workloads innerhalb des
LLM-Lebenszyklus konzentrieren. Wir werden alle Leistungsunterschiede bewerten und identifizieren, wenn
diese Datenbanken mit der ONTAP Speicherlésung kombiniert werden. Unsere Analyse basiert auf wichtigen
Leistungsindikatoren, beispielsweise der Anzahl der pro Sekunde verarbeiteten Abfragen (QPS).

Bitte Uberprifen Sie unten die fur Milvus und den Fortschritt verwendete Methodik.

Details Milvus (Standalone und Cluster) Postgres(pgvecto.rs) #
Version 23.2 0.2.0

Dateisystem XFS auf iISCSI-LUNs

Arbeitslastgenerator "VectorDB-Bench"— Version 0.0.5

Datensatze LAION-Datensatz * 10 Millionen

Einbettungen * 768 Dimensionen *
~300 GB Datensatzgrofie

37

https://github.com/zilliztech/VectorDBBench

Speichercontroller

AFF 800 * Version —9.14.1 * 4 x
100GbE - fur Milvus und 2x
100GbE fir Postgres * iscsi

VectorDB-Bench mit Milvus-Standalone-Cluster

Wir haben die folgende Leistungsvalidierung auf dem eigenstandigen Milvus-Cluster mit VectorDB-Bench
durchgefiihrt. Die Netzwerk- und Serverkonnektivitat des eigenstandigen Milvus-Clusters ist unten aufgefihrt.

Management network

wle-A800-A-01

wle-AB00-A-02

milvus-standalone

iSCSI 100Gbps network

...

milvus-minio

milvus-eted

In diesem Abschnitt teilen wir unsere Beobachtungen und Ergebnisse aus dem Testen der eigenstandigen
Milvus-Datenbank. . Fur diese Tests haben wir DiskANN als Indextyp ausgewahlt. . Das Aufnehmen,
Optimieren und Erstellen von Indizes fir einen Datensatz von etwa 100 GB dauerte etwa 5 Stunden. Wahrend
des groRten Teils dieser Dauer lief der mit 20 Kernen ausgestattete Milvus-Server (was bei aktiviertem Hyper-
Threading 40 vcpus entspricht) mit seiner maximalen CPU-Kapazitat von 100 %. Wir haben festgestellt, dass
DiskANN besonders wichtig fur grol3e Datensatze ist, die die GroRe des Systemspeichers Uberschreiten. . In
der Abfragephase beobachteten wir eine Abfragerate pro Sekunde (QPS) von 10,93 mit einem Rickruf von
0,9987. Die Latenzzeit fir Abfragen im 99. Perzentil wurde mit 708,2 Millisekunden gemessen.

Aus Speichersicht gab die Datenbank wahrend der Aufnahme-, Post-Insert-Optimierungs- und
Indexerstellungsphasen etwa 1.000 Operationen/Sekunde aus. In der Abfragephase waren 32.000

Operationen/Sek. erforderlich.

Der folgende Abschnitt stellt die Speicherleistungsmetriken vor.

Arbeitslastphase

Datenaufnahme und Optimierung
nach dem Einflgen

38

Metrisch

IOPS

Latenz

Arbeitsbelastung

IO-Groflke

Wert
<1.000

<400 ps

Lese-/Schreib-Mix, hauptsachlich
Schreibvorgange

64 KB

Arbeitslastphase Metrisch Wert

Abfrage IOPS Hochststand bei 32.000
Latenz <400 us
Arbeitsbelastung 100 % zwischengespeicherte
Lesevorgange
10-GréRRe Hauptsachlich 8 KB

Das VectorDB-Bench-Ergebnis ist unten.

77/. VDB
~2° Benchmark

Vector Database Benchmark

Filtering Search Performance Test (5M Dataset, 1536 Dim, Filter 1%) A

Qps (more is better)

Milvus

1093

Recall (more is better)

i L5 0.0987

Load_duration (less is better)

i a5 15,360

Serial_latency_p99 (less is better)

i L5 708.2ms

Aus der Leistungsvalidierung der eigenstandigen Milvus-Instanz geht hervor, dass die aktuelle Konfiguration
nicht ausreicht, um einen Datensatz von 5 Millionen Vektoren mit einer Dimensionalitat von 1536 zu

unterstitzen. Wir haben festgestellt, dass der Speicher Uber ausreichende Ressourcen verfiigt und keinen
Engpass im System darstellt.

VectorDB-Bench mit Milvus-Cluster

In diesem Abschnitt besprechen wir die Bereitstellung eines Milvus-Clusters in einer Kubernetes-Umgebung.
Dieses Kubernetes-Setup wurde auf einer VMware vSphere-Bereitstellung erstellt, die die Kubernetes-Master-
und Worker-Knoten hostete.

Die Details der VMware vSphere- und Kubernetes-Bereitstellungen werden in den folgenden Abschnitten

vm-kube-master-01 vm-kube-master-02 vm-kube-master-03

vorgestellt.
Management network
wle-A800-A-01
wle-A800-A-02

40

iSCSI 100Gbps network

% % % vm-kube-worker-14 vm-kube-worker-17

—- ——
VMware vSphere vm-kube-worker-15 vm-kube-worker-18

vm-kube-worker-16 vm-kube-worker-19

,-------------

...

--- -'

my-release-etod my-release-minio my-release-milvus-indexnode

querynode-0 querynode-1 qQuerynode-2 querynode-3 querynode-di
|

my-release-pulsar-proxy my-release-pulsar-recovery

querynode-5 querynode-6 querynode-7 querynode-8 quervnodn—ﬂ :
s 06

my-release-pulsar-zookeeper my-release-milvus-querynode

kube-worker-14 kube-worker-15 kube-worker-16 kube-worker-17 kube-worker-18 kube-worker-19

I |
0-0-0

kube-master-01 kube-master-02 kube-master-03

|
|
|
|
|
|
|
|
| <3y = T T T T T ;
my-release-pulsar-bookie my-release-pulsar-broker : H
|
|
|
|
|
|
|
|
|
|
|

In diesem Abschnitt stellen wir unsere Beobachtungen und Ergebnisse aus dem Testen der Milvus-Datenbank

vor. * Der verwendete Indextyp war DiskANN. * Die folgende Tabelle bietet einen Vergleich zwischen den

Standalone- und Cluster-Bereitstellungen bei der Arbeit mit 5 Millionen Vektoren bei einer Dimensionalitat von

1536. Wir haben festgestellt, dass die fir die Datenaufnahme und die Optimierung nach dem Einfligen

bendétigte Zeit bei der Clusterbereitstellung kiirzer war. Die Latenzzeit fir Abfragen im 99. Perzentil wurde im

Cluster-Einsatz im Vergleich zum Standalone-Setup um das Sechsfache reduziert. * Obwohl die Abfragerate
pro Sekunde (QPS) bei der Clusterbereitstellung héher war, lag sie nicht auf dem gewtinschten Niveau.

