Automatisierung mit REST
ONTAP Select

NetApp
February 03, 2026

This PDF was generated from https://docs.netapp.com/de-de/ontap-select-9141/concept_api_rest.html
on February 03, 2026. Always check docs.netapp.com for the latest.

Inhalt

Automatisierung mit REST
Konzepte
REST-Web-Services-Grundlage
So erhalten Sie Zugriff auf die Bereitstellungs-API
Implementieren der API-Versionierung
Grundlegende betriebliche Eigenschaften
API-Transaktion bei Anfrage und Reaktion
Asynchrone Verarbeitung mit dem Job-Objekt
Zugriff Uber einen Browser
Bevor Sie mit einem Browser auf die API zugreifen
Rufen Sie die Seite Dokumentation bereitstellen auf
API-Aufruf verstehen und ausfiihren
Workflow-Prozesse
Vor Verwendung der API-Workflows
Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi
Zugang mit Python
Bevor Sie mit Python auf die API zugreifen
Verstehen Sie die Python-Skripte
Python-Codebeispiele
Skript zum Erstellen eines Clusters
JSON fir das Erstellen eines Clusters
Skript zum Hinzufligen einer Node-Lizenz
Skript zum Léschen eines Clusters
Common Support-Modul
Skript zur Groflenanpassung der Cluster-Nodes

© © 0O B WDNDN -2 -~

AW W WNDNDN-_2Q2 & A A mm = a
- N O NN NO O 0o O - =~ a~ OO

Automatisierung mit REST

Konzepte

REST-Web-Services-Grundlage

Representational State Transfer (REST) ist ein Stil fur die Erstellung von verteilten Web-
Anwendungen. Bei der Anwendung auf das Design einer Web-Services-AP| werden eine
Reihe von Technologien und Best Practices erstellt, um serverbasierte Ressourcen
freizulegen und deren Status zu verwalten. Die Technologie nutzt Mainstream-Protokolle
und -Standards, um eine flexible Grundlage fir die Bereitstellung und das Management
von ONTAP Select Clustern zu bieten.

Architektur und klassische Einschrankungen

REST wurde formell von Roy Fielding in seinem PhD artikuliert "Dissertation” An der UC Irvine im Jahr 2000.
Es definiert einen Architekturstil durch eine Reihe von Einschrankungen, die gemeinsam Web-basierte
Anwendungen und die zugrunde liegenden Protokolle verbessert haben. Durch diese Einschrénkungen wird
eine RESTful Web Services-Applikation basierend auf einer Client-/Serverarchitektur mit einem statusfreien
Kommunikationsprotokoll hergestellt.

Ressourcen- und Zustandsdarstellung

Ressourcen sind die Grundkomponenten eines webbasierten Systems. Beim Erstellen einer ANWENDUNG
FUR REST-Webservices umfassen die frihen Designaufgaben Folgendes:

* Identifizierung von System- oder serverbasierten Ressourcen
Jedes System nutzt und verwaltet Ressourcen. Eine Ressource kann eine Datei-, Geschaftstransaktion-,
Prozess- oder Verwaltungseinheit sein. Eine der ersten Aufgaben bei der Entwicklung einer auf REST-
Webservices basierenden Applikation ist die Identifizierung der Ressourcen.

* Definition von Ressourcenstatus und zugehorigen Statusoperationen
Die Ressourcen befinden sich immer in einer endlichen Anzahl von Staaten. Die Zustdnde sowie die damit
verbundenen Operationen, die zur Auswirkung der Statusanderungen verwendet werden, missen klar
definiert werden.

Nachrichten werden zwischen dem Client und dem Server ausgetauscht, um auf den Zustand der Ressourcen
gemal dem generischen CRUD-Modell (Create, Read, Update, Delete) zuzugreifen und diesen zu andern.

URI-Endpunkte

Jede REST-Ressource muss definiert und tber ein gut definiertes Adressierungssystem verfligbar gemacht
werden. Die Endpunkte, in denen die Ressourcen gefunden und identifiziert werden, verwenden einen
einheitlichen Resource Identifier (URI). Der URI bietet ein allgemeines Framework zum Erstellen eines
eindeutigen Namens fir jede Ressource im Netzwerk. Der Uniform Resource Locator (URL) ist ein URI-Typ,
der mit Webservices zur Identifizierung und zum Zugriff von Ressourcen verwendet wird. Ressourcen werden
in der Regel in einer hierarchischen Struktur ausgesetzt, die einem Dateiverzeichnis dhnelt.

HTTP-Meldungen

Hypertext Transfer Protocol (HTTP) ist das Protokoll, das vom Webservice-Client und -Server zum Austausch
von Anforderungs- und Antwortmeldungen zu den Ressourcen verwendet wird. Im Rahmen der Entwicklung

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

einer Webservices-Anwendung werden HTTP-Verben (wie GET und POST) den Ressourcen und
entsprechenden Statusverwaltungsaktionen zugeordnet.

HTTP ist statusfrei. Um eine Reihe verwandter Anforderungen und Antworten innerhalb einer Transaktion
zuzuordnen, missen zusatzliche Informationen in die HTTP-Header enthalten sein, die mit den
Request/Response-Datenstromen tbertragen werden.

JSON-Formatierung

Wahrend Informationen auf verschiedene Weise zwischen Client und Server strukturiert und Ubertragen
werden kdnnen, ist die beliebteste Option (und die bei der REST-API implementieren verwendete Option)
JavaScript Object Notation (JSON). JSON ist ein Branchenstandard fiir die Darstellung einfacher
Datenstrukturen im Klartext und wird zur Ubertragung von Zustandsdaten zur Beschreibung der Ressourcen
verwendet.

So erhalten Sie Zugriff auf die Bereitstellungs-API

Aufgrund der inharenten Flexibilitat VON REST-Webservices ist der Zugriff auf die
ONTAP Select Deploy API auf verschiedene Weise maoglich.

Implementieren Sie die native Benutzeroberflache von Utility

Der primare Weg, um auf die APl zuzugreifen, ist Giber die ONTAP Select Deploy Web-Benutzeroberflache.
Der Browser ruft die API auf und formatiert die Daten entsprechend dem Design der Benutzeroberflache neu.
Sie haben auch Zugriff auf die API Uber die Befehlszeilenschnittstelle von Deploy Utility.

ONTAP Select Seite zur Online-Dokumentation bereitstellen

Die Seite ONTAP Select Online-Dokumentation bereitstellen stellt bei Verwendung eines Browsers einen
alternativen Zugriffspunkt dar. Die Seite bietet nicht nur die Méglichkeit, einzelne API-Aufrufe direkt
auszufiihren, sondern enthalt auch eine detaillierte Beschreibung der API, einschliel3lich Eingabeparameter
und anderer Optionen fir jeden Aufruf. Die API-Aufrufe sind in verschiedene funktionale Bereiche oder
Kategorien gegliedert.

