
Automatisierung mit REST
ONTAP Select
NetApp
April 01, 2025

This PDF was generated from https://docs.netapp.com/de-de/ontap-select-9121/concept_api_rest.html
on April 01, 2025. Always check docs.netapp.com for the latest.

Inhalt
Automatisierung mit REST . 1

Konzepte . 1

REST-Web-Services-Grundlage . 1

So erhalten Sie Zugriff auf die Bereitstellungs-API . 2

Implementieren der API-Versionierung . 2

Grundlegende betriebliche Eigenschaften . 3

API-Transaktion bei Anfrage und Reaktion . 4

Asynchrone Verarbeitung mit dem Job-Objekt . 8

Zugriff über einen Browser . 9

Bevor Sie mit einem Browser auf die API zugreifen . 9

Rufen Sie die Seite Dokumentation bereitstellen auf. 10

API-Aufruf verstehen und ausführen . 10

Workflow-Prozesse. 11

Vor Verwendung der API-Workflows . 11

Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi . 11

Zugang mit Python . 18

Bevor Sie mit Python auf die API zugreifen . 18

Verstehen Sie die Python-Skripte . 19

Python-Codebeispiele . 20

Skript zum Erstellen eines Clusters . 20

JSON für das Erstellen eines Clusters. 27

Skript zum Hinzufügen einer Node-Lizenz. 32

Skript zum Löschen eines Clusters . 35

Common Support-Modul . 37

Skript zur Größenanpassung der Cluster-Nodes. 42

Automatisierung mit REST

Konzepte

REST-Web-Services-Grundlage

Representational State Transfer (REST) ist ein Stil für die Erstellung von verteilten Web-
Anwendungen. Bei der Anwendung auf das Design einer Web-Services-API werden eine
Reihe von Technologien und Best Practices erstellt, um serverbasierte Ressourcen
freizulegen und deren Status zu verwalten. Die Technologie nutzt Mainstream-Protokolle
und -Standards, um eine flexible Grundlage für die Bereitstellung und das Management
von ONTAP Select Clustern zu bieten.

Architektur und klassische Einschränkungen

REST wurde formell von Roy Fielding in seinem PhD artikuliert "Dissertation" An der UC Irvine im Jahr 2000.
Es definiert einen Architekturstil durch eine Reihe von Einschränkungen, die gemeinsam Web-basierte
Anwendungen und die zugrunde liegenden Protokolle verbessert haben. Durch diese Einschränkungen wird
eine RESTful Web Services-Applikation basierend auf einer Client-/Serverarchitektur mit einem statusfreien
Kommunikationsprotokoll hergestellt.

Ressourcen- und Zustandsdarstellung

Ressourcen sind die Grundkomponenten eines webbasierten Systems. Beim Erstellen einer ANWENDUNG
FÜR REST-Webservices umfassen die frühen Designaufgaben Folgendes:

• Identifizierung von System- oder serverbasierten Ressourcen
Jedes System nutzt und verwaltet Ressourcen. Eine Ressource kann eine Datei-, Geschäftstransaktion-,
Prozess- oder Verwaltungseinheit sein. Eine der ersten Aufgaben bei der Entwicklung einer auf REST-
Webservices basierenden Applikation ist die Identifizierung der Ressourcen.

• Definition von Ressourcenstatus und zugehörigen Statusoperationen
Die Ressourcen befinden sich immer in einer endlichen Anzahl von Staaten. Die Zustände sowie die damit
verbundenen Operationen, die zur Auswirkung der Statusänderungen verwendet werden, müssen klar
definiert werden.

Nachrichten werden zwischen dem Client und dem Server ausgetauscht, um auf den Zustand der Ressourcen
gemäß dem generischen CRUD-Modell (Create, Read, Update, Delete) zuzugreifen und diesen zu ändern.

URI-Endpunkte

Jede REST-Ressource muss definiert und über ein gut definiertes Adressierungssystem verfügbar gemacht
werden. Die Endpunkte, in denen die Ressourcen gefunden und identifiziert werden, verwenden einen
einheitlichen Resource Identifier (URI). Der URI bietet ein allgemeines Framework zum Erstellen eines
eindeutigen Namens für jede Ressource im Netzwerk. Der Uniform Resource Locator (URL) ist ein URI-Typ,
der mit Webservices zur Identifizierung und zum Zugriff von Ressourcen verwendet wird. Ressourcen werden
in der Regel in einer hierarchischen Struktur ausgesetzt, die einem Dateiverzeichnis ähnelt.

HTTP-Meldungen

Hypertext Transfer Protocol (HTTP) ist das Protokoll, das vom Webservice-Client und -Server zum Austausch
von Anforderungs- und Antwortmeldungen zu den Ressourcen verwendet wird. Im Rahmen der Entwicklung

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

einer Webservices-Anwendung werden HTTP-Verben (wie GET und POST) den Ressourcen und
entsprechenden Statusverwaltungsaktionen zugeordnet.

HTTP ist statusfrei. Um eine Reihe verwandter Anforderungen und Antworten innerhalb einer Transaktion
zuzuordnen, müssen zusätzliche Informationen in die HTTP-Header enthalten sein, die mit den
Request/Response-Datenströmen übertragen werden.

JSON-Formatierung

Während Informationen auf verschiedene Weise zwischen Client und Server strukturiert und übertragen
werden können, ist die beliebteste Option (und die bei der REST-API implementieren verwendete Option)
JavaScript Object Notation (JSON). JSON ist ein Branchenstandard für die Darstellung einfacher
Datenstrukturen im Klartext und wird zur Übertragung von Zustandsdaten zur Beschreibung der Ressourcen
verwendet.

So erhalten Sie Zugriff auf die Bereitstellungs-API

Aufgrund der inhärenten Flexibilität VON REST-Webservices ist der Zugriff auf die
ONTAP Select Deploy API auf verschiedene Weise möglich.

Implementieren Sie die native Benutzeroberfläche von Utility

Der primäre Weg, um auf die API zuzugreifen, ist über die ONTAP Select Deploy Web-Benutzeroberfläche.
Der Browser ruft die API auf und formatiert die Daten entsprechend dem Design der Benutzeroberfläche neu.
Sie haben auch Zugriff auf die API über die Befehlszeilenschnittstelle von Deploy Utility.

