

Vorbereiten der Hosts (Red hat)

StorageGRID

NetApp March 12, 2025

This PDF was generated from https://docs.netapp.com/de-de/storagegrid/rhel/how-host-wide-settings-change.html on March 12, 2025. Always check docs.netapp.com for the latest.

Inhalt

Vorbereiten der Hosts (Red hat).	1
Wie sich die Host-weiten Einstellungen während der Installation ändern	1
Installieren Sie Linux	2
Konfiguration des Hostnetzwerks (Red hat Enterprise Linux)	3
Überlegungen und Empfehlungen zum Klonen von MAC-Adressen	4
Beispiel 1: 1-zu-1-Zuordnung zu physischen oder virtuellen NICs	6
Beispiel 2: LACP Bond mit VLANs.	7
Hostspeicher konfigurieren	9
Konfigurieren des Container Engine Storage Volume 1	12
Installation Von Docker	12
Installieren Sie Podman	13
Installation der StorageGRID Host Services 1	14

Vorbereiten der Hosts (Red hat)

Wie sich die Host-weiten Einstellungen während der Installation ändern

Auf Bare-Metal-Systemen nimmt StorageGRID einige Änderungen an den Einstellungen für den gesamten Host sysctl vor.

Folgende Änderungen wurden vorgenommen:

```
# Recommended Cassandra setting: CASSANDRA-3563, CASSANDRA-13008, DataStax
documentation
vm.max map count = 1048575
# core file customization
# Note: for cores generated by binaries running inside containers, this
# path is interpreted relative to the container filesystem namespace.
# External cores will go nowhere, unless /var/local/core also exists on
# the host.
kernel.core pattern = /var/local/core/%e.core.%p
# Set the kernel minimum free memory to the greater of the current value
or
# 512MiB if the host has 48GiB or less of RAM or 1.83GiB if the host has
more than 48GiB of RTAM
vm.min free kbytes = 524288
# Enforce current default swappiness value to ensure the VM system has
some
# flexibility to garbage collect behind anonymous mappings. Bump
watermark scale factor
# to help avoid OOM conditions in the kernel during memory allocation
bursts. Bump
# dirty ratio to 90 because we explicitly fsync data that needs to be
persistent, and
# so do not require the dirty ratio safety net. A low dirty ratio combined
with a large
# working set (nr active pages) can cause us to enter synchronous I/O mode
unnecessarily,
# with deleterious effects on performance.
vm.swappiness = 60
vm.watermark scale factor = 200
vm.dirty ratio = 90
# Turn off slow start after idle
```

```
net.ipv4.tcp slow start after idle = 0
# Tune TCP window settings to improve throughput
net.core.rmem max = 8388608
net.core.wmem max = 8388608
net.ipv4.tcp rmem = 4096 524288 8388608
net.ipv4.tcp wmem = 4096 262144 8388608
net.core.netdev max backlog = 2500
# Turn on MTU probing
net.ipv4.tcp mtu probing = 1
# Be more liberal with firewall connection tracking
net.ipv4.netfilter.ip conntrack tcp be liberal = 1
# Reduce TCP keepalive time to reasonable levels to terminate dead
connections
net.ipv4.tcp keepalive time = 270
net.ipv4.tcp keepalive probes = 3
net.ipv4.tcp keepalive intvl = 30
# Increase the ARP cache size to tolerate being in a /16 subnet
net.ipv4.neigh.default.gc thresh1 = 8192
net.ipv4.neigh.default.gc thresh2 = 32768
net.ipv4.neigh.default.gc thresh3 = 65536
net.ipv6.neigh.default.gc thresh1 = 8192
net.ipv6.neigh.default.gc thresh2 = 32768
net.ipv6.neigh.default.gc thresh3 = 65536
# Disable IP forwarding, we are not a router
net.ipv4.ip forward = 0
# Follow security best practices for ignoring broadcast ping requests
net.ipv4.icmp echo ignore broadcasts = 1
# Increase the pending connection and accept backlog to handle larger
connection bursts.
net.core.somaxconn=4096
net.ipv4.tcp max syn backlog=4096
```

Installieren Sie Linux

Sie müssen StorageGRID auf allen Red hat Enterprise Linux Grid-Hosts installieren. Eine Liste der unterstützten Versionen finden Sie im NetApp Interoperabilitäts-Matrix-Tool.

