Provisionierung und Management von
Volumes
Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/de-de/trident-2410/trident-use/vol-provision.html
on January 14, 2026. Always check docs.netapp.com for the latest.



Inhalt

Provisionierung und Management von Volumes
Bereitstellen eines Volumes
Uberblick
Erstellen Sie das PV und die PVC
Erweitern Sie Volumes
Erweitern Sie ein iSCSI-Volume
Erweitern Sie ein NFS-Volume
Volumes importieren
Uberblick und Uberlegungen
Importieren Sie ein Volume
Beispiele
Passen Sie Volume-Namen und -Beschriftungen an
Bevor Sie beginnen
Einschrankungen
Wichtige Verhaltensweisen anpassbarer Volumennamen
Beispiele fur die Backend-Konfiguration mit Namensvorlage und Beschriftungen
Beispiele fir Namensvorlagen
Zu berucksichtigende Aspekte
Ein NFS-Volume kann Uber Namespaces hinweg genutzt werden
Funktionen
Schnellstart
Konfigurieren Sie die Namensraume fir Quelle und Ziel
Loschen eines freigegebenen Volumes
Zum Abfragen untergeordneter Volumes verwenden tridentctl get
Einschrankungen
Finden Sie weitere Informationen
Replizieren Sie Volumes mit SnapMirror
Replikationsvoraussetzungen
Erstellen Sie eine gespiegelte PVC
Volume-Replikationsstatus
Fordern Sie die sekundare PVC wahrend eines ungeplanten Failover
Fordern Sie die sekundare PVC wahrend eines geplanten Failover
Stellen Sie nach einem Failover eine gespiegelte Beziehung wieder her
Zusatzliche Vorgange
Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP online ist
Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP offline ist
Verwenden Sie die CSI-Topologie
Uberblick
Schritt 1: Erstellen Sie ein Topologieorientiertes Backend
Schritt: Definition von StorageClasses, die sich der Topologie bewusst sind
Schritt 3: Erstellen und verwenden Sie ein PVC
Back-Ends aktualisieren, um sie einzuschlielen supportedTopologies

[ TR N G U

13
13
14
15
20
20
20
20
21
22
23
23
23
24
25
26
26
27
27
27
28
28
31
31
32
32
32
33
33
34
34
35
37
38
41



Weitere Informationen

Arbeiten Sie mit Snapshots
Uberblick
Erstellen eines Volume-Snapshots
Erstellen Sie eine PVC aus einem Volume-Snapshot
Importieren Sie einen Volume-Snapshot
Stellen Sie Volume-Daten mithilfe von Snapshots wieder her
In-Place-Volume-Wiederherstellung aus einem Snapshot
Léschen Sie ein PV mit den zugehorigen Snapshots
Stellen Sie einen Volume-Snapshot-Controller bereit
Weiterfuhrende Links

41
41
41
42
43
44
46
46
48
48
49



Provisionierung und Management von Volumes

Bereitstellen eines Volumes

Erstellen Sie ein PersistentVolume (PV) und ein PersistentVolumeClaim (PVC), das die
konfigurierte Kubernetes StorageClass verwendet, um Zugriff auf das PV anzufordern.
Anschlielend kénnen Sie das PV an einem Pod montieren.

Uberblick

Ein "PersistentVolume" (PV) ist eine physische Speicherressource, die vom Clusteradministrator auf einem
Kubernetes-Cluster bereitgestellt wird. Die "PersistentVolumeClaim" (PVC) ist eine Anforderung fir den Zugriff
auf das PersistentVolume auf dem Cluster.

Die PVC kann so konfiguriert werden, dass eine Speicherung einer bestimmten Grole oder eines bestimmten
Zugriffsmodus angefordert wird. Mithilfe der zugehdérigen StorageClass kann der Clusteradministrator mehr als
die GroRRe des PersistentVolume und den Zugriffsmodus steuern, z. B. die Performance oder das Service-
Level.

Nachdem Sie das PV und die PVC erstellt haben, konnen Sie das Volume in einem Pod einbinden.

Beispielmanifeste

PersistentVolume-Beispielmanifest

Dieses Beispielmanifest zeigt ein Basis-PV von 10Gi, das mit StorageClass verknlpft ist basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/my/host/path"


https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim-Beispielmanifeste

Diese Beispiele zeigen grundlegende PVC-Konfigurationsoptionen.

PVC mit RWO-Zugang

Dieses Beispiel zeigt ein einfaches PVC mit RWO-Zugriff, das mit einer StorageClass namens verknlpft
ist basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: basic-csi

PVC mit NVMe/TCP

Dieses Beispiel zeigt eine grundlegende PVC fir NVMe/TCP mit RWO-Zugriff, die einer StorageClass
namens zugeordnet ist protection-gold

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: protection-gold



Pod-Manifest-Proben

Diese Beispiele zeigen grundlegende Konfigurationen zum Anschlieen der PVC an einen Pod.

Basiskonfiguration

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: pv-storage



Grundlegende NVMe/TCP-Konfiguration

apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
run: nginx
name: nginx
spec:
containers:
- image: nginx
name: nginx
resources: {}
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: task-pv-storage
dnsPolicy: ClusterFirst
restartPolicy: Always
volumes:
- name: task-pv-storage
persistentVolumeClaim:

claimName: pvc-san-nvme

Erstellen Sie das PV und die PVC

Schritte
1. Erstellen Sie das PV.

kubectl create -f pv.yaml

2. Uberpriifen Sie den PV-Status.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STORAGECLASS REASON AGE

pv-storage 4Gi RWO Retain

Ts

3. Erstellen Sie das PVC.

STATUS

Available

CLAIM



kubectl create -f pvc.yaml
4. Uberprifen Sie den PVC-Status.

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-storage Bound pv-name 2Gi RWO 5m

5. Mounten Sie das Volume in einem Pod.

kubectl create -f pv-pod.yaml

@ Sie kdnnen den Fortschritt mit Uberwachen kubectl get pod --watch.

6. Vergewissern Sie sich, dass das Volume auf gemountet ist /my/mount/path.
kubectl exec -it task-pv-pod -- df -h /my/mount/path

7. Sie kénnen den Pod jetzt I6schen. Die Pod Applikation wird nicht mehr existieren, aber das Volume bleibt
erhalten.

kubectl delete pod pv-pod

Einzelheiten zur Interaktion von Storage-Klassen mit den PersistentVolumeClaim Parametern und zur
Steuerung, wie Trident Volumes provisioniert, finden Sie unter"Kubernetes und Trident Objekte".

Erweitern Sie Volumes

Trident bietet Kubernetes-Benutzern die Moglichkeit, ihre Volumes nach der Erstellung zu
erweitern. Hier finden Sie Informationen zu den erforderlichen Konfigurationen zum
erweitern von iSCSI- und NFS-Volumes.

Erweitern Sie ein iSCSI-Volume

Sie kénnen ein iISCSI Persistent Volume (PV) mithilfe der CSl-provisionierung erweitern.

@ Die iSCSI-Volume-Erweiterung wird von den, ontap-san-economy- solidfire-
san ' Treibern unterstiitzt “ontap-san und erfordert Kubernetes 1.16 und héher.


../trident-reference/objects.html

Schritt: Storage Class fiir Volume-Erweiterung konfigurieren

Bearbeiten Sie die StorageClass-Definition, um das Feld auf true einzustellen allowVolumeExpansion.

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

Bearbeiten Sie flr eine bereits vorhandene StorageClass diese, um den Parameter einzuschliel3en
allowVolumeExpansion.

Schritt 2: Erstellen Sie ein PVC mit der von lhnen erstellten StorageClass

Bearbeiten Sie die PVC-Definition, und aktualisieren Sie den spec.resources.requests.storage, um
die neu gewiinschte GrofRe wiederzugeben, die grofier sein muss als die urspriingliche Grofde.

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Trident erstellt ein persistentes Volume (PV) und verknupft es mit diesem Persistent Volume Claim (PVC).



kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Schritt 3: Definieren Sie einen Behalter, der das PVC befestigt

SchlieRen Sie das PV an einen Pod an, um die GréRe zu dndern. Beim Andern der GroRe eines iSCSI-PV gibt
es zwei Szenarien:

* Wenn das PV mit einem Pod verbunden ist, erweitert Trident das Volume im Storage-Back-End, scannt
das Gerat erneut und skaliert das Dateisystem.

» Beim Versuch, die GroRRe eines nicht verbundenen PV zu andern, erweitert Trident das Volume auf dem
Speicher-Back-End. Nachdem die PVC an einen Pod gebunden ist, lasst Trident das Gerat neu in die
Grolie des Dateisystems einarbeiten. Kubernetes aktualisiert dann die PVC-GroRRe, nachdem der Expand-
Vorgang erfolgreich abgeschlossen ist.