ONTAP Select Seite zur Online-Dokumentation bereitstellen

Die Seite ONTAP Select Online-Dokumentation bereitstellen stellt bei Verwendung eines Browsers einen
alternativen Zugriffspunkt dar. Die Seite bietet nicht nur die Möglichkeit, einzelne API-Aufrufe direkt
auszuführen, sondern enthält auch eine detaillierte Beschreibung der API, einschließlich Eingabeparameter
und anderer Optionen für jeden Aufruf. Die API-Aufrufe sind in verschiedene funktionale Bereiche oder
Kategorien gegliedert.

Benutzerdefiniertes Programm

Die Bereitstellungs-API kann über eine von mehreren verschiedenen Programmiersprachen und Tools auf die
Bereitstellungsschnittstelle zugegriffen werden. Beliebte Optionen sind Python, Java und Curl. Ein Programm,
Skript oder Tool, das die API verwendet, fungiert als REST-Web-Services-Client. Mithilfe einer
Programmiersprache lernen Sie die API besser kennen und erhalten die Möglichkeit, die ONTAP Select
Implementierungen zu automatisieren.

Implementieren der API-Versionierung

Der REST API, die in ONTAP Select Deploy enthalten ist, wird eine Versionsnummer
zugewiesen. Die API-Versionsnummer ist unabhängig von der Versionsnummer für die
Bereitstellung. Sie sollten die API-Version kennen, die in Ihrer Version von Deploy
enthalten ist, und wissen, welche Auswirkungen dies auf Ihre Verwendung der API hat.

Die aktuelle Version des Deploy Administration Utility enthält Version 3 DER REST API. Frühere Versionen des
Deploy Utility umfassen die folgenden API-Versionen:

2

Implementierung 2.8 und höher

ONTAP Select Deploy 2.8. Alle neueren Versionen enthalten Version 3 der REST API.

Implementierung 2.7.2 und früher

ONTAP Select Deploy 2.7.2; alle älteren Versionen enthalten Version 2 DER REST API.

Die Versionen 2 und 3 DER REST-API sind nicht kompatibel. Wenn Sie nach einem früheren
Release, das Version 2 der API enthält, ein Upgrade auf die Bereitstellung von 2.8 oder höher
durchführen, müssen Sie jeden vorhandenen Code aktualisieren, der direkt auf die API zugreift,
sowie alle Skripte über die Befehlszeilenschnittstelle.

Grundlegende betriebliche Eigenschaften

IM RUHEZUSTAND werden einheitliche Technologien und Best Practices erstellt, jedoch
können die Details jeder API je nach dem verfügbaren Design variieren. Vor der
Verwendung der API sollten Sie auf die Details und betrieblichen Merkmale der ONTAP
Select Deploy-API achten.

Hypervisor-Host oder ONTAP Select-Node

Ein Hypervisor-Host ist die zentrale Hardware-Plattform, die eine ONTAP Select Virtual Machine hostet. Wenn
eine ONTAP Select Virtual Machine auf einem Hypervisor-Host bereitgestellt und aktiv ist, gilt die Virtual
Machine als „ONTAP Select Node“. Ab Version 3 der Deploy REST API sind Host- und Node-Objekte
voneinander getrennt und unterscheiden sich. Dadurch wird eine 1:n-Beziehung möglich, bei der ein oder
mehrere ONTAP Select Nodes auf demselben Hypervisor-Host ausgeführt werden können.

Objektkennungen

Jeder Ressourceninstanz oder jedem Objekt wird eine eindeutige Kennung zugewiesen, wenn sie erstellt wird.
Diese Kennungen sind global eindeutig in einer bestimmten Instanz von ONTAP Select Deploy. Nachdem ein
API-Aufruf ausgegeben wurde, der eine neue Objektinstanz erstellt, wird der zugeordnete id-Wert an den
Anrufer im zurückgegeben location Kopfzeile der HTTP-Antwort. Sie können die Kennung extrahieren und
bei nachfolgenden Anrufen verwenden, wenn Sie sich auf die Ressourceninstanz beziehen.

Der Inhalt und die interne Struktur der Objektkennungen können jederzeit geändert werden.
Wenn Sie auf die zugeordneten Objekte verweisen, sollten Sie die Kennungen für die
entsprechenden API-Aufrufe nur nach Bedarf verwenden.

Identifikatoren anfordern

Jeder erfolgreichen API-Anforderung wird eine eindeutige Kennung zugewiesen. Die Kennung wird im
zurückgegeben request-id Kopfzeile der zugehörigen HTTP-Antwort. Sie können eine
Anforderungskennung verwenden, um sich kollektiv auf die Aktivitäten einer einzelnen spezifischen API-
Anforderungstransaktion zu beziehen. Sie können beispielsweise alle Ereignismeldungen einer Transaktion
basierend auf der Anfrage-ID abrufen

Synchrone und asynchrone Anrufe

Es gibt zwei primäre Möglichkeiten, wie ein Server eine von einem Client empfangene HTTP-Anfrage
durchführt:

3

• Synchron
Der Server führt die Anforderung sofort aus und antwortet mit einem Statuscode von 200, 201 oder 204.

• Asynchron
Der Server akzeptiert die Anfrage und antwortet mit dem Statuscode 202. Dies zeigt an, dass der Server
die Clientanforderung angenommen hat und eine Hintergrundaufgabe gestartet hat, um die Anforderung
abzuschließen. Der endgültige Erfolg oder Fehler ist nicht sofort verfügbar und muss durch zusätzliche
API-Aufrufe ermittelt werden.

Bestätigen Sie den Abschluss eines lang laufenden Jobs

Im Allgemeinen wird jede Operation, die lange Zeit in Anspruch nehmen kann, asynchron mit einem verarbeitet
Hintergrundaufgabe auf dem Server. Mit der Deploy REST API wird jede Hintergrundaufgabe durch ein
verankert
Jobobjekt, das die Aufgabe verfolgt und Informationen bereitstellt, z. B. den aktuellen Status. Ein Job-Objekt,
Einschließlich seiner eindeutigen Kennung wird in der HTTP-Antwort zurückgegeben, nachdem eine
Hintergrundaufgabe erstellt wurde.

