
Referenz

Astra Trident
NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/de-de/trident-2304/trident-reference/ports.html on
November 14, 2025. Always check docs.netapp.com for the latest.

Inhalt

Referenz. 1

Astra Trident-Ports . 1

Astra Trident-Ports . 1

Astra Trident REST-API . 1

Wann die REST-API verwendet werden soll . 1

REST-API wird verwendet . 1

Befehlszeilenoptionen . 2

Protokollierung . 2

Kubernetes. 2

Docker . 3

RUHE . 3

NetApp Produkte sind in Kubernetes integriert . 3

Astra. 3

ONTAP . 3

Cloud Volumes ONTAP . 4

Amazon FSX für NetApp ONTAP. 4

Element Software. 4

NetApp HCI . 4

Azure NetApp Dateien . 4

Cloud Volumes Service für Google Cloud . 4

Kubernetes und Trident Objekte . 4

Wie interagieren die Objekte miteinander? . 5

Kubernetes PersistentVolumeClaim Objekte. 5

Kubernetes PersistentVolume Objekte . 7

Kubernetes StorageClass Objekte . 7

Kubernetes VolumeSnapshotClass Objekte . 11

Kubernetes VolumeSnapshot Objekte . 12

Kubernetes VolumeSnapshotContent Objekte. 12

Kubernetes CustomResourceDefinition Objekte . 13

Trident StorageClass Objekte . 13

Trident Back-End-Objekte . 14

Trident StoragePool Objekte . 14

Trident Volume Objekte. 14

Trident Snapshot Objekte . 16

Astra Trident ResourceQuota Objekt . 16

Tridentctl-Befehle und -Optionen . 17

Verfügbare Befehle und Optionen . 17

create . 18

delete . 19

get. 19

images . 19

import volume . 20

install . 20

logs. 21

send. 21

uninstall . 22

update . 22

upgrade . 22

version . 22

Pod Security Standards (PSS) und Security Context Constraints (SCC) . 23

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder . 23

Pod-Sicherheitsstandards (PSS) . 24

Pod-Sicherheitsrichtlinien (PSP) . 24

Sicherheitskontexteinschränkungen (SCC) . 26

Referenz

Astra Trident-Ports

Erfahren Sie mehr über die Kommunikationsports von Astra Trident.

Astra Trident-Ports

Astra Trident kommuniziert über folgende Ports:

Port Zweck

8443 Backchannel HTTPS

8001 Endpunkt der Prometheus Kennzahlen

8000 Trident REST-Server

17546 Anschluss für Liveness/Readiness-Sonde, der von Trident Demonset-
Pods verwendet wird

Der Anschluss der Liveness/Readiness-Sonde kann während der Installation mit dem geändert
werden --probe-port Flagge. Es ist wichtig, sicherzustellen, dass dieser Port nicht von
einem anderen Prozess auf den Worker-Knoten verwendet wird.

Astra Trident REST-API

Während "Tridentctl-Befehle und -Optionen" Die einfachste Möglichkeit, mit der Astra
Trident REST-API zu interagieren, können Sie den REST-Endpunkt direkt verwenden,
wenn Sie es bevorzugen.

Wann die REST-API verwendet werden soll

REST-API ist nützlich für erweiterte Installationen, in denen Astra Trident als eigenständige Binärdatei in
Implementierungen ohne Kubernetes genutzt wird.

Für höhere Sicherheit bietet der Astra Trident an REST API Ist standardmäßig auf localhost beschränkt, wenn
in einem Pod ausgeführt wird. Um dieses Verhalten zu ändern, müssen Sie Astra Trident’s einstellen
-address Argument in seiner Pod-Konfiguration.

REST-API wird verwendet

Die API funktioniert wie folgt:

GET

• GET <trident-address>/trident/v1/<object-type>: Listet alle Objekte dieses Typs auf.

• GET <trident-address>/trident/v1/<object-type>/<object-name>: Erhält die Details des
genannten Objekts.

1

POST

POST <trident-address>/trident/v1/<object-type>: Erzeugt ein Objekt des angegebenen Typs.

• Eine JSON-Konfiguration für das zu erstellenden Objekt erforderlich. Informationen zu den einzelnen
Objekttypen finden Sie unter Link:tridentctl.html[tridentctl Befehle und Optionen].

• Falls das Objekt bereits vorhanden ist, variiert das Verhalten: Back-Ends aktualisiert das vorhandene
Objekt, während alle anderen Objekttypen den Vorgang nicht ausführen.

DELETE

DELETE <trident-address>/trident/v1/<object-type>/<object-name>: Löscht die benannte
Ressource.

Es existieren weiterhin Volumes, die mit Back-Ends oder Storage-Klassen verbunden sind.
Diese müssen separat gelöscht werden. Weitere Informationen finden Sie unter
Link:tridentctl.html[tridentctl Befehle und Optionen].

Für Beispiele, wie diese APIs aufgerufen werden, geben Sie das Debug (-d) Flagge. Weitere Informationen
finden Sie unter Link:tridentctl.html[tridentctl Befehle und Optionen].

Befehlszeilenoptionen

Astra Trident stellt verschiedene Befehlszeilenoptionen für den Trident Orchestrator
bereit. Sie können diese Optionen verwenden, um Ihre Bereitstellung zu ändern.

Protokollierung

• -debug: Aktiviert die Debugging-Ausgabe.

• -loglevel <level>: Legt die Protokollierungsebene fest (Debug, info, warn, error, fatal).
Standardmäßig Info.

Kubernetes

• -k8s_pod: Verwenden Sie diese Option oder -k8s_api_server Um die Kubernetes-Unterstützung zu
aktivieren. Durch diese Einstellung verwendet Trident die Zugangsdaten für das Kubernetes-Servicekonto
eines Pods, um den API-Server zu kontaktieren. Dies funktioniert nur, wenn Trident als Pod in einem
Kubernetes-Cluster mit aktivierten Service-Konten ausgeführt wird.

• -k8s_api_server <insecure-address:insecure-port>: Verwenden Sie diese Option oder
-k8s_pod Um die Kubernetes-Unterstützung zu aktivieren. Bei Angabe von stellt Trident über die
angegebene unsichere Adresse und den angegebenen Port eine Verbindung zum Kubernetes-API-Server
her. Dadurch kann Trident außerhalb eines Pods implementiert werden; es unterstützt jedoch nur
unsichere Verbindungen zum API-Server. Mit der können Sie Trident sicher in einem Pod implementieren
-k8s_pod Option.

• -k8s_config_path <file>: Erforderlich; Sie müssen diesen Pfad zu einer KubeConfig-Datei angeben.

2

Docker

• -volume_driver <name>: Treibername, der bei der Registrierung des Docker Plugins verwendet wird.
Standardmäßig auf netapp.

• -driver_port <port-number>: Hören Sie auf diesem Port statt auf einen UNIX-Domänensockel.

• -config <file>: Erforderlich; Sie müssen diesen Pfad zu einer Backend-Konfigurationsdatei angeben.

RUHE

• -address <ip-or-host>: Gibt die Adresse an, auf der der REST-Server von Trident zuhören soll.
Standardmäßig localhost. Wenn auf dem localhost zuhören und in einem Kubernetes Pod ausgeführt
werden, ist der ZUGRIFF auf DIE REST-Schnittstelle nicht direkt von außerhalb des Pods möglich.
Nutzung -address "" Damit die REST-Schnittstelle über die POD-IP-Adresse zugänglich ist.

Die Trident REST-Schnittstelle kann nur für die Wiedergabe unter 127.0.0.1 (für IPv4) oder [: 1]
(für IPv6) konfiguriert werden.

• -port <port-number>: Gibt den Port an, auf dem der REST-Server von Trident zuhören soll. Die
Standardeinstellung ist 8000.

• -rest: Aktiviert die REST-Schnittstelle. Standardmäßig auf „true“ gesetzt.

NetApp Produkte sind in Kubernetes integriert

Das NetApp Portfolio an Storage-Produkten lässt sich in viele verschiedene Aspekte
eines Kubernetes Clusters integrieren und bietet erweiterte Datenmanagementfunktionen
zur Verbesserung von Funktionen, Funktionen, Performance und Verfügbarkeit der
Kubernetes-Implementierung.

