Datenbankkonfiguration

Enterprise applications

NetApp
February 10, 2026

This PDF was generated from https://docs.netapp.com/de-de/ontap-apps-dbs/postgres/postgres-
architecture.html on February 10, 2026. Always check docs.netapp.com for the latest.

Inhalt

Datenbankkonfiguration
Der Netapp Architektur Sind
Initialisierungsparameter
Einstellungen
TOAST
VAKUUM
Tablespaces

A B2 BADNDN -2 -

Datenbankkonfiguration

Der Netapp Architektur Sind

PostgreSQL ist ein RDBMS, das auf Client- und Serverarchitektur basiert. Eine
PostgreSQL-Instanz wird als Datenbank-Cluster bezeichnet, bei dem es sich um eine
Sammlung von Datenbanken und nicht um eine Sammlung von Servern handelt.

PostgreSQL Basic Architecture

e Vet O # g -~

o —

¥ Snarea Butes
|mmﬁm >

CLOG bufiors

Qsnor Bufters

[-

— 1
Wriber WAL Writer l?mww o

vy Procdsors

N

In einer PostgreSQL-Datenbank gibt es drei Hauptelemente: Den Postmaster, das Frontend (Client) und das
Backend Der Client sendet Anfragen an den Postmaster mit Informationen wie IP-Protokoll und zu welcher
Datenbank eine Verbindung hergestellt werden soll. Der Postmaster authentifiziert die Verbindung und leitet
sie zur weiteren Kommunikation an den Back-End-Prozess weiter. Der Back-End-Prozess flhrt die Abfrage
aus und sendet Ergebnisse direkt an das Frontend (Client).

Eine PostgreSQL-Instanz basiert auf einem Multiprocess-Modell statt auf einem Multithread-Modell. Es gibt
mehrere Prozesse flir verschiedene Jobs, und jeder Prozess hat seine eigene Funktionalitat. Zu den
wichtigsten Prozessen gehdren der Clientprozess, der WAL Writer-Prozess, der Background Writer-Prozess
und der Checkpointer-Prozess:

» Wenn ein Client-Prozess (Vordergrund) Lese- oder Schreibanforderungen an die PostgreSQL-Instanz
sendet, werden keine Daten direkt auf die Festplatte geschrieben oder gelesen. Zuerst werden die Daten
in gemeinsam genutzten Puffern und WAL-Puffern (Write-Ahead Logging) gepuffert.

* Ein WAL-Schreibprozess manipuliert den Inhalt der gemeinsam genutzten Puffer und WAL-Puffer, um in
die WAL-Protokolle zu schreiben. WAL-Protokolle sind in der Regel Transaktionsprotokolle von
PostgreSQL und werden sequenziell geschrieben. Um die Reaktionszeit aus der Datenbank zu
verbessern, schreibt PostgreSQL zunachst in die Transaktionsprotokolle und bestatigt den Client.

» Um die Datenbank in einen konsistenten Zustand zu versetzen, Gberprift der Background Writer-Prozess
den gemeinsam genutzten Puffer regelmafig auf fehlerhafte Seiten. Anschlielend Ubertragt es die Daten
auf die Datendateien, die auf NetApp Volumes oder LUNs gespeichert sind.

* Der Checkpointer-Prozess lauft auch periodisch (seltener als der Hintergrundprozess) und verhindert
jegliche Anderung der Puffer. Er signalisiert dem WAL Writer-Prozess, den Checkpoint-Datensatz zu
schreiben und an das Ende der WAL-Protokolle zu l6schen, die auf der NetApp-Festplatte gespeichert
sind. Er signalisiert auch, dass der Background Writer-Prozess alle fehlerhaften Seiten auf die Festplatte
schreibt und auf diese schreibt.

Initialisierungsparameter

Sie erstellen mithilfe von ein neues Datenbankcluster initdb Programm. An initdb
Skript erstellt die Datendateien, Systemtabellen und Vorlagendatenbanken (templateO
und template 1), die den Cluster definieren.

Die Vorlagendatenbank stellt eine Bestandsdatenbank dar. Es enthalt Definitionen fur Systemtabellen,
Standardansichten, Funktionen und Datentypen. pgdata Fungiert als Argument fir den initdb Skript, das
den Speicherort des Datenbank-Clusters angibt.