Sie können das Jobobjekt direkt abfragen, um den Erfolg oder den Fehler des zugeordneten API-Aufrufs zu
ermitteln.
Weitere Informationen finden Sie unter „Asynchronous Processing Using the Job Object“.

Neben der Verwendung des Objekts Job gibt es weitere Möglichkeiten, wie Sie den Erfolg oder das Scheitern
eines bestimmen können
Anforderung, einschließlich:

• Ereignismeldungen
Sie können alle Ereignismeldungen, die einem bestimmten API-Aufruf zugeordnet sind, mithilfe der mit der
ursprünglichen Antwort zurückgegebenen Anforderungs-id abrufen. Die Ereignismeldungen enthalten in
der Regel Hinweise auf Erfolg oder Fehler und können auch nützlich sein, wenn ein Fehlerzustand
behoben wird.

• Ressourcenstatus oder -Status
Mehrere der Ressourcen behalten einen Status oder Statuswert bei, den Sie abfragen können, um indirekt
den Erfolg oder das Fehlschlagen einer Anfrage zu bestimmen.

Sicherheit

Die Deploy-API nutzt die folgenden Sicherheitstechnologien:

• Sicherheit In Transportschicht
Der gesamte Datenverkehr, der zwischen dem bereitzustellenden Server und dem Client über das
Netzwerk gesendet wird, wird über TLS verschlüsselt. Die Verwendung des HTTP-Protokolls über einen
unverschlüsselten Kanal wird nicht unterstützt. TLS-Version 1.2 wird unterstützt.

• HTTP-Authentifizierung
Für jede API-Transaktion wird die Basisauthentifizierung verwendet. Jeder Anforderung wird ein HTTP-
Header hinzugefügt, der den Benutzernamen und das Passwort in einem base64-String enthält.

API-Transaktion bei Anfrage und Reaktion

Jeder API-Aufruf zur Bereitstellung wird als HTTP-Anforderung an die virtuelle Maschine
Bereitstellen ausgeführt, die eine entsprechende Antwort auf den Client erzeugt. Dieses
Anforderungs-/Antwortpaar wird als API-Transaktion betrachtet. Bevor Sie die Deploy-API

4

verwenden, sollten Sie mit den zur Steuerung einer Anfrage verfügbaren
Eingabevariablen und dem Inhalt der Antwortausgabe vertraut sein.

Eingabevariablen, die eine API-Anforderung steuern

Sie können steuern, wie ein API-Aufruf über in der HTTP-Anforderung festgelegte Parameter verarbeitet wird.

Anfragekopfzeilen

In der HTTP-Anfrage müssen mehrere Header enthalten sein, darunter:

• Content-Typ
Wenn der Anforderungskörper JSON enthält, muss dieser Header auf Application/json gesetzt werden.

• Akzeptieren
Wenn der Antworttext JSON enthält, muss dieser Header auf Application/json gesetzt werden.

• Autorisierung
Die Basisauthentifizierung muss mit dem Benutzernamen und dem Passwort in einem base64-String
eingerichtet werden.

Text anfordern

Der Inhalt der Anfraentext variiert je nach Anruf. Der HTTP-Request-Text besteht aus einem der folgenden
Elemente:

• JSON-Objekt mit Eingabevariablen (z. B. der Name eines neuen Clusters)

• Leer

Objekte filtern

Wenn Sie einen API-Aufruf ausgeben, der GET verwendet, können Sie die zurückgegebenen Objekte anhand
eines beliebigen Attributs einschränken oder filtern. Sie können beispielsweise einen genauen Wert angeben,
der übereinstimmt:

<field>=<query value>

Zusätzlich zu einer genauen Übereinstimmung stehen anderen Operatoren zur Verfügung, um einen Satz von
Objekten über einen Wertebereich zurückzugeben. ONTAP Select unterstützt die unten aufgeführten
Filteroperatoren.

Operator Beschreibung

= Gleich

< Kleiner als

> Größer als

≪= Kleiner oder gleich

>= Größer oder gleich

Oder

! Nicht gleich

* Gierige Wildcard

5

Sie können auch einen Satz von Objekten zurückgeben, basierend darauf, ob ein bestimmtes Feld gesetzt
wird oder nicht, indem Sie das Null-Schlüsselwort oder dessen Negation (!null) als Teil der Abfrage verwenden.

Auswählen von Objektfeldern

Standardmäßig gibt die Ausgabe eines API-Aufrufs mithilfe VON GET nur die Attribute zurück, die das Objekt
oder die Objekte eindeutig identifizieren. Dieser minimale Feldsatz dient als Schlüssel für jedes Objekt und
variiert je nach Objekttyp. Sie können zusätzliche Objekteigenschaften mithilfe des Abfrageparameters Felder
wie folgt auswählen:

• Günstige Felder
Angeben fields=* Zum Abrufen der Objektfelder, die im lokalen Serverspeicher verwaltet werden oder
für den Zugriff nur wenig verarbeitet werden müssen.

• Teure Felder
Angeben fields=** Zum Abrufen aller Objektfelder, einschließlich solcher, die für den Zugriff zusätzliche
Serververarbeitung erforderlich sind.

• Benutzerdefinierte Feldauswahl
Nutzung fields=FIELDNAME Um das genaue Feld anzugeben, das Sie wünschen. Wenn Sie mehrere
Felder anfordern, müssen die Werte durch Kommas ohne Leerzeichen getrennt werden.

Als Best Practice sollten Sie immer die gewünschten Felder identifizieren. Sie sollten nur die
Reihe von kostengünstigen oder teuren Feldern abrufen, wenn Sie benötigen. Die
kostengünstige und teure Klassifizierung wird durch NetApp auf der Grundlage interner
Leistungsanalysen festgelegt. Die Klassifizierung für ein bestimmtes Feld kann sich jederzeit
ändern.

Objekte im Ausgabesatz sortieren

Die Datensätze in einer Ressourcensammlung werden in der vom Objekt definierten Standardreihenfolge
zurückgegeben. Sie können die Reihenfolge mit dem Abfrageparameter order_by mit dem Feldnamen und der
Sortierrichtung wie folgt ändern:
order_by=<field name> asc|desc

Sie können beispielsweise das Typfeld in absteigender Reihenfolge, gefolgt von id in aufsteigender
Reihenfolge sortieren:
order_by=type desc, id asc

Wenn Sie mehrere Parameter eingeben, müssen Sie die Felder mit einem Komma trennen.

