
Referenz

Trident
NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/de-de/trident-2502/trident-reference/ports.html on
January 14, 2026. Always check docs.netapp.com for the latest.

Inhalt

Referenz. 1

Trident-Ports. 1

Trident-Ports. 1

Trident REST-API. 1

Wann die REST-API verwendet werden soll . 1

REST-API wird verwendet . 1

Befehlszeilenoptionen . 2

Protokollierung . 2

Kubernetes. 2

Docker . 3

RUHE . 3

Kubernetes und Trident Objekte . 3

Wie interagieren die Objekte miteinander? . 3

`PersistentVolumeClaim`Kubernetes Objekte . 4

`PersistentVolume`Kubernetes Objekte. 6

`StorageClass`Kubernetes Objekte . 6

`VolumeSnapshotClass`Kubernetes Objekte. 10

`VolumeSnapshot`Kubernetes Objekte . 10

`VolumeSnapshotContent`Kubernetes Objekte . 11

`CustomResourceDefinition`Kubernetes Objekte . 11

Trident-Objekte StorageClass . 12

Trident Back-End-Objekte . 12

Trident-Objekte StoragePool . 12

Trident-Objekte Volume. 12

Trident-Objekte Snapshot . 14

Trident ResourceQuota-Objekt . 15

Pod Security Standards (PSS) und Security Context Constraints (SCC) . 16

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder . 16

Pod-Sicherheitsstandards (PSS) . 17

Pod-Sicherheitsrichtlinien (PSP) . 17

Sicherheitskontexteinschränkungen (SCC) . 19

Referenz

Trident-Ports

Erfahren Sie mehr über die Ports, die Trident für die Kommunikation verwendet.

Trident-Ports

Trident kommuniziert über folgende Ports:

Port Zweck

8443 Backchannel HTTPS

8001 Endpunkt der Prometheus Kennzahlen

8000 Trident REST-Server

17546 Anschluss für Liveness/Readiness-Sonde, der von Trident Demonset-
Pods verwendet wird

Der Anschluss für die Liveness/Readiness-Sonde kann während der Installation mit dem Flag
geändert --probe-port werden. Es ist wichtig, sicherzustellen, dass dieser Port nicht von
einem anderen Prozess auf den Worker-Knoten verwendet wird.

Trident REST-API

Sie "Tridentctl-Befehle und -Optionen" sind die einfachste Möglichkeit zur Interaktion mit
der Trident REST-API, können Sie, falls gewünscht, den REST-Endpunkt direkt
verwenden.

Wann die REST-API verwendet werden soll

DIE REST-API ist nützlich für erweiterte Installationen, die Trident als Standalone-Binärdatei in
Implementierungen ohne Kubernetes verwenden.

Zur Verbesserung der Sicherheit ist das Trident REST API standardmäßig auf localhost beschränkt, wenn es
innerhalb eines Pods ausgeführt wird. Um dieses Verhalten zu ändern, müssen Sie das Argument von Trident
in der POD-Konfiguration festlegen -address.

REST-API wird verwendet

Für Beispiele, wie diese APIs aufgerufen werden, übergeben Sie das (`-d`Flag debug). Weitere Informationen
finden Sie unter "Managen Sie Trident mit tridentctl".

Die API funktioniert wie folgt:

GET

1

https://docs.netapp.com/de-de/trident-2502/trident-reference/tridentctl.html
https://docs.netapp.com/de-de/trident-2502/trident-managing-k8s/tridentctl.html

GET <trident-address>/trident/v1/<object-type>

Listet alle Objekte dieses Typs auf.

GET <trident-address>/trident/v1/<object-type>/<object-name>

Ruft die Details des benannten Objekts ab.

POST

POST <trident-address>/trident/v1/<object-type>

Erstellt ein Objekt des angegebenen Typs.

• Eine JSON-Konfiguration für das zu erstellenden Objekt erforderlich. Informationen zur Spezifikation
der einzelnen Objekttypen finden Sie unter "Managen Sie Trident mit tridentctl".

• Falls das Objekt bereits vorhanden ist, variiert das Verhalten: Back-Ends aktualisiert das vorhandene
Objekt, während alle anderen Objekttypen den Vorgang nicht ausführen.

Löschen

DELETE <trident-address>/trident/v1/<object-type>/<object-name>

Löscht die benannte Ressource.

Es existieren weiterhin Volumes, die mit Back-Ends oder Storage-Klassen verbunden sind.
Diese müssen separat gelöscht werden. Weitere Informationen finden Sie unter "Managen
Sie Trident mit tridentctl".

Befehlszeilenoptionen

Trident bietet mehrere Befehlszeilenoptionen für den Trident Orchestrator. Sie können
diese Optionen verwenden, um Ihre Bereitstellung zu ändern.

Protokollierung

-debug

Aktiviert die Debugging-Ausgabe.

-loglevel <level>

Legt die Protokollierungsebene fest (Debug, Info, Warn, ERROR, Fatal). Standardmäßig Info.

Kubernetes

-k8s_pod

Verwenden Sie diese Option oder -k8s_api_server, um den Kubernetes-Support zu aktivieren. Durch
diese Einstellung verwendet Trident die Zugangsdaten für das Kubernetes-Servicekonto eines Pods, um
den API-Server zu kontaktieren. Dies funktioniert nur, wenn Trident als Pod in einem Kubernetes-Cluster
mit aktivierten Service-Konten ausgeführt wird.

-k8s_api_server <insecure-address:insecure-port>

Verwenden Sie diese Option oder -k8s_pod, um den Kubernetes-Support zu aktivieren. Bei Angabe von
stellt Trident über die angegebene unsichere Adresse und den angegebenen Port eine Verbindung zum

2

https://docs.netapp.com/de-de/trident-2502/trident-managing-k8s/tridentctl.html
https://docs.netapp.com/de-de/trident-2502/trident-managing-k8s/tridentctl.html
https://docs.netapp.com/de-de/trident-2502/trident-managing-k8s/tridentctl.html

Kubernetes-API-Server her. Dadurch kann Trident außerhalb eines Pods bereitgestellt werden. Es werden
jedoch nur unsichere Verbindungen zum API-Server unterstützt. Um eine sichere Verbindung herzustellen,
implementieren Sie Trident in einem Pod mit der -k8s_pod Option.

Docker

-volume_driver <name>

Treibername, der bei der Registrierung des Docker-Plug-ins verwendet wird. Standardmäßig ist netapp .

-driver_port <port-number>

Hören Sie auf diesen Port statt auf einen UNIX-Domain-Socket.