Benutzerdefiniertes Programm

Die Bereitstellungs-API kann Uber eine von mehreren verschiedenen Programmiersprachen und Tools auf die
Bereitstellungsschnittstelle zugegriffen werden. Beliebte Optionen sind Python, Java und Curl. Ein Programm,
Skript oder Tool, das die API verwendet, fungiert als REST-Web-Services-Client. Mithilfe einer
Programmiersprache lernen Sie die API besser kennen und erhalten die Mdglichkeit, die ONTAP Select
Implementierungen zu automatisieren.

Implementieren der API-Versionierung

Der REST API, die in ONTAP Select Deploy enthalten ist, wird eine Versionsnummer
zugewiesen. Die API-Versionsnummer ist unabhangig von der Versionsnummer fur die
Bereitstellung. Sie sollten die API-Version kennen, die in lhrer Version von Deploy
enthalten ist, und wissen, welche Auswirkungen dies auf Ihre Verwendung der API hat.

Die aktuelle Version des Deploy Administration Utility enthalt Version 3 DER REST API. Frihere Versionen des
Deploy Utility umfassen die folgenden API-Versionen:

Implementierung 2.8 und hoher
ONTAP Select Deploy 2.8. Alle neueren Versionen enthalten Version 3 der REST API.

Implementierung 2.7.2 und friiher
ONTAP Select Deploy 2.7.2; alle alteren Versionen enthalten Version 2 DER REST API.

Die Versionen 2 und 3 DER REST-API sind nicht kompatibel. Wenn Sie nach einem friiheren

@ Release, das Version 2 der API enthalt, ein Upgrade auf die Bereitstellung von 2.8 oder héher
durchflhren, missen Sie jeden vorhandenen Code aktualisieren, der direkt auf die API zugreift,
sowie alle Skripte Uber die Befehlszeilenschnittstelle.

Grundlegende betriebliche Eigenschaften

IM RUHEZUSTAND werden einheitliche Technologien und Best Practices erstellt, jedoch
konnen die Details jeder API je nach dem verflgbaren Design variieren. Vor der
Verwendung der API sollten Sie auf die Details und betrieblichen Merkmale der ONTAP
Select Deploy-API achten.

Hypervisor-Host oder ONTAP Select-Node

Ein Hypervisor-Host ist die zentrale Hardware-Plattform, die eine ONTAP Select Virtual Machine hostet. Wenn
eine ONTAP Select Virtual Machine auf einem Hypervisor-Host bereitgestellt und aktiv ist, gilt die Virtual
Machine als ,ONTAP Select Node“. Ab Version 3 der Deploy REST API sind Host- und Node-Objekte
voneinander getrennt und unterscheiden sich. Dadurch wird eine 1:n-Beziehung mdglich, bei der ein oder
mehrere ONTAP Select Nodes auf demselben Hypervisor-Host ausgefuhrt werden kénnen.

Objektkennungen

Jeder Ressourceninstanz oder jedem Objekt wird eine eindeutige Kennung zugewiesen, wenn sie erstellt wird.
Diese Kennungen sind global eindeutig in einer bestimmten Instanz von ONTAP Select Deploy. Nachdem ein
API-Aufruf ausgegeben wurde, der eine neue Objektinstanz erstellt, wird der zugeordnete id-Wert an den
Anrufer im zurtickgegeben 1ocation Kopfzeile der HTTP-Antwort. Sie kénnen die Kennung extrahieren und
bei nachfolgenden Anrufen verwenden, wenn Sie sich auf die Ressourceninstanz beziehen.

Der Inhalt und die interne Struktur der Objektkennungen kdnnen jederzeit gedndert werden.
Wenn Sie auf die zugeordneten Objekte verweisen, sollten Sie die Kennungen fiir die
entsprechenden API-Aufrufe nur nach Bedarf verwenden.

Identifikatoren anfordern

Jeder erfolgreichen API-Anforderung wird eine eindeutige Kennung zugewiesen. Die Kennung wird im
zurlickgegeben request-id Kopfzeile der zugehdrigen HTTP-Antwort. Sie kbnnen eine
Anforderungskennung verwenden, um sich kollektiv auf die Aktivitdten einer einzelnen spezifischen API-
Anforderungstransaktion zu beziehen. Sie kdnnen beispielsweise alle Ereignismeldungen einer Transaktion
basierend auf der Anfrage-ID abrufen

Synchrone und asynchrone Anrufe

Es gibt zwei primare Mdglichkeiten, wie ein Server eine von einem Client empfangene HTTP-Anfrage
durchfuhrt:

* Synchron
Der Server fuhrt die Anforderung sofort aus und antwortet mit einem Statuscode von 200, 201 oder 204.

* Asynchron
Der Server akzeptiert die Anfrage und antwortet mit dem Statuscode 202. Dies zeigt an, dass der Server
die Clientanforderung angenommen hat und eine Hintergrundaufgabe gestartet hat, um die Anforderung
abzuschlielRen. Der endgliltige Erfolg oder Fehler ist nicht sofort verfligbar und muss durch zusatzliche
API-Aufrufe ermittelt werden.

Bestitigen Sie den Abschluss eines lang laufenden Jobs

Im Aligemeinen wird jede Operation, die lange Zeit in Anspruch nehmen kann, asynchron mit einem verarbeitet
Hintergrundaufgabe auf dem Server. Mit der Deploy REST API wird jede Hintergrundaufgabe durch ein
verankert

Jobobjekt, das die Aufgabe verfolgt und Informationen bereitstellt, z. B. den aktuellen Status. Ein Job-Objekt,
EinschlieBlich seiner eindeutigen Kennung wird in der HTTP-Antwort zurlickgegeben, nachdem eine
Hintergrundaufgabe erstellt wurde.

Sie kénnen das Jobobijekt direkt abfragen, um den Erfolg oder den Fehler des zugeordneten API-Aufrufs zu
ermitteln.
Weitere Informationen finden Sie unter ,Asynchronous Processing Using the Job Object".

Neben der Verwendung des Objekts Job gibt es weitere Mdglichkeiten, wie Sie den Erfolg oder das Scheitern
eines bestimmen kénnen
Anforderung, einschliellich:

* Ereignismeldungen
Sie kdénnen alle Ereignismeldungen, die einem bestimmten API-Aufruf zugeordnet sind, mithilfe der mit der
ursprunglichen Antwort zuriickgegebenen Anforderungs-id abrufen. Die Ereignismeldungen enthalten in
der Regel Hinweise auf Erfolg oder Fehler und kénnen auch nitzlich sein, wenn ein Fehlerzustand
behoben wird.