Paginierung

Wenn Sie einen API-Aufruf über GET ausgeben, um auf eine Sammlung von Objekten desselben Typs
zuzugreifen, werden alle übereinstimmenden Objekte standardmäßig zurückgegeben. Bei Bedarf können Sie
die Anzahl der zurückgegebenen Datensätze mithilfe des Abfrageparameters max_Records mit der
Anforderung begrenzen. Beispiel:
max_records=20

Bei Bedarf können Sie diesen Parameter mit anderen Abfrageparametern kombinieren, um den Ergebnissatz
einzugrenzen. Beispiel: Im Folgenden werden bis zu 10 Systemereignisse angezeigt, die nach der
angegebenen Zeit generiert wurden:
time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

Sie können mehrere Anfragen zur Seite über die Ereignisse (oder jeden Objekttyp) ausgeben. Jeder

6

nachfolgende API-Aufruf sollte einen neuen Zeitwert verwenden, der auf dem letzten Ereignis des letzten
Ergebnisset basiert.

Eine API-Antwort interpretieren

Jede API-Anfrage generiert eine Antwort an den Client. Sie können die Antwort prüfen, um festzustellen
Ob die Daten erfolgreich waren und zusätzliche Daten nach Bedarf abgerufen werden konnten.

HTTP-Statuscode

Im Folgenden werden die von der REST-API „Bereitstellen“ verwendeten HTTP-Statuscodes beschrieben.

Codieren Bedeutung Beschreibung

200 OK Zeigt Erfolg für Anrufe an, die kein neues Objekt erstellen.

201 Erstellt Ein Objekt wurde erfolgreich erstellt. Der Header für die
Standortantwort enthält die eindeutige Kennung für das Objekt.

202 Akzeptiert Ein schon seit langem laufender Hintergrundjob wurde gestartet, um
die Anforderung auszuführen, der Vorgang wurde jedoch noch nicht
abgeschlossen.

400 Schlechte Anfrage Die Eingabe der Anfrage ist nicht erkannt oder nicht angemessen.

403 Verboten Der Zugriff wird aufgrund eines Autorisierungsfehlers verweigert.

404 Nicht gefunden Die Ressource, auf die in diesem Antrag verwiesen wird, ist nicht
vorhanden.

405 Methode nicht
zulässig

Das HTTP-Verb in der Anforderung wird für die Ressource nicht
unterstützt.

409 Konflikt Der Versuch, ein Objekt zu erstellen, ist fehlgeschlagen, weil das
Objekt bereits vorhanden ist.

500 Interner Fehler Ein allgemeiner interner Fehler ist auf dem Server aufgetreten.

501 Nicht implementiert Der URI ist bekannt, kann die Anforderung jedoch nicht ausführen.

Antwortkopfzeilen

In der vom Deploy-Server erzeugten HTTP-Antwort sind mehrere Header enthalten, darunter:

• Anforderungs-id
Jeder erfolgreichen API-Anforderung wird eine eindeutige Anforderungskennung zugewiesen.

• Standort
Wenn ein Objekt erstellt wird, enthält die Kopfzeile des Speicherorts die vollständige URL zum neuen
Objekt einschließlich der eindeutigen Objektkennung.

Antwortkörper

Der Inhalt der mit einer API-Anfrage verknüpften Antwort ist je nach Objekt, Verarbeitungstyp und Erfolg oder
Misserfolg der Anforderung unterschiedlich. Der Antwortkörper wird in JSON gerendert.

• Einzelnes Objekt
Je nach Anforderung kann ein einzelnes Objekt mit einer Reihe von Feldern zurückgegeben werden.
Beispielsweise können Sie GET verwenden, um ausgewählte Eigenschaften eines Clusters mit der

7

eindeutigen Kennung abzurufen.

• Mehrere Objekte
Es können mehrere Objekte aus einer Ressourcensammlung zurückgegeben werden. In allen Fällen wird
ein konsistentes Format verwendet, mit num_records Angabe der Anzahl der Datensätze und
Datensätze, die ein Array der Objektinstanzen enthalten. Beispielsweise können Sie alle in einem
bestimmten Cluster definierten Nodes abrufen.

• Jobobjekt
Wenn ein API-Aufruf asynchron verarbeitet wird, wird ein Job-Objekt zurückgegeben, das den Hintergrund-
Task ankers. Beispielsweise wird DIE POST-Anforderung, die zum Bereitstellen eines Clusters verwendet
wird, asynchron bearbeitet und ein Job-Objekt zurückgegeben.

• Fehlerobjekt
Wenn ein Fehler auftritt, wird immer ein Fehlerobjekt zurückgegeben. Beispielsweise erhalten Sie einen
Fehler beim Versuch, ein Cluster mit einem bereits vorhandenen Namen zu erstellen.

• Leer
In bestimmten Fällen werden keine Daten zurückgegeben und der Antworttext ist leer. Beispielsweise ist
der Antwortkörper leer, nachdem Sie ZUM Löschen eines vorhandenen Hosts AUF „LÖSCHEN“ setzen.

Asynchrone Verarbeitung mit dem Job-Objekt

Einige der API-Aufrufe für die Bereitstellung, insbesondere solche, die eine Ressource
erstellen oder ändern, können länger dauern als andere Anrufe. ONTAP Select
implementieren verarbeitet diese langen Anforderungen asynchron.

Asynchrone Anforderungen, die mit Job Object beschrieben werden

Nach einem API-Aufruf, der asynchron ausgeführt wird, weist der HTTP-Antwortcode 202 darauf hin, dass die
Anforderung erfolgreich validiert und akzeptiert, aber noch nicht abgeschlossen wurde. Die Anforderung wird
als Hintergrundaufgabe verarbeitet, die nach der ersten HTTP-Antwort auf den Client weiter ausgeführt wird.
Die Antwort umfasst das Job-Objekt, das die Anfrage einschließlich der eindeutigen Kennung anverankert.

Mithilfe der Seite ONTAP Select Deploy Online-Dokumentation können Sie ermitteln, welche
API-Aufrufe asynchron funktionieren.