In diesem Beispiel wird ein Pod erstellt, der die verwendet san-pvc.



kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name : san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Schritt 4: Erweitern Sie das PV

Um die GroRRe des PV, der von 1Gi auf 2Gi erstellt wurde, zu andern, bearbeiten Sie die PVC-Definition und
aktualisieren Sie den spec.resources.requests.storage auf 2Gi.



kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be
ignored,

# and an empty file will abort the edit. If an error occurs while saving
this file will be

# reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Schritt 5: Validierung der Erweiterung

Sie kdnnen die korrekt bearbeitete Erweiterung validieren, indem Sie die Groflke der PVC, des PV und des
Trident Volume Uberprifen:



kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D ) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Erweitern Sie ein NFS-Volume

Trident unterstitzt Volume-Erweiterung fir NFS PVS, die auf, ontap-nas-economy, ontap-nas-
flexgroup, gcp-cvs Und azure-netapp-files Back-Ends bereitgestellt ontap-nas werden.

Schritt: Storage Class fiir Volume-Erweiterung konfigurieren

Um die GroéRe eines NFS-PV zu andern, muss der Administrator zuerst die Speicherklasse konfigurieren, um
die Volume-Erweiterung zu ermoglichen, indem er das Feld auf true folgende Einstellung setzt
“allowVolumeExpansion:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas

allowVolumeExpansion: true

Wenn Sie bereits eine Storage-Klasse ohne diese Option erstellt haben, kdnnen Sie die vorhandene Storage-
Klasse einfach mit bearbeiten und die Volume-Erweiterung zulassen. kubectl edit storageclass

10



Schritt 2: Erstellen Sie ein PVC mit der von lhnen erstellten StorageClass

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Trident sollte ein 20MiB NFS PV fir die folgende PVC erstellen:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20M1i
RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9£f-5254004d£fdb7 20M1i RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Schritt 3: Erweitern Sie das PV

Um die GrofRe des neu erstellten 20MiB-PV auf 1 gib zu andern, bearbeiten Sie die PVC und setzen Sie

spec.resources.requests.storage auf 1 gib:

11



kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be
ignored,

# and an empty file will abort the edit. If an error occurs while saving
this file will be

# reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Schritt 4: Validierung der Erweiterung

Sie konnen die GrofRke der korrekt bearbeiteten GrofRRe validieren, indem Sie die GrofRe der PVC, des PV und
des Trident Volume Uberprifen:

12



kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Volumes importieren

Sie kdnnen vorhandene Storage-Volumes mit importieren tridentctl import.

Uberblick und Uberlegungen
Sie kdnnen ein Volume in Trident importieren, um:

« Containerisierung einer Applikation und Wiederverwendung des vorhandenen Datensatzes
» Verwenden Sie einen Klon eines Datensatzes fiir eine kurzlebige Applikation
» Wiederherstellung eines fehlerhaften Kubernetes-Clusters

» Migration von Applikationsdaten bei der Disaster Recovery

Uberlegungen
Lesen Sie vor dem Importieren eines Volumes die folgenden Uberlegungen durch.

* Trident kann nur ONTAP-Volumes vom Typ RW (Lesen/Schreiben) importieren. Volumes im DP-Typ
(Datensicherung) sind SnapMirror Ziel-Volumes. Sie sollten die Spiegelungsbeziehung unterbrechen,
bevor Sie das Volume in Trident importieren.

13



* Wir empfehlen, Volumes ohne aktive Verbindungen zu importieren. Um ein aktiv verwendetes Volume zu
importieren, klonen Sie das Volume, und flhren Sie dann den Import durch.

Dies ist besonders fiir Block-Volumes wichtig, da Kubernetes die vorherige Verbindung nicht
@ mitbekommt und problemlos ein aktives Volume an einen Pod anbinden kann. Dies kann zu
Datenbeschadigungen fuhren.

* Obwohl storageClass auf einer PVC angegeben werden muss, verwendet Trident diesen Parameter
beim Import nicht. Wahrend der Volume-Erstellung werden Storage-Klassen eingesetzt, um basierend auf
den Storage-Merkmalen aus verfliigbaren Pools auszuwahlen. Da das Volume bereits vorhanden ist, ist
beim Import keine Poolauswahl erforderlich. Daher schlagt der Import auch dann nicht fehl, wenn das
Volume auf einem Back-End oder Pool vorhanden ist, das nicht mit der in der PVC angegebenen
Speicherklasse Ubereinstimmt.

 Die vorhandene VolumegroéRe wird in der PVC ermittelt und festgelegt. Nachdem das Volumen vom
Speichertreiber importiert wurde, wird das PV mit einem ClaimRef an die PVC erzeugt.

° Die Zuruckgewinnungsrichtlinie ist zunachst im PV auf festgelegt retain. Nachdem Kubernetes die
PVC und das PV erfolgreich bindet, wird die Zurlickgewinnungsrichtlinie aktualisiert und an die
Zuruckgewinnungsrichtlinie der Storage-Klasse angepasst.

° Wenn die Zurtiickgewinnungsrichtlinie der Speicherklasse lautet delete, wird das Speichervolume
geldscht, wenn das PV geldscht wird.

StandardmaRig verwaltet Trident die PVC und benennt die FlexVol und die LUN auf dem Backend um. Sie
kdnnen das Flag Ubergeben -—-no-manage, um ein nicht verwaltetes Volume zu importieren. Wenn Sie
verwenden --no-manage, fihrt Trident keine zusatzlichen Operationen auf der PVC oder PV flr den
Lebenszyklus der Objekte aus. Das Speicher-Volume wird nicht geléscht, wenn das PV geldscht wird und
andere Vorgange wie Volume-Klon und Volume-Grofie ebenfalls ignoriert werden.

Diese Option ist nutzlich, wenn Sie Kubernetes fur Workloads in Containern verwenden
mdchten, aber ansonsten den Lebenszyklus des Storage Volumes aulerhalb von
Kubernetes managen mochten.

* Der PVC und dem PV wird eine Anmerkung hinzugefligt, die einem doppelten Zweck dient, anzugeben,
dass das Volumen importiert wurde und ob PVC und PV verwaltet werden. Diese Anmerkung darf nicht
geandert oder entfernt werden.

Importieren Sie ein Volume
Sie kdnnen zum Importieren eines Volumes verwenden tridentctl import.

Schritte

1. Erstellen Sie die PVC-Datei (Persistent Volume Claim) (z. B. pvc. yaml ), die zum Erstellen der PVC
verwendet wird. Die PVC-Datei sollte , , namespace accessModes und storageClassName enthalten
name. Optional kénnen Sie in Ihrer PVC-Definition angeben unixPermissions.

Im Folgenden finden Sie ein Beispiel flr eine Mindestspezifikation:

14



kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Verwenden Sie keine zusatzlichen Parameter wie den PV-Namen oder die Volume-Grole.
Dies kann dazu flhren, dass der Importbefehl fehlschlagt.

2. Verwenden Sie den tridentctl import Befehl, um den Namen des Trident-Backends mit dem Volume
sowie den Namen anzugeben, der das Volume auf dem Storage eindeutig identifiziert (z. B. ONTAP
FlexVol, Element Volume, Cloud Volumes Service-Pfad). Das -f Argument ist erforderlich, um den Pfad
zur PVC-Datei anzugeben.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Beispiele

Lesen Sie die folgenden Beispiele flr den Import von Volumes fur unterstitzte Treiber.

ONTAP NAS und ONTAP NAS FlexGroup

Trident unterstlitzt den Import von Volumes mit den ontap-nas Treibern und ontap-nas-flexgroup.

* Der ontap-nas-economy Treiber kann gtrees nicht importieren und managen.

(D * Die ontap-nas und ontap-nas-flexgroup-TIreiber erlauben keine doppelten Volume-
Namen.

Jedes mit dem Treiber erstellte Volume ontap-nas ist eine FlexVol im ONTAP Cluster. Das Importieren von
FlexVols mit dem ontap-nas Treiber funktioniert gleich. Eine FlexVol, die bereits in einem ONTAP-Cluster
vorhanden ist, kann als PVC importiert werden ontap-nas. Ebenso kénnen FlexGroup-Volumes als PVCs
importiert werden ontap-nas-flexgroup.

Beispiele fiir ONTAP NAS

Die folgende Darstellung zeigt ein Beispiel fur ein verwaltetes Volume und einen nicht verwalteten Volume-
Import.

15



Gemanagtes Volume

Das folgende Beispiel importiert ein Volume mit dem Namen managed volume auf einem Backend mit
dem Namen ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

e e e
fmmmmmmm==a R fmmmmm==e femememame +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e femememaae fememee s
fressmm=a==s fremmoesmosseem s e e s e e e X
| pvc-bf5ad463-afbb-11e9-8d9£-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491ald4az22 | online | true |

i L e e e
e R e fe======s e +

Nicht verwaltetes Volume

Bei Verwendung des --no-manage Arguments benennt Trident das Volume nicht um.