Alle Datenbankobjekte in PostgreSQL werden intern von den jeweiligen OIDs verwaltet. Tabellen und Indizes
werden auch von einzelnen OIDs verwaltet. Die Beziehungen zwischen Datenbankobjekten und ihren
jeweiligen OIDs werden je nach Objekttyp in entsprechenden Systemkatalogtabellen gespeichert. OIDs von
Datenbanken und Heap-Tabellen werden beispielsweise in gespeichert pg database Und "pg_class. Sie
kdnnen die OIDs durch Abfragen auf dem PostgreSQL-Client ermitteln.

Jede Datenbank verfligt tber eigene einzelne Tabellen und Indexdateien, die auf 1 GB beschrankt sind. Jede
Tabelle hat zwei zugehdrige Dateien, die jeweils mit dem Suffix versehen sind _fsm Und _vm. Sie werden als
freie Raumkarte und Sichtbarkeitskarte bezeichnet. Diese Dateien speichern die Informationen Uber die freie
Speicherkapazitat und haben Sichtbarkeit auf jeder Seite in der Tabellendatei. Indizes verfliigen nur Gber
individuelle freie Speicherplatzkarten und haben keine Sichtbarkeits-Karten.

Der pg xlog/pg_wal Das Verzeichnis enthalt die Write-Ahead-Protokolle. Mit Write-Ahead-Protokollen
werden die Zuverlassigkeit und Performance der Datenbank verbessert. Immer wenn Sie eine Zeile in einer
Tabelle aktualisieren, schreibt PostgreSQL die Anderung zuerst in das Write-Ahead-Protokoll und schreibt
spater die Anderungen auf die eigentlichen Datenseiten auf eine Festplatte. Der pg x1o0g Das Verzeichnis
enthalt normalerweise mehrere Dateien, aber initdb erstellt nur die erste. Zusatzliche Dateien werden bei
Bedarf hinzugefigt. Jede xlog-Datei ist 16 MB lang.

Einstellungen

Es gibt mehrere PostgreSQL-Tuning-Konfigurationen, die die Performance verbessern
konnen.

Die am haufigsten verwendeten Parameter sind:

* max_connections = <num>: Die maximale Anzahl von Datenbankverbindungen, die gleichzeitig
verfiigbar sind. Verwenden Sie diesen Parameter, um den Austausch auf Festplatte zu beschranken und
die Leistung zu unterbinden. Je nach Anwendungsanforderung kénnen Sie diesen Parameter auch fiir die
Einstellungen des Verbindungspools anpassen.

* shared buffers = <num>: Die einfachste Methode zur Verbesserung der Leistung lhres
Datenbankservers. Die Standardeinstellung ist niedrig fiir die meisten modernen Hardware. Sie wird
wahrend der Bereitstellung auf ca. 25 % des verfigbaren RAM auf dem System eingestellt. Diese
Parametereinstellung hangt davon ab, wie sie mit bestimmten Datenbankinstanzen funktioniert; Sie
mussen die Werte mdglicherweise durch Versuch und Fehler erhdhen oder verringern. Bei einer hohen

Einstellung wird die Performance jedoch wahrscheinlich beeintrachtigt.

* effective cache size = <num>:Dieser Wert teilt PostgreSQL’s Optimizer mit, wie viel Speicher
PostgreSQL fiir das Caching von Daten zur Verfligung hat und hilft bei der Bestimmung, ob ein Index
verwendet werden soll. Ein groerer Wert erhoht die Wahrscheinlichkeit, einen Index zu verwenden. Dieser
Parameter sollte auf die GroRRe des zugewiesenen Speichers eingestellt werden shared buffers Und
die Menge an verfliigbarem BS-Cache. Dieser Wert liegt haufig bei mehr als 50 % des gesamten
Systemspeichers.

* work mem = <num>: Dieser Parameter steuert die Speichermenge, die in Sort-Operationen und Hash-
Tabellen verwendet werden soll. Wenn Sie eine starke Sortierung in lhrer Anwendung ausfihren, missen
Sie moglicherweise den Speicherplatz erhéhen, aber seien Sie vorsichtig. Es handelt sich nicht um einen
systemweiten Parameter, sondern um einen pro-Operation-Parameter. Wenn eine komplexe Abfrage
mehrere Sortieroperationen enthalt, verwendet sie mehrere Work_mem-Speichereinheiten, und mehrere
Back-Ends kdnnten dies gleichzeitig tun. Diese Abfrage kann oft dazu flhren, dass Ihr Datenbankserver
ausgetauscht wird, wenn der Wert zu groR ist. Diese Option wurde zuvor in alteren PostgreSQL-Versionen
als sort_mem bezeichnet.