Metric | Milvus Standalone | Milvus Cluster | Difference _____

QPS @ Recall 10.93 @ 0.9987 18.42 @ 0.9952 +40%
p99 Latency (less is better) 708.2 ms 117.6 ms -83%
Load Duration time (less is better) 18,360 secs 12,730 secs -30%

Die folgenden Bilder bieten eine Ansicht verschiedener Speichermetriken, einschlieRlich der
Speicherclusterlatenz und der gesamten IOPS (Input/Output Operations Per Second).

41

Summary
Cluster Latency Total OPS
100K ops

75K ops

50K ops

25K ops

o oops ALM___

17:30 18:00 18:30 19:00 19:30 20:00 20:30 AR 21:30 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

== gverage == min == max == wle-a800-a-01 == wle-a800-a-02

Der folgende Abschnitt stellt die wichtigsten Leistungskennzahlen fiir den Speicher vor.

Arbeitslastphase Metrisch Wert
Datenaufnahme und Optimierung IOPS <1.000
nach dem Einfligen
Latenz <400 ps
Arbeitsbelastung Lese-/Schreib-Mix, hauptsachlich
Schreibvorgange
IO-GréRe 64 KB
Abfrage IOPS Hoéchststand bei 147.000
Latenz <400 ps
Arbeitsbelastung 100 % zwischengespeicherte
Lesevorgange
I0-GréRRe Hauptsachlich 8 KB

Basierend auf der Leistungsvalidierung sowohl des eigenstandigen Milvus als auch des Milvus-Clusters
prasentieren wir die Details des Speicher-E/A-Profils. * Wir haben festgestellt, dass das E/A-Profil sowohl bei
eigenstandigen als auch bei Cluster-Bereitstellungen konsistent bleibt. * Der beobachtete Unterschied bei den
Spitzen-IOPS kann auf die gréRere Anzahl von Clients in der Clusterbereitstellung zurtickgefiihrt werden.

vectorDB-Bench mit Postgres (pgvecto.rs)

Wir haben die folgenden Aktionen mit VectorDB-Bench an PostgreSQL (pgvecto.rs) durchgefiihrt: Die Details
zur Netzwerk- und Serverkonnektivitat von PostgreSQL (insbesondere pgvecto.rs) lauten wie folgt:

42

Management network

wle-AB00-A-01 ‘
] 11111 g

wle-AB00-A-02 — .
Postgres :

i;SCSl 100Gbps .r.\sl-.tworkl docker

In diesem Abschnitt teilen wir unsere Beobachtungen und Ergebnisse aus dem Testen der PostgreSQL-
Datenbank, insbesondere mit pgvecto.rs. * Wir haben HNSW als Indextyp flr diese Tests ausgewahlt, da
DiskANN zum Zeitpunkt des Tests flir pgvecto.rs nicht verfigbar war. * Wahrend der Datenaufnahmephase
haben wir den Cohere-Datensatz geladen, der aus 10 Millionen Vektoren mit einer Dimensionalitat von 768
besteht. Dieser Vorgang dauerte ungefahr 4,5 Stunden. * In der Abfragephase haben wir eine Abfragerate pro
Sekunde (QPS) von 1.068 mit einem Ruickruf von 0,6344 beobachtet. Die Latenzzeit fir Abfragen im 99.
Perzentil wurde mit 20 Millisekunden gemessen. Wahrend des groflten Teils der Laufzeit war die CPU des
Clients zu 100 % ausgelastet.

Die folgenden Bilder bieten eine Ansicht verschiedener Speichermetriken, einschliellich der Gesamt-lIOPS
(Input/Output Operations Per Second) der Speicherclusterlatenz.

« Summary

The following section presents the key storage performance metrics.
image:pgvecto-storage-perf-metrics.png["Abbildung, die einen Eingabe-
/Ausgabedialog zeigt oder schriftlichen Inhalt darstellt"]

Leistungsvergleich zwischen Milvus und Postgres auf Vector DB Bench

43

.%-. VDB
',),,7' Benchmark

Vector Database Benchmark

Note that all testing was completed in July 2023, except for the times already noted.

Search Performance Test (10M Dataset, 768 Dim) A

Qps (more is better)

PgVectors-20c_250g 001 | 1068

Milvus-20c_250g 002 [106

Recall (more is better)

Mitvus-20c_250g_002 |, 0.9842
Pgvectors-20c_250g 001 | 0. 344

Serial_latency_p99 (less is better)

Mitvus-20c_250g 002 | 15.8ms
PgVectors-20c_250g 001 |, 20ms

Basierend auf unserer Leistungsvalidierung von Milvus und PostgreSQL mit VectorDBBench haben wir
Folgendes beobachtet:

* Indextyp: HNSW

e Datensatz: Cohere mit 10 Millionen Vektoren in 768 Dimensionen

Wir haben festgestellt, dass pgvecto.rs eine Abfragen-pro-Sekunde-Rate (QPS) von 1.068 mit einem Recall
von 0,6344 erreichte, wahrend Milvus eine QPS-Rate von 106 mit einem Recall von 0,9842 erreichte.

Wenn hohe Prazision bei lhren Abfragen Prioritat hat, ist Milvus besser als pgvecto.rs, da es einen héheren
Anteil relevanter Elemente pro Abfrage abruft. Wenn jedoch die Anzahl der Abfragen pro Sekunde ein
entscheidenderer Faktor ist, Ubertrifft pgvecto.rs Milvus. Es ist jedoch wichtig zu beachten, dass die Qualitat
der Uber pgvecto.rs abgerufenen Daten geringer ist, da etwa 37 % der Suchergebnisse irrelevante Elemente
sind.

