PostgreSQL

Enterprise applications

NetApp
January 02, 2026

This PDF was generated from https://docs.netapp.com/de-de/ontap-apps-dbs/postgres/postgres-
overview.html on January 02, 2026. Always check docs.netapp.com for the latest.

Inhalt

PostgreSQL

Uberblick

Datenbankkonfiguration
Der Netapp Architektur Sind
Initialisierungsparameter
Einstellungen
Tablespaces

Storage-Konfiguration
NFS
San

Datensicherung
Nativer Ddta-Schutz
Snapshots
Datensicherungssoftware

© © N O O O W N = 2 a

_ =
= O

PostgreSQL

Uberblick

PostgreSQL wird mit Varianten wie PostgreSQL, PostgreSQL Plus und EDB Postgres
Advanced Server (EPAS) geliefert. PostgreSQL wird typischerweise als Back-End-
Datenbank fir Multi-Tier-Applikationen implementiert. Es wird von gangigen Middleware-
Paketen (wie PHP, Java, Python, Tcl/TK, ODBC, Und JDBC) und war in der
Vergangenheit eine beliebte Wahl fur Open-Source-Datenbankmanagementsysteme.
ONTAP ist eine ausgezeichnete Wahl fur die Ausfuhrung von PostgreSQL-Datenbanken
aufgrund seiner Zuverlassigkeit, seiner hohen Performance und seiner effizienten
Datenmanagementfunktionen.

@ Diese Dokumentation zu ONTAP und der PostgreSQL-Datenbank ersetzt die zuvor
verdffentlichte TR-4770: PostgreSQL-Datenbank unter ONTAP Best Practices.

Mit dem exponentiellen Datenwachstum wird das Datenmanagement fir Unternehmen komplexer. Dadurch
steigen die Lizenz-, Betriebs-, Support- und Wartungskosten. Zur Senkung der Gesamtbetriebskosten
empfiehlt sich der Wechsel von kommerziellen zu Open-Source-Datenbanken mit zuverlassigem,
leistungsstarkem Back-End Storage.

ONTARP ist die ideale Plattform, da ONTAP buchstablich flir Datenbanken entworfen ist. Es wurden speziell fir
die Anforderungen von Datenbank-Workloads zahlreiche Funktionen wie die Optimierung der zufalligen 1/O-
Latenz bis hin zur erweiterten Quality of Service (QoS) und grundlegenden FlexClone-Funktionalitat erstellt.

Zusatzliche Funktionen wie unterbrechungsfreie Upgrades (inkl. Storage-Austausch) stellen sicher, dass lhre
geschaftskritischen Datenbanken verfligbar bleiben. Dariiber hinaus besteht die Moéglichkeit zur sofortigen
Disaster Recovery fir groe Umgebungen Gber MetroCluster oder zur Auswahl von Datenbanken mit
SnapMirror Active Sync.

Am wichtigsten ist jedoch, dass ONTAP eine unubertroffene Performance sowie die Moglichkeit bietet, die
Lésung entsprechend Ihren spezifischen Anforderungen zu dimensionieren. Unsere High-End-Systeme bieten
Uber 1 Mio. IOPS bei Latenzen im Mikrosekundenbereich. Wenn Sie jedoch nur 100.000 IOPS benétigen,
kénnen Sie Ihre Storage-L6sung mit einem kleineren Controller dimensionieren, auf dem immer noch genau
dasselbe Storage-Betriebssystem ausgefiihrt wird.

Datenbankkonfiguration

Der Netapp Architektur Sind

PostgreSQL ist ein RDBMS, das auf Client- und Serverarchitektur basiert. Eine
PostgreSQL-Instanz wird als Datenbank-Cluster bezeichnet, bei dem es sich um eine
Sammlung von Datenbanken und nicht um eine Sammlung von Servern handelt.

PostgreSQL Basic Architecture

Ligoer UEE‘I" ;.I.mr -
I Vﬁhnrud Momary J
Backend Process pe—w
GLOG butlars

Qshor Bufters

[1'
d— i
Wriber WAL Vritor I?ww P

In einer PostgreSQL-Datenbank gibt es drei Hauptelemente: Den Postmaster, das Frontend (Client) und das
Backend Der Client sendet Anfragen an den Postmaster mit Informationen wie IP-Protokoll und zu welcher
Datenbank eine Verbindung hergestellt werden soll. Der Postmaster authentifiziert die Verbindung und leitet
sie zur weiteren Kommunikation an den Back-End-Prozess weiter. Der Back-End-Prozess flihrt die Abfrage
aus und sendet Ergebnisse direkt an das Frontend (Client).