Abfrage des Job-Objekts, das einer API-Anforderung zugeordnet ist

Das in der HTTP-Antwort zurückgegebene Job-Objekt enthält mehrere Eigenschaften. Sie können die
Statuseigenschaft abfragen, um festzustellen, ob die Anfrage erfolgreich abgeschlossen wurde. Ein Job-Objekt
kann einen der folgenden Status haben:

• Warteschlange

• Wird Ausgeführt

• Erfolg

• Ausfall

Es gibt zwei Verfahren, die Sie beim Abfragen eines Jobobjekts verwenden können, um einen Terminalstatus
für die Aufgabe zu erkennen: Erfolg oder Fehler:

• Standard-Polling-Anfrage
Der aktuelle Jobstatus wird sofort zurückgegeben

8

• Lange Abfrageanfrage
Der Jobstatus wird nur zurückgegeben, wenn einer der folgenden Fehler auftritt:

◦ Status hat sich vor kurzem geändert als der Datumswert, der auf der Abfrage angegeben wurde

◦ Timeout-Wert abgelaufen (1 bis 120 Sekunden)

Standardabfrage und langes Abfragen verwenden denselben API-Aufruf, um ein Auftragsobjekt abzufragen.
Eine lange Abfrageanforderung umfasst jedoch zwei Abfrageparameter: poll_timeout Und
last_modified.

Sie sollten immer Long Polling verwenden, um die Arbeitslast auf der virtuellen Maschine
bereitstellen zu reduzieren.

Allgemeines Verfahren für die Ausgabe einer asynchronen Anfrage

Sie können den folgenden grundlegenden Vorgang verwenden, um einen asynchronen API-Aufruf
abzuschließen:

1. Geben Sie den asynchronen API-Aufruf aus.

2. Sie erhalten eine HTTP-Antwort 202, die darauf hinweist, dass die Anfrage erfolgreich angenommen
wurde.

3. Extrahieren Sie die Kennung für das Job-Objekt aus dem Antwortkörper.

4. Führen Sie in einer Schleife in jedem Zyklus die folgenden Schritte aus:

a. Den aktuellen Status des Jobs mit einer langen Umfrage abrufen

b. Wenn sich der Job in einem nicht-Terminal-Status befindet (Warteschlange, wird ausgeführt), führen
Sie die Schleife erneut aus.

5. Beenden Sie, wenn der Job einen Terminalstatus erreicht (Erfolg, Fehler).

Zugriff über einen Browser

Bevor Sie mit einem Browser auf die API zugreifen

Es gibt einige Dinge, die Sie beachten sollten, bevor Sie die Bereitstellung Online-
Dokumentation Seite.

Implementierungsplan

Wenn Sie im Rahmen der Durchführung spezifischer Bereitstellungs- oder Verwaltungsaufgaben API-Aufrufe
ausgeben möchten, sollten Sie die Erstellung eines Bereitstellungsplans in Betracht ziehen. Diese Pläne
können formell oder informell sein und im Allgemeinen Ihre Ziele und die zu verwendenden API-Aufrufe
enthalten. Weitere Informationen finden Sie unter Workflow-Prozesse mithilfe der REST-API implementieren.

JSON-Beispiele und Parameterdefinitionen

Jeder API-Aufruf wird auf der Dokumentationsseite in einem konsistenten Format beschrieben. Der Inhalt
umfasst Implementierungsnotizen, Abfrageparameter und HTTP-Statuscodes. Außerdem können Sie wie folgt
Details über den JSON anzeigen, der mit den API-Anfragen und Antworten verwendet wird:

• Beispielwert

9

Wenn Sie bei einem API-Aufruf auf example Value klicken, wird eine typische JSON-Struktur für den Aufruf
angezeigt. Sie können das Beispiel je nach Bedarf ändern und als Eingabe für Ihre Anforderung
verwenden.

• Modell
Wenn Sie auf Model klicken, wird eine vollständige Liste der JSON-Parameter mit einer Beschreibung für
jeden Parameter angezeigt.

Vorsicht beim Ausgeben von API-Aufrufen

Alle API-Vorgänge, die Sie mithilfe der Dokumentationsseite „Bereitstellen“ ausführen, sind Live-Vorgänge. Sie
sollten darauf achten, dass Sie Konfigurationen oder andere Daten nicht versehentlich erstellen, aktualisieren
oder löschen.

Rufen Sie die Seite Dokumentation bereitstellen auf

Sie müssen auf die Seite ONTAP Select Deploy Online-Dokumentation zugreifen, um die
API-Dokumentation anzuzeigen und einen API-Aufruf manuell zu tätigen.

Bevor Sie beginnen

Sie müssen Folgendes haben:

• IP-Adresse oder Domain-Name der virtuellen ONTAP Select Deploy-Maschine

• Benutzername und Passwort für den Administrator

Schritte

1. Geben Sie die URL in Ihren Browser ein und drücken Sie Enter:

https://<ip_address>/api/ui

2. Melden Sie sich mit dem Benutzernamen und Passwort des Administrators an.

Ergebnis

Die Webseite Dokumentation bereitstellen wird angezeigt, auf der die Anrufe nach Kategorie unten auf der
Seite organisiert sind.

API-Aufruf verstehen und ausführen

Die Details aller API-Aufrufe werden dokumentiert und in einem gemeinsamen Format
auf der Webseite für die Online-Dokumentation von ONTAP Select Deploy angezeigt.
Anhand eines einzelnen API-Anrufs können Sie auf die Details aller API-Aufrufe
zugreifen und diese interpretieren.

Bevor Sie beginnen

Sie müssen auf der Webseite für die Online-Dokumentation von ONTAP Select Deploy angemeldet sein. Beim
Erstellen des Clusters müssen Sie dem ONTAP Select-Cluster die eindeutige ID zuweisen.

Über diese Aufgabe

Sie können die Konfigurationsinformationen, die ein ONTAP Select Cluster beschreiben, mit seiner eindeutigen
Kennung abrufen. In diesem Beispiel werden alle als kostengünstig klassifizierten Felder zurückgegeben. Als
Best Practice sollten Sie jedoch nur die speziellen Felder anfordern, die erforderlich sind.

10

Schritte

1. Scrollen Sie auf der Hauptseite nach unten und klicken Sie auf Cluster.

2. Klicken Sie auf GET /Clusters/{Cluster_id}, um die Details des API-Aufrufs anzuzeigen, der zur
Rückgabe von Informationen über ein ONTAP Select-Cluster verwendet wird.

