Mejores practicas para Confluent Kafka

NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/es-es/netapp-solutions-ai/data-
analytics/confluent-kafka-introduction.html on February 12, 2026. Always check docs.netapp.com for the

latest.

Tabla de contenidos

Mejores practicas para Confluent Kafka
TR-4912: Pautas recomendadas para el almacenamiento en niveles de Confluent Kafka con NetApp
¢ Por qué el almacenamiento en niveles de Confluent?
¢ Por qué NetApp StorageGRID para el almacenamiento en niveles?

Habilitacién del almacenamiento en niveles confluent
Detalles de la arquitectura de la solucion
Descripcion general de la tecnologia
StorageGRID en NetApp
Apache Kafka
Confluente
Verificacion confluente
Configuracion de la plataforma Confluent
Configuracion de almacenamiento en niveles de Confluent
Almacenamiento de objetos de NetApp - StorageGRID
Pruebas de verificacion
Pruebas de rendimiento con escalabilidad
Conector s3 confluente
Conectores de Kafka Connect de Instaclustr
Clusteres autoequilibrados confluentes
Pautas de mejores practicas
Apresto
Simple
Conclusién
Doénde encontrar informacion adicional

O~ D WN= a4 o o

W W NDNDNDNDN- 2~ A A A
O O NN O o o OO WN = 2~ o

Mejores practicas para Confluent Kafka

TR-4912: Pautas recomendadas para el almacenamiento en
niveles de Confluent Kafka con NetApp

Karthikeyan Nagalingam, Joseph Kandatilparambil, NetApp Rankesh Kumar, Confluent

Apache Kafka es una plataforma de transmision de eventos distribuida por la comunidad
capaz de gestionar billones de eventos al dia. Inicialmente concebido como una cola de
mensajes, Kafka se basa en una abstraccion de un registro de confirmacion distribuido.
Desde que LinkedIn lo cred y lo puso en cédigo abierto en 2011, Kafka ha evolucionado
desde una cola de mensajes a una plataforma completa de transmision de eventos.
Confluent ofrece la distribucién de Apache Kafka con la plataforma Confluent. La
plataforma Confluent complementa Kafka con funciones comerciales y comunitarias
adicionales disefiadas para mejorar la experiencia de transmision tanto de operadores
como de desarrolladores en produccidn a gran escala.

Este documento describe las pautas recomendadas para usar Confluent Tiered Storage en una oferta de
almacenamiento de objetos de NetApp proporcionando el siguiente contenido:

* Verificacion confluente con almacenamiento de objetos de NetApp — NetApp StorageGRID
* Pruebas de rendimiento de almacenamiento por niveles

« Pautas de mejores practicas para Confluent en sistemas de almacenamiento NetApp

¢Por qué el almacenamiento en niveles de Confluent?

Confluent se ha convertido en la plataforma de transmisidén en tiempo real predeterminada para muchas
aplicaciones, especialmente para big data, analisis y cargas de trabajo de transmision. El almacenamiento en
niveles permite a los usuarios separar el procesamiento del almacenamiento en la plataforma Confluent. Hace
que el almacenamiento de datos sea mas rentable, le permite almacenar cantidades practicamente infinitas de
datos y escalar cargas de trabajo hacia arriba (o hacia abajo) segin demanda, y facilita las tareas
administrativas como el reequilibrio de datos e inquilinos. Los sistemas de almacenamiento compatibles con
S3 pueden aprovechar todas estas capacidades para democratizar los datos con todos los eventos en un solo
lugar, eliminando la necesidad de una ingenieria de datos compleja. Para obtener mas informacion sobre por
qué deberia utilizar almacenamiento por niveles para Kafka, consulte"Este articulo de Confluent" .

NetApp instaclustr también es compatible con Kafka con almacenamiento en niveles desde 3.8.1. Por favor,
consulte mas detalles aqui "Instaclust con almacenamiento por niveles de Kafka"

¢éPor qué NetApp StorageGRID para el almacenamiento en niveles?

StorageGRID es una plataforma de almacenamiento de objetos lider en la industria de NetApp. StorageGRID
es una solucion de almacenamiento basada en objetos y definida por software que admite API de objetos
estandar de la industria, incluida la API de Amazon Simple Storage Service (S3). StorageGRID almacena y
administra datos no estructurados a escala para proporcionar un almacenamiento de objetos seguro y
duradero. El contenido se coloca en el lugar correcto, en el momento correcto y en el nivel de almacenamiento
correcto, lo que optimiza los flujos de trabajo y reduce los costos de los medios enriquecidos distribuidos
globalmente.

https://docs.confluent.io/platform/current/kafka/tiered-storage.html#netapp-object-storage
https://www.instaclustr.com/support/documentation/kafka-add-ons/using-kafka-tiered-storage/

El mayor diferenciador de StorageGRID es su motor de politicas de gestion del ciclo de vida de la informacién
(ILM) que permite la gestion del ciclo de vida de los datos basada en politicas. El motor de politicas puede
usar metadatos para administrar como se almacenan los datos a lo largo de su vida util para optimizar
inicialmente el rendimiento y optimizar automaticamente el costo y la durabilidad a medida que los datos
envejecen.

Habilitacion del almacenamiento en niveles confluent

La idea basica del almacenamiento por niveles es separar las tareas de almacenamiento de datos del
procesamiento de datos. Con esta separacion, resulta mucho mas facil que el nivel de almacenamiento de
datos y el nivel de procesamiento de datos escalen de forma independiente.

Una solucion de almacenamiento por niveles para Confluent debe tener en cuenta dos factores. En primer
lugar, debe solucionar o evitar las propiedades comunes de consistencia y disponibilidad del almacén de
objetos, como las inconsistencias en las operaciones LIST y la falta de disponibilidad ocasional de objetos. En
segundo lugar, debe gestionar correctamente la interaccion entre el almacenamiento en niveles y el modelo de
replicacion y tolerancia a fallas de Kafka, incluida la posibilidad de que los lideres zombis sigan compensando
rangos en niveles. El almacenamiento de objetos de NetApp brinda disponibilidad de objetos constante y el
modelo HA hace que el almacenamiento agotado esté disponible para rangos de compensacién de niveles. El
almacenamiento de objetos de NetApp brinda disponibilidad de objetos constante y un modelo de alta
disponibilidad (HA) para que el almacenamiento agotado esté disponible para rangos de compensacion de
niveles.

Con el almacenamiento en niveles, puede usar plataformas de alto rendimiento para lecturas y escrituras de
baja latencia cerca del final de sus datos de transmisioén, y también puede usar almacenes de objetos mas
economicos y escalables como NetApp StorageGRID para lecturas historicas de alto rendimiento. También
tenemos una solucion técnica para Spark con controlador de almacenamiento NetApp y los detalles estan
aqui. La siguiente figura muestra coémo Kafka encaja en un flujo de trabajo de analisis en tiempo real.

s
\._____‘_‘______.__,-‘
Locatio : ()
! iz ' = 17 Grafana
' Spar : NoSQL

©

g
2

- Spark <4

ownE ; : o
Social media : : ‘
> : : o HIVE > kibana
i APATHE > . E .a_;t_'“
i i splunk>
Kafka

-
-

elasticsearch

@IiC

web

Data Source Ingest Real-time processing Storage Visualization

La siguiente figura muestra cémo NetApp StorageGRID encaja como nivel de almacenamiento de objetos de
Confluent Kafka.

Monitoring system

' I l L
' | 1 :
: : : ' : ' 1l Confluent |,
¥ Applications Applications Applications §§ Kafka Connect I' i Grafana) control center :
1
s, e U (SO S . S ER R——
=y, Schema
0““ Preo HE Reglstry l l

;' _______________] ______________________________________ (]

4 Kafka Brokers !

1

S ————————————]

1 %g Brokerl §€ Broker2 §3 Broker3 §€ Brokerd %g Brokers : f

1 I

1 N I

Tiered da

Tiered Storage | Object storage)

= == L
[eall e

Detalles de la arquitectura de la solucién

Tiered data

Esta seccion cubre el hardware y el software utilizados para la verificacion de Confluent.

Esta informacién se aplica a la implementacion de la plataforma C
almacenamiento NetApp . La siguiente tabla cubre la arquitectura
y los componentes base.

Componentes de la solucion Detalles

onfluent con
de la solucion probada

Confluent Kafka version 6.2 Tres cuidadores del zooldgico

 Cinco servidores de corredores

 Cinco servidores de h
e Una Grafana

* Un centro de control

erramientas

Linux (ubuntu 18.04) Todos los servidores
NetApp StorageGRID para almacenamiento en » Software StorageGRID
niveles

» 4 x SGF6024
* 4 x24 x 800 SSD

e Protocolo S3

* 1 x SG1000 (balanceador de carga)

* 4 x 100 GbE (conectividad de red entre el agente
y las instancias de StorageGRID)

15 servidores Fujitsu PRIMERGY RX2540 Cada uno equipado con: * 2 CPU, 16 nucleos fisicos

en total * Intel Xeon * 256
Puerto dual de 100 GbE

GB de memoria fisica *

Descripcion general de la tecnologia

Esta seccion describe la tecnologia utilizada en esta solucion.