Eine PostgreSQL-Instanz basiert auf einem Multiprocess-Modell statt auf einem Multithread-Modell. Es gibt
mehrere Prozesse flir verschiedene Jobs, und jeder Prozess hat seine eigene Funktionalitat. Zu den
wichtigsten Prozessen gehdren der Clientprozess, der WAL Writer-Prozess, der Background Writer-Prozess
und der Checkpointer-Prozess:

* Wenn ein Client-Prozess (Vordergrund) Lese- oder Schreibanforderungen an die PostgreSQL-Instanz
sendet, werden keine Daten direkt auf die Festplatte geschrieben oder gelesen. Zuerst werden die Daten
in gemeinsam genutzten Puffern und WAL-Puffern (Write-Ahead Logging) gepuffert.

» Ein WAL-Schreibprozess manipuliert den Inhalt der gemeinsam genutzten Puffer und WAL-Puffer, um in
die WAL-Protokolle zu schreiben. WAL-Protokolle sind in der Regel Transaktionsprotokolle von
PostgreSQL und werden sequenziell geschrieben. Um die Reaktionszeit aus der Datenbank zu
verbessern, schreibt PostgreSQL zun&chst in die Transaktionsprotokolle und bestétigt den Client.

» Um die Datenbank in einen konsistenten Zustand zu versetzen, Gberprift der Background Writer-Prozess
den gemeinsam genutzten Puffer regelmafig auf fehlerhafte Seiten. Anschlielend Ubertragt es die Daten
auf die Datendateien, die auf NetApp Volumes oder LUNs gespeichert sind.

Der Checkpointer-Prozess lauft auch periodisch (seltener als der Hintergrundprozess) und verhindert
jegliche Anderung der Puffer. Er signalisiert dem WAL Writer-Prozess, den Checkpoint-Datensatz zu
schreiben und an das Ende der WAL-Protokolle zu I6schen, die auf der NetApp-Festplatte gespeichert
sind. Er signalisiert auch, dass der Background Writer-Prozess alle fehlerhaften Seiten auf die Festplatte
schreibt und auf diese schreibt.

Initialisierungsparameter

Sie erstellen mithilfe von ein neues Datenbankcluster initdb Programm. An initdb

Skript erstellt die Datendateien, Systemtabellen und Vorlagendatenbanken (templateO
und template 1), die den Cluster definieren.

Die Vorlagendatenbank stellt eine Bestandsdatenbank dar. Es enthalt Definitionen fir Systemtabellen,
Standardansichten, Funktionen und Datentypen. pgdata Fungiert als Argument flr den initdb Skript, das
den Speicherort des Datenbank-Clusters angibt.

Alle Datenbankobjekte in PostgreSQL werden intern von den jeweiligen OIDs verwaltet. Tabellen und Indizes
werden auch von einzelnen OIDs verwaltet. Die Beziehungen zwischen Datenbankobjekten und ihren
jeweiligen OIDs werden je nach Objekttyp in entsprechenden Systemkatalogtabellen gespeichert. OIDs von
Datenbanken und Heap-Tabellen werden beispielsweise in gespeichert pg database Und "pg_class. Sie
kénnen die OIDs durch Abfragen auf dem PostgreSQL-Client ermitteln.

Jede Datenbank verfligt Gber eigene einzelne Tabellen und Indexdateien, die auf 1 GB beschrankt sind. Jede
Tabelle hat zwei zugehdrige Dateien, die jeweils mit dem Suffix versehen sind _fsm Und _vm. Sie werden als
freie Raumkarte und Sichtbarkeitskarte bezeichnet. Diese Dateien speichern die Informationen tber die freie
Speicherkapazitat und haben Sichtbarkeit auf jeder Seite in der Tabellendatei. Indizes verfligen nur tUber
individuelle freie Speicherplatzkarten und haben keine Sichtbarkeits-Karten.

Der pg xlog/pg_wal Das Verzeichnis enthalt die Write-Ahead-Protokolle. Mit Write-Ahead-Protokollen
werden die Zuverlassigkeit und Performance der Datenbank verbessert. Immer wenn Sie eine Zeile in einer
Tabelle aktualisieren, schreibt PostgreSQL die Anderung zuerst in das Write-Ahead-Protokoll und schreibt
spater die Anderungen auf die eigentlichen Datenseiten auf eine Festplatte. Der pg_x1og Das Verzeichnis
enthalt normalerweise mehrere Dateien, aber initdb erstellt nur die erste. Zusatzliche Dateien werden bei
Bedarf hinzugefiigt. Jede xlog-Datei ist 16 MB lang.

Einstellungen

Es gibt mehrere PostgreSQL-Tuning-Konfigurationen, die die Performance verbessern
konnen.

