
Codierungsrichtlinien für WFA
OnCommand Workflow Automation
NetApp
October 09, 2025

This PDF was generated from https://docs.netapp.com/de-de/workflow-automation/workflows/reference-
guidelines-for-variables.html on October 09, 2025. Always check docs.netapp.com for the latest.

Inhalt
Codierungsrichtlinien für WFA . 1

Richtlinien für Variablen . 1

PowerShell Variablen . 1

Perl-Variablen. 3

Richtlinien für Einzüge . 5

Richtlinien für Kommentare . 6

PowerShell kommentiert . 6

Perl-Kommentare . 6

Richtlinien für die Protokollierung. 7

PowerShell-Protokollierung . 8

Perl-Protokollierung . 8

Richtlinien für die Fehlerbehandlung . 9

PowerShell Fehlerbehandlung. 9

Perl-Fehlerbehandlung. 11

Allgemeine PowerShell und Perl Konventionen für WFA. 12

Perl-Module mit Windows gebündelt . 13

Überlegungen beim Hinzufügen benutzerdefinierter PowerShell und Perl Module . 13

WFA Commandlets und Funktionen. 14

PowerShell und Perl WFA Module . 14

PowerShell Module . 14

Perl-Module . 14

Überlegungen beim Konvertieren von PowerShell-Befehlen in Perl . 17

Eingabearten für Befehle . 17

PowerShell Aussage . 17

Perl-Anweisung . 18

Befehlsdefinition. 20

Richtlinien für WFA Bausteine . 20

Richtlinien für SQL in WFA. 21

Richtlinien für Funktionen von WFA. 24

Richtlinien für Einträge im WFA Wörterbuch . 24

Richtlinien für Befehle . 25

Richtlinien für Workflows . 28

Richtlinien zum Erstellen von Validierungsskripten für Remote-Systemtypen. 33

Richtlinien zum Erstellen von Datenquelltypen . 33

Codierungsrichtlinien für WFA
Sie sollten die allgemeinen Richtlinien zur Kodierung von OnCommand Workflow
Automation (WFA), Namenskonventionen und Empfehlungen zum Erstellen
verschiedener Bausteine wie Filter, Funktionen, Befehle und Workflows verstehen.

Richtlinien für Variablen

Bei der Erstellung eines Befehls oder eines Datenquelltyps müssen Sie die Richtlinien für
PowerShell und Perl-Variablen in OnCommand Workflow Automation (WFA) kennen.

PowerShell Variablen

Richtlinien Beispiel

Für Skript-Eingabeparameter:

• Verwenden Sie Pascal Case.

• Keine Unterstriche verwenden.

• Verwenden Sie keine Abkürzungen.

$VolumeName

$AutoDeleteOptions

$Size

Für interne Skriptvariablen:

• Verwenden Sie die Camel-Hülle.

• Keine Unterstriche verwenden.

• Verwenden Sie keine Abkürzungen.

$newVolume

$qtreeName

$time

Für Funktionen:

• Verwenden Sie Pascal Case.

• Keine Unterstriche verwenden.

• Verwenden Sie keine Abkürzungen.

GetVolumeSize

Bei Variablennamen wird die Groß-/Kleinschreibung
nicht beachtet. Um die Lesbarkeit zu verbessern,
sollten Sie jedoch für denselben Namen keine andere
Großschreibung verwenden.

$variable Ist das gleiche wie $Variable.

Variablennamen sollten in einfachem Englisch sein
und sich auf die Funktionalität des Skripts beziehen.

Nutzung $name Und nicht $a.

Erklären Sie den Datentyp für jede Variable explizit. [String]Name

[Int]Größe

1

Richtlinien Beispiel

Verwenden Sie keine Sonderzeichen (! @ # & % , .)
und Leerzeichen.

Keine

Verwenden Sie keine PowerShell reservierten
Schlüsselwörter.

Keine

Gruppieren Sie die Eingabeparameter, indem Sie
zunächst die obligatorischen Parameter, gefolgt von
den optionalen Parametern platzieren.

param(

[parameter(Mandatory=$true)]

[string]$Type,

[parameter(Mandatory=$true)]

[string]$Ip,

[parameter(Mandatory=$false)]

[string]$VolumeName

)

Kommentieren Sie alle Eingabevariablen mit
HelpMessage Anmerkung mit einer
aussagekräftigen Hilfemeldung.

[parameter(Mandatory=$false,HelpMe

ssage="LUN to map")]

[string]$LUNName

Verwenden Sie „Filer“ nicht als Variablenname,
sondern verwenden Sie „Array“.

Keine

Nutzung ValidateSet Anmerkung in Fällen, in
denen das Argument aufzählen wird. Damit wird
automatisch der Datentyp „Enum“ für den Parameter
angezeigt.

[parameter(Mandatory=$false,HelpMe

ssage="Volume state")]

[ValidateSet("online","offline","r

estricted")]

[string]$State

2

Richtlinien Beispiel

Fügen Sie einem Parameter, der mit „_Capacity“
endet, einen Alias hinzu, um anzugeben, dass der
Parameter vom Kapazitätstyp ist.

Der Befehl „Create Volume“ verwendet Aliase wie
folgt:

[parameter(Mandatory=$false,HelpMe

ssage="Volume increment size in

MB")]

[Alias("AutosizeIncrementSize_Capa

city")]

[int]$AutosizeIncrementSize

Fügen Sie einem Parameter, der mit „_Password“
endet, einen Alias hinzu, um anzugeben, dass der
Parameter einen Kennworttyp hat.

param (

 [parameter(Mandatory=$false,

HelpMessage="In order to create an

Active Directory machine account

for the CIFS server or setup CIFS

service for Storage Virtual

Machine, you must supply the

password of a Windows account with

sufficient privileges")]

[Alias("Pwd_Password")]

[string]$ADAdminPassword

)

Perl-Variablen

Richtlinien Beispiel

Für Skript-Eingabeparameter:

• Verwenden Sie Pascal Case.

• Keine Unterstriche verwenden.

• Verwenden Sie keine Abkürzungen.

$VolumeName

$AutoDeleteOptions

$Size

Verwenden Sie keine Abkürzungen für interne
Skriptvariablen.

$new_volume

$qtree_name

$time

Verwenden Sie keine Abkürzungen für Funktionen. get_volume_size

3

Richtlinien Beispiel

Bei Variablennamen wird die Groß-/Kleinschreibung
beachtet. Um die Lesbarkeit zu verbessern, sollten
Sie für denselben Namen keine andere Groß-
/Kleinschreibung verwenden.

$variable Ist nicht dasselbe wie $Variable.

Variablennamen sollten in einfachem Englisch sein
und sich auf die Funktionalität des Skripts beziehen.

Nutzung $name Und nicht $a.

Gruppieren Sie die Eingabeparameter, indem Sie
zuerst die obligatorischen Parameter, gefolgt von den
optionalen Parametern platzieren.

Keine

In GetOptions Funktion, deklarieren Sie explizit den
Datentyp jeder Variable für Eingabeparameter. GetOptions(

 "Name=s"=>\$Name,

 "Size=i"=>\$Size

)

Verwenden Sie „Filer“ nicht als Variablenname,
sondern verwenden Sie „Array“.

Keine

Perl schließt nicht das ein ValidateSet Anmerkung
für Aufzählungswerte. Verwenden Sie die expliziten
„if“-Anweisungen für Fälle, in denen das Argument
aufgezählte Werte erhält.

if

(defined$SpaceGuarantee&&!($SpaceG

uaranteeeq'none'

$SpaceGuaranteeeq’volume'

$SpaceGuaranteeeq’file')) { die’Illegal
SpaceGuarantee argument: \''.$SpaceGuarantee.'\''; }

Alle Perl WFA Befehle müssen das Pragma „strict“
verwenden, um die Verwendung unsicherer
Konstrukte für Variablen, Referenzen und
Unterroutinen zu entmutigen.

use strict;

the above is equivalent to

use strictvars;

use strictsubs;

use strictrefs;

4

Richtlinien Beispiel

Alle Perl WFA Befehle müssen die folgenden Perl
Module verwenden:

• Getopt

Dies wird zur Angabe von Eingabeparametern
verwendet.

