
Referenz

Trident
NetApp
January 15, 2026

This PDF was generated from https://docs.netapp.com/de-de/trident-2506/trident-reference/ports.html on
January 15, 2026. Always check docs.netapp.com for the latest.

Inhalt
Referenz. 1

Trident Häfen . 1

Trident Häfen . 1

Trident REST-API. 1

Wann sollte die REST-API verwendet werden?. 1

Verwendung der REST-API . 1

Befehlszeilenoptionen . 2

Protokollierung . 2

Kubernetes. 2

Docker . 3

AUSRUHEN. 3

Kubernetes- und Trident Objekte . 3

Wie interagieren die Objekte miteinander? . 3

Kubernetes PersistentVolumeClaim Objekte. 4

Kubernetes PersistentVolume Objekte . 6

Kubernetes StorageClass Objekte . 6

Kubernetes VolumeSnapshotClass Objekte . 10

Kubernetes VolumeSnapshot Objekte . 10

Kubernetes VolumeSnapshotContent Objekte . 11

Kubernetes VolumeGroupSnapshotClass Objekte. 11

Kubernetes VolumeGroupSnapshot Objekte . 12

Kubernetes VolumeGroupSnapshotContent Objekte . 12

Kubernetes CustomResourceDefinition Objekte . 13

Trident StorageClass Objekte . 13

Trident Backend-Objekte . 13

Trident StoragePool Objekte . 14

Trident Volume Objekte. 14

Trident Snapshot Objekte . 15

Trident ResourceQuota Objekt . 16

Pod-Sicherheitsstandards (PSS) und Sicherheitskontextbeschränkungen (SCC) . 17

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder . 18

Pod-Sicherheitsstandards (PSS) . 18

Pod-Sicherheitsrichtlinien (PSP) . 19

Sicherheitskontextbeschränkungen (SCC) . 20

Referenz

Trident Häfen

Erfahren Sie mehr über die Anschlüsse, die Trident zur Kommunikation nutzt.

Trident Häfen

Trident verwendet die folgenden Ports für die Kommunikation innerhalb von Kubernetes:

Hafen Zweck

8443 Backchannel HTTPS

8001 Prometheus-Metriken-Endpunkt

8000 Trident REST-Server

17546 Liveness-/Readiness-Probe-Port, der von Trident -DaemonSet-Pods
verwendet wird

Der Anschluss für die Lebendigkeits-/Bereitschaftsprüfung kann während der Installation mithilfe
des --probe-port Flagge. Es ist wichtig sicherzustellen, dass dieser Port nicht von einem
anderen Prozess auf den Worker-Knoten verwendet wird.

Trident REST-API

Während"tridentctl-Befehle und Optionen" Dies ist die einfachste Möglichkeit, mit der
Trident REST API zu interagieren; Sie können aber auch direkt den REST-Endpunkt
verwenden, wenn Sie dies bevorzugen.

Wann sollte die REST-API verwendet werden?

Die REST-API ist nützlich für fortgeschrittene Installationen, die Trident als eigenständige Binärdatei in Nicht-
Kubernetes-Bereitstellungen verwenden.

Für mehr Sicherheit, das Trident REST API Beim Ausführen innerhalb eines Pods ist die Ausführung
standardmäßig auf localhost beschränkt. Um dieses Verhalten zu ändern, müssen Sie die Einstellungen von
Trident anpassen. -address Argument in seiner Pod-Konfiguration.

Verwendung der REST-API

Beispiele für den Aufruf dieser APIs erhalten Sie durch Übergeben des Debug-Logs.(-d) Flagge. Weitere
Informationen finden Sie unter"Trident mit tridentctl verwalten" .

Die API funktioniert wie folgt:

ERHALTEN

1

tridentctl.html
../trident-managing-k8s/tridentctl.html

GET <trident-address>/trident/v1/<object-type>

Listet alle Objekte dieses Typs auf.

GET <trident-address>/trident/v1/<object-type>/<object-name>

Ruft die Details des angegebenen Objekts ab.

POST

POST <trident-address>/trident/v1/<object-type>

Erzeugt ein Objekt des angegebenen Typs.

• Für die Erstellung des Objekts ist eine JSON-Konfiguration erforderlich. Die Spezifikation der einzelnen
Objekttypen finden Sie unter"Trident mit tridentctl verwalten" .

• Existiert das Objekt bereits, verhält es sich unterschiedlich: Die Backends aktualisieren das bestehende
Objekt, während bei allen anderen Objekttypen der Vorgang fehlschlägt.

LÖSCHEN

DELETE <trident-address>/trident/v1/<object-type>/<object-name>

Löscht die angegebene Ressource.

Mit Backends oder Speicherklassen verknüpfte Volumes bleiben bestehen; diese müssen
separat gelöscht werden. Weitere Informationen finden Sie unter"Trident mit tridentctl
verwalten" .

Befehlszeilenoptionen

Trident stellt mehrere Befehlszeilenoptionen für den Trident -Orchestrator bereit. Sie
können diese Optionen nutzen, um Ihre Bereitstellung anzupassen.

Protokollierung

-debug

Aktiviert die Debug-Ausgabe.

-loglevel <level>

Legt den Protokollierungsgrad fest (debug, info, warn, error, fatal). Standardmäßig wird die Info-Seite
angezeigt.

Kubernetes

-k8s_pod

Nutzen Sie diese Option oder -k8s_api_server um die Kubernetes-Unterstützung zu aktivieren. Durch
diese Einstellung verwendet Trident die Anmeldeinformationen des Kubernetes-Dienstkontos des
übergeordneten Pods, um den API-Server zu kontaktieren. Dies funktioniert nur, wenn Trident als Pod in
einem Kubernetes-Cluster mit aktivierten Service Accounts ausgeführt wird.

2

../trident-managing-k8s/tridentctl.html
../trident-managing-k8s/tridentctl.html
../trident-managing-k8s/tridentctl.html

-k8s_api_server <insecure-address:insecure-port>

Nutzen Sie diese Option oder -k8s_pod um die Kubernetes-Unterstützung zu aktivieren. Wenn
angegeben, stellt Trident über die bereitgestellte unsichere Adresse und den Port eine Verbindung zum
Kubernetes-API-Server her. Dies ermöglicht den Einsatz von Trident außerhalb eines Pods; allerdings
werden dabei nur unsichere Verbindungen zum API-Server unterstützt. Um eine sichere Verbindung
herzustellen, stellen Sie Trident in einem Pod mit dem bereit. -k8s_pod Option.

Docker

-volume_driver <name>

Name des Treibers, der bei der Registrierung des Docker-Plugins verwendet wird. Standardmäßig netapp
.

-driver_port <port-number>

Lauschen Sie an diesem Port anstatt an einem UNIX-Domain-Socket.

-config <file>

Erforderlich; Sie müssen diesen Pfad zu einer Backend-Konfigurationsdatei angeben.

AUSRUHEN

-address <ip-or-host>

Gibt die Adresse an, an der der REST-Server von Trident lauschen soll. Standardmäßig wird localhost
verwendet. Beim Lauschen auf localhost und Ausführen innerhalb eines Kubernetes-Pods ist die REST-
Schnittstelle von außerhalb des Pods nicht direkt zugänglich. Verwenden -address "" um die REST-
Schnittstelle von der Pod-IP-Adresse aus zugänglich zu machen.