Die am haufigsten verwendeten Parameter sind:

* max_connections = <num>: Die maximale Anzahl von Datenbankverbindungen, die gleichzeitig
verfigbar sind. Verwenden Sie diesen Parameter, um den Austausch auf Festplatte zu beschranken und
die Leistung zu unterbinden. Je nach Anwendungsanforderung kénnen Sie diesen Parameter auch fiir die
Einstellungen des Verbindungspools anpassen.

* shared buffers = <num>: Die einfachste Methode zur Verbesserung der Leistung lhres
Datenbankservers. Die Standardeinstellung ist niedrig fir die meisten modernen Hardware. Sie wird
wahrend der Bereitstellung auf ca. 25 % des verfugbaren RAM auf dem System eingestellt. Diese
Parametereinstellung hangt davon ab, wie sie mit bestimmten Datenbankinstanzen funktioniert; Sie
mussen die Werte mdglicherweise durch Versuch und Fehler erhéhen oder verringern. Bei einer hohen
Einstellung wird die Performance jedoch wahrscheinlich beeintrachtigt.

* effective cache size = <num>:Dieser Wert teilt PostgreSQL’s Optimizer mit, wie viel Speicher
PostgreSQL fiir das Caching von Daten zur Verfligung hat und hilft bei der Bestimmung, ob ein Index
verwendet werden soll. Ein groRerer Wert erhoht die Wahrscheinlichkeit, einen Index zu verwenden. Dieser
Parameter sollte auf die GrolRe des zugewiesenen Speichers eingestellt werden shared buffers Und
die Menge an verfliigbarem BS-Cache. Dieser Wert liegt haufig bei mehr als 50 % des gesamten
Systemspeichers.

* work mem = <num>: Dieser Parameter steuert die Speichermenge, die in Sort-Operationen und Hash-
Tabellen verwendet werden soll. Wenn Sie eine starke Sortierung in lhrer Anwendung ausfihren, missen
Sie moglicherweise den Speicherplatz erhéhen, aber seien Sie vorsichtig. Es handelt sich nicht um einen

systemweiten Parameter, sondern um einen pro-Operation-Parameter. Wenn eine komplexe Abfrage
mehrere Sortieroperationen enthalt, verwendet sie mehrere Work _mem-Speichereinheiten, und mehrere
Back-Ends kdnnten dies gleichzeitig tun. Diese Abfrage kann oft dazu flhren, dass Ihr Datenbankserver
ausgetauscht wird, wenn der Wert zu groR ist. Diese Option wurde zuvor in alteren PostgreSQL-Versionen
als sort_mem bezeichnet.

* fsync = <boolean> (on or off): Dieser Parameter legt fest, ob alle WAL-Seiten mit fsync()
synchronisiert werden sollen, bevor eine Transaktion durchgefiihrt wird. Wenn Sie sie deaktivieren, kann
die Schreibleistung manchmal verbessert werden, und wenn Sie sie einschalten, erhoht sich der Schutz
vor dem Risiko von Beschadigungen, wenn das System abstiirzt.

* checkpoint timeout: Der Checkpoint-Prozess ubertragt die Daten auf die Festplatte. Dies beinhaltet
viele Lese-/Schreibvorgange auf der Festplatte. Der Wert wird in Sekunden festgelegt, und niedrigere
Werte verringern die Absturzwiederherstellungszeit, und héhere Werte kénnen die Belastung der
Systemressourcen verringern, indem die Checkpoint-Anrufe reduziert werden. Legen Sie je nach
Wichtigkeit der Anwendung, Auslastung und Verfugbarkeit der Datenbank den Wert von
Checkpoint_Timeout fest.

* commit delay = <num>Und commit siblings = <num>:Diese Optionen werden zusammen
verwendet, um die Leistung zu verbessern, indem mehrere Transaktionen, die auf einmal begehen,
ausgeschrieben werden. Wenn mehrere commit_Geschwister-Objekte aktiv sind, sobald Ihre Transaktion
abgeschlossen ist, wartet der Server auf commit_delay Mikrosekunden, um zu versuchen, mehrere
Transaktionen gleichzeitig zu begehen.

* max worker processes / max parallel workers: Konfigurieren Sie die optimale Anzahl von
Arbeitern fir Prozesse. Max_Parallel_Workers entspricht der Anzahl der verfiigbaren CPUs. Je nach
Anwendungsdesign erfordern Abfragen moglicherweise weniger Mitarbeiter fir parallele Vorgange. Es ist
besser, den Wert fir beide Parameter gleich zu halten, aber den Wert nach dem Testen anzupassen.

