
PostgreSQL
Enterprise applications
NetApp
January 02, 2026

This PDF was generated from https://docs.netapp.com/de-de/ontap-apps-dbs/postgres/postgres-
overview.html on January 02, 2026. Always check docs.netapp.com for the latest.

Inhalt
PostgreSQL . 1

Überblick . 1

Datenbankkonfiguration . 1

Der Netapp Architektur Sind. 1

Initialisierungsparameter . 2

Einstellungen . 3

Tablespaces . 5

Storage-Konfiguration . 6

NFS . 6

San. 7

Datensicherung . 9

Nativer Ddta-Schutz . 9

Snapshots . 10

Datensicherungssoftware. 11

PostgreSQL

Überblick

PostgreSQL wird mit Varianten wie PostgreSQL, PostgreSQL Plus und EDB Postgres
Advanced Server (EPAS) geliefert. PostgreSQL wird typischerweise als Back-End-
Datenbank für Multi-Tier-Applikationen implementiert. Es wird von gängigen Middleware-
Paketen (wie PHP, Java, Python, Tcl/TK, ODBC, Und JDBC) und war in der
Vergangenheit eine beliebte Wahl für Open-Source-Datenbankmanagementsysteme.
ONTAP ist eine ausgezeichnete Wahl für die Ausführung von PostgreSQL-Datenbanken
aufgrund seiner Zuverlässigkeit, seiner hohen Performance und seiner effizienten
Datenmanagementfunktionen.

Diese Dokumentation zu ONTAP und der PostgreSQL-Datenbank ersetzt die zuvor
veröffentlichte TR-4770: PostgreSQL-Datenbank unter ONTAP Best Practices.

Mit dem exponentiellen Datenwachstum wird das Datenmanagement für Unternehmen komplexer. Dadurch
steigen die Lizenz-, Betriebs-, Support- und Wartungskosten. Zur Senkung der Gesamtbetriebskosten
empfiehlt sich der Wechsel von kommerziellen zu Open-Source-Datenbanken mit zuverlässigem,
leistungsstarkem Back-End Storage.

ONTAP ist die ideale Plattform, da ONTAP buchstäblich für Datenbanken entworfen ist. Es wurden speziell für
die Anforderungen von Datenbank-Workloads zahlreiche Funktionen wie die Optimierung der zufälligen I/O-
Latenz bis hin zur erweiterten Quality of Service (QoS) und grundlegenden FlexClone-Funktionalität erstellt.

Zusätzliche Funktionen wie unterbrechungsfreie Upgrades (inkl. Storage-Austausch) stellen sicher, dass Ihre
geschäftskritischen Datenbanken verfügbar bleiben. Darüber hinaus besteht die Möglichkeit zur sofortigen
Disaster Recovery für große Umgebungen über MetroCluster oder zur Auswahl von Datenbanken mit
SnapMirror Active Sync.

Am wichtigsten ist jedoch, dass ONTAP eine unübertroffene Performance sowie die Möglichkeit bietet, die
Lösung entsprechend Ihren spezifischen Anforderungen zu dimensionieren. Unsere High-End-Systeme bieten
über 1 Mio. IOPS bei Latenzen im Mikrosekundenbereich. Wenn Sie jedoch nur 100.000 IOPS benötigen,
können Sie Ihre Storage-Lösung mit einem kleineren Controller dimensionieren, auf dem immer noch genau
dasselbe Storage-Betriebssystem ausgeführt wird.

Datenbankkonfiguration

Der Netapp Architektur Sind

PostgreSQL ist ein RDBMS, das auf Client- und Serverarchitektur basiert. Eine
PostgreSQL-Instanz wird als Datenbank-Cluster bezeichnet, bei dem es sich um eine
Sammlung von Datenbanken und nicht um eine Sammlung von Servern handelt.

1

In einer PostgreSQL-Datenbank gibt es drei Hauptelemente: Den Postmaster, das Frontend (Client) und das
Backend Der Client sendet Anfragen an den Postmaster mit Informationen wie IP-Protokoll und zu welcher
Datenbank eine Verbindung hergestellt werden soll. Der Postmaster authentifiziert die Verbindung und leitet
sie zur weiteren Kommunikation an den Back-End-Prozess weiter. Der Back-End-Prozess führt die Abfrage
aus und sendet Ergebnisse direkt an das Frontend (Client).