Die Trident REST-Schnittstelle kann so konfiguriert werden, dass sie nur unter 127.0.0.1 (für
IPv4) oder [::1] (für IPv6) lauscht und Anfragen beantwortet.

-port <port-number>

Gibt den Port an, an dem der REST-Server von Trident lauschen soll. Standardwert ist 8000.

-rest

Aktiviert die REST-Schnittstelle. Standardmäßig auf „true“ gesetzt.

Kubernetes- und Trident Objekte

Sie können mit Kubernetes und Trident über REST-APIs interagieren, indem Sie
Ressourcenobjekte lesen und schreiben. Es gibt mehrere Ressourcenobjekte, die die
Beziehung zwischen Kubernetes und Trident, Trident und Speicher sowie Kubernetes
und Speicher festlegen. Einige dieser Objekte werden über Kubernetes verwaltet, die
anderen über Trident.

Wie interagieren die Objekte miteinander?

Am einfachsten lassen sich die Objekte, ihr Zweck und ihre Interaktion verstehen, indem man eine einzelne
Speicheranfrage eines Kubernetes-Benutzers verfolgt:

3

1. Ein Benutzer erstellt einen PersistentVolumeClaim eine neue anfordern PersistentVolume einer
bestimmten Größe aus einem Kubernetes StorageClass das zuvor vom Administrator konfiguriert
wurde.

2. Kubernetes StorageClass identifiziert Trident als seinen Provisioner und enthält Parameter, die Trident
mitteilen, wie ein Volume für die angeforderte Klasse bereitgestellt werden soll.

3. Trident betrachtet sich selbst StorageClass mit demselben Namen, der die Übereinstimmung identifiziert
Backends Und StoragePools dass es zur Bereitstellung von Datenträgern für die Klasse verwendet
werden kann.

4. Trident stellt Speicherplatz auf einem passenden Backend bereit und erstellt zwei Objekte: ein
PersistentVolume in Kubernetes, das Kubernetes mitteilt, wie das Volume gefunden, eingebunden und
behandelt wird, und ein Volume in Trident , das die Beziehung zwischen dem Volume beibehält.
PersistentVolume und der eigentliche Speicher.

5. Kubernetes bindet die PersistentVolumeClaim zum Neuen PersistentVolume . Kapseln, die
Folgendes beinhalten PersistentVolumeClaim Mounten Sie dieses PersistentVolume auf jedem Host,
auf dem es ausgeführt wird.

6. Ein Benutzer erstellt einen VolumeSnapshot eines vorhandenen PVC, unter Verwendung eines
VolumeSnapshotClass Das deutet auf Trident hin.

7. Trident identifiziert das mit dem PVC verknüpfte Volume und erstellt im Backend einen Snapshot des
Volumes. Es erzeugt auch ein VolumeSnapshotContent Das weist Kubernetes an, wie der Snapshot
identifiziert werden kann.

8. Ein Benutzer kann einen erstellen PersistentVolumeClaim mit VolumeSnapshot als Quelle.

9. Trident identifiziert den erforderlichen Snapshot und führt dieselben Schritte aus, die auch beim Erstellen
eines Snapshots erforderlich sind. PersistentVolume und ein Volume .

Für weiterführende Informationen zu Kubernetes-Objekten empfehlen wir Ihnen dringend,
Folgendes zu lesen: "Persistente Datenträger" Abschnitt der Kubernetes-Dokumentation.

Kubernetes PersistentVolumeClaim Objekte

Ein Kubernetes PersistentVolumeClaim Ein Objekt ist eine Speicheranforderung, die von einem
Kubernetes-Cluster-Benutzer gestellt wird.

Zusätzlich zur Standardspezifikation ermöglicht Trident den Benutzern, die folgenden volumespezifischen
Annotationen anzugeben, wenn sie die in der Backend-Konfiguration festgelegten Standardeinstellungen
überschreiben möchten:

Anmerkung Lautstärkeoption Unterstützte Treiber

trident.netapp.io/fileSystem Dateisystem ontap-san, solidfire-san,ontap-san-
economy

trident.netapp.io/cloneFromPVC cloneSourceVolume ontap-nas, ontap-san, solidfire-san,
azure-netapp-files, gcp-cvs, ontap-
san-economy

trident.netapp.io/splitOnClone splitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol Protokoll beliebig

4

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Anmerkung Lautstärkeoption Unterstützte Treiber

trident.netapp.io/exportPolicy Exportrichtlinie ontap-nas, ontap-nas-economy,
ontap-nas-flexgroup

trident.netapp.io/snapshotPolicy Snapshot-Richtlinie ontap-nas, ontap-nas-economy,
ontap-nas-flexgroup, ontap-san

trident.netapp.io/snapshotReserve Snapshot-Reserve ontap-nas, ontap-nas-flexgroup,
ontap-san, gcp-cvs

trident.netapp.io/snapshotDirectory Snapshot-Verzeichnis ontap-nas, ontap-nas-economy,
ontap-nas-flexgroup

trident.netapp.io/unixPermissions unixPermissions ontap-nas, ontap-nas-economy,
ontap-nas-flexgroup

trident.netapp.io/blockSize Blockgröße solidfire-san

Wenn die erstellte PV die Delete Gemäß der Rückforderungsrichtlinie löscht Trident sowohl das PV als auch
das zugehörige Datenvolumen, wenn das PV freigegeben wird (d. h. wenn der Benutzer das PVC löscht).
Sollte der Löschvorgang fehlschlagen, kennzeichnet Trident den PV entsprechend und wiederholt den Vorgang
regelmäßig, bis er erfolgreich ist oder der PV manuell gelöscht wird. Wenn die PV die Retain Trident ignoriert
diese Richtlinie und geht davon aus, dass der Administrator das Volume aus Kubernetes und dem Backend
entfernt, sodass es vor seiner Löschung gesichert oder überprüft werden kann. Beachten Sie, dass das
Löschen des PV nicht dazu führt, dass Trident das zugehörige Datenträgervolumen löscht. Sie sollten es
mithilfe der REST-API entfernen.(tridentctl).

Trident unterstützt die Erstellung von Volume Snapshots mithilfe der CSI-Spezifikation: Sie können einen
Volume Snapshot erstellen und ihn als Datenquelle verwenden, um vorhandene PVCs zu klonen. Auf diese
Weise können zeitpunktbezogene Kopien von PVs in Form von Snapshots für Kubernetes bereitgestellt
werden. Die Snapshots können dann verwendet werden, um neue PVs zu erstellen. Schau dir das mal an On-
Demand Volume Snapshots um zu sehen, wie das funktionieren würde.

Trident bietet außerdem die cloneFromPVC Und splitOnClone Anmerkungen zum Erstellen von Klonen.
Mithilfe dieser Annotationen können Sie ein PVC klonen, ohne die CSI-Implementierung verwenden zu
müssen.