Im folgenden Beispiel werden Importe auf das ontap nas Backend importiert unmanaged volume:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - fom -
fomm o fomm - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o tomm - fom -
fomm i e fom— fo—m +
| pve-df07d542-afbc-11e9-8d9£-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6a4-b052-423b-80d4-8fb491alda22 | online | false |

o fo—m fom -
e o fomm - fomm - +

ONTAP SAN

Trident unterstttzt den Import von Volumes mit den ontap-san Treibern und ontap-san-economy.
Trident kann ONTAP SAN FlexVols importieren, die eine einzige LUN enthalten. Dies ist mit dem Treiber

konsistent ontap-san, der fur jede PVC und eine LUN in der FlexVol eine FlexVol erstellt. Trident importiert
die FlexVol und ordnet sie der PVC-Definition zu.

16



Beispiele fiir ONTAP SAN

Die folgende Darstellung zeigt ein Beispiel fir ein verwaltetes Volume und einen nicht verwalteten Volume-
Import.

Gemanagtes Volume

Far verwaltete Volumes benennt Trident die FlexVol in das Format und die LUN in der FlexVol in 1un0 um
pvc-<uuid>

Im folgenden Beispiel werden die auf dem Backend vorhandenen FlexVol ontap san default
importiert ontap-san-managed:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-
basic-import.yaml -n trident -d

Fommmmmmrmererrrrrrrrr e e e e e EEEES e Fommmmmcememeoes
Fommmmmmm== e Fommmmm== P +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmememsmsseseses s s e e P Fommmmmmememem==
Fommmmmmm== e meme s s s s es s s s s se s Fommmmm== ettt +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5cedca’57 | online | true |
Fommmmmmmmsmoososorreromemememe oo me oo Frommomoms Fommmmmmomoomoms
Fommmmmomo= o memeressrrrrrrrrssercreeee e me s Fommmomoe e +

Nicht verwaltetes Volume

Im folgenden Beispiel werden Importe auf das ontap san Backend importiert
unmanaged example volume!

tridentctl import volume -n trident san blog unmanaged example volume

-f pvc-import.yaml --no-manage
Fommmmmmemssesessse e m s s e e e o= o=
Fommmmmomoe B e e e Fommmmmme e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Fommmmmmm== ettt Pommmmm== P +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |
block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
Fommmmememssssesesss s s s s e P P
Fommmmmmm== e et Fommmmm== et +

Wenn LUNS Initiatorgruppen zugeordnet sind, die einen IQN mit einem Kubernetes-Node-IQN teilen, wie im
folgenden Beispiel dargestellt, erhalten Sie die Fehlermeldung: LUN already mapped to initiator(s)

17



in this group. Sie mussen den Initiator entfernen oder die Zuordnung der LUN aufheben, um das Volume
ZuU importieren.

Vserver  Igroup Protocol 0S Type Initiators

k8s-nodename.example. com-fe5d36f2-cded-4138-9eb@-c7719tc21913

iscsi linux ign.1994-05.com.redhat:4c2elcf35e0
unmanaged-example-igroup
mixed 1inux ign.1994-05.com.redhat:4c2elcf35e0

Element

Trident unterstlitzt NetApp Element-Software und NetApp HCI-Volume-Import mit dem solidfire-san
Treiber.

Der Elementtreiber unterstitzt doppelte Volume-Namen. Trident gibt jedoch einen Fehler
@ zurtck, wenn es doppelte Volume-Namen gibt. Um dies zu umgehen, klonen Sie das Volume,
geben Sie einen eindeutigen Volume-Namen ein und importieren Sie das geklonte Volume.

Beispiel fiir ein Element

Das folgende Beispiel importiert ein element-managed Volume auf dem Backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

Fommmmememsseseseses s e s s s s e P Fommmmmmememem=
Pommmmmmm== e et Fommmmm== o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
o e mssssessss s s s e e e e it o memem=
Fommemmomo= oo rererrrrrrrrerrresersrer e Fommeomo= Fommmmomos +
| pvc-970celca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9c42-e38e58301c49 | online | true |
Fommmmmmemsmemrrrrrrrrre e e e e Frommmmom= Fommmmmcememeoes
Fommmmmmm== et Pommmmm== o= +

Google Cloud Platform

Trident unterstitzt den Import von Volumes mithilfe des gcp-cvs Treibers.

18



Um ein Volume zu importieren, das von NetApp Cloud Volumes Service in die Google Cloud
Platform unterstitzt wird, identifizieren Sie das Volume anhand seines Volume-Pfads. Der

@ Volumenpfad ist der Teil des Exportpfades des Volumes nach dem : /. Wenn der Exportpfad
beispielsweise lautet 10.0.0.1:/adroit-jolly-swift, ist der Volumenpfad adroit-
jolly-swift.

Beispiel fiir die Google Cloud Platform

Im folgenden Beispiel wird ein Volume auf dem Backend gcpcvs YEppr mit dem Volume-Pfad von adroit-
jolly-swift importiert gcp-cvs.

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

fossssssss=ssscscssssssssosossssssss=sssa=s femem==== R

e L e i from e fr e +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

i e e e e e e e o
fre=s===m==e frEmsmesessesossssssss s sessososs==== S fremmmeme=s iF

| pvc-ad6ccab7-44aa-4433-94bl-e47£fc8c0fad5 | 93 GiB | gcp-storage | file
| elab6e65b-299e-4568-ad05-4£0a105¢c888f | online | true |

e fremmm==== fomsmesmmemae===
fmmmmmmm==a R fmmmmm==e femememame +

Azure NetApp Dateien

Trident unterstitzt den Import von Volumes mithilfe des azure-netapp-files Treibers.

Um ein Azure NetApp Files-Volume zu importieren, identifizieren Sie das Volume anhand seines
Volume-Pfads. Der Volumenpfad ist der Teil des Exportpfades des Volumes nach dem : /. Wenn

@ der Mount-Pfad beispielsweise lautet 10.0.0.2:/importvoll, ist der Volume-Pfad
importvoll .

Beispiel: Azure NetApp Files

Das folgende Beispiel importiert ein azure-netapp-files Volume auf dem Backend
azurenetappfiles 40517 mit dem Volume-Pfad importvoll.

19



tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e ) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-0eed95d60-£fd5c-448d-b505-b72901b3adab | 100 GiB | anf-storage |
file | 1c01274£-d94b-44a3-98a3-04c953c9%a5le | online | true |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

Passen Sie Volume-Namen und -Beschriftungen an

Mit Trident konnen Sie Volumes, die Sie erstellen, aussagekraftige Namen und Labels
zuweisen. So konnen Sie Volumes leichter identifizieren und ihren jeweiligen Kubernetes-
Ressourcen (PVCs) zuweisen. Sie kdnnen auch Vorlagen auf Backend-Ebene definieren,
um benutzerdefinierte Volume-Namen und benutzerdefinierte Labels zu erstellen. Alle
Volumes, die Sie erstellen, importieren oder klonen, werden an die Vorlagen angepasst.

Bevor Sie beginnen

Anpassbare Volumennamen und Beschriftungen unterstiitzen:

1. Volume-Erstellung, -Import und -Klonen
2. Im Fall des ontap-nas-Economy-Treibers entspricht nur der Name des Qtree-Volumes der Namensvorlage.

3. Im Fall des ontap-san-Economy-Treibers entspricht nur der LUN-Name der Namensvorlage.

Einschrankungen

1. Anpassbare Volume-Namen sind nur mit ONTAP On-Premises-Treibern kompatibel.

2. Anpassbare Volume-Namen gelten nicht fir vorhandene Volumes.

Wichtige Verhaltensweisen anpassbarer Volumennamen

1. Wenn ein Fehler aufgrund einer ungiltigen Syntax in einer Namensvorlage auftritt, schlagt die Back-End-
Erstellung fehl. Wenn jedoch die Vorlagenapplikation fehlschlagt, wird das Volume gemal} der
bestehenden Namenskonvention benannt.

2. Storage-Prafix ist nicht anwendbar, wenn ein Volume mit einer Namensvorlage aus der Back-End-
Konfiguration benannt wird. Jeder gewlinschte Prafixwert kann direkt zur Vorlage hinzugefligt werden.

20



Beispiele fiir die Backend-Konfiguration mit Namensvorlage und Beschriftungen
Benutzerdefinierte Namensvorlagen kdnnen auf Root- und/oder Poolebene definiert werden.