* Ressourcenstatus oder -Status
Mehrere der Ressourcen behalten einen Status oder Statuswert bei, den Sie abfragen kénnen, um indirekt
den Erfolg oder das Fehlschlagen einer Anfrage zu bestimmen.

Sicherheit

Die Deploy-API nutzt die folgenden Sicherheitstechnologien:

* Sicherheit In Transportschicht
Der gesamte Datenverkehr, der zwischen dem bereitzustellenden Server und dem Client Gber das
Netzwerk gesendet wird, wird Gber TLS verschlisselt. Die Verwendung des HTTP-Protokolls Gber einen
unverschlisselten Kanal wird nicht unterstitzt. TLS-Version 1.2 wird unterstitzt.

* HTTP-Authentifizierung
Fir jede API-Transaktion wird die Basisauthentifizierung verwendet. Jeder Anforderung wird ein HTTP-
Header hinzugefligt, der den Benutzernamen und das Passwort in einem base64-String enthalt.

API-Transaktion bei Anfrage und Reaktion

Jeder API-Aufruf zur Bereitstellung wird als HTTP-Anforderung an die virtuelle Maschine
Bereitstellen ausgefuhrt, die eine entsprechende Antwort auf den Client erzeugt. Dieses
Anforderungs-/Antwortpaar wird als API-Transaktion betrachtet. Bevor Sie die Deploy-API

verwenden, sollten Sie mit den zur Steuerung einer Anfrage verfugbaren
Eingabevariablen und dem Inhalt der Antwortausgabe vertraut sein.

Eingabevariablen, die eine API-Anforderung steuern

Sie kdnnen steuern, wie ein API-Aufruf Gber in der HTTP-Anforderung festgelegte Parameter verarbeitet wird.

Anfragekopfzeilen

In der HTTP-Anfrage missen mehrere Header enthalten sein, darunter:
* Content-Typ
Wenn der Anforderungskorper JSON enthalt, muss dieser Header auf Application/json gesetzt werden.

* Akzeptieren
Wenn der Antworttext JSON enthalt, muss dieser Header auf Application/json gesetzt werden.

* Autorisierung
Die Basisauthentifizierung muss mit dem Benutzernamen und dem Passwort in einem base64-String
eingerichtet werden.

Text anfordern

Der Inhalt der Anfraentext variiert je nach Anruf. Der HTTP-Request-Text besteht aus einem der folgenden
Elemente:

+ JSON-Objekt mit Eingabevariablen (z. B. der Name eines neuen Clusters)

e Leer

Objekte filtern

Wenn Sie einen API-Aufruf ausgeben, der GET verwendet, kdnnen Sie die zurtickgegebenen Objekte anhand
eines beliebigen Attributs einschranken oder filtern. Sie kdnnen beispielsweise einen genauen Wert angeben,
der Ubereinstimmt:

<field>=<query value>
Zusétzlich zu einer genauen Ubereinstimmung stehen anderen Operatoren zur Verfiigung, um einen Satz von

Objekten Uber einen Wertebereich zurlickzugeben. ONTAP Select unterstitzt die unten aufgefihrten
Filteroperatoren.

Operator Beschreibung

= Gleich

< Kleiner als

> Grofer als

≪= Kleiner oder gleich

>= Grolder oder gleich
Oder

! Nicht gleich

* Gierige Wildcard

Sie kdnnen auch einen Satz von Objekten zurlickgeben, basierend darauf, ob ein bestimmtes Feld gesetzt
wird oder nicht, indem Sie das Null-Schlisselwort oder dessen Negation (Inull) als Teil der Abfrage verwenden.

Auswadhlen von Objektfeldern

StandardmaRig gibt die Ausgabe eines API-Aufrufs mithilfe VON GET nur die Attribute zuriick, die das Objekt
oder die Objekte eindeutig identifizieren. Dieser minimale Feldsatz dient als Schlissel fir jedes Objekt und
variiert je nach Objekttyp. Sie kbnnen zuséatzliche Objekteigenschaften mithilfe des Abfrageparameters Felder
wie folgt auswahlen:

* Glnstige Felder
Angeben fields=* Zum Abrufen der Objektfelder, die im lokalen Serverspeicher verwaltet werden oder
fur den Zugriff nur wenig verarbeitet werden muissen.

° Teure Felder
Angeben fields=** Zum Abrufen aller Objektfelder, einschlieBlich solcher, die fur den Zugriff zusatzliche
Serververarbeitung erforderlich sind.

* Benutzerdefinierte Feldauswabhl
Nutzung fields=FIELDNAME Um das genaue Feld anzugeben, das Sie wiinschen. Wenn Sie mehrere
Felder anfordern, missen die Werte durch Kommas ohne Leerzeichen getrennt werden.

Als Best Practice sollten Sie immer die gewlinschten Felder identifizieren. Sie sollten nur die
Reihe von kostenglinstigen oder teuren Feldern abrufen, wenn Sie bendtigen. Die

kostenguinstige und teure Klassifizierung wird durch NetApp auf der Grundlage interner
Leistungsanalysen festgelegt. Die Klassifizierung fir ein bestimmtes Feld kann sich jederzeit
andern.

Objekte im Ausgabesatz sortieren

Die Datensatze in einer Ressourcensammlung werden in der vom Objekt definierten Standardreihenfolge
zurtckgegeben. Sie kdnnen die Reihenfolge mit dem Abfrageparameter order_by mit dem Feldnamen und der
Sortierrichtung wie folgt andern:

order by=<field name> asc|desc

Sie kdnnen beispielsweise das Typfeld in absteigender Reihenfolge, gefolgt von id in aufsteigender
Reihenfolge sortieren:
order by=type desc, id asc

Wenn Sie mehrere Parameter eingeben, missen Sie die Felder mit einem Komma trennen.

Paginierung

Wenn Sie einen API-Aufruf Gber GET ausgeben, um auf eine Sammlung von Objekten desselben Typs
zuzugreifen, werden alle Ubereinstimmenden Objekte standardmafig zurtickgegeben. Bei Bedarf konnen Sie
die Anzahl der zurlickgegebenen Datensatze mithilfe des Abfrageparameters max_Records mit der
Anforderung begrenzen. Beispiel:

max records=20

Bei Bedarf konnen Sie diesen Parameter mit anderen Abfrageparametern kombinieren, um den Ergebnissatz
einzugrenzen. Beispiel: Im Folgenden werden bis zu 10 Systemereignisse angezeigt, die nach der
angegebenen Zeit generiert wurden:

time= 2019-04-04T15:41:29.140265Z&max _records=10

Sie kdnnen mehrere Anfragen zur Seite Uber die Ereignisse (oder jeden Objekityp) ausgeben. Jeder

nachfolgende API-Aufruf sollte einen neuen Zeitwert verwenden, der auf dem letzten Ereignis des letzten
Ergebnisset basiert.