* random_page cost = <num>: Dieser Wert steuert die Art und Weise, wie PostgreSQL nicht-
sequentielle Datentrager liest. Ein hoherer Wert bedeutet, dass PostgreSQL eher einen sequenziellen
Scan anstelle eines Indexscans verwendet, was darauf hinweist, dass lhr Server Gber schnelle Festplatten
verfliigt. Andern Sie diese Einstellung, nachdem Sie andere Optionen wie planbasierte Optimierung,
Staubsaugen, Indexieren auf Abfragen oder Schema Uberprft haben.

* effective _io_concurrency = <num>:Dieser Parameter legt die Anzahl der gleichzeitigen
Festplatten-1/0-Operationen fest, die PostgreSQL gleichzeitig auszufiihren versucht. Wenn Sie diesen
Wert erhéhen, erhoht sich die Anzahl der 1/0-Vorgange, die jede einzelne PostgreSQL-Sitzung parallel
initiieren mochte. Der zulassige Bereich ist 1 bis 1,000 oder Null, um die Ausgabe asynchroner I/O-
Anfragen zu deaktivieren. Derzeit wirkt sich diese Einstellung nur auf Bitmap-Heap-Scans aus. Solid State
Drives (SSDs) und anderer speicherbasierter Storage (NVMe) kdnnen oft zahlreiche gleichzeitige
Anforderungen verarbeiten, sodass der beste Nutzen aus Hunderten von Laufwerken zu ziehen ist.

Eine vollstandige Liste der PostgreSQL-Konfigurationsparameter finden Sie in der PostgreSQL-
Dokumentation.

TOAST

TOAST steht fir die Oversized-Attribute Storage-Technik. PostgreSQL verwendet eine feste Seitengrofie
(Ublicherweise 8 KB) und erlaubt nicht, dass Tupel mehrere Seiten umfassen. Daher ist es nicht mdglich,
groRe Feldwerte direkt zu speichern. Wenn Sie versuchen, eine Zeile zu speichern, die diese Grofie
Uberschreitet, bricht TOAST die Daten grofRer Spalten in kleinere ,Stiicke® und speichert sie in einem TOAST
Tisch.

Die groRen Werte der getoasteten Attribute werden nur dann herausgezogen (wenn sie Uberhaupt ausgewahlt
sind), wenn der Ergebnissatz an den Client gesendet wird. Die Tabelle selbst ist viel kleiner und kann mehr
Zeilen in den gemeinsam genutzten Puffer-Cache passen als ohne Out-of-Line Storage (TOAST).

VAKUUM

Im normalen PostgreSQL-Betrieb werden Tupel, die durch eine Aktualisierung geléscht oder veraltet gemacht
werden, nicht physisch aus ihrer Tabelle entfernt; sie bleiben vorhanden, bis VAKUUM ausgefihrt wird. Daher
mussen Sie regelmalig VAKUUM betreiben, insbesondere auf haufig aktualisierten Tabellen. Der belegte
Speicherplatz muss dann zur Wiederverwendung durch neue Zeilen zurickgewonnen werden, um einen
Ausfall von Festplattenspeicher zu vermeiden. Er gibt jedoch nicht den Speicherplatz an das Betriebssystem
zuruck.

Der freie Platz innerhalb einer Seite ist nicht fragmentiert. VACUUM schreibt den gesamten Block neu,
verpackt die restlichen Zeilen und hinterlasst einen einzigen zusammenhangenden Block freien Speicherplatz
auf einer Seite.

Dagegen verdichtet VACUUM FULL Tabellen aktiv, indem eine vollig neue Version der Tabellendatei ohne
Totraum geschrieben wird. Diese Aktion minimiert die GroRe des Tisches, kann aber lange dauern. Aulzerdem
wird zusatzlicher Speicherplatz fur die neue Kopie der Tabelle bendtigt, bis der Vorgang abgeschlossen ist. Ziel
des routinemaBigen VAKUUMS ist es, die VOLLE VAKUUMAKTIVITAT zu vermeiden. Bei diesem Prozess
werden nicht nur Tabellen auf der Mindestgréf3e gespeichert, sondern auch der Festplattenspeicherplatz
weiterhin gleichmaRig genutzt.

Tablespaces

Bei der Initialisierung des Datenbank-Clusters werden automatisch zwei Tablespaces
erstellt.

Der pg global Tablespace wird fur freigegebene Systemkataloge verwendet. Der pg default Tablespace
ist der Standard-Tablespace der Datenbanken temple1 und template0. Wenn die Partition oder das Volume,
auf der das Cluster initialisiert wurde, nicht mehr gentigend Speicherplatz hat und nicht erweitert werden kann,
kann ein Tablespace auf einer anderen Partition erstellt und verwendet werden, bis das System neu
konfiguriert werden kann.