Astra

"Astra" Unternehmen können ihre datenintensiven Container-Workloads, die innerhalb von Kubernetes
ausgeführt werden, leichter managen, schützen und on-Premises verschieben. Astra stellt persistenten
Container-Storage mithilfe von Trident bereit. Das bewährte und umfangreiche Storage-Portfolio von NetApp
umfasst sowohl in der Public Cloud als auch On-Premises. Außerdem bietet es umfangreiche erweiterte,
applikationsspezifische Datenmanagementfunktionen, wie Snapshot, Backup und Wiederherstellung,
Aktivitätsprotokolle und aktives Klonen für Datensicherung, Disaster/Daten-Recovery, Datenaudits und
Migrationsanwendungsfälle für Kubernetes-Workloads.

ONTAP

ONTAP ist das Unified Storage-Betriebssystem von NetApp für mehrere Protokolle und bietet erweiterte
Datenmanagement-Funktionen für alle Applikationen. ONTAP Systeme verfügen über rein Flash-basierte,
hybride oder rein HDD-basierte Konfigurationen und bieten eine Vielzahl unterschiedlicher
Implementierungsmodelle, darunter speziell entwickelte Hardware (FAS und AFF), White-Box (ONTAP Select)
und rein Cloud-basierte Cloud Volumes ONTAP Systeme.

Trident unterstützt alle oben genannten ONTAP Implementierungsmodelle.

3

https://docs.netapp.com/us-en/astra/

Cloud Volumes ONTAP

"Cloud Volumes ONTAP" Ist eine rein softwarebasierte Storage Appliance, die die ONTAP Datenmanagement-
Software in der Cloud ausführt. Sie können Cloud Volumes ONTAP für Produktions-Workloads, Disaster
Recovery, DevOps, Dateifreigaben und Datenbankmanagement verwenden. Sie erweitert den Enterprise-
Storage auf die Cloud und bietet Storage-Effizienz, Hochverfügbarkeit, Datenreplizierung, Daten-Tiering und
Applikationskonsistenz.

Amazon FSX für NetApp ONTAP

"Amazon FSX für NetApp ONTAP" Ist ein vollständig gemanagter AWS Service, mit dem Kunden Filesysteme
auf Basis des NetApp ONTAP Storage-Betriebssystems starten und ausführen können. Mit FSX für ONTAP
können Kunden bereits bekannte NetApp Funktionen sowie deren Performance und Administration nutzen und
gleichzeitig die Einfachheit, Agilität, Sicherheit und Skalierbarkeit beim Speichern von Daten in AWS nutzen.
FSX für ONTAP unterstützt viele ONTAP Dateisystemfunktionen und Administrations-APIs.

Element Software

"Element" Storage-Administrator kann Workloads konsolidieren, indem die Performance garantiert und der
Storage-Bedarf vereinfacht und optimiert wird. Kombiniert mit einer API zur Automatisierung aller Aspekte des
Storage-Managements unterstützt Element Storage-Administratoren dabei, mit weniger Aufwand mehr zu
erreichen.

NetApp HCI

"NetApp HCI" Vereinfacht das Management und die Skalierung des Datacenters durch Automatisierung von
Routineaufgaben und ermöglicht es Infrastrukturadministratoren, sich auf wichtigere Funktionen zu
konzentrieren.

NetApp HCI wird vollständig von Trident unterstützt. Trident kann Storage-Geräte für Container-Applikationen
direkt auf der zugrunde liegenden NetApp HCI Storage-Plattform bereitstellen und managen.

Azure NetApp Dateien

"Azure NetApp Dateien" Ist ein Azure-Dateifreigabeservice der Enterprise-Klasse auf der Basis von NetApp.
Sie können anspruchsvollste dateibasierte Workloads nativ in Azure ausführen. So erhalten Sie die
Performance und das umfassende Datenmanagement, die Sie von NetApp gewohnt sind.

Cloud Volumes Service für Google Cloud

"NetApp Cloud Volumes Service für Google Cloud" Ist ein Cloud-nativer Fileservice, der NAS-Volumes über
NFS und SMB mit All-Flash-Performance bereitstellt. Mit diesem Service können alle Workloads, auch ältere
Applikationen, in der GCP-Cloud ausgeführt werden. Es bietet einen vollständig gemanagten Service, der
konsistent hohe Performance, sofortiges Klonen, Datensicherung und sicheren Zugriff auf Google Compute
Engine (GCE) Instanzen bietet.

Kubernetes und Trident Objekte

Kubernetes und Trident lassen sich über REST-APIs miteinander interagieren, indem
Objekte gelesen und geschrieben werden. Es gibt verschiedene Ressourcenobjekte, die
die Beziehung zwischen Kubernetes und Trident, Trident und Storage sowie Kubernetes
und Storage vorschreiben. Einige dieser Objekte werden über Kubernetes verwaltet,

4

http://cloud.netapp.com/ontap-cloud?utm_source=GitHub&utm_campaign=Trident
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/data-management/element-software/
https://www.netapp.com/virtual-desktop-infrastructure/netapp-hci/
https://azure.microsoft.com/en-us/services/netapp/
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=GitHub&utm_campaign=Trident

andere wiederum über Trident.

Wie interagieren die Objekte miteinander?

Am einfachsten ist es, die Objekte, deren Bedeutung und ihre Interaktion zu verstehen, wenn ein Kubernetes-
Benutzer eine einzelne Storage-Anfrage bearbeitet:

1. Ein Benutzer erstellt ein PersistentVolumeClaim Anforderung eines neuen PersistentVolume
Einer bestimmten Größe von einem Kubernetes aus StorageClass Das wurde zuvor vom Administrator
konfiguriert.

2. Kubernetes StorageClass Identifiziert Trident als seine bereitstellung und enthält Parameter, die Trident
zur Bereitstellung eines Volumes für die angeforderte Klasse angeben.

3. Trident sieht seinen eigenen Blick StorageClass Mit dem gleichen Namen, der die Übereinstimmung
identifiziert Backends Und StoragePools Die sie für die Bereitstellung von Volumes für die Klasse
einsetzen kann.

4. Trident stellt Storage auf einem passenden Back-End bereit und erstellt zwei Objekte: A
PersistentVolume In Kubernetes informiert Kubernetes über das Finden, Mounten und behandeln des
Volumes und ein Volume in Trident, das die Beziehung zwischen den beibehält PersistentVolume Und
dem tatsächlichen Storage.

5. Kubernetes bindet das PersistentVolumeClaim Zum neuen PersistentVolume. Pods, die die
enthalten PersistentVolumeClaim Mounten Sie dieses PersistenzVolume auf jedem Host, auf dem es
ausgeführt wird.

6. Ein Benutzer erstellt ein VolumeSnapshot Eines vorhandenen PVC unter Verwendung eines
VolumeSnapshotClass Das verweist auf Trident.

7. Trident identifiziert das dem PVC zugeordnete Volume und erstellt einen Snapshot des Volumes auf dem
Back-End. Es erzeugt auch ein VolumeSnapshotContent Damit wird Kubernetes angewiesen, den
Snapshot zu identifizieren.

8. Ein Benutzer kann ein erstellen PersistentVolumeClaim Wird verwendet VolumeSnapshot Als
Quelle.

9. Trident identifiziert den erforderlichen Snapshot und führt die gleichen Schritte aus, die bei der Erstellung
eines erforderlich sind PersistentVolume Und A Volume.

Für weitere Informationen über Kubernetes-Objekte empfehlen wir Ihnen, die zu lesen
"Persistente Volumes" Der Kubernetes-Dokumentation.

Kubernetes PersistentVolumeClaim Objekte

Ein Kubernetes PersistentVolumeClaim Objekt ist eine Storage-Anfrage von einem Kubernetes Cluster-
Benutzer.