• WFAUtil

Dies wird für Dienstprogrammfunktionen
verwendet, die für die Protokollierung von
Befehlen, für die Meldung des Befehlsfortschritts,
für die Verbindung zu Array-Controllern usw.
bereitgestellt werden.

use Getopt::Long;

use NaServer;

use WFAUtil;

Richtlinien für Einzüge

Beim Schreiben eines PowerShell oder Perl Skripts für OnCommand Workflow
Automation (WFA) müssen Sie die Richtlinien zum Einbinden kennen.

Richtlinien Beispiel

Eine Registerkarte entspricht vier leeren Leerzeichen.

Verwenden Sie Laschen und Klammern, um den
Anfang und das Ende eines Blocks anzuzeigen.

PowerShell Skript

if

($pair.length-ne 2)

{

throw "Got wrong input data"

}

Perl-Skript

if

(defined $MaxDirectorySize)

{

convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

}

5

Richtlinien Beispiel

Fügen Sie leere Zeilen zwischen Gruppen von
Vorgängen oder Codebrocken hinzu. $options=$option.trim();

$pair=$option.split(" ");

Get-WFAlogger -Info -messages

$("split options: "+

$Pair)

Richtlinien für Kommentare

In Ihren Skripten für OnCommand Workflow Automation (WFA) müssen Sie die
Richtlinien für PowerShell und Perl Kommentare kennen.

PowerShell kommentiert

Richtlinien Beispiel

Verwenden Sie das Zeichen # für einen einzelnen
Zeilenkommentar. # Single line comment

$options=$option.trim();

Verwenden Sie das Zeichen # für einen
Zeilenendkommentar. $options=$option.trim(); # End of

line

comment

Verwenden Sie die Zeichen <# und #> für einen
Blockkommentar. <#

This is

a

block comment

#>

$options=$option.trim();

Perl-Kommentare

6

Richtlinien Beispiel

Verwenden Sie das Zeichen # für einen einzelnen
Zeilenkommentar. # convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

Verwenden Sie das Zeichen # für den
Zeilenendkommentar. my $MaxDirectorySizeBytes =

$MaxDirect

orySiZe * 1024 * 1024; # convert

to Bytes

Verwenden Sie das # Zeichen in jeder Zeile mit einem
leeren # am Anfang und am Ende, um einen
Kommentarrahmen für mehrzeilige Kommentare zu
erstellen.

#

This is a multi-line comment.

Perl 5, unlike

Powershell, does not have direct

support for

multi-line comments. Please use

a '#'in every line

with an empty '#' at the

beginning and end to create

a comment border

#

Fügen Sie in den WFA Befehlen keinen
kommentierten und toten Code ein. Zu Testzwecken
können Sie jedoch den Mechanismus der Plain Old
Documentation (POD) verwenden, um den Code zu
kommentieren.

=begin comment

 # Set deduplication

 if(defined $Deduplication &&

$Deduplication eq "enabled")

 {

 $wfaUtil-

>sendLog("Enabling

Deduplication");

 }

=end comment

=cut

Richtlinien für die Protokollierung

Sie müssen die Richtlinien für die Protokollierung beim Schreiben eines PowerShell oder

7

Perl Skripts für OnCommand Workflow Automation (WFA) kennen.

PowerShell-Protokollierung

Richtlinien Beispiel

Verwenden Sie das Cmdlet "Get-WFALogger" zur
Protokollierung. Get-WFALogger -Info -message

“Creating volume”

Protokollieren jeder Aktion, die Interaktion mit
internen Paketen wie Data ONTAP, VMware und
PowerCLI erfordert.Alle Protokollmeldungen stehen in
Ausführungsprotokollen im Ausführungsstatus-Verlauf
von Workflows zur Verfügung.

Keine

Protokollieren Sie alle relevanten Argumente, die an
interne Pakete übergeben werden.

Keine

Verwenden Sie je nach Nutzungskontext die
entsprechenden Protokollebenen, wenn Sie das
Cmdlet "Get-WFALogger" verwenden. -Info, -Error,
-warn und -Debug sind die verschiedenen
verfügbaren Protokollebenen. Wenn keine
Protokollebene angegeben wird, ist die Standard-
Protokollebene Debug.

Keine

Perl-Protokollierung

Richtlinien Beispiel

Verwenden Sie das WFAUtil sendLog zur
Protokollierung. my wfa_util = WFAUtil->new();

eval {

$wfa_util->sendLog('INFO',

"Connecting to the

cluster: $DestinationCluster");

}

Protokollieren jeder Aktion, die eine Interaktion mit
anderen externen Aktionen wie Data ONTAP, VMware
und WFA erfordert Alle Log-Nachrichten, die Sie mit
der WFAUtil sendLog-Routine erstellen, werden in der
WFA-Datenbank gespeichert. Diese
Protokollmeldungen stehen für den ausgeführten
Workflow und Befehl zur Verfügung.

Keine

8

Richtlinien Beispiel

Protokollieren Sie alle relevanten Argumente, die an
die Routine übergeben wurden, die aufgerufen wurde.

Keine

Verwenden Sie die entsprechenden Protokollebenen.-
Info, -Error, -warn und -Debug sind die verschiedenen
verfügbaren Protokollebenen.

Keine

Wenn Sie sich auf der -Info-Ebene anmelden, seien
Sie präzise und präzise. Geben Sie keine
Implementierungsdetails wie Klassenname und
Funktionsname in Protokollmeldungen an.
Beschreiben Sie den genauen Schritt oder den
genauen Fehler in einfachem Englisch.

Der folgende Code-Snippet zeigt ein Beispiel für eine
gute Nachricht und eine schlechte Nachricht:

$wfa_util->sendLog('WARN',

"Removing volume:

'.$VolumeName);

Good Message

$wfa_util->sendLog('WARN',

'Invoking volume-

destroy ZAPI: '.$VolumeName);

Bad message

Richtlinien für die Fehlerbehandlung

Beim Schreiben eines PowerShell oder Perl Skripts für OnCommand Workflow
Automation (WFA) müssen Sie die Richtlinien für die Fehlerbehandlung kennen.

PowerShell Fehlerbehandlung

9

Richtlinien Beispiel

Zu den Cmdlets durch PowerShell Runtime wurden
allgemeine Parameter wie ErrorAction und
WarningAction hinzugefügt.

• Der Parameter ErrorAction bestimmt, wie ein
Cmdlet auf einen nicht-terminenden Fehler des
Befehls reagieren soll.

• Der Parameter WarningAction bestimmt, wie ein
Cmdlet auf eine Warnung aus dem Befehl
reagieren soll.

• Stopp, SilentlyWeiter, Abfragen und Fortfahren
sind die gültigen Werte für die Parameter
ErrorAction und WarningAction.

Weitere Informationen finden Sie unter Get-Help
about_CommonParameters Befehl in PowerShell
CLI.

ErrorAction: Das folgende Beispiel zeigt, wie ein
nicht-terminierender Fehler als Fehler beim Beenden
behandelt wird:

New-NcIgroup-Name $IgroupName-

Protocol $Protocol-Type$OSType-

ErrorActionstop

WarningAction

New-VM-Name $VMName-VM $SourceVM-

DataStore$DataStoreName-

VMHost$VMHost-

WarningActionSilentlyContinue

Verwenden Sie die allgemeine Anweisung
„Try/Catch“, wenn der Typ der eingehenden
Ausnahme nicht bekannt ist.

try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

Verwenden Sie die spezifische „Try/Catch“-
Anweisung, wenn der Typ der eingehenden
Ausnahme bekannt ist.

try

{

"In Try/catch block"

}

catch[System.Net.WebExceptional],

[System.IO.