Bevor Sie beginnen

Stellen Sie sicher, dass Ihr Betriebssystem die Mindestanforderungen für die Kernel-Version von StorageGRID erfüllt, wie unten aufgeführt. Verwenden Sie den Befehl uname –r, um die Kernel-Version Ihres Betriebssystems zu erhalten, oder wenden Sie sich an den Hersteller Ihres Betriebssystems.

Red hat Enterprise Linux-Version	Minimale Kernel-Version	Name des Kernel-Pakets
8.8 (veraltet)	4.18.0-477.10.1.el8_8.x86_64	Kernel-4.18.0-477.10.1.el8_8.x86_64
8.10	4.18.0-553.el8_10.x86_64	Kernel-4.18.0-553.el8_10.x86_64
9.0 (veraltet)	5.14.0-70.22.1.el9_0.x86_64	Kernel-5.14.0-70.22.1.el9_0.x86_64
9.2 (veraltet)	5.14.0-284.11.1.el9_2.x86_64	Kernel-5.14.0-284.11.1.el9_2.x86_64
9,4	5.14.0-427.18.1.el9_4.x86_64	Kernel-5.14.0-427.18.1.el9_4.x86_64

Schritte

1. Installieren Sie Linux auf allen physischen oder virtuellen Grid-Hosts gemäß den Anweisungen des Distributors oder dem Standardverfahren.

Wenn Sie das Standard-Linux-Installationsprogramm verwenden, wählen Sie die Softwarekonfiguration "Compute Node", falls verfügbar, oder die Basisumgebung "Minimal Install" aus. Installieren Sie keine grafischen Desktop-Umgebungen.

2. Stellen Sie sicher, dass alle Hosts Zugriff auf Paket-Repositorys haben, einschließlich des Extras-Kanals.

Möglicherweise benötigen Sie diese zusätzlichen Pakete später in diesem Installationsvorgang.

- 3. Wenn Swap aktiviert ist:
 - a. Führen Sie den folgenden Befehl aus: \$ sudo swapoff --all
 - b. Entfernen Sie alle Swap-Einträge aus /etc/fstab, um die Einstellungen beizubehalten.

Wenn Sie den Auslagerungsaustausch nicht vollständig deaktivieren, kann die Leistung erheblich gesenkt werden.

Konfiguration des Hostnetzwerks (Red hat Enterprise Linux)

Nach dem Abschluss der Linux-Installation auf Ihren Hosts müssen Sie möglicherweise eine zusätzliche Konfiguration durchführen, um auf jedem Host eine Reihe von Netzwerkschnittstellen vorzubereiten, die sich für die Zuordnung zu den später zu implementierenden StorageGRID Nodes eignen.

Bevor Sie beginnen

• Sie haben die überprüft"StorageGRID Netzwerkrichtlinien".

- Sie haben die Informationen über überprüft"Anforderungen für die Container-Migration für Nodes".
- Wenn Sie virtuelle Hosts verwenden, haben Sie vor der Konfiguration des Hostnetzwerks den gelesenÜberlegungen und Empfehlungen zum Klonen von MAC-Adressen.

Wenn Sie VMs als Hosts verwenden, sollten Sie VMXNET 3 als virtuellen Netzwerkadapter auswählen. Der VMware E1000-Netzwerkadapter hat Verbindungsprobleme bei StorageGRID-Containern mit bestimmten Linux-Distributionen verursacht.

Über diese Aufgabe

Grid-Nodes müssen auf das Grid-Netzwerk und optional auf Admin- und Client-Netzwerke zugreifen können. Sie ermöglichen diesen Zugriff, indem Sie Zuordnungen erstellen, die die physische Schnittstelle des Hosts den virtuellen Schnittstellen für jeden Grid-Node zuordnen. Verwenden Sie bei der Erstellung von Host-Schnittstellen benutzerfreundliche Namen, um die Implementierung über alle Hosts hinweg zu vereinfachen und die Migration zu ermöglichen.