Ein stark genutzter Index kann auf einer schnellen, hochverfligbaren Festplatte wie einem Solid-State-Gerat
platziert werden. Daruber hinaus kann eine Tabelle mit archivierten Daten, die selten verwendet oder nicht
Performance-kritisch sind, auf einem kostenglnstigeren, langsameren Festplattensystem wie SAS- oder
SATA-Laufwerken gespeichert werden.

Tablespaces sind Bestandteil des Datenbank-Clusters und kénnen nicht als eigenstandige Erfassung von
Datendateien behandelt werden. Sie sind von Metadaten im Hauptdatenverzeichnis abhangig und kénnen
daher nicht an einen anderen Datenbankcluster angeschlossen oder einzeln gesichert werden. Wenn Sie
einen Tablespace verlieren (durch Dateiléschung, Festplattenfehler usw.), kann der Datenbankcluster
moglicherweise unlesbar werden oder nicht mehr starten. Wenn ein Tablespace auf einem temporaren
Dateisystem wie einer RAM-Festplatte platziert wird, besteht die Gefahr, dass der gesamte Cluster zuverlassig
ist.

Nach der Erstellung kann ein Tablespace aus jeder beliebigen Datenbank verwendet werden, wenn der
anfordernde Benutzer Uber ausreichende Berechtigungen verflgt. PostgreSQL verwendet symbolische Links,
um die Implementierung von Tablespaces zu vereinfachen. PostgreSQL fligt dem eine Zeile hinzu
pg_tablespace Tabelle (eine clusterwide-Tabelle) und weist dieser Zeile eine neue Objektkennung (OID) zu.
SchlieRlich verwendet der Server die OID, um einen symbolischen Link zwischen lhrem Cluster und dem
angegebenen Verzeichnis zu erstellen. Das Verzeichnis $PGDATA/pg_tblspc Enthélt symbolische Links, die
auf jeden nicht integrierten Tablespace verweisen, der im Cluster definiert ist.

Storage-Konfiguration

NFS

PostgreSQL-Datenbanken kénnen auf NFSv3- oder NFSv4-Dateisystemen gehostet
werden. Die beste Option hangt von Faktoren aul3erhalb der Datenbank ab.

Beispielsweise kdnnte das Sperrverhalten von NFSv4 in bestimmten Cluster-Umgebungen vorzuziehen sein.
(Siehe "Hier" Fir weitere Details)

Ansonsten sollte die Datenbankfunktionalitat, einschlielRlich der Performance, nahezu identisch sein. Die
einzige Voraussetzung ist die Verwendung des hard Mount-Option. Dies ist erforderlich, um sicherzustellen,
dass weiche Timeouts keine nicht behebbaren E/A-Fehler verursachen.

Wenn NFSv4 als Protokoll gewahlt wird, empfiehlt NetApp die Verwendung von NFSv4.1. Es gibt einige
funktionale Verbesserungen am NFSv4.1-Protokoll, die die Ausfallsicherheit gegeniiber NFSv4.0 verbessern.

Verwenden Sie die folgenden Mount-Optionen fir allgemeine Datenbank-Workloads:
rw,hard,nointr,bg,vers=[3]4],proto=tcp,rsize=65536,wsize=65536

Wenn sequenzielle 1/0-Vorgéange mit hohem I/O-Wert zu erwarten sind, kann die NFS-UbertragungsgroRe wie
im folgenden Abschnitt beschrieben erhéht werden.

NFS-Ubertragungsgréfen
StandardmaRig beschrankt ONTAP die NFS-I/O-GroRRe auf 64K.

Zufalliger I/0O mit den meisten Applikationen und Datenbanken verwendet eine viel kleinere Blockgrof3e, die
weit unter dem 64K-Maximum liegt. Der I/O grof3er Blocke wird in der Regel parallelisiert, sodass die 64K-
Maximalgrof3e auch keine Einschrankung fir die Erzielung der maximalen Bandbreite darstellt.

Es gibt einige Workloads, bei denen das 64K-Maximum eine Einschrankung darstellt. Insbesondere Vorgange
in einem einzigen Thread, wie Backup- oder Recovery-Vorgange oder ein vollstandiger Tabellenscan in einer

Datenbank, laufen schneller und effizienter, wenn die Datenbank weniger, aber gréRere I/OS ausfihren kann.
Die optimale 1/0-Handhabungsgrofie flir ONTAP betragt 256 KB.

Die maximale UbertragungsgréRe fiir eine bestimmte ONTAP SVM kann wie folgt gedndert werden:

Cluster0l::> set advanced

Warning: These advanced commands are potentially dangerous; use them only
when directed to do so by NetApp personnel.