Zusätzlich zur Standardspezifikation können Benutzer mit Trident die folgenden Volume-spezifischen
Anmerkungen angeben, wenn sie die in der Back-End-Konfiguration festgelegten Standardeinstellungen
überschreiben möchten:

Anmerkung Volume-Option Unterstützte Treiber

trident.netapp.io/fileSystem Dateisystem ontap-san, solidfire-san, ontap-san-
Economy

5

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Anmerkung Volume-Option Unterstützte Treiber

trident.netapp.io/cloneFromPVC KlonSourceVolume ontap-nas
ontap-san, solidfire-san, Azure-
netapp-Files, gcp-cim,
ontap-san-Ökonomie

trident.netapp.io/splitOnClone SPlitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol Protokoll Alle

trident.netapp.io/exportPolicy Exportpolitik ontap-nas
ontap-nas-Economy, ontap-nas-
flexgroup

trident.netapp.io/snapshotPolicy SnapshotPolicy ontap-nas
ontap-nas-Economy, ontap-nas-
flexgroup, ontap-san

trident.netapp.io/snapshotReserve SnapshotReserve ontap-nas
ontap-nas-flexgroup, ontap-san,
gcp-cvs

trident.netapp.io/snapshotDirectory SnapshotDirectory ontap-nas
ontap-nas-Economy, ontap-nas-
flexgroup

trident.netapp.io/unixPermissions UnxPermissions ontap-nas
ontap-nas-Economy, ontap-nas-
flexgroup

trident.netapp.io/blockSize Blocksize solidfire-san

Wenn das erstellte PV über den verfügt Delete Rückgewinnungsrichtlinie: Trident löscht sowohl das PV als
auch das Backvolume, wenn das PV freigegeben wird (d. h. wenn der Benutzer die PVC löscht). Sollte die
Löschaktion fehlschlagen, markiert Trident den PV als solche und wiederholt den Vorgang periodisch, bis er
erfolgreich ist oder der PV manuell gelöscht wird. Wenn das PV den verwendet Retain Richtlinie: Trident
ignoriert es und geht davon aus, dass der Administrator die Datei über Kubernetes und das Backend bereinigt,
damit das Volume vor dem Entfernen gesichert oder inspiziert werden kann. Beachten Sie, dass das Löschen
des PV nicht dazu führt, dass Trident das Backing-Volume löscht. Sie sollten es mit DER REST API entfernen
(tridentctl).

Trident unterstützt die Erstellung von Volume Snapshots anhand der CSI-Spezifikation: Sie können einen
Volume Snapshot erstellen und ihn als Datenquelle zum Klonen vorhandener PVCs verwenden. So können
zeitpunktgenaue Kopien von PVS in Form von Snapshots Kubernetes zugänglich gemacht werden. Die
Snapshots können dann verwendet werden, um neue PVS zu erstellen. Sie finden sie hier On-Demand
Volume Snapshots Um zu sehen, wie das funktionieren würde.

Trident enthält außerdem die cloneFromPVC Und splitOnClone Anmerkungen zum Erstellen von Klonen.
Sie können diese Anmerkungen zum Klonen einer PVC verwenden, ohne die CSI-Implementierung (für
Kubernetes 1.13 und frühere Versionen) verwenden zu müssen oder wenn Ihre Kubernetes-Version keine
Beta-Volume-Snapshots unterstützt (Kubernetes 1.16 und frühere Versionen). Beachten Sie, dass Trident
19.10 den CSI-Workflow zum Klonen von einer PVC unterstützt.

Sie können das verwenden cloneFromPVC Und splitOnClone Anmerkungen mit CSI Trident
sowie das traditionelle nicht-CSI-Frontend.

6

Hier ist ein Beispiel: Wenn ein Benutzer bereits ein PVC aufgerufen hat mysql, Der Benutzer kann ein neues
PVC mit dem Namen erstellen mysqlclone Durch die Verwendung der Anmerkung, z. B.
trident.netapp.io/cloneFromPVC: mysql. Mit diesem Anmerkungsset klont Trident das Volume, das
dem mysql PVC entspricht, anstatt ein Volume von Grund auf neu bereitzustellen.

Berücksichtigen Sie folgende Punkte:

• Wir empfehlen das Klonen eines inaktiven Volumes.

• Ein PVC und sein Klon sollten sich im gleichen Kubernetes Namespace befinden und dieselbe Storage-
Klasse haben.

• Mit dem ontap-nas Und ontap-san Treiber, kann es wünschenswert sein, die PVC-Anmerkung zu
setzen trident.netapp.io/splitOnClone Zusammen mit trident.netapp.io/cloneFromPVC.
Mit trident.netapp.io/splitOnClone Auf einstellen true, Trident teilt das geklonte Volume vom
übergeordneten Volume auf und sorgt so für eine vollständige Entkopplung des geklonten Volume vom
übergeordneten Volume – und zwar auf Kosten des Verlusts von Storage-Effizienz. Keine Einstellung
trident.netapp.io/splitOnClone Oder auf einstellen false Dies senkt den Platzbedarf im Back-
End. Dies verursacht Abhängigkeiten zwischen dem übergeordneten und den Klon-Volumes, sodass das
übergeordnete Volume nur gelöscht werden kann, wenn der Klon zuvor gelöscht wird. Ein Szenario, in
dem das Aufteilen des Klons sinnvoll ist, ist das Klonen eines leeren Datenbank-Volumes, in dem erwartet
wird, dass das Volume und der zugehörige Klon eine große Divergenz sind. Es profitieren nicht von der
Storage-Effizienz des ONTAP.

Der sample-input Das Verzeichnis enthält Beispiele für PVC-Definitionen zur Verwendung mit Trident. In
Trident Volume-Objekten finden Sie eine vollständige Beschreibung der Parameter und Einstellungen, die mit
Trident Volumes verbunden sind.

Kubernetes PersistentVolume Objekte

Ein Kubernetes PersistentVolume Objekt stellt eine Storage-Komponente dar, die dem Kubernetes-Cluster
zur Verfügung gestellt wird. Es weist einen Lebenszyklus auf, der unabhängig vom POD ist, der ihn nutzt.

Trident erstellt PersistentVolume Objekte werden beim Kubernetes Cluster automatisch auf
Basis der Volumes registriert, die bereitgestellt werden. Sie sollten diese nicht selbst verwalten.

Wenn Sie eine PVC erstellen, die sich auf eine Trident-basierte bezieht StorageClass, Trident stellt ein
neues Volume anhand der entsprechenden Storage-Klasse bereit und registriert ein neues PV für dieses
Volume. Bei der Konfiguration des bereitgestellten Volume und des entsprechenden PV befolgt Trident
folgende Regeln:

• Trident generiert einen PV-Namen für Kubernetes mit einem internen Namen, der zur Bereitstellung des
Storage verwendet wird. In beiden Fällen wird sichergestellt, dass die Namen in ihrem Geltungsbereich
eindeutig sind.

• Die Größe des Volumens entspricht der gewünschten Größe in der PVC so genau wie möglich, obwohl es
möglicherweise auf die nächste zuteilbare Menge aufgerundet werden, je nach Plattform.

Kubernetes StorageClass Objekte

Kubernetes StorageClass Objekte werden in mit Namen angegeben PersistentVolumeClaims So
stellen Sie Speicher mit einer Reihe von Eigenschaften bereit. Die Storage-Klasse selbst gibt die zu
verwendenden bereitstellungsunternehmen an und definiert die Eigenschaftengruppe in Bezug auf die
provisionierung von.

7

Es handelt sich um eines von zwei grundlegenden Objekten, die vom Administrator erstellt und verwaltet
werden müssen. Das andere ist das Trident Back-End-Objekt.

Ein Kubernetes StorageClass Objekt, das Trident verwendet, sieht so aus:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

 <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

Diese Parameter sind Trident-spezifisch und Trident erläutert die Bereitstellung von Volumes für die Klasse.

Parameter der Storage-Klasse sind:

Attribut Typ Erforderlich Beschreibung

Merkmale Zuordnen einer
Zeichenfolge[string]

Nein Weitere Informationen
finden Sie im Abschnitt
Attribute unten

Storage Pools Zuordnen[String]StringList Nein Zuordnung von Backend-
Namen zu Listen
Storage-Pools in NetApp
zu nutzen

Zusätzlich StoragePools Zuordnen[String]StringList Nein Zuordnung der Backend-
Namen
Listen von Speicherpools
in

Unter Ausnahme von
StoragePools

Zuordnen[String]StringList Nein Zuordnung der Backend-
Namen zu
Listen der Speicherpools
in

Storage-Attribute und ihre möglichen Werte können in Auswahlebene und Kubernetes-Attribute des Storage-
Pools klassifiziert werden.

Auswahlebene für Storage-Pools

Diese Parameter bestimmen, welche in Trident gemanagten Storage Pools zur Bereitstellung von Volumes
eines bestimmten Typs verwendet werden sollten.