Beispiel fiir die Stammebene

{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"defaults": {

"nameTemplate":

"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.Requ
estName} } "

by

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}} {{.volume.RequestName}}"}

}

21



Beispiel auf Poolebene

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"useREST": true,
"storage": [
{
"labels":{"labelname":"labell", "name": "{{ .volume.Name }}"},
"defaults":
{
"nameTemplate": "poolOl {{ .volume.Name }} {{ .labels.cluster

1Y _{{ .volume.Namespace }} {{ .volume.RequestName }}"
}
iy

"labels":{"cluster":"label2", "name": "{{ .volume.Name }}"},
"defaults":
{

"nameTemplate": "pool02 {{ .volume.Name }} {{ .labels.cluster

}} _{{ .volume.Namespace }} {{ .volume.RequestName }}"

}

Beispiele fiir Namensvorlagen

Beispiel 1:

"nameTemplate": "{{ .config.StoragePrefix }} {{ .volume.Name }} {{

.config.BackendName }}"

Beispiel 2:

"nameTemplate": "pool {{ .config.StoragePrefix }} {{ .volume.Name }} {{
slice .volume.RequestName 1 5 }}""

22



Zu beriicksichtigende Aspekte

1. Bei Volumenimporten werden die Etiketten nur aktualisiert, wenn das vorhandene Volume Uber Etiketten in
einem bestimmten Format verfligt. Zum Beispiel: {"provisioning":{"Cluster":"ClusterA",
"PVC": "pvcname"}}.

2. Im Fall des Imports von verwalteten Volumes folgt der Name des Volumes der Namensvorlage, die in der
Backend-Definition auf Root-Ebene definiert wurde.

3. Trident unterstiitzt die Verwendung eines Slice-Operators mit dem Speicherprafix nicht.

4. Wenn die Vorlagen nicht zu eindeutigen Volume-Namen flhren, flgt Trident einige zufallige Zeichen an,
um eindeutige Volume-Namen zu erstellen.

5. Wenn der benutzerdefinierte Name fiir ein NAS-Economy-Volume 64 Zeichen lang ist, benennt Trident die
Volumes entsprechend der bestehenden Namenskonvention. Bei allen anderen ONTAP-Treibern schlagt
die Erstellung des Volumes fehl, wenn der Datentragername das Limit fir den Namen Uberschreitet.

Ein NFS-Volume kann uber Namespaces hinweg genutzt
werden

Mit Trident konnen Sie ein Volume in einem primaren Namespace erstellen und es in
einem oder mehreren sekundaren Namespaces teilen.
Funktionen

Mit dem TridentVolumeReference CR kénnen Sie ReadWriteMany (RWX) NFS-Volumes sicher Uber einen
oder mehrere Kubernetes-Namespaces freigeben. Diese native Kubernetes-Lsung bietet folgende Vorteile:

* Mehrere Stufen der Zugriffssteuerung zur Sicherstellung der Sicherheit
* Funktioniert mit allen Trident NFS-Volume-Treibern

« Tridentctl oder andere nicht-native Kubernetes-Funktionen sind nicht von Bedeutung

Dieses Diagramm zeigt die NFS-Volume-Freigabe Uber zwei Kubernetes-Namespaces.

23



................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . Q = :,’

R D T T e 0

¢ Trident
namespace

TVol €——» Tvol

1
1
]
1
1
primary secondary |
1
:
1
1

.......................

TridentVolumeReference

primary/pvci

O [
H

Slorage = tt-cecemecsecosno-e
Volume

Schnellstart

Sie kénnen in nur wenigen Schritten NFS-Volume Sharing einrichten.

o Konfigurieren Sie die Quell-PVC fiir die gemeinsame Nutzung des Volumes
Der Eigentimer des Quell-Namespace erteilt die Berechtigung, auf die Daten im Quell-PVC zuzugreifen.

Erteilen Sie die Berechtigung zum Erstellen eines CR im Zielspeicherort

Der Clusteradministrator erteilt dem Eigentiimer des Ziel-Namespace die Berechtigung, das
TridentVolumeReference CR zu erstellen.

Erstellen Sie TridentVolumeReference im Ziel-Namespace

Der Eigentimer des Ziel-Namespace erstellt das TridentVolumeReference CR, um sich auf das Quell-PVC zu
beziehen.

Erstellen Sie die untergeordnete PVC im Ziel-Namespace

Der Eigentimer des Ziel-Namespace erstellt das untergeordnete PVC, um die Datenquelle aus dem Quell-
PVC zu verwenden.



Konfigurieren Sie die Namensraume fiir Quelle und Ziel

Um die Sicherheit zu gewahrleisten, erfordert die Namespace-ibergreifende Freigabe Zusammenarbeit und
Aktion durch den Eigentiimer des Quell-Namespace, den Cluster-Administrator und den Ziel-Namespace-
Eigentimer. In jedem Schritt wird die Benutzerrolle festgelegt.

Schritte

1. Source Namespace Owner: Erstellen Sie die PVC (pvcl) im Source Namespace, der die Erlaubnis
erteilt, mit dem Ziel-Namespace zu teilen (namespace2) mit der shareToNamespace Annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Trident erstellt das PV und das dazugehorige Backend-NFS-Storage-Volume.

o Sie kdnnen das PVC Uber eine durch Kommas getrennte Liste mehreren Namespaces
freigeben. “trident.netapp.io/shareToNamespace:
namespace2,namespace3,namespace4 Beispiel: .

(D ° Mit kbnnen Sie alle Namespaces teilen *. Beispiel:
trident.netapp.io/shareToNamespace: *

> Sie kdnnen die PVC so aktualisieren, dass die Anmerkung jederzeit enthalten
shareToNamespace ist.

2. Cluster Admin: Erstellen Sie die benutzerdefinierte Rolle und kubeconfig, um dem Ziel-Namespace-
Eigentimer die Berechtigung zu erteilen, das TridentVolumeReference CR im Ziel-Namespace zu
erstellen.

3. Destination Namespace Owner: Erstellen Sie ein TridentVolumeReference CR im Ziel-Namespace, der

sich auf den Quell-Namespace bezieht pvci.

25



apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

4. Destination Namespace Owner: Erstellen Sie eine PVC (pvc2) im Destination Namespace
(namespace?2) mit der shareFromPvVC Anmerkung die Quell-PVC zu bestimmen.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ Die GrofRe der Ziel-PVC muss kleiner oder gleich der Quelle PVC sein.

Ergebnisse

Trident liest die shareFromPVC Annotation auf der Ziel-PVC und erstellt das Ziel-PV als ein untergeordnetes
Volume ohne eigene Speicherressource, die auf das Quell-PV verweist und die Quell-PV-Speicherressource
gemeinsam nutzt. Die Ziel-PVC und das PV erscheinen wie normal gebunden.

Loschen eines freigegebenen Volumes

Sie kdnnen ein Volume |6schen, das Gber mehrere Namespaces hinweg gemeinsam genutzt wird. Trident
entfernt den Zugriff auf das Volume im Quell-Namespace und hat auch Zugriff auf andere Namespaces, die
das Volume gemeinsam nutzen. Wenn alle Namespaces, die auf das Volume verweisen, entfernt werden,
[6scht Trident das Volume.

Zum Abfragen untergeordneter Volumes verwenden tridentctl get

Mit dem[tridentctl Dienstprogramm kénnen Sie den Befehl ausfiihren get, um untergeordnete Volumes zu
erhalten. Weitere Informationen finden Sie unter Link:../Trident-reference/tridentctl.html[tridentctl

26



Commands and options].

Usage:
tridentctl get [option]

Markierungen:

* *-h, --help: Hilfe fir Bande.
* ——parentOfSubordinate string:Abfrage auf untergeordneten Quellvolume beschranken.

* —--subordinateOf string: Abfrage auf Untergebene des Volumens beschranken.

Einschrankungen

« Trident kann nicht verhindern, dass Zielnamepaces auf das gemeinsam genutzte Volume schreiben. Sie
sollten Dateisperren oder andere Prozesse verwenden, um das Uberschreiben von gemeinsam genutzten
Volume-Daten zu verhindern.

* Sie kdnnen den Zugriff auf die Quell-PVC nicht aufheben, indem Sie die Anmerkungen oder
shareFromNamespace entfernen shareToNamespace oder den CR I6schen
TridentVolumeReference. Um den Zugriff zu widerrufen, missen Sie das untergeordnete PVC
I6schen.

« Snapshots, Klone und Spiegelungen sind auf untergeordneten Volumes nicht moglich.

Finden Sie weitere Informationen
Weitere Informationen zum Namespace-ubergreifenden Volume-Zugriff:
* Besuchen Sie "Teilen von Volumes zwischen Namespaces: Sagen Sie hallo fir Namespace-

Ubergreifenden Volume-Zugriff".

» Sehen Sie sich die Demo an "NetAppTV".

