Automatisieren mit REST
ONTAP Select

NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/de-de/ontap-select-9161/concept_api_rest.html
on January 29, 2026. Always check docs.netapp.com for the latest.

Inhalt

Automatisieren mit REST

Konzepte
REST-Webservices-Grundlage fir die Bereitstellung und Verwaltung von ONTAP Select Clustern
So greifen Sie auf die ONTAP Select Deploy API zu
ONTAP Select Deploy API-Versionierung
Grundlegende Betriebsmerkmale der ONTAP Select Deploy API
Anforderungs- und Antwort-API-Transaktion fiir ONTAP Select
Asynchrone Verarbeitung mit dem Job-Objekt fir ONTAP Select
Zugriff mit einem Browser
Bevor Sie mit einem Browser auf die ONTAP Select Deploy API zugreifen
Greifen Sie auf die Dokumentationsseite zu ONTAP Select Deploy zu
Verstehen und Ausfiihren eines ONTAP Select Deploy API-Aufrufs
Workflow-Prozesse
Bevor Sie die ONTAP Select Deploy API-Workflows verwenden
Workflow 1: Erstellen Sie einen ONTAP Select Single-Node-Evaluierungscluster auf ESXi
Zugriff mit Python
Bevor Sie auf die ONTAP Select Deploy APl mit Python zugreifen
Verstehen Sie die Python-Skripte fir ONTAP Select Deploy
Python-Codebeispiele
Skript zum Erstellen eines ONTAP Select Clusters
JSON fir Skript zum Erstellen eines ONTAP Select Clusters
Skript zum Hinzufligen einer ONTAP Select Knotenlizenz
Skript zum Léschen eines ONTAP Select Clusters
Gemeinsames Support-Python-Modul fiir ONTAP Select
Skript zum Andern der GréRe von ONTAP Select Clusterknoten

© © © 0B WDNDN -2 2~

AW W WN -2 2 A A A a4 a2 a A
-~ N O~ 0O © © 0 0 0o -~ O O O

Automatisieren mit REST

Konzepte

REST-Webservices-Grundlage flir die Bereitstellung und Verwaltung von ONTAP
Select Clustern

Representational State Transfer (REST) ist ein Stil zur Erstellung verteilter
Webanwendungen. Bei der Entwicklung einer Webservice-API etabliert es eine Reihe
von Technologien und Best Practices fur die Bereitstellung serverbasierter Ressourcen
und die Verwaltung ihrer Zustande. REST nutzt gangige Protokolle und Standards und
bietet so eine flexible Grundlage flr die Bereitstellung und Verwaltung von ONTAP Select
Clustern.

Architektur und klassische Einschrankungen

REST wurde von Roy Fielding in seiner Doktorarbeit formal formuliert "Dissertation" an der UC Irvine im Jahr
2000. Es definiert einen Architekturstil durch eine Reihe von Einschrankungen, die zusammengenommen
webbasierte Anwendungen und die zugrunde liegenden Protokolle verbessern. Die Einschrankungen
etablieren eine RESTful-Webdienstanwendung basierend auf einer Client/Server-Architektur unter
Verwendung eines zustandslosen Kommunikationsprotokolls.

Ressourcen und staatliche Vertretung

Ressourcen sind die grundlegenden Komponenten eines webbasierten Systems. Zu den ersten
Entwurfsaufgaben beim Erstellen einer REST-Webdienstanwendung gehdren:

« Identifizierung system- oder serverbasierter Ressourcen. Jedes System nutzt und verwaltet Ressourcen.
Eine Ressource kann eine Datei, eine Geschaftstransaktion, ein Prozess oder eine Verwaltungseinheit
sein. Eine der ersten Aufgaben beim Entwurf einer Anwendung auf Basis von REST-Webdiensten ist die
Identifizierung der Ressourcen.

« Definition von Ressourcenzustanden und zugehdrigen Zustandsoperationen Ressourcen befinden sich
immer in einem von einer begrenzten Anzahl von Zustanden. Die Zustande sowie die zugehdrigen
Operationen, die zur Zustandsanderung verwendet werden, missen klar definiert sein.

Zwischen Client und Server werden Nachrichten ausgetauscht, um auf die Ressourcen zuzugreifen und ihren
Status gemaf dem allgemeinen CRUD-Modell (Create, Read, Update und Delete) zu andern.

URI-Endpunkte

Jede REST-Ressource muss mithilfe eines klar definierten Adressierungsschemas definiert und bereitgestellt
werden. Die Endpunkte, an denen die Ressourcen lokalisiert und identifiziert werden, verwenden einen
Uniform Resource Identifier (URI). Der URI bietet einen allgemeinen Rahmen fir die Erstellung eines
eindeutigen Namens fir jede Ressource im Netzwerk. Der Uniform Resource Locator (URL) ist ein URI-Typ,
der in Webdiensten zur ldentifizierung und zum Zugriff auf Ressourcen verwendet wird. Ressourcen werden
typischerweise in einer hierarchischen Struktur ahnlich einem Dateiverzeichnis bereitgestellt.

HTTP-Nachrichten

HTTP (Hypertext Transfer Protocol) ist das Protokoll, das vom Webdienst-Client und -Server zum Austausch
von Anforderungs- und Antwortnachrichten zu Ressourcen verwendet wird. Beim Entwurf einer

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Webdienstanwendung werden HTTP-Verben (wie GET und POST) den Ressourcen und den entsprechenden
Statusverwaltungsaktionen zugeordnet.

HTTP ist zustandslos. Um eine Reihe zusammengehdriger Anfragen und Antworten einer Transaktion
zuzuordnen, missen daher zusatzliche Informationen in die HTTP-Header der Anfrage-/Antwort-Datenfliisse
aufgenommen werden.

JSON-Formatierung

Informationen kénnen auf verschiedene Weise strukturiert und zwischen Client und Server Ubertragen werden.
Die beliebteste Option (und die mit der Deploy REST API verwendete) ist JavaScript Object Notation (JSON).
JSON ist ein Industriestandard fur die Darstellung einfacher Datenstrukturen in Klartext und wird zur
Ubertragung von Statusinformationen verwendet, die die Ressourcen beschreiben.

So greifen Sie auf die ONTAP Select Deploy API zu

Aufgrund der inharenten Flexibilitat von REST-Webdiensten kann auf die ONTAP Select
Deploy API auf verschiedene Arten zugegriffen werden.

Native Benutzeroberflache des Bereitstellungsprogramms

Der priméare Zugriff auf die API erfolgt Uber die ONTAP Select Deploy-Webbenutzeroberflache. Der Browser
ruft die APl auf und formatiert die Daten entsprechend dem Design der Benutzeroberflache neu. Sie kdnnen
auch Uber die Befehlszeilenschnittstelle des Deploy-Dienstprogramms auf die API zugreifen.