Hier ein Beispiel: Wenn ein Benutzer bereits eine PVC namens besitzt mysql Der Benutzer kann eine neue
PVC erstellen, die mysqlclone durch Verwendung der Annotation, wie zum Beispiel
trident.netapp.io/cloneFromPVC: mysql . Mit dieser Annotation klont Trident das Volume, das dem
MySQL-PVC entspricht, anstatt ein Volume von Grund auf neu zu erstellen.

Beachten Sie folgende Punkte:

• NetApp empfiehlt das Klonen eines ungenutzten Volumes.

• Ein PVC und sein Klon sollten sich im selben Kubernetes-Namespace befinden und dieselbe Storage-
Klasse haben.

• Mit der ontap-nas Und ontap-san Für Fahrer könnte es wünschenswert sein, die PVC-Anmerkung
festzulegen. trident.netapp.io/splitOnClone in Verbindung mit
trident.netapp.io/cloneFromPVC . Mit trident.netapp.io/splitOnClone eingestellt auf
true Trident trennt das geklonte Volume vom übergeordneten Volume und entkoppelt so den
Lebenszyklus des geklonten Volumes vollständig von seinem übergeordneten Volume, allerdings auf
Kosten einer gewissen Speichereffizienz. Keine Einstellung trident.netapp.io/splitOnClone oder
es auf false Dies führt zu einem geringeren Speicherplatzverbrauch im Backend, allerdings auf Kosten

5

der Schaffung von Abhängigkeiten zwischen dem übergeordneten Volume und dem Klon-Volume, sodass
das übergeordnete Volume erst gelöscht werden kann, wenn das Klon-Volume zuvor gelöscht wurde. Ein
Szenario, in dem das Aufteilen des Klons sinnvoll ist, ist das Klonen eines leeren Datenbank-Volumes, bei
dem zu erwarten ist, dass sich das Volume und sein Klon stark unterscheiden und nicht von den
Speichereffizienzen von ONTAP profitieren.

Der sample-input Das Verzeichnis enthält Beispiele für PVC-Definitionen zur Verwendung mit Trident. Siehe
Eine vollständige Beschreibung der Parameter und Einstellungen im Zusammenhang mit Trident -Volumes
finden Sie hier.

Kubernetes PersistentVolume Objekte

Ein Kubernetes PersistentVolume Das Objekt repräsentiert einen Speicherbereich, der dem Kubernetes-
Cluster zur Verfügung gestellt wird. Es hat einen Lebenszyklus, der unabhängig von der Kapsel ist, die es
verwendet.

Trident erschafft PersistentVolume Objekte werden automatisch im Kubernetes-Cluster
registriert, basierend auf den von ihm bereitgestellten Volumes. Es wird nicht von Ihnen
erwartet, dass Sie diese selbst verwalten.

Wenn Sie ein PVC erstellen, das sich auf ein Trident-basiertes System bezieht StorageClass Trident
provisioniert ein neues Volume unter Verwendung der entsprechenden Speicherklasse und registriert ein
neues PV für dieses Volume. Bei der Konfiguration des bereitgestellten Volumes und des zugehörigen PV
befolgt Trident die folgenden Regeln:

• Trident generiert einen PV-Namen für Kubernetes und einen internen Namen, der zur Bereitstellung des
Speichers verwendet wird. In beiden Fällen wird dadurch sichergestellt, dass die Namen in ihrem
Geltungsbereich einzigartig sind.

• Das Volumen entspricht so genau wie möglich der gewünschten Größe im PVC, wird aber je nach
Plattform gegebenenfalls auf die nächstliegende zuordenbare Menge aufgerundet.

Kubernetes StorageClass Objekte

Kubernetes StorageClass Objekte werden anhand ihres Namens angegeben in
PersistentVolumeClaims Speicherplatz mit einer Reihe von Eigenschaften bereitstellen. Die
Speicherklasse selbst identifiziert den zu verwendenden Provisionierer und definiert diesen Satz von
Eigenschaften in einer für den Provisionierer verständlichen Weise.

Es handelt sich um eines von zwei grundlegenden Objekten, die vom Administrator erstellt und verwaltet
werden müssen. Das andere ist das Trident Backend-Objekt.

Ein Kubernetes StorageClass Ein Objekt, das Trident verwendet, sieht folgendermaßen aus:

6

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters: <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

Diese Parameter sind Trident-spezifisch und geben Trident an, wie Volumes für die Klasse bereitgestellt
werden sollen.

Die Parameter der Speicherklasse sind:

Attribut Typ Erforderlich Beschreibung

Attribute map[string]string NEIN Siehe den Abschnitt
„Attribute“ unten.

Speicherbecken map[string]StringList NEIN Zuordnung von Backend-
Namen zu Listen von
Speicherpools innerhalb

zusätzliche Speicherpools map[string]StringList NEIN Zuordnung von Backend-
Namen zu Listen von
Speicherpools innerhalb

Speicherpools
ausschließen

map[string]StringList NEIN Zuordnung von Backend-
Namen zu Listen von
Speicherpools innerhalb

Speicherattribute und ihre möglichen Werte lassen sich in Speicherpool-Auswahlattribute und Kubernetes-
Attribute unterteilen.

Auswahlattribute für Speicherpools

Diese Parameter legen fest, welche von Trident verwalteten Speicherpools zur Bereitstellung von Volumes
eines bestimmten Typs verwendet werden sollen.

Attribut Typ Werte Angebot Anfrage Unterstützt von

media1 Schnur HDD, Hybrid,
SSD

Der Pool enthält
Medien dieses
Typs; hybrid
bedeutet beides

Medientyp
angegeben

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

Bereitstellungsty
p

Schnur dünn, dick Pool unterstützt
diese
Bereitstellungsm
ethode

Bereitstellungsm
ethode
angegeben

dick: alles vom
Fass; dünn: alles
vom Fass &
Solidfire-San

7

Attribut Typ Werte Angebot Anfrage Unterstützt von

Backend-Typ Schnur ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

Pool gehört zu
dieser Art von
Backend.

Backend
spezifiziert

Alle Fahrer

Momentaufnahm
en

bool wahr, falsch Pool unterstützt
Volumes mit
Snapshots

Volume mit
aktivierten
Snapshots

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Klone bool wahr, falsch Pool unterstützt
das Klonen von
Volumes

Volume mit
aktivierten
Klonen

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Verschlüsselung bool wahr, falsch Pool unterstützt
verschlüsselte
Volumes

Volume mit
aktivierter
Verschlüsselung

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroups,
ontap-san

IOPS int positive ganze
Zahl

Pool ist in der
Lage, IOPS in
diesem Bereich
zu garantieren.

Volumen
garantiert diese
IOPS

solidfire-san

1: Wird von ONTAP Select -Systemen nicht unterstützt.

In den meisten Fällen haben die angeforderten Werte direkten Einfluss auf die Bereitstellung; beispielsweise
führt die Anforderung von Thick Provisioning zu einem Thick-Provisioning-Volume. Allerdings verwendet ein
Element-Speicherpool seine angebotenen minimalen und maximalen IOPS-Werte zur Festlegung der QoS-
Werte anstelle der angeforderten Werte. In diesem Fall wird der angeforderte Wert nur zur Auswahl des
Speicherpools verwendet.