Workflow-Prozesse

Vor Verwendung der API-Workflows

Sie sollten sich auf die Überprüfung und Nutzung der Workflow-Prozesse vorbereiten.

Machen Sie sich mit den API-Aufrufen vertraut, die in den Workflows verwendet werden

Die Seite mit der ONTAP Select Online-Dokumentation enthält die Details zu jedem REST-API-Aufruf. Anstatt
diese Details hier zu wiederholen, enthält jeder API-Aufruf, der in den Workflow-Samples verwendet wird, nur
die Informationen, die Sie benötigen, um den Anruf auf der Dokumentationsseite zu finden. Nach dem
Auffinden eines bestimmten API-Aufrufs können Sie die vollständigen Details des Anrufs überprüfen,
einschließlich der Eingabeparameter, Ausgabeformate, HTTP-Statuscodes und des Aufruftyps.

Für jeden API-Aufruf in einem Workflow sind folgende Informationen enthalten, um den Anruf auf der
Dokumentationsseite zu finden:

• Kategorie
Die API-Aufrufe sind auf der Dokumentationsseite in funktional bezogene Bereiche oder Kategorien
unterteilt. Um einen bestimmten API-Aufruf zu finden, blättern Sie zum unteren Seitenrand und klicken Sie
auf die entsprechende API-Kategorie.

• HTTP-Verb
Das HTTP-Verb identifiziert die Aktion, die für eine Ressource durchgeführt wird. Jeder API-Aufruf wird
über ein einziges HTTP-Verb ausgeführt.

• Pfad
Der Pfad bestimmt die spezifische Ressource, auf die die Aktion im Rahmen der Durchführung eines
Anrufs zutrifft. Der Pfadstring wird an die Core-URL angehängt, um die vollständige URL zur Identifizierung
der Ressource zu bilden.

Erstellen Sie eine URL für den direkten Zugriff auf die REST-API

Zusätzlich zur Seite mit der ONTAP Select-Dokumentation können Sie auch über eine Programmiersprache
wie Python auf die REST-API zur Bereitstellung zugreifen. In diesem Fall unterscheidet sich die Core-URL
etwas von der URL, die beim Zugriff auf die Seite mit der Online-Dokumentation verwendet wird. Wenn Sie
direkt auf die API zugreifen, müssen Sie /API an die Domäne und den Port String anhängen. Beispiel:
http://deploy.mycompany.com/api

Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi

Sie können ein Single-Node ONTAP Select Cluster auf einem von vCenter verwalteten
VMware ESXi Host implementieren. Der Cluster wird mit einer Evaluierungslizenz erstellt.

Der Workflow für die Cluster-Erstellung unterscheidet sich in folgenden Situationen:

• Der ESXi-Host wird nicht von vCenter gemanagt (Standalone-Host)

11

• Im Cluster werden mehrere Nodes oder Hosts verwendet

• Das Cluster wird in einer Produktionsumgebung mit einer erworbenen Lizenz implementiert

• Statt VMware ESXi wird der KVM-Hypervisor verwendet

◦ Ab ONTAP Select 9.10.1 können Sie kein neues Cluster mehr auf dem KVM-Hypervisor
implementieren.

◦ Ab ONTAP Select 9.11.1 sind alle Managementfunktionen nicht mehr für vorhandene
KVM-Cluster und -Hosts verfügbar, mit Ausnahme der Funktionen zum Offline- und
Löschen.

1. Registrieren Sie die Anmeldedaten für vCenter-Server

Bei der Bereitstellung auf einem von einem vCenter-Server verwalteten ESXi-Host müssen Sie vor der
Registrierung des Hosts eine Berechtigung hinzufügen. Das Deploy Administration Utility kann dann die
Anmeldeinformationen zur Authentifizierung bei vCenter verwenden.

Kategorie HTTP-Verb Pfad

Implementiere
n

POST /Sicherheit/Anmeldedaten

Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

JSON-Eingabe (Schritt 01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Verarbeitungsart

Asynchron

Ausgabe

• Anmeldeinformations-ID in der Kopfzeile für Standortantwort

• Jobobjekt

2. Registrieren Sie einen Hypervisor-Host

Sie müssen einen Hypervisor-Host hinzufügen, auf dem die virtuelle Maschine ausgeführt wird, die den
ONTAP Select-Knoten enthält.

12

Kategorie HTTP-Verb Pfad

Cluster POST /Hosts

Curl

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

JSON-Eingabe (Schritt 02)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Verarbeitungsart

Asynchron

Ausgabe

• Host-ID in der Kopfzeile der Standortantwort

• Jobobjekt

3. Erstellen Sie einen Cluster

Wenn Sie ein ONTAP Select Cluster erstellen, wird die Basis-Cluster-Konfiguration registriert und die Node-
Namen werden durch Deploy automatisch generiert.

Kategorie HTTP-Verb Pfad

Cluster POST /Cluster

Curl

Der Abfrageparameter Node_count sollte für ein Single-Node-Cluster auf 1 gesetzt werden.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

JSON-Eingang (Schritt 03)

13

{

 "name": "my_cluster"

}

Verarbeitungsart

Synchron

Ausgabe

• Cluster-ID in der Kopfzeile für Speicherantwort

4. Konfigurieren Sie den Cluster

Beim Konfigurieren des Clusters müssen Sie mehrere Attribute angeben.

Kategorie HTTP-Verb Pfad

Cluster PATCH /Clusters/{Cluster_id}

Curl

Sie müssen die Cluster-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON-Eingang (Schritt 04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Verarbeitungsart

Synchron

Ausgabe

Keine

14

5. Abrufen des Node-Namens

Das Deploy Administration Utility generiert automatisch die Node-IDs und Namen, wenn ein Cluster erstellt
wird. Bevor Sie einen Node konfigurieren können, müssen Sie die zugewiesene ID abrufen.

Kategorie HTTP-Verb Pfad

Cluster GET /Clusters/{Cluster_id}/Nodes

Curl

Sie müssen die Cluster-ID angeben.