ONTAP Select Deploy Online-Dokumentationsseite

Die Online-Dokumentationsseite von ONTAP Select Deploy bietet einen alternativen Zugriffspunkt bei
Verwendung eines Browsers. Neben der Moglichkeit, einzelne API-Aufrufe direkt auszufihren, enthalt die
Seite auch eine detaillierte Beschreibung der API, einschlief3lich Eingabeparametern und weiteren Optionen
fur jeden Aufruf. Die API-Aufrufe sind in verschiedene Funktionsbereiche oder Kategorien unterteilt.

Benutzerdefiniertes Programm

Sie kdnnen mit verschiedenen Programmiersprachen und Tools auf die Deploy-API zugreifen. Beliebte
Optionen sind Python, Java und cURL. Ein Programm, Skript oder Tool, das die API nutzt, fungiert als REST-
Webservice-Client. Die Verwendung einer Programmiersprache ermdéglicht Ihnen ein besseres Verstandnis der
API und bietet die Mdglichkeit, ONTAP Select Bereitstellungen zu automatisieren.

ONTAP Select Deploy API-Versionierung

Die in ONTAP Select Deploy enthaltene REST-API erhalt eine Versionsnummer. Die API-
Versionsnummer ist unabhangig von der Deploy-Versionsnummer. Sie sollten sich Uber
die in Ihrer Deploy-Version enthaltene API-Version und die moglichen Auswirkungen auf
Ihre Nutzung der API im Klaren sein.

Die aktuelle Version des Deploy-Verwaltungsprogramms enthalt Version 3 der REST-API. Frihere Versionen
des Deploy-Dienstprogramms enthalten die folgenden API-Versionen:

Bereitstellen von 2.8 und hoher
ONTAP Select Deploy 2.8 und alle spateren Versionen enthalten Version 3 der REST-API.

Bereitstellen von 2.7.2 und friiher
ONTAP Select Deploy 2.7.2 und alle friiheren Versionen enthalten Version 2 der REST-API.

Die Versionen 2 und 3 der REST-API sind nicht kompatibel. Wenn Sie von einer friiheren

@ Version, die Version 2 der API enthalt, auf Deploy 2.8 oder héher aktualisieren, miissen Sie den
gesamten vorhandenen Code aktualisieren, der direkt auf die API zugreift, sowie alle Skripts,
die die Befehlszeilenschnittstelle verwenden.

Grundlegende Betriebsmerkmale der ONTAP Select Deploy API

REST bietet zwar einen gemeinsamen Satz an Technologien und Best Practices, die
Details der einzelnen APIs kdnnen jedoch je nach Designentscheidung variieren. Machen
Sie sich vor der Verwendung der ONTAP Select Deploy APl mit den Details und
Betriebsmerkmalen vertraut.

Hypervisor-Host im Vergleich zu ONTAP Select Knoten

Ein Hypervisor-Host ist die zentrale Hardwareplattform, auf der eine virtuelle ONTAP Select Maschine gehostet
wird. Wenn eine virtuelle ONTAP Select Maschine auf einem Hypervisor-Host bereitgestellt und aktiv ist, gilt
sie als ONTAP Select-Knoten. Mit Version 3 der Deploy REST API sind Host- und Knotenobjekte getrennt und
unterschiedlich. Dies ermdglicht eine Eins-zu-viele-Beziehung, bei der ein oder mehrere ONTAP Select Knoten
auf demselben Hypervisor-Host ausgefiihrt werden kénnen.

Objektkennungen

Jede Ressourceninstanz oder jedes Objekt erhalt bei der Erstellung eine eindeutige Kennung. Diese
Kennungen sind innerhalb einer bestimmten Instanz von ONTAP Select Deploy global eindeutig. Nach dem
Ausfiihren eines API-Aufrufs, der eine neue Objektinstanz erstellt, wird der zugehdrige ID-Wert im folgenden
Format an den Aufrufer zurlickgegeben: 1ocation Header der HTTP-Antwort. Sie kénnen die Kennung
extrahieren und sie bei nachfolgenden Aufrufen verwenden, wenn Sie auf die Ressourceninstanz verweisen.

Inhalt und interne Struktur der Objektkennungen kdnnen sich jederzeit andern. Sie sollten die
Kennungen bei den entsprechenden API-Aufrufen nur nach Bedarf verwenden, wenn Sie auf die
zugehdrigen Objekte verweisen.

Anforderungskennungen

Jeder erfolgreichen API-Anfrage wird eine eindeutige Kennung zugewiesen. Die Kennung wird in der
request-id Header der zugehorigen HTTP-Antwort. Mit einer Anforderungskennung kdnnen Sie die
Aktivitaten einer einzelnen APIl-Anforderungs-Antwort-Transaktion kollektiv referenzieren. Beispielsweise
kénnen Sie alle Ereignismeldungen fir eine Transaktion anhand der Anforderungs-ID abrufen.

Synchrone und asynchrone Aufrufe

Es gibt zwei Hauptmethoden, mit denen ein Server eine von einem Client empfangene HTTP-Anforderung
ausfuhrt:

» Synchron Der Server fiihrt die Anfrage sofort aus und antwortet mit einem Statuscode von 200, 201 oder
204.

» Asynchron: Der Server akzeptiert die Anfrage und antwortet mit dem Statuscode 202. Dies zeigt an, dass
der Server die Clientanfrage akzeptiert und eine Hintergrundaufgabe zum AbschlieRen der Anfrage

gestartet hat. Der endgiltige Erfolg oder Misserfolg ist nicht sofort verfligbar und muss durch zusatzliche
API-Aufrufe ermittelt werden.

Bestétigen Sie den Abschluss eines lang laufenden Auftrags

Im Aligemeinen werden Vorgange, deren Ausfiihrung langere Zeit in Anspruch nehmen kann, asynchron
mithilfe einer Hintergrundaufgabe auf dem Server verarbeitet. Mit der Deploy-REST-API wird jede
Hintergrundaufgabe durch ein Job-Objekt verankert, das die Aufgabe verfolgt und Informationen wie den
aktuellen Status bereitstellt. Ein Job-Objekt mit seiner eindeutigen Kennung wird in der HTTP-Antwort
zurlickgegeben, nachdem eine Hintergrundaufgabe erstellt wurde.

Sie kénnen das Job-Objekt direkt abfragen, um den Erfolg oder Misserfolg des zugehorigen API-Aufrufs zu
ermitteln. Weitere Informationen finden Sie unter Asynchrone Verarbeitung mit dem Job-Objekt.

Neben der Verwendung des Job-Objekts gibt es noch weitere Méglichkeiten, den Erfolg oder Misserfolg einer
Anfrage zu bestimmen, darunter:

* Ereignismeldungen: Sie kdnnen alle Ereignismeldungen, die einem bestimmten API-Aufruf zugeordnet
sind, mithilfe der Anforderungs-ID abrufen, die mit der urspriinglichen Antwort zuriickgegeben wurde. Die
Ereignismeldungen enthalten in der Regel einen Hinweis auf Erfolg oder Misserfolg und kdnnen auch beim
Debuggen eines Fehlerzustands hilfreich sein.