-config <file>

Erforderlich; Sie müssen diesen Pfad zu einer Back-End-Konfigurationsdatei angeben.

RUHE

-address <ip-or-host>

Gibt die Adresse an, auf der der REST-Server von Trident hören soll. Standardmäßig localhost. Wenn auf
dem localhost zuhören und in einem Kubernetes Pod ausgeführt werden, ist der ZUGRIFF auf DIE REST-
Schnittstelle nicht direkt von außerhalb des Pods möglich. Verwenden Sie -address "", um den Zugriff
auf die REST-Schnittstelle über die POD-IP-Adresse zu ermöglichen.

Die Trident REST-Schnittstelle kann nur für die Wiedergabe unter 127.0.0.1 (für IPv4) oder [:
1] (für IPv6) konfiguriert werden.

-port <port-number>

Gibt den Port an, auf dem der REST-Server von Trident lauschen soll. Die Standardeinstellung ist 8000.

-rest

Aktiviert die REST-Schnittstelle. Standardmäßig auf „true“ gesetzt.

Kubernetes und Trident Objekte

Kubernetes und Trident lassen sich über REST-APIs miteinander interagieren, indem
Objekte gelesen und geschrieben werden. Es gibt verschiedene Ressourcenobjekte, die
die Beziehung zwischen Kubernetes und Trident, Trident und Storage sowie Kubernetes
und Storage vorschreiben. Einige dieser Objekte werden über Kubernetes verwaltet,
andere wiederum über Trident.

Wie interagieren die Objekte miteinander?

Am einfachsten ist es, die Objekte, deren Bedeutung und ihre Interaktion zu verstehen, wenn ein Kubernetes-
Benutzer eine einzelne Storage-Anfrage bearbeitet:

1. Ein Benutzer erstellt ein, das PersistentVolumeClaim eine neue Anforderung einer bestimmten Größe
von einem Kubernetes StorageClass anfordert PersistentVolume, das zuvor vom Administrator
konfiguriert wurde.

3

2. Kubernetes StorageClass identifiziert Trident als bereitstellung und enthält Parameter, die Trident
sagen, wie ein Volume für die angeforderte Klasse bereitgestellt werden kann.

3. Trident betrachtet seinen eigenen StorageClass Namen mit dem gleichen Namen, der die Abgleichung
identifiziert Backends und StoragePools den es zur Bereitstellung von Volumes für die Klasse
verwenden kann.

4. Trident stellt Storage auf einem passenden Back-End bereit und erstellt zwei Objekte: Ein
PersistentVolume in Kubernetes, das Kubernetes über die Suche, das Mounten und die Behandlung
des Volume informiert, und ein Volume in Trident, das die Beziehung zwischen dem und dem tatsächlichen
Storage beibehält. PersistentVolume

5. Kubernetes bindet das PersistentVolumeClaim an das neue PersistentVolume. Pods, die das
Mount von PersistentVolume auf jedem Host enthalten PersistentVolumeClaim, auf dem es
ausgeführt wird.

6. Ein Benutzer erstellt VolumeSnapshot mithilfe eines s, das auf Trident verweist, eine einer vorhandenen
PVC VolumeSnapshotClass.

7. Trident identifiziert das dem PVC zugeordnete Volume und erstellt einen Snapshot des Volumes auf dem
Back-End. Es erstellt auch ein VolumeSnapshotContent, das Kubernetes über die Identifizierung des
Snapshots anweist.

8. Ein Benutzer kann ein Verwenden VolumeSnapshot als Quelle erstellen PersistentVolumeClaim.

9. Trident identifiziert den erforderlichen Snapshot und führt die gleichen Schritte aus, die beim Erstellen von
A und A Volume erforderlich sind PersistentVolume.

Für weitere Informationen zu Kubernetes-Objekten empfehlen wir, den Abschnitt der
Kubernetes-Dokumentation zu lesen "Persistente Volumes".

`PersistentVolumeClaim`Kubernetes Objekte

Ein Kubernetes- `PersistentVolumeClaim`Objekt ist eine Anforderung von Storage, der von einem Kubernetes-
Cluster-Benutzer erstellt wird.

Zusätzlich zur Standardspezifikation können Benutzer mit Trident die folgenden Volume-spezifischen
Anmerkungen angeben, wenn sie die in der Back-End-Konfiguration festgelegten Standardeinstellungen
überschreiben möchten:

Anmerkung Volume-Option Unterstützte Treiber

trident.netapp.io/fileSystem Dateisystem ontap-san, solidfire-san, ontap-san-
Economy

trident.netapp.io/cloneFromPVC KlonSourceVolume ontap-nas, ontap-san, solidfire-san,
Azure-netapp-Dateien, gcp-cvs,
ontap-san-Ökonomie

trident.netapp.io/splitOnClone SPlitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol Protokoll Alle

trident.netapp.io/exportPolicy Exportpolitik ontap-nas, ontap-nas-Economy,
ontap-nas-Flexgroup

trident.netapp.io/snapshotPolicy SnapshotPolicy ontap-nas, ontap-nas-Economy,
ontap-nas-Flexgroup, ontap-san

4

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Anmerkung Volume-Option Unterstützte Treiber

trident.netapp.io/snapshotReserve SnapshotReserve ontap-nas, ontap-nas-Flexgroup,
ontap-san, gcp-cvs

trident.netapp.io/snapshotDirectory SnapshotDirectory ontap-nas, ontap-nas-Economy,
ontap-nas-Flexgroup

trident.netapp.io/unixPermissions UnxPermissions ontap-nas, ontap-nas-Economy,
ontap-nas-Flexgroup

trident.netapp.io/blockSize Blocksize solidfire-san

Wenn das erstellte PV über die Zurückgewinnungsrichtlinie verfügt Delete, löscht Trident sowohl das PV als
auch das Back-Volume, wenn das PV freigegeben wird (d. h. wenn der Benutzer die PVC löscht). Sollte die
Löschaktion fehlschlagen, markiert Trident den PV als solche und wiederholt den Vorgang periodisch, bis er
erfolgreich ist oder der PV manuell gelöscht wird. Wenn das PV die Richtlinie verwendet Retain, ignoriert
Trident sie und geht davon aus, dass der Administrator sie von Kubernetes und dem Back-End bereinigt,
sodass das Volume vor dem Entfernen gesichert oder inspiziert werden kann. Beachten Sie, dass das
Löschen des PV nicht dazu führt, dass Trident das Backing-Volume löscht. Sie sollten es mit der REST API
entfernen (tridentctl).