Die gleiche Schnittstelle kann von dem Host und einem oder mehreren Nodes gemeinsam genutzt werden. Beispielsweise können Sie für den Hostzugriff und den Netzwerkzugriff von Node-Admin dieselbe Schnittstelle verwenden, um die Wartung von Hosts und Nodes zu vereinfachen. Obwohl dieselbe Schnittstelle zwischen dem Host und den einzelnen Nodes gemeinsam genutzt werden kann, müssen alle unterschiedliche IP-Adressen haben. IP-Adressen können nicht zwischen Nodes oder zwischen dem Host und einem beliebigen Node gemeinsam genutzt werden.

Sie können dieselbe Host-Netzwerkschnittstelle verwenden, um die Grid-Netzwerkschnittstelle für alle StorageGRID-Knoten auf dem Host bereitzustellen. Sie können für jeden Knoten eine andere Host-Netzwerkschnittstelle verwenden oder etwas dazwischen tun. Normalerweise würden Sie jedoch nicht die gleiche Hostnetzwerkschnittstelle bereitstellen wie die Grid- und Admin-Netzwerkschnittstellen für einen einzelnen Knoten oder als Grid-Netzwerkschnittstelle für einen Knoten und die Client-Netzwerkschnittstelle für einen anderen.

Sie können diese Aufgabe auf unterschiedliche Weise ausführen. Wenn es sich bei Ihren Hosts beispielsweise um virtuelle Maschinen handelt und Sie für jeden Host einen oder zwei StorageGRID-Nodes bereitstellen, können Sie die korrekte Anzahl an Netzwerkschnittstellen im Hypervisor erstellen und eine 1:1-Zuordnung verwenden. Wenn Sie mehrere Nodes auf Bare-Metal-Hosts für die Produktion implementieren, können Sie die Unterstützung des Linux-Netzwerk-Stacks für VLAN und LACP nutzen, um Fehlertoleranz und Bandbreitenfreigabe zu erhalten. Die folgenden Abschnitte enthalten detaillierte Ansätze für beide Beispiele. Sie müssen keines dieser Beispiele verwenden; Sie können jeden Ansatz verwenden, der Ihren Anforderungen entspricht.

Verwenden Sie keine Bond- oder Bridge-Geräte direkt als Container-Netzwerkschnittstelle. Dies könnte den Anlauf eines Knotens verhindern, der durch ein Kernel-Problem verursacht wurde, indem MACLAN mit Bond- und Bridge-Geräten im Container-Namespace verwendet wird. Verwenden Sie stattdessen ein Gerät ohne Bindung, z. B. ein VLAN- oder ein virtuelles Ethernet-Paar (veth). Geben Sie dieses Gerät als Netzwerkschnittstelle in der Node-Konfigurationsdatei an.

Verwandte Informationen

"Erstellen von Knoten-Konfigurationsdateien"

Überlegungen und Empfehlungen zum Klonen von MAC-Adressen

Das Klonen VON MAC-Adressen bewirkt, dass der Container die MAC-Adresse des Hosts verwendet und der

Host die MAC-Adresse entweder einer von Ihnen angegebenen oder einer zufällig generierten Adresse verwendet. Verwenden Sie das Klonen von MAC-Adressen, um Netzwerkkonfigurationen im einfach zu vermeiden.

Aktivieren des MAC-Klonens

In bestimmten Umgebungen kann die Sicherheit durch das Klonen von MAC-Adressen erhöht werden, da es Ihnen ermöglicht, eine dedizierte virtuelle NIC für das Admin-Netzwerk, das Grid-Netzwerk und das Client-Netzwerk zu verwenden. Wenn der Container die MAC-Adresse der dedizierten NIC auf dem Host nutzen soll, können Sie keine Kompromissmodus-Netzwerkkonfigurationen mehr verwenden.

i

Das Klonen DER MAC-Adresse wurde für Installationen virtueller Server entwickelt und funktioniert möglicherweise nicht ordnungsgemäß bei allen Konfigurationen der physischen Appliance.