StorageGRID en NetApp

NetApp StorageGRID es una plataforma de almacenamiento de objetos rentable y de alto rendimiento. Al
utilizar almacenamiento en niveles, la mayoria de los datos en Confluent Kafka, que se almacenan en el
almacenamiento local o en el almacenamiento SAN del broker, se descargan al almacén de objetos remoto.
Esta configuracion genera mejoras operativas significativas al reducir el tiempo y el costo de reequilibrar,
expandir o reducir clusteres o reemplazar un agente fallido. El almacenamiento de objetos juega un papel
importante en la administracion de datos que residen en el nivel de almacenamiento de objetos, por eso es
importante elegir el almacenamiento de objetos correcto.

StorageGRID ofrece una gestidon de datos global inteligente basada en politicas mediante una arquitectura de
cuadricula distribuida basada en nodos. Simplifica la gestion de petabytes de datos no estructurados y miles
de millones de objetos a través de su omnipresente espacio de nombres de objetos globales combinado con
sofisticadas funciones de gestion de datos. El acceso a objetos mediante una sola llamada se extiende a
través de los sitios y simplifica las arquitecturas de alta disponibilidad al tiempo que garantiza el acceso
continuo a los objetos, independientemente de las interrupciones del sitio o la infraestructura.

La multitenencia permite que multiples aplicaciones de datos empresariales y en la nube no estructurados se
atiendan de forma segura dentro de la misma red, lo que aumenta el retorno de la inversion y los casos de uso
de NetApp StorageGRID. Puede crear multiples niveles de servicio con politicas de ciclo de vida de objetos
basadas en metadatos, optimizando la durabilidad, la proteccidn, el rendimiento y la localidad en multiples
geografias. Los usuarios pueden ajustar las politicas de gestion de datos y monitorear y aplicar limites de
trafico para realinearlos al panorama de datos de manera no disruptiva a medida que sus requisitos cambian
en entornos de Tl en constante cambio.

Gestion sencilla con Grid Manager

StorageGRID Grid Manager es una interfaz grafica basada en navegador que le permite configurar,
administrar y monitorear su sistema StorageGRID en ubicaciones distribuidas globalmente en un solo panel.

F

eoe [- < U w 10.63.15017 : h + @

B NetApp® Storage.. | 45 Grid-Gra.. (Data Lake, I understa..) hitps:fiw._. & FeeCalcu. [hitpsfw... & Event-dri..) Hadoop a. [Applicatio.. @ Back up .
NetApp® StorageGRID® Halp = | Root = | Sign Oul
Dashboard & Alers - MNodes Tenants ILM = Confi tan = [} - Suppor =
Dashboard
Heaith © #Avallable Storage ©
. o . Overall =

Rocently resolved alerts (3) Legacy alarms (3) @ License

Information Lifecycle Management (ILM) ©

Awaiting - Cllent 0 objects
Awaiting - Evaluation Rate 0 objects / secand
Scan Poriod - Estimated 58 seconds

EEE

Protocol Operations &

51 rate 0 operations | sacond
Swift rate 0 operations / secand

EE

Puede realizar las siguientes tareas con la interfaz de StorageGRID Grid Manager:

+ Administre repositorios de objetos, como imagenes, videos y registros, distribuidos globalmente y a escala
de petabytes.

« Supervisar los nodos y servicios de la red para garantizar la disponibilidad de los objetos.

» Gestione la ubicacion de los datos de objetos a lo largo del tiempo utilizando reglas de gestion del ciclo de
vida de la informacion (ILM). Estas reglas rigen lo que sucede con los datos de un objeto después de su
ingesta, como se protegen contra pérdidas, dénde se almacenan los datos del objeto y durante cuanto
tiempo.

« Supervisar transacciones, rendimiento y operaciones dentro del sistema.

Politicas de gestion del ciclo de vida de la informacion

StorageGRID tiene politicas de administracion de datos flexibles que incluyen mantener copias de réplica de
sus objetos y usar esquemas EC (codificacion de borrado) como 2+1 y 4+2 (entre otros) para almacenar sus
objetos, dependiendo de los requisitos especificos de rendimiento y proteccion de datos. A medida que las
cargas de trabajo y los requisitos cambian con el tiempo, es comun que las politicas de ILM también deban
cambiar con el tiempo. La modificacién de las politicas de ILM es una caracteristica fundamental que permite
a los clientes de StorageGRID adaptarse a su entorno en constante cambio de forma rapida y sencilla.

Actuacion

StorageGRID escala el rendimiento agregando mas nodos de almacenamiento, que pueden ser maquinas
virtuales, hardware o dispositivos disefiados especificamente como el"'SG5712, SG5760, SG6060 o SGF6024"
. En nuestras pruebas, superamos los requisitos clave de rendimiento de Apache Kafka con una cuadricula de
tres nodos de tamano minimo utilizando el dispositivo SGF6024. A medida que los clientes escalan su cluster
de Kafka con agentes adicionales, pueden agregar mas nodos de almacenamiento para aumentar el
rendimiento y la capacidad.

https://www.netapp.com/pdf.html?item=/media/7931-ds-3613.pdf

Configuracion del balanceador de carga y del punto final

Los nodos de administracion en StorageGRID proporcionan la interfaz de usuario (IU) de Grid Manager vy el
punto final de APl REST para ver, configurar y administrar su sistema StorageGRID , asi como registros de
auditoria para rastrear la actividad del sistema. Para proporcionar un punto final S3 de alta disponibilidad para
el almacenamiento en niveles de Confluent Kafka, implementamos el balanceador de carga StorageGRID ,
que se ejecuta como un servicio en los nodos de administracion y los nodos de puerta de enlace. Ademas, el
balanceador de carga también administra el trafico local y se comunica con GSLB (Global Server Load
Balancing) para ayudar con la recuperacion ante desastres.

Para mejorar aun mas la configuracion de los puntos finales, StorageGRID proporciona politicas de
clasificacion de trafico integradas en el nodo de administracion, le permite monitorear el trafico de su carga de
trabajo y aplica varios limites de calidad de servicio (QoS) a sus cargas de trabajo. Las politicas de
clasificacion de trafico se aplican a los puntos finales del servicio StorageGRID Load Balancer para los nodos
de puerta de enlace y los nodos de administracion. Estas politicas pueden ayudar a configurar y monitorear el
trafico.

Clasificacion del trafico en StorageGRID

StorageGRID tiene funcionalidad QoS incorporada. Las politicas de clasificacion de trafico pueden ayudar a
monitorear diferentes tipos de trafico S3 provenientes de una aplicacion cliente. Luego, puede crear y aplicar
politicas para poner limites a este trafico en funcién del ancho de banda de entrada y salida, la cantidad de
solicitudes de lectura y escritura simultaneas o la tasa de solicitudes de lectura y escritura.

Apache Kafka

Apache Kafka es una implementacién de marco de un bus de software que utiliza procesamiento de flujo
escrito en Java y Scala. Su objetivo es proporcionar una plataforma unificada, de alto rendimiento y baja
latencia para gestionar transmisiones de datos en tiempo real. Kafka puede conectarse a un sistema externo
para exportar e importar datos a través de Kafka Connect y proporciona Kafka Streams, una biblioteca de
procesamiento de flujos de Java. Kafka utiliza un protocolo binario basado en TCP que esta optimizado para
la eficiencia y se apoya en una abstraccion de "conjunto de mensajes” que agrupa naturalmente los mensajes
para reducir la sobrecarga del viaje de ida y vuelta de la red. Esto permite operaciones de disco secuenciales
mas grandes, paquetes de red mas grandes y bloques de memoria contiguos, lo que permite a Kafka convertir
un flujo rafaga de escrituras de mensajes aleatorios en escrituras lineales. La siguiente figura representa el
flujo de datos basico de Apache Kafka.

Producer Producer Producer

Kafka Cluster

] I
] I
] I
.
' Topic Topic Topic |
] |
i i
: Partitions Partitions Partitions !
] I
I I
I i
i I
. . i
: Partitions Partitions Partitions I
I i
i i
i i
i i
I i
i Partitions Partitions Partitions :
I
I i
I i
AN S N
Consume Consumer Consumer

Kafka almacena mensajes clave-valor que provienen de una cantidad arbitraria de procesos llamados
productores. Los datos se pueden dividir en diferentes particiones dentro de diferentes temas. Dentro de una
particion, los mensajes se ordenan estrictamente por sus desplazamientos (la posiciéon de un mensaje dentro
de una particion) y se indexan y almacenan junto con una marca de tiempo. Otros procesos llamados
consumidores pueden leer mensajes de las particiones. Para el procesamiento de flujos, Kafka ofrece la API
Streams que permite escribir aplicaciones Java que consumen datos de Kafka y escriben los resultados en
Kafka. Apache Kafka también funciona con sistemas de procesamiento de flujo externos como Apache Apex,
Apache Flink, Apache Spark, Apache Storm y Apache NiFi.

Kafka se ejecuta en un cluster de uno o mas servidores (llamados intermediarios) y las particiones de todos
los temas se distribuyen entre los nodos del cluster. Ademas, las particiones se replican en multiples
intermediarios. Esta arquitectura permite a Kafka entregar flujos masivos de mensajes de manera tolerante a
fallos y le ha permitido reemplazar algunos de los sistemas de mensajeria convencionales como Java
Message Service (JMS), Advanced Message Queuing Protocol (AMQP), etc. Desde el lanzamiento de la
version 0.11.0.0, Kafka ofrece escrituras transaccionales, que proporcionan exactamente un procesamiento de
flujo mediante la API Streams.