* Ressourcenzustand oder -status Mehrere der Ressourcen verfligen Uber einen Zustands- oder Statuswert,
den Sie abfragen kénnen, um indirekt den Erfolg oder Misserfolg einer Anfrage zu bestimmen.

Sicherheit

Die Deploy-API verwendet die folgenden Sicherheitstechnologien:

» Transport Layer Security Der gesamte zwischen Deploy-Server und Client gesendete Netzwerkverkehr
wird Uber TLS verschlisselt. Die Verwendung des HTTP-Protokolls tber einen unverschlisselten Kanal
wird nicht unterstitzt. TLS Version 1.2 wird unterstitzt.

* HTTP-Authentifizierung Fur jede API-Transaktion wird die Basisauthentifizierung verwendet. Jeder Anfrage
wird ein HTTP-Header hinzugefligt, der den Benutzernamen und das Kennwort in einer Base64-
Zeichenfolge enthalt.

Anforderungs- und Antwort-API-Transaktion fur ONTAP Select

Jeder Deploy-API-Aufruf wird als HTTP-Anfrage an die Deploy-VM ausgefuhrt, die eine
entsprechende Antwort an den Client generiert. Dieses Anfrage-/Antwort-Paar gilt als
API-Transaktion. Bevor Sie die Deploy-API verwenden, sollten Sie mit den verfugbaren
Eingabevariablen zur Steuerung einer Anfrage und dem Inhalt der Antwortausgabe
vertraut sein.

Eingabevariablen, die eine API-Anfrage steuern

Sie kénnen die Verarbeitung eines API-Aufrufs Uber in der HTTP-Anforderung festgelegte Parameter steuern.
Anforderungsheader
Sie mussen mehrere Header in die HTTP-Anforderung aufnehmen, darunter:

¢ Inhaltstyp: Wenn der Anforderungstext JSON enthalt, muss dieser Header auf application/json gesetzt
werden.

* Akzeptieren. Wenn der Antworttext JSON enthalt, muss dieser Header auf application/json gesetzt werden.

* Autorisierung: Die Basisauthentifizierung muss mit dem Benutzernamen und dem Kennwort in einer
Base64-Zeichenfolge codiert sein.

Anforderungstext

Der Inhalt des Anforderungstexts variiert je nach Aufruf. Der HTTP-Anforderungstext besteht aus einem der
folgenden Elemente:

+ JSON-Objekt mit Eingabevariablen (z. B. dem Namen eines neuen Clusters)
e Leer
Filterobjekte

Wenn Sie einen API-Aufruf mit GET ausfuhren, kdnnen Sie die zuriickgegebenen Objekte basierend auf einem
beliebigen Attribut einschréanken oder filtern. Sie kdnnen beispielsweise einen genauen Wert angeben, der
Ubereinstimmen soll:

<field>=<query value>

Neben der exakten Ubereinstimmung stehen weitere Operatoren zur Verfligung, um eine Reihe von Objekten
Uber einen Wertebereich zurlickzugeben. ONTAP Select unterstiitzt die unten gezeigten Filteroperatoren.

Operator Beschreibung

= Gleich

< Weniger als

> Groler als

& Kleiner oder gleich

>= Grolier als oder gleich
Oder

! Ungleich

Gieriger Platzhalter

Sie kénnen auch eine Reihe von Objekten zurtickgeben, basierend darauf, ob ein bestimmtes Feld festgelegt
ist oder nicht, indem Sie das Schlisselwort ,Null“ oder seine Negation (!'null) als Teil der Abfrage verwenden.

Auswahlen von Objektfeldern

StandardmaRig gibt ein API-Aufruf mit GET nur die Attribute zurtick, die das Objekt bzw. die Objekte eindeutig
identifizieren. Dieser Mindestsatz an Feldern dient als Schlissel fir jedes Objekt und variiert je nach Objekttyp.
Sie kénnen zusatzliche Objekteigenschaften mit dem Abfrageparameter ,Felder” wie folgt auswahlen:

* Preiswerte Felder angeben fields=* um die Objektfelder abzurufen, die im lokalen Serverspeicher
verwaltet werden oder fiir deren Zugriff nur eine geringe Verarbeitung erforderlich ist.

* Teure Felder angeben fields=** um alle Objektfelder abzurufen, einschlieRlich derjenigen, flr deren
Zugriff zusatzliche Serververarbeitung erforderlich ist.

* Benutzerdefinierte Feldauswahl Verwenden fields=FIELDNAME um das gewUlnschte Feld genau
anzugeben. Wenn Sie mehrere Felder anfordern, missen die Werte durch Kommas und ohne Leerzeichen

getrennt werden.

Als Best Practice sollten Sie immer die gewlinschten Felder angeben. Rufen Sie die

kostengtinstigen und teuren Felder nur bei Bedarf ab. Die Klassifizierung in kostenglinstige und
teure Felder wird von NetApp anhand interner Performanceanalysen festgelegt. Die
Klassifizierung fiir ein bestimmtes Feld kann sich jederzeit andern.

Sortieren von Objekten im Ausgabesatz

Die Datensatze einer Ressourcensammlung werden in der vom Objekt definierten Standardreihenfolge
zurtckgegeben. Sie konnen die Reihenfolge mithilfe des Abfrageparameters order_by mit dem Feldnamen und
der Sortierrichtung wie folgt andern:

order by=<field name> asc|desc

Sie kdnnen beispielsweise das Typfeld in absteigender Reihenfolge und anschlief3end die ID in aufsteigender
Reihenfolge sortieren:
order by=type desc, id asc

Wenn Sie mehrere Parameter angeben, missen Sie die Felder durch ein Komma trennen.

Pagination

Wenn Sie einen API-Aufruf mit GET ausfuhren, um auf eine Sammlung von Objekten desselben Typs
zuzugreifen, werden standardmaRig alle tibereinstimmenden Objekte zurlickgegeben. Bei Bedarf konnen Sie
die Anzahl der zurlickgegebenen Datensatze mit dem Abfrageparameter max_records in der Anfrage
begrenzen. Beispiel:

max records=20

Bei Bedarf kdnnen Sie diesen Parameter mit anderen Abfrageparametern kombinieren, um das Ergebnis
einzugrenzen. Beispielsweise gibt die folgende Abfrage bis zu 10 Systemereignisse zurlck, die nach der
angegebenen Zeit generiert wurden:

time= 2019-04-04T15:41:29.140265Z&max _records=10

Sie kdnnen mehrere Anfragen stellen, um die Ereignisse (oder einen beliebigen Objekttyp) durchzublattern.
Jeder nachfolgende API-Aufruf sollte einen neuen Zeitwert basierend auf dem letzten Ereignis im letzten
Ergebnissatz verwenden.

Interpretieren einer API-Antwort

Jede API-Anfrage generiert eine Antwort an den Client. Sie kdnnen die Antwort Gberprifen, um festzustellen,
ob sie erfolgreich war, und bei Bedarf weitere Daten abrufen.

HTTP-Statuscode

Die von der Deploy REST API verwendeten HTTP-Statuscodes werden unten beschrieben.