Beobachtung basierend auf unseren Leistungsvalidierungen:

Basierend auf unseren Leistungsvalidierungen haben wir folgende Beobachtungen gemacht:

44

In Milvus ahnelt das E/A-Profil stark einer OLTP-Workload, wie sie beispielsweise bei Oracle SLOB auftritt. Der
Benchmark besteht aus drei Phasen: Datenaufnahme, Nachoptimierung und Abfrage. Die Anfangsphasen sind
hauptsachlich durch 64-KB-Schreibvorgange gekennzeichnet, wahrend die Abfragephase tUberwiegend 8-KB-
Lesevorgange umfasst. Wir erwarten, dass ONTAP die Milvus-E/A-Last effizient bewaltigt.

Das PostgreSQL-E/A-Profil stellt keine anspruchsvolle Speicherarbeitslast dar. Angesichts der derzeit
laufenden In-Memory-Implementierung konnten wir wahrend der Abfragephase keine Festplatten-E/A
beobachten.

DiskANN erweist sich als entscheidende Technologie zur Speicherdifferenzierung. Es ermdglicht die effiziente
Skalierung der Vektor-DB-Suche Uber die Systemspeichergrenze hinaus. Es ist jedoch unwahrscheinlich, dass
mit In-Memory-Vektor-DB-Indizes wie HNSW eine Differenzierung der Speicherleistung erreicht wird.

Es ist auch erwahnenswert, dass der Speicher wahrend der Abfragephase keine kritische Rolle spielt, wenn
der Indextyp HSNW ist. Dies ist die wichtigste Betriebsphase fur Vektordatenbanken, die RAG-Anwendungen
unterstitzen. Dies bedeutet, dass die Speicherleistung keinen signifikanten Einfluss auf die Gesamtleistung
dieser Anwendungen hat.

Vektordatenbank mit Instaclustr unter Verwendung von
PostgreSQL: pgvector

In diesem Abschnitt werden die Einzelheiten der Integration des Instaclustr-Produkts mit
PostgreSQL Uber die Pgvector-Funktionalitat in der Vektordatenbankldsung flr NetApp
erlautert.

Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector

In diesem Abschnitt gehen wir naher auf die Einzelheiten der Integration des Instaclustr-Produkts mit
PostgreSQL auf der Grundlage der PgVector-Funktionalitat ein. Wir haben ein Beispiel fur ,So verbessern Sie
die Genauigkeit und Leistung lhres LLM mit PGVector und PostgreSQL.: Einfihrung in Einbettungen und die
Rolle von PGVector*“. Bitte Uberprifen Sie die"Blog" um weitere Informationen zu erhalten.

Anwendungsfalle fur Vektordatenbanken

Dieser Abschnitt bietet einen Uberblick Gber die Anwendungsfélle fiir die NetApp Vector-
Datenbanklosung.

Anwendungsfalle fir Vektordatenbanken

In diesem Abschnitt besprechen wir zwei Anwendungsfalle, namlich Retrieval Augmented Generation mit
grol3en Sprachmodellen und NetApp IT-Chatbot.

Retrieval Augmented Generation (RAG) mit groBen Sprachmodellen (LLMs)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the
accuracy and reliability of Large Language Models, or LLMs, by augmenting
prompts with facts fetched from external sources. In a traditional RAG
deployment, vector embeddings are generated from an existing dataset and
then stored in a vector database, often referred to as a knowledgebase.
Whenever a user submits a prompt to the LLM, a vector embedding
representation of the prompt is generated, and the vector database is
searched using that embedding as the search query. This search operation
returns similar vectors from the knowledgebase, which are then fed to the
LIM as context alongside the original user prompt. In this way, an LLM can
be augmented with additional information that was not part of its original
training dataset.

Der NVIDIA Enterprise RAG LLM Operator ist ein nitzliches Tool zur Implementierung von RAG im
Unternehmen. Mit diesem Operator kann eine vollstandige RAG-Pipeline bereitgestellt werden. Die RAG-
Pipeline kann angepasst werden, um entweder Milvus oder pgvecto als Vektordatenbank zum Speichern von
Wissensdatenbank-Einbettungen zu verwenden. Weitere Einzelheiten finden Sie in der Dokumentation.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA
Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog
post for more information and to see a demo. Figure 1 provides an overview
of this architecture.

Abbildung 1) Enterprise RAG mit NVIDIA NeMo Microservices und NetApp
Existing data sources
G \
1‘l'swmﬂmm =
e
ey S
Gg’omw
Kb naiog
Any Kubarpolod - clawd oF an-gramiies

MVIA NeWa Micreearvicns

Entwrpiine RAG

O Amazon F3s for NolApp DNTAP

RaotAgy Intelligen) Data Storage

All-frah appliances; nalive clowd servicas
@ Azurs Nelipe Flas
Enterprise data protection and govemanos
- fram NetApp
@ Google Cloud NOLARE Volumes
\ / aws =F-!
On-prem and/or eloud Datacenter | |

On-prem andfor cloud

Anwendungsfall fiir den NetApp IT-Chatbot

Der Chatbot von NetApp dient als weiterer Echtzeit-Anwendungsfall fur die Vektordatenbank. In diesem Fall
bietet die NetApp Private OpenAl Sandbox eine effektive, sichere und effiziente Plattform fir die Verwaltung
von Abfragen interner NetApp-Benutzer. Durch die Integration strenger Sicherheitsprotokolle, effizienter
Datenverwaltungssysteme und ausgefeilter Kl-Verarbeitungsfunktionen werden den Benutzern tber die SSO-
Authentifizierung qualitativ hochwertige und prazise Antworten basierend auf ihren Rollen und
Verantwortlichkeiten in der Organisation garantiert. Diese Architektur unterstreicht das Potenzial der

46

Zusammenfluhrung fortschrittlicher Technologien zur Schaffung benutzerorientierter, intelligenter Systeme.

L] G

User Azure OpenAl
Base Model

VPN 550
Jos:]
Filtering
File Upload

5__ SRR N e @ w

T Weaviate
Proxy - Server Web-App React Engine 53 Storage Vecto:' e
t - 0 o
3]
E e e = _J*T] File Meta Data T
2 ¥
E >
S J .
) Mongo DB
o
Redis d MariaDB @
Chat History Rabbitmq Ingestion Azure OpenAl

Embedding Model

Der Anwendungsfall kann in vier Hauptabschnitte unterteilt werden.