Kafka admite dos tipos de temas: regulares y compactados. Los temas regulares se pueden configurar con un
tiempo de retencién o un limite de espacio. Si hay registros que son mas antiguos que el tiempo de retencion
especificado o si se excede el limite de espacio para una particion, Kafka puede eliminar datos antiguos para
liberar espacio de almacenamiento. De forma predeterminada, los temas estan configurados con un tiempo de
retencion de 7 dias, pero también es posible almacenar datos indefinidamente. Para los temas compactados,
los registros no caducan segun limites de tiempo o espacio. En cambio, Kafka trata los mensajes posteriores
como actualizaciones de mensajes mas antiguos con la misma clave y garantiza nunca eliminar el mensaje
mas reciente por clave. Los usuarios pueden eliminar mensajes por completo escribiendo un mensaje
denominado "tombstone" con un valor nulo para una clave especifica.

Hay cinco API principales en Kafka:

* API de productor. Permite que una aplicacion publique flujos de registros.
* API del consumidor. Permite que una aplicacion se suscriba a temas y procese flujos de registros.

* API de conector. Ejecuta las API de productor y consumidor reutilizables que pueden vincular los temas a

las aplicaciones existentes.
+ API de transmisiones. Esta API convierte los flujos de entrada en salida y produce el resultado.

* API de administracion. Se utiliza para administrar temas de Kafka, intermediarios y otros objetos de
Kafka.

Las API de consumidor y productor se basan en el protocolo de mensajeria de Kafka y ofrecen una
implementacion de referencia para los clientes consumidores y productores de Kafka en Java. El protocolo de
mensajeria subyacente es un protocolo binario que los desarrolladores pueden usar para escribir sus propios
clientes consumidores o productores en cualquier lenguaje de programacion. Esto desbloquea Kafka del
ecosistema de la maquina virtual Java (JVM). En la wiki de Apache Kafka se mantiene una lista de clientes
que no son Java disponibles.

Casos de uso de Apache Kafka

Apache Kafka es mas popular para mensajeria, seguimiento de actividad del sitio web, métricas, agregacion
de registros, procesamiento de transmisiones, abastecimiento de eventos y registro de confirmaciones.

« Kafka ha mejorado el rendimiento, la particion integrada, la replicacion y la tolerancia a fallas, lo que lo
convierte en una buena solucién para aplicaciones de procesamiento de mensajes a gran escala.

« Kafka puede reconstruir las actividades de un usuario (visitas de pagina, busquedas) en un canal de
seguimiento como un conjunto de feeds de publicacion y suscripcion en tiempo real.

» Kafka se utiliza a menudo para datos de seguimiento operativo. Esto implica agregar estadisticas de
aplicaciones distribuidas para producir fuentes centralizadas de datos operativos.

* Muchas personas utilizan Kafka como reemplazo de una solucion de agregacion de registros. La
agregacion de registros generalmente recopila archivos de registro fisicos de los servidores y los coloca
en un lugar central (por ejemplo, un servidor de archivos o HDFS) para su procesamiento. Kafka abstrae
los detalles de los archivos y proporciona una abstraccion mas limpia de los datos de registro o eventos
como un flujo de mensajes. Esto permite un procesamiento de menor latencia y un soporte mas sencillo
para multiples fuentes de datos y un consumo de datos distribuido.

* Muchos usuarios de Kafka procesan datos en canales de procesamiento que constan de varias etapas, en
las que los datos de entrada sin procesar se consumen de los temas de Kafka y luego se agregan,
enriquecen o transforman de otro modo en nuevos temas para un mayor consumo o procesamiento de
seguimiento. Por ejemplo, un canal de procesamiento para recomendar articulos de noticias podria
rastrear el contenido de los articulos desde fuentes RSS y publicarlo en un tema de "articulos". Un
procesamiento posterior podria normalizar o desduplicar este contenido y publicar el contenido del articulo
limpio en un nuevo tema, y una etapa de procesamiento final podria intentar recomendar este contenido a
los usuarios. Estos canales de procesamiento crean graficos de flujos de datos en tiempo real basados en
temas individuales.

» El almacenamiento en caché de eventos es un estilo de disefio de aplicaciones para el cual los cambios
de estado se registran como una secuencia de registros ordenada en el tiempo. El soporte de Kafka para
datos de registros almacenados de gran tamafio lo convierte en un excelente backend para una aplicacion
creada en este estilo.

» Kafka puede servir como una especie de registro de confirmacion externo para un sistema distribuido. El
registro ayuda a replicar datos entre nodos y actia como un mecanismo de resincronizacion para que los
nodos fallidos restauren sus datos. La funcion de compactacion de registros en Kafka ayuda a respaldar
este caso de uso.

Confluente

Confluent Platform es una plataforma preparada para la empresa que completa Kafka con capacidades
avanzadas disefiadas para ayudar a acelerar el desarrollo y la conectividad de las aplicaciones, permitir

transformaciones a través del procesamiento de flujo, simplificar las operaciones empresariales a escala y
cumplir con estrictos requisitos arquitecténicos. Desarrollado por los creadores originales de Apache Kafka,
Confluent amplia los beneficios de Kafka con funciones de nivel empresarial y al mismo tiempo elimina la
carga de la administracion o el monitoreo de Kafka. Hoy en dia, mas del 80% de las empresas Fortune 100
utilizan tecnologia de transmision de datos y la mayoria de ellas utilizan Confluent.

¢Por qué Confluent?

Al integrar datos historicos y en tiempo real en una unica fuente central de verdad, Confluent facilita la
creacion de una categoria totalmente nueva de aplicaciones modernas basadas en eventos, obtiene una
canalizacion de datos universal y desbloquea nuevos casos de uso poderosos con total escalabilidad,
rendimiento y confiabilidad.

¢Para qué se utiliza Confluent?

Confluent Platform le permite centrarse en cdmo obtener valor comercial de sus datos en lugar de
preocuparse por la mecanica subyacente, como la forma en que se transportan o integran los datos entre
sistemas dispares. En concreto, Confluent Platform simplifica la conexion de fuentes de datos a Kafka, la
creacion de aplicaciones de transmision, asi como la proteccion, la supervision y la gestion de su
infraestructura de Kafka. Hoy en dia, Confluent Platform se utiliza para una amplia gama de casos de uso en
numerosas industrias, desde servicios financieros, venta minorista omnicanal y automéviles auténomos hasta
deteccion de fraudes, microservicios e IoT.

La siguiente figura muestra los componentes de la plataforma Confluent Kafka.

Datobase Changes | Log Events IeT Events | { Web Events | { Other Events |
' + + 4 :
DATA CONFLUENT PLATFORM REAL-TIME

INTEGRATION APPLICATIONS

SECURITY & RESILIENCY

fr——————— RBAC | Audit Logs | Schemao Validation | Multi-Region Clusters | Replicator | Cluster Linking
| Hodoop 1 | Customer 360
; PERFORMANCE & SCALABILITY

| Datab: | Tiered Storoge | Self-Baloncing Clusters | KBz Operator |
atabase

— MANAGEMENT & MONITORING
! Data Warehouse | Centrol Center | Proocetive Support

DEVELOPMENT & CONNECTIVITY |
Connactors | Non-Java Clients | REST Proxy | Schema Registry | ksglDB

Fraud Detection

Inventory Management

| CRM } Analytics & ML

‘ Other ‘ APACHE KAFKA® ‘ Other
= —— Core | Connect API | Streams AP ——
| |
Customer self-managed Confluent fully managed
DATACENTER PUBLIC CLOUD OCON_FLUENT cCLOUD
. Commercial Feotures Community Features O Open Source Features

Descripcion general de la tecnologia de transmisién de eventos de Confluent

En el nucleo de la Plataforma Confluent se encuentra "Apache Kafka" , la plataforma de transmision distribuida
de cddigo abierto mas popular. Las capacidades clave de Kafka son las siguientes:

https://kafka.apache.org/

* Publicar y suscribirse a flujos de registros.
» Almacene flujos de registros de manera tolerante a fallos.

* Procesar flujos de registros.

De fabrica, Confluent Platform también incluye Schema Registry, REST Proxy, un total de mas de 100
conectores Kafka predisefiados y ksqlDB.

Descripcion general de las funciones empresariales de la plataforma Confluent

» Centro de Control de Confluentes. Un sistema basado en GUI para administrar y supervisar Kafka. Le
permite administrar facilmente Kafka Connect y crear, editar y administrar conexiones a otros sistemas.

Confluent para Kubernetes. Confluent for Kubernetes es un operador de Kubernetes. Los operadores de
Kubernetes amplian las capacidades de orquestacion de Kubernetes al proporcionar caracteristicas y
requisitos unicos para una aplicacion de plataforma especifica. Para Confluent Platform, esto incluye
simplificar enormemente el proceso de implementacion de Kafka en Kubernetes y automatizar las tareas
tipicas del ciclo de vida de la infraestructura.