Eine PostgreSQL-Instanz basiert auf einem Multiprocess-Modell statt auf einem Multithread-Modell. Es gibt
mehrere Prozesse für verschiedene Jobs, und jeder Prozess hat seine eigene Funktionalität. Zu den
wichtigsten Prozessen gehören der Clientprozess, der WAL Writer-Prozess, der Background Writer-Prozess
und der Checkpointer-Prozess:

• Wenn ein Client-Prozess (Vordergrund) Lese- oder Schreibanforderungen an die PostgreSQL-Instanz
sendet, werden keine Daten direkt auf die Festplatte geschrieben oder gelesen. Zuerst werden die Daten
in gemeinsam genutzten Puffern und WAL-Puffern (Write-Ahead Logging) gepuffert.

• Ein WAL-Schreibprozess manipuliert den Inhalt der gemeinsam genutzten Puffer und WAL-Puffer, um in
die WAL-Protokolle zu schreiben. WAL-Protokolle sind in der Regel Transaktionsprotokolle von
PostgreSQL und werden sequenziell geschrieben. Um die Reaktionszeit aus der Datenbank zu
verbessern, schreibt PostgreSQL zunächst in die Transaktionsprotokolle und bestätigt den Client.

• Um die Datenbank in einen konsistenten Zustand zu versetzen, überprüft der Background Writer-Prozess
den gemeinsam genutzten Puffer regelmäßig auf fehlerhafte Seiten. Anschließend überträgt es die Daten
auf die Datendateien, die auf NetApp Volumes oder LUNs gespeichert sind.

• Der Checkpointer-Prozess läuft auch periodisch (seltener als der Hintergrundprozess) und verhindert
jegliche Änderung der Puffer. Er signalisiert dem WAL Writer-Prozess, den Checkpoint-Datensatz zu
schreiben und an das Ende der WAL-Protokolle zu löschen, die auf der NetApp-Festplatte gespeichert
sind. Er signalisiert auch, dass der Background Writer-Prozess alle fehlerhaften Seiten auf die Festplatte
schreibt und auf diese schreibt.

Initialisierungsparameter

Sie erstellen mithilfe von ein neues Datenbankcluster initdb Programm. An initdb

2

Skript erstellt die Datendateien, Systemtabellen und Vorlagendatenbanken (template0
und template 1), die den Cluster definieren.

Die Vorlagendatenbank stellt eine Bestandsdatenbank dar. Es enthält Definitionen für Systemtabellen,
Standardansichten, Funktionen und Datentypen. pgdata Fungiert als Argument für den initdb Skript, das
den Speicherort des Datenbank-Clusters angibt.

Alle Datenbankobjekte in PostgreSQL werden intern von den jeweiligen OIDs verwaltet. Tabellen und Indizes
werden auch von einzelnen OIDs verwaltet. Die Beziehungen zwischen Datenbankobjekten und ihren
jeweiligen OIDs werden je nach Objekttyp in entsprechenden Systemkatalogtabellen gespeichert. OIDs von
Datenbanken und Heap-Tabellen werden beispielsweise in gespeichert pg_database Und `pg_class. Sie
können die OIDs durch Abfragen auf dem PostgreSQL-Client ermitteln.

Jede Datenbank verfügt über eigene einzelne Tabellen und Indexdateien, die auf 1 GB beschränkt sind. Jede
Tabelle hat zwei zugehörige Dateien, die jeweils mit dem Suffix versehen sind _fsm Und _vm. Sie werden als
freie Raumkarte und Sichtbarkeitskarte bezeichnet. Diese Dateien speichern die Informationen über die freie
Speicherkapazität und haben Sichtbarkeit auf jeder Seite in der Tabellendatei. Indizes verfügen nur über
individuelle freie Speicherplatzkarten und haben keine Sichtbarkeits-Karten.

Der pg_xlog/pg_wal Das Verzeichnis enthält die Write-Ahead-Protokolle. Mit Write-Ahead-Protokollen
werden die Zuverlässigkeit und Performance der Datenbank verbessert. Immer wenn Sie eine Zeile in einer
Tabelle aktualisieren, schreibt PostgreSQL die Änderung zuerst in das Write-Ahead-Protokoll und schreibt
später die Änderungen auf die eigentlichen Datenseiten auf eine Festplatte. Der pg_xlog Das Verzeichnis
enthält normalerweise mehrere Dateien, aber initdb erstellt nur die erste. Zusätzliche Dateien werden bei
Bedarf hinzugefügt. Jede xlog-Datei ist 16 MB lang.

Einstellungen

Es gibt mehrere PostgreSQL-Tuning-Konfigurationen, die die Performance verbessern
können.