Benutzerauthentifizierung und -verifizierung:

* Benutzeranfragen durchlaufen zunachst den NetApp Single Sign-On (SSO)-Prozess, um die Identitat des
Benutzers zu bestatigen.

* Nach erfolgreicher Authentifizierung prift das System die VPN-Verbindung, um eine sichere
Datenubertragung zu gewahrleisten.

Dateniibertragung und -verarbeitung:

» Sobald das VPN validiert ist, werden die Daten tber die Webanwendungen NetAlChat oder NetAlCreate
an MariaDB gesendet. MariaDB ist ein schnelles und effizientes Datenbanksystem zum Verwalten und
Speichern von Benutzerdaten.

» MariaDB sendet die Informationen dann an die NetApp Azure-Instanz, die die Benutzerdaten mit der K-
Verarbeitungseinheit verbindet.

Interaktion mit OpenAl und Inhaltsfilterung:

* Die Azure-Instanz sendet die Fragen des Benutzers an ein Inhaltsfiltersystem. Dieses System bereinigt die
Abfrage und bereitet sie fur die Verarbeitung vor.

* Die bereinigte Eingabe wird dann an das Azure OpenAl-Basismodell gesendet, das basierend auf der
Eingabe eine Antwort generiert.

Antwortgenerierung und -moderation:

» Die Antwort des Basismodells wird zunachst Gberpruft, um sicherzustellen, dass sie korrekt ist und den
Inhaltsstandards entspricht.

» Nach bestandener Priifung wird die Antwort an den Benutzer zurlickgesendet. Dieser Prozess stellt sicher,

47

dass der Benutzer eine klare, genaue und angemessene Antwort auf seine Anfrage erhalt.

Abschluss
Dieser Abschnitt schlief3t die Vektordatenbanklosung fur NetApp ab.

Abschluss

Zusammenfassend bietet dieses Dokument einen umfassenden Uberblick Uiber die Bereitstellung und
Verwaltung von Vektordatenbanken wie Milvus und pgvector auf NetApp -Speicherlésungen. Wir haben die
Infrastrukturrichtlinien fir die Nutzung von NetApp ONTAP und StorageGRID Objektspeicher besprochen und
die Milvus-Datenbank in AWS FSx ONTAP uber Datei- und Objektspeicher validiert.

Wir haben die Datei-Objekt-Dualitat von NetApp untersucht und ihren Nutzen nicht nur fir Daten in
Vektordatenbanken, sondern auch fur andere Anwendungen demonstriert. Wir haben auch hervorgehoben,
wie SnapCenter, das Enterprise-Management-Produkt von NetApp, Sicherungs-, Wiederherstellungs- und
Klonfunktionen fir Vektordatenbankdaten bietet und so die Datenintegritat und -verfiigbarkeit gewahrleistet.

Das Dokument erlautert auRerdem, wie die Hybrid Cloud-L&sung von NetApp Datenreplikation und -schutz in
lokalen und Cloud-Umgebungen bietet und so ein nahtloses und sicheres Datenmanagement ermdglicht. Wir
gaben Einblicke in die Leistungsvalidierung von Vektordatenbanken wie Milvus und pgvecto auf NetApp
ONTAP und lieferten wertvolle Informationen zu ihrer Effizienz und Skalierbarkeit.

AbschlieRend haben wir zwei Anwendungsfalle fir generative Kl besprochen: RAG mit LLM und die interne
ChatAl von NetApp. Diese praktischen Beispiele unterstreichen die realen Anwendungen und Vorteile der in
diesem Dokument beschriebenen Konzepte und Praktiken. Insgesamt dient dieses Dokument als umfassender
Leitfaden fur alle, die die leistungsstarken Speicherlésungen von NetApp fur die Verwaltung von
Vektordatenbanken nutzen mdchten.

Danksagung

Der Autor mochte den unten aufgefiihrten Mitwirkenden und anderen Personen, die durch ihr Feedback und
ihre Kommentare dazu beigetragen haben, dass dieses Dokument fiir NetApp Kunden und NetApp Bereiche
wertvoll ist, herzlich danken.

1. Sathish Thyagarajan, technischer Marketingingenieur, ONTAP Al & Analytics, NetApp
Mike Oglesby, Technischer Marketingingenieur, NetApp
AJ Mahajan, Senior Director, NetApp
Joe Scott, Manager, Workload Performance Engineering, NetApp

Puneet Dhawan, Senior Director, Produktmanagement Fsx, NetApp

© o > w0 b

Yuval Kalderon, Senior Product Manager, FSx-Produktteam, NetApp

Wo Sie weitere Informationen finden

Weitere Informationen zu den in diesem Dokument beschriebenen Informationen finden Sie in den folgenden
Dokumenten und/oder auf den folgenden Websites:

* Milvus-Dokumentation - https://milvus.io/docs/overview.md
* Eigenstandige Milvus-Dokumentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

* NetApp Produktdokumentationhttps://www.netapp.com/support-and-training/documentation/[]

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

« instaclustr -"Installclustr-Dokumentation”

Versionsverlauf

Version Datum Dokumentversionsverlauf

Version 1.0 April 2024 Erstveroéffentlichung

Anhang A: Values.yaml

Dieser Abschnitt enthalt Beispiel-YAML-Code flr die in der NetApp
-Vektordatenbankldsung verwendeten Werte.