IOException]

{

"Got exception"

}

10

Richtlinien Beispiel

Verwenden Sie die Anweisung „endlich“, um
Ressourcen freizugeben. try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

finally

{

"Release resources"

}

Verwenden Sie die automatischen PowerShell
Variablen, um auf Informationen über Ausnahmen
zuzugreifen.

try

{

Get-WFALogger -Info -message

$("Creating

Ipspace: " + $Ipspace)

New-NaNetIpspace-Name $Ipspace

}

catch

{

Throw "Failed to create Ipspace.

Message:

" + $_.Exception.Message;

}

Perl-Fehlerbehandlung

11

Richtlinien Beispiel

Perl umfasst keine native Sprachunterstützung für
Try/Catch Blocks. Verwenden Sie Evaluierungsblöcke
zum Prüfen und behandeln von Fehlern. Halten Sie
Evaluierungsblöcke so klein wie möglich.

eval {

$wfa_util->sendLog('INFO',

"Quiescing the relationship :

$DestinationCluster://$Destination

Vserver

/$DestinationVolume"

);

$server->snapmirror_quiesce(

'destination-vserver' =>

$DestinationVserver,

'destination-volume' =>

$DestinationVolume

);

$wfa_util->sendLog('INFO',

'Quiesce operation

started successfully.');

};

$wfa_util->checkEvalFailure(

"Failed to quiesce the SnapMirror

relationship

$DestinationCluster://$Destination

Vserver

/$DestinationVolume",

 $@

);

Allgemeine PowerShell und Perl Konventionen für WFA

Sie müssen bestimmte PowerShell- und Perl-Konventionen kennen, die in WFA zum
Erstellen von Skripten verwendet werden, die mit vorhandenen Skripten identisch sind.

• Verwenden Sie Variablen, die Ihnen helfen, das zu klären, was das Skript tun soll.

• Lesbarer Code schreiben, der ohne Kommentare verstanden werden kann.

• Skripte und Befehle so einfach wie möglich halten.

• Für PowerShell Skripte:

◦ Nutzen Sie nach Möglichkeit Commandlets.

◦ Rufen Sie den .NET-Code auf, wenn kein Cmdlet verfügbar ist.

• Für Perl-Skripte:

12

◦ Beenden Sie immer „die“-Aussagen mit Newline-Zeichen.

Wenn kein newline-Zeichen vorhanden ist, wird die Skriptliniennummer gedruckt, was für das
Debuggen von Perl-Befehlen, die von WFA ausgeführt werden, nicht nützlich ist.

◦ Machen Sie im Modul „getopt“ die Zeichenfolgenargumente zu einem Befehl erforderlich.

Perl-Module mit Windows gebündelt

Einige Perl-Module werden mit der Windows Active State Perl Distribution for
OnCommand Workflow Automation (WFA) gebündelt. Sie können diese Perl-Module in
Ihrem Perl-Code zum Schreiben von Befehlen verwenden, nur wenn sie mit Windows
gebündelt sind.

In der folgenden Tabelle sind die Perl-Datenbankmodule aufgeführt, die mit Windows für WFA gebündelt sind.

Datenbankmodul Beschreibung

DBD::mysql Perl5-Datenbank-Schnittstellentreiber, mit dem Sie
eine Verbindung zur MySQL-Datenbank herstellen
können.

Versuchen Sie::Winzig Minimiert häufige Fehler durch Evaluierungsblöcke.

XML::LibXML Schnittstelle zu libxml2, die XML- und HTML-Parser
mit DOM-, SAX- und XMLReader-Schnittstellen
bereitstellt.

DBD::Cassandra Perl5-Datenbanktreiber für Cassandra, der die CQL3-
Abfragesprache verwendet.

Überlegungen beim Hinzufügen benutzerdefinierter
PowerShell und Perl Module

Beachten Sie bestimmte Überlegungen, bevor Sie OnCommand Workflow Automation
(WFA) benutzerdefinierte PowerShell und Perl-Module hinzufügen. Benutzerdefinierte
PowerShell- und Perl-Module ermöglichen die Verwendung benutzerdefinierter Befehle
zum Erstellen von Workflows.

• Während der Ausführung von WFA Befehlen werden alle benutzerdefinierten PowerShell Module zum
WFA Installationsverzeichnis hinzugefügt /Posh/modules Automatisch importiert.

• Alle benutzerdefinierten Perl-Module, die dem hinzugefügt wurden WFA/perl Das Verzeichnis ist in der
Bibliothek @Inc enthalten.

• Individuelle PowerShell und Perl Module werden nicht als Teil des WFA Backups gesichert.

• Benutzerdefinierte PowerShell und Perl Module werden im Rahmen der WFA Restore-Operation nicht
wiederhergestellt.

13

Sie müssen benutzerdefinierte PowerShell und Perl Module manuell sichern, um sie in eine neue WFA
Installation zu kopieren.

Der Ordnername im Modulverzeichnis muss mit dem des Modulnamens übereinstimmen.

WFA Commandlets und Funktionen

OnCommand Workflow Automation (WFA) umfasst mehrere PowerShell Commandlets
sowie PowerShell- und Perl-Funktionen, die Sie in Ihren WFA Befehlen nutzen können.

Mithilfe der folgenden PowerShell Befehle können Sie alle vom WFA Server bereitgestellten PowerShell
Commandlets und Funktionen anzeigen:

• Get-Command -Module WFAWrapper

• Get-Command -Module WFA

Sie können alle Perl-Funktionen, die der WFA-Server zur Verfügung stellt, in anzeigen WFAUtil.pm Modul: In
den Hilfebereichen, der Hilfe zu WFA PowerShell cmdlets und Hilfe zu WFA Perl Methoden ermöglicht das
WFA Hilfemodul Support Links den Zugriff auf alle PowerShell cmdlets und Funktionen sowie auf die Perl
Funktionen.

PowerShell und Perl WFA Module

Um Skripte für Ihre Workflows zu schreiben, müssen Sie die PowerShell oder Perl
Module for OnCommand Workflow Automation (WFA) kennen.

PowerShell Module

Richtlinien Beispiel

Verwenden Sie das Data ONTAP PS Toolkit, um APIs
aufzurufen, sobald das Toolkit verfügbar ist.

Der Add VLAN Befehl verwendet das Toolkit wie folgt:

Add-NaNetVlan-Interface $Interface-

Vlans$VlanID

Wenn im Data ONTAP PS Toolkit keine Cmdlets
verfügbar sind, verwenden Sie das Invoke-SSH
Befehl zum Aufrufen der CLI auf Data ONTAP.

Invoke-NaSsh-Name $ArrayName-Command

"ifconfig -a"-Credential $Credentials

Perl-Module

Das NaServer-Modul wird in WFA Befehlen verwendet. Das NaServer-Modul ermöglicht den Aufruf von Data
ONTAP-APIs, die im aktiven Management von Data ONTAP-Systemen verwendet werden.

14

15

Richtlinien Beispiel

Verwenden Sie das NaServer-Modul, um APIs
aufzurufen, wann immer das NetApp Manageability
SDK verfügbar ist.