Die am häufigsten verwendeten Parameter sind:

• max_connections = <num>: Die maximale Anzahl von Datenbankverbindungen, die gleichzeitig
verfügbar sind. Verwenden Sie diesen Parameter, um den Austausch auf Festplatte zu beschränken und
die Leistung zu unterbinden. Je nach Anwendungsanforderung können Sie diesen Parameter auch für die
Einstellungen des Verbindungspools anpassen.

• shared_buffers = <num>: Die einfachste Methode zur Verbesserung der Leistung Ihres
Datenbankservers. Die Standardeinstellung ist niedrig für die meisten modernen Hardware. Sie wird
während der Bereitstellung auf ca. 25 % des verfügbaren RAM auf dem System eingestellt. Diese
Parametereinstellung hängt davon ab, wie sie mit bestimmten Datenbankinstanzen funktioniert; Sie
müssen die Werte möglicherweise durch Versuch und Fehler erhöhen oder verringern. Bei einer hohen
Einstellung wird die Performance jedoch wahrscheinlich beeinträchtigt.

• effective_cache_size = <num>: Dieser Wert teilt PostgreSQL’s Optimizer mit, wie viel Speicher
PostgreSQL für das Caching von Daten zur Verfügung hat und hilft bei der Bestimmung, ob ein Index
verwendet werden soll. Ein größerer Wert erhöht die Wahrscheinlichkeit, einen Index zu verwenden. Dieser
Parameter sollte auf die Größe des zugewiesenen Speichers eingestellt werden shared_buffers Und
die Menge an verfügbarem BS-Cache. Dieser Wert liegt häufig bei mehr als 50 % des gesamten
Systemspeichers.

• work_mem = <num>: Dieser Parameter steuert die Speichermenge, die in Sort-Operationen und Hash-
Tabellen verwendet werden soll. Wenn Sie eine starke Sortierung in Ihrer Anwendung ausführen, müssen
Sie möglicherweise den Speicherplatz erhöhen, aber seien Sie vorsichtig. Es handelt sich nicht um einen

3

systemweiten Parameter, sondern um einen pro-Operation-Parameter. Wenn eine komplexe Abfrage
mehrere Sortieroperationen enthält, verwendet sie mehrere Work_mem-Speichereinheiten, und mehrere
Back-Ends könnten dies gleichzeitig tun. Diese Abfrage kann oft dazu führen, dass Ihr Datenbankserver
ausgetauscht wird, wenn der Wert zu groß ist. Diese Option wurde zuvor in älteren PostgreSQL-Versionen
als sort_mem bezeichnet.

• fsync = <boolean> (on or off): Dieser Parameter legt fest, ob alle WAL-Seiten mit fsync()
synchronisiert werden sollen, bevor eine Transaktion durchgeführt wird. Wenn Sie sie deaktivieren, kann
die Schreibleistung manchmal verbessert werden, und wenn Sie sie einschalten, erhöht sich der Schutz
vor dem Risiko von Beschädigungen, wenn das System abstürzt.

• checkpoint_timeout: Der Checkpoint-Prozess überträgt die Daten auf die Festplatte. Dies beinhaltet
viele Lese-/Schreibvorgänge auf der Festplatte. Der Wert wird in Sekunden festgelegt, und niedrigere
Werte verringern die Absturzwiederherstellungszeit, und höhere Werte können die Belastung der
Systemressourcen verringern, indem die Checkpoint-Anrufe reduziert werden. Legen Sie je nach
Wichtigkeit der Anwendung, Auslastung und Verfügbarkeit der Datenbank den Wert von
Checkpoint_Timeout fest.

• commit_delay = <num> Und commit_siblings = <num>: Diese Optionen werden zusammen
verwendet, um die Leistung zu verbessern, indem mehrere Transaktionen, die auf einmal begehen,
ausgeschrieben werden. Wenn mehrere commit_Geschwister-Objekte aktiv sind, sobald Ihre Transaktion
abgeschlossen ist, wartet der Server auf commit_delay Mikrosekunden, um zu versuchen, mehrere
Transaktionen gleichzeitig zu begehen.

• max_worker_processes / max_parallel_workers: Konfigurieren Sie die optimale Anzahl von
Arbeitern für Prozesse. Max_Parallel_Workers entspricht der Anzahl der verfügbaren CPUs. Je nach
Anwendungsdesign erfordern Abfragen möglicherweise weniger Mitarbeiter für parallele Vorgänge. Es ist
besser, den Wert für beide Parameter gleich zu halten, aber den Wert nach dem Testen anzupassen.