Trident unterstützt die Erstellung von Volume Snapshots anhand der CSI-Spezifikation: Sie können einen
Volume Snapshot erstellen und ihn als Datenquelle zum Klonen vorhandener PVCs verwenden. So können
zeitpunktgenaue Kopien von PVS in Form von Snapshots Kubernetes zugänglich gemacht werden. Die
Snapshots können dann verwendet werden, um neue PVS zu erstellen. Schauen Sie sich an On-Demand
Volume Snapshots, um zu sehen, wie das funktionieren würde.

Trident liefert außerdem die cloneFromPVC Annotationen und splitOnClone zum Erstellen von Klonen. Mit
diesen Anmerkungen können Sie eine PVC klonen, ohne die CSI-Implementierung verwenden zu müssen.

Hier ist ein Beispiel: Wenn ein Benutzer bereits eine PVC aufgerufen hat mysql, kann der Benutzer eine neue
PVC erstellen, die über die Anmerkung aufgerufen wird mysqlclone, wie `trident.netapp.io/cloneFromPVC:
mysql`z.B. . Mit diesem Anmerkungsset klont Trident das Volume, das dem mysql PVC entspricht, anstatt ein
Volume von Grund auf neu bereitzustellen.

Berücksichtigen Sie folgende Punkte:

• NetApp empfiehlt das Klonen eines inaktiven Volumes.

• Ein PVC und sein Klon sollten sich im gleichen Kubernetes Namespace befinden und dieselbe Storage-
Klasse haben.

• Bei den ontap-nas und ontap-san-Treibern könnte es wünschenswert sein, die PVC-Beschriftung in
Verbindung mit trident.netapp.io/cloneFromPVC einzustellen
trident.netapp.io/splitOnClone. Mit trident.netapp.io/splitOnClone Set-auf teilt Trident
das geklonte Volume vom übergeordneten Volume auf true und entkoppelt damit den Lebenszyklus des
geklonten Volume vollständig von seinem übergeordneten Volume, was den Verlust einiger Storage-
Effizienz bedeutet. Wenn Sie diese Einstellung nicht festlegen oder auf false diese Einstellung setzen
trident.netapp.io/splitOnClone, verringert sich der Speicherplatzverbrauch im Backend auf
Kosten des Erstellens von Abhängigkeiten zwischen den übergeordneten und den Klon-Volumes, sodass
das übergeordnete Volume nicht gelöscht werden kann, es sei denn, der Klon wird zuerst gelöscht. Ein
Szenario, in dem das Aufteilen des Klons sinnvoll ist, ist das Klonen eines leeren Datenbank-Volumes, in
dem erwartet wird, dass das Volume und der zugehörige Klon eine große Divergenz sind. Es profitieren
nicht von der Storage-Effizienz des ONTAP.

5

Das sample-input Verzeichnis enthält Beispiele für PVC-Definitionen für die Verwendung mit Trident. Eine
vollständige Beschreibung der Parameter und Einstellungen zu Trident Volumes finden Sie unter.

`PersistentVolume`Kubernetes Objekte

Ein Kubernetes- `PersistentVolume`Objekt ist ein Storage-Element, der dem Kubernetes Cluster zur Verfügung
gestellt wird. Es weist einen Lebenszyklus auf, der unabhängig vom POD ist, der ihn nutzt.

Trident erstellt PersistentVolume auf Basis der bereitstehenden Volumes automatisch
Objekte und registriert sie beim Kubernetes-Cluster. Sie sollten diese nicht selbst verwalten.

Wenn Sie eine PVC erstellen, die sich auf ein Trident-basiertes bezieht StorageClass, stellt Trident ein
neues Volume mit der entsprechenden Speicherklasse bereit und registriert ein neues PV für dieses Volume.
Bei der Konfiguration des bereitgestellten Volume und des entsprechenden PV befolgt Trident folgende
Regeln:

• Trident generiert einen PV-Namen für Kubernetes mit einem internen Namen, der zur Bereitstellung des
Storage verwendet wird. In beiden Fällen wird sichergestellt, dass die Namen in ihrem Geltungsbereich
eindeutig sind.

• Die Größe des Volumens entspricht der gewünschten Größe in der PVC so genau wie möglich, obwohl es
möglicherweise auf die nächste zuteilbare Menge aufgerundet werden, je nach Plattform.

`StorageClass`Kubernetes Objekte

Kubernetes- StorageClass`Objekte werden mithilfe des Namens in angegeben
`PersistentVolumeClaims, um Storage mit einem Satz von Eigenschaften bereitzustellen. Die Storage-
Klasse selbst gibt die zu verwendenden bereitstellungsunternehmen an und definiert die Eigenschaftengruppe
in Bezug auf die provisionierung von.

Es handelt sich um eines von zwei grundlegenden Objekten, die vom Administrator erstellt und verwaltet
werden müssen. Das andere ist das Trident Back-End-Objekt.

Ein Kubernetes- `StorageClass`Objekt, das Trident verwendet, sieht folgendermaßen aus:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters: <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

Diese Parameter sind Trident-spezifisch und Trident erläutert die Bereitstellung von Volumes für die Klasse.

Parameter der Storage-Klasse sind:

6

Attribut Typ Erforderlich Beschreibung

Merkmale Zuordnen einer
Zeichenfolge[string]

Nein Weitere Informationen
finden Sie im Abschnitt
Attribute unten

Storage Pools Zuordnen[String]StringList Nein Zuordnung von Back-End-
Namen zu Listen von
Storage-Pools innerhalb

Zusätzlich StoragePools Zuordnen[String]StringList Nein Zuordnung von Back-End-
Namen zu Listen von
Storage-Pools innerhalb

Unter Ausnahme von
StoragePools

Zuordnen[String]StringList Nein Zuordnung von Back-End-
Namen zu Listen von
Storage-Pools innerhalb

Storage-Attribute und ihre möglichen Werte können in Auswahlebene und Kubernetes-Attribute des Storage-
Pools klassifiziert werden.

Auswahlebene für Storage-Pools

Diese Parameter bestimmen, welche in Trident gemanagten Storage Pools zur Bereitstellung von Volumes
eines bestimmten Typs verwendet werden sollten.