Das folgende Beispiel zeigt, wie das NaServer-Modul
für einen Vorgang zur Wiederaufnahme von
SnapMirror verwendet wird:

 eval {

 $wfa_util->sendLog('INFO',

 "Connecting to the

cluster: $DestinationCluster"

);

 my $server

 = $wfa_util-

>connect($DestinationClusterIp,

$DestinationVserver);

 my $sm_info = $server-

>snapmirror_get(

 'destination-vserver' =>

$DestinationVserver,

 'destination-volume' =>

$DestinationVolume

);

 my $sm_state = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'mirror-state'};

 my $sm_status = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'relationship-status'};

 $wfa_util->sendLog('INFO',

 "SnapMirror relationship

is $sm_state ($sm_status)");

 if ($sm_status ne 'quiesced')

{

 $wfa_util->sendLog('INFO',

 'The status needs to

be quiesced to resume transfer.');

 } else {

 my $result = $server-

>snapmirror_resume(

 'destination-vserver'

=> $DestinationVserver,

 'destination-volume'

=> $DestinationVolume

);

 $wfa_util->sendLog('INFO',
16

"Result of resume: $result");

 $wfa_util->sendLog('INFO',

'Resume operation started

successfully.');

 }

}

Richtlinien Beispiel

Wenn keine Data ONTAP-API verfügbar ist, rufen Sie
die Data ONTAP-CLI unter Verwendung der Methode
des ausführbaren SystemClifdienstprogramms auf.

ExecutSystemCli.1 wird nicht
unterstützt und ist derzeit nur für Data
ONTAP im 7-Modus verfügbar.

Keine

Überlegungen beim Konvertieren von PowerShell-Befehlen
in Perl

Bei der Konvertierung von PowerShell Befehlen in Perl müssen Sie bestimmte wichtige
Überlegungen beachten, da PowerShell und Perl über verschiedene Funktionen
verfügen.

Eingabearten für Befehle

OnCommand Workflow Automation (WFA) ermöglicht Workflow-Designern bei der Definition eines Befehls die
Verwendung von Arrays und Hash als Eingabe für den Befehl. Diese Eingabetypen können nicht verwendet
werden, wenn der Befehl über Perl definiert ist. Wenn ein Perl-Befehl Array- und Hash-Eingaben akzeptieren
soll, können Sie die Eingabe als Zeichenfolge im Designer definieren. Die Befehlsdefinition kann dann die
Eingabe analysieren, die nach Bedarf an die Erstellung eines Arrays oder Hash übergeben wird. Die
Beschreibung der Eingabe beschreibt das Format, in dem die Eingabe erwartet wird.

my @input_as_array = split(',', $InputString); #Parse the input string of

format val1,val2 into an array

my %input_as_hash = split /[;=]/, $InputString; #Parse the input string of

format key1=val1;key2=val2 into a hash.

PowerShell Aussage

Die folgenden Beispiele zeigen, wie eine Array-Eingabe an PowerShell und Perl übergeben werden kann. Die
Beispiele beschreiben den Input CronMonth, der den Monat angibt, in dem der Cron-Job ausgeführt werden
soll. Die gültigen Werte sind ganze Zahlen -1 bis 11. Ein Wert von -1 zeigt an, dass der Zeitplan jeden Monat
ausgeführt wird. Jeder andere Wert bezeichnet einen bestimmten Monat, wobei 0 Januar und 11 Dezember ist.

[parameter(Mandatory=$false, HelpMessage="Months in which the schedule

executes. This is a comma separated list of values from 0 through 11.

Value -1 means all months.")]

 [ValidateRange(-1, 11)]

 [array]$CronMonths,

17

Perl-Anweisung

18

GetOptions(

 "Cluster=s" => \$Cluster,

 "ScheduleName=s" => \$ScheduleName,

 "Type=s" => \$Type,

 "CronMonths=s" => \$CronMonths,

) or die 'Illegal command parameters\n';

sub get_cron_months {

 return get_cron_input_hash('CronMonths', $CronMonths, 'cron-month',

-1,

 11);

}

sub get_cron_input_hash {

 my $input_name = shift;

 my $input_value = shift;

 my $zapi_element = shift;

 my $low = shift;

 my $high = shift;

 my $exclude = shift;

 if (!defined $input_value) {

 return undef;

 }

 my @values = split(',', $input_value);

 foreach my $val (@values) {

 if ($val !~ /^[+-]?\d+$/) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be an integer.\n";

 }

 if ($val < $low || $val > $high) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be from $low to $high.\n";

 }

 if (defined $exclude && $val == $exclude) {

 die

 "Invalid value '$input_value' for $input_name: $val is not

valid.\n";

 }

 }

 # do something

}

19

Befehlsdefinition

Ein einzeilter Ausdruck in PowerShell, der einen Pipe Operator verwendet, muss in Perl in mehrere Blöcke von
Anweisungen erweitert werden, um dieselbe Funktionalität zu erreichen. Die folgende Tabelle enthält ein
Beispiel für einen der Wartebefehle.

PowerShell Aussage Perl-Anweisung

Get the latest job which moves

the specified volume to the

specified

 aggregate.

$job = Get-NcJob -Query $query

where {$_.JobDescription -eq "Split" +
$VolumeCloneName}

Select-Object -First 1 ----
my $result = $server-

>job_get_iter(

 'query' => {'job-type' =>

'VOL_CLONE_SPLIT'},

 'desired-attributes' => {

 'job-type' => '',

 'job-description' => '',

 'job-progress' => '',

 'job-state' => ''

 }

);

my @jobarray;

for my $job (@{ $result-

>{'attributes-list'}})

{

 my $description = $job->{'job-

description'};

 if($description =~

/$VolumeCloneName/)

 {

 push(@jobarray, $job)

 }

}

Richtlinien für WFA Bausteine

Beachten Sie unbedingt die Richtlinien zur Nutzung der Workflow-Automatisierungs-
Bausteine.

20

Richtlinien für SQL in WFA

Sie müssen die Richtlinien zur Verwendung von SQL in OnCommand Workflow
Automation (WFA) kennen, um SQL-Abfragen für WFA zu schreiben.

SQL wird an folgenden Stellen in WFA verwendet:

• SQL-Abfragen zum Befüllen der Benutzereingaben zur Auswahl

• SQL-Abfragen zum Erstellen von Filtern zum Filtern von Objekten eines bestimmten
Wörterbucheingabetyps

• Statische Daten in Tabellen in der Spielplatzdatenbank

• Ein benutzerdefinierter Quelltyp des SQL-Typs, bei dem die Daten aus einer externen Datenquelle
extrahiert werden müssen, z. B. aus einer benutzerdefinierten Configuration Management Database
(CMDB).

• SQL fragt nach Reservierungs- und Verifikationsskripten ab

Richtlinien Beispiel

SQL-reservierte Schlüsselwörter müssen in
Großbuchstaben enthalten sein. SELECT

 vserver.name

FROM

 cm_storage.vserver vserver

Tabelle- und Spaltennamen müssen in
Kleinbuchstaben enthalten sein.

Tabelle: Aggregat

Spalte: Used_space_mb

Trennen Sie Wörter mit einem Unterstrich (_)
Zeichen. Leerzeichen sind nicht zulässig.

Array_Performance

Tabellenname wird in Singular definiert. Eine Tabelle
ist eine Sammlung von einem oder mehreren
Einträgen.

„Funktion“, nicht „Funktionen“

21

Richtlinien Beispiel

Verwenden Sie in AUSGEWÄHLTEN Abfragen
Tabellenaliase mit aussagekräftigen Namen. SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

22

Richtlinien Beispiel

Wenn Sie in einer Filterabfrage oder Benutzerabfrage
auf einen Filtereingabeparameter oder
Benutzereingabeparameter verweisen müssen,
verwenden Sie die Syntax als
'€{inputVariableName}.Sie können die Syntax auch
verwenden, um in Reservierungsskripten und
Verifikationsskripten auf einen Parameter der
Befehlsdefinition zu verweisen.