Wenn ein Knoten nicht gestartet werden kann, weil eine gezielte Schnittstelle für das MAC-Klonen belegt ist, müssen Sie die Verbindung möglicherweise auf "down" setzen, bevor Sie den Knoten starten. Darüber hinaus kann es vorkommen, dass die virtuelle Umgebung das Klonen von MAC auf einer Netzwerkschnittstelle verhindert, während der Link aktiv ist. Wenn ein Knoten die MAC-Adresse nicht einstellt und aufgrund einer überlasteten Schnittstelle gestartet wird, kann das Problem durch Setzen des Links auf "down" vor dem Starten des Knotens behoben werden.

Das Klonen VON MAC-Adressen ist standardmäßig deaktiviert und muss durch Knoten-Konfigurationsschlüssel festgelegt werden. Sie sollten die Aktivierung bei der Installation von StorageGRID aktivieren.

Für jedes Netzwerk gibt es einen Schlüssel:

- ADMIN_NETWORK_TARGET_TYPE_INTERFACE_CLONE_MAC
- GRID_NETWORK_TARGET_TYPE_INTERFACE_CLONE_MAC
- CLIENT_NETWORK_TARGET_TYPE_INTERFACE_CLONE_MAC

Wenn Sie den Schlüssel auf "true" setzen, verwendet der Container die MAC-Adresse der NIC des Hosts. Außerdem verwendet der Host dann die MAC-Adresse des angegebenen Containernetzwerks. Standardmäßig ist die Container-Adresse eine zufällig generierte Adresse, aber wenn Sie eine mit dem Node-Konfigurationsschlüssel festgelegt haben, __NETWORK_MAC wird diese Adresse verwendet. Host und Container haben immer unterschiedliche MAC-Adressen.

Wenn das MAC-Klonen auf einem virtuellen Host aktiviert wird, ohne dass gleichzeitig der einfach austauschbare Modus auf dem Hypervisor aktiviert werden muss, kann dies dazu führen, dass Linux-Host-Netzwerke, die die Host-Schnittstelle verwenden, nicht mehr funktionieren.

Anwendungsfälle für DAS Klonen VON MAC

Es gibt zwei Anwendungsfälle, die beim Klonen von MAC berücksichtigt werden müssen:

• MAC-Klonen nicht aktiviert: Wenn der _CLONE _MAC Schlüssel in der Node-Konfigurationsdatei nicht gesetzt oder auf "false" gesetzt ist, verwendet der Host die Host-NIC-MAC und der Container verfügt über eine StorageGRID-generierte MAC, sofern im Schlüssel kein MAC angegeben ist _NETWORK_MAC. Wenn im Schlüssel eine Adresse festgelegt _NETWORK_MAC ist, wird die im Schlüssel angegebene Adresse für

den Container angegeben _NETWORK_MAC. Diese Schlüsselkonfiguration erfordert den Einsatz des promiskuitiven Modus.

 MAC-Klonen aktiviert: Wenn der _CLONE_MAC Schlüssel in der Node-Konfigurationsdatei auf "true" gesetzt ist, verwendet der Container die Host-NIC-MAC, und der Host verwendet eine StorageGRID-generierte MAC, es sei denn, im Schlüssel ist ein MAC angegeben _NETWORK_MAC. Wenn im Schlüssel eine Adresse festgelegt _NETWORK_MAC ist, verwendet der Host die angegebene Adresse anstelle einer generierten. In dieser Konfiguration von Schlüsseln sollten Sie nicht den promiskuous Modus verwenden.