Attribut Typ Werte Angebot Anfrage Unterstützt von

Medien1 Zeichenfolge hdd, Hybrid, ssd Pool enthält
Medien dieser
Art. Beides
bedeutet Hybrid

Medientyp
angegeben

ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
solidfire-san

Bereitstellungsty
p

Zeichenfolge Dünn, dick Pool unterstützt
diese
Bereitstellungsm
ethode

Bereitstellungsm
ethode
angegeben

Thick: All
ONTAP; Thin:
Alle ONTAP und
solidfire-san

BackendType Zeichenfolge ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, Azure-
netapp-Files,
ontap-san-
Wirtschaftlichkeit

Pool gehört zu
dieser Art von
Backend

Back-End
angegeben

Alle Treiber

Snapshots bool Richtig, falsch Pool unterstützt
Volumes mit
Snapshots

Volume mit
aktivierten
Snapshots

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

7

Attribut Typ Werte Angebot Anfrage Unterstützt von

Klone bool Richtig, falsch Pool unterstützt
das Klonen von
Volumes

Volume mit
aktivierten
Klonen

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Verschlüsselung bool Richtig, falsch Pool unterstützt
verschlüsselte
Volumes

Volume mit
aktivierter
Verschlüsselung

ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroups,
ontap-san

IOPS Int Positive
Ganzzahl

Pool kann IOPS
in diesem
Bereich
garantieren

Volume hat diese
IOPS garantiert

solidfire-san

1: Nicht unterstützt von ONTAP Select-Systemen

In den meisten Fällen beeinflussen die angeforderten Werte direkt die Bereitstellung. Wenn Sie beispielsweise
Thick Provisioning anfordern, entsteht ein Volume mit Thick Provisioning. Ein Element Storage-Pool nutzt
jedoch den angebotenen IOPS-Minimum und das Maximum, um QoS-Werte anstelle des angeforderten Werts
festzulegen. In diesem Fall wird der angeforderte Wert nur verwendet, um den Speicherpool auszuwählen.

Idealerweise können Sie attributes allein die Qualitäten des Storage modellieren, den Sie zur Erfüllung der
Anforderungen einer bestimmten Klasse benötigen. Trident erkennt und wählt automatisch Speicherpools aus,
die mit den von Ihnen angegebenen allen übereinstimmen attributes.

Wenn Sie nicht in der Lage sind, attributes automatisch die richtigen Pools für eine Klasse auszuwählen,
können Sie die Parameter und additionalStoragePools verwenden storagePools, um die Pools weiter
zu verfeinern oder sogar eine bestimmte Gruppe von Pools auszuwählen.

Mit dem Parameter können Sie storagePools die Anzahl der Pools, die mit den angegebenen
übereinstimmen, weiter einschränken attributes. Mit anderen Worten: Trident verwendet die Kreuzung von
Pools, die durch die Parameter und storagePools für das Provisioning identifiziert attributes werden. Sie
können entweder allein oder beides zusammen verwenden.

Sie können den Parameter verwenden additionalStoragePools, um den Pool-Satz zu erweitern, den
Trident für das Provisioning verwendet, unabhängig von den durch die Parameter und storagePools
ausgewählten Pools attributes.

Sie können den Parameter verwenden excludeStoragePools, um den Satz von Pools zu filtern, den
Trident für das Provisioning verwendet. Mit diesem Parameter werden alle Pools entfernt, die übereinstimmen.

In den storagePools Parametern und additionalStoragePools hat jeder Eintrag das Formular
<backend>:<storagePoolList>, wobei <storagePoolList> eine kommagetrennte Liste von
Speicherpools für das angegebene Backend ist. Beispielsweise könnte ein Wert für
additionalStoragePools wie aussehen
ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze . Diese Listen
akzeptieren Regex-Werte sowohl für das Backend als auch für Listenwerte. Sie können verwenden
tridentctl get backend, um die Liste der Back-Ends und deren Pools zu erhalten.

8

Attribute für Kubernetes

Diese Attribute haben keine Auswirkung auf die Auswahl von Storage-Pools/Back-Ends, die von Trident
während der dynamischen Provisionierung durchgeführt werden. Stattdessen liefern diese Attribute einfach
Parameter, die von Kubernetes Persistent Volumes unterstützt werden. Worker-Knoten sind für die Erstellung
von Dateisystem-Operationen verantwortlich und benötigen möglicherweise Dateisystem-Dienstprogramme,
wie z. B. xfsprogs.

Attribut Typ Werte Beschreibung Wichtige

Faktoren

Kubernetes-

Version

Fstype Zeichenfolge Ext4, ext3, xfs Der Filesystem-
Typ für Block-
Volumes

solidfire-san,
ontap-nas,
ontap-nas-
Economy, ontap-
nas-Flexgroup,
ontap-san,
ontap-san-
Ökonomie

Alle

VolumeErweiteru
ng

boolesch Richtig, falsch Aktivieren oder
deaktivieren Sie
die
Unterstützung für
das Vergrößern
der PVC-Größe

ontap-nas,
ontap-nas-
Ökonomie,
ontap-nas-
Flexgroup,
ontap-san,
ontap-san-
Ökonomie,
solidfire-san,
gcp-cvs, Azure-
netapp-Files

1.11+

VolumeBindingm
odus

Zeichenfolge Sofort,
WaitForFirstCon
sumer

Legen Sie fest,
wann Volume
Binding und
dynamische
Bereitstellung
stattfindet

Alle 1,19 - 1,26

9

• Mit dem fsType Parameter wird der gewünschte Dateisystemtyp für SAN-LUNs gesteuert.
Außerdem verwendet Kubernetes die Anwesenheit von fsType in einer Storage-Klasse,
um anzugeben, dass ein Dateisystem vorhanden ist. Die Volume-Eigentumsrechte können
nur mit dem Sicherheitskontext eines Pods gesteuert werden fsGroup, wenn fsType
festgelegt ist. Eine Übersicht über die Einstellung der Volume-Eigentumsrechte mithilfe des
fsGroup Kontexts finden Sie unter"Kubernetes: Einen Sicherheitskontext für einen Pod
oder Container konfigurieren". Kubernetes setzt diesen fsGroup Wert nur ein, wenn:

◦ fsType Wird in der Storage-Klasse festgelegt.

◦ Der PVC-Zugriffsmodus ist RWO.

Für NFS-Speichertreiber ist bereits ein Dateisystem als Teil des NFS-Exports vorhanden.
Um die Storage-Klasse zu verwenden, fsGroup muss noch ein angegeben werden
fsType. Sie können es auf oder einen Wert ungleich Null setzen nfs.

• Weitere Details zur Volume-Erweiterung finden Sie unter"Erweitern Sie Volumes".

• Das Trident Installer-Paket enthält mehrere Beispiele für Speicherklassen-Definitionen für
die Verwendung mit Trident in sample-input/storage-class-*.yaml. Durch das
Löschen einer Kubernetes-Storage-Klasse wird auch die entsprechende Trident-Storage-
Klasse gelöscht.