* fsync = <boolean> (on or off): Dieser Parameter legt fest, ob alle WAL-Seiten mit fsync()
synchronisiert werden sollen, bevor eine Transaktion durchgefuhrt wird. Wenn Sie sie deaktivieren, kann
die Schreibleistung manchmal verbessert werden, und wenn Sie sie einschalten, erhoht sich der Schutz
vor dem Risiko von Beschadigungen, wenn das System abstiirzt.

* checkpoint timeout: Der Checkpoint-Prozess Ubertragt die Daten auf die Festplatte. Dies beinhaltet
viele Lese-/Schreibvorgange auf der Festplatte. Der Wert wird in Sekunden festgelegt, und niedrigere
Werte verringern die Absturzwiederherstellungszeit, und héhere Werte kdnnen die Belastung der
Systemressourcen verringern, indem die Checkpoint-Anrufe reduziert werden. Legen Sie je nach
Wichtigkeit der Anwendung, Auslastung und Verfligbarkeit der Datenbank den Wert von
Checkpoint_Timeout fest.

* commit delay = <num>Und commit siblings = <num>:Diese Optionen werden zusammen
verwendet, um die Leistung zu verbessern, indem mehrere Transaktionen, die auf einmal begehen,
ausgeschrieben werden. Wenn mehrere commit_Geschwister-Objekte aktiv sind, sobald Ihre Transaktion
abgeschlossen ist, wartet der Server auf commit_delay Mikrosekunden, um zu versuchen, mehrere
Transaktionen gleichzeitig zu begehen.

* max worker processes / max parallel workers: Konfigurieren Sie die optimale Anzahl von
Arbeitern fir Prozesse. Max_Parallel_Workers entspricht der Anzahl der verfiigbaren CPUs. Je nach
Anwendungsdesign erfordern Abfragen maoglicherweise weniger Mitarbeiter fir parallele Vorgange. Es ist
besser, den Wert fir beide Parameter gleich zu halten, aber den Wert nach dem Testen anzupassen.

* random_page cost = <num>: Dieser Wert steuert die Art und Weise, wie PostgreSQL nicht-
sequentielle Datentrager liest. Ein hoherer Wert bedeutet, dass PostgreSQL eher einen sequenziellen
Scan anstelle eines Indexscans verwendet, was darauf hinweist, dass lhr Server Gber schnelle Festplatten
verfigt.Andern Sie diese Einstellung, nachdem Sie andere Optionen wie planbasierte Optimierung,
Staubsaugen, Indexieren auf Abfragen oder Schema Uberpriift haben.

* effective io concurrency = <num>:Dieser Parameter legt die Anzahl der gleichzeitigen
Festplatten-1/0-Operationen fest, die PostgreSQL gleichzeitig auszuflhren versucht. Wenn Sie diesen
Wert erhéhen, erhoht sich die Anzahl der 1/0-Vorgange, die jede einzelne PostgreSQL-Sitzung parallel
initiieren mochte. Der zulassige Bereich ist 1 bis 1,000 oder Null, um die Ausgabe asynchroner I/O-
Anfragen zu deaktivieren. Derzeit wirkt sich diese Einstellung nur auf Bitmap-Heap-Scans aus. Solid State
Drives (SSDs) und anderer speicherbasierter Storage (NVMe) kdnnen oft zahlreiche gleichzeitige
Anforderungen verarbeiten, sodass der beste Nutzen aus Hunderten von Laufwerken zu ziehen ist.

Eine vollstandige Liste der PostgreSQL-Konfigurationsparameter finden Sie in der PostgreSQL-
Dokumentation.

TOAST

TOAST steht fir die Oversized-Attribute Storage-Technik. PostgreSQL verwendet eine feste Seitengrofie
(Ublicherweise 8 KB) und erlaubt nicht, dass Tupel mehrere Seiten umfassen. Daher ist es nicht mdglich,
grolde Feldwerte direkt zu speichern. Wenn Sie versuchen, eine Zeile zu speichern, die diese Groke
Uberschreitet, bricht TOAST die Daten groRRer Spalten in kleinere ,Stlicke® und speichert sie in einem TOAST
Tisch.

Die groRen Werte der getoasteten Attribute werden nur dann herausgezogen (wenn sie Uberhaupt ausgewahlt
sind), wenn der Ergebnissatz an den Client gesendet wird. Die Tabelle selbst ist viel kleiner und kann mehr
Zeilen in den gemeinsam genutzten Puffer-Cache passen als ohne Out-of-Line Storage (TOAST).