Replizieren Sie Volumes mit SnapMirror

Trident unterstitzt Spiegelungsbeziehungen zwischen einem Quell-Volume auf einem
Cluster und dem Ziel-Volume auf dem Peering-Cluster, damit Daten fur Disaster
Recovery repliziert werden. Sie kdnnen eine benutzerdefinierte Ressourcendefinition
(CRD, Namested Custom Resource Definition) verwenden, um die folgenden Vorgange
auszufuhren:

* Erstellen von Spiegelbeziehungen zwischen Volumes (VES)
» Entfernen Sie Spiegelungsbeziehungen zwischen Volumes
* Brechen Sie die Spiegelbeziehungen auf

» Bewerben des sekundaren Volumes bei Ausfallen (Failover)

* Verlustfreie Transition von Applikationen von Cluster zu Cluster (wahrend geplanter Failover oder
Migrationen)

27


https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products

Replikationsvoraussetzungen

Stellen Sie sicher, dass die folgenden Voraussetzungen erfiillt sind, bevor Sie beginnen:

ONTAP Cluster
» Trident: Trident Version 22.10 oder hdher muss sowohl auf den Quell- als auch auf den Ziel-Kubernetes-
Clustern existieren, die ONTAP als Backend nutzen.

* Lizenzen: Asynchrone Lizenzen von ONTAP SnapMirror, die das Datensicherungspaket verwenden,
mussen sowohl auf den Quell- als auch auf den Ziel-ONTAP-Clustern aktiviert sein. Weitere Informationen
finden Sie unter "Ubersicht Uber die SnapMirror Lizenzierung in ONTAP" .

Peering

* Cluster und SVM: Die ONTAP Speicher-Back-Ends mussen aktiviert werden. Weitere Informationen
finden Sie unter "Ubersicht Giber Cluster- und SVM-Peering" .

@ Vergewissern Sie sich, dass die in der Replizierungsbeziehung zwischen zwei ONTAP-
Clustern verwendeten SVM-Namen eindeutig sind.

* Trident und SVM: Die Peered Remote SVMs missen Trident auf dem Ziel-Cluster zur Verfligung stehen.

Unterstiitzte Treiber
* Die Volume-Replizierung wird von ontap-nas und ontap-san Treibern unterstitzt.

Erstellen Sie eine gespiegelte PVC

FUhren Sie die folgenden Schritte aus, und verwenden Sie die CRD-Beispiele, um eine Spiegelungsbeziehung
zwischen primaren und sekundaren Volumes zu erstellen.

Schritte
1. Fuhren Sie auf dem primaren Kubernetes-Cluster die folgenden Schritte aus:

a. Erstellen Sie ein StorageClass-Objekt mit dem trident.netapp.io/replication: true
Parameter.

Beispiel

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
fsType: "nfs"
trident.netapp.io/replication: "true"

b. PVC mit zuvor erstellter StorageClass erstellen.

28


https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html

Beispiel

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

c. Erstellen Sie eine MirrorRelation CR mit lokalen Informationen.

Beispiel

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas

Trident ruft die internen Informationen fir das Volume und den aktuellen DP-Status des Volumes ab
und fullt dann das Statusfeld der MirrorRelation aus.

d. Holen Sie sich den TridentMirrorRelationship CR, um den internen Namen und die SVM der PVC zu
erhalten.

kubectl get tmr csi-nas

29



kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
generation: 1
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas
status:
conditions:
- state: promoted
localVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel”
localPVCName: csi-nas
observedGeneration: 1

2. Fihren Sie auf dem sekundaren Kubernetes-Cluster die folgenden Schritte aus:

a. Erstellen Sie eine StorageClass mit dem Parameter trident.netapp.io/replication: true.

Beispiel

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
trident.netapp.io/replication: true

b. Erstellen Sie eine MirrorRelationship-CR mit Ziel- und Quellinformationen.

Beispiel

kind: TridentMirrorRelationship
apivVersion: trident.netapp.io/vl
metadata:

name: csi-nas

spec:
state: established
volumeMappings:

- localPVCName: csi-nas
remoteVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b31l3clel”

30



Trident erstellt eine SnapMirror Beziehung mit dem Namen der konfigurierten Beziehungsrichtlinie
(oder dem Standard fur ONTAP) und initialisiert diesen.

c. PVC mit zuvor erstellter StorageClass erstellen, um als sekundares Ziel zu fungieren (SnapMirror Ziel).

Beispiel

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
annotations:
trident.netapp.io/mirrorRelationship: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

Trident Gberprift die CRD der tridentMirrorRelationship und erstellt das Volume nicht, wenn die
Beziehung nicht vorhanden ist. Wenn die Beziehung besteht, stellt Trident sicher, dass die neue
FlexVol volume auf einer SVM platziert wird, die mit der Remote-SVM, die in MirrorRelation definiert ist,
verbunden ist.

Volume-Replikationsstatus

Eine Trident Mirror-Beziehung (TMR) ist eine CRD, die ein Ende einer Replizierungsbeziehung zwischen PVCs
darstellt. Das Ziel-TMR verflgt Uber einen Status, der Trident den gewlinschten Status angibt. Das Ziel-TMR
hat die folgenden Zustande:

 Etabliert: Die lokale PVC ist das Zielvolumen einer Spiegelbeziehung, und das ist eine neue Beziehung.

» Befordert: Die lokale PVC ist ReadWrite und montierbar, ohne dass aktuell eine Spiegelbeziehung
besteht.

» Wiederhergestellt: Die lokale PVC ist das Zielvolumen einer Spiegelbeziehung und war zuvor auch in
dieser Spiegelbeziehung.

> Der neu eingerichtete Status muss verwendet werden, wenn das Ziel-Volume jemals in einer
Beziehung zum Quell-Volume stand, da es den Inhalt des Ziel-Volume Uberschreibt.

> Der neu eingerichtete Status schlagt fehl, wenn das Volume zuvor nicht in einer Beziehung zur Quelle
stand.

Fordern Sie die sekundare PVC wahrend eines ungeplanten Failover

Fihren Sie den folgenden Schritt auf dem sekundaren Kubernetes-Cluster aus:

* Aktualisieren Sie das Feld spec.State von TridentMirrorRelationship auf promoted.

31



Fordern Sie die sekunddre PVC wahrend eines geplanten Failover

Flihren Sie wahrend eines geplanten Failover (Migration) die folgenden Schritte durch, um die sekundare PVC
hochzustufen:

Schritte

1. Erstellen Sie auf dem primaren Kubernetes-Cluster einen Snapshot der PVC und warten Sie, bis der
Snapshot erstellt wurde.

2. Erstellen Sie auf dem primaren Kubernetes-Cluster Snapshotinfo CR, um interne Details zu erhalten.

Beispiel

kind: SnapshotInfo
apivVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
snapshot-name: csi-nas-snapshot

3. Aktualisieren Sie im sekundaren Kubernetes-Cluster das Feld spec.State des tridentMirrorRelationship CR
auf promoted und spec.promotedSnapshotHandle als InternalName des Snapshots.

4. Bestatigen Sie auf sekundarem Kubernetes-Cluster den Status (Feld Status.State) von
TridentMirrorRelationship auf hochgestuft.

Stellen Sie nach einem Failover eine gespiegelte Beziehung wieder her

Wahlen Sie vor dem Wiederherstellen einer Spiegelbeziehung die Seite aus, die Sie als neuen primaren
festlegen mochten.

Schritte

1. Stellen Sie auf dem sekundaren Kubernetes-Cluster sicher, dass die Werte fir das Feld
spec.remoteVolumeHandle auf dem TridentMirrorRelationship aktualisiert werden.

2. Aktualisieren Sie im sekundaren Kubernetes-Cluster das Feld spec.mirror von TridentMirrorRelationship
auf reestablished.
Zusatzliche Vorgange

Trident unterstitzt folgende Vorgange auf primaren und sekundaren Volumes:

Replizieren der primaren PVC auf eine neue sekundare PVC
Stellen Sie sicher, dass Sie bereits Uber eine primare PVC und eine sekundare PVC verflgen.

Schritte

1. Loschen Sie die CRDs PersistentVolumeClaim und TridentMirrorRelationship aus dem eingerichteten
sekundaren Cluster (Ziel).

2. Loschen Sie die CRD fir TridentMirrorRelationship aus dem primaren (Quell-) Cluster.

3. Erstellen Sie eine neue TRIdentMirrorRelationship CRD auf dem primaren (Quell-) Cluster fir die neue
sekundare (Ziel-) PVC, die Sie einrichten mochten.

32



Andern der GroRe einer gespiegelten, primiren oder sekundiren PVC

Die PVC-Grofie kann wie gewohnt geandert werden. ONTAP erweitert automatisch alle Zielflvxole, wenn die
Datenmenge die aktuelle GroRRe Uberschreitet.

Entfernen Sie die Replikation aus einer PVC

Um die Replikation zu entfernen, fihren Sie einen der folgenden Vorgange auf dem aktuellen sekundaren
Volume aus:

» Loschen Sie MirrorRelation auf der sekundaren PVC. Dadurch wird die Replikationsbeziehung
unterbrochen.

» Oder aktualisieren Sie das Feld spec.State auf promoted.

Loschen einer PVC (die zuvor gespiegelt wurde)

Trident prift, ob replizierte VES vorhanden sind, und gibt die Replizierungsbeziehung frei, bevor das Volume
geldscht werden soll.