SELECT

 volume.name AS Name,

 aggregate.name as Aggregate,

 volume.size_mb AS 'Total Size

(MB)',

 voulme.used_size_mb AS 'Used

Size (MB)',

 volume.space_guarantee AS

'Space Guarantee'

FROM

 cm_storage.cluster,

 cm_storage.aggregate,

 cm_storage.vserver,

 cm_storage.volume

WHERE

 cluster.id =

vserver.cluster_id

 AND aggregate.id =

volume.aggregate_id

 AND vserver.id =

voulme.vserver_id

 AND vserver.name =

'${VserverName}'

 AND cluster.name =

'${ClusterName}'

ORDER BY

 volume.name ASC

Verwenden Sie Kommentare für komplexe Abfragen.
Einige der unterstützten Kommentarstile in Abfragen
sind wie folgt:

• „--“ bis zum Ende der Zeile

Nach dem zweiten Bindestrich in diesem
Kommentarstil ist ein Leerzeichen erforderlich.

• Von einem “#” Zeichen bis zum Ende der Zeile

• Von einem „/`" to the following
"/`„Sequenz

/*

multi-line

comment

*/

--line comment

SELECT

 ip as ip, # comment till end

of this line

 NAME as name

FROM --end of line comment

 storage.array

23

Richtlinien für Funktionen von WFA

Sie können Funktionen erstellen, um häufig verwendete und komplexere Logik in einer
benannten Funktion einzukapseln und die Funktion dann als Befehlsparameter-Werte
oder Filterparameter-Werte in OnCommand Workflow Automation (WFA)
wiederzuverwenden.

Richtlinien Beispiel

Verwenden Sie Camel Case für einen
Funktionsnamen.

KalkulationVolumeGröße

Variablennamen sollten in einfachem Englisch sein
und sich auf die Funktionalität der Funktion beziehen.

Trennungszeichen ByDelimiter

Verwenden Sie keine Abkürzungen. KalküteVolumeSize, Not calcVolSize

Funktionen werden mit MVFLEX Expression
Language (MVEL) definiert.

Keine

Die Funktionsdefinition sollte nach den offiziellen Java
Programmiersprachen Richtlinien angegeben werden.

Keine

Richtlinien für Einträge im WFA Wörterbuch

Beim Erstellen von Wörterbucheinträgen in OnCommand Workflow Automation (WFA)
müssen Sie die Richtlinien kennen.

Richtlinien Beispiel

Namen von Wörterbucheintragsnamen dürfen nur
alphanumerische Zeichen und Unterstriche enthalten.

Cluster_Lizenz

Switch_23

Die Namen der Wörterbucheingabe müssen mit
einem Großbuchstaben beginnen. Beginnen Sie
jedes Wort im Namen mit einem Großbuchstaben und
trennen Sie jedes Wort mit einem Unterstrich (_).

Datenmenge

Array_Lizenz

Attributnamen für Wörterbucheintrag sollten den
Namen des Wörterbucheintrags nicht enthalten.

Keine

Attribute und Verweise in einem Wörterbucheintrag
müssen in Kleinbuchstaben enthalten sein.

Aggregat, Größe_mb

Trennen Sie Wörter mit einem Unterstrich.
Leerzeichen sind nicht zulässig.

Ressourcen-Pool

24

Richtlinien Beispiel

Wörterbucheinträge können keine Referenzen
enthalten, die von einem anderen Schema stammen.
Wenn ein Wörterbucheintrag einen Querverweis auf
ein Objekt in einem anderen Schema erfordert, stellen
Sie sicher, dass alle natürlichen Schlüssel des
Objekts, auf das verwiesen wird, im
Wörterbucheintrag vorhanden sind.

Array_Performance-Wörterbuch-Eintrag erfordert alle
natürlichen Schlüssel des Array-Wörterbuchs als
direkte Attribute darin.

Verwenden Sie die entsprechenden Datentypen für
Attribute.

Keine

Verwenden Sie den langen Datentyp für die Größe
oder die speicherbezogenen Attribute.

Size_mb und Available_size_mb im Storage.Volume-
Wörterbuch-Eintrag

Verwenden Sie Enum, wenn ein Attribut einen festen
Satz von Werten hat.

raid_type in Storage.Volume-Wörterbuch-Eintrag

Legen Sie „to be gecached“ für ein Attribut oder
eine Referenz fest, wenn eine Datenquelle Wert für
dieses Attribut oder diesen Verweis gibt.für die Active
IQ Unified Manager Datenquelle fügen Sie Cache-
fähige Attribute hinzu, wenn die Datenquelle den Wert
für sie liefern kann.

Keine

Set „kann Null“ als wahr sein, wenn die
Datenquelle, die den Wert für dieses Attribut oder
diesen Verweis bereitstellt, Null zurückgeben kann.

Keine

Geben Sie jedem Attribut und jeder Referenz eine
aussagekräftige Beschreibung an.die Beschreibung
wird bei der Gestaltung eines Workflows in
Befehlsdetails angezeigt.

Keine

Verwenden Sie „id“ nicht als Namen eines Attributs in
Glossareinträgen. Es ist für die interne Verwendung
von WFA reserviert.

Keine

Verwandte Informationen

Verweise auf Lernmaterial

Richtlinien für Befehle

Zum Erstellen von Befehlen in OnCommand Workflow Automation (WFA) müssen Sie die
Richtlinien kennen.

25

https://docs.netapp.com/de-de/workflow-automation/workflows/reference-references-to-learning-material.html

Richtlinien Beispiel

Verwenden Sie einen leicht identifizierbaren Namen
für Befehle.

Create Qtree

Verwenden Sie Leerzeichen, um Wörter zu
begrenzen, und jedes Wort muss mit einem
Großbuchstaben beginnen.

Create Volume

Geben Sie eine Beschreibung zur Erläuterung der
Funktionalität des Befehls an, einschließlich des
erwarteten Ergebnisses der optionalen Parameter.

Keine

Standardmäßig beträgt die Zeitüberschreitung für
Standardbefehle 600 Sekunden. Die Standard-
Zeitüberschreitung wird beim Erstellen des Befehls
festgelegt. Ändern Sie den Standardwert nur, wenn
der Befehl möglicherweise länger dauert.

Create Volume Befehl

Erstellen Sie bei langlebigen Vorgängen zwei Befehle:
Einen, um den lang ausgeführten Vorgang
aufzurufen, und einen anderen, um den Fortschritt
des Vorgangs regelmäßig zu melden. Der erste
Befehl sollte ein sein Standard Execution
Befehlstyp und die zweite sollte sein Wait for
Condition Befehlstyp.

Create VSM Und Wait for VSM Befehle

Setzen Sie das ein Wait for condition
Befehlsnamen mit „wait“ zur einfachen
Identifizierung.

Wait for CM Volume Move

Verwenden Sie ein geeignetes Wartungsintervall für
die Befehle „Wait for Condition“. Der
angegebene Wert bestimmt das Intervall, in dem der
Abfragebefehl ausgeführt wird, um zu prüfen, ob der
lang laufende Vorgang abgeschlossen ist.

Abtastintervall 60er für das Wait for VSM Befehl

Für das Wait for condition Verwenden Sie
Befehle eine angemessene Zeitüberschreitung auf
der Grundlage der erwarteten Zeit, während der lange
laufende Vorgang abgeschlossen wird. Die erwartete
Zeit kann erheblich länger sein, wenn der Vorgang die
Datenübertragung über ein Netzwerk umfasst.

Ein VSM-Basistransfer kann viele Tage in Anspruch
nehmen. Daher beträgt die angegebene
Zeitüberschreitung 6 Tage.

Zeichenfolgendarstellung

Die Zeichenfolgendarstellung für einen Befehl zeigt die Details eines Befehls in einem Workflow-Design
während der Planung und Ausführung an. In der String-Darstellung für einen Befehl können nur die
Befehlsparameter verwendet werden.