Im Idealfall können Sie verwenden attributes allein die Eigenschaften des Speichers zu modellieren, die
Sie benötigen, um die Bedürfnisse einer bestimmten Klasse zu befriedigen. Trident erkennt und wählt
automatisch Speicherpools aus, die allen der Anforderung entsprechen. attributes die Sie angeben.

Sollten Sie feststellen, dass Sie nicht in der Lage sind, zu nutzen attributes Um die richtigen Pools für eine
Klasse automatisch auszuwählen, können Sie Folgendes verwenden: storagePools Und
additionalStoragePools Parameter, um die Pools weiter zu verfeinern oder sogar eine bestimmte
Gruppe von Pools auszuwählen.

Sie können die storagePools Parameter zur weiteren Einschränkung der Menge der Pools, die mit einem
bestimmten Parameter übereinstimmen. attributes . Mit anderen Worten, Trident nutzt die Schnittmenge
der durch die attributes Und storagePools Parameter für die Bereitstellung. Sie können entweder den
einen Parameter einzeln oder beide zusammen verwenden.

8

Sie können die additionalStoragePools Parameter zur Erweiterung der von Trident für die Bereitstellung
verwendeten Pools, unabhängig von den vom attributes Und storagePools Parameter.

Sie können die excludeStoragePools Parameter zum Filtern der Pools, die Trident für die Bereitstellung
verwendet. Durch die Verwendung dieses Parameters werden alle passenden Pools entfernt.

Im storagePools Und additionalStoragePools Parameter, jeder Eintrag hat die Form
<backend>:<storagePoolList> , Wo <storagePoolList> ist eine durch Kommas getrennte Liste von
Speicherpools für das angegebene Backend. Zum Beispiel ein Wert für additionalStoragePools könnte
aussehen ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze . Diese
Listen akzeptieren reguläre Ausdrücke sowohl für die Backend- als auch für die Listenwerte. Sie können
verwenden tridentctl get backend um die Liste der Backends und ihrer Pools zu erhalten.

Kubernetes-Attribute

Diese Attribute haben keinen Einfluss auf die Auswahl von Speicherpools/Backends durch Trident während der
dynamischen Bereitstellung. Stattdessen liefern diese Attribute lediglich Parameter, die von Kubernetes
Persistent Volumes unterstützt werden. Die Worker-Knoten sind für Dateisystem-Erstellungsoperationen
zuständig und benötigen möglicherweise Dateisystem-Dienstprogramme wie xfsprogs.

Attribut Typ Werte Beschreibung Relevante
Treiber

Kubernetes-
Version

fsType Schnur ext4, ext3, xfs Der
Dateisystemtyp
für Blockvolumes

solidfire-san,
ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy

Alle

Volumenerweiter
ung zulassen

boolescher Wert wahr, falsch Unterstützung für
die
Vergrößerung
der PVC-Größe
aktivieren oder
deaktivieren

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy,
solidfire-san,
gcp-cvs, azure-
netapp-files

1.11+

volumeBindingM
ode

Schnur Sofort, Warten
auf den ersten
Kunden

Wählen Sie den
Zeitpunkt für die
Volumenbindung
und die
dynamische
Bereitstellung
aus.

Alle 1,19 - 1,26

9

• Der fsType Der Parameter dient zur Steuerung des gewünschten Dateisystemtyps für
SAN-LUNs. Darüber hinaus nutzt Kubernetes auch die Anwesenheit von fsType in einer
Speicherklasse, um anzuzeigen, dass ein Dateisystem existiert. Die
Volumenbesitzverhältnisse können über die fsGroup Sicherheitskontext eines Pods nur
wenn fsType ist festgelegt. Siehe"Kubernetes: Konfigurieren eines Sicherheitskontexts für
einen Pod oder Container" Für eine Übersicht über die Festlegung der
Volumenzugehörigkeit mithilfe des fsGroup Kontext. Kubernetes wird die fsGroup Wert
nur dann, wenn:

◦ `fsType`wird in der Speicherklasse festgelegt.

◦ Der PVC-Zugriffsmodus ist RWO.

Bei NFS-Speichertreibern ist ein Dateisystem bereits als Teil des NFS-Exports vorhanden.
Um zu verwenden fsGroup Die Speicherklasse muss noch eine angeben fsType Sie
können es so einstellen: nfs oder ein beliebiger Wert ungleich null.

• Siehe"Volumen erweitern" Weitere Einzelheiten zur Volumenerweiterung finden Sie hier.

• Das Trident -Installationspaket enthält mehrere Beispieldefinitionen für Speicherklassen zur
Verwendung mit Trident .sample-input/storage-class-*.yaml . Das Löschen einer
Kubernetes-Speicherklasse führt dazu, dass auch die entsprechende Trident
-Speicherklasse gelöscht wird.

Kubernetes VolumeSnapshotClass Objekte

Kubernetes VolumeSnapshotClass Objekte sind analog zu StorageClasses . Sie helfen dabei, mehrere
Speicherklassen zu definieren und werden von Volume-Snapshots referenziert, um den Snapshot der
erforderlichen Snapshot-Klasse zuzuordnen. Jeder Volume-Snapshot ist einer einzelnen Volume-Snapshot-
Klasse zugeordnet.

A VolumeSnapshotClass Um Snapshots zu erstellen, muss ein Administrator dies definieren. Eine Volume-
Snapshot-Klasse wird mit folgender Definition erstellt:

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

Der driver legt fest, dass Kubernetes Anfragen für Volume-Snapshots des csi-snapclass Die Klassen
werden von Trident verwaltet. Der deletionPolicy legt fest, welche Aktion ausgeführt werden soll, wenn ein
Snapshot gelöscht werden muss. Wann deletionPolicy ist eingestellt auf Delete Beim Löschen eines
Snapshots werden sowohl die Volume-Snapshot-Objekte als auch der zugrunde liegende Snapshot auf dem
Speichercluster entfernt. Alternativ können Sie es auch so einstellen: Retain bedeutet, dass
VolumeSnapshotContent und die physische Momentaufnahme wird beibehalten.

Kubernetes VolumeSnapshot Objekte

Ein Kubernetes VolumeSnapshot Bei „object“ handelt es sich um eine Anfrage zur Erstellung eines

10

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

Snapshots eines Volumes. So wie ein PVC eine Anfrage eines Benutzers nach einem Volume darstellt, ist ein
Volume-Snapshot eine Anfrage eines Benutzers zur Erstellung eines Snapshots eines bestehenden PVC.

Wenn eine Anfrage für einen Volume-Snapshot eingeht, verwaltet Trident automatisch die Erstellung des
Snapshots für das Volume im Backend und stellt den Snapshot durch die Erstellung einer eindeutigen ID
bereit.
VolumeSnapshotContent Objekt. Sie können Snapshots aus bestehenden PVCs erstellen und diese
Snapshots als Datenquelle beim Erstellen neuer PVCs verwenden.

Der Lebenszyklus eines VolumeSnapshots ist unabhängig vom Quell-PVC: Ein Snapshot bleibt
auch dann erhalten, wenn der Quell-PVC gelöscht wird. Beim Löschen eines PVCs mit
zugehörigen Snapshots markiert Trident das zugehörige Datenträgervolume im Status Wird
gelöscht, entfernt es aber nicht vollständig. Das Volume wird entfernt, sobald alle zugehörigen
Snapshots gelöscht sind.

