
Soluciones de almacenamiento de NetApp
para Apache Spark
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/es-es/netapp-solutions-ai/data-analytics/apache-
spark-solution-overview.html on February 12, 2026. Always check docs.netapp.com for the latest.

Tabla de contenidos

Soluciones de almacenamiento de NetApp para Apache Spark . 1

TR-4570: Soluciones de almacenamiento de NetApp para Apache Spark: Arquitectura, casos de uso y

resultados de rendimiento . 1

Desafíos del cliente . 1

¿Por qué elegir NetApp? . 2

Público objetivo . 5

Tecnología de soluciones. 6

Descripción general de las soluciones Spark de NetApp . 8

Resumen del caso de uso . 10

Transmisión de datos. 10

aprendizaje automático . 11

aprendizaje profundo . 11

Análisis interactivo . 11

Sistema de recomendación . 11

Procesamiento del lenguaje natural. 12

Principales casos de uso y arquitecturas de IA, ML y DL . 12

Canalizaciones de Spark NLP e inferencia distribuida de TensorFlow . 13

Capacitación distribuida de Horovod . 14

Aprendizaje profundo multitrabajador con Keras para la predicción del CTR . 14

Arquitecturas utilizadas para la validación. 16

Resultados de las pruebas. 17

Análisis del sentimiento financiero. 18

Entrenamiento distribuido con rendimiento de Horovod . 21

Modelos de aprendizaje profundo para el rendimiento de la predicción de CTR 24

Solución de nube híbrida . 29

Scripts de Python para cada caso de uso principal . 30

Conclusión . 49

Dónde encontrar información adicional . 49

Soluciones de almacenamiento de NetApp para
Apache Spark

TR-4570: Soluciones de almacenamiento de NetApp para
Apache Spark: Arquitectura, casos de uso y resultados de
rendimiento

Rick Huang, Karthikeyan Nagalingam, NetApp

Este documento se centra en la arquitectura Apache Spark, los casos de uso de los
clientes y la cartera de almacenamiento de NetApp relacionada con el análisis de big
data y la inteligencia artificial (IA). También presenta varios resultados de pruebas
utilizando herramientas de inteligencia artificial, aprendizaje automático (ML) y
aprendizaje profundo (DL) estándar de la industria contra un sistema Hadoop típico para
que pueda elegir la solución Spark adecuada. Para comenzar, necesita una arquitectura
Spark, componentes apropiados y dos modos de implementación (clúster y cliente).

Este documento también proporciona casos de uso de clientes para abordar problemas de configuración y
analiza una descripción general de la cartera de almacenamiento de NetApp relevante para análisis de big
data e IA, ML y DL con Spark. Luego finalizamos con los resultados de las pruebas derivadas de los casos de
uso específicos de Spark y la cartera de soluciones NetApp Spark.

Desafíos del cliente

Esta sección se centra en los desafíos de los clientes con el análisis de big data y la IA/ML/DL en industrias de
crecimiento de datos, como el comercio minorista, el marketing digital, la banca, la fabricación discreta, la
fabricación de procesos, el gobierno y los servicios profesionales.

Rendimiento impredecible

Las implementaciones tradicionales de Hadoop generalmente utilizan hardware básico. Para mejorar el
rendimiento, debe ajustar la red, el sistema operativo, el clúster Hadoop, los componentes del ecosistema
como Spark y el hardware. Incluso si ajusta cada capa, puede ser difícil lograr los niveles de rendimiento
deseados porque Hadoop se ejecuta en hardware básico que no fue diseñado para un alto rendimiento en su
entorno.

Fallos de medios y nodos

Incluso en condiciones normales, el hardware comercial es propenso a fallar. Si falla un disco en un nodo de
datos, el maestro Hadoop considera, por defecto, que ese nodo no está en buen estado. Luego, copia datos
específicos de ese nodo a través de la red desde réplicas a un nodo en buen estado. Este proceso ralentiza
los paquetes de red para cualquier trabajo de Hadoop. Luego, el clúster debe volver a copiar los datos y
eliminar los datos sobre replicados cuando el nodo en mal estado vuelva a un estado correcto.

Dependencia del proveedor de Hadoop

Los distribuidores de Hadoop tienen su propia distribución de Hadoop con su propia versión, lo que limita al
cliente a esas distribuciones. Sin embargo, muchos clientes requieren soporte para análisis en memoria que
no vincule al cliente a distribuciones específicas de Hadoop. Necesitan la libertad de cambiar distribuciones y

1

aún así llevar consigo sus análisis.

Falta de soporte para más de un idioma

Los clientes a menudo necesitan soporte para varios idiomas además de los programas Java MapReduce
para ejecutar sus trabajos. Opciones como SQL y scripts brindan más flexibilidad para obtener respuestas,
más opciones para organizar y recuperar datos y formas más rápidas de mover datos a un marco de análisis.

Dificultad de uso

Desde hace algún tiempo, la gente se ha quejado de que Hadoop es difícil de usar. Aunque Hadoop se ha
vuelto más simple y más poderoso con cada nueva versión, esta crítica ha persistido. Hadoop requiere que
usted comprenda los patrones de programación Java y MapReduce, un desafío para los administradores de
bases de datos y personas con habilidades de programación tradicionales.

Marcos y herramientas complicados

Los equipos de IA empresariales enfrentan múltiples desafíos. Incluso con un conocimiento experto en ciencia
de datos, las herramientas y los marcos para diferentes ecosistemas de implementación y aplicaciones
podrían no ser fácilmente trasladables de uno a otro. Una plataforma de ciencia de datos debe integrarse
perfectamente con las plataformas de big data correspondientes creadas en Spark con facilidad de
movimiento de datos, modelos reutilizables, código listo para usar y herramientas que respalden las mejores
prácticas para crear prototipos, validar, controlar versiones, compartir, reutilizar e implementar rápidamente
modelos en producción.

¿Por qué elegir NetApp?

NetApp puede mejorar su experiencia con Spark de las siguientes maneras:

• El acceso directo a NFS de NetApp (que se muestra en la figura a continuación) permite a los clientes
ejecutar trabajos de análisis de big data en sus datos NFSv3 o NFSv4 existentes o nuevos sin mover ni
copiar los datos. Evita copias múltiples de datos y elimina la necesidad de sincronizar los datos con una
fuente.

• Almacenamiento más eficiente y menos replicación de servidores. Por ejemplo, la solución NetApp E-
Series Hadoop requiere dos en lugar de tres réplicas de los datos, y la solución FAS Hadoop requiere una
fuente de datos pero no replicación ni copias de datos. Las soluciones de almacenamiento de NetApp
también producen menos tráfico de servidor a servidor.

• Mejor comportamiento de los trabajos y clústeres de Hadoop durante fallas de unidades y nodos.

• Mejor rendimiento en la ingesta de datos.