» Conectores confluentes a Kafka. Los conectores utilizan la API de Kafka Connect para conectar Kafka a
otros sistemas, como bases de datos, almacenes de clave-valor, indices de busqueda y sistemas de
archivos. Confluent Hub tiene conectores descargables para las fuentes y receptores de datos mas
populares, incluidas versiones totalmente probadas y compatibles de estos conectores con Confluent
Platform. Se pueden encontrar mas detalles "aqui" .

 Clusteres autoequilibrados. Proporciona equilibrio de carga automatizado, deteccion de fallas y
autorreparacion. Proporciona soporte para agregar o desmantelar corredores segun sea necesario, sin
necesidad de realizar ajustes manuales.

» Enlace de clusteres confluentes. Conecta directamente los clusteres entre si y refleja temas de un
cluster a otro a través de un puente de enlace. La vinculacion de clusteres simplifica la configuracion de
implementaciones de multiples centros de datos, multiples clusteres y nubes hibridas.

Balanceador automatico de datos Confluent. Supervisa su cluster para conocer la cantidad de
intermediarios, el tamafio de las particiones, la cantidad de particiones y la cantidad de lideres dentro del
cluster. Le permite cambiar datos para crear una carga de trabajo uniforme en todo el cluster, al mismo
tiempo que limita el trafico de reequilibrio para minimizar el efecto en las cargas de trabajo de produccién
durante el reequilibrio.

* Replicador confluente. Hace que sea mas facil que nunca mantener multiples clusteres de Kafka en
multiples centros de datos.

* Almacenamiento por niveles. Proporciona opciones para almacenar grandes volimenes de datos de
Kafka utilizando su proveedor de nube favorito, reduciendo asi la carga operativa y los costos. Con el
almacenamiento por niveles, puede mantener los datos en un almacenamiento de objetos rentable y
escalar intermediarios solo cuando necesite mas recursos computacionales.

Cliente JMS Confluent. Confluent Platform incluye un cliente compatible con JMS para Kafka. Este
cliente de Kafka implementa la API estandar JMS 1.1, utilizando intermediarios de Kafka como backend.
Esto es util si tiene aplicaciones heredadas que usan JMS y desea reemplazar el agente de mensajes
JMS existente con Kafka.

Proxy MQTT confluente. Proporciona una manera de publicar datos directamente en Kafka desde
dispositivos y puertas de enlace MQTT sin la necesidad de un agente MQTT en el medio.

» Complementos de seguridad de Confluent. Los complementos de seguridad de Confluent se utilizan
para agregar capacidades de seguridad a varias herramientas y productos de la plataforma Confluent.
Actualmente, hay un complemento disponible para el proxy REST de Confluent que ayuda a autenticar las
solicitudes entrantes y propagar el principal autenticado a las solicitudes a Kafka. Esto permite que los
clientes proxy REST de Confluent utilicen las funciones de seguridad multiinquilino del broker Kafka.

10

https://docs.confluent.io/home/connect/userguide.html

Verificacion confluente

Realizamos la verificacion con Confluent Platform 6.2 Tiered Storage en NetApp
StorageGRID. Los equipos de NetApp y Confluent trabajaron juntos en esta verificaciéon y
ejecutaron los casos de prueba necesarios para la verificacion.

Configuracion de la plataforma Confluent

Utilizamos la siguiente configuracion para la verificacion.

Para la verificacion, utilizamos tres guardianes del zoolégico, cinco corredores, cinco servidores de ejecucion
de scripts de prueba, servidores de herramientas con nombre con 256 GB de RAM y 16 CPU. Para el
almacenamiento de NetApp , utilizamos StorageGRID con un balanceador de carga SG1000 con cuatro
SGF6024. El almacenamiento y los intermediarios se conectaron a través de conexiones de 100 GbE.

La siguiente figura muestra la topologia de red de la configuracion utilizada para la verificacion de Confluent.

== B= | q BGHI0 VA

Eeismi=isis
4 x 24 x 800 GB
SSDs
R
: -‘/ ~ j / { ; % C . ~.\ -. \ .. 1GUGbE

Toaols Servers Confluent Nodes

S

5, : .
. o

% 5 N)
i I

(X}

(B]

[R)

il

(N}

w

(R}

AL - K

|
Grafana . I Confluent control center Confluent Nodes = Confluent brokers

Los servidores de herramientas actian como clientes de aplicaciones que envian solicitudes a los nodos
Confluent.

Configuraciéon de almacenamiento en niveles de Confluent

La configuracion de almacenamiento por niveles requiere los siguientes parametros en Kafka:

11

Confluent.
confluent.
confluent.
confluent.
confluent.
confluent.
confluent.
confluent.
confluent.

10444/

confluent.

tier.
tier.
tier.

tier.

tier

tier

tier.
tier.

tier.

tier.

archiver.num.threads=16

fetcher.num.threads=32

enable=true

feature=true

.s3
s3.
s3.
s3.

s3.

.backend=S3
.bucket=kafkasgdbucketl-2

region=us-west-2
cred.file.path=/data/kafka/.ssh/credentials
aws.endpoint.override=http://kafkasgd.rtpppe.netapp.com:

force.path.style.access=true

Para la verificacion, utilizamos StorageGRID con el protocolo HTTP, pero HTTPS también funciona. La clave
de acceso y la clave secreta se almacenan en el nombre de archivo proporcionado en el
confluent.tier.s3.cred.file.path parametro.

Almacenamiento de objetos de NetApp - StorageGRID

Configuramos la configuracion de sitio unico en StorageGRID para la verificacion.

12

=
l:x; Zookeeper

Confluent
control center

Pruebas de verificacion

|
1
1
1
1
1
1
1
% Broker1l 1
— ——
1
1
1
1
1
1
1
1

Tiered
ObjectStore
Compatible

Checker tests

Confluent
Platform

I
: §g Broker2
|
|
I
|
I

Tiered storage

Tiered Storage (Object storage)

NetApp

Completamos los siguientes cinco casos de prueba para la verificacion. Estas pruebas se ejecutan en el
marco Trogdor. Las dos primeras fueron pruebas de funcionalidad y las tres restantes fueron pruebas de

rendimiento.

13

Prueba de correccion del almacén de objetos

Esta prueba determina si todas las operaciones basicas (por ejemplo, obtener/colocar/eliminar) en la API del
almacén de objetos funcionan bien de acuerdo con las necesidades del almacenamiento en niveles. Es una
prueba basica que todo servicio de almacenamiento de objetos debe esperar pasar antes de las siguientes
pruebas. Es una prueba asertiva que o se aprueba o se suspende.

Prueba de correccion de la funcionalidad de niveles

Esta prueba determina si la funcionalidad de almacenamiento en niveles de extremo a extremo funciona bien
con una prueba asertiva que pasa o falla. La prueba crea un tema de prueba que, de manera predeterminada,
esta configurado con niveles habilitados y un tamafo de conjunto activo muy reducido. Produce un flujo de
eventos para el tema de prueba recién creado, espera a que los intermediarios archiven los segmentos en el
almacén de objetos y luego consume el flujo de eventos y valida que el flujo consumido coincida con el flujo
producido. La cantidad de mensajes producidos en el flujo de eventos es configurable, lo que permite al
usuario generar una carga de trabajo suficientemente grande segun las necesidades de las pruebas. El
tamafio reducido del conjunto activo garantiza que las busquedas del consumidor fuera del segmento activo
se atiendan solo desde el almacén de objetos; esto ayuda a probar la exactitud del almacén de objetos para
las lecturas. Hemos realizado esta prueba con y sin inyeccion de falla en el almacén de objetos. Simulamos
una falla de nodo deteniendo el servicio del administrador de servicios en uno de los nodos en StorageGRID y
validando que la funcionalidad de extremo a extremo funciona con el almacenamiento de objetos.

Punto de referencia de busqueda de niveles

Esta prueba valido el rendimiento de lectura del almacenamiento de objetos en niveles y verificé las
solicitudes de lectura de obtencion de rango bajo una carga pesada de los segmentos generados por el punto
de referencia. En este punto de referencia, Confluent desarrollé clientes personalizados para atender las
solicitudes de busqueda de niveles.

Referencia de carga de trabajo de produccion y consumo

Esta prueba genero indirectamente una carga de trabajo de escritura en el almacén de objetos a través del
archivado de segmentos. La carga de trabajo de lectura (segmentos leidos) se generd desde el
almacenamiento de objetos cuando los grupos de consumidores obtuvieron los segmentos. Esta carga de
trabajo fue generada por el script de prueba. Esta prueba verifico el rendimiento de lectura y escritura en el
almacenamiento de objetos en subprocesos paralelos. Realizamos pruebas con y sin inyeccion de fallas en el
almacén de objetos tal como lo hicimos para la prueba de correccién de la funcionalidad de niveles.

Punto de referencia de la carga de trabajo de retencién

Esta prueba verifico el rendimiento de eliminacion de un almacén de objetos bajo una carga de trabajo pesada
de retencidn de temas. La carga de trabajo de retencion se generd utilizando un script de prueba que produce
muchos mensajes en paralelo a un tema de prueba. El tema de prueba fue configurar una configuracién de
retencion agresiva basada en el tamafio y el tiempo que provoco que el flujo de eventos se purgara
continuamente del almacén de objetos. Los segmentos fueron luego archivados. Esto provocé una gran
cantidad de eliminaciones en el almacenamiento de objetos por parte del agente y la recopilacion del
rendimiento de las operaciones de eliminacion del almacén de objetos.