Wenn Sie das Klonen von MAC-Adressen nicht verwenden möchten und lieber allen Schnittstellen erlauben möchten, Daten für andere MAC-Adressen als die vom Hypervisor zugewiesenen zu empfangen und zu übertragen, Stellen Sie sicher, dass die Sicherheitseigenschaften auf der Ebene des virtuellen Switches und der Portgruppen für den Promiscuous-Modus, MAC-Adressänderungen und Forged-Übertragungen auf **Accept** gesetzt sind. Die auf dem virtuellen Switch eingestellten Werte können von den Werten auf der Portgruppenebene außer Kraft gesetzt werden. Stellen Sie also sicher, dass die Einstellungen an beiden Stellen identisch sind.

Informationen zum Aktivieren des MAC-Klonens finden Sie im "Anweisungen zum Erstellen von Node-Konfigurationsdateien".

BEISPIEL FÜR DAS Klonen VON MAC

i

Beispiel für das MAC-Klonen bei einem Host mit einer MAC-Adresse von 11:22:33:44:55:66 für die Schnittstelle ensens256 und die folgenden Schlüssel in der Node-Konfigurationsdatei:

- ADMIN_NETWORK_TARGET = ens256
- ADMIN_NETWORK_MAC = b2:9c:02:c2:27:10
- ADMIN_NETWORK_TARGET_TYPE_INTERFACE_CLONE_MAC = true

Ergebnis: Der Host-MAC für ens256 ist b2:9c:02:c2:27:10 und die Admin-Netzwerk-MAC ist 11:22:33:44:55:66

Beispiel 1: 1-zu-1-Zuordnung zu physischen oder virtuellen NICs

In Beispiel 1 wird eine einfache Zuordnung von physischen Schnittstellen beschrieben, wofür nur wenig oder keine Host-seitige Konfiguration erforderlich ist.

Das Linux-Betriebssystem erstellt die ensXYZ Schnittstellen automatisch während der Installation oder beim Booten oder wenn die Schnittstellen im laufenden Betrieb hinzugefügt werden. Es ist keine andere Konfiguration erforderlich als sicherzustellen, dass die Schnittstellen nach dem Booten automatisch eingerichtet werden. Sie müssen festlegen, welches ensXYZ StorageGRID-Netzwerk (Grid, Admin oder Client) entspricht, damit Sie später im Konfigurationsprozess die richtigen Zuordnungen bereitstellen können.

Beachten Sie, dass in der Abbildung mehrere StorageGRID Nodes angezeigt werden. Normalerweise werden diese Konfigurationen jedoch für VMs mit einem Node verwendet.

Wenn Switch 1 ein physischer Switch ist, sollten Sie die mit den Schnittstellen 10G1 bis 10G3 verbundenen Ports für den Zugriffsmodus konfigurieren und sie in den entsprechenden VLANs platzieren.

Beispiel 2: LACP Bond mit VLANs

Über diese Aufgabe

Beispiel 2 geht davon aus, dass Sie mit der Verbindung von Netzwerkschnittstellen und der Erstellung von VLAN-Schnittstellen auf der von Ihnen verwendeten Linux-Distribution vertraut sind.

Beispiel 2 beschreibt ein generisches, flexibles, VLAN-basiertes Schema, das die gemeinsame Nutzung aller verfügbaren Netzwerkbandbreite über alle Nodes auf einem einzelnen Host ermöglicht. Dieses Beispiel gilt insbesondere für Bare-Metal-Hosts.

Um dieses Beispiel zu verstehen, stellen Sie vor, Sie verfügen über drei separate Subnetze für Grid, Admin und Client-Netzwerke in jedem Rechenzentrum. Die Subnetze sind in getrennten VLANs (1001, 1002 und 1003) angesiedelt und werden dem Host auf einem LACP-gebundenen Trunk-Port (bond0) präsentiert. Sie würden drei VLAN-Schnittstellen auf der Verbindung konfigurieren: Bond0.1001, bond0.1002 und bond0.1003.

Wenn für Node-Netzwerke auf demselben Host separate VLANs und Subnetze erforderlich sind, können Sie auf der Verbindung VLAN-Schnittstellen hinzufügen und sie dem Host zuordnen (in der Abbildung als bond0.1004 dargestellt).

Schritte

1. Aggregieren Sie alle physischen Netzwerkschnittstellen, die für die StorageGRID-Netzwerkverbindung in einer einzigen LACP-Verbindung verwendet werden.