Loschen eines TMR

Das Loschen eines TMR auf einer Seite einer gespiegelten Beziehung fihrt dazu, dass der verbleibende TMR
in den Status ,promoted” Gibergeht, bevor Trident den Loschvorgang abgeschlossen hat. Wenn der fir den
Ldschvorgang ausgewahlte TMR bereits den Status heraufgestuft hat, gibt es keine bestehende
Spiegelbeziehung und der TMR wird entfernt und Trident wird die lokale PVC auf ReadWrite hochstufen.
Durch dieses Léschen werden SnapMirror Metadaten fir das lokale Volume in ONTAP freigegeben. Wenn
dieses Volume in Zukunft in einer Spiegelbeziehung verwendet wird, muss es beim Erstellen der neuen
Spiegelbeziehung ein neues TMR mit einem established Volume-Replikationsstatus verwenden.

Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP online ist

Spiegelbeziehungen kénnen jederzeit nach ihrer Einrichtung aktualisiert werden. Sie kdnnen die Felder oder
verwenden state: promoted state: reestablished, um die Beziehungen zu aktualisieren. Wenn Sie
ein Zielvolume auf ein regulares ReadWrite-Volume heraufstufen, kbnnen Sie promotedSnapshotHandle
verwenden, um einen bestimmten Snapshot anzugeben, auf dem das aktuelle Volume wiederhergestellt
werden soll.

Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP offline ist

Sie kénnen ein CRD verwenden, um ein SnapMirror-Update durchzufiihren, ohne dass Trident Gber eine
direkte Verbindung zum ONTAP-Cluster verflgt. Im folgenden Beispielformat finden Sie das
TridentActionMirrorUpdate:

33



Beispiel

apiVersion: trident.netapp.io/vl

kind: TridentActionMirrorUpdate

metadata:
name: update-mirror-b

spec:
snapshotHandle: "pvc-1234/snapshot-1234"
tridentMirrorRelationshipName: mirror-b

status.state Gibt den Status von TridentActionMirrorUpdate CRD wieder. Es kann einen Wert von
suileded, in progress oder failed annehmen.

Verwenden Sie die CSl-Topologie

Trident kann selektiv Volumes erstellen und an Nodes in einem Kubernetes-Cluster
anhangen, indem Sie die verwenden "Funktion CSI Topology".

Uberblick

Mithilfe der CSI Topology-Funktion kann der Zugriff auf Volumes auf einen Teil von Nodes basierend auf
Regionen und Verfiigbarkeitszonen begrenzt werden. Cloud-Provider ermdéglichen Kubernetes-Administratoren
inzwischen das Erstellen von Nodes, die zonenbasiert sind. Die Nodes kdnnen sich in verschiedenen
Verflugbarkeitszonen innerhalb einer Region oder Gber verschiedene Regionen hinweg befinden. Um die
Bereitstellung von Volumes fir Workloads in einer Architektur mit mehreren Zonen zu vereinfachen, verwendet
Trident die CSl-Topologie.

Erfahren Sie mehr tber die Funktion ,,CSI-Topologie "Hier".

Kubernetes bietet zwei unterschiedliche Modi fur die Volume-Bindung:

* Mit VolumeBindingMode Set to Immediate erzeugt Trident das Volumen ohne jegliche
Topologiewahrnehmung. Die Volume-Bindung und die dynamische Bereitstellung werden bei der
Erstellung des PVC behandelt. Dies ist die Standardeinstellung volumeBindingMode und eignet sich flr
Cluster, die keine Topologieeinschrankungen erzwingen. Persistente Volumes werden erstellt, ohne von
den Planungsanforderungen des anfragenden Pods abhangig zu sein.

* Mit der volumeBindingMode Einstellung auf WaitForFirstConsumer wird die Erstellung und Bindung
eines persistenten Volumes fir eine PVC verzogert, bis ein Pod, der die PVC verwendet, geplant und
erstellt wird. Auf diese Weise werden Volumes erstellt, um Planungseinschrankungen zu erflllen, die durch
Topologieanforderungen durchgesetzt werden.

@ Flr den WaitForFirstConsumer Bindungsmodus sind keine Topologiebeschriftungen
erforderlich. Diese kann unabhangig von der CSI Topology Funktion verwendet werden.

Was Sie benétigen
Fir die Verwendung von CSI Topology bendétigen Sie Folgendes:

* Ein Kubernetes Cluster mit einem "Unterstlutzte Kubernetes-Version"

34


https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/de-de/trident-2410/trident-get-started/requirements.html

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99df"”,
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes im Cluster sollten tber Labels verfligen, die Topologiebewusstsein und
topology.kubernetes.io/zone) einflhren(topology.kubernetes.io/region. Diese
Bezeichnungen sollten auf Knoten im Cluster vorhanden sein, bevor Trident installiert ist, damit Trident
topologiefahig ist.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube

rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"", "topology.kubernetes.io/region":"us-

eastl","topology.kubernetes.io/zone":"us-eastl-a"}]

[node2,

{"beta.kubernetes.io/arch":"amde64", "beta.kubernetes.io/0s":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-

eastl","topology.kubernetes.io/zone" :"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Schritt 1: Erstellen Sie ein Topologieorientiertes Backend

Trident Storage-Back-Ends kdnnen so entworfen werden, dass sie Volumes selektiv basierend auf
Verflugbarkeitszonen bereitstellen. Jedes Backend kann einen optionalen Block enthalten
supportedTopologies , der eine Liste der unterstlitzten Zonen und Regionen darstellt. Bei StorageClasses,
die ein solches Backend nutzen, wird ein Volume nur erstellt, wenn es von einer Applikation angefordert wird,
die in einer unterstitzten Region/Zone geplant ist.

35



Hier ist eine Beispiel-Backend-Definition:

YAML

versi
stora
backe
manag
svm:
usern
passw
Suppo
- top
top
- top
top

JSON

{
"ver
"sto
"bac
"man
"svm
"use
"pas
"sup
{"top
"topo
{"top
"topo
]
}

®

on: 1

geDriverName: ontap-san

ndName: san-backend-us-eastl
ementLIF: 192.168.27.5

iscsi svm

ame: admin

ord: password

rtedTopologies:
ology.kubernetes.io/region: us-eastl
ology.kubernetes.io/zone: us-eastl-a
ology.kubernetes.io/region: us-eastl

ology.kubernetes.io/zone: us-eastl-b

sion": 1,

rageDriverName": "ontap-san",

kendName": "san-backend-us-eastl",
agementLIF": "192.168.27.5",

": "iscsi svm",

rname": "admin",

sword": "password",

portedTopologies": [
ology.kubernetes.io/region": "us-eastl",
logy.kubernetes.io/zone": "us-eastl-a"},
ology.kubernetes.io/region": "us-eastl",
logy.kubernetes.io/zone": "us-eastl-b"}

supportedTopologies Wird verwendet, um eine Liste von Regionen und Zonen pro Backend
bereitzustellen. Diese Regionen und Zonen stellen die Liste der zuldssigen Werte dar, die in
einer StorageClass bereitgestellt werden kénnen. Bei StorageClasses, die eine Teilmenge der
Regionen und Zonen enthalten, die in einem Back-End bereitgestellt werden, erstellt Trident auf
dem Back-End ein Volume.

Sie kénnen auch pro Speicherpool definieren supportedTopologies. Das folgende Beispiel zeigt:

36



version: 1
storageDriverName: ontap-nas
backendName: nas-backend-us-centrall
managementLIF: 172.16.238.5
svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-a
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b
storage:
- labels:
workload: production
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-a
- labels:
workload: dev
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b

In diesem Beispiel stehen die region Etiketten und zone flir den Speicherort des Speicherpools.
topology.kubernetes.io/region Und topology.kubernetes.io/zone legen Sie fest, wo die
Speicherpools genutzt werden kénnen.

Schritt: Definition von StorageClasses, die sich der Topologie bewusst sind

Auf der Grundlage der Topologiebeschriftungen, die den Nodes im Cluster zur Verfligung gestellt werden,
konnen StorageClasses so definiert werden, dass sie Topologieinformationen enthalten. So werden die
Storage-Pools festgelegt, die als Kandidaten flir PVC-Anfragen dienen, und die Untergruppe der Nodes, die
die von Trident bereitgestellten Volumes nutzen kénnen.

Das folgende Beispiel zeigt:



apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:

fsType: "ext4d"

In der oben angegebenen StorageClass-Definition volumeBindingMode ist auf festgelegt
WaitForFirstConsumer. VES, die mit dieser StorageClass angefordert werden, werden erst dann
gehandelt, wenn sie in einem Pod referenziert werden. Und allowedTopologies stellt die zu verwendenden
Zonen und Regionen bereit. Die netapp-san-us-eastl StorageClass erstellt VES auf dem san-backend-
us-eastl oben definierten Back-End.