Kubernetes VolumeSnapshotContent Objekte

Ein Kubernetes VolumeSnapshotContent Das Objekt stellt eine Momentaufnahme eines bereits
bereitgestellten Volumes dar. Es ist analog zu einem PersistentVolume und kennzeichnet einen
bereitgestellten Snapshot auf dem Speichercluster. Ähnlich PersistentVolumeClaim Und
PersistentVolume Objekte, wenn ein Snapshot erstellt wird, VolumeSnapshotContent Das Objekt
verwaltet eine Eins-zu-Eins-Zuordnung zum VolumeSnapshot Objekt, das die Erstellung des Snapshots
angefordert hatte.

Der VolumeSnapshotContent Das Objekt enthält Details, die den Snapshot eindeutig identifizieren, wie zum
Beispiel die snapshotHandle . Das snapshotHandle ist eine einzigartige Kombination aus dem Namen der
PV und dem Namen der VolumeSnapshotContent Objekt.

Wenn eine Snapshot-Anfrage eingeht, erstellt Trident den Snapshot im Backend. Nachdem der Snapshot
erstellt wurde, konfiguriert Trident einen VolumeSnapshotContent Das Objekt wird erstellt und somit der
Kubernetes-API zugänglich gemacht.

Normalerweise müssen Sie die VolumeSnapshotContent Objekt. Eine Ausnahme hiervon
besteht, wenn Sie möchten"einen Volume-Snapshot importieren" außerhalb von Trident erstellt.

Kubernetes VolumeGroupSnapshotClass Objekte

Kubernetes VolumeGroupSnapshotClass Objekte sind analog zu VolumeSnapshotClass . Sie helfen
dabei, mehrere Speicherklassen zu definieren und werden von Volume-Gruppen-Snapshots referenziert, um
den Snapshot der erforderlichen Snapshot-Klasse zuzuordnen. Jeder Volume-Group-Snapshot ist einer
einzelnen Volume-Group-Snapshot-Klasse zugeordnet.

A VolumeGroupSnapshotClass Um eine Gruppe von Snapshots zu erstellen, muss dies von einem
Administrator definiert werden. Eine Snapshot-Klasse für eine Volumengruppe wird mit folgender Definition
erstellt:

11

../trident-use/vol-snapshots.html#import-a-volume-snapshot

apiVersion: groupsnapshot.storage.k8s.io/v1beta1

kind: VolumeGroupSnapshotClass

metadata:

 name: csi-group-snap-class

 annotations:

 kubernetes.io/description: "Trident group snapshot class"

driver: csi.trident.netapp.io

deletionPolicy: Delete

Der driver legt fest, dass Kubernetes Anfragen für Volume-Gruppen-Snapshots der csi-group-snap-
class Die Klassen werden von Trident verwaltet. Der deletionPolicy legt die Aktion fest, die ausgeführt
werden soll, wenn ein Gruppen-Snapshot gelöscht werden muss. Wann deletionPolicy ist eingestellt auf
Delete Beim Löschen eines Snapshots werden sowohl die Volume-Group-Snapshot-Objekte als auch der
zugrunde liegende Snapshot auf dem Speichercluster entfernt. Alternativ können Sie es auch so einstellen:
Retain bedeutet, dass VolumeGroupSnapshotContent und die physische Momentaufnahme wird
beibehalten.

Kubernetes VolumeGroupSnapshot Objekte

Ein Kubernetes VolumeGroupSnapshot Das Objekt ist eine Anfrage zur Erstellung eines Snapshots
mehrerer Volumes. So wie eine PVC eine Anfrage eines Benutzers nach einem Volume darstellt, ist ein
Volume-Gruppen-Snapshot eine Anfrage eines Benutzers zur Erstellung eines Snapshots einer bestehenden
PVC.

Wenn eine Anfrage für einen Volume-Gruppen-Snapshot eingeht, verwaltet Trident automatisch die Erstellung
des Gruppen-Snapshots für die Volumes im Backend und stellt den Snapshot durch die Erstellung einer
eindeutigen Kennung bereit. VolumeGroupSnapshotContent Objekt. Sie können Snapshots aus
bestehenden PVCs erstellen und diese Snapshots als Datenquelle beim Erstellen neuer PVCs verwenden.

Der Lebenszyklus eines VolumeGroupSnapshot ist unabhängig vom Quell-PVC: Ein Snapshot
bleibt auch dann erhalten, wenn der Quell-PVC gelöscht wird. Beim Löschen eines PVCs mit
zugehörigen Snapshots markiert Trident das zugehörige Datenträgervolume im Status Wird
gelöscht, entfernt es aber nicht vollständig. Der Snapshot der Volumengruppe wird entfernt,
wenn alle zugehörigen Snapshots gelöscht werden.

Kubernetes VolumeGroupSnapshotContent Objekte

Ein Kubernetes VolumeGroupSnapshotContent Das Objekt stellt einen Gruppen-Snapshot dar, der von
einem bereits bereitgestellten Volume erstellt wurde. Es ist analog zu einem PersistentVolume und
kennzeichnet einen bereitgestellten Snapshot auf dem Speichercluster. Ähnlich PersistentVolumeClaim
Und PersistentVolume Objekte, wenn ein Snapshot erstellt wird, VolumeSnapshotContent Das Objekt
verwaltet eine Eins-zu-Eins-Zuordnung zum VolumeSnapshot Objekt, das die Erstellung des Snapshots
angefordert hatte.

Der VolumeGroupSnapshotContent Das Objekt enthält Details, die die Snapshot-Gruppe identifizieren, wie
zum Beispiel die volumeGroupSnapshotHandle und und einzelne VolumeSnapshotHandles, die auf dem
Speichersystem vorhanden sind.

Wenn eine Snapshot-Anforderung eingeht, erstellt Trident im Backend den Volume-Group-Snapshot. Nachdem

12

der Snapshot der Volumengruppe erstellt wurde, konfiguriert Trident einen VolumeGroupSnapshotContent
Das Objekt wird erstellt und somit der Kubernetes-API zugänglich gemacht.

Kubernetes CustomResourceDefinition Objekte

Kubernetes Custom Resources sind Endpunkte in der Kubernetes-API, die vom Administrator definiert werden
und dazu dienen, ähnliche Objekte zu gruppieren. Kubernetes unterstützt die Erstellung benutzerdefinierter
Ressourcen zum Speichern einer Sammlung von Objekten. Sie können diese Ressourcendefinitionen durch
Ausführen von kubectl get crds .

Custom Resource Definitions (CRDs) und die zugehörigen Objektmetadaten werden von Kubernetes in
seinem Metadatenspeicher abgelegt. Dadurch entfällt die Notwendigkeit eines separaten Ladengeschäfts für
Trident.

Trident Anwendungen CustomResourceDefinition Objekte, um die Identität von Trident -Objekten wie
Trident -Backends, Trident -Speicherklassen und Trident Volumes zu erhalten. Diese Objekte werden von
Trident verwaltet. Darüber hinaus führt das CSI-Volume-Snapshot-Framework einige CRDs ein, die zur
Definition von Volume-Snapshots erforderlich sind.