Verwenden Sie auf jedem Host denselben Namen für die Verbindung. `bond0`Beispiel: .

2. Erstellen Sie VLAN-Schnittstellen, die diesen Bond als ihr zugehöriges "physisches Gerät" verwenden, indem Sie die Standardbenennungskonvention für VLAN-Schnittstellen verwenden physdev-name.VLAN ID.

Beachten Sie, dass für die Schritte 1 und 2 eine entsprechende Konfiguration an den Edge-Switches erforderlich ist, die die anderen Enden der Netzwerkverbindungen beenden. Die Edge-Switch-Ports müssen auch zu LACP-Port-Kanälen aggregiert, als Trunk konfiguriert und alle erforderlichen VLANs übergeben werden können.

Beispiele für Schnittstellenkonfigurationsdateien für dieses Netzwerkkonfigurationsschema pro Host werden bereitgestellt.

Verwandte Informationen

"Beispiel /etc/sysconfig/Network-scripts"

Hostspeicher konfigurieren

Jedem Host müssen Block Storage Volumes zugewiesen werden.

Bevor Sie beginnen

Sie haben die folgenden Themen behandelt, die Ihnen Informationen liefern, die Sie für diese Aufgabe benötigen:

- "Storage- und Performance-Anforderungen erfüllt"
- "Anforderungen für die Container-Migration für Nodes"

Über diese Aufgabe

Wenn Sie Blockspeicher-Volumes (LUNs) Hosts zuweisen, verwenden Sie die Tabellen unter "Speicheranforderungen", um Folgendes festzulegen:

- Anzahl der erforderlichen Volumes für jeden Host (basierend auf der Anzahl und den Typen der Nodes, die auf diesem Host bereitgestellt werden)
- Storage-Kategorie für jedes Volume (d. h. Systemdaten oder Objektdaten)
- · Größe jedes Volumes

Sie verwenden diese Informationen sowie den permanenten Namen, der Linux jedem physischen Volume zugewiesen ist, wenn Sie StorageGRID-Nodes auf dem Host implementieren.

Sie müssen diese Volumes nicht partitionieren, formatieren oder mounten, sondern müssen nur sicherstellen, dass sie für die Hosts sichtbar sind.

Für nur Metadaten verwendete Storage-Nodes ist nur eine Objektdaten-LUN erforderlich.

Vermeiden Sie es, "RAW" spezielle Gerätedateien (/dev/sdb`zu verwenden, zum Beispiel), wenn Sie Ihre Liste von Volume-Namen zusammenstellen. Diese Dateien können sich bei einem Neustart des Hosts ändern, was sich auf den ordnungsgemäßen Betrieb des Systems auswirkt. Wenn Sie iSCSI-LUNs und Device Mapper Multipathing verwenden, sollten Sie Multipath-Aliase im Verzeichnis in Erwägung ziehen `/dev/mapper, insbesondere wenn Ihre SAN-Topologie redundante Netzwerkpfade zum gemeinsam genutzten Speicher umfasst. Alternativ können Sie die vom System erstellten Softlinks unter für Ihre dauerhaften Gerätenamen verwenden /dev/disk/by-path/.

Beispiel:

```
ls -l
$ ls -l /dev/disk/by-path/
total 0
lrwxrwxrwx 1 root root 9 Sep 19 18:53 pci-0000:00:07.1-ata-2 -> ../../sr0
lrwxrwxrwx 1 root root 9 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:0:0 ->
../../sda
lrwxrwxrwx 1 root root 10 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:0:0-part1
-> ../../sda1
lrwxrwxrwx 1 root root 10 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:0:0-part2
-> ../../sda2
lrwxrwxrwx 1 root root 9 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:1:0 ->
../../sdb
lrwxrwxrwx 1 root root 9 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:2:0 ->
../../sdc
lrwxrwxrwx 1 root root 9 Sep 19 18:53 pci-0000:03:00.0-scsi-0:0:3:0 ->
../../sdd
```

Die Ergebnisse unterscheiden sich bei jeder Installation.