2

Por ejemplo, en el sector financiero y sanitario, el traslado de datos de un lugar a otro debe cumplir
obligaciones legales, lo que no es una tarea fácil. En este escenario, el acceso directo de NetApp NFS analiza
los datos financieros y de atención médica desde su ubicación original. Otro beneficio clave es que el uso del
acceso directo NFS de NetApp simplifica la protección de los datos de Hadoop mediante el uso de comandos
nativos de Hadoop y la habilitación de flujos de trabajo de protección de datos con la amplia cartera de gestión
de datos de NetApp.

El acceso directo NFS de NetApp ofrece dos tipos de opciones de implementación para clústeres
Hadoop/Spark:

• De forma predeterminada, los clústeres Hadoop o Spark utilizan el sistema de archivos distribuido Hadoop
(HDFS) para el almacenamiento de datos y el sistema de archivos predeterminado. El acceso directo NFS
de NetApp puede reemplazar el HDFS predeterminado con almacenamiento NFS como sistema de
archivos predeterminado, lo que permite el análisis directo de datos NFS.

• En otra opción de implementación, el acceso directo NFS de NetApp admite la configuración de NFS como
almacenamiento adicional junto con HDFS en un solo clúster Hadoop o Spark. En este caso, el cliente
puede compartir datos a través de exportaciones NFS y acceder a ellos desde el mismo clúster junto con
los datos HDFS.

Los beneficios clave de utilizar el acceso directo NFS de NetApp incluyen los siguientes:

• Analizar los datos desde su ubicación actual, lo que evita la tarea, que consume mucho tiempo y
rendimiento, de mover datos analíticos a una infraestructura Hadoop como HDFS.

• Reducir el número de réplicas de tres a una.

• Permitir a los usuarios disociar el procesamiento y el almacenamiento para escalarlos de forma
independiente.

• Proporcionar protección de datos empresariales aprovechando las ricas capacidades de gestión de datos
de ONTAP.

• Certificación con la plataforma de datos Hortonworks.

• Habilitación de implementaciones de análisis de datos híbridos.

3

• Reducir el tiempo de backup aprovechando la capacidad multihilo dinámico.

Ver"TR-4657: Soluciones de datos en la nube híbrida de NetApp : Spark y Hadoop, basadas en casos de uso
de clientes" para realizar copias de seguridad de datos de Hadoop, realizar copias de seguridad y
recuperación ante desastres desde la nube a las instalaciones locales, habilitar DevTest en datos de Hadoop
existentes, protección de datos y conectividad multicloud, y acelerar las cargas de trabajo de análisis.

Las siguientes secciones describen las capacidades de almacenamiento que son importantes para los clientes
de Spark.

Nivelación de almacenamiento

Con los niveles de almacenamiento de Hadoop, puede almacenar archivos con diferentes tipos de
almacenamiento de acuerdo con una política de almacenamiento. Los tipos de almacenamiento incluyen hot ,
cold , warm , all_ssd , one_ssd , y lazy_persist .

Realizamos la validación de la clasificación en niveles del almacenamiento de Hadoop en un controlador de
almacenamiento NetApp AFF y un controlador de almacenamiento E-Series con unidades SSD y SAS con
diferentes políticas de almacenamiento. El clúster Spark con AFF-A800 tiene cuatro nodos de trabajo de
cómputo, mientras que el clúster con E-Series tiene ocho. Esto es principalmente para comparar el
rendimiento de las unidades de estado sólido (SSD) frente a los discos duros (HDD).

La siguiente figura muestra el rendimiento de las soluciones NetApp para un SSD Hadoop.

• La configuración básica de NL-SAS utilizó ocho nodos de cómputo y 96 unidades NL-SAS. Esta
configuración generó 1 TB de datos en 4 minutos y 38 segundos. Ver "Solución NetApp E-Series TR-3969
para Hadoop" para obtener detalles sobre la configuración del clúster y del almacenamiento.

• Con TeraGen, la configuración SSD generó 1 TB de datos 15,66 veces más rápido que la configuración
NL-SAS. Además, la configuración SSD utilizó la mitad del número de nodos de cómputo y la mitad del
número de unidades de disco (24 unidades SSD en total). Según el tiempo de finalización del trabajo, fue
casi el doble de rápido que la configuración NL-SAS.

4

hdcs-sh-solution-overview.html
hdcs-sh-solution-overview.html
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf

• Con TeraSort, la configuración SSD ordenó 1 TB de datos 1138,36 veces más rápido que la configuración
NL-SAS. Además, la configuración SSD utilizó la mitad del número de nodos de cómputo y la mitad del
número de unidades de disco (24 unidades SSD en total). Por lo tanto, por unidad, fue aproximadamente
tres veces más rápido que la configuración NL-SAS.

• La conclusión es que la transición de los discos giratorios a la tecnología flash mejora el rendimiento. El
número de nodos de cómputo no fue el cuello de botella. Con el almacenamiento all-flash de NetApp, el
rendimiento en tiempo de ejecución escala bien.

• Con NFS, los datos eran funcionalmente equivalentes a estar agrupados todos juntos, lo que puede
reducir la cantidad de nodos de cómputo según su carga de trabajo. Los usuarios del clúster Apache
Spark no tienen que reequilibrar manualmente los datos al cambiar la cantidad de nodos de cómputo.

Escalado del rendimiento - Escalamiento horizontal

Cuando necesita más potencia de procesamiento de un clúster Hadoop en una solución AFF , puede agregar
nodos de datos con una cantidad adecuada de controladores de almacenamiento. NetApp recomienda
comenzar con cuatro nodos de datos por matriz de controlador de almacenamiento y aumentar la cantidad a
ocho nodos de datos por controlador de almacenamiento, según las características de la carga de trabajo.

AFF y FAS son perfectos para análisis in situ. Según los requisitos de cálculo, puede agregar administradores
de nodos, y las operaciones no disruptivas le permiten agregar un controlador de almacenamiento a pedido
sin tiempo de inactividad. Ofrecemos funciones avanzadas con AFF y FAS, como compatibilidad con medios
NVME, eficiencia garantizada, reducción de datos, calidad de servicio, análisis predictivo, niveles de nube,
replicación, implementación de nube y seguridad. Para ayudar a los clientes a satisfacer sus necesidades,
NetApp ofrece funciones como análisis del sistema de archivos, cuotas y equilibrio de carga integrado sin
costos de licencia adicionales. NetApp tiene un mejor rendimiento en cantidad de trabajos simultáneos, menor
latencia, operaciones más simples y mayor rendimiento de gigabytes por segundo que nuestros competidores.
Además, NetApp Cloud Volumes ONTAP se ejecuta en los tres principales proveedores de nube.