26

Richtlinien Beispiel

Vermeiden Sie die Verwendung von Attributen, die
keinen Wert haben. Ein Attribut ohne Wert wird als
NA angezeigt.

VolName 10.68.66.212[NA]aggr1/testVol7

Trennen Sie verschiedene Einträge in der String-
Darstellung mit den folgenden Trennzeichen: [] , / :

ArrayName[ArrayIp]

Geben Sie jedem Wert in der
Zeichenfolgendarstellung aussagekräftige
Beschriftungen an.

Volume name=VolumeName

Sprache der Befehlsdefinition

Befehle können mithilfe der folgenden unterstützten Skriptsprachen geschrieben werden:

• PowerShell

• Perl

Definition von Befehlsparametern

Die Befehlsparameter werden mit Name, Beschreibung, Typ und einem Standardwert für den Parameter
beschrieben und ob der Parameter obligatorisch ist. Der Parametertyp kann String, Boolean, Integer, Long,
Double, sein Enum, DateTime, Capacity, Array, Hashtable, Kennwort oder XmlDocument. Während die Werte
für die meisten Typen intuitiv sind, sollten die Werte für Array und Hashtable in einem bestimmten Format
vorliegen, wie in der folgenden Tabelle beschrieben:

Richtlinien Beispiel

Stellen Sie sicher, dass der Wert für einen Array-
Eingabetyp eine Liste von Werten ist, die durch
Komma getrennt sind.

[parameter(Mandatory=$false,

HelpMessage="Months in which the

schedule executes.")]

[array]$CronMonths

Eingabe wird wie folgt übergeben: 0,3,6,9

Stellen Sie sicher, dass der Wert für einen Hashtable-
Eingabetyp eine Liste von Key=value pairs ist,
getrennt durch Semikolon.

[parameter(Mandatory=$false,

HelpMessage="Volume names and size

(in MB)")]

[hashtable]$VolumeNamesAndSize

Eingabe wird wie folgt übergeben:
Volume1=100;Volume2=250;Volume3=50

27

Richtlinien für Workflows

Sie müssen die Richtlinien zum Erstellen oder Ändern eines vordefinierten Workflows für
OnCommand Workflow Automation (WFA) kennen.

Allgemeine Richtlinien

Richtlinien Beispiel

Benennen Sie den Workflow, sodass er den Vorgang
wiedergibt, der vom Storage Operator ausgeführt
wird.

Create a CIFS Share

Für Workflow-Namen, setzen Sie den
Anfangsbuchstaben des ersten Wortes und jedes
Wort, das ein Objekt ist. Buchstaben für Abkürzungen
und Akronyme schreiben.

Datenmenge

Qtree

Erstellen Sie eine Clustered Data ONTAP Qtree CIFS
Share

Fügen Sie bei Workflow-Beschreibungen alle
wichtigen Schritte des Workflows ein, einschließlich
aller Voraussetzungen, Ergebnisse des Workflows
oder bedingter Aspekte der Ausführung.

Siehe Beschreibung des Beispielworkflows Create
VMware NFS Datastore on Clustered Data

ONTAP Storage, Dazu gehören die
Voraussetzungen.

Setzen Sie „bereit für die Produktion“ auf
true Nur wenn der Workflow für die Produktion bereit
ist und auf der Portalseite angezeigt werden kann.

Keine

Setzen Sie standardmäßig „chaue reserved
Elements“ auf true. Bei der Vorschau eines
Workflows für die Ausführung berücksichtigt der WFA
Planner alle Objekte, die zusammen mit den
bestehenden Objekten in der Cache-Datenbank
reserviert sind. Wenn diese Option auf festgelegt ist,
werden die Auswirkungen anderer parallel
ausgeführter geplanter Workflows oder Arbeitsschritte
bei der Planung eines bestimmten Workflows
berücksichtigt true.

• Szenario 1

Workflow 1 erstellt ein Volume und wird für eine
Woche später ausgeführt. Workflow 2 erstellt
qtrees oder LUNs in Volumes, nach denen
gesucht wird. Falls Workflow 2 innerhalb eines
Tages oder so ausgeführt wird, sollten Sie für
Workflow 2 „chaltest reservierte
Elemente“ deaktivieren, um zu verhindern, dass
das Volume, das innerhalb einer Woche erstellt
werden soll, berücksichtigt wird.

• Szenario 2

Workflow 1 verwendet den Create Volume
Befehl. Wenn ein geplanter Workflow 2 100 GB in
einem Aggregat verbraucht, muss Workflow 1 die
Anforderungen für Workflow 2 während der
Planung berücksichtigen.

28

Richtlinien Beispiel

Standardmäßig ist „Enable Element
Existenzvalidierung“ auf festgelegt true.

• Szenario 1

Wenn Sie einen Workflow erstellen, der zuerst ein
Volume mit dem Namen entfernt, verwenden Sie
den Befehl Remove Volume Nur wenn das
Volume vorhanden ist und das Volume mit einem
anderen Befehl wie z. B. neu erstellt wird Create
Volume Oder Clone Volume, Dann sollte der
Workflow dieses Flag nicht verwenden. Der Effekt
des Entfernens des Volumens steht dem nicht zur
Verfügung Create volume Befehl, wodurch der
Workflow fehlschlagen wird.

• Szenario 2

Der Create Volume Befehl wird in einem
Workflow mit einem bestimmten Namen als
„vol198“ verwendet.

Wenn diese Option auf „true“ gesetzt ist, überprüft
WFA Planner bei der Planung, ob ein Volume mit
diesem Namen im angegebenen Array vorhanden
ist. Wenn das Volume vorhanden ist, schlägt der
Workflow während der Planung fehl.

Wenn derselbe Befehl mehr als einmal in einem
Workflow ausgewählt ist, geben Sie entsprechende
Anzeigenamen für die Befehlsinstanzen an.

Im Beispiel-Workflow „Erstellen, Zuordnen und
Schützen von LUNs mit SnapVault“ wird der
verwendet Create Volume Zweimal Befehl. Die
Anzeigenamen werden jedoch als verwendet Create
Primary Volume Und Create Secondary
Volume Entsprechend für das primäre Volume und
das gespiegelte Ziel-Volume.

Benutzereingaben

Richtlinien Beispiel

Namen:

• Starten Sie den Namen mit dem Zeichen „` €`“.

• Verwenden Sie einen Großbuchstaben am
Anfang jedes Wortes.

• Verwenden Sie Großbuchstaben für alle Begriffe
und Abkürzungen.

• Keine Unterstriche verwenden.

$Array

$VolumeName

29

Richtlinien Beispiel

Namen anzeigen:

• Verwenden Sie einen Großbuchstaben am
Anfang jedes Wortes.

• Trennen Sie Wörter mit Leerzeichen.

• Wenn Eingänge bestimmte Einheiten haben,
geben Sie die Einheit in Klammern im
Anzeigenamen direkt an.

Volume Name

Volume Size (MB)

Beschreibungen:

• Geben Sie für jede Benutzereingabe eine
aussagekräftige Beschreibung an.

• Stellen Sie bei Bedarf Beispiele bereit.

Dies sollte insbesondere dann erfolgen, wenn die
Benutzereingaben in einem bestimmten Format
vorliegen sollen.

Die Benutzereingabebeschreibungen werden als
Tooltips für die Benutzereingaben bei der Workflow-
Ausführung angezeigt.

Initiatoren, die zu einer „Initiatorgruppe“
hinzugefügt werden sollen. Beispielsweise IQN oder
WWPN des Initiators.

Typ: Wählen Sie als Typ Enum aus, wenn Sie die
Eingabe auf einen bestimmten Satz von Werten
beschränken möchten.

Protokoll: „iscsi“, „fcp“, „mixed“

Typ: Wählen Sie Query als Typ aus, wenn der
Benutzer aus Werten auswählen kann, die im WFA
Cache verfügbar sind.