Anhang A: Values.yaml

root@node2:~# cat values.yaml
Enable or disable Milvus Cluster mode
cluster:

enabled: true

image:
all:
repository: milvusdb/milvus
tag: v2.3.4
pullPolicy: IfNotPresent
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-
image-private-registry/
##
pullSecrets:
- myRegistryKeySecretName
tools:
repository: milvusdb/milvus-config-tool
tag: v0.1.2
pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector
nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations
tolerations: []

49

https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

50

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity
affinity: {}

Global labels and annotations
If set, this will apply to all milvus components
labels: {}

annotations: {}

Extra configs for milvus.yaml
If set, this config will merge into milvus.yaml
Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

+H H= H= H

Note: this config will be the top priority which will override the
config

in the image and helm chart.

extraConfigFiles:
user.yaml: |+

For example enable rest http for milvus proxy
Proxy:
http:
enabled: true
Enable tlsMode and set the tls cert and key
tls:
serverPemPath: /etc/milvus/certs/tls.crt
serverKeyPath: /etc/milvus/certs/tls.key
common :
security:
tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster
(LoadBalancer service).
or access it from within the cluster (ClusterIP service). Set the
service type and the port to serve it.
ref: http://kubernetes.io/docs/user—-guide/services/
#4
service:
type: ClusterIP
port: 19530
portName: milvus
nodePort: ""
annotations: {}
labels: {}

List of IP addresses at which the Milvus service is available

Ref: https://kubernetes.io/docs/user-guide/services/#external-ips
#4

externallIPs: []

- externallpl

LoadBalancerSourcesRange is a list of allowed CIDR values, which are
combined with ServicePort to

set allowed inbound rules on the security group assigned to the master
load balancer

loadBalancerSourceRanges:

- 0.0.0.0/0

Optionally assign a known public LB IP

loadBalancerIP: 1.2.3.4

ingress:
enabled: false
annotations:
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/backend-protocol: GRPC
nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]"'
nginx.ingress.kubernetes.io/proxy-body-size: 4m
nginx.ingress.kubernetes.io/ssl-redirect: "true"
labels: {}
rules:
- host: "milvus-example.local"
path: "/"
pathType: "Prefix"
— host: "milvus-example2.local"
path: "/otherpath"
pathType: "Prefix"

tls: []

- secretName: chart-example-tls

hosts:

- milvus-example.local
serviceAccount:

create: false
name:
annotations:
labels:

metrics:
enabled: true

serviceMonitor:

51

Set this to “true to create ServiceMonitor for Prometheus operator

enabled: false

interval: "30s"

scrapeTimeout: "10s"

Additional labels that can be used so ServiceMonitor will be
discovered by Prometheus

additionallabels: {}

livenessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 30
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 10
timeoutSeconds: 5

successThreshold: 1
failureThreshold: 5
log:

level: "info"

file:
maxSize: 300 # MB
maxAge: 10 # day
maxBackups: 20

format: "text" # text/json

persistence:
mountPath: "/milvus/logs"

If true, create/use a Persistent Volume Claim
If false, use emptyDir
#4
enabled: false
annotations:
helm.sh/resource-policy: keep
persistentVolumeClaim:
existingClaim: ""
Milvus Logs Persistent Volume Storage Class
If defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic

provisioning

If undefined (the default) or set to null, no storageClassName
spec is

#4 set, choosing the default provisioner.

ReadWriteMany access mode required for milvus cluster.

##

storageClass: default

accessModes: ReadWriteMany

size: 10Gi

subPath: ""

Heaptrack traces all memory allocations and annotates these events with
stack traces.
See more: https://github.com/KDE/heaptrack
Enable heaptrack in production is not recommended.
heaptrack:
image:

repository: milvusdb/heaptrack

tag: v0.1.0

pullPolicy: IfNotPresent

standalone:

replicas: 1 # Run standalone mode with replication disabled
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:

enabled: false
disk:

enabled: true

size:

enabled: false # Enable local storage size limit

profiling:

enabled: false # Enable live profiling

Default message queue for milvus standalone

Supported value: rocksmg, natsmg, pulsar and kafka

messageQueue: rocksmg

persistence:
mountPath: "/var/lib/milvus"
If true, alertmanager will create/use a Persistent Volume Claim
If false, use emptyDir

53

#H

enabled: true

annotations:
helm.sh/resource-policy: keep

persistentVolumeClaim:
existingClaim: ""

Milvus Persistent Volume Storage Class

If defined, storageClassName: <storageClass>

If set to "-", storageClassName: "", which disables dynamic

provisioning

If undefined (the default) or set to null, no storageClassName

spec is
#+4 set, choosing the default provisioner.
##
storageClass:

accessModes: ReadWriteOnce
size: 50Gi
subPath: ""

Proxy:

54

enabled: true
You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
http:
enabled: true # whether to enable http rest server
debugMode:
enabled: false
Mount a TLS secret into proxy pod
tls:
enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true
secretName: milvus-tls
expecting base64 encoded values here: i.e. S$(cat tls.crt | base6d -w 0)

and $(cat tls.key | base64 -w 0)

H H= H H H= FH H H= FH

key: LSOtLS1CRUJJTiBQU--REDUCT
crt: LSOtLSICRUAJTiBDR--REDUCT
volumes:
— secret:
secretName: milvus-tls
name: milvus-tls
volumeMounts:
- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Root Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

service:
port: 53100
annotations: {}
labels: {}
clusterIP: ""

queryCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Query Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:
enabled: false

55

profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

service:
port: 19531
annotations: {}
labels: {}
clusterIP: ""
queryNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
disk:
enabled: true # Enable querynode load disk index, and search on disk
index
size:
enabled: false # Enable local storage size limit
profiling:
enabled: false # Enable live profiling

indexCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Index Coordinator mode with replication disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

heaptrack:

56

enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

service:
port: 31000
annotations: {}
labels: {}
clusterIP: ""

indexNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA

replicas: 1

resources: {}

Set local storage size in resources

limits:

ephemeral-storage: 100Gi

nodeSelector: {}

affinity: {}

tolerations: []

extraEnv: []

heaptrack:
enabled: false

profiling:
enabled: false # Enable live profiling

disk:
enabled: true # Enable index node build disk vector index
size:

enabled: false # Enable local storage size limit

dataCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Data Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

57

heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

service:
port: 13333
annotations: {}
labels: {}
clusterIP: ""

dataNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinitys: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling

mixCoordinator contains all coord
If you want to use mixcoord, enable this and disable all of other
coords
mixCoordinator:

enabled: false

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Mixture Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

heaptrack:

enabled: false
profiling:

58

enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

service:
annotations: {}
labels: {}
clusterIP: ""

attu:

enabled: false

name: attu

image:
repository: zilliz/attu
tag: v2.2.8
pullPolicy: IfNotPresent

service:

annotations: {}

labels: {}
type: ClusterIP
port: 3000

loadBalancerIP: ""
resources: {}
podLabels: {}
ingress:
enabled: false
annotations: {}
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
labels: {}
hosts:
- milvus-attu.local

tls: []

- secretName: chart-attu-tls
hosts:

- milvus—-attu.local

Configuration values for the minio dependency
ref: https://github.com/minio/charts/blob/master/README .md
#4

minio:
enabled: false

name: minio

59

60

mode: distributed
image:
tag: "RELEASE.2023-03-20T20-16-182z"
pullPolicy: IfNotPresent
accessKey: minioadmin
secretKey: minioadmin
existingSecret: ""
bucketName: "milvus-bucket"
rootPath: file
useIAM: false
iamEndpoint: ""
region: ""
useVirtualHost: false
podDisruptionBudget:
enabled: false
resources:
requests:

memory: 2Gi

gcsgateway:
enabled: false
replicas: 1
gcsKeyJson: "/etc/credentials/gcs key.json"
projectId: ""

service:
type: ClusterIP
port: 9000

persistence:
enabled: true
existingClaim: ""
storageClass:
accessMode: ReadWriteOnce
size: 500Gi

livenessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true

initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 1
successThreshold: 1
failureThreshold: 5

startupProbe:
enabled: true
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

enabled: true

name: etcd

replicaCount: 3

pdb:
create: false

image:
repository: "milvusdb/etcd"
tag: "3.5.5-r2"
pullPolicy: IfNotPresent

service:
type: ClusterIP
port: 2379
peerPort: 2380

auth:
rbac:
enabled: false

persistence:
enabled: true
storageClass: default
accessMode: ReadWriteOnce
size: 10Gi

Change default timeout periods to mitigate
livenessProbe:

zoobie probe process

61

62

enabled: true
timeoutSeconds: 10

readinessProbe:
enabled: true
periodSeconds: 20
timeoutSeconds: 10

Enable auto compaction

compaction by every 1000 revision
#4

autoCompactionMode: revision

autoCompactionRetention: "1000"

Increase default quota to 4G

##

extraknvVars:

- name: ETCD QUOTA BACKEND BYTES
value: "4294967296"

- name: ETCD HEARTBEAT INTERVAL
value: "500"

- name: ETCD ELECTION TIMEOUT
value: "2500"

Configuration values for the pulsar dependency
ref: https://github.com/apache/pulsar-helm-chart
#+4

pulsar:
enabled: true

name: pulsar

fullnameOverride: ""

persistence: true

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes,

message in pulsar.

rbac:
enabled: false
psp: false
limit to namespace: true

affinity:
anti affinity: false

enableAntiAffinity: no

Maximum size of each

components:
zookeeper: true
bookkeeper: true
bookkeeper - autorecovery
autorecovery: true
broker: true
functions: false
proxy: true
toolset: false
pulsar manager: false

monitoring:
prometheus: false
grafana: false
node exporter: false

alert manager: false

images:

broker:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

autorecovery:
repository: apachepulsar/pulsar
tag: 2.8.2
pullPolicy: IfNotPresent

zookeeper:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

bookie:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

proxy:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pulsar manager:
repository: apachepulsar/pulsar-manager
pullPolicy: IfNotPresent
tag: v0.1.0

zookeeper:

volumes:

63

persistence: true
data:
name: data
size: 20Gi #SSD Required
storageClassName: default
resources:
requests:
memory: 1024Mi
cpu: 0.3
configData:
PULSAR MEM: >
-Xms1024m
-Xmx1024m
PULSAR GC: >
-Dcom.sun.management . jmxremote
-Djute.maxbuffer=10485760
-XX:+ParallelRefProcEnabled
-XX:4+UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:+DisableExplicitGC
-XX:+PerfDisableSharedMem
-Dzookeeper.forceSync=no
pdb:
usePolicy: false

bookkeeper:
replicaCount: 3
volumes:
persistence: true
journal:
name: Jjournal
size: 100Gi
storageClassName: default
ledgers:
name: ledgers
size: 200Gi
storageClassName: default
resources:
requests:
memory: 2048Mi
cpu: 1
configData:
PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m

64

PULSAR GC: >
-Dio.netty.leakDetectionLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:4UseGlGC -XX:MaxGCPauseMillis=10
—-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+Exi1itOnOutOfMemoryError
-XX:+PerfDisableSharedMem
-XX:+PrintGCDetails

nettyMaxFrameSizeBytes: "104867840"
pdb:
usePolicy: false

broker:
component: broker
podMonitor:
enabled: false
replicaCount: 1
resources:
requests:
memory: 4096Mi
cpu: 1.5
configData:
PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m
PULSAR GC: >
-Dio.netty.leakDetectionlLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
—-XX:+ParallelRefProcEnabled
-XX:4+UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+Exi1itOnOutOfMemoryError
maxMessageSize: "104857600"

defaultRetentionTimeInMinutes: "10080"
defaultRetentionSizeInMB: "-1"
backlogQuotaDefaultLimitGB: "8"
ttlDurationDefaultInSeconds: "259200"

subscriptionkExpirationTimeMinutes: "3"
backlogQuotaDefaultRetentionPolicy: producer exception
pdb:

usePolicy: false

autorecovery:

resources:

requests:
memory: 512Mi

cpu: 1

pProxy:
replicaCount: 1
podMonitor:
enabled: false
resources:
requests:
memory: 2048Mi
cpu: 1
service:
type: ClusterIP
ports:
pulsar: 6650
configData:
PULSAR MEM: >
-Xms2048m -Xmx2048m
PULSAR GC: >
-XX:MaxDirectMemorySize=2048m
httpNumThreads: "100"
pdb:
usePolicy: false

pulsar manager:
service:
type: ClusterIP

pulsar metadata:
component: pulsar-init
image:
the image used for running “pulsar-cluster-initialize ™ job
repository: apachepulsar/pulsar
tag: 2.8.2

Configuration values for the kafka dependency
ref: https://artifacthub.io/packages/helm/bitnami/kafka
#4

kafka:
enabled: false
name: kafka
replicaCount: 3
image:
repository: bitnami/kafka
tag: 3.1.0-debian-10-r52
Increase graceful termination for kafka graceful shutdown
terminationGracePeriodSeconds: "90"
pdb:
create: false

Enable startup probe to prevent pod restart during recovering
startupProbe:
enabled: true