Zuweisung freundlicher Namen zu jedem dieser Block-Storage-Volumes zur Vereinfachung der Erstinstallation von StorageGRID und zukünftiger Wartungsarbeiten Wenn Sie den Device Mapper Multipath-Treiber für redundanten Zugriff auf freigegebene Speicher-Volumes verwenden, können Sie das Feld in Ihrer /etc/multipath.conf Datei verwenden alias.

Beispiel:

```
multipaths {
     multipath {
          wwid 3600a09800059d6df00005df2573c2c30
          alias docker-storage-volume-hostA
     }
     multipath {
          wwid 3600a09800059d6df00005df3573c2c30
          alias sgws-adm1-var-local
     }
     multipath {
          wwid 3600a09800059d6df00005df4573c2c30
          alias sgws-adm1-audit-logs
     }
     multipath {
          wwid 3600a09800059d6df00005df5573c2c30
          alias sgws-adm1-tables
     }
     multipath {
          wwid 3600a09800059d6df00005df6573c2c30
          alias sgws-gw1-var-local
     }
     multipath {
          wwid 3600a09800059d6df00005df7573c2c30
          alias sgws-sn1-var-local
     }
     multipath {
          wwid 3600a09800059d6df00005df7573c2c30
          alias sgws-sn1-rangedb-0
     }
     ...
```

Wenn Sie das Aliasfeld auf diese Weise verwenden, werden die Aliase als Blockgeräte im Verzeichnis auf dem Host angezeigt /dev/mapper. Sie können einen benutzerfreundlichen, leicht validierten Namen angeben, wenn für einen Konfigurations- oder Wartungsvorgang ein Blockspeichervolume angegeben werden muss.

 (\mathbf{i})

Wenn Sie gemeinsam genutzten Speicher zur Unterstützung der StorageGRID-Node-Migration einrichten und Device Mapper Multipathing verwenden, können Sie ein Common auf allen zusammengelegenen Hosts erstellen und installieren /etc/multipath.conf. Stellen Sie einfach sicher, dass Sie auf jedem Host einen anderen Container-Engine-Storage-Volume verwenden. Die Verwendung von Aliases und das Einschließen des Ziel-Hostnamen in den Alias für jede Container-Engine Speicher-Volume LUN wird dies leicht zu merken machen und empfohlen.

Die Unterstützung für Docker als Container-Engine für rein softwarebasierte Implementierungen ist veraltet. Docker wird in einer zukünftigen Version durch eine weitere Container-Engine ersetzt.

Konfigurieren des Container Engine Storage Volume

Vor der Installation der Container-Engine (Docker oder Podman) müssen Sie möglicherweise das Storage-Volume formatieren und mounten.

Die Unterstützung für Docker als Container-Engine für rein softwarebasierte Implementierungen ist veraltet. Docker wird in einer zukünftigen Version durch eine weitere Container-Engine ersetzt.

Über diese Aufgabe

Sie können diese Schritte überspringen, wenn Sie den lokalen Speicher für das Docker- oder Podman-Speichervolume verwenden möchten und auf der Host-Partition, die Docker und /var/lib/containers Podman enthält, ausreichend Speicherplatz zur Verfügung steht /var/lib/docker.

Podman wird nur auf Red hat Enterprise Linux (RHEL) unterstützt.

Schritte

1. Dateisystem auf dem Container-Engine-Storage-Volume erstellen:

sudo mkfs.ext4 container-engine-storage-volume-device

- 2. Mounten des Container-Engine-Storage-Volumes:
 - Für Docker:

```
sudo mkdir -p /var/lib/docker
sudo mount container-storage-volume-device /var/lib/docker
```

• Für Podman:

```
sudo mkdir -p /var/lib/containers
sudo mount container-storage-volume-device /var/lib/containers
```

3. Fügen Sie einen Eintrag für Container-Storage-Volume-Device zu /etc/fstab hinzu.

Mit diesem Schritt wird sichergestellt, dass das Storage Volume nach einem Neustart des Hosts automatisch neu eingebunden wird.