Code Bedeutung Beschreibung
200 OK Zeigt den Erfolg von Aufrufen an, die kein neues Objekt erstellen.
201 Erstellt Ein Objekt wurde erfolgreich erstellt. Der Location-Antwortheader

enthalt die eindeutige Kennung fir das Objekt.

Code Bedeutung Beschreibung
202 Akzeptiert Zur Ausfiihrung der Anforderung wurde ein zeitintensiver
Hintergrundjob gestartet, der Vorgang ist jedoch noch nicht
abgeschlossen.
400 Ungultige Die Anfrageeingabe wird nicht erkannt oder ist unpassend.
Anforderung
403 Verboten Der Zugriff wird aufgrund eines Autorisierungsfehlers verweigert.
404 Nicht gefunden Die in der Anfrage genannte Ressource existiert nicht.
405 Methode nicht Das HTTP-Verb in der Anforderung wird fur die Ressource nicht
zulassig unterstitzt.
409 Konflikt Der Versuch, ein Objekt zu erstellen, ist fehlgeschlagen, da das Objekt
bereits vorhanden ist.
500 Interner Fehler Auf dem Server ist ein allgemeiner interner Fehler aufgetreten.
501 Nicht implementiert Die URI ist bekannt, kann die Anfrage jedoch nicht ausfihren.
Antwortheader

Die vom Deploy-Server generierte HTTP-Antwort enthalt mehrere Header, darunter:

» Anfrage-ID: Jeder erfolgreichen API-Anfrage wird eine eindeutige Anfragekennung zugewiesen.

« Standort: Wenn ein Objekt erstellt wird, enthalt der Standort-Header die vollstandige URL zum neuen
Objekt einschlieRlich der eindeutigen Objektkennung.

Antworttext

Der Inhalt der mit einer API-Anfrage verkniipften Antwort unterscheidet sich je nach Objekt, Verarbeitungstyp
und Erfolg oder Misserfolg der Anfrage. Der Antworttext wird in JSON gerendert.

* Einzelnes Objekt Ein einzelnes Objekt kann basierend auf der Anforderung mit einer Reihe von Feldern
zurlckgegeben werden. Beispielsweise konnen Sie GET verwenden, um ausgewahlte Eigenschaften
eines Clusters mithilfe der eindeutigen Kennung abzurufen.

* Mehrere Objekte Mehrere Objekte aus einer Ressourcensammlung konnen zuriickgegeben werden. In
allen Fallen wird ein einheitliches Format verwendet, mit num records Gibt die Anzahl der Datenséatze
und Datensatze an, die ein Array der Objektinstanzen enthalten. Sie kdnnen beispielsweise alle in einem
bestimmten Cluster definierten Knoten abrufen.

« Job-Objekt: Wenn ein API-Aufruf asynchron verarbeitet wird, wird ein Job-Objekt zurlickgegeben, das die
Hintergrundaufgabe verankert. Beispielsweise wird die POST-Anforderung zum Bereitstellen eines

Clusters asynchron verarbeitet und gibt ein Job-Objekt zurtick.

Fehlerobjekt: Wenn ein Fehler auftritt, wird immer ein Fehlerobjekt zuriickgegeben. Beispielsweise erhalten
Sie eine Fehlermeldung, wenn Sie versuchen, einen Cluster mit einem bereits vorhandenen Namen zu
erstellen.

Leer: In bestimmten Fallen werden keine Daten zuriickgegeben und der Antworttext ist leer. Beispielsweise
ist der Antworttext leer, nachdem mit DELETE ein vorhandener Host geldscht wurde.

Asynchrone Verarbeitung mit dem Job-Objekt flir ONTAP Select

Einige Deploy-API-Aufrufe, insbesondere solche zum Erstellen oder Andern einer
Ressource, kdnnen langer dauern als andere Aufrufe. ONTAP Select Deploy verarbeitet
diese lang laufenden Anfragen asynchron.

Asynchrone Anforderungen, beschrieben mithilfe des Job-Objekts

Nach einem asynchron ausgefihrten API-Aufruf zeigt der HTTP-Antwortcode 202 an, dass die Anfrage
erfolgreich validiert und akzeptiert, aber noch nicht abgeschlossen wurde. Die Anfrage wird als
Hintergrundaufgabe verarbeitet, die nach der ersten HTTP-Antwort an den Client weiterlauft. Die Antwort
enthalt das Job-Objekt, das die Anfrage verankert, einschlief3lich seiner eindeutigen Kennung.

@ Um zu ermitteln, welche API-Aufrufe asynchron ausgeflihrt werden, sollten Sie auf der Online-
Dokumentationsseite von ONTAP Select Deploy nachsehen.

Abfragen des mit einer API-Anforderung verkniipften Job-Objekts

Das in der HTTP-Antwort zuriickgegebene Job-Objekt enthalt mehrere Eigenschaften. Sie kdnnen die
Statuseigenschaft abfragen, um festzustellen, ob die Anforderung erfolgreich abgeschlossen wurde. Ein Job-
Objekt kann einen der folgenden Zustande aufweisen:

* In der Warteschlange

* Wird ausgefuhrt

* Erfolg

* Versagen
Es gibt zwei Techniken, die Sie beim Abfragen eines Job-Objekts verwenden kénnen, um einen Endzustand
fur die Aufgabe zu erkennen (entweder Erfolg oder Misserfolg):

« Standard-Polling-Anfrage Aktueller Jobstatus wird sofort zurlickgegeben

« Der Auftragsstatus fir lange Polling-Anfragen wird nur zurtickgegeben, wenn eines der folgenden
Ereignisse eintritt:

o Der Status hat sich vor dem in der Abfrageanforderung angegebenen Datums-/Uhrzeitwert gedndert.
o Timeout-Wert ist abgelaufen (1 bis 120 Sekunden)

Standard-Polling und Long-Polling verwenden denselben API-Aufruf zum Abfragen eines Job-Objekts. Eine
Long-Polling-Anforderung enthalt jedoch zwei Abfrageparameter: poll timeout Und last modified.

Sie sollten immer Long Polling verwenden, um die Arbeitslast auf der virtuellen
Bereitstellungsmaschine zu reduzieren.
Allgemeine Vorgehensweise zum Ausgeben einer asynchronen Anfrage
Sie kénnen das folgende allgemeine Verfahren verwenden, um einen asynchronen API-Aufruf abzuschlie3en:
1. FUhren Sie den asynchronen API-Aufruf aus.

2. Erhalten Sie eine HTTP-Antwort 202, die die erfolgreiche Annahme der Anfrage anzeigt.

3. Extrahieren Sie die Kennung fiir das Job-Objekt aus dem Antworttext.

4. Fuhren Sie innerhalb einer Schleife in jedem Zyklus Folgendes aus:
a. Holen Sie sich den aktuellen Status des Jobs mit einer Long-Poll-Anfrage

b. Wenn sich der Job in einem nicht-terminalen Zustand befindet (in der Warteschlange, lauft), fihren Sie
die Schleife erneut aus.