CRDs sind ein Konstrukt von Kubernetes. Objekte der oben definierten Ressourcen werden von Trident
erstellt. Ein einfaches Beispiel: Wenn ein Backend erstellt wird mit tridentctl ein entsprechendes
tridentbackends Ein CRD-Objekt wird zur Verwendung durch Kubernetes erstellt.

Hier einige Punkte, die Sie bei Tridents CRDs beachten sollten:

• Bei der Installation von Trident wird ein Satz von CRDs erstellt, die wie jeder andere Ressourcentyp
verwendet werden können.

• Bei der Deinstallation von Trident mithilfe der tridentctl uninstall Der Befehl führt dazu, dass
Trident -Pods gelöscht werden, die erstellten CRDs jedoch nicht bereinigt werden. Siehe"Trident
deinstallieren" zu verstehen, wie Trident komplett entfernt und von Grund auf neu konfiguriert werden kann.

Trident StorageClass Objekte

Trident erstellt passende Speicherklassen für Kubernetes. StorageClass Objekte, die spezifizieren
csi.trident.netapp.io in ihrem Bereitstellungsfeld. Der Name der Speicherklasse stimmt mit dem von
Kubernetes überein. StorageClass Das Objekt, das es repräsentiert.

Mit Kubernetes werden diese Objekte automatisch erstellt, wenn ein Kubernetes-Update
durchgeführt wird. StorageClass Das System, das Trident als Provisionierer verwendet, ist
registriert.

Speicherklassen umfassen eine Reihe von Anforderungen an Datenträger. Trident gleicht diese Anforderungen
mit den Attributen jedes Speicherpools ab; wenn sie übereinstimmen, ist dieser Speicherpool ein gültiges Ziel
für die Bereitstellung von Volumes mit dieser Speicherklasse.

Sie können Speicherklassenkonfigurationen erstellen, um Speicherklassen direkt über die REST-API zu
definieren. Bei Kubernetes-Bereitstellungen gehen wir jedoch davon aus, dass sie bei der Registrierung neuer
Kubernetes-Instanzen erstellt werden. StorageClass Objekte.

Trident Backend-Objekte

Backends stellen die Speicheranbieter dar, auf denen Trident Volumes bereitstellt; eine einzelne Trident

13

../trident-managing-k8s/uninstall-trident.html
../trident-managing-k8s/uninstall-trident.html

-Instanz kann beliebig viele Backends verwalten.

Dies ist einer der beiden Objekttypen, die Sie selbst erstellen und verwalten. Das andere ist
Kubernetes. StorageClass Objekt.

Weitere Informationen zum Erstellen dieser Objekte finden Sie unter"Backends konfigurieren" .

Trident StoragePool Objekte

Speicherpools stellen die verschiedenen Speicherorte dar, die auf jedem Backend für die Bereitstellung zur
Verfügung stehen. Für ONTAP entsprechen diese Aggregaten in SVMs. Bei NetApp HCI/ SolidFire
entsprechen diese den vom Administrator festgelegten QoS-Bändern. Für den Cloud Volumes Service
entsprechen diese den Regionen der Cloud-Anbieter. Jeder Speicherpool verfügt über eine Reihe
unterschiedlicher Speicherattribute, die seine Leistungsmerkmale und Datenschutzeigenschaften definieren.

Im Gegensatz zu den anderen Objekten hier werden Speicherpoolkandidaten immer automatisch erkannt und
verwaltet.

Trident Volume Objekte

Volumes sind die grundlegende Bereitstellungseinheit und umfassen Backend-Endpunkte wie NFS-Freigaben
sowie iSCSI- und FC-LUNs. In Kubernetes entsprechen diese direkt PersistentVolumes . Wenn Sie ein
Volume erstellen, stellen Sie sicher, dass es über eine Speicherklasse verfügt, die festlegt, wo dieses Volume
bereitgestellt werden kann, sowie über eine Größe.

• In Kubernetes werden diese Objekte automatisch verwaltet. Sie können diese einsehen, um
zu sehen, was Trident bereitgestellt hat.

• Beim Löschen eines PV mit zugehörigen Snapshots wird das entsprechende Trident Volume
auf den Status Wird gelöscht aktualisiert. Damit das Trident -Volume gelöscht werden
kann, müssen die Snapshots des Volumes entfernt werden.

Eine Volumenkonfiguration definiert die Eigenschaften, die ein bereitgestelltes Volumen haben soll.

Attribut Typ Erforderlich Beschreibung

Version Schnur NEIN Version der Trident API
("1")

Name Schnur Ja Name des zu erstellenden
Volumes

Speicherklasse Schnur Ja Speicherklasse, die beim
Bereitstellen des Volumes
verwendet werden soll

Größe Schnur Ja Größe des
bereitzustellenden
Datenvolumens in Bytes

Protokoll Schnur NEIN Zu verwendender
Protokolltyp: „Datei“ oder
„Block“

14

../trident-use/backends.html

Attribut Typ Erforderlich Beschreibung

interner Name Schnur NEIN Name des Objekts im
Speichersystem; generiert
von Trident

cloneSourceVolume Schnur NEIN ontap (nas, san) &
solidfire-*: Name des
Volumes, von dem geklont
werden soll

splitOnClone Schnur NEIN ontap (nas, san): Trennt
den Klon von seinem
Elternknoten.

Snapshot-Richtlinie Schnur NEIN ontap-*: Zu verwendende
Snapshot-Richtlinie

Snapshot-Reserve Schnur NEIN ontap-*: Prozentsatz des
für Snapshots reservierten
Volumens

Exportrichtlinie Schnur NEIN ontap-nas*:
Exportrichtlinie verwenden

Snapshot-Verzeichnis bool NEIN ontap-nas*: Gibt an, ob
das Snapshot-Verzeichnis
sichtbar ist.

unixPermissions Schnur NEIN ontap-nas*: Initial UNIX-
Berechtigungen

Blockgröße Schnur NEIN solidfire-*: Block-
/Sektorgröße

Dateisystem Schnur NEIN Dateisystemtyp

Trident erzeugt internalName beim Erstellen des Volumens. Dies besteht aus zwei Schritten. Zunächst wird
das Speicherpräfix vorangestellt (entweder das Standardpräfix). trident oder dem Präfix in der Backend-
Konfiguration) zum Volume-Namen, was zu einem Namen der Form führt <prefix>-<volume-name> .
Anschließend wird der Name bereinigt, indem im Backend nicht zulässige Zeichen ersetzt werden. Bei ONTAP
Backends werden Bindestriche durch Unterstriche ersetzt (dadurch wird der interne Name zu
<prefix>_<volume-name>). Bei Element-Backends werden Unterstriche durch Bindestriche ersetzt.

Sie können Volume-Konfigurationen verwenden, um Volumes direkt über die REST-API bereitzustellen, aber
bei Kubernetes-Bereitstellungen gehen wir davon aus, dass die meisten Benutzer die Standard-Kubernetes-
Konfiguration verwenden. PersistentVolumeClaim Verfahren. Trident erstellt dieses Volume-Objekt
automatisch im Rahmen des Bereitstellungsprozesses.