Escalado del rendimiento: escalar hacia arriba

Las funciones de ampliación le permiten agregar unidades de disco a los sistemas AFF, FAS y E-Series
cuando necesita capacidad de almacenamiento adicional. Con Cloud Volumes ONTAP, escalar el
almacenamiento al nivel de PB es una combinación de dos factores: agrupar los datos poco utilizados en el
almacenamiento de objetos desde el almacenamiento en bloque y apilar licencias de Cloud Volumes ONTAP
sin procesamiento adicional.

Múltiples protocolos

Los sistemas NetApp admiten la mayoría de los protocolos para implementaciones de Hadoop, incluidos SAS,
iSCSI, FCP, InfiniBand y NFS.

Soluciones operativas y soportadas

Las soluciones Hadoop descritas en este documento son compatibles con NetApp. Estas soluciones también
están certificadas con los principales distribuidores de Hadoop. Para obtener más información, consulte la
"Hortonworks" sitio y Cloudera "proceso de dar un título" y "pareja" sitios.

Público objetivo

El mundo del análisis y la ciencia de datos afecta a múltiples disciplinas en TI y negocios:

• El científico de datos necesita la flexibilidad de utilizar las herramientas y bibliotecas que elija.

5

http://hortonworks.com/partner/netapp/
http://www.cloudera.com/partners/partners-listing.html?q=netapp
http://www.cloudera.com/partners/solutions/netapp.html

• El ingeniero de datos necesita saber cómo fluyen los datos y dónde residen.

• Un ingeniero de DevOps necesita las herramientas para integrar nuevas aplicaciones de IA y ML en sus
canales de CI y CD.

• Los administradores y arquitectos de la nube deben poder configurar y gestionar recursos de nube híbrida.

• Los usuarios comerciales quieren tener acceso a aplicaciones de análisis, inteligencia artificial,
aprendizaje automático y aprendizaje automático.

En este informe técnico, describimos cómo NetApp AFF, E-Series, StorageGRID, acceso directo NFS, Apache
Spark, Horovod y Keras ayudan a cada uno de estos roles a aportar valor al negocio.

Tecnología de soluciones

Apache Spark es un marco de programación popular para escribir aplicaciones Hadoop
que funciona directamente con el sistema de archivos distribuidos Hadoop (HDFS).
Spark está listo para producción, admite el procesamiento de datos de transmisión y es
más rápido que MapReduce. Spark tiene almacenamiento en caché de datos en
memoria configurable para una iteración eficiente, y el shell de Spark es interactivo para
aprender y explorar datos. Con Spark, puedes crear aplicaciones en Python, Scala o
Java. Las aplicaciones Spark constan de uno o más trabajos que tienen una o más
tareas.

Cada aplicación Spark tiene un controlador Spark. En el modo YARN-Client, el controlador se ejecuta en el
cliente localmente. En el modo YARN-Cluster, el controlador se ejecuta en el clúster en el maestro de
aplicaciones. En el modo de clúster, la aplicación continúa ejecutándose incluso si el cliente se desconecta.

6

Hay tres administradores de clúster:

• Autónomo. Este administrador es parte de Spark, lo que facilita la configuración de un clúster.

• Mesos Apache. Este es un administrador de clúster general que también ejecuta MapReduce y otras
aplicaciones.

• HILO DE HADOOP. Este es un administrador de recursos en Hadoop 3.

El conjunto de datos distribuidos resilientes (RDD) es el componente principal de Spark. RDD recrea los datos
perdidos y faltantes a partir de los datos almacenados en la memoria del clúster y almacena los datos iniciales
que provienen de un archivo o se crean mediante programación. Los RDD se crean a partir de archivos, datos
en la memoria u otro RDD. La programación Spark realiza dos operaciones: transformación y acciones. La
transformación crea un nuevo RDD basado en uno existente. Las acciones devuelven un valor de un RDD.

Las transformaciones y acciones también se aplican a los conjuntos de datos y marcos de datos de Spark. Un
conjunto de datos es una colección distribuida de datos que proporciona los beneficios de los RDD (tipificación
fuerte, uso de funciones lambda) con los beneficios del motor de ejecución optimizado de Spark SQL. Se
puede construir un conjunto de datos a partir de objetos JVM y luego manipularlo mediante transformaciones
funcionales (mapa, flatMap, filtro, etc.). Un DataFrame es un conjunto de datos organizado en columnas con
nombre. Es conceptualmente equivalente a una tabla en una base de datos relacional o un marco de datos en
R/Python. Los DataFrames se pueden construir a partir de una amplia variedad de fuentes, como archivos de
datos estructurados, tablas en Hive/HBase, bases de datos externas locales o en la nube, o RDD existentes.

7

Las aplicaciones Spark incluyen uno o más trabajos Spark. Los trabajos ejecutan tareas en ejecutores, y los
ejecutores se ejecutan en contenedores YARN. Cada ejecutor se ejecuta en un solo contenedor y los
ejecutores existen durante toda la vida de una aplicación. Un ejecutor se fija después de que se inicia la
aplicación y YARN no redimensiona el contenedor ya asignado. Un ejecutor puede ejecutar tareas
simultáneamente en datos en memoria.

Descripción general de las soluciones Spark de NetApp

NetApp tiene tres carteras de almacenamiento: FAS/ AFF, E-Series y Cloud Volumes
ONTAP. Hemos validado AFF y el sistema de almacenamiento E-Series con ONTAP para
soluciones Hadoop con Apache Spark.

La estructura de datos impulsada por NetApp integra servicios y aplicaciones de gestión de datos (bloques de
construcción) para el acceso, control, protección y seguridad de los datos, como se muestra en la siguiente
figura.

Los componentes básicos de la figura anterior incluyen:

• Acceso directo a NFS de NetApp . Proporciona los últimos clústeres Hadoop y Spark con acceso directo
a volúmenes NFS de NetApp sin requisitos de software o controladores adicionales.

• * Cloud Volumes ONTAP NetApp Cloud ONTAP y Google Cloud NetApp Volumes.* Almacenamiento
conectado definido por software basado en ONTAP que se ejecuta en Amazon Web Services (AWS) o
Azure NetApp Files (ANF) en los servicios de nube de Microsoft Azure.

• Tecnología NetApp SnapMirror . Proporciona capacidades de protección de datos entre las instancias
locales y las de ONTAP Cloud o NPS.

• Proveedores de servicios en la nube. Estos proveedores incluyen AWS, Microsoft Azure, Google Cloud
e IBM Cloud.

• PaaS. Servicios de análisis basados en la nube como Amazon Elastic MapReduce (EMR) y Databricks en
AWS, así como Microsoft Azure HDInsight y Azure Databricks.

La siguiente figura muestra la solución Spark con almacenamiento NetApp .