8

Attribut Typ Werte Angebot Anfrage Unterstützt von

Medien1 Zeichenfolge hdd, Hybrid, ssd Pool enthält
Medien dieser
Art. Beides
bedeutet Hybrid

Medientyp
angegeben

ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
solidfire-san

Bereitstellungsty
p

Zeichenfolge Dünn, dick Pool unterstützt
diese
Bereitstellungsm
ethode

Bereitstellungsm
ethode
angegeben

Thick: All
ONTAP; Thin:
Alle ONTAP und
solidfire-san

BackendType Zeichenfolge ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, Azure-
netapp-Files,
ontap-san-
Wirtschaftlichkeit

Pool gehört zu
dieser Art von
Backend

Back-End
angegeben

Alle Treiber

Snapshots bool Richtig, falsch Pool unterstützt
Volumes mit
Snapshots

Volume mit
aktivierten
Snapshots

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Klone bool Richtig, falsch Pool unterstützt
das Klonen von
Volumes

Volume mit
aktivierten
Klonen

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Verschlüsselung bool Richtig, falsch Pool unterstützt
verschlüsselte
Volumes

Volume mit
aktivierter
Verschlüsselung

ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroups,
ontap-san

IOPS Int Positive
Ganzzahl

Pool kann IOPS
in diesem
Bereich
garantieren

Volume hat diese
IOPS garantiert

solidfire-san

1: Nicht unterstützt von ONTAP Select-Systemen

In den meisten Fällen beeinflussen die angeforderten Werte direkt die Bereitstellung. Wenn Sie beispielsweise
Thick Provisioning anfordern, entsteht ein Volume mit Thick Provisioning. Ein Element Storage-Pool nutzt
jedoch den angebotenen IOPS-Minimum und das Maximum, um QoS-Werte anstelle des angeforderten Werts
festzulegen. In diesem Fall wird der angeforderte Wert nur verwendet, um den Speicherpool auszuwählen.

Im Idealfall können Sie verwenden attributes Um die Eigenschaften des Storage zu modellieren, können
Sie die Anforderungen einer bestimmten Klasse erfüllen. Trident erkennt und wählt automatisch Storage Pools
aus, die mit all der übereinstimmen attributes Die Sie angeben.

9

Wenn Sie feststellen, dass Sie nicht in der Lage sind, zu verwenden attributes Um automatisch die
richtigen Pools für eine Klasse auszuwählen, können Sie die verwenden storagePools Und
additionalStoragePools Parameter zur weiteren Verfeinerung der Pools oder sogar zur Auswahl einer
bestimmten Gruppe von Pools.

Sie können das verwenden storagePools Parameter zur weiteren Einschränkung des Pools, die mit den
angegebenen übereinstimmen attributes. Mit anderen Worten: Trident verwendet die Schnittstelle von
Pools, die vom identifiziert werden attributes Und storagePools Parameter für die Bereitstellung. Sie
können entweder allein oder beides zusammen verwenden.

Sie können das verwenden additionalStoragePools Parameter zur Erweiterung des Pools, die Trident
für die Bereitstellung verwendet, unabhängig von den vom ausgewählten Pools attributes Und
storagePools Parameter.

Sie können das verwenden excludeStoragePools Parameter zum Filtern des Pools, den Trident für die
Bereitstellung verwendet. Mit diesem Parameter werden alle Pools entfernt, die übereinstimmen.

Im storagePools Und additionalStoragePools Parameter, jeder Eintrag nimmt das Formular
<backend>:<storagePoolList>, Wo <storagePoolList> Ist eine kommagetrennte Liste von
Speicherpools für das angegebene Backend. Beispiel: Ein Wert für additionalStoragePools Könnte
aussehen ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze.
Diese Listen akzeptieren Regex-Werte sowohl für das Backend als auch für Listenwerte. Verwenden Sie
können tridentctl get backend Um die Liste der Back-Ends und deren Pools zu erhalten.

Attribute für Kubernetes

Diese Attribute haben keine Auswirkung auf die Auswahl von Storage-Pools/Back-Ends, die von Trident
während der dynamischen Provisionierung durchgeführt werden. Stattdessen liefern diese Attribute einfach
Parameter, die von Kubernetes Persistent Volumes unterstützt werden. Worker-Knoten sind für die Erstellung
von Dateisystem-Operationen verantwortlich und benötigen möglicherweise Dateisystem-Dienstprogramme,
wie z. B. xfsprogs.

Attribut Typ Werte Beschreibung Wichtige
Faktoren

Kubernetes
Version

Fstype Zeichenfolge Ext4, ext3, xfs
usw.

Der
Dateisystemtyp
für Block
Volumes

solidfire-san,
ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
ontap-san-
Ökonomie

Alle

10

VolumeErweiteru
ng

boolesch Richtig, falsch Aktivieren oder
deaktivieren Sie
die
Unterstützung für
das Vergrößern
der PVC-Größe

ontap-nas,
ontap-nas-
Ökonomie,
ontap-nas-
Flexgroup,
ontap-san,
ontap-san-
Ökonomie,
solidfire-san,
gcp-cvs, Azure-
netapp-Files

1.11 und höher

VolumeBindingm
odus

Zeichenfolge Sofort,
WaitForFirstCon
sumer

Legen Sie fest,
wann Volume
Binding und
dynamische
Bereitstellung
stattfindet

Alle 1.19 - 1.26

• Der fsType Parameter wird verwendet, um den gewünschten Filesystem-Typ für SAN-
LUNs zu steuern. Darüber hinaus verwendet Kubernetes auch Präsenz von fsType In einer
Speicherklasse, die darauf hinweist, dass ein Dateisystem vorhanden ist. Das Volume-
Eigentum kann über den gesteuert werden fsGroup Sicherheitskontext eines Pods nur
wenn fsType Ist festgelegt. Siehe "Kubernetes: Einen Sicherheitskontext für einen Pod
oder Container konfigurieren" Für eine Übersicht über die Einstellung des Volume-Besitzes
mit dem fsGroup Kontext. Kubernetes wendet das an fsGroup Wert nur, wenn:

◦ fsType Wird in der Storage-Klasse festgelegt.

◦ Der PVC-Zugriffsmodus ist RWO.

Für NFS-Speichertreiber ist bereits ein Dateisystem als Teil des NFS-Exports vorhanden.
Zur Verwendung fsGroup Die Storage-Klasse muss noch ein angeben fsType. Sie
können es auf einstellen nfs Oder ein nicht-Null-Wert.

• Siehe "Erweitern Sie Volumes" Für weitere Informationen zur Volume-Erweiterung.

• Das Trident Installationspaket bietet verschiedene Beispiele für Storage-Klassen, die mit
Trident in verwendet werden können sample-input/storage-class-*.yaml. Durch
das Löschen einer Kubernetes-Storage-Klasse wird auch die entsprechende Trident-
Storage-Klasse gelöscht.

Kubernetes VolumeSnapshotClass Objekte

Kubernetes VolumeSnapshotClass Objekte sind analog StorageClasses. Sie helfen, mehrere
Speicherklassen zu definieren und werden von Volume-Snapshots referenziert, um den Snapshot der
erforderlichen Snapshot-Klasse zuzuordnen. Jeder Volume Snapshot ist einer einzelnen Volume-Snapshot-
Klasse zugeordnet.

A VolumeSnapshotClass Sollte von einem Administrator definiert werden, um Snapshots zu erstellen. Eine
Volume-Snapshot-Klasse wird mit folgender Definition erstellt:

11

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

Der driver Gibt an Kubernetes, dass Volume-Snapshots von anfordert csi-snapclass Die Klasse werden
von Trident übernommen. Der deletionPolicy Gibt die Aktion an, die ausgeführt werden soll, wenn ein
Snapshot gelöscht werden muss. Wenn deletionPolicy Ist auf festgelegt Delete, Die Volume-Snapshot-
Objekte sowie der zugrunde liegende Snapshot auf dem Storage-Cluster werden entfernt, wenn ein Snapshot
gelöscht wird. Alternativ können Sie ihn auf einstellen Retain Bedeutet das VolumeSnapshotContent Und
der physische Snapshot wird beibehalten.

Kubernetes VolumeSnapshot Objekte

Ein Kubernetes VolumeSnapshot Objekt ist eine Anforderung zur Erstellung eines Snapshots eines Volumes.
So wie eine PVC eine von einem Benutzer erstellte Anfrage für ein Volume darstellt, besteht bei einem
Volume-Snapshot die Anforderung eines Benutzers, einen Snapshot eines vorhandenen PVC zu erstellen.