Do you want to continue? {yln}: vy

Cluster0l::*> nfs server modify -vserver vserverl -tcp-max-xfer-size
262144

Cluster0l::*>

https://docs.netapp.com/de-de/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html

Verringern Sie niemals die maximal zuldssige UbertragungsgroRe auf ONTAP unter den Wert
rsize/wsize der aktuell gemounteten NFS-Dateisysteme. Dies kann bei einigen
Betriebssystemen zu Hangebleiben oder sogar Datenbeschadigungen fihren. Wenn

(D beispielswgise NFS-Clients derzeit auf 65536 rsize/wsize gesetzt sind, dann kénnte die
maximale Ubertragungsgrofie fir ONTAP ohne Auswirkung auf die Clients selbst begrenzt
werden, zwischen 65536 und 1048576 angepasst werden. Wenn Sie die maximale
UbertragungsgroRe unter 65536 verringern, kénnen die Verfligbarkeit oder die Daten
beeintrachtigt werden.

Sobald die Ubertragungsgrofie auf ONTAP-Ebene erhdht wurde, werden die folgenden Mount-Optionen
verwendet:

rw, hard,nointr,bg,vers=[3|4],proto=tcp,rsize=262144,wsize=262144

NFSv3 TCP-Slot-Tabellen
Wenn NFSv3 mit Linux verwendet wird, ist es wichtig, die TCP-Slot-Tabellen ordnungsgemaf festzulegen.

TCP-Slot-Tabellen sind das NFSv3 Aquivalent zur Warteschlangentiefe des Host Bus Adapters (HBA). Diese
Tabellen steuern die Anzahl der NFS-Vorgange, die zu einem beliebigen Zeitpunkt ausstehen kénnen. Der
Standardwert ist normalerweise 16, was fur eine optimale Performance viel zu niedrig ist. Das
entgegengesetzte Problem tritt auf neueren Linux-Kerneln auf, die automatisch die Begrenzung der TCP-Slot-
Tabelle auf ein Niveau erhdhen kénnen, das den NFS-Server mit Anforderungen sattigt.

Um eine optimale Performance zu erzielen und Performance-Probleme zu vermeiden, passen Sie die Kernel-
Parameter an, die die TCP-Slot-Tabellen steuern.

Flhren Sie die aus sysctl -a | grep tcp.*.slot table Und beobachten Sie die folgenden
Parameter:

sysctl -a | grep tcp.*.slot table
sunrpc.tcp max slot table entries = 128
sunrpc.tcp slot table entries = 128

Alle Linux-Systeme sollten enthalten sunrpc.tcp slot table entries, Aber nur einige enthalten
sunrpc.tcp max slot table entries. Beide sollten auf 128 gesetzt werden.

Wenn diese Parameter nicht eingestellt werden, kann dies erhebliche Auswirkungen auf die
(D Leistung haben. In einigen Fallen ist die Performance eingeschrankt, da das linux-

Betriebssystem nicht genligend 1/O ausgibt In anderen Fallen erhoht sich die I/O-Latenz, wenn

das linux Betriebssystem versucht, mehr I/O-Vorgange auszustellen, als gewartet werden kann.

San

PostgreSQL-Datenbanken mit SAN werden in der Regel auf xfs-Dateisystemen gehostet,
aber andere konnen verwendet werden, wenn sie vom OS-Anbieter unterstutzt werden

Wahrend eine einzelne LUN in der Regel bis zu 100.000 IOPS unterstitzen kann, erfordern |O-intensive
Datenbanken in der Regel die Verwendung von LVM mit Striping.

LVM-Striping

Vor der Ara der Flash-Laufwerke wurde Striping verwendet, um die Performance-Einschréankungen rotierender
Laufwerke zu tberwinden. Beispiel: Wenn ein Betriebssystem einen Lesevorgang von 1 MB ausfihren muss,
wurde das Lesen dieser 1 MB Daten von einem einzigen Laufwerk viel Festplattenkopf erfordern, der sucht
und liest, da die 1 MB langsam Ubertragen wird. Wenn diese 1 MB Daten Uber 8 LUNs verteilt wurden, kann
das Betriebssystem acht 128K-Lesevorgange parallel ausfiihren und die fiir die 1-MB-Ubertragung
erforderliche Zeit verringern.

Das Striping mit rotierenden Laufwerken war schwieriger, da das I/O-Muster bereits im Vorfeld bekannt sein
musste. Wenn das Striping nicht richtig auf die wahren 1/0-Muster abgestimmt wurde, kénnen Striping-
Konfigurationen die Performance beeintrachtigen. Bei Oracle Datenbanken und insbesondere bei All-Flash-
Konfigurationen ist Striping einfacher zu konfigurieren und hat sich nachweislich fir eine drastische
Verbesserung der Performance bewahrt.