8

La solución ONTAP Spark utiliza el protocolo de acceso directo NFS de NetApp para análisis locales y flujos
de trabajo de IA, ML y DL mediante el acceso a datos de producción existentes. Los datos de producción
disponibles para los nodos Hadoop se exportan para realizar trabajos de análisis y de inteligencia artificial,
aprendizaje automático y aprendizaje automático en el lugar. Puede acceder a los datos para procesarlos en
los nodos Hadoop con acceso directo a NetApp NFS o sin él. En Spark con el independiente o yarn
Administrador de clústeres, puede configurar un volumen NFS mediante file://<target_volume> .
Validamos tres casos de uso con diferentes conjuntos de datos. Los detalles de estas validaciones se
presentan en la sección "Resultados de las pruebas". (referencia cruzada)

La siguiente figura muestra el posicionamiento del almacenamiento Apache Spark/Hadoop de NetApp .

Identificamos las características únicas de la solución E-Series Spark, la solución AFF/ FAS ONTAP Spark y la
solución StorageGRID Spark, y realizamos pruebas y validaciones detalladas. Con base en nuestras
observaciones, NetApp recomienda la solución E-Series para instalaciones nuevas y nuevas
implementaciones escalables, y la solución AFF/ FAS para análisis locales, IA, ML y cargas de trabajo de DL
utilizando datos NFS existentes, y StorageGRID para IA, ML y DL y análisis de datos modernos cuando se
requiere almacenamiento de objetos.

9

Un lago de datos es un repositorio de almacenamiento para grandes conjuntos de datos en formato nativo que
pueden usarse para trabajos de análisis, inteligencia artificial, aprendizaje automático y aprendizaje
automático. Creamos un repositorio de lago de datos para las soluciones Spark E-Series, AFF/ FAS y
StorageGRID SG6060. El sistema E-Series proporciona acceso HDFS al clúster Hadoop Spark, mientras que
se accede a los datos de producción existentes a través del protocolo de acceso directo NFS al clúster
Hadoop. Para los conjuntos de datos que residen en el almacenamiento de objetos, NetApp StorageGRID
proporciona acceso seguro S3 y S3a.

Resumen del caso de uso

En esta página se describen las diferentes áreas en las que se puede utilizar esta
solución.

Transmisión de datos

Apache Spark puede procesar datos de streaming, que se utilizan para procesos de extracción,
transformación y carga (ETL) de streaming, enriquecimiento de datos, detección de eventos de activación y
análisis de sesiones complejas:

• Transmisión ETL. Los datos se limpian y agregan continuamente antes de ingresarlos en los almacenes
de datos. Netflix utiliza Kafka y Spark Streaming para crear una solución de recomendación de películas
en línea y monitoreo de datos en tiempo real que puede procesar miles de millones de eventos por día
desde diferentes fuentes de datos. Sin embargo, el ETL tradicional para el procesamiento por lotes se
trata de manera diferente. Estos datos se leen primero y luego se convierten a un formato de base de
datos antes de escribirse en la base de datos.

• Enriquecimiento de datos. Spark Streaming enriquece los datos en vivo con datos estáticos para permitir
un análisis de datos más en tiempo real. Por ejemplo, los anunciantes en línea pueden ofrecer anuncios
personalizados y específicos basados en información sobre el comportamiento del cliente.

• Detección de eventos desencadenantes. Spark Streaming le permite detectar y responder rápidamente
a comportamientos inusuales que podrían indicar problemas potencialmente graves. Por ejemplo, las
instituciones financieras utilizan desencadenadores para detectar y detener transacciones fraudulentas, y
los hospitales utilizan desencadenadores para detectar cambios peligrosos para la salud detectados en los
signos vitales de un paciente.

10

• Análisis de sesión complejo. Spark Streaming recopila eventos como la actividad del usuario después
de iniciar sesión en un sitio web o aplicación, que luego se agrupan y analizan. Por ejemplo, Netflix utiliza
esta funcionalidad para ofrecer recomendaciones de películas en tiempo real.

Para obtener más información sobre la configuración de datos de transmisión, la verificación de Confluent
Kafka y las pruebas de rendimiento, consulte"TR-4912: Pautas recomendadas para el almacenamiento en
niveles de Confluent Kafka con NetApp" .

aprendizaje automático

El marco integrado de Spark le ayuda a ejecutar consultas repetidas en conjuntos de datos utilizando la
biblioteca de aprendizaje automático (MLlib). MLlib se utiliza en áreas como agrupamiento, clasificación y
reducción de dimensionalidad para algunas funciones comunes de big data, como inteligencia predictiva,
segmentación de clientes para fines de marketing y análisis de sentimientos. MLlib se utiliza en seguridad de
red para realizar inspecciones en tiempo real de paquetes de datos en busca de indicios de actividad
maliciosa. Ayuda a los proveedores de seguridad a conocer nuevas amenazas y mantenerse a la vanguardia
de los piratas informáticos mientras protegen a sus clientes en tiempo real.

aprendizaje profundo

TensorFlow es un marco de aprendizaje profundo popular utilizado en toda la industria. TensorFlow admite el
entrenamiento distribuido en un clúster de CPU o GPU. Este entrenamiento distribuido permite a los usuarios
ejecutarlo en una gran cantidad de datos con muchas capas profundas.

Hasta hace poco, si queríamos usar TensorFlow con Apache Spark, necesitábamos realizar todo el ETL
necesario para TensorFlow en PySpark y luego escribir los datos en un almacenamiento intermedio. Luego,
esos datos se cargarían en el clúster TensorFlow para el proceso de entrenamiento real. Este flujo de trabajo
requería que el usuario mantuviera dos clústeres diferentes, uno para ETL y otro para el entrenamiento
distribuido de TensorFlow. Normalmente, ejecutar y mantener varios clústeres era una tarea tediosa y que
consumía mucho tiempo.

Los DataFrames y RDD en versiones anteriores de Spark no eran adecuados para el aprendizaje profundo
porque el acceso aleatorio era limitado. En Spark 3.0 con el proyecto Hydrogen, se agrega soporte nativo para
los marcos de aprendizaje profundo. Este enfoque permite la programación no basada en MapReduce en el
clúster Spark.

Análisis interactivo

Apache Spark es lo suficientemente rápido para realizar consultas exploratorias sin muestrear con lenguajes
de desarrollo distintos de Spark, incluidos SQL, R y Python. Spark utiliza herramientas de visualización para
procesar datos complejos y visualizarlos de forma interactiva. Spark con transmisión estructurada realiza
consultas interactivas sobre datos en vivo en análisis web que le permiten ejecutar consultas interactivas
sobre la sesión actual de un visitante web.

Sistema de recomendación

A lo largo de los años, los sistemas de recomendación han traído enormes cambios a nuestras vidas, a
medida que las empresas y los consumidores han respondido a cambios dramáticos en las compras en línea,
el entretenimiento en línea y muchas otras industrias. De hecho, estos sistemas se encuentran entre las
historias de éxito más evidentes de la IA en la producción. En muchos casos de uso práctico, los sistemas de
recomendación se combinan con IA conversacional o chatbots interconectados con un backend de PNL para
obtener información relevante y producir inferencias útiles.