Trident Snapshot Objekte

Snapshots sind Momentaufnahmen von Datenträgern, die zur Bereitstellung neuer Datenträger oder zur
Wiederherstellung des vorherigen Zustands verwendet werden können. In Kubernetes entsprechen diese
direkt VolumeSnapshotContent Objekte. Jeder Snapshot ist mit einem Volume verknüpft, das die
Datenquelle für den Snapshot darstellt.

Jede Snapshot Das Objekt umfasst die unten aufgeführten Eigenschaften:

15

Attribut Typ Erforderlich Beschreibung

Version Zeichenfolge Ja Version der Trident API
("1")

Name Zeichenfolge Ja Name des Trident
-Snapshot-Objekts

interner Name Zeichenfolge Ja Name des Trident
-Snapshot-Objekts auf
dem Speichersystem

volumeName Zeichenfolge Ja Name des persistenten
Volumes, für das der
Snapshot erstellt wurde

volumeInternalName Zeichenfolge Ja Name des zugehörigen
Trident Volume-Objekts im
Speichersystem

In Kubernetes werden diese Objekte automatisch verwaltet. Sie können diese einsehen, um zu
sehen, was Trident bereitgestellt hat.

Wenn ein Kubernetes VolumeSnapshot Wenn eine Objektanforderung erstellt wird, funktioniert Trident ,
indem ein Snapshot-Objekt auf dem zugrunde liegenden Speichersystem erstellt wird. Der internalName
Dieses Snapshot-Objekt wird durch die Kombination des Präfixes generiert. snapshot- mit dem UID der
VolumeSnapshot Objekt (zum Beispiel, snapshot-e8d8a0ca-9826-11e9-9807-525400f3f660).
volumeName Und volumeInternalName werden durch Abrufen der Details des zugrunde liegenden
Volumens befüllt.

Trident ResourceQuota Objekt

Der Trident Dämonensatz verzehrt einen system-node-critical Prioritätsklasse – die höchste in
Kubernetes verfügbare Prioritätsklasse – um sicherzustellen, dass Trident Volumes während des
ordnungsgemäßen Herunterfahrens von Knoten identifizieren und bereinigen kann und dass Trident
-Daemonset-Pods in Clustern mit hohem Ressourcendruck Workloads mit niedrigerer Priorität unterbrechen
können.

Um dies zu erreichen, setzt Trident ein ResourceQuota Objekt, um sicherzustellen, dass eine Prioritätsklasse
"system-node-critical" auf dem Trident -Daemonset erfüllt ist. Vor der Bereitstellung und der Erstellung des
Daemonsets sucht Trident nach den ResourceQuota Objekt und, falls nicht gefunden, wendet es an.

Wenn Sie mehr Kontrolle über das Standardressourcenkontingent und die Prioritätsklasse benötigen, können
Sie eine generieren. custom.yaml oder konfigurieren Sie die ResourceQuota Objekt, das das Helm-Chart
verwendet.

Nachfolgend ein Beispiel für ein ResourceQuota-Objekt, das dem Trident -Daemonset Priorität einräumt.

16

apiVersion: <version>

kind: ResourceQuota

metadata:

 name: trident-csi

 labels:

 app: node.csi.trident.netapp.io

spec:

 scopeSelector:

 matchExpressions:

 - operator: In

 scopeName: PriorityClass

 values:

 - system-node-critical

Weitere Informationen zu Ressourcenkontingenten finden Sie unter"Kubernetes: Ressourcenkontingente" .

Aufräumen ResourceQuota wenn die Installation fehlschlägt

In dem seltenen Fall, dass die Installation nach der ResourceQuota Objekt wurde erstellt, erster
Versuch"Deinstallation" und dann neu installieren.

Sollte das nicht funktionieren, entfernen Sie die ResourceQuota Objekt.

Entfernen ResourceQuota

Wenn Sie Ihre Ressourcenzuweisung lieber selbst steuern möchten, können Sie den Trident entfernen.
ResourceQuota Objekt mithilfe des Befehls:

kubectl delete quota trident-csi -n trident

Pod-Sicherheitsstandards (PSS) und
Sicherheitskontextbeschränkungen (SCC)

Die Kubernetes Pod Security Standards (PSS) und Pod Security Policies (PSP)
definieren Berechtigungsstufen und schränken das Verhalten von Pods ein. OpenShift
Security Context Constraints (SCC) definieren analog dazu Pod-Beschränkungen, die
spezifisch für die OpenShift Kubernetes Engine sind. Um diese Anpassung zu
ermöglichen, aktiviert Trident während der Installation bestimmte Berechtigungen. In den
folgenden Abschnitten werden die von Trident festgelegten Berechtigungen detailliert
beschrieben.

PSS ersetzt Pod Security Policies (PSP). PSP wurde in Kubernetes v1.21 als veraltet markiert
und wird in v1.25 entfernt. Weitere Informationen finden Sie unter"Kubernetes: Sicherheit" .

17

https://kubernetes.io/docs/concepts/policy/resource-quotas/
../trident-managing-k8s/uninstall-trident.html
https://kubernetes.io/docs/concepts/security/

Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder

Erlaubnis Beschreibung

Privilegiert CSI erfordert bidirektionale Mount-Punkte, was
bedeutet, dass auf dem Trident -Node-Pod ein
privilegierter Container ausgeführt werden muss.
Weitere Informationen finden Sie unter"Kubernetes:
Mount-Propagation" .

Host-Netzwerk Erforderlich für den iSCSI-Daemon. iscsiadm
Verwaltet iSCSI-Mounts und nutzt das Host-Netzwerk
zur Kommunikation mit dem iSCSI-Daemon.

Host-IPC NFS nutzt Interprozesskommunikation (IPC) zur
Kommunikation mit dem NFSD.

Host-PID Erforderlich zum Starten rpc-statd für NFS. Trident
fragt Hostprozesse ab, um festzustellen, ob rpc-
statd wird vor dem Einbinden von NFS-Volumes
ausgeführt.

Funktionen Der SYS_ADMIN Diese Funktionalität wird als Teil der
Standardfunktionen für privilegierte Container
bereitgestellt. Docker legt beispielsweise diese
Berechtigungen für privilegierte Container fest:
CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Seccomp Das Seccomp-Profil ist in privilegierten Containern
immer "Unconfided"; daher kann es in Trident nicht
aktiviert werden.

SELinux Auf OpenShift werden privilegierte Container in der
spc_t ("Super Privileged Container")-Domäne, und
unprivilegierte Container werden in der container_t
Domain. An containerd , mit container-
selinux installiert, alle Container werden in der
spc_t Domain, wodurch SELinux effektiv deaktiviert
wird. Daher fügt Trident nichts hinzu
seLinuxOptions zu Containern.

DAC Privilegierte Container müssen als Root ausgeführt
werden. Nicht privilegierte Container werden als Root
ausgeführt, um auf die von CSI benötigten Unix-
Sockets zuzugreifen.

Pod-Sicherheitsstandards (PSS)

18

https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Etikett Beschreibung Standard

pod-

security.kubernetes.io/enf

orce pod-
security.kubernetes.io/enf

orce-version

Ermöglicht es dem Trident
Controller und den Knoten, in den
Installations-Namespace
aufgenommen zu werden. Ändern
Sie die Namespace-Bezeichnung
nicht.