Eine API-Antwort interpretieren

Jede API-Anfrage generiert eine Antwort an den Client. Sie kdnnen die Antwort prifen, um festzustellen
Ob die Daten erfolgreich waren und zusatzliche Daten nach Bedarf abgerufen werden konnten.

HTTP-Statuscode

Im Folgenden werden die von der REST-API ,Bereitstellen“ verwendeten HTTP-Statuscodes beschrieben.

Codieren Bedeutung Beschreibung

200 OK Zeigt Erfolg flr Anrufe an, die kein neues Objekt erstellen.

201 Erstellt Ein Objekt wurde erfolgreich erstellt. Der Header fir die
Standortantwort enthalt die eindeutige Kennung fir das Objekt.

202 Akzeptiert Ein schon seit langem laufender Hintergrundjob wurde gestartet, um
die Anforderung auszufiihren, der Vorgang wurde jedoch noch nicht
abgeschlossen.

400 Schlechte Anfrage Die Eingabe der Anfrage ist nicht erkannt oder nicht angemessen.

403 Verboten Der Zugriff wird aufgrund eines Autorisierungsfehlers verweigert.

404 Nicht gefunden Die Ressource, auf die in diesem Antrag verwiesen wird, ist nicht
vorhanden.

405 Methode nicht Das HTTP-Verb in der Anforderung wird fur die Ressource nicht

zulassig unterstitzt.

409 Konflikt Der Versuch, ein Objekt zu erstellen, ist fehlgeschlagen, weil das
Objekt bereits vorhanden ist.

500 Interner Fehler Ein allgemeiner interner Fehler ist auf dem Server aufgetreten.

501 Nicht implementiert Der URI ist bekannt, kann die Anforderung jedoch nicht ausfihren.

Antwortkopfzeilen

In der vom Deploy-Server erzeugten HTTP-Antwort sind mehrere Header enthalten, darunter:

* Anforderungs-id
Jeder erfolgreichen API-Anforderung wird eine eindeutige Anforderungskennung zugewiesen.

* Standort

Wenn ein Objekt erstellt wird, enthalt die Kopfzeile des Speicherorts die vollstandige URL zum neuen
Objekt einschliellich der eindeutigen Objektkennung.

Antwortkorper

Der Inhalt der mit einer API-Anfrage verknupften Antwort ist je nach Objekt, Verarbeitungstyp und Erfolg oder
Misserfolg der Anforderung unterschiedlich. Der Antwortkoérper wird in JSON gerendert.

* Einzelnes Objekt
Je nach Anforderung kann ein einzelnes Objekt mit einer Reihe von Feldern zurlickgegeben werden.
Beispielsweise kdnnen Sie GET verwenden, um ausgewahlte Eigenschaften eines Clusters mit der

eindeutigen Kennung abzurufen.

Mehrere Objekte

Es kdnnen mehrere Objekte aus einer Ressourcensammlung zuriickgegeben werden. In allen Fallen wird
ein konsistentes Format verwendet, mit num records Angabe der Anzahl der Datensatze und
Datensatze, die ein Array der Objektinstanzen enthalten. Beispielsweise konnen Sie alle in einem
bestimmten Cluster definierten Nodes abrufen.

Jobobijekt

Wenn ein API-Aufruf asynchron verarbeitet wird, wird ein Job-Objekt zurlickgegeben, das den Hintergrund-
Task ankers. Beispielsweise wird DIE POST-Anforderung, die zum Bereitstellen eines Clusters verwendet
wird, asynchron bearbeitet und ein Job-Objekt zuriickgegeben.

* Fehlerobjekt
Wenn ein Fehler auftritt, wird immer ein Fehlerobjekt zuriickgegeben. Beispielsweise erhalten Sie einen
Fehler beim Versuch, ein Cluster mit einem bereits vorhandenen Namen zu erstellen.

° Leer
In bestimmten Fallen werden keine Daten zurlickgegeben und der Antworttext ist leer. Beispielsweise ist
der Antwortkdrper leer, nachdem Sie ZUM Léschen eines vorhandenen Hosts AUF ,LOSCHEN* setzen.

Asynchrone Verarbeitung mit dem Job-Objekt

Einige der API-Aufrufe fur die Bereitstellung, insbesondere solche, die eine Ressource
erstellen oder andern, kdnnen langer dauern als andere Anrufe. ONTAP Select
implementieren verarbeitet diese langen Anforderungen asynchron.

Asynchrone Anforderungen, die mit Job Object beschrieben werden

Nach einem API-Aufruf, der asynchron ausgefiihrt wird, weist der HTTP-Antwortcode 202 darauf hin, dass die
Anforderung erfolgreich validiert und akzeptiert, aber noch nicht abgeschlossen wurde. Die Anforderung wird
als Hintergrundaufgabe verarbeitet, die nach der ersten HTTP-Antwort auf den Client weiter ausgeflihrt wird.
Die Antwort umfasst das Job-Objekt, das die Anfrage einschliel3lich der eindeutigen Kennung anverankert.

@ Mithilfe der Seite ONTAP Select Deploy Online-Dokumentation kdnnen Sie ermitteln, welche
API-Aufrufe asynchron funktionieren.

Abfrage des Job-Objekts, das einer API-Anforderung zugeordnet ist

Das in der HTTP-Antwort zurtickgegebene Job-Objekt enthalt mehrere Eigenschaften. Sie kdnnen die
Statuseigenschaft abfragen, um festzustellen, ob die Anfrage erfolgreich abgeschlossen wurde. Ein Job-Objekt
kann einen der folgenden Status haben:

* Warteschlange

* Wird Ausgefuhrt

* Erfolg

* Ausfall

Es gibt zwei Verfahren, die Sie beim Abfragen eines Jobobjekts verwenden kénnen, um einen Terminalstatus
fur die Aufgabe zu erkennen: Erfolg oder Fehler:

* Standard-Polling-Anfrage
Der aktuelle Jobstatus wird sofort zurtickgegeben

* Lange Abfrageanfrage
Der Jobstatus wird nur zuriickgegeben, wenn einer der folgenden Fehler auftritt:

o Status hat sich vor kurzem geandert als der Datumswert, der auf der Abfrage angegeben wurde
o Timeout-Wert abgelaufen (1 bis 120 Sekunden)
Standardabfrage und langes Abfragen verwenden denselben API-Aufruf, um ein Auftragsobjekt abzufragen.

Eine lange Abfrageanforderung umfasst jedoch zwei Abfrageparameter: pol1l timeout Und
last modified.