5. Stoppen Sie, wenn der Job einen Endzustand (Erfolg, Fehler) erreicht.

Zugriff mit einem Browser

Bevor Sie mit einem Browser auf die ONTAP Select Deploy API zugreifen

Bevor Sie die Online-Dokumentationsseite ,Deploy” verwenden, sollten Sie sich Uber
mehrere Dinge im Klaren sein.

Bereitstellungsplan

Wenn Sie API-Aufrufe im Rahmen bestimmter Bereitstellungs- oder Verwaltungsaufgaben ausfliihren méchten,
sollten Sie einen Bereitstellungsplan erstellen. Diese Plane kdnnen formell oder informell sein und enthalten in
der Regel Ihre Ziele und die zu verwendenden API-Aufrufe. Weitere Informationen finden Sie unter Workflow-
Prozesse mit der Deploy REST API.

JSON-Beispiele und Parameterdefinitionen

Jeder API-Aufruf wird auf der Dokumentationsseite in einem einheitlichen Format beschrieben. Der Inhalt
umfasst Implementierungshinweise, Abfrageparameter und HTTP-Statuscodes. Darliber hinaus kdnnen Sie
Details zum JSON-Code anzeigen, der mit den APIl-Anfragen und -Antworten verwendet wird:

 Beispielwert: Wenn Sie bei einem API-Aufruf auf Beispielwert klicken, wird eine typische JSON-Struktur fur
den Aufruf angezeigt. Sie kdnnen das Beispiel nach Bedarf anpassen und als Eingabe fiir lhre Anfrage
verwenden.

» Modell Wenn Sie auf Modell klicken, wird eine vollstandige Liste der JSON-Parameter mit einer
Beschreibung fir jeden Parameter angezeigt.

Vorsicht beim Ausgeben von API-Aufrufen

Alle API-Vorgange, die Sie Uber die Dokumentationsseite ,Bereitstellen ausflhren, sind Live-Vorgange.
Achten Sie darauf, nicht versehentlich Konfigurationen oder andere Daten zu erstellen, zu aktualisieren oder
zu léschen.

Greifen Sie auf die Dokumentationsseite zu ONTAP Select Deploy zu

Sie mussen auf die Online-Dokumentationsseite von ONTAP Select Deploy zugreifen, um
die API-Dokumentation anzuzeigen und manuell einen API-Aufruf zu tatigen.

Bevor Sie beginnen

Sie mussen Uber Folgendes verflgen:

* IP-Adresse oder Domanenname der ONTAP Select Deploy-Virtual-Machine

* Benutzername und Passwort fir den Administrator

Schritte

1. Geben Sie die URL in Ihren Browser ein und driicken Sie Enter:
https://<ip address>/api/ui
2. Signin.

Ergebnis

Die Webseite zur Bereitstellungsdokumentation wird mit den nach Kategorien sortierten Anrufen unten auf der
Seite angezeigt.

Verstehen und Ausfiihren eines ONTAP Select Deploy API-Aufrufs

Die Details aller API-Aufrufe werden auf der Online-Dokumentationswebseite von ONTAP
Select Deploy in einem einheitlichen Format dokumentiert und angezeigt. Durch das
Verstandnis eines einzelnen API-Aufrufs konnen Sie auf die Details aller API-Aufrufe
zugreifen und diese interpretieren.

Bevor Sie beginnen

Sie mussen bei der Online-Dokumentationswebseite von ONTAP Select Deploy angemeldet sein. Sie
bendtigen die eindeutige Kennung, die Ihrem ONTAP Select Cluster bei der Erstellung des Clusters
zugewiesen wurde.

Informationen zu diesem Vorgang

Sie kénnen die Konfigurationsinformationen eines ONTAP Select Clusters anhand seiner eindeutigen Kennung
abrufen. In diesem Beispiel werden alle als kostenglinstig klassifizierten Felder zurlickgegeben. Es empfiehlt
sich jedoch, nur die benétigten Felder anzufordern.

Schritte
1. Scrollen Sie auf der Hauptseite nach unten und klicken Sie auf Cluster.

2. Klicken Sie auf GET /clusters/{cluster_id}, um die Details des API-Aufrufs anzuzeigen, der zum
Zurlckgeben von Informationen zu einem ONTAP Select Cluster verwendet wird.

Workflow-Prozesse

Bevor Sie die ONTAP Select Deploy API-Workflows verwenden

Sie sollten sich darauf vorbereiten, die Workflow-Prozesse zu Uberprufen und zu
verwenden.

Verstehen Sie die in den Workflows verwendeten API-Aufrufe

Die Online-Dokumentationsseite von ONTAP Select enthalt die Details jedes REST-API-Aufrufs. Anstatt diese
Details hier zu wiederholen, enthalt jeder in den Workflow-Beispielen verwendete API-Aufruf nur die
Informationen, die Sie zum Auffinden des Aufrufs auf der Dokumentationsseite bendtigen. Nachdem Sie einen
bestimmten API-Aufruf gefunden haben, kdnnen Sie die vollstandigen Details des Aufrufs Uberprtifen,
einschliel3lich der Eingabeparameter, Ausgabeformate, HTTP-Statuscodes und des Anfrageverarbeitungstyps.

Die folgenden Informationen sind fiir jeden API-Aufruf innerhalb eines Workflows enthalten, um das Auffinden
des Aufrufs auf der Dokumentationsseite zu erleichtern:

10

« Kategorie Die API-Aufrufe sind auf der Dokumentationsseite in funktional verwandte Bereiche oder
Kategorien unterteilt. Um einen bestimmten API-Aufruf zu finden, scrollen Sie zum Ende der Seite und
klicken Sie auf die entsprechende API-Kategorie.

* HTTP-Verb: Das HTTP-Verb identifiziert die fir eine Ressource ausgeflihrte Aktion. Jeder API-Aufruf wird
Uber ein einzelnes HTTP-Verb ausgefihrt.

» Pfad: Der Pfad bestimmt die spezifische Ressource, auf die die Aktion im Rahmen eines Aufrufs
angewendet wird. Die Pfadzeichenfolge wird an die Kern-URL angehangt, um die vollstandige URL zur
Identifizierung der Ressource zu bilden.

Erstellen Sie eine URL fiir den direkten Zugriff auf die REST-API

Zusatzlich zur ONTAP Select Dokumentationsseite konnen Sie auch direkt Gber eine Programmiersprache wie
Python auf die Deploy REST API zugreifen. In diesem Fall unterscheidet sich die Kern-URL geringfligig von
der URL, die beim Zugriff auf die Online-Dokumentationsseite verwendet wird. Beim direkten Zugriff auf die
API missen Sie /api an die Domanen- und Portzeichenfolge anhangen. Beispiel:
http://deploy.mycompany.com/api

Workflow 1: Erstellen Sie einen ONTAP Select Single-Node-Evaluierungscluster auf
ESXi

Sie konnen einen ONTAP Select Cluster mit einem Knoten auf einem von vCenter
verwalteten VMware ESXi-Host bereitstellen. Der Cluster wird mit einer
Evaluierungslizenz erstellt.