Pruebas de rendimiento con escalabilidad

Realizamos pruebas de almacenamiento en niveles con tres o cuatro nodos para cargas
de trabajo de productores y consumidores con la configuracién NetApp StorageGRID .
Segun nuestras pruebas, el tiempo de finalizacion y los resultados de rendimiento fueron

14

directamente proporcionales a la cantidad de nodos StorageGRID . La configuracion de
StorageGRID requirié un minimo de tres nodos.

 El tiempo para completar la operacion de produccién y consumo disminuyo linealmente cuando aumento
el numero de nodos de almacenamiento.

Time to complete trends
(Lower is better)

8300 8241
8200 .

8100 S 8011
8000 :
7900

7800

7700

7600

7500

e,
LT
e,
"
L
e
L
‘e,
e
.....
tes
g,
L
L
.

Tiem in seconds

3 SGDs 4 SGDs 5S5GDs 6 SGDs
Number of StorageGrid Nodes

» El rendimiento de la operacién de recuperacion s3 aumento linealmente segun la cantidad de nodos
StorageGRID . StorageGRID admite hasta 200 nodos StorgeGRID.

15

S3 - Retrieve peformance Trend
(Higher is better)

16
14
12 10 ...
¢ 10
@
&8
o
O ¢
a4
2
0
3 SGDs 4 SGDs 5 SGDs 6 SGDs

Number of Storage Grid Nodes

Conector s3 confluente

El conector Amazon S3 Sink exporta datos de temas de Apache Kafka a objetos S3 en
formatos Avro, JSON o Bytes. El conector de sumidero de Amazon S3 sondea
periddicamente datos de Kafka y, a su vez, los carga en S3. Se utiliza un particionador
para dividir los datos de cada particion de Kafka en fragmentos. Cada fragmento de
datos se representa como un objeto S3. EI nombre de la clave codifica el tema, la
particion de Kafka y el desplazamiento de inicio de este fragmento de datos.

En esta configuracion, le mostramos cémo leer y escribir temas en el almacenamiento de objetos desde Kafka
directamente usando el conector de receptor Kafka s3. Para esta prueba, utilizamos un cluster Confluent
independiente, pero esta configuracion es aplicable a un cluster distribuido.

1. Descargue Confluent Kafka desde el sitio web de Confluent.

2. Descomprima el paquete en una carpeta en su servidor.

3. Exportar dos variables.

Export CONFLUENT HOME=/data/confluent/confluent-6.2.0
export PATH=S$PATH:/data/confluent/confluent-6.2.0/bin

4. Para una configuracion independiente de Confluent Kafka, el cluster crea una carpeta raiz temporal en
/tmp También crea carpetas de Zookeeper, Kafka, un registro de esquema, connect, un ksqgl-server y un
centro de control y copia sus respectivos archivos de configuracion desde SCONFLUENT HOME . Vea el
siguiente ejemplo:

16

root@stlrx2540ml-108:~# 1ls -ltr /tmp/confluent.406980/
total 28
drwxr—-xr-x root root 4096 Oct 29 19:01 zookeeper

root root 4096 Oct 29 19:37 kafka

root root 4096 Oct 29 19:40 schema-registry
root root 4096 Oct 29 19:45 kafka-rest

root root 4096 Oct 29 19:47 connect

root root 4096 Oct 29 19:48 ksgl-server
drwxr-xr-x 4 root root 4096 Oct 29 19:53 control-center

root@stlrx2540ml1-108:~4#

drwxr—-xr-x
drwxr—-xr-x
drwxr-xr-x

drwxr—-xr-x

N N N N A)

drwxr—-xr-x

5. Configurar Zookeeper. No es necesario cambiar nada si utiliza los parametros predeterminados.

root@stlrx2540m1-108:~# cat
/tmp/confluent.406980/zoo0keeper/zookeeper.properties | grep -iv *#
dataDir=/tmp/confluent.406980/zookeeper/data
clientPort=2181

maxClientCnxns=0

admin.enableServer=false

tickTime=2000

initLimit=5

syncLimit=2
server.l79=controlcenter:2888:3888
root@stlrx2540ml-108:~#

En la configuracion anterior, actualizamos el server. xxx propiedad. De forma predeterminada, se
necesitan tres guardianes del zooldgico para la seleccién del lider de Kafka.

6. Creamos un archivo myid en /tmp/confluent.406980/zookeeper/data con un ID Unico:

root@stlrx2540ml-108:~# cat /tmp/confluent.406980/zookeeper/data/myid
179
root@stlrx2540ml-108:~4#

Utilizamos el ultimo numero de direcciones IP para el archivo myid. Utilizamos valores predeterminados
para las configuraciones de Kafka, connect, control-center, Kafka, Kafka-rest, ksql-server y schema-
registry.

7. Inicie los servicios de Kafka.

17

8.

18

root@stlrx2540ml1-108:/data/confluent/confluent-6.2.0/bin# confluent
local services start

The local commands are intended for a single-node development
environment only,

NOT for production usage.

Using CONFLUENT CURRENT: /tmp/confluent.406980

ZooKeeper is [UP]

Kafka 1is [UP]

Schema Registry is [UP]

Kafka REST is [UP]

Connect 1s [UP]

ksglDB Server is [UP]

Control Center is [UP]
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin#

Hay una carpeta de registro para cada configuracion, que ayuda a solucionar problemas. En algunos
casos los servicios tardan mas tiempo en iniciarse. Asegurese de que todos los servicios estén en
funcionamiento.

Instalar Kafka connect usando confluent-hub.

root@stlrx2540m1-108:/data/confluent/confluent-6.2.0/bin# ./confluent-
hub install confluentinc/kafka-connect-s3:latest
The component can be installed in any of the following Confluent
Platform installations:

1. /data/confluent/confluent-6.2.0 (based on $CONFLUENT HOME)

2. /data/confluent/confluent-6.2.0 (where this tool is installed)
Choose one of these to continue the installation (1-2): 1
Do you want to install this into /data/confluent/confluent-
6.2.0/share/confluent-hub-components? (yN) vy

Component's license:
Confluent Community License
http://www.confluent.io/confluent-community-license
I agree to the software license agreement (yN) vy
Downloading component Kafka Connect S3 10.0.3, provided by Confluent,
Inc. from Confluent Hub and installing into /data/confluent/confluent-
6.2.0/share/confluent-hub-components
Do you want to uninstall existing version 10.0.3? (yN) vy
Detected Worker's configs:

1. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-
distributed.properties

2. Standard: /data/confluent/confluent-6.2.0/etc/kafka/connect-
standalone.properties

3. Standard: /data/confluent/confluent-6.2.0/etc/schema-
registry/connect-avro-distributed.properties
4. Standard: /data/confluent/confluent-6.2.0/etc/schema-
registry/connect-avro-standalone.properties
5. Based on CONFLUENT CURRENT:
/tmp/confluent.406980/connect/connect.properties
6. Used by Connect process with PID 15904:
/tmp/confluent.406980/connect/connect.properties
Do you want to update all detected configs? (yN) vy
Adding installation directory to plugin path in the following files:
/data/confluent/confluent-6.2.0/etc/kafka/connect-
distributed.properties
/data/confluent/confluent-6.2.0/etc/kafka/connect-
standalone.properties
/data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-
distributed.properties
/data/confluent/confluent-6.2.0/etc/schema-registry/connect-avro-
standalone.properties
/tmp/confluent.406980/connect/connect.properties
/tmp/confluent.406980/connect/connect.properties

Completed
root@stlrx2540ml1-108:/data/confluent/confluent-6.2.0/bin#

También puedes instalar una version especifica usando confluent-hub install
confluentinc/kafka-connect-s3:10.0.3.

9. Por defecto, confluentinc-kafka-connect-s3 estd instalado en /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3.

10. Actualice la ruta del complemento con el nuevo confluentinc-kafka-connect-s3.

root@stlrx2540ml-108:~# cat /data/confluent/confluent-
6.2.0/etc/kafka/connect-distributed.properties | grep plugin.path

#

plugin.path=/usr/local/share/java, /usr/local/share/kafka/plugins, /opt/co
nnectors,

plugin.path=/usr/share/java, /data/zookeeper/confluent/confluent-
6.2.0/share/confluent-hub-components, /data/confluent/confluent-
6.2.0/share/confluent-hub-components, /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-s3
root@stlrx2540ml-108:~#

11. Detenga los servicios de Confluent y reinicielos.

19

confluent local services stop

confluent local services start
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin# confluent
local services status

The local commands are intended for a single-node development
environment only,

NOT for production usage.