Kafka Java Heap size

heapOpts: "-Xmx4096m -Xms4096m"

maxMessageBytes: 10485760

defaultReplicationFactor: 3

offsetsTopicReplicationFactor: 3

Only enable time based log retention

logRetentionHours: 168

logRetentionBytes: -1

extraknvVars:

- name: KAFKA CFG_MAX PARTITION FETCH BYTES
value: "5242880"

- name: KAFKA CFG_MAX REQUEST SIZE
value: "5242880"

- name: KAFKA CFG REPLICA FETCH MAX BYTES
value: "10485760"

- name: KAFKA CFG FETCH MESSAGE MAX BYTES
value: "5242880"

- name: KAFKA CFG LOG ROLL HOURS
value: "24"

persistence:
enabled: true
storageClass:
accessMode: ReadWriteOnce

68

size: 300Gi1i

metrics:
Prometheus Kafka exporter: exposes complimentary metrics to JMX
exporter
kafka:
enabled: false
image:
repository: bitnami/kafka-exporter
tag: 1.4.2-debian-10-r182

Prometheus JMX exporter: exposes the majority of Kafkas metrics
Jjmx:
enabled: false
image:
repository: bitnami/jmx-exporter
tag: 0.16.1-debian-10-r245

To enable serviceMonitor, you must enable either kafka exporter or
jmx exporter.
And you can enable them both
serviceMonitor:
enabled: false

service:
type: ClusterIP
ports:
client: 9092

zookeeper:
enabled: true
replicaCount: 3

FHAFHHEHHH AR H AR H SRS
External S3
- these configs are only used when “externalS3.enabled” is true
FHA#HHEHHH AR H AR
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "7Zd28p43rgzaU44PX ftT279z9nt4jBSro97;87Bx"
useSSL: false
bucketName: "milvusdbvoll"
rootPath: ""

useIAM: false
cloudProvider: "aws"
iamEndpoint: ""

region:
useVirtualHost: false

FHA#H A H A
GCS Gateway
- these configs are only used when "minio.gcsgateway.enabled® is true
FHEHHHH AR AR A AR A A AR S A
externalGces:
bucketName: ""

FHHHFHHHAHEF AR AR
External etcd
- these configs are only used when “externalEtcd.enabled” is true
FHHHHHFHAHEF AR E SRS
externalEtcd:

enabled: false

the endpoints of the external etcd

##

endpoints:

- localhost:2379

FHAFHHEHHH AR
External pulsar
- these configs are only used when “externalPulsar.enabled’ is true
FHAHH A H A AR
externalPulsar:

enabled: false

host: localhost

port: 6650

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each
message in pulsar.

tenant: public

namespace: default

authPlugin: ""

authParams: ""

FHAFHHEHHH A AR A AT S
External kafka
- these configs are only used when “externalKafka.enabled® is true
FHAFHHEHHH A AR A H RS S RS HS S
externalKafka:
enabled: false
brokerList: localhost:9092

69

securityProtocol: SASL SSL
sasl:

mechanisms: PLAIN
username: ""
password: ""

root@node2:~#

Anhang B: prepare_data_netapp_new.py

Dieser Abschnitt enthalt ein Beispiel-Python-Skript zum Vorbereiten von Daten fur die
Vektordatenbank.

Anhang B: prepare_data_netapp_new.py

root@node2:~# cat prepare data netapp new.py

hello milvus.py demonstrates the basic operations of PyMilvus, a Python
SDK of Milvus.

1. connect to Milvus

create collection

insert data

create index

search, query, and hybrid search on entities

delete entities by PK

7. drop collection

S e S S o S o
o U W N

import time

import os

import numpy as np
from pymilvus import (

connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

#num entities, dim = 3000, 8
num entities, dim = 3000, 16

RS R S A
LR EiE

1. connect to Milvus

Add a new connection alias “default® for Milvus server in
"localhost:19530°

Actually the "default" alias is a buildin in PyMilvus.

70

If the address of Milvus is the same as "localhost:19530°, you can omit
all

parameters and call the method as: “connections.connect ()
#

Note: the “using’ parameter of the following methods is default to
"default".

print (fmt.format ("start connecting to Milvus"))

N

host = os.environ.get ('MILVUS HOST')
if host == None:

host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

has = utility.has_collection("hello milvus ntapnew update2 sc")
print (f"Does collection hello milvus ntapnew update2 sc exist in Milvus:
{has}")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc"))
utility.drop collection("hello milvus ntapnew update2 sc'")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc2"))
utility.drop_collection("hello milvus ntapnew update2 sc2")

FHHHHHF A AR A A H A A AR AR AR AR A A AR AR R
FHAHHHE

2. create collection

We're going to create a collection with 3 fields.

-+ Fo— - e

| | field name | field type | other attributes | field description

=

+
|

+

1] "pk" | Int64 | 1is primary=True | "primary field"

auto id=False |

= — 2 — =

" | Double | "a double field"

=
IS
H-
Q
=
Q.
O
3

71

72

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

fields = |
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=False),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema = CollectionSchema (fields, "hello milvus ntapnew update2 sc")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc' "))
hello milvus ntapnew update2 sc = Collection (
"hello milvus ntapnew update2 sc", schema, consistency level="Strong")

FH A R R R S A
#HHHHH

3. insert data

We are going to insert 3000 rows of data into

"hello milvus ntapnew update2 sc

Data to be inserted must be organized in fields.

#
The insert () method returns:
- either automatically generated primary keys by Milvus if auto id=True

in the schema;
- or the existing primary key field from the entities if auto id=False
in the schema.

print (fmt.format ("Start inserting entities"))
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id' is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result = hello milvus ntapnew updateZ sc.insert(entities)

hello milvus ntapnew update2 sc.flush()

print (f"Number of entities in hello milvus ntapnew update2 sc:

{hello milvus ntapnew update2 sc.num entities}") # check the num entites

create another collection
fields2 = |
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=True),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema2? = CollectionSchema (fields2, "hello milvus ntapnew update2 sc2")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc2 "))
hello milvus ntapnew update2 sc2 = Collection(
"hello milvus ntapnew update2 sc2", schema2, consistency level="Strong")

entities2 = [
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result2 = hello milvus ntapnew update2 sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()
insert result2 = hello milvus ntapnew update2 sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()

index params = {"index type": "IVF FLAT", "params": {"nlist": 128},
"metric type": "L2"}

hello milvus ntapnew update2 sc.create index ("embeddings", index params)
#

hello milvus ntapnew update2 sc2.create index(field name="var", index name=

"scalar index")

index params2 = {"index type": "Trie"}

hello milvus ntapnew update2 sc2.create index("var", index params2)

print (f"Number of entities in hello milvus ntapnew update2 sc2:
{hello milvus ntapnew update2 sc2.num entities}") # check the num entites

root@node2:~#

73

Anhang C: verify _data_netapp.py

Dieser Abschnitt enthalt ein Python-Beispielskript, das zur Validierung der
Vektordatenbank in der NetApp Vektordatenbanklésung verwendet werden kann.