Logische Volume-Manager wie Oracle ASM Stripe sind standardmaRig aktiviert, aber native OS LVM nicht.
Einige von ihnen verbinden mehrere LUNs als verkettete Gerate. Dies fuhrt zu Datendateien, die auf einem
und nur einem LUN-Gerat vorhanden sind. Dies verursacht Hotspots. Andere LVM-Implementierungen sind
standardmaRig auf verteilte Extents eingestellt. Das ist ahnlich wie Striping, aber es ist grober. Die LUNs in der
Volume-Gruppe werden in grolRe Teile geteilt, die als Extents bezeichnet werden und in der Regel in vielen
Megabyte gemessen werden. Die logischen Volumes werden dann Uber diese Extents verteilt. Das Ergebnis
ist ein zufalliger I/O-Vorgang fir eine Datei, der auf LUNs verteilt werden sollte. Sequenzielle I/0-Vorgange
sind jedoch nicht so effizient wie mdglich.

Die Performance-intensiven Applikations-1/0O-Vorgange erfolgen fast immer entweder (a) in Einheiten der
grundlegenden BlockgroRRe oder (b) in Megabyte.

Das primare Ziel einer Striped-Konfiguration ist es, sicherzustellen, dass Single-File I/O als eine Einheit
ausgefuhrt werden kann. Multiblock-1/O, die eine Gréfke von 1 MB haben sollte, kann gleichmaRig Gber alle
LUNs im Striped Volume hinweg parallelisiert werden. Das bedeutet, dass die Stripe-GréRe nicht kleiner als
die Blockgroe der Datenbank sein darf und die Stripe-Gro3e multipliziert mit der Anzahl der LUNs 1 MB
betragen sollte.

Die folgende Abbildung zeigt drei mdgliche Optionen fir die Stripe-Grofie und Breitenabstimmung. Die Anzahl
der LUNs wird ausgewahlt, um die oben beschriebenen Performance-Anforderungen zu erfiillen. In allen
Fallen betragt die Gesamtzahl der Daten innerhalb eines einzigen Stripes jedoch 1 MB.

/d?ta

=

Stripe size = 256K
256K x 4 LUNs = 1MB

/d?ta

> il Bt
s s s s s s [s s

Stripe size = 128K
128K x 8 LUNs = 1MB

/data
|

N o e e
ceEEEEESS

Stripe size = 64K
64K x 16 LUNs = 1MB

Datensicherung

Nativer Ddta-Schutz

Einer der wichtigsten Aspekte des Storage-Designs ist die Sicherung von PostgreSQL
Volumes. Kunden konnen ihre PostgreSQL-Datenbanken entweder mithilfe des Dump-
Ansatzes oder mit Dateisystem-Backups sichern. In diesem Abschnitt werden die
verschiedenen Ansatze zur Sicherung einzelner Datenbanken oder des gesamten

Clusters erlautert.

Es gibt drei Ansatze fir die Sicherung von PostgreSQL-Daten:

* SQL Server Dump

» Backup auf Filesystem-Ebene

+ Kontinuierliche Archivierung

Die Idee hinter der SQL Server Dump-Methode besteht darin, eine Datei mit SQL Server-Befehlen zu
generieren, die, wenn sie an den Server zurlickgegeben wird, die Datenbank so neu erstellen kann, wie sie
zum Zeitpunkt des Dump war. PostgreSQL stellt die Dienstprogramme zur Verfliigung pg_dump Und
pg_dump_all Zur Erstellung von individuellen Backups und Backups auf Cluster-Ebene. Diese Dumps sind
logisch und enthalten nicht gentigend Informationen, die von WAL Replay verwendet werden kdnnen.

Eine alternative Backup-Strategie ist die Verwendung von Backup auf Dateisystem-Ebene, bei der
Administratoren direkt kopieren die Dateien, die PostgreSQL verwendet, um die Daten in der Datenbank zu
speichern. Diese Methode erfolgt im Offline-Modus: Die Datenbank oder das Cluster muss heruntergefahren
werden. Eine weitere Alternative ist die Verwendung pg_basebackup Zum Ausfiihren von Hot-Streaming-
Backups der PostgreSQL-Datenbank.

Snapshots

Snapshot-basierte Backups mit PostgreSQL erfordern die Konfiguration von Snapshots
fur Datendateien, WAL-Dateien und archivierte WAL-Dateien, um eine vollstandige oder
zeitpunktgenaue Recovery zu ermoglichen.