Sie sollten immer Long Polling verwenden, um die Arbeitslast auf der virtuellen Maschine
bereitstellen zu reduzieren.

Allgemeines Verfahren fiir die Ausgabe einer asynchronen Anfrage

Sie kénnen den folgenden grundlegenden Vorgang verwenden, um einen asynchronen API-Aufruf
abzuschlielen:
1. Geben Sie den asynchronen API-Aufruf aus.

2. Sie erhalten eine HTTP-Antwort 202, die darauf hinweist, dass die Anfrage erfolgreich angenommen
wurde.

3. Extrahieren Sie die Kennung fiir das Job-Objekt aus dem Antwortkorper.
4. Fihren Sie in einer Schleife in jedem Zyklus die folgenden Schritte aus:
a. Den aktuellen Status des Jobs mit einer langen Umfrage abrufen

b. Wenn sich der Job in einem nicht-Terminal-Status befindet (Warteschlange, wird ausgefihrt), fihren
Sie die Schleife erneut aus.

5. Beenden Sie, wenn der Job einen Terminalstatus erreicht (Erfolg, Fehler).

Zugriff uber einen Browser

Bevor Sie mit einem Browser auf die APl zugreifen

Es gibt einige Dinge, die Sie beachten sollten, bevor Sie die Bereitstellung Online-
Dokumentation Seite.

Implementierungsplan

Wenn Sie im Rahmen der Durchfihrung spezifischer Bereitstellungs- oder Verwaltungsaufgaben API-Aufrufe
ausgeben mdchten, sollten Sie die Erstellung eines Bereitstellungsplans in Betracht ziehen. Diese Plane
kdénnen formell oder informell sein und im Allgemeinen |hre Ziele und die zu verwendenden API-Aufrufe
enthalten. Weitere Informationen finden Sie unter Workflow-Prozesse mithilfe der REST-API implementieren.

JSON-Beispiele und Parameterdefinitionen

Jeder API-Aufruf wird auf der Dokumentationsseite in einem konsistenten Format beschrieben. Der Inhalt
umfasst Implementierungsnotizen, Abfrageparameter und HTTP-Statuscodes. AuRerdem kdnnen Sie wie folgt
Details tGber den JSON anzeigen, der mit den API-Anfragen und Antworten verwendet wird:

* Beispielwert

Wenn Sie bei einem API-Aufruf auf example Value klicken, wird eine typische JSON-Struktur fir den Aufruf
angezeigt. Sie konnen das Beispiel je nach Bedarf andern und als Eingabe fiir Ihre Anforderung
verwenden.

° Modell
Wenn Sie auf Model klicken, wird eine vollstandige Liste der JSON-Parameter mit einer Beschreibung flr
jeden Parameter angezeigt.

Vorsicht beim Ausgeben von API-Aufrufen

Alle API-Vorgéange, die Sie mithilfe der Dokumentationsseite ,Bereitstellen“ ausflhren, sind Live-Vorgange. Sie
sollten darauf achten, dass Sie Konfigurationen oder andere Daten nicht versehentlich erstellen, aktualisieren
oder l6schen.

Rufen Sie die Seite Dokumentation bereitstellen auf

Sie mussen auf die Seite ONTAP Select Deploy Online-Dokumentation zugreifen, um die
API-Dokumentation anzuzeigen und einen API-Aufruf manuell zu tatigen.

Bevor Sie beginnen
Sie mussen Folgendes haben:

* IP-Adresse oder Domain-Name der virtuellen ONTAP Select Deploy-Maschine

* Benutzername und Passwort flir den Administrator

Schritte
1. Geben Sie die URL in Ihren Browser ein und driicken Sie Enter:

https://<ip address>/api/ui

2. Melden Sie sich mit dem Benutzernamen und Passwort des Administrators an.

Ergebnis

Die Webseite Dokumentation bereitstellen wird angezeigt, auf der die Anrufe nach Kategorie unten auf der
Seite organisiert sind.

API-Aufruf verstehen und ausfiihren

Die Details aller API-Aufrufe werden dokumentiert und in einem gemeinsamen Format
auf der Webseite fur die Online-Dokumentation von ONTAP Select Deploy angezeigt.
Anhand eines einzelnen API-Anrufs kdnnen Sie auf die Details aller API-Aufrufe
zugreifen und diese interpretieren.

Bevor Sie beginnen

Sie mussen auf der Webseite fiir die Online-Dokumentation von ONTAP Select Deploy angemeldet sein. Beim
Erstellen des Clusters mussen Sie dem ONTAP Select-Cluster die eindeutige ID zuweisen.

Uber diese Aufgabe

Sie kdnnen die Konfigurationsinformationen, die ein ONTAP Select Cluster beschreiben, mit seiner eindeutigen
Kennung abrufen. In diesem Beispiel werden alle als kostengiinstig klassifizierten Felder zuriickgegeben. Als
Best Practice sollten Sie jedoch nur die speziellen Felder anfordern, die erforderlich sind.

10

Schritte
1. Scrollen Sie auf der Hauptseite nach unten und klicken Sie auf Cluster.

2. Klicken Sie auf GET /Clusters/{Cluster_id}, um die Details des API-Aufrufs anzuzeigen, der zur
Rickgabe von Informationen tGber ein ONTAP Select-Cluster verwendet wird.

Workflow-Prozesse

Vor Verwendung der API-Workflows

Sie sollten sich auf die Uberpriifung und Nutzung der Workflow-Prozesse vorbereiten.

Machen Sie sich mit den API-Aufrufen vertraut, die in den Workflows verwendet werden

Die Seite mit der ONTAP Select Online-Dokumentation enthalt die Details zu jedem REST-API-Aufruf. Anstatt
diese Details hier zu wiederholen, enthalt jeder API-Aufruf, der in den Workflow-Samples verwendet wird, nur
die Informationen, die Sie bendétigen, um den Anruf auf der Dokumentationsseite zu finden. Nach dem
Auffinden eines bestimmten API-Aufrufs kbnnen Sie die vollstandigen Details des Anrufs Uberprifen,
einschliel3lich der Eingabeparameter, Ausgabeformate, HTTP-Statuscodes und des Aufruftyps.

Fir jeden API-Aufruf in einem Workflow sind folgende Informationen enthalten, um den Anruf auf der
Dokumentationsseite zu finden:

* Kategorie
Die API-Aufrufe sind auf der Dokumentationsseite in funktional bezogene Bereiche oder Kategorien
unterteilt. Um einen bestimmten API-Aufruf zu finden, blattern Sie zum unteren Seitenrand und klicken Sie
auf die entsprechende API-Kategorie.

* HTTP-Verb
Das HTTP-Verb identifiziert die Aktion, die fir eine Ressource durchgefuhrt wird. Jeder API-Aufruf wird
Uber ein einziges HTTP-Verb ausgeflhrt.