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Verarbeitungsart

Synchron

Ausgabe

• Array zeichnet alle, die einen einzelnen Knoten mit der eindeutigen ID und dem Namen beschreiben

6. Konfigurieren Sie die Knoten

Sie müssen die Grundkonfiguration für den Knoten angeben. Dies ist der erste von drei API-Aufrufen, die zum
Konfigurieren eines Knotens verwendet werden.

Kategorie HTTP-Verb Pfad

Cluster PFAD /Clusters/{Cluster_id}/Nodes/{Node_id}

Curl

Sie müssen die Cluster-ID und die Node-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 06)

Sie müssen die Host-ID angeben, auf der der ONTAP Select-Knoten ausgeführt wird.

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

15

Verarbeitungsart

Synchron

Ausgabe

Keine

7. Abrufen der Knoten-Netzwerke

Sie müssen die Daten und Managementnetzwerke identifizieren, die der Node im Single-Node-Cluster
verwendet. Das interne Netzwerk wird nicht mit einem Single-Node-Cluster verwendet.

Kategorie HTTP-Verb Pfad

Cluster GET /Clusters/{Cluster_id}/Nodes/{Node_id}/Netzwerke

Curl

Sie müssen die Cluster-ID und die Node-ID angeben.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Verarbeitungsart

Synchron

Ausgabe

• Array mit zwei Datensätzen, die jeweils ein einziges Netzwerk für den Knoten beschreiben,
einschließlich der eindeutigen ID und des Zwecks

8. Konfigurieren Sie das Knoten Netzwerk

Sie müssen die Daten- und Managementnetzwerke konfigurieren. Das interne Netzwerk wird nicht mit einem
Single-Node-Cluster verwendet.

Geben Sie den folgenden API-Aufruf zweimal ein, einmal für jedes Netzwerk.

Kategorie HTTP-Verb Pfad

Cluster PATCH /Clusters/{Cluster_id}/Nodes/{Node_id}/Networks/{Network_id}

Curl

Sie müssen die Cluster-ID, die Node-ID und die Netzwerk-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

16

JSON-Eingang (Schritt 08)

Sie müssen den Namen des Netzwerks angeben.

{

 "name": "sDOT_Network"

}

Verarbeitungsart

Synchron

Ausgabe

Keine

9. Konfigurieren Sie den Knoten Speicher-Pool

Der letzte Schritt beim Konfigurieren eines Node ist das Verbinden eines Speicherpools. Sie können die
verfügbaren Speicherpools über den vSphere Web-Client oder optional über die Rest-API implementieren
bestimmen.

Kategorie HTTP-Verb Pfad

Cluster PATCH /Clusters/{Cluster_id}/Nodes/{Node_id}/Networks/{Network_id}

Curl

Sie müssen die Cluster-ID, die Node-ID und die Netzwerk-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 09)

Die Poolkapazität beträgt 2 TB.

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Verarbeitungsart

Synchron

17

Ausgabe

Keine

10. Implementieren Sie den Cluster

Nachdem das Cluster und der Node konfiguriert wurden, können Sie das Cluster implementieren.

Kategorie HTTP-Verb Pfad

Cluster POST /Clusters/{Cluster_id}/Deploy

Curl

Sie müssen die Cluster-ID angeben.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

JSON-Eingang (Schritt 10)

Sie müssen das Passwort für das ONTAP-Administratorkonto angeben.

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Verarbeitungsart

Asynchron

Ausgabe

• Jobobjekt

Zugang mit Python

Bevor Sie mit Python auf die API zugreifen

Sie müssen die Umgebung vorbereiten, bevor Sie die Python-Beispielskripte ausführen.

Bevor Sie die Python-Skripte ausführen, müssen Sie sicherstellen, dass die Umgebung ordnungsgemäß
konfiguriert ist:

• Die jeweils aktuelle Version von Python2 muss installiert sein.
Die Beispielcodes wurden mit Python2 getestet. Sie sollten auch auf Python3 übertragbar sein, wurden
aber nicht auf Kompatibilität getestet.

• Die Requests und urllib3-Bibliotheken müssen installiert sein.
Sie können je nach Ihrer Umgebung Pip oder ein anderes Python Management Tool verwenden.

18

• Die Client-Workstation, auf der die Skripte ausgeführt werden, muss über einen Netzwerkzugriff auf die
virtuelle ONTAP Select-Bereitstellungsmaschine verfügen.

Außerdem müssen Sie über die folgenden Informationen verfügen:

• IP-Adresse der virtuellen Maschine bereitstellen

• Benutzername und Kennwort eines Bereitstellungsadministrators

Verstehen Sie die Python-Skripte

Mit den Python-Beispielskripten können Sie mehrere verschiedene Aufgaben ausführen.
Sie sollten die Skripte verstehen, bevor Sie sie in einer Live-Deploy-Instanz verwenden.

Gemeinsame Designeigenschaften

Die Skripte wurden mit folgenden gemeinsamen Merkmalen entworfen:

• Ausführung über die Befehlszeilenschnittstelle auf einem Client-Rechner
Sie können die Python-Skripte von jedem ordnungsgemäß konfigurierten Client-Computer aus ausführen.
Weitere Informationen finden Sie unter before you begin.

• Akzeptieren Sie CLI-Eingabeparameter
Jedes Skript wird über die CLI über Eingabeparameter gesteuert.

• Eingabedatei lesen
Jedes Skript liest eine Eingabedatei basierend auf ihrem Zweck. Wenn Sie ein Cluster erstellen oder
löschen, müssen Sie eine JSON-Konfigurationsdatei angeben. Beim Hinzufügen einer Node-Lizenz
müssen Sie eine gültige Lizenzdatei angeben.

• Verwenden Sie ein gemeinsames Supportmodul
Das gemeinsame Supportmodul Deploy_Requests.py enthält eine einzelne Klasse. Sie wird von jedem der
Skripte importiert und verwendet.

Erstellen eines Clusters

Sie können mithilfe des Skripts Cluster.py einen ONTAP Select Cluster erstellen. Auf der Grundlage der CLI-
Parameter und der Inhalte der JSON-Eingabedatei können Sie das Skript in Ihre Bereitstellungsumgebung wie
folgt ändern:

• Ab ONTAP Select 9.10.1 können Sie kein neues Cluster mehr auf dem KVM-Hypervisor
implementieren.