Array USD: ABFRAGETYP mit Abfrage wie folgt:

SELECT

 ip, name

FROM

 storage.array

Typ: Markieren Sie die Benutzereingabe als gesperrt,
wenn die Benutzereingabe auf die Werte beschränkt
werden soll, die von einer Abfrage erhalten werden
oder nur auf die unterstützten Enum-Typen
beschränkt sein sollten.

Array: Gesperrt Abfragetyp: Es können nur Arrays im
Cache ausgewählt werden. €Protokoll: Gesperrter
Enum-Typ mit gültigen Werten wie iscsi, fcp,
gemischt. Kein anderer Wert als der gültige Wert wird
unterstützt.

Typ: Abfrage-Typ zusätzliche Spalten als
Rückgabewerte in der Abfrage hinzufügen, wenn es
dem Speicherbetreiber hilft, die richtige Wahl der
Benutzereingabe zu treffen.

EUR Aggregat: Geben Sie Name, Gesamtgröße,
verfügbare Größe, so dass der Betreiber die Attribute
kennt, bevor Sie das Aggregat auswählen.

30

Richtlinien Beispiel

Typ: Abfrage TypeSQL Abfrage für Benutzereingaben
kann auf alle anderen Benutzer-Eingaben vor ihm
beziehen. Dadurch können die Ergebnisse einer
Abfrage auf Basis anderer Benutzereingaben wie z.
B. vFiler Einheiten eines Arrays, Volumes eines
Aggregats, LUNs in einer Storage Virtual Machine
(SVM) begrenzt werden.

Im Beispielworkflow Create a Clustered Data
ONTAP Volume, Die Abfrage für VserverName lautet
wie folgt:

SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

Die Abfrage bezieht sich auf €{clusterName}, wobei
USD clusterName der Name der Benutzereingaben
vor der Benutzereingabe für VserverName ist.

Typ: Verwenden Sie Booleschen Typ mit Werten als
“true, false” für Benutzereingaben, die boolesch sind.
Dies hilft beim Schreiben interner Ausdrücke im
Workflow-Design mit der Benutzereingabe direkt.
Beispiel: €UserInputName statt €UserInputName ==
'`Yes'.

$CreateCIFSShare: Boolescher Typ mit gültigen
Werten als „true“ oder „false“

Typ:für String- und Zahlentyp verwenden Sie in der
Spalte Werte reguläre Ausdrücke, wenn Sie den Wert
mit bestimmten Formaten validieren möchten.

Verwenden Sie regelmäßige Ausdrücke für IP-
Adresse und Netzwerkmaskeneingaben.

Ortsspezifische Benutzereingaben können als „[A-
Z][A-Z]\-0[1-9]“ angegeben werden. Diese
Benutzereingabe akzeptiert Werte wie „US-01“, „NB-
02“, nicht jedoch „nb-00“.

Typ: Für den Zahlentyp kann in der Spalte Werte eine
Bereichsbasierte Validierung angegeben werden.

Für Anzahl der zu erstellenden LUNs ist der Eintrag in
der Spalte Werte 1-20.

Gruppe: Gruppieren Sie die entsprechenden
Benutzereingaben in den entsprechenden Buckets
und benennen Sie die Gruppe.

„sStorage Details“ für alle Storage-bezogenen
Benutzereingaben. „DatStore Details“ für alle
Eingaben von Benutzern, die mit VMware
zusammenhängen.

31

Richtlinien Beispiel

Obligatorisch: Wenn der Wert einer Benutzereingabe
für die Ausführung des Workflows erforderlich ist,
markieren Sie die Benutzereingabe als obligatorisch.
Dadurch wird sichergestellt, dass die Eingabe des
Benutzers vom Benutzer akzeptiert wird.

„` Dollar VolumeName`“ im Workflow „NFS-Volume
erstellen“.

Standardwert: Wenn eine Benutzereingabe einen
Standardwert hat, der für die meisten Workflow-
Ausführungen arbeiten kann, geben Sie die Werte an.
Dadurch kann der Benutzer während der Ausführung
weniger Eingaben zur Verfügung stellen, wenn der
Standardwert dem Zweck dient.

Keine

Konstanten, Variablen und gibt Parameter zurück

Richtlinien Beispiel

Konstanten: Definieren Sie Konstanten bei der
Verwendung eines gemeinsamen Werts für die
Definition von Parametern zu mehreren Befehlen.

AGGREGATE_OVERCOMMITMENT_THRESHOLD

in Create, map, and protect LUNs with
SnapVault sample workflow.

Konstanten:Namen

• Verwenden Sie einen Großbuchstaben am
Anfang jedes Wortes.

• Verwenden Sie Großbuchstaben für alle Begriffe
und Abkürzungen.

• Keine Unterstriche verwenden.

• Verwenden Sie Großbuchstaben für alle
Buchstaben konstanter Namen.

AGGREGATE_USED_SPACE_THRESHOLD

ActuVolumeSizeInMB

Variablen: Geben Sie einem Objekt einen Namen an,
das in einer der Befehlsparameter-Felder definiert ist.
Variablen sind automatisch generierte Namen und
können geändert werden.

Keine

Variablen: Namen verwenden Kleinbuchstaben für
Variablennamen.

volume1

cifs_Freigabe

Rückgabeparameter: Verwenden Sie
Rückgabeparameter, wenn die Workflow-Planung und
-Ausführung während der Planung einige berechnete
oder ausgewählte Werte zurückgeben soll. Die Werte
werden im Vorschaumodus verfügbar gemacht, wenn
der Workflow auch von einem Webservice ausgeführt
wird.

Aggregat: Wenn das Aggregat mit der
Ressourcenauswahllogik ausgewählt wird, kann das
tatsächlich ausgewählte Aggregat als
Rückgabeparameter definiert werden.

32

Richtlinien zum Erstellen von Validierungsskripten für Remote-Systemtypen

Beachten Sie die Richtlinien zum Erstellen von Validierungsskripten, die zum Testen der
in OnCommand Workflow Automation (WFA) definierten Remote-Systemtypen verwendet
werden.

• Das von Ihnen erstellte Perl-Skript muss dem Beispielskript im Fenster Gültigkeitsskript ähnlich sein.

• Die Ausgabe Ihres Validierungsskripts muss dem des Beispielskripts ähnlich sein.

Beispiel für ein Validierungsskript

Check connectivity.

Return 1 on success.

Return 0 on failure and set $message

sub checkCredentials {

my ($host, $user, $passwd, $protocol, $port, $timeout) = @_;

#

Please add the code to check connectivity to $host using $protocol here.

#

return 1;

}

Richtlinien zum Erstellen von Datenquelltypen

Beachten Sie die Richtlinien zum Erstellen von Datenquelltypen, die zum Definieren
benutzerdefinierter Datenquellen für OnCommand Workflow Automation (WFA)
verwendet werden.

Sie können einen Datenquelltyp mit einer der folgenden Methoden definieren:

• SQL: Sie können mithilfe der WFA SQL Richtlinien Abfragen aus Datenquellen definieren, die auf einer
externen Datenbank basieren.

• SKRIPT: Sie können ein PowerShell-Skript schreiben, das die Daten für ein bestimmtes Schema von
Wörterbucheinträgen bereitstellt.

Die Richtlinien zum Erstellen von Datenquelltypen sind wie folgt:

• Sie sollten PowerShell-Sprache verwenden, um ein Skript zu erstellen.

• Das PowerShell-Skript sollte die Ausgabe für jeden Glossareintrag in seinem aktuellen Arbeitsverzeichnis
bereitstellen.

• Die Datendateien sollten benannt werden dictionary_entry.csv, Der Name des Wörterbucheintrags
sollte in Kleinbuchstaben enthalten sein.