* Pfad
Der Pfad bestimmt die spezifische Ressource, auf die die Aktion im Rahmen der Durchfiihrung eines
Anrufs zutrifft. Der Pfadstring wird an die Core-URL angehangt, um die vollstdndige URL zur Identifizierung
der Ressource zu bilden.

Erstellen Sie eine URL fiir den direkten Zugriff auf die REST-API

Zusatzlich zur Seite mit der ONTAP Select-Dokumentation kdnnen Sie auch Uber eine Programmiersprache
wie Python auf die REST-API zur Bereitstellung zugreifen. In diesem Fall unterscheidet sich die Core-URL
etwas von der URL, die beim Zugriff auf die Seite mit der Online-Dokumentation verwendet wird. Wenn Sie
direkt auf die API zugreifen, missen Sie /AP| an die Domane und den Port String anhangen. Beispiel:
http://deploy.mycompany.com/api

Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi

Sie konnen ein Single-Node ONTAP Select Cluster auf einem von vCenter verwalteten
VMware ESXi Host implementieren. Der Cluster wird mit einer Evaluierungslizenz erstellt.

Der Workflow fur die Cluster-Erstellung unterscheidet sich in folgenden Situationen:

* Der ESXi-Host wird nicht von vCenter gemanagt (Standalone-Host)

11

* Im Cluster werden mehrere Nodes oder Hosts verwendet
 Das Cluster wird in einer Produktionsumgebung mit einer erworbenen Lizenz implementiert

« Statt VMware ESXi wird der KVM-Hypervisor verwendet

1. Registrieren Sie die Anmeldedaten fiir vCenter-Server

Bei der Bereitstellung auf einem von einem vCenter-Server verwalteten ESXi-Host missen Sie vor der
Registrierung des Hosts eine Berechtigung hinzufligen. Das Deploy Administration Utility kann dann die
Anmeldeinformationen zur Authentifizierung bei vCenter verwenden.

Kategorie HTTP-Verb Pfad

Implementiere POST /Sicherheit/Anmeldedaten
n
Curl

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

JSON-Eingabe (Schritt 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Verarbeitungsart
Asynchron

Ausgabe
* Anmeldeinformations-ID in der Kopfzeile fir Standortantwort

+ Jobobjekt
2. Registrieren Sie einen Hypervisor-Host

Sie mussen einen Hypervisor-Host hinzufligen, auf dem die virtuelle Maschine ausgefiihrt wird, die den
ONTAP Select-Knoten enthalt.

Kategorie HTTP-Verb Pfad
Cluster POST /Hosts
Curl

12

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts'

JSON-Eingabe (Schritt 02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Verarbeitungsart
Asynchron

Ausgabe
* Host-ID in der Kopfzeile der Standortantwort

» Jobobjekt

3. Erstellen Sie einen Cluster

Wenn Sie ein ONTAP Select Cluster erstellen, wird die Basis-Cluster-Konfiguration registriert und die Node-
Namen werden durch Deploy automatisch generiert.

Kategorie HTTP-Verb Pfad
Cluster POST [Cluster

Curl
Der Abfrageparameter Node_count sollte fir ein Single-Node-Cluster auf 1 gesetzt werden.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1'

JSON-Eingang (Schritt 03)

"name": "my cluster"

13

Verarbeitungsart
Synchron

Ausgabe
* Cluster-ID in der Kopfzeile flr Speicherantwort

4. Konfigurieren Sie den Cluster

Beim Konfigurieren des Clusters missen Sie mehrere Attribute angeben.

Kategorie HTTP-Verb Pfad
Cluster PATCH [Clusters/{Cluster_id}

Curl
Sie mussen die Cluster-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON-Eingang (Schritt 04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
b

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"netmask": "255.255.255.192",

"ntp servers": {"10.206.80.183"}

Verarbeitungsart
Synchron

Ausgabe
Keine

5. Abrufen des Node-Namens

Das Deploy Administration Utility generiert automatisch die Node-IDs und Namen, wenn ein Cluster erstellt
wird. Bevor Sie einen Node konfigurieren kdnnen, missen Sie die zugewiesene ID abrufen.

Kategorie HTTP-Verb Pfad
Cluster GET [Clusters/{Cluster_id}/Nodes

14

Curl
Sie mussen die Cluster-ID angeben.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Verarbeitungsart
Synchron

Ausgabe
 Array zeichnet alle, die einen einzelnen Knoten mit der eindeutigen ID und dem Namen beschreiben

6. Konfigurieren Sie die Knoten

Sie mussen die Grundkonfiguration flir den Knoten angeben. Dies ist der erste von drei API-Aufrufen, die zum
Konfigurieren eines Knotens verwendet werden.

Kategorie HTTP-Verb Pfad
Cluster PFAD [Clusters/{Cluster_id}/Nodes/{Node _id}

Curl
Sie mussen die Cluster-ID und die Node-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 06)
Sie mussen die Host-ID angeben, auf der der ONTAP Select-Knoten ausgefihrt wird.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Verarbeitungsart
Synchron

Ausgabe
Keine

15

7. Abrufen der Knoten-Netzwerke

Sie mussen die Daten und Managementnetzwerke identifizieren, die der Node im Single-Node-Cluster
verwendet. Das interne Netzwerk wird nicht mit einem Single-Node-Cluster verwendet.

Kategorie HTTP-Verb Pfad
Cluster GET [Clusters/{Cluster_id}/Nodes/{Node_id}/Netzwerke
Curl

Sie mussen die Cluster-ID und die Node-ID angeben.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Verarbeitungsart
Synchron

Ausgabe

» Array mit zwei Datensatzen, die jeweils ein einziges Netzwerk fir den Knoten beschreiben,
einschlief3lich der eindeutigen ID und des Zwecks

8. Konfigurieren Sie das Knoten Netzwerk

Sie mussen die Daten- und Managementnetzwerke konfigurieren. Das interne Netzwerk wird nicht mit einem
Single-Node-Cluster verwendet.

@ Geben Sie den folgenden API-Aufruf zweimal ein, einmal fur jedes Netzwerk.

Kategorie HTTP-Verb Pfad
Cluster PATCH [Clusters/{Cluster_id}/Nodes/{Node_id}/Networks/{Network_id}

Curl
Sie mussen die Cluster-ID, die Node-ID und die Netzwerk-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON-Eingang (Schritt 08)
Sie mussen den Namen des Netzwerks angeben.

"name": "sDOT Network"

16

Verarbeitungsart
Synchron

Ausgabe
Keine

9. Konfigurieren Sie den Knoten Speicher-Pool

Der letzte Schritt beim Konfigurieren eines Node ist das Verbinden eines Speicherpools. Sie kdnnen die
verflgbaren Speicherpools tiber den vSphere Web-Client oder optional iber die Rest-API implementieren
bestimmen.