Der Workflow zur Clustererstellung unterscheidet sich in den folgenden Situationen:

» Der ESXi-Host wird nicht von vCenter verwaltet (eigenstéandiger Host).

* Innerhalb des Clusters werden mehrere Knoten oder Hosts verwendet

 Der Cluster wird in einer Produktionsumgebung mit einer erworbenen Lizenz bereitgestellt
* Der KVM-Hypervisor wird anstelle von VMware ESXi verwendet

1. Registrieren Sie die Anmeldeinformationen fiir den vCenter-Server

Bei der Bereitstellung auf einem ESXi-Host, der von einem vCenter-Server verwaltet wird, missen Sie vor der
Registrierung des Hosts Anmeldeinformationen hinzufligen. Das Deploy-Verwaltungsprogramm kann diese
Anmeldeinformationen dann zur Authentifizierung bei vCenter verwenden.

Kategorie HTTP-Verb Weg

Einsetzen POST /Sicherheit/Anmeldeinformationen

Locken

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

JSON-Eingabe (Schritt 01)

11

"hostname": "vcenter.company-demo.com",

"type": "vcenter",
"username": "misteradmin@vsphere.local",
"password": "mypassword"
}
Verarbeitungstyp
Asynchron
Ausgabe

« Anmeldeinformations-ID im Standortantwortheader
» Job-Objekt
2. Registrieren Sie einen Hypervisor-Host

Sie mussen einen Hypervisor-Host hinzufligen, auf dem die virtuelle Maschine mit dem ONTAP Select Knoten
ausgefihrt wird.

Kategorie HTTP-Verb Weg
Cluster POST /Gastgeber
Locken

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts"

JSON-Eingabe (Schritt 02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"
}
]
}
Verarbeitungstyp
Asynchron
Ausgabe

* Host-ID im Standortantwortheader
+ Job-Objekt

12

3. Erstellen Sie einen Cluster

Wenn Sie einen ONTAP Select Cluster erstellen, wird die grundlegende Clusterkonfiguration registriert und die
Knotennamen werden automatisch von Deploy generiert.

Kategorie HTTP-Verb Weg
Cluster POST /Cluster
Locken

Der Abfrageparameter node_count sollte fiir einen Einzelknotencluster auf 1 gesetzt werden.

curl -1X POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1'

JSON-Eingabe (Schritt 03)

{

"name": "my cluster"
}
Verarbeitungstyp
Synchron
Ausgabe

 Cluster-ID im Standortantwortheader

4. Konfigurieren Sie den Cluster

Es gibt mehrere Attribute, die Sie im Rahmen der Clusterkonfiguration angeben mussen.

Kategorie HTTP-Verb Weg
Cluster PATCH [clusters/{cluster_id}
Locken

Sie mussen die Cluster-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

JSON-Eingabe (Schritt 04)

13

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
b
"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Verarbeitungstyp
Synchron

Ausgabe
Keine

5. Rufen Sie den Knotennamen ab

Das Verwaltungsdienstprogramm ,Deploy“ generiert beim Erstellen eines Clusters automatisch die
Knotenkennungen und -namen. Bevor Sie einen Knoten konfigurieren kénnen, missen Sie die zugewiesene
ID abrufen.

Kategorie HTTP-Verb Weg
Cluster ERHALTEN [clusters/{cluster_id}/nodes
Locken

Sie missen die Cluster-ID angeben.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Verarbeitungstyp
Synchron

Ausgabe

* Array-Datensatze, die jeweils einen einzelnen Knoten mit der eindeutigen ID und dem Namen
beschreiben

6. Konfigurieren Sie die Knoten

Sie mussen die Basiskonfiguration fiir den Knoten angeben. Dies ist der erste von drei API-Aufrufen, die zum
Konfigurieren eines Knotens verwendet werden.

14

Kategorie HTTP-Verb Weg
Cluster WEG [clusters/{cluster_id}/nodes/{node_id}

Locken
Sie mussen die Cluster-ID und die Knoten-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 06)
Sie mussen die Host-ID angeben, auf der der ONTAP Select Knoten ausgefiihrt wird.

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Verarbeitungstyp
Synchron

Ausgabe
Keine

7. Abrufen der Knotennetzwerke

Sie mussen die vom Knoten im Einzelknotencluster verwendeten Daten- und Verwaltungsnetzwerke
identifizieren. Das interne Netzwerk wird bei einem Einzelknotencluster nicht verwendet.

Kategorie HTTP-Verb Weg
Cluster ERHALTEN [clusters/{cluster_id}/nodes/{node_id}/networks
Locken

Sie mussen die Cluster-ID und die Knoten-ID angeben.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Verarbeitungstyp
Synchron

15

Ausgabe

* Array aus zwei Datensatzen, die jeweils ein einzelnes Netzwerk flir den Knoten beschreiben,
einschliel3lich der eindeutigen ID und des Zwecks

8. Konfigurieren Sie die Knotenvernetzung

Sie mussen die Daten- und Verwaltungsnetzwerke konfigurieren. Das interne Netzwerk wird bei einem
Einzelknotencluster nicht verwendet.

(D Fihren Sie den folgenden API-Aufruf zweimal aus, einmal fir jedes Netzwerk.
Kategorie HTTP-Verb Weg
Cluster PATCH [clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}
Locken

Sie mussen die Cluster-ID, Knoten-ID und Netzwerk-ID angeben.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON-Eingabe (Schritt 08)
Sie mussen den Namen des Netzwerks angeben.

"name": "sDOT Network"
}
Verarbeitungstyp
Synchron
Ausgabe
Keine

9. Konfigurieren Sie den Knotenspeicherpool

Der letzte Schritt bei der Konfiguration eines Knotens besteht im Anschliel3en eines Speicherpools. Sie konnen
die verflgbaren Speicherpools tiber den vSphere-Webclient oder optional Gber die Deploy-REST-API ermitteln.

Kategorie HTTP-Verb Weg
Cluster PATCH [clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}
Locken

Sie mussen die Cluster-ID, Knoten-ID und Netzwerk-ID angeben.

16

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

JSON-Eingabe (Schritt 09)
Die Poolkapazitat betragt 2 TB.

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Verarbeitungstyp
Synchron

Ausgabe
Keine

10. Bereitstellen des Clusters

Nachdem Cluster und Knoten konfiguriert wurden, kdnnen Sie den Cluster bereitstellen.

Kategorie HTTP-Verb Weg
Cluster POST [clusters/{cluster_id}/deploy

Locken
Sie mussen die Cluster-ID angeben.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

JSON-Eingabe (Schritt 10)
Sie mussen das Kennwort fir das ONTAP Administratorkonto angeben.