Schritt 3: Erstellen und verwenden Sie ein PVC

Wenn die StorageClass erstellt und einem Backend zugeordnet wird, kdnnen Sie jetzt PVCs erstellen.

Siehe das folgende Beispiel spec:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Das Erstellen eines PVC mithilfe dieses Manifests wiirde Folgendes zur Folge haben:

38



kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

Verwenden Sie fur Trident, ein Volume zu erstellen und es an die PVC zu binden, das in einem Pod verwendet
wird. Das folgende Beispiel zeigt:

39



apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: [ "sh", "-c", "sleep 1h" ]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

Diese PodSpec weist Kubernetes an, den Pod auf Nodes zu planen, die in der Region vorhanden sind us-
eastl, und aus jedem Node, der in der Zone oder us-east1-b vorhanden ist, auszuwahlen us-eastl-a.

Siehe die folgende Ausgabe:

40



kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Back-Ends aktualisieren, um sie einzuschlieBen supportedTopologies

Bereits vorhandene Back-Ends kdnnen aktualisiert werden, um eine Liste der Verwendung tridentctl
backend update aufzunehmen supportedTopologies. Dies wirkt sich nicht auf Volumes aus, die bereits
bereitgestellt wurden und nur fir nachfolgende VES verwendet werden.

Weitere Informationen

« "Management von Ressourcen fiir Container”
* "NodeSelector"
+ "Affinitdt und Antiaffinitat"

* "Ténungen und Tolerationen"

Arbeiten Sie mit Snapshots

Kubernetes Volume Snapshots von Persistent Volumes (PVs) ermoglichen
zeitpunktgenaue Kopien von Volumes. Sie konnen einen Snapshot eines mit Trident
erstellten Volumes erstellen, einen aulderhalb von Trident erstellten Snapshot importieren,
ein neues Volume aus einem vorhandenen Snapshot erstellen und Volume-Daten aus
Snapshots wiederherstellen.

Uberblick

Volumen-Snapshot wird unterstiitzt von ontap-nas, , ontap-nas-flexgroup ontap-san ontap-san-
economy solidfire-san,,, gcp-cvs und “azure-netapp-files Fahrer.

Bevor Sie beginnen

Sie bendtigen einen externen Snapshot-Controller und benutzerdefinierte Ressourcendefinitionen (CRDs), um
mit Snapshots arbeiten zu kénnen. Dies ist die Aufgabe des Kubernetes Orchestrator (z. B. Kubeadm, GKE,
OpenShift).

Wenn |hre Kubernetes-Distribution den Snapshot Controller und CRDs nicht enthalt, finden Sie weitere
Informationen unter Stellen Sie einen Volume-Snapshot-Controller bereit.

41


https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

@ Erstellen Sie keinen Snapshot Controller, wenn Sie On-Demand Volume Snapshots in einer
GKE-Umgebung erstellen. GKE verwendet einen integrierten, versteckten Snapshot-Controller.

Erstellen eines Volume-Snapshots

Schritte

1. Erstellen Sie eine VolumeSnapshotClass. Weitere Informationen finden Sie unter
"VolumeSnapshotKlasse".

° Der driver verweist auf den Trident-CSI-Treiber.

° deletionPolicy Kann oder Retain sein Delete. Wenn auf festgelegt Retain, wird der zugrunde
liegende physische Snapshot auf dem Speicher-Cluster auch dann beibehalten, wenn das
VolumeSnapshot Objekt geldscht wird.

Beispiel

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

2. Erstellen Sie einen Snapshot einer vorhandenen PVC.
Beispiele
o In diesem Beispiel wird ein Snapshot eines vorhandenen PVC erstellt.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:
persistentVolumeClaimName: pvcl

° In diesem Beispiel wird ein Volume-Snapshot-Objekt fir eine PVC mit dem Namen erstellt pvc1, und
der Name des Snapshots wird auf festgelegt pvcl-snap. Ein VolumeSnapshot ist analog zu einer
PVC und einem Objekt zugeordnet VolumeSnapshotContent, das den tatsachlichen Snapshot
darstellt.

42


https://docs.netapp.com/de-de/trident-2410/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

° Sie kdnnen das Objekt flir den pvcl-snap VolumeSnapshot identifizieren
VolumeSnapshotContent, indem Sie es beschreiben. Das Snapshot Content Name identifiziert
das VolumeSnapshotContent-Objekt, das diesen Snapshot bereitstellt. Der Ready To Use Parameter
gibt an, dass der Snapshot zum Erstellen einer neuen PVC verwendet werden kann.

kubectl describe volumesnapshots pvcl-snap

Name: pvcl-snap
Namespace: default
Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8alca-9826-11e9-9807-
525400£3f660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:29Z
Ready To Use: true
Restore Size: 3Gi

Erstellen Sie eine PVC aus einem Volume-Snapshot

Sie kbnnen verwenden dataSource, um eine PVC mit einem VolumeSnapshot zu erstellen, der als
Datenquelle benannt <pvc-name> ist. Nachdem die PVC erstellt wurde, kann sie an einem Pod befestigt und
wie jedes andere PVC verwendet werden.

Die PVC wird im selben Backend wie das Quell-Volume erstellt. Siehe "KB: Die Erstellung einer
PVC aus einem Trident PVC-Snapshot kann nicht in einem alternativen Backend erstellt

werden".

Im folgenden Beispiel wird die PVC als Datenquelle erstellt pvcl-snap.

43


https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Importieren Sie einen Volume-Snapshot

Trident unterstitzt das, damit der "Vorab bereitgestellter Snapshot-Prozess von
Kubernetes"Clusteradministrator ein Objekt erstellen und Snapshots importieren kann
VolumeSnapshotContent, die aullerhalb von Trident erstellt wurden.

Bevor Sie beginnen
Trident muss das Uibergeordnete Volume des Snapshots erstellt oder importiert haben.

Schritte

1. Cluster admin: Erstellen Sie ein VolumeSnapshotContent Objekt, das auf den Back-End-Snapshot
verweist. Dadurch wird der Snapshot Workflow in Trident gestartet.

° Geben Sie den Namen des Back-End-Snapshots in annotations als
“trident.netapp.io/internalSnapshotName: <"backend-snapshot-name">"an.

° Geben Sie <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in
an snapshotHandle. Dies ist die einzige Information, die Trident vom externen Snapshotter im Aufruf
zur Verfugung gestellt ListSnapshots wird.

(D Der <volumeSnapshotContentName> kann aufgrund von Einschrankungen bei der
CR-Benennung nicht immer mit dem Namen des Back-End-Snapshots Ubereinstimmen.

Beispiel

Im folgenden Beispiel wird ein Objekt erstellt VolumeSnapshotContent, das auf einen Back-End-
Snapshot verweist snap-01.

44


https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static
https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotContent
metadata:
name: import-snap-content
annotations:
trident.netapp.io/internalSnapshotName: "snap-01" # This is the
name of the snapshot on the backend
spec:
deletionPolicy: Retain
driver: csi.trident.netapp.io
source:
snapshotHandle: pvc-£71223b5-23b9-4235-bbfe-e269%9ac7b84b0/import-
snap-content # <import PV name or source PV name>/<volume-snapshot-
content—-name>
volumeSnapshotRef:
name: import-snap

namespace: default

2. Cluster admin: Erstellen Sie den VvolumeSnapshot CR, der das Objekt referenziert
VolumeSnapshotContent. Damit wird der Zugriff auf die Verwendung des in einem bestimmten
Namespace benétigt volumeSnapshot.

Beispiel

Im folgenden Beispiel wird ein CR mit dem import-snap Namen erstellt VvolumeSnapshot, der auf den
Namen import-snap-content verweist VolumeSnapshotContent.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:

name: import-snap
spec:

# volumeSnapshotClassName: csi-snapclass (not required for pre-
provisioned or imported snapshots)

source:

volumeSnapshotContentName: import-snap-content

3. Interne Verarbeitung (keine Aktion erforderlich): der externe Schnapper erkennt das neu erstellte
VolumeSnapshotContent und fihrt den ListSnapshots Aufruf aus. Trident erstellt die
TridentSnapshot.

° Der externe Schnapper setzt den VvolumeSnapshotContent auf readyToUse und den
VolumeSnapshot auf true

° Trident kehrt zurlick readyToUse=true.

4. Jeder Benutzer: Erstellen Sie ein PersistentVolumeClaim, um auf den neuenzu verweisen
VolumeSnapshot, wobei der spec.dataSource (oder spec.dataSourceRef) Name der Name ist

45



VolumeSnapshot.