Sobald eine Volume Snapshot-Anfrage eingeht, managt Trident automatisch die Erstellung des Snapshots für
das Volume auf dem Backend und legt den Snapshot offen, indem er einen eindeutigen erstellt
VolumeSnapshotContent Objekt: Sie können Snapshots aus vorhandenen VES erstellen und die
Snapshots als Datenquelle beim Erstellen neuer VES verwenden.

Der Lebenszyklus eines VolumeSnapshots ist unabhängig von der Quelle PVC: Ein Snapshot
bleibt auch nach dem Löschen der Quelle PVC erhalten. Beim Löschen eines PVC mit
zugehörigen Snapshots markiert Trident das Backing-Volume für dieses PVC in einem Deleting

-Zustand, entfernt es aber nicht vollständig. Das Volume wird entfernt, wenn alle zugehörigen
Snapshots gelöscht werden.

Kubernetes VolumeSnapshotContent Objekte

Ein Kubernetes VolumeSnapshotContent Objekt stellt einen Snapshot dar, der von einem bereits
bereitgestellten Volume entnommen wurde. Es ist analog zu einem PersistentVolume Und bedeutet einen
bereitgestellten Snapshot auf dem Storage-Cluster. Ähnlich PersistentVolumeClaim Und
PersistentVolume Objekte, wenn ein Snapshot erstellt wird, das VolumeSnapshotContent Objekt
verwaltet eine 1:1-Zuordnung zum VolumeSnapshot Objekt, das die Snapshot-Erstellung angefordert hatte.

Trident erstellt VolumeSnapshotContent Objekte werden beim Kubernetes Cluster
automatisch auf Basis der Volumes registriert, die bereitgestellt werden. Sie sollten diese nicht
selbst verwalten.

Der VolumeSnapshotContent Das Objekt enthält Details, die den Snapshot eindeutig identifizieren, z. B.
den snapshotHandle. Das snapshotHandle Ist eine einzigartige Kombination aus dem Namen des PV
und dem Namen des VolumeSnapshotContent Objekt:

Wenn eine Snapshot-Anfrage eingeht, erstellt Trident den Snapshot auf dem Back-End. Nach der Erstellung
des Snapshots konfiguriert Trident einen VolumeSnapshotContent Objekt-Storage erstellt und damit den

12

Snapshot der Kubernetes API zur Verfügung gestellt.

Kubernetes CustomResourceDefinition Objekte

Kubernetes Custom Ressourcen sind Endpunkte in der Kubernetes API, die vom Administrator definiert
werden und zum Gruppieren ähnlicher Objekte verwendet werden. Kubernetes unterstützt das Erstellen
individueller Ressourcen zum Speichern einer Sammlung von Objekten. Sie erhalten diese Ressourcen-
Definitionen, indem Sie ausführen kubectl get crds.

CRDs (Custom Resource Definitions) und die zugehörigen Objektmetadaten werden durch Kubernetes im
Metadatenspeicher gespeichert. Dadurch ist kein separater Speicher für Trident erforderlich.

Ab Version 19.07 verwendet Trident mehrere Lösungen CustomResourceDefinition Objekte zur Wahrung
der Identität von Trident Objekten, wie Trident Back-Ends, Trident Storage-Klassen und Trident Volumes.
Diese Objekte werden von Trident gemanagt. Darüber hinaus werden im CSI-Volume-Snapshot-Framework
einige CRS-IDs verwendet, die zum Definieren von Volume-Snapshots erforderlich sind.

CRDs stellen ein Kubernetes-Konstrukt dar. Objekte der oben definierten Ressourcen werden von Trident
erstellt. Wenn ein Backend mit erstellt wird, ist das ein einfaches Beispiel tridentctl, Eine entsprechende
tridentbackends Das CRD-Objekt wird für den Verbrauch durch Kubernetes erstellt.

Beachten Sie die folgenden CRDs von Trident:

• Wenn Trident installiert ist, werden eine Reihe von CRDs erstellt und können wie alle anderen
Ressourcentypen verwendet werden.

• Beim Upgrade von einer früheren Version von Trident (eine Version, die verwendet wurde etcd Um den
Status beizubehalten) migriert das Trident-Installationsprogramm die Daten von dem etcd Schlüsselwert-
Datenspeicher und Erstellung der entsprechenden CRD-Objekte.

• Bei der Deinstallation von Trident mit dem tridentctl uninstall Befehl, Trident Pods werden
gelöscht, die erstellten CRDs werden jedoch nicht bereinigt. Siehe "Deinstallieren Sie Trident" Um zu
erfahren, wie Trident vollständig entfernt und von Grund auf neu konfiguriert werden kann

Trident StorageClass Objekte

Trident erstellt passende Storage-Klassen für Kubernetes StorageClass Objekte, die angeben
csi.trident.netapp.io/netapp.io/trident In ihrem Feld für die bereitstellung. Der Name der
Storage-Klasse stimmt mit der der von Kubernetes überein StorageClass Objekt, das es repräsentiert.

Mit Kubernetes werden diese Objekte automatisch bei einem Kubernetes erstellt
StorageClass Und Trident ist für die bereitstellung registriert.

Storage-Klassen umfassen eine Reihe von Anforderungen für Volumes. Trident stimmt diese Anforderungen
mit den in jedem Storage-Pool vorhandenen Attributen überein. Ist dieser Storage-Pool ein gültiges Ziel für die
Bereitstellung von Volumes anhand dieser Storage-Klasse.

Sie können Storage-Klassen-Konfigurationen erstellen, um Storage-Klassen direkt über DIE REST API zu
definieren. Bei Kubernetes-Implementierungen werden sie jedoch bei der Registrierung von neuem
Kubernetes erstellt StorageClass Objekte:

13

https://docs.netapp.com/de-de/trident-2304/trident-managing-k8s/uninstall-trident.html

Trident Back-End-Objekte

Back-Ends stellen die Storage-Anbieter dar, über die Trident Volumes bereitstellt. Eine einzelne Trident Instanz
kann eine beliebige Anzahl von Back-Ends managen.

Dies ist einer der beiden Objekttypen, die Sie selbst erstellen und verwalten. Die andere ist
Kubernetes StorageClass Objekt:

Weitere Informationen zum Erstellen dieser Objekte finden Sie unter "Back-Ends werden konfiguriert".

Trident StoragePool Objekte

Storage-Pools stellen die verschiedenen Standorte dar, die für die Provisionierung an jedem Back-End
verfügbar sind. Für ONTAP entsprechen diese Aggregaten in SVMs. Bei NetApp HCI/SolidFire entsprechen
diese den vom Administrator festgelegten QoS-Bands. Für Cloud Volumes Service entsprechen diese
Regionen Cloud-Provider. Jeder Storage-Pool verfügt über eine Reihe individueller Storage-Attribute, die seine
Performance-Merkmale und Datensicherungsmerkmale definieren.

Im Gegensatz zu den anderen Objekten hier werden Storage-Pool-Kandidaten immer automatisch erkannt und
gemanagt.

Trident Volume Objekte

Volumes sind die grundlegende Bereitstellungseinheit, die Back-End-Endpunkte umfasst, wie NFS-Freigaben
und iSCSI-LUNs. In Kubernetes entsprechen diese direkt PersistentVolumes. Wenn Sie ein Volume
erstellen, stellen Sie sicher, dass es über eine Storage-Klasse verfügt, die bestimmt, wo das Volume
zusammen mit einer Größe bereitgestellt werden kann.

In Kubernetes werden diese Objekte automatisch gemanagt. Sie können sich anzeigen lassen,
welche Bereitstellung von Trident bereitgestellt wurde.

Wenn Sie ein PV mit den zugehörigen Snapshots löschen, wird das entsprechende Trident-
Volume auf den Status Löschen aktualisiert. Damit das Trident Volume gelöscht werden kann,
sollten Sie die Snapshots des Volume entfernen.

Eine Volume-Konfiguration definiert die Eigenschaften, über die ein bereitgestelltes Volume verfügen sollte.