Installation Von Docker

Das StorageGRID-System läuft unter Red hat Enterprise Linux als eine Sammlung von Containern. Wenn Sie sich für die Verwendung der Docker Container-Engine entschieden haben, führen Sie die folgenden Schritte aus, um Docker zu installieren. Andernfalls Installieren Sie Podman.

Schritte

1. Installieren Sie Docker gemäß den Anweisungen für Ihre Linux-Distribution.

Wenn Docker nicht in Ihrer Linux Distribution enthalten ist, können Sie sie über die Docker Website herunterladen.

2. Vergewissern Sie sich, dass Docker aktiviert und gestartet wurde, indem Sie die folgenden beiden Befehle ausführen:

```
sudo systemctl enable docker
```

```
sudo systemctl start docker
```

3. Vergewissern Sie sich, dass Sie die erwartete Version von Docker installiert haben, indem Sie Folgendes eingeben:

```
sudo docker version
```

Die Client- und Server-Versionen müssen 1.11.0 oder höher sein.

Installieren Sie Podman

Das StorageGRID-System läuft unter Red hat Enterprise Linux als eine Sammlung von Containern. Wenn Sie sich für die Verwendung der Podman Container-Engine entschieden haben, befolgen Sie diese Schritte, um Podman zu installieren. Andernfalls Installation von Docker.

Podman wird nur auf Red hat Enterprise Linux (RHEL) unterstützt.

Schritte

1. Installieren Sie Podman und Podman-Docker, indem Sie den Anweisungen für Ihre Linux-Distribution folgen.

Bei der Installation von Podman müssen Sie auch das Podman-Docker-Paket installieren.

2. Vergewissern Sie sich, dass Sie die erwartete Version von Podman und Podman-Docker installiert haben, indem Sie Folgendes eingeben:

sudo docker version

Das Podman-Docker Paket ermöglicht die Verwendung von Docker Befehlen.

Die Client- und Server-Versionen müssen 3.2.3 oder höher sein.

```
Version: 3.2.3
API Version: 3.2.3
Go Version: go1.15.7
Built: Tue Jul 27 03:29:39 2021
OS/Arch: linux/amd64
```

Installation der StorageGRID Host Services

Sie verwenden das StorageGRID RPM-Paket, um die StorageGRID-Hostdienste zu installieren.

Über diese Aufgabe

In dieser Anleitung wird beschrieben, wie die Hostdienste von den RPM-Paketen installiert werden. Alternativ können Sie die im Installationarchiv enthaltenen DNF-Repository-Metadaten verwenden, um die RPM-Pakete Remote zu installieren. Lesen Sie die DNF-Repository-Anweisungen für Ihr Linux-Betriebssystem.

Schritte

1. Kopieren Sie die StorageGRID RPM-Pakete auf jeden Ihrer Hosts, oder stellen Sie sie auf Shared Storage zur Verfügung.

Legen Sie sie beispielsweise in das Verzeichnis, damit Sie im / tmp nächsten Schritt den Beispielbefehl verwenden können.

2. Melden Sie sich bei jedem Host als Root oder mit einem Konto mit sudo-Berechtigung an, und führen Sie die folgenden Befehle in der angegebenen Reihenfolge aus:

```
sudo dnf --nogpgcheck localinstall /tmp/StorageGRID-Webscale-Images-
version-SHA.rpm
```

```
sudo dnf --nogpgcheck localinstall /tmp/StorageGRID-Webscale-Service-
version-SHA.rpm
```


Sie müssen zunächst das Bilderpaket und das Servicepaket als zweites installieren.

Wenn Sie die Pakete in ein anderes Verzeichnis als gesetzt /tmp haben, ändern Sie den Befehl, um den Pfad, den Sie verwendet haben, wiederzugeben.

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren, Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH, JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE, ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH, JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER -DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG, VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt. Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts, Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente, ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU "RESTRICTED RIGHTS": Nutzung, Vervielfältigung oder Offenlegung durch die US-Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel "Rights in Technical Data – Noncommercial Items" in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt, geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.