• random_page_cost = <num>: Dieser Wert steuert die Art und Weise, wie PostgreSQL nicht-
sequentielle Datenträger liest. Ein höherer Wert bedeutet, dass PostgreSQL eher einen sequenziellen
Scan anstelle eines Indexscans verwendet, was darauf hinweist, dass Ihr Server über schnelle Festplatten
verfügt.Ändern Sie diese Einstellung, nachdem Sie andere Optionen wie planbasierte Optimierung,
Staubsaugen, Indexieren auf Abfragen oder Schema überprüft haben.

• effective_io_concurrency = <num>: Dieser Parameter legt die Anzahl der gleichzeitigen
Festplatten-I/O-Operationen fest, die PostgreSQL gleichzeitig auszuführen versucht. Wenn Sie diesen
Wert erhöhen, erhöht sich die Anzahl der I/O-Vorgänge, die jede einzelne PostgreSQL-Sitzung parallel
initiieren möchte. Der zulässige Bereich ist 1 bis 1,000 oder Null, um die Ausgabe asynchroner I/O-
Anfragen zu deaktivieren. Derzeit wirkt sich diese Einstellung nur auf Bitmap-Heap-Scans aus. Solid State
Drives (SSDs) und anderer speicherbasierter Storage (NVMe) können oft zahlreiche gleichzeitige
Anforderungen verarbeiten, sodass der beste Nutzen aus Hunderten von Laufwerken zu ziehen ist.

Eine vollständige Liste der PostgreSQL-Konfigurationsparameter finden Sie in der PostgreSQL-
Dokumentation.

TOAST

TOAST steht für die Oversized-Attribute Storage-Technik. PostgreSQL verwendet eine feste Seitengröße
(üblicherweise 8 KB) und erlaubt nicht, dass Tupel mehrere Seiten umfassen. Daher ist es nicht möglich,
große Feldwerte direkt zu speichern. Wenn Sie versuchen, eine Zeile zu speichern, die diese Größe
überschreitet, bricht TOAST die Daten großer Spalten in kleinere „Stücke“ und speichert sie in einem TOAST
Tisch.

Die großen Werte der getoasteten Attribute werden nur dann herausgezogen (wenn sie überhaupt ausgewählt
sind), wenn der Ergebnissatz an den Client gesendet wird. Die Tabelle selbst ist viel kleiner und kann mehr
Zeilen in den gemeinsam genutzten Puffer-Cache passen als ohne Out-of-Line Storage (TOAST).

4

VAKUUM

Im normalen PostgreSQL-Betrieb werden Tupel, die durch eine Aktualisierung gelöscht oder veraltet gemacht
werden, nicht physisch aus ihrer Tabelle entfernt; sie bleiben vorhanden, bis VAKUUM ausgeführt wird. Daher
müssen Sie regelmäßig VAKUUM betreiben, insbesondere auf häufig aktualisierten Tabellen. Der belegte
Speicherplatz muss dann zur Wiederverwendung durch neue Zeilen zurückgewonnen werden, um einen
Ausfall von Festplattenspeicher zu vermeiden. Er gibt jedoch nicht den Speicherplatz an das Betriebssystem
zurück.

Der freie Platz innerhalb einer Seite ist nicht fragmentiert. VACUUM schreibt den gesamten Block neu,
verpackt die restlichen Zeilen und hinterlässt einen einzigen zusammenhängenden Block freien Speicherplatz
auf einer Seite.

Dagegen verdichtet VACUUM FULL Tabellen aktiv, indem eine völlig neue Version der Tabellendatei ohne
Totraum geschrieben wird. Diese Aktion minimiert die Größe des Tisches, kann aber lange dauern. Außerdem
wird zusätzlicher Speicherplatz für die neue Kopie der Tabelle benötigt, bis der Vorgang abgeschlossen ist. Ziel
des routinemäßigen VAKUUMS ist es, die VOLLE VAKUUMAKTIVITÄT zu vermeiden. Bei diesem Prozess
werden nicht nur Tabellen auf der Mindestgröße gespeichert, sondern auch der Festplattenspeicherplatz
weiterhin gleichmäßig genutzt.

Tablespaces

Bei der Initialisierung des Datenbank-Clusters werden automatisch zwei Tablespaces
erstellt.

Der pg_global Tablespace wird für freigegebene Systemkataloge verwendet. Der pg_default Tablespace
ist der Standard-Tablespace der Datenbanken temple1 und template0. Wenn die Partition oder das Volume,
auf der das Cluster initialisiert wurde, nicht mehr genügend Speicherplatz hat und nicht erweitert werden kann,
kann ein Tablespace auf einer anderen Partition erstellt und verwendet werden, bis das System neu
konfiguriert werden kann.