Hoy en día, muchos minoristas están adoptando modelos de negocio más nuevos, como comprar en línea y

11

confluent-kafka-introduction.html
confluent-kafka-introduction.html

recoger en la tienda, recoger en la acera, autopago, escanear y listo, y más. Estos modelos han cobrado
relevancia durante la pandemia de COVID-19 al hacer que las compras sean más seguras y cómodas para los
consumidores. La IA es crucial para estas tendencias digitales crecientes, que están influenciadas por el
comportamiento del consumidor y viceversa. Para satisfacer las crecientes demandas de los consumidores,
aumentar la experiencia del cliente, mejorar la eficiencia operativa y aumentar los ingresos, NetApp ayuda a
sus clientes empresariales y empresas a utilizar algoritmos de aprendizaje automático y aprendizaje profundo
para diseñar sistemas de recomendación más rápidos y precisos.

Existen varias técnicas populares que se utilizan para proporcionar recomendaciones, incluido el filtrado
colaborativo, los sistemas basados en contenido, el modelo de recomendación de aprendizaje profundo
(DLRM) y las técnicas híbridas. Los clientes utilizaron anteriormente PySpark para implementar el filtrado
colaborativo para crear sistemas de recomendación. Spark MLlib implementa mínimos cuadrados alternos
(ALS) para el filtrado colaborativo, un algoritmo muy popular entre las empresas antes del surgimiento de
DLRM.

Procesamiento del lenguaje natural

La IA conversacional, posible gracias al procesamiento del lenguaje natural (PLN), es la rama de la IA que
ayuda a las computadoras a comunicarse con los humanos. La PNL prevalece en todos los sectores
industriales y en muchos casos de uso, desde asistentes inteligentes y chatbots hasta búsquedas de Google y
texto predictivo. Según un "Gartner" Predicción: para 2022, el 70% de las personas interactuarán con
plataformas de IA conversacional a diario. Para una conversación de alta calidad entre un humano y una
máquina, las respuestas deben ser rápidas, inteligentes y que suenen naturales.

Los clientes necesitan una gran cantidad de datos para procesar y entrenar sus modelos de PNL y
reconocimiento automático de voz (ASR). También necesitan mover datos a través del borde, el núcleo y la
nube, y necesitan el poder de realizar inferencias en milisegundos para establecer una comunicación natural
con los humanos. NetApp AI y Apache Spark son una combinación ideal para computación, almacenamiento,
procesamiento de datos, entrenamiento de modelos, ajuste e implementación.

El análisis de sentimientos es un campo de estudio dentro de la PNL en el que se extraen sentimientos
positivos, negativos o neutrales del texto. El análisis de sentimientos tiene una variedad de casos de uso,
desde determinar el desempeño de los empleados del centro de soporte en conversaciones con las personas
que llaman hasta brindar respuestas de chatbot automatizadas apropiadas. También se ha utilizado para
predecir el precio de las acciones de una empresa basándose en las interacciones entre los representantes de
la empresa y la audiencia en las conferencias de ganancias trimestrales. Además, el análisis de sentimientos
se puede utilizar para determinar la opinión de un cliente sobre los productos, servicios o soporte
proporcionado por la marca.

Usamos el "Spark PNL" biblioteca de "Laboratorios John Snow" para cargar tuberías entrenadas previamente
y modelos de Representaciones de Codificador Bidireccional de Transformadores (BERT), incluidos
"sentimiento de las noticias financieras" y "FinBERT" , realizando tokenización, reconocimiento de entidades
nombradas, entrenamiento de modelos, ajuste y análisis de sentimientos a escala. Spark NLP es la única
biblioteca de PNL de código abierto en producción que ofrece transformadores de última generación como
BERT, ALBERT, ELECTRA, XLNet, DistilBERT, RoBERTa, DeBERTa, XLM- RoBERTa, Longformer, ELMO,
Universal Sentence Encoder, Google T5, MarianMT y GPT2. La biblioteca funciona no solo en Python y R,
sino también en el ecosistema JVM (Java, Scala y Kotlin) a escala al extender Apache Spark de forma nativa.

Principales casos de uso y arquitecturas de IA, ML y DL

Los principales casos de uso y metodología de IA, ML y DL se pueden dividir en las
siguientes secciones:

12

https://www.forbes.com/sites/forbestechcouncil/2021/05/07/nice-chatbot-ing-with-you/?sh=7011eff571f4
https://www.johnsnowlabs.com/spark-nlp/
https://www.johnsnowlabs.com/
https://sparknlp.org/2023/01/12/classifierdl_bertwiki_finance_sentiment_pipeline_en.html
https://sparknlp.org/2022/04/11/bert_embeddings_finbert_pretrain_yiyanghkust_en_3_0.html

Canalizaciones de Spark NLP e inferencia distribuida de TensorFlow

La siguiente lista contiene las bibliotecas de PNL de código abierto más populares que han sido adoptadas
por la comunidad de ciencia de datos en diferentes niveles de desarrollo:

• "Kit de herramientas de lenguaje natural (NLTK)" . El kit de herramientas completo para todas las técnicas
de PNL. Se mantiene desde principios de la década del 2000.

• "TextoBlob" . Una API de Python de herramientas de PNL fácil de usar construida sobre NLTK y Pattern.

• "PNL de Stanford Core" . Servicios y paquetes de PNL en Java desarrollados por Stanford NLP Group.

• "Gensim" . Topic Modelling for Humans comenzó como una colección de scripts de Python para el
proyecto de la Biblioteca Checa de Matemáticas Digitales.

• "SpaCy" . Flujos de trabajo de PNL industrial de extremo a extremo con Python y Cython con aceleración
de GPU para transformadores.

• "Texto rápido" . Una biblioteca de PNL gratuita, liviana y de código abierto para el aprendizaje de
incrustaciones de palabras y la clasificación de oraciones creada por el laboratorio de investigación de
inteligencia artificial (FAIR) de Facebook.

Spark NLP es una solución única y unificada para todas las tareas y requisitos de PNL que permite un
software escalable, de alto rendimiento y alta precisión impulsado por PNL para casos de uso de producción
reales. Aprovecha el aprendizaje por transferencia e implementa los últimos algoritmos y modelos de última
generación en la investigación y en todas las industrias. Debido a la falta de soporte completo por parte de
Spark para las bibliotecas anteriores, Spark NLP se creó sobre "Spark ML" aprovechar el motor de
procesamiento de datos distribuido en memoria de propósito general de Spark como una biblioteca de PNL de
nivel empresarial para flujos de trabajo de producción de misión crítica. Sus anotadores utilizan algoritmos
basados en reglas, aprendizaje automático y TensorFlow para impulsar implementaciones de aprendizaje
profundo. Esto cubre tareas comunes de PNL que incluyen, entre otras, tokenización, lematización,
derivación, etiquetado de partes del discurso, reconocimiento de entidades nombradas, corrección ortográfica
y análisis de sentimientos.