Kategorie HTTP-Verb Pfad
Cluster PATCH [Clusters/{Cluster_id}/Nodes/{Node_id}/Networks/{Network_id}
Curl

Sie mussen die Cluster-ID, die Node-ID und die Netzwerk-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 09)
Die Poolkapazitat betragt 2 TB.

"pool array": |
{
"name": "sDOT-01",
"capacity": 2147483648000

Verarbeitungsart
Synchron

Ausgabe
Keine

10. Implementieren Sie den Cluster

Nachdem das Cluster und der Node konfiguriert wurden, kénnen Sie das Cluster implementieren.

Kategorie HTTP-Verb Pfad
Cluster POST [Clusters/{Cluster_id}/Deploy

17

Curl
Sie mussen die Cluster-ID angeben.

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

JSON-Eingang (Schritt 10)
Sie missen das Passwort flir das ONTAP-Administratorkonto angeben.

"ontap credentials": {
"password": "mypassword"

Verarbeitungsart
Asynchron

Ausgabe
+ Jobobjekt

Zugang mit Python
Bevor Sie mit Python auf die APl zugreifen

Sie mussen die Umgebung vorbereiten, bevor Sie die Python-Beispielskripte ausfuhren.

Bevor Sie die Python-Skripte ausfiihren, miissen Sie sicherstellen, dass die Umgebung ordnungsgeman
konfiguriert ist:

° Die jeweils aktuelle Version von Python2 muss installiert sein.
Die Beispielcodes wurden mit Python2 getestet. Sie sollten auch auf Python3 Ubertragbar sein, wurden
aber nicht auf Kompatibilitat getestet.

* Die Requests und urllib3-Bibliotheken missen installiert sein.
Sie kénnen je nach lhrer Umgebung Pip oder ein anderes Python Management Tool verwenden.

* Die Client-Workstation, auf der die Skripte ausgefiihrt werden, muss Uber einen Netzwerkzugriff auf die
virtuelle ONTAP Select-Bereitstellungsmaschine verfligen.

AuRerdem mussen Sie Uber die folgenden Informationen verflgen:

» |P-Adresse der virtuellen Maschine bereitstellen

* Benutzername und Kennwort eines Bereitstellungsadministrators

Verstehen Sie die Python-Skripte

Mit den Python-Beispielskripten kdnnen Sie mehrere verschiedene Aufgaben ausfihren.

18

Sie sollten die Skripte verstehen, bevor Sie sie in einer Live-Deploy-Instanz verwenden.

Gemeinsame Designeigenschaften

Die Skripte wurden mit folgenden gemeinsamen Merkmalen entworfen:

* Ausfuihrung uber die Befehlszeilenschnittstelle auf einem Client-Rechner
Sie kdnnen die Python-Skripte von jedem ordnungsgemaf’ konfigurierten Client-Computer aus ausfihren.
Weitere Informationen finden Sie unter before you begin.

* Akzeptieren Sie CLI-Eingabeparameter
Jedes Skript wird Uber die CLI Uber Eingabeparameter gesteuert.

* Eingabedatei lesen
Jedes Skript liest eine Eingabedatei basierend auf inrem Zweck. Wenn Sie ein Cluster erstellen oder
I6schen, missen Sie eine JSON-Konfigurationsdatei angeben. Beim Hinzufligen einer Node-Lizenz
mussen Sie eine glltige Lizenzdatei angeben.

* Verwenden Sie ein gemeinsames Supportmodul
Das gemeinsame Supportmodul Deploy Requests.py enthalt eine einzelne Klasse. Sie wird von jedem der
Skripte importiert und verwendet.

Erstellen eines Clusters

Sie kénnen mithilfe des Skripts Cluster.py einen ONTAP Select Cluster erstellen. Auf der Grundlage der CLI-
Parameter und der Inhalte der JSON-Eingabedatei kdnnen Sie das Skript in lhre Bereitstellungsumgebung wie
folgt andern:

* Hypervisor
Sie kdnnen ESXI oder KVM bereitstellen (je nach Bereitstellungsversion). Bei der Implementierung in ESXi
wird der Hypervisor durch vCenter gemanagt oder es kann ein Standalone-Host sein.

* ClustergroRRe
Sie kénnen ein Single-Node- oder Multi-Node-Cluster implementieren.

* Evaluierungs- oder Produktionslizenz
Sie kénnen einen Cluster mit einer Evaluierungs- oder erworbenen Lizenz fur die Produktion bereitstellen.

Die CLI-Eingabeparameter fir das Skript umfassen:

* Hostname oder IP-Adresse des Deploy-Servers
» Passwort fir das Admin-Benutzerkonto
* Name der JSON-Konfigurationsdatei

 Ausflihrliche Flag fur Nachrichtenausgabe

Fiigen Sie eine Node-Lizenz hinzu

Wenn Sie sich fiur die Bereitstellung eines Produktionsclusters entscheiden, missen Sie fiir jeden Knoten eine
Lizenz hinzufligen, indem Sie das Skript add_license.py verwenden. Sie kdnnen die Lizenz vor oder nach dem
Implementieren des Clusters hinzuftigen.

Die CLI-Eingabeparameter fir das Skript umfassen:

* Hostname oder IP-Adresse des Deploy-Servers

19

Passwort fur das Admin-Benutzerkonto

Name der Lizenzdatei

ONTAP-Benutzername mit Berechtigungen zum Hinzufligen der Lizenz
Kennwort fir den ONTAP-Benutzer

Loschen eines Clusters

Sie
Die

koénnen einen vorhandenen ONTAP Select-Cluster mithilfe des Skripts delete Cluster.py 16schen.
CLI-Eingabeparameter fliir das Skript umfassen:

Hostname oder IP-Adresse des Deploy-Servers
Passwort fir das Admin-Benutzerkonto

Name der JSON-Konfigurationsdatei

Python-Codebeispiele

Skript zum Erstellen eines Clusters

Sie kdnnen mit dem folgenden Skript auf der Grundlage von Parametern, die in dem
Skript definiert sind, und einer JSON-Eingabedatei einen Cluster erstellen.

#

!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

import json

import logging

20

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter|

'hostname']) :

log_info ("Registering vcenter {} credentials".format (vcenter]|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.