Using CONFLUENT CURRENT: /tmp/confluent.406980

Connect is [UP]

Control Center is [UP]

Kafka is [UP]

Kafka REST is [UP]

ksglDB Server is [UP]

Schema Registry is [UP]

ZooKeeper is [UP]
root@stlrx2540ml-108:/data/confluent/confluent-6.2.0/bin#

12. Configurar el ID de acceso y la clave secreta en el /root/.aws/credentials archivo.

root@stlrx2540ml1-108:~# cat /root/.aws/credentials

[default]
aws_access key 1d = XXXXXXXXXXXX
aws_secret_acces s_key = XXXXXXXXXXXXXXXXXXXXXXXXXX

root@stlrx2540ml1-108:~#

13. Verifiqgue que el depdsito sea accesible.

root@stlrx2540m4-01:~# aws s3 —endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 1s kafkasgdbucketl-2

2021-10-29 21:04:18 1388 1
2021-10-29 21:04:20 1388 2
2021-10-29 21:04:22 1388 3

root@stlrx2540m4-01:~#

14. Configure el archivo de propiedades s3-sink para la configuracion de s3 y del bucket.

20

root@stlrx2540m1-108:~# cat /data/confluent/confluent-
6.2.0/share/confluent-hub-components/confluentinc-kafka-connect-
s3/etc/quickstart-s3.properties | grep -v #

name=s3-sink
connector.class=io.confluent.connect.s3.5S3SinkConnector
tasks.max=1

topics=s3 testtopic

s3.region=us-west-2

s3.bucket.name=kafkasgdbucketl-2
store.url=http://kafkasgd.rtpppe.netapp.com:10444/
s3.part.size=5242880

flush.size=3
storage.class=io.confluent.connect.s3.storage.S3Storage
format.class=io.confluent.connect.s3.format.avro.AvroFormat
partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartit
ioner

schema.compatibility=NONE

root@stlrx2540ml1-108:~#

15. Importar algunos registros al bucket s3.

kafka-avro-console-producer --broker-list localhost:9092 --topic

s3 topic \

—-—property
value.schema="'{"type":"record", "name" : "myrecord","fields": [{"name":"f1",

"type" . "String" }] } '

{"f1": "valuel"}
{"f1": "value2"}
{"f1": "value3"}
{"f1": "valued"}
{"f1": "valueb"}
{"f1l": "value6"}
{"f1": "value7"}
{"f1": "value8"}
{"f1": "value9"}

16. Cargue el conector s3-sink.

root@stlrx2540ml1-108:~# confluent local services connect connector load
s3-sink --config /data/confluent/confluent-6.2.0/share/confluent-hub-
components/confluentinc-kafka-connect-s3/etc/quickstart-s3.properties
The local commands are intended for a single-node development
environment only,

NOT for production usage.
https://docs.confluent.io/current/cli/index.html

{

"name": "s3-sink",

"config": {
"connector.class": "io.confluent.connect.s3.53SinkConnector",
"flush.size": "3",
"format.class": "io.confluent.connect.s3.format.avro.AvroFormat",

"partitioner.class":
"io.confluent.connect.storage.partitioner.DefaultPartitioner",
"s3.bucket.name": "kafkasgdbucketl-2",
"s3.part.size": "5242880",
"s3.region": "us-west-2",
"schema.compatibility": "NONE",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"store.url": "http://kafkasgd.rtpppe.netapp.com:10444/",
"tasks.max": "1",
"topics": "s3 testtopic",
"name": "s3-sink"
by
"tasks": [1,
"type": "sink"
}
root@stlrx2540ml-108:~#

17. Verifique el estado del receptor s3.

22

root@stlrx2540ml1-108:~# confluent local services connect connector
status s3-sink

The local commands are intended for a single-node development
environment only,

NOT for production usage.
https://docs.confluent.io/current/cli/index.html

{

"name": "s3-sink",
"connector": {
"state": "RUNNING",

"worker id": "10.63.150.185:8083"
b
"tasks": [
{
"id": 0,
"state": "RUNNING",
"worker id": "10.63.150.185:8083"

] 4

"type": "sink"
}
root@stlrx2540ml1-108:~4#

18. Verifique el registro para asegurarse de que s3-sink esté listo para aceptar temas.

root@stlrx2540ml1-108:~# confluent local services connect log

19. Consulte los temas en Kafka.

kafka-topics --list —--bootstrap-server localhost:9092

connect-configs
connect-offsets
connect-statuses
default ksgl processing log
s3 testtopic

s3 topic

s3 topic new
root@stlrx2540ml1-108:~4#

20. Verifique los objetos en el bucket s3.

23

root@stlrx2540ml-108:~# aws s3 --endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 1s --recursive kafkasgdbucketl-
2/topics/

2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro
2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000003.avro
2021-10-29 21:24:00 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000006.avro
2021-10-29 21:24:08 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000009.avro
2021-10-29 21:24:08 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000012.avro
2021-10-29 21:24:09 213

topics/s3 testtopic/partition=0/s3 testtopic+0+0000000015.avro
root@stlrx2540ml1-108:~4#

21. Para verificar el contenido, copie cada archivo de S3 a su sistema de archivos local ejecutando el

siguiente comando:

root@stlrx2540ml-108:~# aws s3 --endpoint-url
http://kafkasgd.rtpppe.netapp.com:10444 cp s3://kafkasgdbucketl-
2/topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro
tes.avro

download: s3://kafkasgdbucketl-

2/topics/s3 testtopic/partition=0/s3 testtopic+0+0000000000.avro to
./tes.avro

root@stlrx2540ml-108:~4#

22. Para imprimir los registros, utilice avro-tools-1.11.0.1.jar (disponible en el "Archivos Apache").

24

root@stlrx2540ml-108:~# java -jar /usr/src/avro-tools-1.11.0.1.Jjar
tojson tes.avro

21/10/30 00:20:24 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable

{"f1":"valuel"}

{"f1":"value2"}

{"f1":"value3"}

root@stlrx2540ml-108:~#

http://mirror.metrocast.net/apache/avro/stable/java/

Conectores de Kafka Connect de Instaclustr

Instaclustr admite los conectores de Kafka Connect y sus detalles: "Mas detalles". Instaclustr proporciona
conectores adicionales "sus detalles"

Clusteres autoequilibrados confluentes

Si ha administrado un cluster de Kafka anteriormente, probablemente esté familiarizado
con los desafios que implica reasignar manualmente particiones a diferentes agentes
para asegurarse de que la carga de trabajo esté equilibrada en todo el cluster. Para las
organizaciones con grandes implementaciones de Kafka, reorganizar grandes
cantidades de datos puede ser una tarea abrumadora, tediosa y riesgosa, especialmente
si las aplicaciones de mision critica se crean sobre el cluster. Sin embargo, incluso para
los casos de uso mas pequerfios de Kafka, el proceso consume mucho tiempo y es
propenso a errores humanos.

En nuestro laboratorio, probamos la funcion de clusteres de autoequilibrio de Confluent, que automatiza el
reequilibrio en funcion de los cambios en la topologia del cluster o de la carga desigual. La prueba de
reequilibrio de Confluent ayuda a medir el tiempo necesario para agregar un nuevo agente cuando falla un
nodo o el nodo de escalamiento requiere reequilibrar los datos entre los agentes. En las configuraciones
clasicas de Kafka, la cantidad de datos a reequilibrar crece a medida que crece el cluster, pero, en el
almacenamiento en niveles, el reequilibrio esta restringido a una pequefia cantidad de datos. Segun nuestra
validacion, el reequilibrio en el almacenamiento en niveles toma segundos o minutos en una arquitectura
clasica de Kafka y crece linealmente a medida que crece el cluster.

En los clusteres con autoequilibrio, los reequilibrios de particiones estan completamente automatizados para
optimizar el rendimiento de Kafka, acelerar el escalamiento del agente y reducir la carga operativa de ejecutar
un cluster grande. En estado estable, los clusteres autoequilibrados monitorean la desviacion de los datos
entre los intermediarios y reasignan particiones continuamente para optimizar el rendimiento del cluster. Al
escalar la plataforma hacia arriba o hacia abajo, los clusteres de autoequilibrio reconocen automaticamente la
presencia de nuevos intermediarios o la eliminacion de intermediarios antiguos y activan una reasignacion de
particion posterior. Esto le permite agregar y desmantelar corredores facilmente, lo que hace que sus clusteres
de Kafka sean fundamentalmente mas elasticos. Estos beneficios se obtienen sin necesidad de intervencion
manual, calculos matematicos complejos o el riesgo de error humano que normalmente conllevan las
reasignaciones de particiones. Como resultado, los reequilibrios de datos se completan en mucho menos
tiempo y usted puede concentrarse en proyectos de transmision de eventos de mayor valor en lugar de tener
que supervisar constantemente sus clusteres.

Instaclustr también admite funciones de reequilibrio automatico y se ha implementado para multiples clientes.

Pautas de mejores practicas
En esta seccion se presentan las lecciones aprendidas de esta certificacion.
« Segun nuestra validacion, el almacenamiento de objetos S3 es la mejor opcidn para que Confluent

conserve datos.

* Podemos usar SAN de alto rendimiento (especificamente FC) para mantener los datos activos del broker o
el disco local, porque, en la configuracion de almacenamiento en niveles de Confluent, el tamafio de los
datos almacenados en el directorio de datos del broker se basa en el tamafio del segmento y el tiempo de
retencion cuando los datos se mueven al almacenamiento de objetos.

25

https://github.com/instaclustr/kafka-connect-connectors
https://www.instaclustr.com/support/documentation/kafka-connect/bundled-kafka-connect-plugins/

* Los almacenes de objetos proporcionan un mejor rendimiento cuando segment.bytes es mayor; probamos
512 MB.