Bei PostgreSQL-Datenbanken liegt die durchschnittliche Backup-Zeit mit Snapshots im Bereich von wenigen
Sekunden bis zu wenigen Minuten. Diese Backup-Geschwindigkeit ist 60 bis 100 Mal schneller als
pg_basebackup Und anderen Filesystem-basierten Backup-Ansatzen.

Snapshots auf NetApp Storage kénnen sowohl ausfallkonsistent als auch applikationskonsistent sein. Ein
Crash-konsistenter Snapshot wird auf dem Storage erstellt, ohne die Datenbank stillzustehen. Wahrend sich
die Datenbank im Backup-Modus befindet, wird ein applikationskonsistenter Snapshot erstellt. NetApp sorgt
aulderdem dafir, dass nachfolgende Snapshots dauerhaft inkrementelle Backups sind, um die Storage-
Einsparungen und die Netzwerkeffizienz zu erhéhen.

Da Snapshots schnell sind und die System-Performance nicht beeintrachtigen, kdnnen Sie mehrere Snapshots
taglich planen, anstatt wie bei anderen Streaming-Backup-Technologien taglich ein einziges Backup zu
erstellen. Wenn ein Wiederherstellungs- und Wiederherstellungsvorgang erforderlich ist, verringert sich die
Systemausfallzeit um zwei wichtige Funktionen:

* Dank der NetApp SnapRestore Datenwiederherstellungs-Technologie erfolgt die Wiederherstellung in
Sekundenschnelle.

» Durch aggressive Recovery Point Objectives (RPOs) miissen weniger Datenbankprotokolle angewendet
werden und auch die Recovery wird beschleunigt.

Flr das Backup von PostgreSQL mussen Sie sicherstellen, dass die Datenvolumes gleichzeitig mit
(Consistency Group) WAL und den archivierten Protokollen geschitzt sind. Stellen Sie beim Kopieren von
WAL-Dateien mit der Snapshot-Technologie sicher, dass Sie ausgefiihrt werden pg _stop Um alle WAL-
Eintréage zu I8schen, die archiviert werden missen. Wenn Sie die WAL-Eintrage wahrend der
Wiederherstellung Idschen, missen Sie nur die Datenbank anhalten, das vorhandene Datenverzeichnis
aufheben oder I6schen und einen SnapRestore-Vorgang auf dem Speicher ausfihren. Nachdem die
Wiederherstellung abgeschlossen ist, kdnnen Sie das System mounten und in den aktuellen Status
zurlckversetzen. Fur Point-in-Time Recovery kdnnen Sie WAL wiederherstellen und Protokolle archivieren.
PostgreSQL entscheidet dann Uber den konsistentesten Punkt und stellt ihn automatisch wieder her.

Konsistenzgruppen sind in ONTAP eine Funktion, die ebenfalls empfohlen werden, wenn mehrere Volumes in

eine einzelne Instanz oder in eine Datenbank mit mehreren Tablespaces gemountet sind. Ein Snapshot einer
Konsistenzgruppe stellt sicher, dass alle Volumes gruppiert und geschutzt sind. Eine Konsistenzgruppe kann

10

Uber den ONTAP System Manager effizient gemanagt werden und Sie kénnen sie sogar klonen, um eine
Instanzkopie einer Datenbank zu Test- oder Entwicklungszwecken zu erstellen.

Datensicherungssoftware

Das NetApp SnapCenter Plug-in fur die PostgreSQL Datenbank bietet in Kombination mit
Snapshot und NetApp FlexClone Technologien folgende Vorteile:

» Schnelles Backup und Restore:
* Platzsparende Klone:

» Aufbau eines schnellen und effektiven Disaster Recovery-Systems

Unter den folgenden Umstanden bevorzugen Sie die Premium-Backup-Partner von NetApp, z.
B. Veeam Software und CommVault:
@ * Management von Workloads in heterogener Umgebung
» Speichern von Backups in der Cloud oder auf Tape zur langfristigen Aufbewahrung

 Unterstltzung flr eine Vielzahl von Betriebssystemversionen und -Typen

SnapCenter Plugin flir PostgreSQL ist Community-unterstltztes Plugin und das Setup und die Dokumentation
ist auf NetApp Automation Store verfligbar. Mit SnapCenter knnen Anwender Datenbanken sichern sowie
Daten Remote klonen und wiederherstellen.

11

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

12

http://www.netapp.com/TM\

	PostgreSQL : Enterprise applications
	Inhalt
	PostgreSQL
	Überblick
	Datenbankkonfiguration
	Der Netapp Architektur Sind
	Initialisierungsparameter
	Einstellungen
	Tablespaces

	Storage-Konfiguration
	NFS
	San

	Datensicherung
	Nativer Ddta-Schutz
	Snapshots
	Datensicherungssoftware