Beispiel

Im folgenden Beispiel wird eine PVC erstellt, die auf den Namen import-snap verweist
VolumeSnapshot.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: simple-sc
resources:

requests:

storage: 1Gi
dataSource:

name: import-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Stellen Sie Volume-Daten mithilfe von Snapshots wieder her

Das Snapshot-Verzeichnis ist standardmafig ausgeblendet, um die maximale Kompatibilitdt der mit den
Treibern und ontap-nas-economy bereitgestellten Volumes zu ermoglichen ontap-nas. Aktivieren Sie das
.snapshot Verzeichnis, um Daten von Snapshots direkt wiederherzustellen.

Verwenden Sie die ONTAP-CLI zur Wiederherstellung eines Volume-Snapshots, um einen in einem friheren
Snapshot aufgezeichneten Zustand wiederherzustellen.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot
vol3 snap archive

Wenn Sie eine Snapshot-Kopie wiederherstellen, wird die vorhandene Volume-Konfiguration
Uberschrieben. Anderungen an den Volume-Daten nach der Erstellung der Snapshot Kopie
gehen verloren.

In-Place-Volume-Wiederherstellung aus einem Snapshot

Trident ermdéglicht mithilfe des CR-Systems (TASR) eine schnelle Wiederherstellung von in-Place-Volumes aus
einem Snapshot TridentActionSnapshotRestore. Dieser CR fungiert als eine zwingend notwendige
Kubernetes-Aktion und bleibt nach Abschluss des Vorgangs nicht erhalten.

Trident unterstitzt die Wiederherstellung von Snapshots auf dem ontap-san, , ontap-san-economy
ontap-nas ontap-nas-flexgroup azure-netapp-files,,, gcp-cvs, google-cloud-netapp-

46



volumes und solidfire-san Fahrer.

Bevor Sie beginnen
Sie mussen Uber einen gebundenen PVC-Snapshot und einen verfugbaren Volume-Snapshot verfligen.

* Vergewissern Sie sich, dass der PVC-Status gebunden ist.
kubectl get pvc
« Uberpriifen Sie, ob der Volume-Snapshot einsatzbereit ist.

kubectl get vs

Schritte

1. Erstellen Sie den TASR CR. In diesem Beispiel wird ein CR fiir PVC und Volume-Snapshot erstellt pvcl
pvcl-snapshot.

@ Der TASR CR muss sich in einem Namensraum befinden, in dem PVC und VS vorhanden
sind.

cat tasr-pvcl-snapshot.yaml

apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:

name: trident-snap

namespace: trident
spec:

pvcName: pvcl

volumeSnapshotName: pvcl-snapshot

1. Wenden Sie den CR an, um ihn aus dem Snapshot wiederherzustellen. Dieses Beispiel wird aus Snapshot
wiederhergestellt pvcl.

kubectl create -f tasr-pvcl-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

Ergebnisse

Trident stellt die Daten aus dem Snapshot wieder her. Sie kdnnen den Status der Snapshot-Wiederherstellung
Uberprifen.

47



kubectl get tasr -o yaml

apiVersion: trident.netapp.io/vl
items:
- apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:
creationTimestamp: "2023-04-14T00:20:332Z"
generation: 3
name: trident-snap
namespace: trident

resourceVersion: "3453847"
uid: <uid>
spec:

pvcName: pvcl
volumeSnapshotName: pvcl-snapshot
status:

startTime: "2023-04-14T00:20:34z2"
completionTime: "2023-04-14T00:20:372"
state: Succeeded

kind: List

metadata:

resourceVersion:

* In den meisten Fallen versucht Trident den Vorgang bei einem Ausfall nicht automatisch
(D erneut. Sie missen den Vorgang erneut ausfiihren.

* Kubernetes-Benutzer ohne Administratorzugriff missen moglicherweise vom Administrator
zum Erstellen eines TASR CR in ihrem Applikations-Namespace erhalten.

Loschen Sie ein PV mit den zugehorigen Snapshots

Wenn Sie ein persistentes Volume mit zugeordneten Snapshots I6schen, wird das entsprechende Trident-
Volume in einen ,Loschzustand® aktualisiert. Entfernen Sie die Volume-Snapshots, um das Trident-Volume zu
I6schen.

Stellen Sie einen Volume-Snapshot-Controller bereit

Wenn |hre Kubernetes-Distribution den Snapshot-Controller und CRDs nicht enthalt, kdnnen Sie sie wie folgt
bereitstellen.

Schritte
1. Erstellen von Volume Snapshot-CRDs.

48



cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Erstellen Sie den Snapshot-Controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

(:) Offnen Sie ggf. deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml lhren Namespace und aktualisieren Sie namespace ihn.

Weiterfiihrende Links

* "Volume Snapshots"

* "VolumeSnapshotKlasse"

49


https://docs.netapp.com/de-de/trident-2410/trident-concepts/snapshots.html
https://docs.netapp.com/de-de/trident-2410/trident-reference/objects.html

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschiitzte
Dokument darf ohne die vorherige schriftiche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel — weder grafische noch elektronische oder mechanische, einschliel3lich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem — auch nicht in Teilen, vervielfaltigt werden.

Software, die von urheberrechtlich geschitztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFUGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWAHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE STILLSCHWEIGENDE GEWAHRLEISTUNG DER
MARKTGANGIGKEIT UND EIGNUNG FUR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP UBERNIMMT KEINERLEI HAFTUNG FUR DIREKTE, INDIREKTE,
ZUFALLIGE, BESONDERE, BEISPIELHAFTE SCHADEN ODER FOLGESCHADEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRANKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHAFTSBETRIEBS), UNABHANGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHANGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLASSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MOGLICHKEIT DERARTIGER SCHADEN
HINGEWIESEN WURDE.

NetApp behalt sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankindigung zu
andern. NetApp Ubernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrticklich in schriftlicher Form zugestimmit.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
auslandische Patente oder anhangige Patentanmeldungen geschutzt sein.

ERLAUTERUNG ZU ,RESTRICTED RIGHTS*: Nutzung, Vervielfaltigung oder Offenlegung durch die US-
Regierung unterliegt den Einschrankungen gemaf Unterabschnitt (b)(3) der Klausel ,Rights in Technical Data
— Noncommercial ltems* in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschlie3lich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschlieBliche, nicht Gbertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstitzung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, durfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfaltigt,
geandert, aufgefiihrt oder angezeigt werden. Die Lizenzrechte der US-Regierung fir das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschrankt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgefihrten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen kénnen Marken der jeweiligen Eigentiimer sein.

50


http://www.netapp.com/TM\

	Provisionierung und Management von Volumes : Trident
	Inhalt
	Provisionierung und Management von Volumes
	Bereitstellen eines Volumes
	Überblick
	Erstellen Sie das PV und die PVC

	Erweitern Sie Volumes
	Erweitern Sie ein iSCSI-Volume
	Erweitern Sie ein NFS-Volume

	Volumes importieren
	Überblick und Überlegungen
	Importieren Sie ein Volume
	Beispiele

	Passen Sie Volume-Namen und -Beschriftungen an
	Bevor Sie beginnen
	Einschränkungen
	Wichtige Verhaltensweisen anpassbarer Volumennamen
	Beispiele für die Backend-Konfiguration mit Namensvorlage und Beschriftungen
	Beispiele für Namensvorlagen
	Zu berücksichtigende Aspekte

	Ein NFS-Volume kann über Namespaces hinweg genutzt werden
	Funktionen
	Schnellstart
	Konfigurieren Sie die Namensräume für Quelle und Ziel
	Löschen eines freigegebenen Volumes
	Zum Abfragen untergeordneter Volumes verwenden tridentctl get
	Einschränkungen
	Finden Sie weitere Informationen

	Replizieren Sie Volumes mit SnapMirror
	Replikationsvoraussetzungen
	Erstellen Sie eine gespiegelte PVC
	Volume-Replikationsstatus
	Fördern Sie die sekundäre PVC während eines ungeplanten Failover
	Fördern Sie die sekundäre PVC während eines geplanten Failover
	Stellen Sie nach einem Failover eine gespiegelte Beziehung wieder her
	Zusätzliche Vorgänge
	Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP online ist
	Aktualisieren Sie Spiegelbeziehungen, wenn ONTAP offline ist

	Verwenden Sie die CSI-Topologie
	Überblick
	Schritt 1: Erstellen Sie ein Topologieorientiertes Backend
	Schritt: Definition von StorageClasses, die sich der Topologie bewusst sind
	Schritt 3: Erstellen und verwenden Sie ein PVC
	Back-Ends aktualisieren, um sie einzuschließen supportedTopologies
	Weitere Informationen

	Arbeiten Sie mit Snapshots
	Überblick
	Erstellen eines Volume-Snapshots
	Erstellen Sie eine PVC aus einem Volume-Snapshot
	Importieren Sie einen Volume-Snapshot
	Stellen Sie Volume-Daten mithilfe von Snapshots wieder her
	In-Place-Volume-Wiederherstellung aus einem Snapshot
	Löschen Sie ein PV mit den zugehörigen Snapshots
	Stellen Sie einen Volume-Snapshot-Controller bereit
	Weiterführende Links