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

Das Ändern der Namespace-Labels kann dazu führen, dass Pods nicht eingeplant werden, eine
Fehlermeldung wie „Fehler beim Erstellen: …“ oder „Warnung: trident-csi-…“ erscheint. Wenn
dies der Fall ist, prüfen Sie, ob die Namespace-Bezeichnung für privileged wurde geändert.
Installieren Sie Trident in diesem Fall neu.

Pod-Sicherheitsrichtlinien (PSP)

Feld Beschreibung Standard

allowPrivilegeEscalation Privilegierte Container müssen eine
Rechteausweitung ermöglichen.

true

allowedCSIDrivers Trident verwendet keine Inline-CSI-
Ephemeralvolumina.

Leer

allowedCapabilities Nicht privilegierte Trident Container
benötigen keine weiteren
Berechtigungen als die
Standardberechtigungen, während
privilegierten Containern alle
möglichen Berechtigungen gewährt
werden.

Leer

allowedFlexVolumes Trident verwendet
keine"FlexVolume-Treiber" Daher
sind sie nicht in der Liste der
zulässigen Bände enthalten.

Leer

allowedHostPaths Der Trident -Node-Pod mountet das
Root-Dateisystem des Nodes,
daher bringt das Festlegen dieser
Liste keinen Vorteil.

Leer

allowedProcMountTypes Trident verwendet keine
ProcMountTypes .

Leer

allowedUnsafeSysctls Trident benötigt keine unsicheren…
 sysctls .

Leer

defaultAddCapabilities Für privilegierte Container müssen
keine zusätzlichen Funktionen
hinzugefügt werden.

Leer

defaultAllowPrivilegeEscal

ation

Die Gewährung von
Privilegienerweiterungen wird in
jedem Trident -Pod gehandhabt.

false

forbiddenSysctls NEIN sysctls sind erlaubt. Leer

19

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Feld Beschreibung Standard

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

hostIPC Das Einbinden von NFS-Volumes
erfordert die Kommunikation
zwischen Host und IPC. nfsd

true

hostNetwork iscsiadm benötigt das Host-
Netzwerk zur Kommunikation mit
dem iSCSI-Daemon.

true

hostPID Die Host-PID wird benötigt, um zu
prüfen, ob rpc-statd läuft auf
dem Knoten.

true

hostPorts Trident verwendet keine Host-
Ports.

Leer

privileged Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes einzubinden.

true

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident -Node-Pods führen einen
privilegierten Container aus und
können keine Capabilities verlieren.

none

runAsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

runAsUser Trident Container werden als Root
ausgeführt.

runAsAny

runtimeClass Trident verwendet nicht
RuntimeClasses .

Leer

seLinux Trident lässt sich nicht einstellen
seLinuxOptions weil es derzeit
Unterschiede in der Art und Weise
gibt, wie Container-
Laufzeitumgebungen und
Kubernetes-Distributionen SELinux
handhaben.

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

volumes Trident Pods benötigen diese
Volumen-Plugins.

hostPath, projected,

emptyDir

Sicherheitskontextbeschränkungen (SCC)

20

Labels Beschreibung Standard

allowHostDirVolumePlugin Trident Node-Pods mounten das
Root-Dateisystem des Nodes.

true

allowHostIPC Das Einbinden von NFS-Volumes
erfordert die Kommunikation
zwischen Host und IPC. nfsd .

true

allowHostNetwork iscsiadm benötigt das Host-
Netzwerk zur Kommunikation mit
dem iSCSI-Daemon.

true

allowHostPID Die Host-PID wird benötigt, um zu
prüfen, ob rpc-statd läuft auf
dem Knoten.

true

allowHostPorts Trident verwendet keine Host-
Ports.

false

allowPrivilegeEscalation Privilegierte Container müssen eine
Rechteausweitung ermöglichen.

true

allowPrivilegedContainer Trident Node-Pods müssen einen
privilegierten Container ausführen,
um Volumes einzubinden.

true

allowedUnsafeSysctls Trident benötigt keine unsicheren…
 sysctls .

none

allowedCapabilities Nicht privilegierte Trident Container
benötigen keine weiteren
Berechtigungen als die
Standardberechtigungen, während
privilegierten Containern alle
möglichen Berechtigungen gewährt
werden.

Leer

defaultAddCapabilities Für privilegierte Container müssen
keine zusätzlichen Funktionen
hinzugefügt werden.

Leer

fsGroup Trident Container werden als Root
ausgeführt.

RunAsAny

groups Diese SCC ist spezifisch für Trident
und an ihren Benutzer gebunden.

Leer

readOnlyRootFilesystem Trident Node-Pods müssen in das
Node-Dateisystem schreiben.

false

requiredDropCapabilities Trident -Node-Pods führen einen
privilegierten Container aus und
können keine Capabilities verlieren.

none

runAsUser Trident Container werden als Root
ausgeführt.

RunAsAny

21

Labels Beschreibung Standard

seLinuxContext Trident lässt sich nicht einstellen
seLinuxOptions weil es derzeit
Unterschiede in der Art und Weise
gibt, wie Container-
Laufzeitumgebungen und
Kubernetes-Distributionen SELinux
handhaben.

Leer

seccompProfiles Privilegierte Container laufen immer
"Unconfided".

Leer

supplementalGroups Trident Container werden als Root
ausgeführt.

RunAsAny

users Es wird ein Eintrag bereitgestellt,
um diese SCC an den Trident
Benutzer im Trident -Namensraum
zu binden.

n/a

volumes Trident Pods benötigen diese
Volumen-Plugins.

hostPath, downwardAPI,

projected, emptyDir

22

Copyright-Informationen

Copyright © 2026 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

23

http://www.netapp.com/TM\

	Referenz : Trident
	Inhalt
	Referenz
	Trident Häfen
	Trident Häfen

	Trident REST-API
	Wann sollte die REST-API verwendet werden?
	Verwendung der REST-API

	Befehlszeilenoptionen
	Protokollierung
	Kubernetes
	Docker
	AUSRUHEN

	Kubernetes- und Trident Objekte
	Wie interagieren die Objekte miteinander?
	Kubernetes PersistentVolumeClaim Objekte
	Kubernetes PersistentVolume Objekte
	Kubernetes StorageClass Objekte
	Kubernetes VolumeSnapshotClass Objekte
	Kubernetes VolumeSnapshot Objekte
	Kubernetes VolumeSnapshotContent Objekte
	Kubernetes VolumeGroupSnapshotClass Objekte
	Kubernetes VolumeGroupSnapshot Objekte
	Kubernetes VolumeGroupSnapshotContent Objekte
	Kubernetes CustomResourceDefinition Objekte
	Trident StorageClass Objekte
	Trident Backend-Objekte
	Trident StoragePool Objekte
	Trident Volume Objekte
	Trident Snapshot Objekte
	Trident ResourceQuota Objekt

	Pod-Sicherheitsstandards (PSS) und Sicherheitskontextbeschränkungen (SCC)
	Erforderlicher Kubernetes-Sicherheitskontext und zugehörige Felder
	Pod-Sicherheitsstandards (PSS)
	Pod-Sicherheitsrichtlinien (PSP)
	Sicherheitskontextbeschränkungen (SCC)