Ein stark genutzter Index kann auf einer schnellen, hochverfügbaren Festplatte wie einem Solid-State-Gerät
platziert werden. Darüber hinaus kann eine Tabelle mit archivierten Daten, die selten verwendet oder nicht
Performance-kritisch sind, auf einem kostengünstigeren, langsameren Festplattensystem wie SAS- oder
SATA-Laufwerken gespeichert werden.

Tablespaces sind Bestandteil des Datenbank-Clusters und können nicht als eigenständige Erfassung von
Datendateien behandelt werden. Sie sind von Metadaten im Hauptdatenverzeichnis abhängig und können
daher nicht an einen anderen Datenbankcluster angeschlossen oder einzeln gesichert werden. Wenn Sie
einen Tablespace verlieren (durch Dateilöschung, Festplattenfehler usw.), kann der Datenbankcluster
möglicherweise unlesbar werden oder nicht mehr starten. Wenn ein Tablespace auf einem temporären
Dateisystem wie einer RAM-Festplatte platziert wird, besteht die Gefahr, dass der gesamte Cluster zuverlässig
ist.

Nach der Erstellung kann ein Tablespace aus jeder beliebigen Datenbank verwendet werden, wenn der
anfordernde Benutzer über ausreichende Berechtigungen verfügt. PostgreSQL verwendet symbolische Links,
um die Implementierung von Tablespaces zu vereinfachen. PostgreSQL fügt dem eine Zeile hinzu
pg_tablespace Tabelle (eine clusterwide-Tabelle) und weist dieser Zeile eine neue Objektkennung (OID) zu.
Schließlich verwendet der Server die OID, um einen symbolischen Link zwischen Ihrem Cluster und dem
angegebenen Verzeichnis zu erstellen. Das Verzeichnis $PGDATA/pg_tblspc Enthält symbolische Links, die
auf jeden nicht integrierten Tablespace verweisen, der im Cluster definiert ist.

5

Storage-Konfiguration

NFS

PostgreSQL-Datenbanken können auf NFSv3- oder NFSv4-Dateisystemen gehostet
werden. Die beste Option hängt von Faktoren außerhalb der Datenbank ab.

Beispielsweise könnte das Sperrverhalten von NFSv4 in bestimmten Cluster-Umgebungen vorzuziehen sein.
(Siehe "Hier" Für weitere Details)

Ansonsten sollte die Datenbankfunktionalität, einschließlich der Performance, nahezu identisch sein. Die
einzige Voraussetzung ist die Verwendung des hard Mount-Option. Dies ist erforderlich, um sicherzustellen,
dass weiche Timeouts keine nicht behebbaren E/A-Fehler verursachen.

Wenn NFSv4 als Protokoll gewählt wird, empfiehlt NetApp die Verwendung von NFSv4.1. Es gibt einige
funktionale Verbesserungen am NFSv4.1-Protokoll, die die Ausfallsicherheit gegenüber NFSv4.0 verbessern.

Verwenden Sie die folgenden Mount-Optionen für allgemeine Datenbank-Workloads:

rw,hard,nointr,bg,vers=[3|4],proto=tcp,rsize=65536,wsize=65536

Wenn sequenzielle I/O-Vorgänge mit hohem I/O-Wert zu erwarten sind, kann die NFS-Übertragungsgröße wie
im folgenden Abschnitt beschrieben erhöht werden.

NFS-Übertragungsgrößen

Standardmäßig beschränkt ONTAP die NFS-I/O-Größe auf 64K.

Zufälliger I/O mit den meisten Applikationen und Datenbanken verwendet eine viel kleinere Blockgröße, die
weit unter dem 64K-Maximum liegt. Der I/O großer Blöcke wird in der Regel parallelisiert, sodass die 64K-
Maximalgröße auch keine Einschränkung für die Erzielung der maximalen Bandbreite darstellt.

Es gibt einige Workloads, bei denen das 64K-Maximum eine Einschränkung darstellt. Insbesondere Vorgänge
in einem einzigen Thread, wie Backup- oder Recovery-Vorgänge oder ein vollständiger Tabellenscan in einer
Datenbank, laufen schneller und effizienter, wenn die Datenbank weniger, aber größere I/OS ausführen kann.
Die optimale I/O-Handhabungsgröße für ONTAP beträgt 256 KB.

Die maximale Übertragungsgröße für eine bestimmte ONTAP SVM kann wie folgt geändert werden:

Cluster01::> set advanced

Warning: These advanced commands are potentially dangerous; use them only

when directed to do so by NetApp personnel.