• Ab ONTAP Select 9.11.1 sind alle Managementfunktionen nicht mehr für vorhandene KVM-
Cluster und -Hosts verfügbar, mit Ausnahme der Funktionen zum Offline- und Löschen.

• Hypervisor
Sie können ESXI oder KVM bereitstellen (je nach Bereitstellungsversion). Bei der Implementierung in ESXi
wird der Hypervisor durch vCenter gemanagt oder es kann ein Standalone-Host sein.

• Clustergröße
Sie können ein Single-Node- oder Multi-Node-Cluster implementieren.

• Evaluierungs- oder Produktionslizenz
Sie können einen Cluster mit einer Evaluierungs- oder erworbenen Lizenz für die Produktion bereitstellen.

19

Die CLI-Eingabeparameter für das Skript umfassen:

• Hostname oder IP-Adresse des Deploy-Servers

• Passwort für das Admin-Benutzerkonto

• Name der JSON-Konfigurationsdatei

• Ausführliche Flag für Nachrichtenausgabe

Fügen Sie eine Node-Lizenz hinzu

Wenn Sie sich für die Bereitstellung eines Produktionsclusters entscheiden, müssen Sie für jeden Knoten eine
Lizenz hinzufügen, indem Sie das Skript add_license.py verwenden. Sie können die Lizenz vor oder nach dem
Implementieren des Clusters hinzufügen.

Die CLI-Eingabeparameter für das Skript umfassen:

• Hostname oder IP-Adresse des Deploy-Servers

• Passwort für das Admin-Benutzerkonto

• Name der Lizenzdatei

• ONTAP-Benutzername mit Berechtigungen zum Hinzufügen der Lizenz

• Kennwort für den ONTAP-Benutzer

Löschen eines Clusters

Sie können einen vorhandenen ONTAP Select-Cluster mithilfe des Skripts delete_Cluster.py löschen.

Die CLI-Eingabeparameter für das Skript umfassen:

• Hostname oder IP-Adresse des Deploy-Servers

• Passwort für das Admin-Benutzerkonto

• Name der JSON-Konfigurationsdatei

Python-Codebeispiele

Skript zum Erstellen eines Clusters

Sie können mit dem folgenden Skript auf der Grundlage von Parametern, die in dem
Skript definiert sind, und einer JSON-Eingabedatei einen Cluster erstellen.

#!/usr/bin/env python

##--

#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

20

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter

['hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter

['hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

 hosts = config.get('hosts', [])

 for host in hosts:

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

21

 if 'password' in host and not deploy.resource_exists

('/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host[

'name']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host

['password']}

 deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host

['type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

 host_config['credential'] = {

 "password": host['password'], "username": host[

'user']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

22

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

 '''

 log_debug_trace()

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

23

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

24

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource(

'/clusters/{}/nodes/{}/networks'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

 node_ids = get_node_ids(deploy, cluster_id)

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

25

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'

]['ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

 logging.WARNING)

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

26

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

 cluster_id = create_cluster_config(deploy, config)

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

JSON für das Erstellen eines Clusters

Wenn Sie ein ONTAP Select-Cluster mithilfe der Python-Codebeispiele erstellen oder
löschen, müssen Sie eine JSON-Datei als Eingabe für das Skript bereitstellen. Sie
können das entsprechende JSON-Muster basierend auf Ihren Implementierungsplänen
kopieren und ändern.

Single-Node-Cluster in ESXi

{

 "hosts": [

 {

 "password": "mypassword1",

27

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

28

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Single-Node-Cluster in ESXi über vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

29

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

Single-Node-Cluster auf KVM

30

• Ab ONTAP Select 9.10.1 können Sie kein neues Cluster mehr auf dem KVM-Hypervisor
implementieren.

• Ab ONTAP Select 9.11.1 sind alle Managementfunktionen nicht mehr für vorhandene KVM-
Cluster und -Hosts verfügbar, mit Ausnahme der Funktionen zum Offline- und Löschen.

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

31

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Skript zum Hinzufügen einer Node-Lizenz

Mit dem folgenden Skript können Sie eine Lizenz für einen ONTAP Select-Knoten
hinzufügen.

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

32

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

33

 data = {}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

34

its used

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help

='Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help

='Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Skript zum Löschen eines Clusters

Sie können das folgende CLI-Skript verwenden, um einen vorhandenen Cluster zu
löschen.

35

#!/usr/bin/env python

##--

#

File: delete_cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

36

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config

['cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help

='Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Common Support-Modul

Alle Python-Skripte verwenden eine gemeinsame Python-Klasse in einem einzigen

37

Modul.

#!/usr/bin/env python

##--

#

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

38

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

39

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get

('num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

40

 def resource_exists(self, path, name, value):

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

41

 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Skript zur Größenanpassung der Cluster-Nodes

Mit dem folgenden Skript können Sie die Größe der Nodes in einem ONTAP Select
Cluster ändern.

#!/usr/bin/env python

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

42

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

43

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

 if not cluster_id:

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json

()['record']

def _get_request_body(parsed_args, cluster):

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

44

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

 return 1

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

 sys.exit(main())

45

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

46

http://www.netapp.com/TM\

	Automatisierung mit REST : ONTAP Select
	Inhalt
	Automatisierung mit REST
	Konzepte
	REST-Web-Services-Grundlage
	So erhalten Sie Zugriff auf die Bereitstellungs-API
	Implementieren der API-Versionierung
	Grundlegende betriebliche Eigenschaften
	API-Transaktion bei Anfrage und Reaktion
	Asynchrone Verarbeitung mit dem Job-Objekt

	Zugriff über einen Browser
	Bevor Sie mit einem Browser auf die API zugreifen
	Rufen Sie die Seite Dokumentation bereitstellen auf
	API-Aufruf verstehen und ausführen

	Workflow-Prozesse
	Vor Verwendung der API-Workflows
	Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi

	Zugang mit Python
	Bevor Sie mit Python auf die API zugreifen
	Verstehen Sie die Python-Skripte

	Python-Codebeispiele
	Skript zum Erstellen eines Clusters
	JSON für das Erstellen eines Clusters
	Skript zum Hinzufügen einer Node-Lizenz
	Skript zum Löschen eines Clusters
	Common Support-Modul
	Skript zur Größenanpassung der Cluster-Nodes