Representaciones de codificador bidireccional a partir de transformadores (BERT) es una técnica de
aprendizaje automático basada en transformadores para PNL. Popularizó el concepto de preentrenamiento y
ajuste fino. La arquitectura del transformador en BERT se originó a partir de la traducción automática, que
modela las dependencias a largo plazo mejor que los modelos de lenguaje basados en redes neuronales
recurrentes (RNN). También introdujo la tarea de modelado de lenguaje enmascarado (MLM), donde un 15%
aleatorio de todos los tokens se enmascaran y el modelo los predice, lo que permite una verdadera
bidireccionalidad.

El análisis del sentimiento financiero es un desafío debido al lenguaje especializado y la falta de datos
etiquetados en ese dominio. FinBERT, un modelo de lenguaje basado en BERT preentrenado, fue adaptado al
dominio en "Reuters TRC2" , un corpus financiero, y ajustado con datos etiquetados ("Frase financiera del
banco") para la clasificación del sentimiento financiero. Los investigadores extrajeron 4.500 frases de
artículos de noticias con términos financieros. Luego, 16 expertos y estudiantes de maestría con experiencia
en finanzas etiquetaron las oraciones como positivas, neutrales y negativas. Creamos un flujo de trabajo
Spark de extremo a extremo para analizar el sentimiento de las transcripciones de las llamadas de ganancias
de las 10 principales empresas del NASDAQ de 2016 a 2020 utilizando FinBERT y otras dos canalizaciones
entrenadas previamente. "Explicar el documento DL") de Spark NLP.

El motor de aprendizaje profundo subyacente para Spark NLP es TensorFlow, una plataforma de código
abierto de extremo a extremo para el aprendizaje automático que permite la creación sencilla de modelos, la
producción de ML sólida en cualquier lugar y la experimentación potente para la investigación. Por lo tanto, al
ejecutar nuestros pipelines en Spark yarn cluster En este modo, básicamente estábamos ejecutando
TensorFlow distribuido con paralelización de datos y modelos en un nodo maestro y varios nodos de trabajo,

13

https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://stanfordnlp.github.io/CoreNLP/
https://radimrehurek.com/gensim/
https://spacy.io/
https://fasttext.cc/
https://spark.apache.org/docs/latest/ml-guide.html
https://trec.nist.gov/data/reuters/reuters.html
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://nlp.johnsnowlabs.com/2020/03/19/explain_document_dl.html

así como almacenamiento conectado a la red montado en el clúster.

Capacitación distribuida de Horovod

La validación central de Hadoop para el rendimiento relacionado con MapReduce se realiza con TeraGen,
TeraSort, TeraValidate y DFSIO (lectura y escritura). Los resultados de la validación de TeraGen y TeraSort se
presentan en "Solución NetApp E-Series para Hadoop" y en la sección "Niveles de almacenamiento" para
AFF.

Basándonos en las solicitudes de los clientes, consideramos que la capacitación distribuida con Spark es uno
de los casos de uso más importantes. En este documento, utilizamos el "Hovorod en Spark" para validar el
rendimiento de Spark con soluciones locales, nativas de la nube e híbridas de NetApp mediante controladores
de almacenamiento NetApp All Flash FAS (AFF), Azure NetApp Files y StorageGRID.

El paquete Horovod en Spark proporciona un envoltorio conveniente alrededor de Horovod que simplifica la
ejecución de cargas de trabajo de entrenamiento distribuidas en clústeres Spark, lo que permite un ciclo de
diseño de modelo ajustado en el que el procesamiento de datos, el entrenamiento del modelo y la evaluación
del modelo se realizan en Spark, donde residen los datos de entrenamiento e inferencia.

Hay dos API para ejecutar Horovod en Spark: una API de estimación de alto nivel y una API de ejecución de
nivel inferior. Aunque ambos utilizan el mismo mecanismo subyacente para ejecutar Horovod en los ejecutores
Spark, la API Estimator abstrae el procesamiento de datos, el ciclo de entrenamiento del modelo, los puntos
de control del modelo, la recopilación de métricas y el entrenamiento distribuido. Utilizamos Horovod Spark
Estimators, TensorFlow y Keras para un flujo de trabajo de preparación de datos de extremo a extremo y
entrenamiento distribuido basado en "Ventas en tiendas Kaggle Rossmann" competencia.

El guión keras_spark_horovod_rossmann_estimator.py se puede encontrar en la sección"Scripts de
Python para cada caso de uso principal." Consta de tres partes:

• La primera parte realiza varios pasos de preprocesamiento de datos sobre un conjunto inicial de archivos
CSV proporcionados por Kaggle y recopilados por la comunidad. Los datos de entrada se separan en un
conjunto de entrenamiento con un Validation subconjunto y un conjunto de datos de prueba.

• La segunda parte define un modelo de red neuronal profunda (DNN) Keras con función de activación
sigmoidea logarítmica y un optimizador Adam, y realiza un entrenamiento distribuido del modelo utilizando
Horovod en Spark.

• La tercera parte realiza una predicción en el conjunto de datos de prueba utilizando el mejor modelo que
minimiza el error absoluto medio general del conjunto de validación. Luego crea un archivo CSV de salida.

Ver la sección"Aprendizaje automático" para varios resultados de comparación de tiempo de ejecución.

Aprendizaje profundo multitrabajador con Keras para la predicción del CTR

Con los recientes avances en plataformas y aplicaciones de ML, ahora se presta mucha atención al
aprendizaje a escala. La tasa de clics (CTR) se define como el número promedio de clics por cada cien
impresiones de anuncios en línea (expresado como porcentaje). Se adopta ampliamente como una métrica
clave en varios sectores industriales y casos de uso, incluidos el marketing digital, el comercio minorista, el
comercio electrónico y los proveedores de servicios. Para obtener más detalles sobre las aplicaciones de CTR
y los resultados del rendimiento del entrenamiento distribuido, consulte"Modelos de aprendizaje profundo para
el rendimiento de la predicción de CTR" sección.

En este informe técnico utilizamos una variación del "Conjunto de datos de registros de clics de Criteo en
terabytes" (ver TR-4904) para el aprendizaje profundo distribuido de múltiples trabajadores que utiliza Keras
para crear un flujo de trabajo Spark con modelos de redes profundas y cruzadas (DCN), comparando su

14

https://www.netapp.com/pdf.html?item=/media/16420-tr-3969pdf.pdf
https://horovod.readthedocs.io/en/stable/spark_include.html
https://www.kaggle.com/c/rossmann-store-sales
spark-python-scripts.html
spark-python-scripts.html
apache-spark-use-cases-summary.html#machine-learning
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
apache-spark-testing-results.html#deep-learning-models-for-ctr-prediction-performance
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/
https://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

desempeño en términos de función de error de pérdida de registro con un modelo de regresión logística Spark
ML de referencia. DCN captura de manera eficiente interacciones de características efectivas de grados
limitados, aprende interacciones altamente no lineales, no requiere ingeniería de características manual ni
búsqueda exhaustiva y tiene un bajo costo computacional.