Do you want to continue? {y|n}: y

Cluster01::*> nfs server modify -vserver vserver1 -tcp-max-xfer-size

262144

Cluster01::*>

6

https://docs.netapp.com/de-de/ontap-apps-dbs/oracle/oracle-notes-stale-nfs-locks.html

Verringern Sie niemals die maximal zulässige Übertragungsgröße auf ONTAP unter den Wert
rsize/wsize der aktuell gemounteten NFS-Dateisysteme. Dies kann bei einigen
Betriebssystemen zu Hängebleiben oder sogar Datenbeschädigungen führen. Wenn
beispielsweise NFS-Clients derzeit auf 65536 rsize/wsize gesetzt sind, dann könnte die
maximale Übertragungsgröße für ONTAP ohne Auswirkung auf die Clients selbst begrenzt
werden, zwischen 65536 und 1048576 angepasst werden. Wenn Sie die maximale
Übertragungsgröße unter 65536 verringern, können die Verfügbarkeit oder die Daten
beeinträchtigt werden.

Sobald die Übertragungsgröße auf ONTAP-Ebene erhöht wurde, werden die folgenden Mount-Optionen
verwendet:

rw,hard,nointr,bg,vers=[3|4],proto=tcp,rsize=262144,wsize=262144

NFSv3 TCP-Slot-Tabellen

Wenn NFSv3 mit Linux verwendet wird, ist es wichtig, die TCP-Slot-Tabellen ordnungsgemäß festzulegen.

TCP-Slot-Tabellen sind das NFSv3 Äquivalent zur Warteschlangentiefe des Host Bus Adapters (HBA). Diese
Tabellen steuern die Anzahl der NFS-Vorgänge, die zu einem beliebigen Zeitpunkt ausstehen können. Der
Standardwert ist normalerweise 16, was für eine optimale Performance viel zu niedrig ist. Das
entgegengesetzte Problem tritt auf neueren Linux-Kerneln auf, die automatisch die Begrenzung der TCP-Slot-
Tabelle auf ein Niveau erhöhen können, das den NFS-Server mit Anforderungen sättigt.

Um eine optimale Performance zu erzielen und Performance-Probleme zu vermeiden, passen Sie die Kernel-
Parameter an, die die TCP-Slot-Tabellen steuern.

Führen Sie die aus sysctl -a | grep tcp.*.slot_table Und beobachten Sie die folgenden
Parameter:

sysctl -a | grep tcp.*.slot_table

sunrpc.tcp_max_slot_table_entries = 128

sunrpc.tcp_slot_table_entries = 128

Alle Linux-Systeme sollten enthalten sunrpc.tcp_slot_table_entries, Aber nur einige enthalten
sunrpc.tcp_max_slot_table_entries. Beide sollten auf 128 gesetzt werden.

Wenn diese Parameter nicht eingestellt werden, kann dies erhebliche Auswirkungen auf die
Leistung haben. In einigen Fällen ist die Performance eingeschränkt, da das linux-
Betriebssystem nicht genügend I/O ausgibt In anderen Fällen erhöht sich die I/O-Latenz, wenn
das linux Betriebssystem versucht, mehr I/O-Vorgänge auszustellen, als gewartet werden kann.

San

PostgreSQL-Datenbanken mit SAN werden in der Regel auf xfs-Dateisystemen gehostet,
aber andere können verwendet werden, wenn sie vom OS-Anbieter unterstützt werden

Während eine einzelne LUN in der Regel bis zu 100.000 IOPS unterstützen kann, erfordern IO-intensive
Datenbanken in der Regel die Verwendung von LVM mit Striping.

7

LVM-Striping

Vor der Ära der Flash-Laufwerke wurde Striping verwendet, um die Performance-Einschränkungen rotierender
Laufwerke zu überwinden. Beispiel: Wenn ein Betriebssystem einen Lesevorgang von 1 MB ausführen muss,
würde das Lesen dieser 1 MB Daten von einem einzigen Laufwerk viel Festplattenkopf erfordern, der sucht
und liest, da die 1 MB langsam übertragen wird. Wenn diese 1 MB Daten über 8 LUNs verteilt wurden, kann
das Betriebssystem acht 128K-Lesevorgänge parallel ausführen und die für die 1-MB-Übertragung
erforderliche Zeit verringern.