"ontap credentials": {

"password": "mypassword"

17

Verarbeitungstyp
Asynchron

Ausgabe
+ Job-Objekt

Ahnliche Informationen

"Stellen Sie eine 90-tagige Testinstanz eines ONTAP Select Clusters bereit"

Zugriff mit Python

Bevor Sie auf die ONTAP Select Deploy API mit Python zugreifen
Sie mussen die Umgebung vorbereiten, bevor Sie die Python-Beispielskripts ausfuhren.
Bevor Sie die Python-Skripte ausfiihren, missen Sie sicherstellen, dass die Umgebung richtig konfiguriert ist:

* Die neueste Version von Python2 muss installiert sein. Die Beispielcodes wurden mit Python2 getestet. Sie

sollten auch auf Python3 portierbar sein, wurden jedoch nicht auf Kompatibilitat getestet.

* Die Bibliotheken Requests und urllib3 missen installiert sein. Sie kdnnen je nach Umgebung pip oder ein
anderes Python-Verwaltungstool verwenden.

* Die Client-Workstation, auf der die Skripte ausgefihrt werden, muss iber Netzwerkzugriff auf die virtuelle
ONTAP Select Deploy-Maschine verfligen.

Dariber hinaus missen Sie Uber folgende Informationen verflgen:

 IP-Adresse der virtuellen Deploy-Maschine

* Benutzername und Kennwort eines Deploy-Administratorkontos

Verstehen Sie die Python-Skripte fiir ONTAP Select Deploy

Mit den Python-Beispielskripten kdnnen Sie verschiedene Aufgaben ausfuhren. Sie
sollten die Skripte verstehen, bevor Sie sie in einer Live-Deploy-Instanz verwenden.

Gemeinsame Designmerkmale
Die Skripte wurden mit den folgenden gemeinsamen Merkmalen entwickelt:

 Ausflihren Uber die Befehlszeilenschnittstelle auf einem Client-Computer. Sie kdnnen die Python-Skripte
von jedem entsprechend konfigurierten Client-Computer aus ausfihren. Weitere Informationen finden Sie
unter ,Bevor Sie beginnen®.

» CLI-Eingabeparameter akzeptieren Jedes Skript wird an der CLI Uber Eingabeparameter gesteuert.

» Eingabedatei lesen Jedes Skript liest eine Eingabedatei entsprechend seinem Zweck. Beim Erstellen oder
Loschen eines Clusters missen Sie eine JSON-Konfigurationsdatei angeben. Beim Hinzufligen einer
Knotenlizenz missen Sie eine glltige Lizenzdatei angeben.

* Verwenden Sie ein gemeinsames Supportmodul. Das gemeinsame Supportmodul deploy _requests.py
enthalt eine einzelne Klasse. Es wird von jedem der Skripts importiert und verwendet.

18

https://docs.netapp.com/de-de/ontap-select-9161/deploy-evaluation-ontap-select-ovf-template.html

Erstellen eines Clusters

Sie kénnen einen ONTAP Select Cluster mit dem Skript cluster.py erstellen. Basierend auf den CLI-
Parametern und dem Inhalt der JSON-Eingabedatei kdnnen Sie das Skript wie folgt an lhre
Bereitstellungsumgebung anpassen:

* Hypervisor: Sie kdnnen die Bereitstellung auf ESXI oder KVM durchfiihren (je nach Deploy-Version). Bei
der Bereitstellung auf ESXi kann der Hypervisor von vCenter verwaltet werden oder ein eigenstandiger
Host sein.

* Clustergrofie Sie konnen einen Cluster mit einem oder mehreren Knoten bereitstellen.
» Evaluierungs- oder Produktionslizenz Sie kénnen einen Cluster mit einer Evaluierungs- oder erworbenen
Lizenz fur die Produktion bereitstellen.

Die CLI-Eingabeparameter fiir das Skript umfassen:

* Hostname oder IP-Adresse des Deploy-Servers
» Passwort fir das Admin-Benutzerkonto
* Name der JSON-Konfigurationsdatei

* Verbose-Flag fur die Nachrichtenausgabe

Hinzufiigen einer Knotenlizenz

Wenn Sie einen Produktionscluster bereitstellen, miissen Sie mit dem Skript add_license.py flr jeden Knoten
eine Lizenz hinzufiigen. Sie kdnnen die Lizenz vor oder nach der Bereitstellung des Clusters hinzufligen.

Die CLI-Eingabeparameter fir das Skript umfassen:

» Hostname oder IP-Adresse des Deploy-Servers
» Passwort fir das Admin-Benutzerkonto

 Name der Lizenzdatei

ONTAP -Benutzername mit Berechtigungen zum Hinzufligen der Lizenz
» Passwort fur den ONTAP -Benutzer

Loschen eines Clusters
Sie kénnen einen vorhandenen ONTAP Select Cluster mit dem Skript delete cluster.py |6schen.
Die CLI-Eingabeparameter fir das Skript umfassen:

* Hostname oder IP-Adresse des Deploy-Servers
» Passwort flir das Admin-Benutzerkonto

* Name der JSON-Konfigurationsdatei

Python-Codebeispiele

Skript zum Erstellen eines ONTAP Select Clusters

Sie kdnnen das folgende Skript verwenden, um einen Cluster basierend auf im Skript
definierten Parametern und einer JSON-Eingabedatei zu erstellen.

19

#!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= S S S S S e S S S Sk o S S e

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter|
'hostname']) :
log_info ("Registering vcenter {} credentials".format (vcenter|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log_debug trace ()

hosts = config.get('hosts', [])
for host in hosts:

The presense of the 'password' will be used only for standalone
hosts.

If this host is managed by a vcenter, it should not have a host
'password' in the json.

if 'password' in host and not deploy.resource exists (
'/security/credentials',

'hostname',
host['name']) :

log_info ("Registering host {} credentials".format (host['name

1))
data = {'hostname': host['name'], 'type': 'host',

'username': host['username'], 'password': host][
'password']}

deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):
""" Registers all hosts with the deploy server.

The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

LI |

log_debug_ trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type']}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(

"Registering from vcenter {mgmt server}".format (**

21

host))

if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host|['password'], "username": host|['user

1og_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
'''" POST a new cluster with all needed attribute wvalues.

Returns the cluster id of the new config

LI |

log _debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (

**cluster config))

Filter to only the valid attributes, ignores anything else in

the Jjson
data = {k: cluster configlk] for k in [

'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])

1og_info("Cluster properties: {}".format(data))

resp = deploy.post('/v3/clusters?node count={}'.format (num nodes),
data)

cluster id = resp.headers.get ('Location') .split('/") [-1]

return cluster id

def get node_ ids(deploy, cluster id):

22

''"" Get the the ids of the nodes in a cluster.

node ids.'"''
log_debug trace ()

Returns a list of

response = deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids = [node['id'] for node in response.json() .get('records')]

return node ids

def add node_ attributes(deploy, cluster id, node id, node):

''"'" Set all the needed properties on a node
log _debug trace ()

LI |

log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number',6 'instance type',

'is storage efficiency enabled'] if k in

node}
Optional: Set a serial number

if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host

host id = deploy.find_resource('/hosts', 'name', node['host name'])

if not host id:

log _and exit("Host names must match in the 'hosts' array, and the

nodes.host name property")
data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if '"mame' in node:
data['name'] = node['name']