* En Kafka, la longitud de la clave o el valor (en bytes) para cada registro producido para el tema esta
controlada por el 1ength.key.value parametro. Para StorageGRID, el rendimiento de ingesta y
recuperacion de objetos S3 aumento a valores mas altos. Por ejemplo, 512 bytes proporcionaron una
recuperacion de 5,8 GBps, 1024 bytes proporcionaron una recuperacion s3 de 7,5 GBps y 2048 bytes
proporcionaron cerca de 10 GBps.

La siguiente figura presenta la ingesta y recuperacion de objetos S3 en funcion de 1length.key.value.

S3 Ingest and Retrieve

0Bs

== |ngest rate == Retrieve rate

Afinacion de Kafka. Para mejorar el rendimiento del almacenamiento en niveles, puede aumentar
TierFetcherNumThreads y TierArchiverNumThreads. Como regla general, se recomienda aumentar
TierFetcherNumThreads para que coincida con la cantidad de nucleos de CPU fisicos y aumentar
TierArchiverNumThreads a la mitad de la cantidad de nucleos de CPU. Por ejemplo, en las propiedades
del servidor, si tiene una maquina con ocho nucleos fisicos, configure confluent.tier.fetcher.num.threads =
8 y confluent.tier.archiver.num.threads = 4.

Intervalo de tiempo para eliminar temas. Cuando se elimina un tema, la eliminacion de los archivos de
segmentos de registro en el almacenamiento de objetos no comienza de inmediato. Mas bien, hay un
intervalo de tiempo con un valor predeterminado de 3 horas antes de que se eliminen esos archivos.
Puede modificar la configuracion, confluent.tier.topic.delete.check.interval.ms, para cambiar el valor de
este intervalo. Si elimina un tema o un cluster, también puede eliminar manualmente los objetos en el
depdsito correspondiente.

ACL sobre temas internos de almacenamiento en niveles. Una practica recomendada para las
implementaciones locales es habilitar un autorizador de ACL en los temas internos utilizados para el
almacenamiento en niveles. Establezca reglas de ACL para limitar el acceso a estos datos unicamente al
usuario del corredor. Esto protege los temas internos y evita el acceso no autorizado a los metadatos y
datos de almacenamiento en niveles.

26

kafka-acls --bootstrap-server localhost:9092 --command-config adminclient-
configs.conf \

--add --allow-principal User:<kafka> --operation All --topic " confluent-
tier-state"

@ Reemplazar al usuario <kafka> con el principal del broker real en su implementacion.

Por ejemplo, el comando confluent-tier-state Establece ACL en el tema interno para el
almacenamiento en niveles. Actualmente, solo hay un Unico tema interno relacionado con el almacenamiento
en niveles. El ejemplo crea una ACL que proporciona el permiso principal de Kafka para todas las operaciones
en el tema interno.

Apresto

El dimensionamiento de Kafka se puede realizar con cuatro modos de configuracion:
simple, granular, inverso y particiones.

Simple

El modo simple es apropiado para quienes utilizan Apache Kafka por primera vez o para casos de uso en
etapas iniciales. Para este modo, debe proporcionar requisitos como el rendimiento en MBps, la distribucién
de lectura, la retencion y el porcentaje de utilizacion de recursos (el 60 % es el valor predeterminado).
También ingresa al entorno, como local (bare-metal, VMware, Kubernetes u OpenStack) o en la nube. En
funcion de esta informacion, el dimensionamiento de un cluster de Kafka proporciona la cantidad de
servidores necesarios para el broker, el zookeeper, los trabajadores de conexién de Apache Kafka, el registro
de esquema, un proxy REST, ksqIDB y el centro de control de Confluent.

Para el almacenamiento en niveles, considere el modo de configuracion granular para dimensionar un cluster
de Kafka. EI modo granular es apropiado para usuarios experimentados de Apache Kafka o casos de uso bien
definidos. Esta seccion describe el dimensionamiento para productores, procesadores de flujo y
consumidores.

Productores

Para describir los productores de Apache Kafka (por ejemplo, un cliente nativo, un proxy REST o un conector
de Kafka), proporcione la siguiente informacion:
* Nombre. Chispa.

* Tipo de productor. Aplicacion o servicio, proxy (REST, MQTT, otros) y base de datos existente (RDBMS,
NOSQL, otros). También puedes seleccionar "No sé".

* Rendimiento promedio. En eventos por segundo (1.000.000 por ejemplo).
* Rendimiento maximo. En eventos por segundo (4.000.000 por ejemplo).
+ Tamafo promedio del mensaje. En bytes, sin comprimir (maximo 1 MB; 1000 por ejemplo).

* Formato del mensaje. Las opciones incluyen Avro, JSON, buffers de protocolo, binario, texto, "No sé" y
otros.

» Factor de replicacion. Las opciones son 1, 2, 3 (recomendacion Confluent), 4, 5 0 6.

27

* Tiempo de retencién. Un dia (por ejemplo). ¢ Cuanto tiempo desea que sus datos se almacenen en
Apache Kafka? Introduzca -1 con cualquier unidad por tiempo infinito. La calculadora asume un tiempo de
retencion de 10 afios para una retencion infinita.

» Seleccione la casilla de verificacion " Habilitar almacenamiento en niveles para disminuir la cantidad de
agentes y permitir almacenamiento infinito?"

« Cuando el almacenamiento en niveles esta habilitado, los campos de retencidn controlan el conjunto
activo de datos que se almacenan localmente en el agente. Los campos de retencion de archivo controlan
durante cuanto tiempo se almacenan los datos en el almacenamiento de objetos de archivo.

* Retencion de almacenamiento de archivo. Un ano (por ejemplo). ;Durante cuanto tiempo desea que
sus datos se mantengan almacenados en el almacenamiento de archivo? Introduce -1 con cualquier
unidad durante una duracion infinita. La calculadora asume una retencion de 10 afios para una retencion
infinita.

* Multiplicador de crecimiento. 1 (por ejemplo). Si el valor de este parametro se basa en el rendimiento
actual, configurelo en 1. Para ajustar el tamafio en funcién del crecimiento adicional, configure este
parametro en un multiplicador de crecimiento.

* Numero de instancias de productor. 10 (por ejemplo). ; Cuantas instancias de productor se ejecutaran?
Esta entrada es necesaria para incorporar la carga de la CPU en el calculo de tamafo. Un valor en blanco
indica que la carga de la CPU no esta incorporada en el calculo.

Con base en este ejemplo de entrada, el dimensionamiento tiene el siguiente efecto sobre los productores:

* Rendimiento promedio en bytes sin comprimir: 1 GBps. Rendimiento maximo en bytes sin comprimir: 4
GBps. Rendimiento promedio en bytes comprimidos: 400 MBps. Rendimiento maximo en bytes
comprimidos: 1,6 GBps. Esto se basa en una tasa de compresién predeterminada del 60 % (puede
cambiar este valor).

o Almacenamiento total en el broker requerido: 31 104 TB, incluida la replicacién, comprimido.
Almacenamiento de archivo total fuera del broker requerido: 378 432 TB, comprimido.
Usar"https://fusion.netapp.com" para dimensionar StorageGRID .

Los procesadores de flujo deben describir sus aplicaciones o servicios que consumen datos de Apache Kafka
y los producen nuevamente en Apache Kafka. En la mayoria de los casos, estos se construyen en ksqlDB o
Kafka Streams.
* Nombre. Serpentina de chispas.
* Tiempo de procesamiento. ;Cuanto tiempo tarda este procesador en procesar un solo mensaje?
> 1 ms (transformacion simple, sin estado) [ejemplo], 10 ms (operacién en memoria con estado).
> 100 ms (operacion de disco o red con estado), 1000 ms (llamada REST de terceros).
o He evaluado este parametro y sé exactamente cuanto tiempo lleva.

* Retencion de salida. 1 dia (ejemplo). Un procesador de flujo produce su salida en Apache Kafka.
¢, Cuanto tiempo desea que se almacenen estos datos de salida en Apache Kafka? Introduce -1 con
cualquier unidad durante una duracion infinita.

» Seleccione la casilla de verificacion "¢ Habilitar almacenamiento en niveles para disminuir el nimero de
agentes y permitir almacenamiento infinito?"

* Retencion de almacenamiento de archivo. 1 afio (por ejemplo). ;Durante cuanto tiempo desea que sus
datos se mantengan almacenados en el almacenamiento de archivo? Introduce -1 con cualquier unidad
durante una duracion infinita. La calculadora asume una retencion de 10 afios para una retencion infinita.

» Porcentaje de paso de salida. 100 (por ejemplo). Un procesador de flujo produce su salida en Apache
Kafka. ¢ Qué porcentaje del rendimiento entrante se devolvera a Apache Kafka? Por ejemplo, si el

28

https://fusion.netapp.com

rendimiento de entrada es de 20 MBps y este valor es 10, el rendimiento de salida sera de 2 MBps.

» ¢ Desde qué aplicaciones se lee esto? Seleccione “Spark”, el nombre utilizado en el dimensionamiento
basado en el tipo de productor. Con base en la informacidn anterior, puede esperar los siguientes efectos
del tamanfo en las instancias del procesador de flujo y las estimaciones de particion de temas:

« Esta aplicacion de procesador de flujo requiere la siguiente cantidad de instancias. Es probable que los
temas entrantes también requieran esta cantidad de particiones. Pongase en contacto con Confluent para
confirmar este parametro.