Das Striping mit rotierenden Laufwerken war schwieriger, da das I/O-Muster bereits im Vorfeld bekannt sein
musste. Wenn das Striping nicht richtig auf die wahren I/O-Muster abgestimmt wurde, können Striping-
Konfigurationen die Performance beeinträchtigen. Bei Oracle Datenbanken und insbesondere bei All-Flash-
Konfigurationen ist Striping einfacher zu konfigurieren und hat sich nachweislich für eine drastische
Verbesserung der Performance bewährt.

Logische Volume-Manager wie Oracle ASM Stripe sind standardmäßig aktiviert, aber native OS LVM nicht.
Einige von ihnen verbinden mehrere LUNs als verkettete Geräte. Dies führt zu Datendateien, die auf einem
und nur einem LUN-Gerät vorhanden sind. Dies verursacht Hotspots. Andere LVM-Implementierungen sind
standardmäßig auf verteilte Extents eingestellt. Das ist ähnlich wie Striping, aber es ist gröber. Die LUNs in der
Volume-Gruppe werden in große Teile geteilt, die als Extents bezeichnet werden und in der Regel in vielen
Megabyte gemessen werden. Die logischen Volumes werden dann über diese Extents verteilt. Das Ergebnis
ist ein zufälliger I/O-Vorgang für eine Datei, der auf LUNs verteilt werden sollte. Sequenzielle I/O-Vorgänge
sind jedoch nicht so effizient wie möglich.

Die Performance-intensiven Applikations-I/O-Vorgänge erfolgen fast immer entweder (a) in Einheiten der
grundlegenden Blockgröße oder (b) in Megabyte.

Das primäre Ziel einer Striped-Konfiguration ist es, sicherzustellen, dass Single-File I/O als eine Einheit
ausgeführt werden kann. Multiblock-I/O, die eine Größe von 1 MB haben sollte, kann gleichmäßig über alle
LUNs im Striped Volume hinweg parallelisiert werden. Das bedeutet, dass die Stripe-Größe nicht kleiner als
die Blockgröße der Datenbank sein darf und die Stripe-Größe multipliziert mit der Anzahl der LUNs 1 MB
betragen sollte.

Die folgende Abbildung zeigt drei mögliche Optionen für die Stripe-Größe und Breitenabstimmung. Die Anzahl
der LUNs wird ausgewählt, um die oben beschriebenen Performance-Anforderungen zu erfüllen. In allen
Fällen beträgt die Gesamtzahl der Daten innerhalb eines einzigen Stripes jedoch 1 MB.

8

Datensicherung

Nativer Ddta-Schutz

Einer der wichtigsten Aspekte des Storage-Designs ist die Sicherung von PostgreSQL
Volumes. Kunden können ihre PostgreSQL-Datenbanken entweder mithilfe des Dump-
Ansatzes oder mit Dateisystem-Backups sichern. In diesem Abschnitt werden die
verschiedenen Ansätze zur Sicherung einzelner Datenbanken oder des gesamten
Clusters erläutert.

Es gibt drei Ansätze für die Sicherung von PostgreSQL-Daten:

• SQL Server Dump

• Backup auf Filesystem-Ebene

9

• Kontinuierliche Archivierung

Die Idee hinter der SQL Server Dump-Methode besteht darin, eine Datei mit SQL Server-Befehlen zu
generieren, die, wenn sie an den Server zurückgegeben wird, die Datenbank so neu erstellen kann, wie sie
zum Zeitpunkt des Dump war. PostgreSQL stellt die Dienstprogramme zur Verfügung pg_dump Und
pg_dump_all Zur Erstellung von individuellen Backups und Backups auf Cluster-Ebene. Diese Dumps sind
logisch und enthalten nicht genügend Informationen, die von WAL Replay verwendet werden können.

Eine alternative Backup-Strategie ist die Verwendung von Backup auf Dateisystem-Ebene, bei der
Administratoren direkt kopieren die Dateien, die PostgreSQL verwendet, um die Daten in der Datenbank zu
speichern. Diese Methode erfolgt im Offline-Modus: Die Datenbank oder das Cluster muss heruntergefahren
werden. Eine weitere Alternative ist die Verwendung pg_basebackup Zum Ausführen von Hot-Streaming-
Backups der PostgreSQL-Datenbank.

Snapshots

Snapshot-basierte Backups mit PostgreSQL erfordern die Konfiguration von Snapshots
für Datendateien, WAL-Dateien und archivierte WAL-Dateien, um eine vollständige oder
zeitpunktgenaue Recovery zu ermöglichen.