`VolumeSnapshotClass`Kubernetes Objekte

Kubernetes- VolumeSnapshotClass`Objekte sind analog zu `StorageClasses. Sie helfen,
mehrere Speicherklassen zu definieren und werden von Volume-Snapshots referenziert, um den Snapshot der
erforderlichen Snapshot-Klasse zuzuordnen. Jeder Volume Snapshot ist einer einzelnen Volume-Snapshot-
Klasse zugeordnet.

Ein VolumeSnapshotClass sollte von einem Administrator definiert werden, um Snapshots zu erstellen. Eine
Volume-Snapshot-Klasse wird mit folgender Definition erstellt:

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

Der driver gibt an Kubernetes an, dass Anforderungen von Volume-Snapshots der csi-snapclass Klasse
von Trident verarbeitet werden. Der deletionPolicy gibt die Aktion an, die ausgeführt werden soll, wenn ein
Snapshot gelöscht werden muss. Wenn deletionPolicy auf festgelegt ist Delete, werden die Volume-
Snapshot-Objekte sowie der zugrunde liegende Snapshot auf dem Speicher-Cluster entfernt, wenn ein
Snapshot gelöscht wird. Wenn Sie diese Einstellung auf setzen Retain, bedeutet dies, dass
VolumeSnapshotContent der physische Snapshot beibehalten wird.

`VolumeSnapshot`Kubernetes Objekte

Ein Kubernetes- `VolumeSnapshot`Objekt ist eine Anforderung zur Erstellung eines Snapshots eines Volumes.
So wie eine PVC eine von einem Benutzer erstellte Anfrage für ein Volume darstellt, besteht bei einem

10

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

Volume-Snapshot die Anforderung eines Benutzers, einen Snapshot eines vorhandenen PVC zu erstellen.

Wenn eine Volume-Snapshot-Anfrage eingeht, managt Trident automatisch die Erstellung des Snapshots für
das Volume auf dem Backend und legt den Snapshot durch Erstellen eines eindeutigen Objekts dar.
VolumeSnapshotContent Sie können Snapshots aus vorhandenen VES erstellen und die Snapshots als
Datenquelle beim Erstellen neuer VES verwenden.

Der Lebenszyklus eines VolumeSnapshots ist unabhängig von der Quelle PVC: Ein Snapshot
bleibt auch nach dem Löschen der Quelle PVC erhalten. Beim Löschen eines PVC mit
zugehörigen Snapshots markiert Trident das Backing-Volume für dieses PVC in einem Deleting

-Zustand, entfernt es aber nicht vollständig. Das Volume wird entfernt, wenn alle zugehörigen
Snapshots gelöscht werden.

`VolumeSnapshotContent`Kubernetes Objekte

Ein Kubernetes- VolumeSnapshotContent`Objekt ist ein Snapshot, der von einem bereits
bereitgestellten Volume erstellt wurde. Er ist analog zu einem `PersistentVolume

und bedeutet einen bereitgestellten Snapshot auf dem Storage-Cluster. Wenn ein Snapshot erstellt wird, behält
das Objekt, ähnlich wie PersistentVolumeClaim Objekte VolumeSnapshotContent von und
PersistentVolume, eine Eins-zu-eins-Zuordnung zu dem VolumeSnapshot Objekt bei, das die Snapshot-
Erstellung angefordert hatte.

Das VolumeSnapshotContent Objekt enthält Details, die den Snapshot eindeutig identifizieren, z. B.
snapshotHandle . Dies snapshotHandle ist eine eindeutige Kombination aus dem Namen des PV und
dem Namen des VolumeSnapshotContent Objekts.

Wenn eine Snapshot-Anfrage eingeht, erstellt Trident den Snapshot auf dem Back-End. Nachdem der
Snapshot erstellt wurde, konfiguriert Trident ein VolumeSnapshotContent Objekt und legt den Snapshot der
Kubernetes-API vor.

In der Regel müssen Sie das Objekt nicht verwalten VolumeSnapshotContent. Eine
Ausnahme ist, wenn Sie außerhalb von Trident erstellen möchten"Importieren Sie einen
Volume-Snapshot".

`CustomResourceDefinition`Kubernetes Objekte

Kubernetes Custom Ressourcen sind Endpunkte in der Kubernetes API, die vom Administrator definiert
werden und zum Gruppieren ähnlicher Objekte verwendet werden. Kubernetes unterstützt das Erstellen
individueller Ressourcen zum Speichern einer Sammlung von Objekten. Sie können diese
Ressourcendefinitionen erhalten, indem Sie ausführen kubectl get crds.

CRDs (Custom Resource Definitions) und die zugehörigen Objektmetadaten werden durch Kubernetes im
Metadatenspeicher gespeichert. Dadurch ist kein separater Speicher für Trident erforderlich.

Trident verwendet CustomResourceDefinition Objekte, um die Identität von Trident Objekten wie Trident
Back-Ends, Trident Storage-Klassen und Trident Volumes zu erhalten. Diese Objekte werden von Trident
gemanagt. Darüber hinaus werden im CSI-Volume-Snapshot-Framework einige CRS-IDs verwendet, die zum
Definieren von Volume-Snapshots erforderlich sind.

CRDs stellen ein Kubernetes-Konstrukt dar. Objekte der oben definierten Ressourcen werden von Trident
erstellt. Ein einfaches Beispiel: Wenn ein Backend mit erstellt tridentctl wird, wird ein entsprechendes
tridentbackends CRD-Objekt für den Verbrauch durch Kubernetes erstellt.

11

../trident-use/vol-snapshots.html#import-a-volume-snapshot
../trident-use/vol-snapshots.html#import-a-volume-snapshot

Beachten Sie die folgenden CRDs von Trident:

• Wenn Trident installiert ist, werden eine Reihe von CRDs erstellt und können wie alle anderen
Ressourcentypen verwendet werden.

• Wenn Sie Trident mit dem Befehl deinstallieren tridentctl uninstall, werden Trident-Pods gelöscht,
die erstellten CRDs werden jedoch nicht bereinigt. Informationen dazu, wie Trident vollständig entfernt und
neu konfiguriert werden kann, finden Sie unter"Deinstallieren Sie Trident".

Trident-Objekte StorageClass

Trident erstellt passende Storage-Klassen für Kubernetes- StorageClass`Objekte, die in ihrem
Feld „bereitstellung“ angegeben werden `csi.trident.netapp.io. Der Name der Storage-
Klasse stimmt mit dem Kubernetes-Objekt überein StorageClass, das sie darstellt.