> 1.000 para un rendimiento promedio sin multiplicador de crecimiento
> 4.000 para un rendimiento maximo sin multiplicador de crecimiento
> 1.000 para un rendimiento promedio con un multiplicador de crecimiento

> 4.000 para un rendimiento maximo con un multiplicador de crecimiento

Consumidores

Describa sus aplicaciones o servicios que consumen datos de Apache Kafka y no los producen nuevamente
en Apache Kafka; por ejemplo, un cliente nativo o un conector de Kafka.
* Nombre. Consumidor de Spark.
» Tiempo de procesamiento. ;Cuanto tiempo tarda este consumidor en procesar un solo mensaje?
> 1 ms (por ejemplo, una tarea simple y sin estado como el registro)
> 10 ms (escrituras rapidas en un almacén de datos)
> 100 ms (escrituras lentas en un almacén de datos)
> 1000 ms (llamada REST de terceros)
> Algun otro proceso referencial de duracion conocida.

* Tipo de consumidor. Aplicacién, proxy o receptor de un almacén de datos existente (RDBMS, NoSQL,
otros).

+ ;Desde qué aplicaciones se lee esto? Conecte este parametro con el productor y el tamario del flujo
determinados previamente.

Con base en la informacion anterior, debe determinar el tamafio de las instancias de consumidor y las
estimaciones de particion de temas. Una aplicacion de consumidor requiere la siguiente cantidad de
instancias.

» 2.000 para un rendimiento promedio, sin multiplicador de crecimiento

 8.000 para un rendimiento maximo, sin multiplicador de crecimiento

» 2.000 para un rendimiento promedio, incluido el multiplicador de crecimiento

» 8.000 para un rendimiento maximo, incluido el multiplicador de crecimiento

Es probable que los temas entrantes también necesiten esta cantidad de particiones. Comuniquese con
Confluent para confirmar.

Ademas de los requisitos para productores, procesadores de flujo y consumidores, debe proporcionar los
siguientes requisitos adicionales:

» Tiempo de reconstruccion. Por ejemplo, 4 horas. Si un host de agente Apache Kafka falla, se pierden

sus datos y se aprovisiona un nuevo host para reemplazar al host fallado, ¢ con qué rapidez debe
reconstruirse este nuevo host? Deje este parametro en blanco si se desconoce el valor.

29

* Objetivo de utilizacion de recursos (porcentaje). Por ejemplo, 60. ;Qué tan utilizados desea que estén
sus hosts durante el rendimiento promedio? Confluent recomienda una utilizacion del 60 % a menos que
utilice clusteres de autoequilibrio de Confluent, en cuyo caso la utilizacion puede ser mayor.

Describe tu entorno

* ¢En qué entorno se ejecutara su cluster? ; Amazon Web Services, Microsoft Azure, plataforma en la nube
de Google, hardware local, VMware local, OpenStack local o Kubernates local?

* Detalles del anfitrion. Numero de nucleos: 48 (por ejemplo), tipo de tarjeta de red (10GbE, 40GbE,
16GbE, 1GbE u otro tipo).

* Volumenes de almacenamiento. Anfitrion: 12 (por ejemplo). ¢ Cuantos discos duros o SSD se admiten
por host? Confluent recomienda 12 discos duros por host.

» Capacidad/volumen de almacenamiento (en GB). 1000 (por ejemplo). ¢ Cuanto almacenamiento puede
almacenar un solo volumen en gigabytes? Confluent recomienda discos de 1TB.

» Configuracion de almacenamiento. ; Como se configuran los volimenes de almacenamiento? Confluent
recomienda RAID10 para aprovechar todas las funciones de Confluent. También se admiten JBOD, SAN,
RAID 1, RAID 0, RAID 5y otros tipos.

* Rendimiento de volumen unico (MBps). 125 (por ejemplo). ¢ Qué tan rapido puede leer o escribir un
solo volumen de almacenamiento en megabytes por segundo? Confluent recomienda discos duros
estandar, que normalmente tienen un rendimiento de 125 MBps.

« Capacidad de memoria (GB). 64 (por ejemplo).

Después de haber determinado sus variables ambientales, seleccione Dimensionar mi cluster. Basandonos en
los parametros de ejemplo indicados anteriormente, determinamos el siguiente tamafio para Confluent Kafka:

» Apache Kafka. Numero de corredores: 22. Su cluster esta limitado al almacenamiento. Considere habilitar
el almacenamiento por niveles para disminuir la cantidad de hosts y permitir un almacenamiento infinito.

* Apache Guardian del Zoolégico. Recuento: 5; Trabajadores de Apache Kafka Connect: Recuento: 2;
Registro de esquema: Recuento: 2; Proxy REST: Recuento: 2; ksqlDB: Recuento: 2; Centro de control de
Confluent: Recuento: 1.

Utilice el modo inverso para equipos de plataforma que no tengan un caso de uso en mente. Utilice el modo
de particiones para calcular cuantas particiones requiere un solo tema. Ver https://eventsizer.io para
dimensionar en funcion de los modos inverso y de particiones.

Conclusion

Este documento proporciona pautas recomendadas para usar Confluent Tiered Storage
con almacenamiento NetApp , incluidas pruebas de verificacion, resultados de
rendimiento del almacenamiento en niveles, ajustes, conectores Confluent S3 y la
funcidn de autoequilibrio. Teniendo en cuenta las politicas de ILM, el rendimiento de
Confluent con multiples pruebas de rendimiento para verificacion y las APl S3
estandares de la industria, el almacenamiento de objetos NetApp StorageGRID es una
opcion éptima para el almacenamiento en niveles de Confluent.

Donde encontrar informacion adicional

Para obtener mas informacion sobre la informacion que se describe en este documento, revise los siguientes
documentos y/o sitios web:

30

https://eventsizer.io

* ,Qué es Apache Kafka?
"https://www.confluent.io/what-is-apache-kafka/"

* Documentacion de productos de NetApp
"https://www.netapp.com/support-and-training/documentation/"

* Detalles de los parametros del sumidero S3

"https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html#s3-configuration-
options"

» Apache Kafka
"https://en.wikipedia.org/wiki/Apache_Kafka"

* Almacenamiento infinito en la plataforma Confluent
"https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/"

» Almacenamiento en niveles de Confluent: mejores practicas y dimensionamiento
"https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations”

» Conector de receptor de Amazon S3 para la plataforma Confluent
"https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html"

» El tamano de Kafka
"https://eventsizer.io"

» Dimensionamiento de StorageGRID
"https://fusion.netapp.com/"

» Casos de uso de Kafka
"https://kafka.apache.org/uses"

« Clusteres de Kafka autoequilibrados en la plataforma Confluent 6.0
"https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/"

"https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-
to-date/"

» Ejemplos de clientes de Instaclustr y detalles de sus casos de uso

https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/,
https://www.instaclustr.com/wp-content/uploads/Insta_Case Study Pegasystems_1_ 21sep25.pdf

https://www.instaclustr.com/resources/customer-case-study-pubnub/

https://www.instaclustr.com/resources/customer-case-study-tesouro/

31

https://www.confluent.io/what-is-apache-kafka/
https://www.netapp.com/support-and-training/documentation/
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://docs.confluent.io/kafka-connect-s3-sink/current/configuration_options.html
https://en.wikipedia.org/wiki/Apache_Kafka
https://www.confluent.io/blog/infinite-kafka-storage-in-confluent-platform/
https://docs.confluent.io/platform/current/kafka/tiered-storage.html#best-practices-and-recommendations
https://docs.confluent.io/kafka-connect-s3-sink/current/overview.html
https://eventsizer.io
https://fusion.netapp.com/
https://kafka.apache.org/uses
https://www.confluent.io/blog/self-balancing-kafka-clusters-in-confluent-platform-6-0/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.confluent.io/blog/confluent-platform-6-0-delivers-the-most-powerful-event-streaming-platform-to-date/
https://www.instaclustr.com/blog/netapp-and-pegasystems-open-source-support-package/
https://www.instaclustr.com/wp-content/uploads/Insta_Case_Study_Pegasystems_1_21sep25.pdf
https://www.instaclustr.com/resources/customer-case-study-pubnub/
https://www.instaclustr.com/resources/customer-case-study-tesouro/

Informacién de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

32

http://www.netapp.com/TM

	Mejores prácticas para Confluent Kafka : NetApp artificial intelligence solutions
	Tabla de contenidos
	Mejores prácticas para Confluent Kafka
	TR-4912: Pautas recomendadas para el almacenamiento en niveles de Confluent Kafka con NetApp
	¿Por qué el almacenamiento en niveles de Confluent?
	¿Por qué NetApp StorageGRID para el almacenamiento en niveles?
	Habilitación del almacenamiento en niveles confluent

	Detalles de la arquitectura de la solución
	Descripción general de la tecnología
	StorageGRID en NetApp
	Apache Kafka
	Confluente

	Verificación confluente
	Configuración de la plataforma Confluent
	Configuración de almacenamiento en niveles de Confluent
	Almacenamiento de objetos de NetApp - StorageGRID
	Pruebas de verificación

	Pruebas de rendimiento con escalabilidad
	Conector s3 confluente
	Conectores de Kafka Connect de Instaclustr

	Clústeres autoequilibrados confluentes
	Pautas de mejores prácticas
	Apresto
	Simple

	Conclusión
	Dónde encontrar información adicional