Los datos para los sistemas de recomendación a escala web son en su mayoría discretos y categóricos, lo
que genera un espacio de características grande y escaso que dificulta la exploración de características. Esto
ha limitado la mayoría de los sistemas a gran escala a modelos lineales como la regresión logística. Sin
embargo, la clave para hacer buenas predicciones es identificar características frecuentemente predictivas y,
al mismo tiempo, explorar características cruzadas poco comunes o no observadas. Los modelos lineales son
simples, interpretables y fáciles de escalar, pero tienen un poder expresivo limitado.

Por otra parte, se ha demostrado que las características cruzadas son significativas para mejorar la
expresividad de los modelos. Lamentablemente, a menudo se requiere ingeniería de características manual o
una búsqueda exhaustiva para identificar dichas características. Generalizar a interacciones de características
invisibles suele ser difícil. El uso de una red neuronal cruzada como DCN evita la ingeniería de características
específicas de la tarea al aplicar explícitamente el cruce de características de manera automática. La red
cruzada consta de múltiples capas, donde el mayor grado de interacciones está determinado probablemente
por la profundidad de la capa. Cada capa produce interacciones de orden superior basadas en las existentes y
conserva las interacciones de las capas anteriores.

Una red neuronal profunda (DNN) promete capturar interacciones muy complejas entre características. Sin
embargo, en comparación con DCN, requiere casi un orden de magnitud más de parámetros, no puede formar
características cruzadas de manera explícita y puede fallar en el aprendizaje eficiente de algunos tipos de
interacciones de características. La red cruzada utiliza eficientemente la memoria y es fácil de implementar. El
entrenamiento conjunto de los componentes cruzados y DNN captura de manera eficiente las interacciones de
características predictivas y brinda un rendimiento de última generación en el conjunto de datos CTR de
Criteo.

Un modelo DCN comienza con una capa de incrustación y apilamiento, seguida de una red cruzada y una red
profunda en paralelo. A estas, a su vez, les sigue una capa de combinación final que combina las salidas de
las dos redes. Los datos de entrada pueden ser un vector con características dispersas y densas. En Spark,
las bibliotecas contienen el tipo SparseVector . Por lo tanto, es importante que los usuarios distingan entre
ambos y tengan cuidado al llamar a sus respectivas funciones y métodos. En los sistemas de recomendación
a escala web, como la predicción de CTR, las entradas son principalmente características categóricas, por
ejemplo 'country=usa' . Estas características suelen codificarse como vectores one-hot, por ejemplo,
'[0,1,0, …]' . Codificación one-hot (OHE) con SparseVector es útil cuando se trabaja con conjuntos de
datos del mundo real con vocabularios en constante cambio y crecimiento. Modificamos los ejemplos en "CTR
profundo" para procesar vocabularios grandes, creando vectores de incrustación en la capa de incrustación y
apilamiento de nuestro DCN.

El "Conjunto de datos de anuncios de display de Criteo" predice la tasa de clics de los anuncios. Tiene 13
características enteras y 26 características categóricas en las que cada categoría tiene una alta cardinalidad.
Para este conjunto de datos, una mejora de 0,001 en la pérdida logarítmica es prácticamente significativa
debido al gran tamaño de entrada. Una pequeña mejora en la precisión de la predicción para una gran base
de usuarios puede conducir potencialmente a un gran aumento en los ingresos de una empresa. El conjunto
de datos contiene 11 GB de registros de usuarios de un período de 7 días, lo que equivale a alrededor de 41
millones de registros. Usamos Spark dataFrame.randomSplit()function Dividir aleatoriamente los
datos para entrenamiento (80%), validación cruzada (10%) y el 10% restante para pruebas.

DCN se implementó en TensorFlow con Keras. Hay cuatro componentes principales en la implementación del
proceso de entrenamiento de modelos con DCN:

• Procesamiento e incrustación de datos. Las características de valor real se normalizan aplicando una
transformación logarítmica. Para las características categóricas, integramos las características en vectores

15

https://github.com/shenweichen/DeepCTR
https://github.com/shenweichen/DeepCTR
https://www.kaggle.com/competitions/criteo-display-ad-challenge/data

densos de dimensión 6×(cardinalidad de categoría)1/4. La concatenación de todas las incrustaciones da
como resultado un vector de dimensión 1026.

• Mejoramiento. Aplicamos optimización estocástica de minilotes con el optimizador Adam. El tamaño del
lote se estableció en 512. Se aplicó la normalización por lotes a la red profunda y la norma de recorte de
gradiente se estableció en 100.

• Regularización. Utilizamos la detención temprana, ya que no se encontró que la regularización o el
abandono de L2 fueran efectivos.

• Hiperparámetros. Informamos los resultados basados en una búsqueda en cuadrícula sobre el número
de capas ocultas, el tamaño de la capa oculta, la tasa de aprendizaje inicial y el número de capas
cruzadas. El número de capas ocultas varió entre 2 y 5, con tamaños de capas ocultas que variaron entre
32 y 1024. Para DCN, el número de capas cruzadas fue de 1 a 6. La tasa de aprendizaje inicial se ajustó
de 0,0001 a 0,001 con incrementos de 0,0001. Todos los experimentos se detuvieron anticipadamente en
el paso de entrenamiento 150 000, más allá del cual comenzó a producirse un sobreajuste.

Además de DCN, también probamos otros modelos populares de aprendizaje profundo para la predicción de
CTR, incluidos "DeepFM" , "AutoInt" , y "DCN v2" .

Arquitecturas utilizadas para la validación

Para esta validación, utilizamos cuatro nodos de trabajo y un nodo maestro con un par AFF-A800 HA. Todos
los miembros del clúster estaban conectados a través de conmutadores de red 10GbE.

Para esta validación de la solución NetApp Spark, utilizamos tres controladores de almacenamiento
diferentes: el E5760, el E5724 y el AFF-A800. Los controladores de almacenamiento de la Serie E se
conectaron a cinco nodos de datos con conexiones SAS de 12 Gbps. El controlador de almacenamiento de
par HA AFF proporciona volúmenes NFS exportados a través de conexiones de 10 GbE a nodos de trabajo de
Hadoop. Los miembros del clúster Hadoop se conectaron a través de conexiones 10GbE en las soluciones
Hadoop E-Series, AFF y StorageGRID .