Mit Kubernetes werden diese Objekte automatisch erstellt, wenn ein Kubernetes
StorageClass, das Trident als bereitstellungsunternehmen verwendet, registriert wird.

Storage-Klassen umfassen eine Reihe von Anforderungen für Volumes. Trident stimmt diese Anforderungen
mit den in jedem Storage-Pool vorhandenen Attributen überein. Ist dieser Storage-Pool ein gültiges Ziel für die
Bereitstellung von Volumes anhand dieser Storage-Klasse.

Sie können Storage-Klassen-Konfigurationen erstellen, um Storage-Klassen direkt über DIE REST API zu
definieren. Bei Kubernetes-Implementierungen erwarten wir jedoch, dass sie bei der Registrierung neuer
Kubernetes-Objekte erstellt werden StorageClass.

Trident Back-End-Objekte

Back-Ends stellen die Storage-Anbieter dar, über die Trident Volumes bereitstellt. Eine einzelne Trident Instanz
kann eine beliebige Anzahl von Back-Ends managen.

Dies ist einer der beiden Objekttypen, die Sie selbst erstellen und verwalten. Die andere ist das
Kubernetes- `StorageClass`Objekt.

Weitere Informationen zum Erstellen dieser Objekte finden Sie unter "Back-Ends werden konfiguriert".

Trident-Objekte StoragePool

Storage-Pools stellen die verschiedenen Standorte dar, die für die Provisionierung an jedem Back-End
verfügbar sind. Für ONTAP entsprechen diese Aggregaten in SVMs. Bei NetApp HCI/SolidFire entsprechen
diese den vom Administrator festgelegten QoS-Bands. Für Cloud Volumes Service entsprechen diese
Regionen Cloud-Provider. Jeder Storage-Pool verfügt über eine Reihe individueller Storage-Attribute, die seine
Performance-Merkmale und Datensicherungsmerkmale definieren.

Im Gegensatz zu den anderen Objekten hier werden Storage-Pool-Kandidaten immer automatisch erkannt und
gemanagt.

Trident-Objekte Volume

Volumes sind die grundlegende Bereitstellungseinheit und umfassen Back-End-Endpunkte wie NFS-Freigaben
sowie iSCSI und FC LUNs. In Kubernetes entsprechen diese direkt PersistentVolumes . Wenn Sie ein
Volume erstellen, stellen Sie sicher, dass es über eine Storage-Klasse verfügt, die bestimmt, wo das Volume

12

../trident-managing-k8s/uninstall-trident.html
https://docs.netapp.com/de-de/trident-2502/trident-use/backends.html

zusammen mit einer Größe bereitgestellt werden kann.

• In Kubernetes werden diese Objekte automatisch gemanagt. Sie können sich anzeigen
lassen, welche Bereitstellung von Trident bereitgestellt wurde.

• Wenn Sie ein PV mit den zugehörigen Snapshots löschen, wird das entsprechende Trident-
Volume auf den Status Löschen aktualisiert. Damit das Trident Volume gelöscht werden
kann, sollten Sie die Snapshots des Volume entfernen.

Eine Volume-Konfiguration definiert die Eigenschaften, über die ein bereitgestelltes Volume verfügen sollte.

Attribut Typ Erforderlich Beschreibung

Version Zeichenfolge Nein Version der Trident API
(„1“)

Name Zeichenfolge ja Name des zu erstellenden
Volumes

Storage Class Zeichenfolge ja Storage-Klasse, die bei
der Bereitstellung des
Volumes verwendet
werden muss

Größe Zeichenfolge ja Größe des Volumes, das
in Byte bereitgestellt
werden soll

Protokoll Zeichenfolge Nein Zu verwendenden
Protokolltyp; „Datei“ oder
„Block“

InternalName Zeichenfolge Nein Name des Objekts auf
dem Storage-System, das
von Trident generiert wird

KlonSourceVolume Zeichenfolge Nein ONTAP (nas, san) &
SolidFire-*: Name des
Volumes aus dem geklont
werden soll

SPlitOnClone Zeichenfolge Nein ONTAP (nas, san): Den
Klon von seinem
übergeordneten Objekt
trennen

SnapshotPolicy Zeichenfolge Nein ONTAP-*: Die Snapshot-
Richtlinie zu verwenden

SnapshotReserve Zeichenfolge Nein ONTAP-*: Prozentsatz
des für Schnappschüsse
reservierten Volumens

Exportpolitik Zeichenfolge Nein ontap-nas*: Richtlinie für
den Export zu verwenden

SnapshotDirectory bool Nein ontap-nas*: Ob das
Snapshot-Verzeichnis
sichtbar ist

13

Attribut Typ Erforderlich Beschreibung

UnxPermissions Zeichenfolge Nein ontap-nas*: Anfängliche
UNIX-Berechtigungen

Blocksize Zeichenfolge Nein SolidFire-*: Block-
/Sektorgröße

Dateisystem Zeichenfolge Nein Typ des Filesystems

Trident wird beim Erstellen des Volume generiert internalName. Dies besteht aus zwei Schritten. Zuerst wird
das Speicherpräfix (entweder der Standard oder das Präfix in der Backend-Konfiguration) dem Volume-Namen
vorangestellt trident, was zu einem Namen des Formulars führt <prefix>-<volume-name>.
Anschließend wird der Name desinfiziert und die im Backend nicht zulässigen Zeichen ersetzt. Für ONTAP-
Back-Ends ersetzt er Bindestriche durch Unterstriche (der interne Name lautet also <prefix>_<volume-
name>). Bei Element-Back-Ends werden Unterstriche durch Bindestriche ersetzt.

Sie können Volume-Konfigurationen verwenden, um Volumes direkt mit der REST-API bereitzustellen, doch in
Kubernetes-Implementierungen erwarten wir, dass die meisten Benutzer die standardmäßige Kubernetes-
Methode verwenden PersistentVolumeClaim. Trident erstellt dieses Volume-Objekt automatisch im
Rahmen des Bereitstellungsprozesses.

Trident-Objekte Snapshot

Snapshots sind eine zeitpunktgenaue Kopie von Volumes, die zur Bereitstellung neuer Volumes oder für
Restores verwendet werden kann. In Kubernetes entsprechen diese direkt VolumeSnapshotContent
Objekten. Jeder Snapshot ist einem Volume zugeordnet, das die Quelle der Daten für den Snapshot ist.