Does nothing if the host credential already exists on the Deploy.

mman

log_debug_ trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials’,
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password']}
deploy.post('/security/credentials', data)

def register unkown_hosts (deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

21

22

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log_debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

log_debug_ trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster configq))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),
data)
cluster id = resp.headers.get ('Location') .split('/") [-1]
return cluster id
def get node_ ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'"'
log _debug trace ()

response deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids [node['id'] for node in response.json() .get('records')]

return node ids

def add node_attributes(deploy, cluster id, node_ id, node):

Set all the needed properties on a node '''
log _debug trace()

log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:

23

24

log _and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format (data))
deploy.patch ('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
'''" Set the network information for a node '''

log_debug trace ()
log _info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_storage (deploy, cluster id, node id, node):

log_info ("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

''' Set all the storage information on a node '''

log_debug trace ()

log _info ("Adding node '{}' storage properties".format (node id))

deploy.post (

'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),

data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def

create cluster config(deploy, config):

'''" Construct a cluster config in the deploy server using the input

json data '''

def

log _debug trace ()
cluster id = add cluster_ attributes(deploy, config)

node ids = get node_ ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):
''"'" Deploy the cluster config to create the ONTAP Select VMs.

log debug trace ()
log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']]|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

data, wait for job=True)

25

26

def

log _debug trace():
stack = traceback.extract_stack()
parent function = stack[-2] [2]

logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getlLogger ('deploy') .error (msg)
exit (1)
def configure logging (verbose):
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)
def main (args) :

def

configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add _standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create cluster config(deploy, config)

deploy cluster (deploy, cluster id, config)

parseArgs () :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON fiur das Erstellen eines Clusters

Wenn Sie ein ONTAP Select-Cluster mithilfe der Python-Codebeispiele erstellen oder
I6schen, mussen Sie eine JSON-Datei als Eingabe fur das Skript bereitstellen. Sie

konnen das entsprechende JSON-Muster basierend auf Ihren Implementierungsplanen
kopieren und andern.

Single-Node-Cluster in ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

27

28

"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

by

"nodes": [
{

"serial number": "3200000nn",

"ip": "10.206.80.114",

"name": "node-1",

"networks": [

{

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
1,
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Single-Node-Cluster in ESXi iiber vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
I

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]

I

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username":"selectadmin"

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": |

{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian":null

by

{

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk":[],

"pools": [

{
"name": "storage-pool-1",

"capacity":5685190380748

Single-Node-Cluster auf KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username":"root"
}
]I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

30

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" : "CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Skript zum Hinzufiuigen einer Node-Lizenz

M
hi

32

it dem folgenden Skript kdnnen Sie eine Lizenz flr einen ONTAP Select-Knoten
nzufugen.

#!/usr/bin/env python

File: add license.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#

#

#

#

#

#

#

reproduce, modify and create derivatives of the sample code is granted
#

#

#

#

no less restrictive than those set forth herein.
#

#

import argparse
import logging
import json

from deploy requests import DeployRequests

def post_new_license (deploy, license filename) :
log_info('Posting a new license: {}'.format(license filename))

Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},
files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.
with open(license filename, 'rb') as f:
nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},
files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info ('Adding license for serial number: {}'.format (serial number))

deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

LI B

must be given.
data = {'ontap username': ontap username, 'ontap password':

ontap password}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and exit("The license file seems to be missing the

serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

33

34

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .
setLevel (logging.WARNING)

def main(args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put_free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post_new license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add_argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Skript zum Loschen eines Clusters

Sie kdnnen das folgende CLI-Skript verwenden, um einen vorhandenen Cluster zu
I6schen.

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S oS S S S S S S S S S S S ok o

import argparse

36

import json
import logging

from deploy requests import DeployRequests
def find cluster(deploy, cluster name) :

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':

log_info ("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format(cluster id), {'availability':
'powered off'}, True)

def delete_cluster(deploy, cluster id):
log_info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]

'cluster'] ['name'], cluster id))
offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()
if name == ' main ':
args = parseArgs ()
main (args)

Common Support-Modul

Alle Python-Skripte verwenden eine gemeinsame Python-Klasse in einem einzigen
Modul.

#!/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1s provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= S S S S S S SR S S SR S S S =

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit_on_grrors(response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def patch(self, path, data, wait for job=False):
self.logger.debug ('PATCH DATA: %s', data)
response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit_on_errors(response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit_on_errors(response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

39

40

def

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

find resource (self, path, name, value):

LI |

Returns the 'id' of the resource if it exists, otherwise None

None

self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status_code == 200 and response.json () .get (

resource

response

'num_records') >= 1:

resource = response.json().get('records') [0].get('id")
return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on
error '''
resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, query
=query opt))
if response.status code == 200
return response.json().get('num records')
return None
def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None
def wait for job(self, response, poll timeout=120):
last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])
while True:
response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure'l]:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: $s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response.text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod

def filter headers (response):
''' Returns a filtered set of the response headers '''

return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Skript zur GroRenanpassung der Cluster-Nodes

Mit dem folgenden Skript konnen Sie die Grofe der Nodes in einem ONTAP Select
Cluster andern.

#!/usr/bin/env python

=

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

S oS = S S $E S 3 o

solely for the purpose of researching, designing, developing and

42

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S H o =

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mman

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add_argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add_argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add _argument('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'
))
parser.add argument ('--instance-type', required=True, help=(

'The desired instance size of the nodes after the operation is

complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:

admin. '
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'’

' should be performed. The default is to apply the resize to all
nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args

.nodes]

43

44

changes['nodes'] = [

{'instance type': parsed args.instance type, 'id': node['id'

node 1in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data
then send

the request to the ONTAP Select Deploy server.

mman

logging.basicConfig (
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args|()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

]} for

and

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

45

http://www.netapp.com/TM\

	Automatisierung mit REST : ONTAP Select
	Inhalt
	Automatisierung mit REST
	Konzepte
	REST-Web-Services-Grundlage
	So erhalten Sie Zugriff auf die Bereitstellungs-API
	Implementieren der API-Versionierung
	Grundlegende betriebliche Eigenschaften
	API-Transaktion bei Anfrage und Reaktion
	Asynchrone Verarbeitung mit dem Job-Objekt

	Zugriff über einen Browser
	Bevor Sie mit einem Browser auf die API zugreifen
	Rufen Sie die Seite Dokumentation bereitstellen auf
	API-Aufruf verstehen und ausführen

	Workflow-Prozesse
	Vor Verwendung der API-Workflows
	Workflow 1: Erstellen eines Single-Node-Evaluierungsclusters auf ESXi

	Zugang mit Python
	Bevor Sie mit Python auf die API zugreifen
	Verstehen Sie die Python-Skripte

	Python-Codebeispiele
	Skript zum Erstellen eines Clusters
	JSON für das Erstellen eines Clusters
	Skript zum Hinzufügen einer Node-Lizenz
	Skript zum Löschen eines Clusters
	Common Support-Modul
	Skript zur Größenanpassung der Cluster-Nodes