Bei PostgreSQL-Datenbanken liegt die durchschnittliche Backup-Zeit mit Snapshots im Bereich von wenigen
Sekunden bis zu wenigen Minuten. Diese Backup-Geschwindigkeit ist 60 bis 100 Mal schneller als
pg_basebackup Und anderen Filesystem-basierten Backup-Ansätzen.

Snapshots auf NetApp Storage können sowohl ausfallkonsistent als auch applikationskonsistent sein. Ein
Crash-konsistenter Snapshot wird auf dem Storage erstellt, ohne die Datenbank stillzustehen. Während sich
die Datenbank im Backup-Modus befindet, wird ein applikationskonsistenter Snapshot erstellt. NetApp sorgt
außerdem dafür, dass nachfolgende Snapshots dauerhaft inkrementelle Backups sind, um die Storage-
Einsparungen und die Netzwerkeffizienz zu erhöhen.

Da Snapshots schnell sind und die System-Performance nicht beeinträchtigen, können Sie mehrere Snapshots
täglich planen, anstatt wie bei anderen Streaming-Backup-Technologien täglich ein einziges Backup zu
erstellen. Wenn ein Wiederherstellungs- und Wiederherstellungsvorgang erforderlich ist, verringert sich die
Systemausfallzeit um zwei wichtige Funktionen:

• Dank der NetApp SnapRestore Datenwiederherstellungs-Technologie erfolgt die Wiederherstellung in
Sekundenschnelle.

• Durch aggressive Recovery Point Objectives (RPOs) müssen weniger Datenbankprotokolle angewendet
werden und auch die Recovery wird beschleunigt.

Für das Backup von PostgreSQL müssen Sie sicherstellen, dass die Datenvolumes gleichzeitig mit
(Consistency Group) WAL und den archivierten Protokollen geschützt sind. Stellen Sie beim Kopieren von
WAL-Dateien mit der Snapshot-Technologie sicher, dass Sie ausgeführt werden pg_stop Um alle WAL-
Einträge zu löschen, die archiviert werden müssen. Wenn Sie die WAL-Einträge während der
Wiederherstellung löschen, müssen Sie nur die Datenbank anhalten, das vorhandene Datenverzeichnis
aufheben oder löschen und einen SnapRestore-Vorgang auf dem Speicher ausführen. Nachdem die
Wiederherstellung abgeschlossen ist, können Sie das System mounten und in den aktuellen Status
zurückversetzen. Für Point-in-Time Recovery können Sie WAL wiederherstellen und Protokolle archivieren.
PostgreSQL entscheidet dann über den konsistentesten Punkt und stellt ihn automatisch wieder her.

Konsistenzgruppen sind in ONTAP eine Funktion, die ebenfalls empfohlen werden, wenn mehrere Volumes in
eine einzelne Instanz oder in eine Datenbank mit mehreren Tablespaces gemountet sind. Ein Snapshot einer
Konsistenzgruppe stellt sicher, dass alle Volumes gruppiert und geschützt sind. Eine Konsistenzgruppe kann

10

über den ONTAP System Manager effizient gemanagt werden und Sie können sie sogar klonen, um eine
Instanzkopie einer Datenbank zu Test- oder Entwicklungszwecken zu erstellen.

Datensicherungssoftware

Das NetApp SnapCenter Plug-in für die PostgreSQL Datenbank bietet in Kombination mit
Snapshot und NetApp FlexClone Technologien folgende Vorteile:

• Schnelles Backup und Restore:

• Platzsparende Klone:

• Aufbau eines schnellen und effektiven Disaster Recovery-Systems

Unter den folgenden Umständen bevorzugen Sie die Premium-Backup-Partner von NetApp, z.
B. Veeam Software und CommVault:

• Management von Workloads in heterogener Umgebung

• Speichern von Backups in der Cloud oder auf Tape zur langfristigen Aufbewahrung

• Unterstützung für eine Vielzahl von Betriebssystemversionen und -Typen

SnapCenter Plugin für PostgreSQL ist Community-unterstütztes Plugin und das Setup und die Dokumentation
ist auf NetApp Automation Store verfügbar. Mit SnapCenter können Anwender Datenbanken sichern sowie
Daten Remote klonen und wiederherstellen.

11

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

12

http://www.netapp.com/TM\

	PostgreSQL : Enterprise applications
	Inhalt
	PostgreSQL
	Überblick
	Datenbankkonfiguration
	Der Netapp Architektur Sind
	Initialisierungsparameter
	Einstellungen
	Tablespaces

	Storage-Konfiguration
	NFS
	San

	Datensicherung
	Nativer Ddta-Schutz
	Snapshots
	Datensicherungssoftware