Jedes Snapshot Objekt enthält die nachfolgend aufgeführten Eigenschaften:

Attribut Typ Erforderlich Beschreibung

Version Zeichenfolge Ja. Version der Trident API
(„1“)

Name Zeichenfolge Ja. Name des Trident
Snapshot-Objekts

InternalName Zeichenfolge Ja. Name des Trident
Snapshot-Objekts auf
dem Storage-System

VolumeName Zeichenfolge Ja. Name des Persistent
Volume, für das der
Snapshot erstellt wird

VolumeInternalName Zeichenfolge Ja. Name des zugehörigen
Trident-Volume-Objekts
auf dem Storage-System

In Kubernetes werden diese Objekte automatisch gemanagt. Sie können sich anzeigen lassen,
welche Bereitstellung von Trident bereitgestellt wurde.

Bei der Erstellung einer Kubernetes- VolumeSnapshot`Objektanforderung erstellt Trident ein
Snapshot-Objekt auf dem zugrunde liegende Storage-System. Die `internalName des

14

Snapshot-Objekts wird durch die Kombination des Präfixes mit dem UID des VolumeSnapshot Objekts
generiert snapshot- (z. B. snapshot-e8d8a0ca-9826-11e9-9807-525400f3f660). volumeName Und
volumeInternalName werden mit den Details des Backing-Volumes gefüllt.

Trident ResourceQuota-Objekt

Die Trident-Deamonset-Technologie nutzt eine system-node-critical Prioritätsklasse – die höchste in
Kubernetes verfügbare Klasse –, um sicherzustellen, dass Trident Volumes während des ordnungsgemäßen
Shutdowns identifizieren und bereinigen kann. Trident-Dämonset-Pods vermeiden Workloads mit einer
niedrigeren Priorität in Clustern, bei denen der Ressourcendruck hoch ist.

Um dies zu erreichen, verwendet Trident ein ResourceQuota Objekt, um sicherzustellen, dass eine
„systemNode-kritische“ Prioritätsklasse auf dem Trident-Dämonenset erfüllt ist. Vor der Bereitstellung und der
Erstellung von Dämonensets sucht Trident nach dem ResourceQuota Objekt und wendet es an, falls es nicht
erkannt wird.

Wenn Sie mehr Kontrolle über die Standardkontingente und Prioritätsklasse benötigen, können Sie ein Objekt
mithilfe des Helm-Diagramms erzeugen custom.yaml oder konfigurieren ResourceQuota.

Im Folgenden finden Sie ein Beispiel für ein `ResourceQuota`Objekt mit Priorität des Trident-Dämonenset.

apiVersion: <version>

kind: ResourceQuota

metadata:

 name: trident-csi

 labels:

 app: node.csi.trident.netapp.io

spec:

 scopeSelector:

 matchExpressions:

 - operator: In

 scopeName: PriorityClass

 values:

 - system-node-critical

Weitere Informationen zu Ressourcenquoten finden Sie unter "Kubernetes: Ressourcenkontingente".

Bereinigen Sie sich ResourceQuota, wenn die Installation fehlschlägt

In dem seltenen Fall, in dem die Installation nach der Erstellung des Objekts fehlschlägt ResourceQuota,
versuchen Sie zuerst"Deinstallation", und installieren Sie dann erneut.

Wenn das nicht funktioniert, entfernen Sie das Objekt manuell ResourceQuota.

Entfernen ResourceQuota

Wenn Sie die Kontrolle über Ihre eigene Ressourcenzuweisung bevorzugen, können Sie das Trident-Objekt
mit dem folgenden Befehl entfernen ResourceQuota:

15

https://kubernetes.io/docs/concepts/policy/resource-quotas/
../trident-managing-k8s/uninstall-trident.html

kubectl delete quota trident-csi -n trident

Pod Security Standards (PSS) und Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) und Pod Security Policies (PSP) definieren
Berechtigungsebenen und schränken das Verhalten von Pods ein. OpenShift Security
Context Constraints (SCC) definieren ebenfalls die Pod-Einschränkung speziell für die
OpenShift Kubernetes Engine. Um diese Anpassung zu ermöglichen, aktiviert Trident
bestimmte Berechtigungen während der Installation. In den folgenden Abschnitten
werden die von Trident festgelegten Berechtigungen beschrieben.

PSS ersetzt Pod Security Policies (PSP). PSP war in Kubernetes v1.21 veraltet und wird in
v1.25 entfernt. Weitere Informationen finden Sie unter "Kubernetes: Sicherheit".

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder

Berechtigung Beschreibung

Privileged Bei CSI müssen Mount-Punkte bidirektional sein. Das
Trident Node-POD muss einen privilegierten
Container ausführen. Weitere Informationen finden
Sie unter "Kubernetes: Mount-Ausbreitung".

Host-Netzwerk Erforderlich für den iSCSI-Daemon. iscsiadm
Verwaltet iSCSI-Mounts und verwendet Host-
Netzwerke zur Kommunikation mit dem iSCSI-
Daemon.

Host-IPC NFS nutzt Prozesskommunikation (IPC) mit dem
NFSD.

Host-PID Erforderlich für den Start rpc-statd von NFS.
Trident fragt Hostprozesse ab, um festzustellen, ob
rpc-statd vor dem Mounten von NFS-Volumes
ausgeführt wird.

Sorgen Diese SYS_ADMIN Funktion ist Bestandteil der
Standardfunktionen für privilegierte Container. Docker
setzt beispielsweise diese Funktionen für privilegierte
Container:
CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Abt Seccomp-Profil ist in privilegierten Containern immer
„unbeschränkt“; daher kann es in Trident nicht aktiviert
werden.

16

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Berechtigung Beschreibung

SELinux Auf OpenShift werden privilegierte Container in der
Domäne („Super Privileged Container“) ausgeführt
spc_t, und nicht privilegierte Container werden in der
Domäne ausgeführt container_t. Auf
containerd, bei container-selinux installed
werden alle Container in der Domain ausgeführt
spc_t, was SELinux effektiv deaktiviert. Aus diesem
Grund wird Trident den Containern nicht hinzugefügt
seLinuxOptions.

DAC Privilegierte Container müssen als Root ausgeführt
werden. Nicht privilegierte Container werden als Root
ausgeführt, um auf unix-Sockets zuzugreifen, die von
CSI benötigt werden.

Pod-Sicherheitsstandards (PSS)

Etikett Beschreibung Standard

pod-

security.kubernetes.io/enf

orce pod-
security.kubernetes.io/enf

orce-version

Ermöglicht die Aufnahme der
Trident Controller und Knoten im
Namespace für die Installation.
Ändern Sie nicht die Namespace-
Bezeichnung.