")

log_info ("Node properties: {}".format (data))

The presence of a

deploy.patch ('/clusters/{}/nodes/{}"'.format (cluster id, node id),

data)

def add node networks (deploy, cluster id, node id, node):

''" Set the network information for a node
log_debug trace ()

23

24

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_pum_records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''

log_debug trace ()

log _info ("Adding node '{}' storage properties".format (node id))

log_info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post(
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post(
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,
node id), data)

def create cluster config(deploy, config):
'''" Construct a cluster config in the deploy server using the input

json data '''

def

log _debug trace ()
cluster id = add cluster_ attributes (deploy, config)

node ids = get node_ ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_ attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug_ trace ()

log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

def

data, wait for job=True)

log debug trace() :
stack = traceback.extract_stack()
parent function = stack[-2] [2]

o

ogging.getLogger eploy') .debu Calling =s s parent function
1 i getLogger ('deploy') .debug('Calli %s ()" _f ion)

log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

log_and exit (msqg) :
logging.getlLogger ('deploy') .error (msqg)
exit (1)

configure logging (verbose) :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:

logging.basicConfig(level=1ogging.DEBUG, format=FORMAT)
else:

25

logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main (args) :
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add _standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create cluster config(deploy, config)
deploy cluster(deploy, cluster id, config)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main U g

args = parseArgs ()
main (args)

JSON fiir Skript zum Erstellen eines ONTAP Select Clusters

Beim Erstellen oder Loschen eines ONTAP Select Clusters mithilfe der Python-
Codebeispiele mussen Sie eine JSON-Datei als Eingabe fur das Skript bereitstellen. Sie

26

konnen das entsprechende JSON-Beispiel basierend auf Ihren Bereitstellungsplanen
kopieren und andern.

Einzelknotencluster auf ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
1,

"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"
Yo

"nodes": [

{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234
by
{
"name": "ontap-external",

"purpose": "data",

"vlan": null

by
{

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1

I
"host name": "host-1234",

"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Einzelknotencluster auf ESXi mit vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

28

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],

"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"
by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username" :"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",

"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

29

Einzelknotencluster auf KVM

"hosts": [

{

"password": "mypasswordl",
"name" :"host-1234",

n type" . "KVM" 0

"username" :"root"

}
1,

"cluster": {
"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]

I

"ontap image version":

"gateway":"10.206

.80.1",

"ip":"10.206.80.115",

"name" : "CBF4ED97"

’

"9'7"’

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password":
"netmask":"255.255.254.0"

I

"nodes": [

{

"mypassword2",

"serial number":"3200000nn",

"ip":"10.206.80
"name": "node-1
"networks": [

{

.115",

"
4

"name": "ontap-external",

"purpose":
"vlian":1234

30

"mgmt " ’

com",

"name": "ontap-external",
"purpose": "data",
"vlian": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Skript zum Hinzufiigen einer ONTAP Select Knotenlizenz

Mit dem folgenden Skript konnen Sie eine Lizenz fur einen ONTAP Select Knoten
hinzuftigen.

#!/usr/bin/env python

File: add license.py
(C) Copyright 2019 NetApp, Inc.
This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

S oS S S S S HE o

reproduce, modify and create derivatives of the sample code is granted

31

32

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S S = S S 3 o

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_license (deploy, license filename) :
log_info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info ('Adding license for serial number: {}'.format (serial number))

deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given.
data = {'ontap username': ontap username, 'ontap password':
ontap password}

files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename):
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and exit("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msg)
exit (1)

def configure logging () :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

33

34

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put_free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post_new_license(deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Skript zum Loschen eines ONTAP Select Clusters

Sie konnen das folgende CLI-Skript verwenden, um einen vorhandenen Cluster zu
I0schen.

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be

powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':

'powered off'}, True)

def delete cluster (deploy, cluster id):

35

36

log_info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging () :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config|
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add_argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == "' main ':
args = parseArgs ()
main (args)

Gemeinsames Support-Python-Modul fir ONTAP Select

Alle Python-Skripte verwenden eine gemeinsame Python-Klasse in einem einzigen
Modul.

#!/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:')
response = requests.post(self.base url + path,

37

auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: %$s', data)

response = requests.post(self.base url + path,
auth=self.auth, verify=False,

json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def patch(self, path, data, wait for job=False):

self.logger.debug('PATCH DATA: $s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format(data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:')
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

38

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_ errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def find resource(self, path, name, value):
'"'" Returns the 'id' of the resource if it exists, otherwise None

resource = None
response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json () .get
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):
''"'" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

L}

if response.status code == 200
return response.json() .get('num records')
return None

def resource_exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait_for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})
Show interesting message updates
message = job body.get('message', ''")
self.logger.info('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job body.get('last modified')
Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on_errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):

''' Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Skript zum Andern der GroBe von ONTAP Select Clusterknoten

Mit dem folgenden Skript konnen Sie die Grofde der Knoten in einem ONTAP Select
Cluster andern.

#!/usr/bin/env python

B

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

S S S S S S S S S S SR S S o o

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

41

mman

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'’
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin.'
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all

nodes in'
' the cluster. If a list of nodes is provided, it must be provided

in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

42

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for

node in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig(
format='[% (asctime)s] [%$(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

43

44

cluster = _get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1

changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

45

http://www.netapp.com/TM\

	Automatisieren mit REST : ONTAP Select
	Inhalt
	Automatisieren mit REST
	Konzepte
	REST-Webservices-Grundlage für die Bereitstellung und Verwaltung von ONTAP Select Clustern
	So greifen Sie auf die ONTAP Select Deploy API zu
	ONTAP Select Deploy API-Versionierung
	Grundlegende Betriebsmerkmale der ONTAP Select Deploy API
	Anforderungs- und Antwort-API-Transaktion für ONTAP Select
	Asynchrone Verarbeitung mit dem Job-Objekt für ONTAP Select

	Zugriff mit einem Browser
	Bevor Sie mit einem Browser auf die ONTAP Select Deploy API zugreifen
	Greifen Sie auf die Dokumentationsseite zu ONTAP Select Deploy zu
	Verstehen und Ausführen eines ONTAP Select Deploy API-Aufrufs

	Workflow-Prozesse
	Bevor Sie die ONTAP Select Deploy API-Workflows verwenden
	Workflow 1: Erstellen Sie einen ONTAP Select Single-Node-Evaluierungscluster auf ESXi

	Zugriff mit Python
	Bevor Sie auf die ONTAP Select Deploy API mit Python zugreifen
	Verstehen Sie die Python-Skripte für ONTAP Select Deploy

	Python-Codebeispiele
	Skript zum Erstellen eines ONTAP Select Clusters
	JSON für Skript zum Erstellen eines ONTAP Select Clusters
	Skript zum Hinzufügen einer ONTAP Select Knotenlizenz
	Skript zum Löschen eines ONTAP Select Clusters
	Gemeinsames Support-Python-Modul für ONTAP Select
	Skript zum Ändern der Größe von ONTAP Select Clusterknoten