Der vordefinierte Quelltyp der Daten, der Informationen von Performance Advisor erfasst, verwendet einen
SKRIPTBASIERTEN Datenquelltyp. Die Ausgabedateien werden benannt array_performance.csv
Und aggregate_performance.csv.

33

• Der .csv Die Datei sollte den Inhalt in der genauen Reihenfolge wie die Attribute des Wörterbucheintrags
enthalten.

Ein Eintrag aus dem Wörterbuch enthält Attribute in der folgenden Reihenfolge: Array_ip, Datum, Tag,
Stunde, cpu_beschäftigt, Total_OPS_per_sec, Disk_Throughput_per_sec

Das PowerShell Skript fügt dem Daten hinzu .csv Datei in derselben Reihenfolge.

$values = get-Array-CounterValueString ([REF]$data)

Add-Content $arrayFile ([byte[]][char[]] "\N

t$arrayIP't$date't$day't$hour't$values'n")

• Sie sollten Encoding verwenden, um sicherzustellen, dass die Datenausgabe aus dem Skript exakt in den
WFA Cache geladen ist.

• Sie sollten \N verwenden, wenn Sie einen Null-Wert in das eingeben .csv Datei:

34

Copyright-Informationen

Copyright © 2025 NetApp. Alle Rechte vorbehalten. Gedruckt in den USA. Dieses urheberrechtlich geschützte
Dokument darf ohne die vorherige schriftliche Genehmigung des Urheberrechtsinhabers in keiner Form und
durch keine Mittel – weder grafische noch elektronische oder mechanische, einschließlich Fotokopieren,
Aufnehmen oder Speichern in einem elektronischen Abrufsystem – auch nicht in Teilen, vervielfältigt werden.

Software, die von urheberrechtlich geschütztem NetApp Material abgeleitet wird, unterliegt der folgenden
Lizenz und dem folgenden Haftungsausschluss:

DIE VORLIEGENDE SOFTWARE WIRD IN DER VORLIEGENDEN FORM VON NETAPP ZUR VERFÜGUNG
GESTELLT, D. H. OHNE JEGLICHE EXPLIZITE ODER IMPLIZITE GEWÄHRLEISTUNG, EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE STILLSCHWEIGENDE GEWÄHRLEISTUNG DER
MARKTGÄNGIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, DIE HIERMIT
AUSGESCHLOSSEN WERDEN. NETAPP ÜBERNIMMT KEINERLEI HAFTUNG FÜR DIREKTE, INDIREKTE,
ZUFÄLLIGE, BESONDERE, BEISPIELHAFTE SCHÄDEN ODER FOLGESCHÄDEN (EINSCHLIESSLICH,
JEDOCH NICHT BESCHRÄNKT AUF DIE BESCHAFFUNG VON ERSATZWAREN ODER
-DIENSTLEISTUNGEN, NUTZUNGS-, DATEN- ODER GEWINNVERLUSTE ODER UNTERBRECHUNG DES
GESCHÄFTSBETRIEBS), UNABHÄNGIG DAVON, WIE SIE VERURSACHT WURDEN UND AUF WELCHER
HAFTUNGSTHEORIE SIE BERUHEN, OB AUS VERTRAGLICH FESTGELEGTER HAFTUNG,
VERSCHULDENSUNABHÄNGIGER HAFTUNG ODER DELIKTSHAFTUNG (EINSCHLIESSLICH
FAHRLÄSSIGKEIT ODER AUF ANDEREM WEGE), DIE IN IRGENDEINER WEISE AUS DER NUTZUNG
DIESER SOFTWARE RESULTIEREN, SELBST WENN AUF DIE MÖGLICHKEIT DERARTIGER SCHÄDEN
HINGEWIESEN WURDE.

NetApp behält sich das Recht vor, die hierin beschriebenen Produkte jederzeit und ohne Vorankündigung zu
ändern. NetApp übernimmt keine Verantwortung oder Haftung, die sich aus der Verwendung der hier
beschriebenen Produkte ergibt, es sei denn, NetApp hat dem ausdrücklich in schriftlicher Form zugestimmt.
Die Verwendung oder der Erwerb dieses Produkts stellt keine Lizenzierung im Rahmen eines Patentrechts,
Markenrechts oder eines anderen Rechts an geistigem Eigentum von NetApp dar.

Das in diesem Dokument beschriebene Produkt kann durch ein oder mehrere US-amerikanische Patente,
ausländische Patente oder anhängige Patentanmeldungen geschützt sein.

ERLÄUTERUNG ZU „RESTRICTED RIGHTS“: Nutzung, Vervielfältigung oder Offenlegung durch die US-
Regierung unterliegt den Einschränkungen gemäß Unterabschnitt (b)(3) der Klausel „Rights in Technical Data
– Noncommercial Items“ in DFARS 252.227-7013 (Februar 2014) und FAR 52.227-19 (Dezember 2007).

Die hierin enthaltenen Daten beziehen sich auf ein kommerzielles Produkt und/oder einen kommerziellen
Service (wie in FAR 2.101 definiert) und sind Eigentum von NetApp, Inc. Alle technischen Daten und die
Computersoftware von NetApp, die unter diesem Vertrag bereitgestellt werden, sind gewerblicher Natur und
wurden ausschließlich unter Verwendung privater Mittel entwickelt. Die US-Regierung besitzt eine nicht
ausschließliche, nicht übertragbare, nicht unterlizenzierbare, weltweite, limitierte unwiderrufliche Lizenz zur
Nutzung der Daten nur in Verbindung mit und zur Unterstützung des Vertrags der US-Regierung, unter dem
die Daten bereitgestellt wurden. Sofern in den vorliegenden Bedingungen nicht anders angegeben, dürfen die
Daten ohne vorherige schriftliche Genehmigung von NetApp, Inc. nicht verwendet, offengelegt, vervielfältigt,
geändert, aufgeführt oder angezeigt werden. Die Lizenzrechte der US-Regierung für das US-
Verteidigungsministerium sind auf die in DFARS-Klausel 252.227-7015(b) (Februar 2014) genannten Rechte
beschränkt.

Markeninformationen

NETAPP, das NETAPP Logo und die unter http://www.netapp.com/TM aufgeführten Marken sind Marken von
NetApp, Inc. Andere Firmen und Produktnamen können Marken der jeweiligen Eigentümer sein.

35

http://www.netapp.com/TM\

	Codierungsrichtlinien für WFA : OnCommand Workflow Automation
	Inhalt
	Codierungsrichtlinien für WFA
	Richtlinien für Variablen
	PowerShell Variablen
	Perl-Variablen

	Richtlinien für Einzüge
	Richtlinien für Kommentare
	PowerShell kommentiert
	Perl-Kommentare

	Richtlinien für die Protokollierung
	PowerShell-Protokollierung
	Perl-Protokollierung

	Richtlinien für die Fehlerbehandlung
	PowerShell Fehlerbehandlung
	Perl-Fehlerbehandlung

	Allgemeine PowerShell und Perl Konventionen für WFA
	Perl-Module mit Windows gebündelt

	Überlegungen beim Hinzufügen benutzerdefinierter PowerShell und Perl Module
	WFA Commandlets und Funktionen
	PowerShell und Perl WFA Module
	PowerShell Module
	Perl-Module

	Überlegungen beim Konvertieren von PowerShell-Befehlen in Perl
	Eingabearten für Befehle
	PowerShell Aussage
	Perl-Anweisung
	Befehlsdefinition

	Richtlinien für WFA Bausteine
	Richtlinien für SQL in WFA
	Richtlinien für Funktionen von WFA
	Richtlinien für Einträge im WFA Wörterbuch
	Richtlinien für Befehle
	Richtlinien für Workflows
	Richtlinien zum Erstellen von Validierungsskripten für Remote-Systemtypen
	Richtlinien zum Erstellen von Datenquelltypen