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

Das Ändern der Namespace-Labels kann dazu führen, dass Pods nicht geplant werden, ein
„Error Creating: …“ oder „Warnung: trident-csi-…“. Überprüfen Sie in diesem Fall, ob die
Namespace-Bezeichnung für privileged geändert wurde. Falls ja, installieren Sie Trident
neu.

Pod-Sicherheitsrichtlinien (PSP)

Feld Beschreibung Standard

allowPrivilegeEscalation Privilegierte Container müssen die
Eskalation von Berechtigungen
ermöglichen.

true

allowedCSIDrivers Trident verwendet keine
kurzlebigen CSI-Inline-Volumes.

Leer

allowedCapabilities Für Trident Container ohne
Privilegien sind nicht mehr
Funktionen erforderlich als für die
Standardwerte. Privilegierte
Container erhalten alle möglichen
Funktionen.

Leer

allowedFlexVolumes Trident verwendet keinen
"FlexVolume-Treiber", daher sind
sie nicht in der Liste der erlaubten
Volumes enthalten.

Leer

17

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Feld Beschreibung Standard

allowedHostPaths Der Trident-Node-Pod hängt das
Root-Dateisystem des Node
zusammen, daher bietet es keinen
Vorteil, diese Liste zu setzen.

Leer

allowedProcMountTypes Trident verwendet keine
ProcMountTypes.

Leer

allowedUnsafeSysctls Trident erfordert keine unsicheren
sysctls.

Leer

defaultAddCapabilities Zu privilegierten Containern
müssen keine Funktionen
hinzugefügt werden.

Leer

defaultAllowPrivilegeEscal

ation

In jedem Trident Pod werden
Berechtigungen erteilt.

false

forbiddenSysctls Nein sysctls sind zulässig. Leer

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

hostIPC Für das Mounten von NFS-Volumes
ist Host-IPC zur Kommunikation mit
erforderlich nfsd

true

hostNetwork Iscsiadm erfordert, dass das
Hostnetzwerk mit dem iSCSI-
Daemon kommunizieren kann.

true

hostPID Host-PID ist erforderlich, um zu
überprüfen, ob rpc-statd auf
dem Knoten ausgeführt wird.

true

hostPorts Trident verwendet keine Host Ports. Leer

privileged Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes mounten zu können.

true

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident Node-Pods führen einen
privilegierten Container aus und
können Funktionen nicht ablegen.

none

runAsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

runAsUser Trident Container werden als Root
ausgeführt.

runAsAny

runtimeClass Trident verwendet nicht
RuntimeClasses .

Leer

18

Feld Beschreibung Standard

seLinux Trident ist nicht festgelegt
seLinuxOptions, da es derzeit
Unterschiede gibt, wie Container-
Laufzeiten und Kubernetes-
Distributionen SELinux handhaben.

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

volumes Trident Pods erfordern diese
Volume-Plug-ins.

hostPath, projected,

emptyDir

Sicherheitskontexteinschränkungen (SCC)

Etiketten Beschreibung Standard

allowHostDirVolumePlugin Trident-Node-Pods mounten das
Root-Dateisystem des Node.

true

allowHostIPC Für das Mounten von NFS-Volumes
muss Host IPC mit kommunizieren
nfsd.

true

allowHostNetwork Iscsiadm erfordert, dass das
Hostnetzwerk mit dem iSCSI-
Daemon kommunizieren kann.

true

allowHostPID Host-PID ist erforderlich, um zu
überprüfen, ob rpc-statd auf
dem Knoten ausgeführt wird.

true

allowHostPorts Trident verwendet keine Host Ports. false

allowPrivilegeEscalation Privilegierte Container müssen die
Eskalation von Berechtigungen
ermöglichen.

true

allowPrivilegedContainer Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes mounten zu können.

true

allowedUnsafeSysctls Trident erfordert keine unsicheren
sysctls.

none

allowedCapabilities Für Trident Container ohne
Privilegien sind nicht mehr
Funktionen erforderlich als für die
Standardwerte. Privilegierte
Container erhalten alle möglichen
Funktionen.

Leer

defaultAddCapabilities Zu privilegierten Containern
müssen keine Funktionen
hinzugefügt werden.

Leer

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

19

Etiketten Beschreibung Standard

groups Dieses SCC ist speziell für Trident
bestimmt und an den Anwender
gebunden.

Leer

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident Node-Pods führen einen
privilegierten Container aus und
können Funktionen nicht ablegen.

none

runAsUser Trident Container werden als Root
ausgeführt.

RunAsAny

seLinuxContext Trident ist nicht festgelegt
seLinuxOptions, da es derzeit
Unterschiede gibt, wie Container-
Laufzeiten und Kubernetes-
Distributionen SELinux handhaben.

Leer

seccompProfiles Privilegierte Container laufen immer
„unbegrenzt“.

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

users Es ist ein Eintrag verfügbar, um
diesen SCC an den Trident-
Benutzer im Trident Namespace zu
binden.

k. A.

volumes Trident Pods erfordern diese
Volume-Plug-ins.

hostPath, downwardAPI,

projected, emptyDir

20

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

21

http://www.netapp.com/TM\

	Referenz : Trident
	Inhalt
	Referenz
	Trident-Ports
	Trident-Ports

	Trident REST-API
	Wann die REST-API verwendet werden soll
	REST-API wird verwendet

	Befehlszeilenoptionen
	Protokollierung
	Kubernetes
	Docker
	RUHE

	Kubernetes und Trident Objekte
	Wie interagieren die Objekte miteinander?
	`PersistentVolumeClaim`Kubernetes Objekte
	`PersistentVolume`Kubernetes Objekte
	`StorageClass`Kubernetes Objekte
	`VolumeSnapshotClass`Kubernetes Objekte
	`VolumeSnapshot`Kubernetes Objekte
	`VolumeSnapshotContent`Kubernetes Objekte
	`CustomResourceDefinition`Kubernetes Objekte
	Trident-Objekte StorageClass
	Trident Back-End-Objekte
	Trident-Objekte StoragePool
	Trident-Objekte Volume
	Trident-Objekte Snapshot
	Trident ResourceQuota-Objekt

	Pod Security Standards (PSS) und Security Context Constraints (SCC)
	Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder
	Pod-Sicherheitsstandards (PSS)
	Pod-Sicherheitsrichtlinien (PSP)
	Sicherheitskontexteinschränkungen (SCC)