Anhang C: verify_data_netapp.py

root@node2:~# cat verify data netapp.py
import time
import os
import numpy as np
from pymilvus import (
connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

num entities, dim = 3000, 16
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

xS EEE
iR L&
1. get recovered collection hello milvus ntapnew update2 sc
print (fmt.format ("start connecting to Milwvus"))
host = os.environ.get ('MILVUS HOST')
if host == None:
host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

recover collections = ["hello milvus ntapnew update2 sc",

"hello milvus ntapnew updateZ sc2"]

for recover collection name in recover collections:

has = utility.has_collection(recover collection name)

74

print (f"Does collection {recover collection name} exist in Milvus:
{has}")

recover collection = Collection(recover collection name)

print (recover collection.schema)

recover collection.flush/()

print (f"Number of entities in Milvus: {recover collection name}
{recover collection.num entities}") # check the num entites

it EddaEasaEdsEdd s AR AR AR AR AR AR R AR AR SR AE AL
#HA#HH

4. create index

We are going to create an IVF FLAT index for
hello milvus ntapnew update2 sc collection.

create index() can only be applied to "FloatVector and
"BinaryVector fields.

print (fmt.format ("Start Creating index IVEF FLAT"))

index = {
"index type": "IVEF FLAT",
"metric type": "L2",

"params": {"nlist": 128},

recover collection.create index ("embeddings", index)

C i o o o o
#HEHAES

=+

5. search, query, and hybrid search
After data were inserted into Milvus and indexed, you can perform:
- search based on vector similarity

#

#

- query based on scalar filtering(boolean, int, etc.)

- hybrid search based on vector similarity and scalar filtering.
#

Before conducting a search or a query, you need to load the data in
"hello milvus into memory.

print (fmt.format ("Start loading"))

recover collection.load()

search based on vector similarity
print (fmt.format ("Start searching based on vector similarity"))

75

vectors to search = entities[-1][-2:]

search params = ({
"metric type": "L2",
"params": {"nprobe": 10},
}
start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, limit=3, output fields=["random"])
end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format(end time - start time))

query based on scalar filtering (boolean, int, etc.)
print (fmt.format ("Start gquerying with “random > 0.5 "))

start time = time.time ()

result = recover collection.query(expr="random > 0.5", output fields=
["random", "embeddings"])

end time = time.time ()

print (f"query result:\n-{result[0]}")
print (search latency fmt.format(end time - start time))

hybrid search
print (fmt.format ("Start hybrid searching with “random > 0.5°"))

start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, 1limit=3, expr="random > 0.5", output fields=["random"])

end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format (end time - start time))

FH A A R S
#HHH#

7. drop collection

Finally, drop the hello milvus, hello milvus ntapnew update2 sc

collection

#print (fmt.format (£f"Drop collection {recover collection name}"))

#utility.drop collection (recover collection name)

root@node2:~#

Anhang D: docker-compose.yml
Dieser Abschnitt enthalt Beispiel-YAML-Code fir die Vektordatenbankldsung flr NetApp.

Anhang D: docker-compose.yml

version: '3.5"

services:
etcd:
container name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD AUTO COMPACTION MODE=revision
= ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA BACKEND BYTES=4294967296
- ETCD SNAPSHOT COUNT=50000
volumes:
- /home/ubuntu/milvusvectordb/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen
-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s

retries: 3

minio:
container name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18%
environment:
MINIO ACCESS KEY: miniocadmin
MINIO SECRET KEY: minioadmin

77

ports:

- "9001:9001"

- "9000:9000"
volumes:

- /home/ubuntu/milvusvectordb/volumes/minio:/minio data
command: minio server /minio data --console-address ":9001"
healthcheck:

test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]
interval: 30s

timeout: 20s

retries: 3

standalone:
container name: milvus-standalone
image: milvusdb/milvus:v2.4.0-rc.1
command: ["milvus", "run", "standalone"]
security opt:
- seccomp:unconfined
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO ADDRESS: minio:9000
volumes:
- /home/ubuntu/milvusvectordb/volumes/milvus: /var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends on:
- "etcd"

- "minio"
networks:

default:

name: milwvus

78

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

79

http://www.netapp.com/TM\

	Vector Datenbanklösung mit NetApp : NetApp artificial intelligence solutions
	Inhalt
	Vector Datenbanklösung mit NetApp
	Vector Datenbanklösung mit NetApp
	Einführung
	Einführung

	Lösungsübersicht
	Lösungsübersicht

	Vektordatenbank
	Vektordatenbank

	Technologieanforderungen
	Technologieanforderungen
	Hardwareanforderungen
	Softwareanforderungen

	Bereitstellungsverfahren
	Bereitstellungsverfahren

	Lösungsüberprüfung
	Lösungsübersicht
	Milvus-Cluster-Setup mit Kubernetes vor Ort
	Milvus mit Amazon FSx ONTAP für NetApp ONTAP – Datei- und Objektdualität
	Vector-Datenbankschutz mit SnapCenter
	Disaster Recovery mit NetApp SnapMirror
	Leistungsvalidierung der Vektordatenbank

	Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector
	Vektordatenbank mit Instaclustr unter Verwendung von PostgreSQL: pgvector

	Anwendungsfälle für Vektordatenbanken
	Anwendungsfälle für Vektordatenbanken

	Abschluss
	Abschluss

	Anhang A: Values.yaml
	Anhang A: Values.yaml

	Anhang B: prepare_data_netapp_new.py
	Anhang B: prepare_data_netapp_new.py

	Anhang C: verify_data_netapp.py
	Anhang C: verify_data_netapp.py

	Anhang D: docker-compose.yml
	Anhang D: docker-compose.yml