Attribut Typ Erforderlich Beschreibung

Version Zeichenfolge Nein Version der Trident API
(„1“)

Name Zeichenfolge ja Name des zu erstellenden
Volumes

Storage Class Zeichenfolge ja Storage-Klasse, die bei
der Bereitstellung des
Volumes verwendet
werden muss

Größe Zeichenfolge ja Größe des Volumes, das
in Byte bereitgestellt
werden soll

14

https://docs.netapp.com/de-de/trident-2304/trident-use/backends.html

Attribut Typ Erforderlich Beschreibung

Protokoll Zeichenfolge Nein Zu verwendenden
Protokolltyp; „Datei“ oder
„Block“

InternalName Zeichenfolge Nein Name des Objekts auf
dem Storage-System, das
von Trident generiert wird

KlonSourceVolume Zeichenfolge Nein ONTAP (nas, san) &
SolidFire-*: Name des
Volumes aus dem geklont
werden soll

SPlitOnClone Zeichenfolge Nein ONTAP (nas, san): Den
Klon von seinem
übergeordneten Objekt
trennen

SnapshotPolicy Zeichenfolge Nein ONTAP-*: Die Snapshot-
Richtlinie zu verwenden

SnapshotReserve Zeichenfolge Nein ONTAP-*: Prozentsatz
des für Schnappschüsse
reservierten Volumens

Exportpolitik Zeichenfolge Nein ontap-nas*: Richtlinie für
den Export zu verwenden

SnapshotDirectory bool Nein ontap-nas*: Ob das
Snapshot-Verzeichnis
sichtbar ist

UnxPermissions Zeichenfolge Nein ontap-nas*: Anfängliche
UNIX-Berechtigungen

Blocksize Zeichenfolge Nein SolidFire-*: Block-
/Sektorgröße

Dateisystem Zeichenfolge Nein Typ des Filesystems

Trident generiert internalName Beim Erstellen des Volumes. Dies besteht aus zwei Schritten. Zuerst wird
das Speicherpräfix (entweder der Standard) voreingestellt trident Oder das Präfix in der Backend-
Konfiguration) zum Volume-Namen, was zu einem Namen des Formulars führt <prefix>-<volume-name>.
Anschließend wird der Name desinfiziert und die im Backend nicht zulässigen Zeichen ersetzt. Bei ONTAP
Back-Ends werden Bindestriche mit Unterstriche ersetzt (d. h., der interne Name wird aus
<prefix>_<volume-name>). Bei Element-Back-Ends werden Unterstriche durch Bindestriche ersetzt.

Sie können Volume-Konfigurationen verwenden, um Volumes direkt über DIE REST-API bereitzustellen. In
Kubernetes-Implementierungen gehen die meisten Benutzer jedoch davon aus, den Standard Kubernetes zu
verwenden PersistentVolumeClaim Methode. Trident erstellt dieses Volume-Objekt automatisch im
Rahmen der Bereitstellung
Prozess.

15

Trident Snapshot Objekte

Snapshots sind eine zeitpunktgenaue Kopie von Volumes, die zur Bereitstellung neuer Volumes oder für
Restores verwendet werden kann. In Kubernetes entsprechen diese direkt VolumeSnapshotContent
Objekte: Jeder Snapshot ist einem Volume zugeordnet, das die Quelle der Daten für den Snapshot ist.

Beide Snapshot Objekt enthält die unten aufgeführten Eigenschaften:

Attribut Typ Erforderlich Beschreibung

Version Zeichenfolge Ja. Version der Trident API
(„1“)

Name Zeichenfolge Ja. Name des Trident
Snapshot-Objekts

InternalName Zeichenfolge Ja. Name des Trident
Snapshot-Objekts auf
dem Storage-System

VolumeName Zeichenfolge Ja. Name des Persistent
Volume, für das der
Snapshot erstellt wird

VolumeInternalName Zeichenfolge Ja. Name des zugehörigen
Trident-Volume-Objekts
auf dem Storage-System

In Kubernetes werden diese Objekte automatisch gemanagt. Sie können sich anzeigen lassen,
welche Bereitstellung von Trident bereitgestellt wurde.

Wenn ein Kubernetes VolumeSnapshot Objektanforderung wird erstellt. Trident erstellt ein Snapshot-Objekt
auf dem zugrunde gelegten Storage-System. Der internalName Dieses Snapshot-Objekt wird durch
Kombination des Präfixes generiert snapshot- Mit dem UID Des VolumeSnapshot Objekt (z. B.
snapshot-e8d8a0ca-9826-11e9-9807-525400f3f660). volumeName Und volumeInternalName
Werden ausgefüllt, indem die Details des Backing abgerufen werden
Datenmenge:

Astra Trident ResourceQuota Objekt

Das Trident-Eintreten verbraucht einen system-node-critical Priority Class – die in Kubernetes
verfügbare Class mit höchster Priorität, damit Astra Trident Volumes beim ordnungsgemäßen Shutdown von
Nodes identifizieren und bereinigen kann und Trident Demonset-Pods zulassen kann, dass Workloads mit
niedriger Priorität in Clustern mit hohen Ressourcenbelastungen vorbeugen.

Astra Trident setzt hierfür ein ResourceQuota Möchten Sie sicherstellen, dass eine „System-Node-kritische“
Prioritätsklasse auf dem Trident-Demonset erfüllt ist. Vor der Implementierung und der Erstellung von
Dämonen sucht Astra Trident die ResourceQuota Objekt und, falls nicht erkannt, wendet es an.

Wenn Sie mehr Kontrolle über das standardmäßige Ressourcenkontingent und die Prioritätsklasse benötigen,
können Sie ein generieren custom.yaml Oder konfigurieren Sie die ResourceQuota Objekt mit Helm-
Diagramm.

Im Folgenden finden Sie ein Beispiel für ein `ResourceQuota`Objekt mit Priorität des Trident-Dämonenset.

16

apiVersion: <version>

kind: ResourceQuota

metadata:

 name: trident-csi

 labels:

 app: node.csi.trident.netapp.io

spec:

 scopeSelector:

 matchExpressions:

 - operator : In

 scopeName: PriorityClass

 values: ["system-node-critical"]

Weitere Informationen zu Ressourcenkontingenten finden Sie unter "Kubernetes: Ressourcenkontingente".

Bereinigung ResourceQuota Wenn die Installation fehlschlägt

In seltenen Fällen, in denen die Installation nach dem fehlschlägt ResourceQuota Das Objekt wird erstellt,
versuchen Sie es zuerst "Deinstallation" Und installieren Sie dann neu.

Wenn das nicht funktioniert, entfernen Sie manuell das ResourceQuota Objekt:

Entfernen ResourceQuota

Wenn Sie die eigene Ressourcenzuweisung steuern möchten, können Sie den Astra Trident entfernen
ResourceQuota Objekt mit dem Befehl:

kubectl delete quota trident-csi -n trident

Tridentctl-Befehle und -Optionen

Der "Trident Installationspaket" Enthält ein Befehlszeilendienstprogramm, tridentctl,
Das ist ein einfacher Zugriff auf Astra Trident. Kubernetes-Benutzer mit ausreichenden
Berechtigungen können es verwenden, um Astra Trident zu installieren und direkt damit
zu interagieren, um den Namespace zu managen, der den Astra Trident Pod enthält.

Verfügbare Befehle und Optionen

Führen Sie zur Verwendung Informationen aus tridentctl --help.

Die verfügbaren Befehle und globalen Optionen sind:

Usage:

 tridentctl [command]

17

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://docs.netapp.com/de-de/trident-2304/trident-managing-k8s/uninstall-trident.html
https://github.com/NetApp/trident/releases

Verfügbare Befehle:

• create: Fügen Sie eine Ressource zu Astra Trident hinzu.

• delete: Entfernen Sie eine oder mehrere Ressourcen von Astra Trident.

• get: Holen Sie sich eines oder mehrere Ressourcen von Astra Trident.

• help: Hilfe zu jedem Befehl.

• images: Drucken Sie eine Tabelle der Container-Bilder, die Astra Trident braucht.

• import: Import einer vorhandenen Ressource zu Astra Trident.

• install: Installation Astra Trident:

• logs: Drucken Sie die Protokolle von Astra Trident.

• send: Senden Sie eine Ressource von Astra Trident.

• uninstall: Astra Trident Deinstallieren.

• update: Ändern Sie eine Ressource in Astra Trident.

• upgrade: Upgrade einer Ressource in Astra Trident.

• version: Drucken Sie die Version von Astra Trident.

Markierungen:

• `-d, --debug: Debug-Ausgabe.

• `-h, --help: Hilfe für tridentctl.

• `-n, --namespace string: Namespace für Astra Trident Implementierung.

• `-o, --output string: Ausgabeformat. Einer von json yaml-Namen natürlich Ärmellos (Standard).

• `-s, --server string: Adresse/Port des Astra Trident REST Interface.

Die Trident REST-Schnittstelle kann nur für die Wiedergabe unter 127.0.0.1 (für IPv4) oder [:
1] (für IPv6) konfiguriert werden.