VAKUUM

Im normalen PostgreSQL-Betrieb werden Tupel, die durch eine Aktualisierung geléscht oder veraltet gemacht
werden, nicht physisch aus ihrer Tabelle entfernt; sie bleiben vorhanden, bis VAKUUM ausgefihrt wird. Daher
mussen Sie regelmalig VAKUUM betreiben, insbesondere auf haufig aktualisierten Tabellen. Der belegte
Speicherplatz muss dann zur Wiederverwendung durch neue Zeilen zurlickgewonnen werden, um einen
Ausfall von Festplattenspeicher zu vermeiden. Er gibt jedoch nicht den Speicherplatz an das Betriebssystem
zurilck.

Der freie Platz innerhalb einer Seite ist nicht fragmentiert. VACUUM schreibt den gesamten Block neu,
verpackt die restlichen Zeilen und hinterlasst einen einzigen zusammenhangenden Block freien Speicherplatz
auf einer Seite.

Dagegen verdichtet VACUUM FULL Tabellen aktiv, indem eine vollig neue Version der Tabellendatei ohne
Totraum geschrieben wird. Diese Aktion minimiert die Grofl3e des Tisches, kann aber lange dauern. AuRerdem
wird zusatzlicher Speicherplatz fiir die neue Kopie der Tabelle benétigt, bis der Vorgang abgeschlossen ist. Ziel
des routinemaRigen VAKUUMS ist es, die VOLLE VAKUUMAKTIVITAT zu vermeiden. Bei diesem Prozess
werden nicht nur Tabellen auf der MindestgréRe gespeichert, sondern auch der Festplattenspeicherplatz
weiterhin gleichmaRig genutzt.

Tablespaces

Bei der Initialisierung des Datenbank-Clusters werden automatisch zwei Tablespaces
erstellt.

Der pg global Tablespace wird fir freigegebene Systemkataloge verwendet. Der pg _default Tablespace
ist der Standard-Tablespace der Datenbanken temple1 und template0. Wenn die Partition oder das Volume,
auf der das Cluster initialisiert wurde, nicht mehr gentigend Speicherplatz hat und nicht erweitert werden kann,
kann ein Tablespace auf einer anderen Partition erstellt und verwendet werden, bis das System neu
konfiguriert werden kann.

Ein stark genutzter Index kann auf einer schnellen, hochverfiigbaren Festplatte wie einem Solid-State-Gerat
platziert werden. Dartiber hinaus kann eine Tabelle mit archivierten Daten, die selten verwendet oder nicht
Performance-kritisch sind, auf einem kostenglinstigeren, langsameren Festplattensystem wie SAS- oder
SATA-Laufwerken gespeichert werden.

Tablespaces sind Bestandteil des Datenbank-Clusters und kdnnen nicht als eigenstandige Erfassung von
Datendateien behandelt werden. Sie sind von Metadaten im Hauptdatenverzeichnis abhangig und kénnen
daher nicht an einen anderen Datenbankcluster angeschlossen oder einzeln gesichert werden. Wenn Sie
einen Tablespace verlieren (durch Dateildschung, Festplattenfehler usw.), kann der Datenbankcluster
mdglicherweise unlesbar werden oder nicht mehr starten. Wenn ein Tablespace auf einem temporaren

Dateisystem wie einer RAM-Festplatte platziert wird, besteht die Gefahr, dass der gesamte Cluster zuverlassig
ist.

Nach der Erstellung kann ein Tablespace aus jeder beliebigen Datenbank verwendet werden, wenn der
anfordernde Benutzer Uber ausreichende Berechtigungen verfligt. PostgreSQL verwendet symbolische Links,
um die Implementierung von Tablespaces zu vereinfachen. PostgreSQL fiigt dem eine Zeile hinzu
pg_tablespace Tabelle (eine clusterwide-Tabelle) und weist dieser Zeile eine neue Objektkennung (OID) zu.
SchlieBlich verwendet der Server die OID, um einen symbolischen Link zwischen lhrem Cluster und dem
angegebenen Verzeichnis zu erstellen. Das Verzeichnis $PGDATA/pg_tblspc Enthalt symbolische Links, die
auf jeden nicht integrierten Tablespace verweisen, der im Cluster definiert ist.

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

http://www.netapp.com/TM\

	Datenbankkonfiguration : Enterprise applications
	Inhalt
	Datenbankkonfiguration
	Der Netapp Architektur Sind
	Initialisierungsparameter
	Einstellungen
	TOAST
	VAKUUM

	Tablespaces