Die Trident REST-Schnittstelle kann nur für die Wiedergabe unter 127.0.0.1 (für IPv4) oder [: 1]
(für IPv6) konfiguriert werden.

create

Sie können den ausführen create Befehl zum Hinzufügen einer Ressource zum Astra Trident.

Usage:

 tridentctl create [option]

Verfügbare Option:
backend: Fügen Sie ein Backend zu Astra Trident hinzu.

18

delete

Sie können die ausführen delete Befehl, um eine oder mehrere Ressourcen aus Astra Trident zu entfernen.

Usage:

 tridentctl delete [option]

Verfügbare Optionen:

• backend: Löschen Sie ein oder mehrere Storage-Back-Ends von Astra Trident.

• snapshot: Löschen Sie einen oder mehrere Volumen-Snapshots aus Astra Trident.

• storageclass: Löschen einer oder mehrerer Speicherklassen von Astra Trident.

• volume: Löschen Sie ein oder mehrere Storage Volumes von Astra Trident.

get

Sie können die ausführen get Befehl: Sie erhalten eine oder mehrere Ressourcen von Astra Trident.

Usage:

 tridentctl get [option]

Verfügbare Optionen:

• backend: Holen Sie sich ein oder mehrere Storage Back-Ends von Astra Trident an.

• snapshot: Holen Sie sich einen oder mehrere Schnappschüsse von Astra Trident.

• storageclass: Holen Sie sich einen oder mehrere Storage-Kurse von Astra Trident.

• volume: Holen Sie sich ein oder mehrere Bände von Astra Trident.

volume Flaggen:
* `-h, --help: Hilfe für Volumen.
* --parentOfSubordinate string: Abfrage auf untergeordnetes Quellvolumen begrenzen.
* --subordinateOf string: Abfrage auf Untergebene beschränken.

images

Sie können die ausführen images Flagge, um eine Tabelle der Container-Bilder zu drucken, die Astra Trident
benötigt.

Usage:

 tridentctl images [flags]

Markierungen:
* -h, --help`: Help for images.

19

* -V, --k8s-Version string`: Semantische Version des Kubernetes Clusters.

import volume

Sie können die ausführen import volume Befehl zum Importieren eines vorhandenen Volumes zu Astra
Trident

Usage:

 tridentctl import volume <backendName> <volumeName> [flags]

Aliase:
volume, v

Markierungen:

• `-f, --filename string: Pfad zu YAML oder JSON PVC-Datei.

• `-h, --help: Hilfe für Lautstärke.

• `--no-manage: Nur PV/PVC erstellen. Nehmen Sie kein Lifecycle Management für Volumes an.

install

Sie können die ausführen install Flags für die Installation von Astra Trident.

Usage:

 tridentctl install [flags]

Markierungen:

• `--autosupport-image string: Das Container-Image für AutoSupport Telemetry (Standard
„netapp/Trident AutoSupport:20.07.0“).

• `--autosupport-proxy string: Die Adresse/der Port eines Proxy für den Versand von AutoSupport
Telemetrie.

• `--csi: CSI Trident installieren (Überschreiben nur für Kubernetes 1.13, erfordert Feature-Gates).

• `--enable-node-prep: Versuch, benötigte Pakete auf Knoten zu installieren.

• `--generate-custom-yaml: Erzeugen von YAML-Dateien ohne Installation von irgendetwas.

• `-h, --help: Hilfe zur Installation.

• `--http-request-timeout: Überschreiben Sie die HTTP-Anforderung-Timeout für die REST-API des
Trident-Controllers (Standard 1m30s).

• `--image-registry string: Die Adresse/der Port einer internen Bilddatenbank.

• `--k8s-timeout duration: Die Zeitüberschreitung für alle Kubernetes-Operationen (Standard 3m0s).

• `--kubelet-dir string: Der Host-Standort des internen Status von kubelet (Standard
"/var/lib/kubelet").

20

• `--log-format string: Das Astra Trident Logging-Format (Text, json) (Standard "Text").

• `--pv string: Der Name des alten PV, das von Astra Trident verwendet wird, stellt sicher, dass dies
nicht existiert (Standard "Dreizack").

• `--pvc string: Der Name des alten PVC verwendet von Astra Trident, stellt sicher, dass dies nicht
existiert (Standard "Dreizack").

• `--silence-autosupport: AutoSupport Bundles nicht automatisch an NetApp senden (standardmäßig
wahr).

• `--silent: Während der Installation die meiste Leistung deaktivieren.

• `--trident-image string: Das zu installierende Astra Trident-Image.

• `--use-custom-yaml: Verwenden Sie alle bestehenden YAML-Dateien, die im Setup-Verzeichnis
vorhanden sind.

• `--use-ipv6: Nutzen Sie IPv6 für die Kommunikation von Astra Trident.

logs

Sie können die ausführen logs Flags zum Drucken der Protokolle von Astra Trident.

Usage:

 tridentctl logs [flags]

Markierungen:

• `-a, --archive: Erstellen Sie ein Stützarchiv mit allen Protokollen, sofern nicht anders angegeben.

• `-h, --help: Hilfe für Protokolle.

• `-l, --log string: Astra Trident Log to Display. Einer der Dreizack-Automatik-Operator ganz
(Standard „Auto“).

• `--node string: Der Kubernetes-Knotenname, aus dem Node-Pod-Protokolle erfasst werden.

• `-p, --previous: Holen Sie sich die Protokolle für die frühere Container-Instanz, wenn sie existiert.

• `--sidecars: Holen Sie sich die Protokolle für die Sidecar-Container.

send

Sie können die ausführen send Befehl zum Senden einer Ressource vom Astra Trident.

Usage:

 tridentctl send [option]

Verfügbare Option:
autosupport: Senden Sie ein AutoSupport-Archiv an NetApp.

21

uninstall

Sie können die ausführen uninstall Flags zum Deinstallieren von Astra Trident.

Usage:

 tridentctl uninstall [flags]

Markierungen:
* -h, --help: Hilfe zur Deinstallation.
* --silent: Deaktivieren der meisten Ausgabe während der Deinstallation.

update

Sie können die ausführen update Befehle zum Ändern einer Ressource in Astra Trident.

Usage:

 tridentctl update [option]

Verfügbare Optionen:
backend: Aktualisieren Sie ein Backend im Astra Trident.

upgrade

Sie können die ausführen upgrade Befehle für das Upgrade einer Ressource in Astra Trident.

Usage:

tridentctl upgrade [option]

Verfügbare Option:
volume: Upgrade eines oder mehrerer persistenter Volumes von NFS/iSCSI auf CSI.

version

Sie können die ausführen version Flags zum Drucken der Version von tridentctl Und den Running
Trident Service.

Usage:

 tridentctl version [flags]

Markierungen:
* --client: Nur Client-Version (kein Server erforderlich).
* -h, --help: Hilfe zur Version.

22

Pod Security Standards (PSS) und Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) und Pod Security Policies (PSP) definieren
Berechtigungsebenen und schränken das Verhalten von Pods ein. OpenShift Security
Context Constraints (SCC) definieren ebenfalls die Pod-Einschränkung speziell für die
OpenShift Kubernetes Engine. Zur Bereitstellung dieser Anpassung ermöglicht Astra
Trident während der Installation bestimmte Berechtigungen. In den folgenden Abschnitten
werden die Berechtigungen von Astra Trident erläutert.

PSS ersetzt Pod Security Policies (PSP). PSP war in Kubernetes v1.21 veraltet und wird in
v1.25 entfernt. Weitere Informationen finden Sie unter "Kubernetes: Sicherheit".

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder

Berechtigung Beschreibung

Privileged Bei CSI müssen Mount-Punkte bidirektional sein. Das
Trident Node-POD muss einen privilegierten
Container ausführen. Weitere Informationen finden
Sie unter "Kubernetes: Mount-Ausbreitung".

Host-Netzwerk Für den iSCSI-Daemon erforderlich. iscsiadm
Managt iSCSI-Mounts und verwendet Host-Netzwerke
für die Kommunikation mit dem iSCSI-Daemon.

Host-IPC NFS nutzt Prozesskommunikation (IPC) mit dem
NFSD.

Host-PID Muss gestartet werden rpc-statd Für NFS. Astra
Trident fragt die Host-Prozesse ab, um festzustellen,
ob rpc-statd Wird vor dem Mounten von NFS-
Volumes ausgeführt.

Sorgen Der SYS_ADMIN Diese Funktion wird als Teil der
Standardfunktionen für privilegierte Container
bereitgestellt. Docker legt beispielsweise die
folgenden Funktionen für privilegierte Container fest:
CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Abt Seccomp-Profil ist in privilegierten Containern immer
„unbegrenzt“; daher kann es in Astra Trident nicht
aktiviert werden.

23

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Berechtigung Beschreibung

SELinux Auf OpenShift werden privilegierte Container im
betrieben spc_t („Super Privileged Container“)-
Domain, und unprivilegierte Container werden im
ausgeführt container_t Domäne. Ein
containerd, Mit container-selinux Installiert,
alle Container werden im ausgeführt spc_t Domain,
die SELinux effektiv deaktiviert. Aus diesem Grund
wird Astra Trident nicht hinzugefügt
seLinuxOptions Zusammen mit Containern.

DAC Privilegierte Container müssen als Root ausgeführt
werden. Nicht privilegierte Container werden als Root
ausgeführt, um auf unix-Sockets zuzugreifen, die von
CSI benötigt werden.

Pod-Sicherheitsstandards (PSS)

Etikett Beschreibung Standard

pod-

security.kubernetes.io/enf

orce

pod-

security.kubernetes.io/enf

orce-version

Ermöglicht die Aufnahme der
Trident Controller und Knoten im
Namespace für die Installation.

Ändern Sie nicht die Namespace-
Bezeichnung.

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

Das Ändern der Namespace-Labels kann dazu führen, dass Pods nicht geplant werden, ein
„Error Creating: …“ oder „Warnung: trident-csi-…“. Wenn dies geschieht, prüfen Sie, ob die
Namespace-Bezeichnung für verwendet wird privileged Wurde geändert. Falls ja,
installieren Sie Trident neu.

Pod-Sicherheitsrichtlinien (PSP)

Feld Beschreibung Standard

allowPrivilegeEscalation Privilegierte Container müssen die
Eskalation von Berechtigungen
ermöglichen.

true

allowedCSIDrivers Trident verwendet keine
kurzlebigen CSI-Inline-Volumes.

Leer

allowedCapabilities Für Trident Container ohne
Privilegien sind nicht mehr
Funktionen erforderlich als für die
Standardwerte. Privilegierte
Container erhalten alle möglichen
Funktionen.

Leer

24

Feld Beschreibung Standard

allowedFlexVolumes Trident verwendet kein a
"FlexVolume-Treiber", Sie sind
daher nicht in die Liste der
zulässigen Volumen.

Leer

allowedHostPaths Der Trident-Node-Pod hängt das
Root-Dateisystem des Node
zusammen, daher bietet es keinen
Vorteil, diese Liste zu setzen.

Leer

allowedProcMountTypes Trident verwendet keine
ProcMountTypes.

Leer

allowedUnsafeSysctls Trident erfordert keine Unsicherheit
sysctls.

Leer

defaultAddCapabilities Zu privilegierten Containern
müssen keine Funktionen
hinzugefügt werden.

Leer

defaultAllowPrivilegeEscal

ation

In jedem Trident Pod werden
Berechtigungen erteilt.

false

forbiddenSysctls Nein sysctls Zulässig. Leer

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

hostIPC Das Mounten von NFS-Volumes
erfordert die Kommunikation
zwischen dem Host IPC und dem
nfsd

true

hostNetwork Iscsiadm erfordert, dass das
Hostnetzwerk mit dem iSCSI-
Daemon kommunizieren kann.

true

hostPID Host PID ist erforderlich, um zu
überprüfen, ob rpc-statd Wird
auf dem Node ausgeführt.

true

hostPorts Trident verwendet keine Host Ports. Leer

privileged Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes mounten zu können.

true

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident Node-Pods führen einen
privilegierten Container aus und
können Funktionen nicht ablegen.

none

runAsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

runAsUser Trident Container werden als Root
ausgeführt.

runAsAny

25

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Feld Beschreibung Standard

runtimeClass Trident wird nicht verwendet
RuntimeClasses.

Leer

seLinux Trident ist nicht eingerichtet
seLinuxOptions Weil es derzeit
Unterschiede hinsichtlich der
Handhabung von Container-
Laufzeiten und Kubernetes-
Distributionen für SELinux gibt.

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

volumes Trident Pods erfordern diese
Volume-Plug-ins.

hostPath, projected,

emptyDir

Sicherheitskontexteinschränkungen (SCC)

Etiketten Beschreibung Standard

allowHostDirVolumePlugin Trident-Node-Pods mounten das
Root-Dateisystem des Node.

true

allowHostIPC Das Mounten von NFS-Volumes
erfordert die Kommunikation
zwischen dem Host IPC und dem
nfsd.

true

allowHostNetwork Iscsiadm erfordert, dass das
Hostnetzwerk mit dem iSCSI-
Daemon kommunizieren kann.

true

allowHostPID Host PID ist erforderlich, um zu
überprüfen, ob rpc-statd Wird
auf dem Node ausgeführt.

true

allowHostPorts Trident verwendet keine Host Ports. false

allowPrivilegeEscalation Privilegierte Container müssen die
Eskalation von Berechtigungen
ermöglichen.

true

allowPrivilegedContainer Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes mounten zu können.

true

allowedUnsafeSysctls Trident erfordert keine Unsicherheit
sysctls.

none

allowedCapabilities Für Trident Container ohne
Privilegien sind nicht mehr
Funktionen erforderlich als für die
Standardwerte. Privilegierte
Container erhalten alle möglichen
Funktionen.

Leer

26

Etiketten Beschreibung Standard

defaultAddCapabilities Zu privilegierten Containern
müssen keine Funktionen
hinzugefügt werden.

Leer

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

groups Dieses SCC ist speziell für Trident
bestimmt und an den Anwender
gebunden.

Leer

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident Node-Pods führen einen
privilegierten Container aus und
können Funktionen nicht ablegen.

none

runAsUser Trident Container werden als Root
ausgeführt.

RunAsAny

seLinuxContext Trident ist nicht eingerichtet
seLinuxOptions Weil es derzeit
Unterschiede hinsichtlich der
Handhabung von Container-
Laufzeiten und Kubernetes-
Distributionen für SELinux gibt.

Leer

seccompProfiles Privilegierte Container laufen immer
„unbegrenzt“.

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

users Es ist ein Eintrag verfügbar, um
diesen SCC an den Trident-
Benutzer im Trident Namespace zu
binden.

k. A.

volumes Trident Pods erfordern diese
Volume-Plug-ins.

hostPath, downwardAPI,

projected, emptyDir

27

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

28

http://www.netapp.com/TM\

	Referenz : Astra Trident
	Inhalt
	Referenz
	Astra Trident-Ports
	Astra Trident-Ports

	Astra Trident REST-API
	Wann die REST-API verwendet werden soll
	REST-API wird verwendet

	Befehlszeilenoptionen
	Protokollierung
	Kubernetes
	Docker
	RUHE

	NetApp Produkte sind in Kubernetes integriert
	Astra
	ONTAP
	Cloud Volumes ONTAP
	Amazon FSX für NetApp ONTAP
	Element Software
	NetApp HCI
	Azure NetApp Dateien
	Cloud Volumes Service für Google Cloud

	Kubernetes und Trident Objekte
	Wie interagieren die Objekte miteinander?
	Kubernetes PersistentVolumeClaim Objekte
	Kubernetes PersistentVolume Objekte
	Kubernetes StorageClass Objekte
	Kubernetes VolumeSnapshotClass Objekte
	Kubernetes VolumeSnapshot Objekte
	Kubernetes VolumeSnapshotContent Objekte
	Kubernetes CustomResourceDefinition Objekte
	Trident StorageClass Objekte
	Trident Back-End-Objekte
	Trident StoragePool Objekte
	Trident Volume Objekte
	Trident Snapshot Objekte
	Astra Trident ResourceQuota Objekt

	Tridentctl-Befehle und -Optionen
	Verfügbare Befehle und Optionen
	create
	delete
	get
	images
	import volume
	install
	logs
	send
	uninstall
	update
	upgrade
	version

	Pod Security Standards (PSS) und Security Context Constraints (SCC)
	Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder
	Pod-Sicherheitsstandards (PSS)
	Pod-Sicherheitsrichtlinien (PSP)
	Sicherheitskontexteinschränkungen (SCC)