16

https://www.ijcai.org/proceedings/2017/0239.pdf
https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/2008.13535

Resultados de las pruebas

Utilizamos los scripts TeraSort y TeraValidate en la herramienta de evaluación

17

comparativa TeraGen para medir la validación del rendimiento de Spark con
configuraciones E5760, E5724 y AFF-A800. Además, se probaron tres casos de uso
principales: pipelines de Spark NLP y capacitación distribuida de TensorFlow,
capacitación distribuida de Horovod y aprendizaje profundo de múltiples trabajadores
usando Keras para predicción de CTR con DeepFM.

Para la validación de E-Series y StorageGRID , utilizamos el factor de replicación de Hadoop 2. Para la
validación de AFF , solo utilizamos una fuente de datos.

La siguiente tabla enumera la configuración de hardware para la validación del rendimiento de Spark.

Tipo Nodos de trabajo

de Hadoop

Tipo de unidad Unidades por nodo Controlador de

almacenamiento

SG6060 4 SAS 12 Par único de alta
disponibilidad (HA)

E5760 4 SAS 60 Par de HA único

E5724 4 SAS 24 Par de HA único

AFF800 4 Unidad de estado
sólido

6 Par de HA único

La siguiente tabla enumera los requisitos de software.

Software Versión

RHEL 7,9

Entorno de ejecución de OpenJDK 1.8.0

Máquina virtual de servidor OpenJDK de 64 bits 25,302

Git 2.24.1

GCC/G++ 11.2.1

Chispa 3.2.1

PySpark 3.1.2

SparkNLP 3.4.2

Flujo de tensor 2.9.0

Keras 2.9.0

Horovod 0.24.3

Análisis del sentimiento financiero

Nosotros publicamos"TR-4910: Análisis de sentimientos de las comunicaciones de los clientes con NetApp AI"
, en el que se construyó una canalización de IA conversacional de extremo a extremo utilizando "Kit de
herramientas DataOps de NetApp" , almacenamiento AFF y sistema NVIDIA DGX. El pipeline realiza
procesamiento de señales de audio por lotes, reconocimiento automático de voz (ASR), aprendizaje por
transferencia y análisis de sentimientos aprovechando el kit de herramientas DataOps. "SDK de NVIDIA Riva"
, y el "Marco del Tao" . Al ampliar el caso de uso del análisis de sentimientos a la industria de servicios
financieros, creamos un flujo de trabajo SparkNLP, cargamos tres modelos BERT para varias tareas de PNL,

18

https://www.netapp.com/pdf.html?item=/media/17123-tr4910pdf.pdf
https://github.com/NetApp/netapp-dataops-toolkit
https://github.com/NetApp/netapp-dataops-toolkit
https://developer.nvidia.com/riva
https://developer.nvidia.com/tao

como el reconocimiento de entidades nombradas, y obtuvimos sentimientos a nivel de oración para las
llamadas de ganancias trimestrales de las 10 principales empresas del NASDAQ.

El siguiente script sentiment_analysis_spark. py utiliza el modelo FinBERT para procesar
transcripciones en HDFS y producir recuentos de sentimientos positivos, neutrales y negativos, como se
muestra en la siguiente tabla:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

hdfs:///data1/Transcripts/

> ./sentiment_analysis_hdfs.log 2>&1

real13m14.300s

user557m11.319s

sys4m47.676s

La siguiente tabla enumera el análisis de sentimiento a nivel de oración, tras la presentación de resultados, de
las 10 principales empresas del NASDAQ de 2016 a 2020.

Recuent

os y

porcenta

jes de

sentimie

ntos

Las 10

empresa

s

AAPL AMD Amazon Director

Ejecutiv

o

GOOGL INTC MSFT NVDA

Recuento
s
positivos

7447 1567 743 290 682 826 824 904 417

Conteos
neutrales

64067 6856 7596 5086 6650 5914 6099 5715 6189

Recuento
s
negativos

1787 253 213 84 189 97 282 202 89

Recuento
s sin
categoriz
ar

196 0 0 76 0 0 0 1 0

(recuento
s totales)

73497 8676 8552 5536 7521 6837 7205 6822 6695

En términos de porcentajes, la mayoría de las frases pronunciadas por los directores ejecutivos y directores

19

financieros son factuales y, por lo tanto, transmiten un sentimiento neutral. Durante una conferencia telefónica
sobre ganancias, los analistas hacen preguntas que pueden transmitir un sentimiento positivo o negativo. Vale
la pena investigar más a fondo cuantitativamente cómo el sentimiento negativo o positivo afecta los precios de
las acciones el mismo día o el siguiente de negociación.

La siguiente tabla enumera el análisis de sentimiento a nivel de oración para las 10 principales empresas del
NASDAQ, expresado en porcentaje.

Porcenta

je de

sentimie

nto

Las 10

empresa

s

AAPL AMD Amazon Director

Ejecutiv

o

GOOGL INTC MSFT NVDA

Positivo 10.13% 18.06% 8.69% 5.24% 9.07% 12.08% 11.44% 13.25% 6.23%

Neutral 87.17% 79.02% 88.82% 91.87% 88.42% 86.50% 84.65% 83.77% 92.44%

Negativo 2.43% 2.92% 2.49% 1.52% 2.51% 1.42% 3.91% 2.96% 1.33%

Sin
categoriz
ar

0.27% 0% 0% 1.37% 0% 0% 0% 0.01% 0%

En términos del tiempo de ejecución del flujo de trabajo, vimos una mejora significativa de 4,78x local modo
a un entorno distribuido en HDFS y una mejora adicional del 0,14 % al aprovechar NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment_analysis_nfs.log 2>&1

real13m13.149s

user537m50.148s

sys4m46.173s

Como muestra la siguiente figura, el paralelismo de datos y modelos mejoró el procesamiento de datos y la
velocidad de inferencia del modelo distribuido de TensorFlow. La ubicación de datos en NFS produjo un
tiempo de ejecución ligeramente mejor porque el cuello de botella del flujo de trabajo es la descarga de
modelos previamente entrenados. Si aumentamos el tamaño del conjunto de datos de transcripciones, la
ventaja de NFS es más obvia.

20

Entrenamiento distribuido con rendimiento de Horovod

El siguiente comando produjo información de tiempo de ejecución y un archivo de registro en nuestro clúster
Spark usando un solo master nodo con 160 ejecutores cada uno con un núcleo. La memoria del ejecutor se
limitó a 5 GB para evitar errores de falta de memoria. Ver la sección"Scripts de Python para cada caso de uso
principal" Para obtener más detalles sobre el procesamiento de datos, el entrenamiento del modelo y el
cálculo de la precisión del modelo en keras_spark_horovod_rossmann_estimator.py .

(base) [root@n138 horovod]# time spark-submit

--master local

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkusecase/horovod

--local-submission-csv /tmp/submission_0.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_local. log 2>&1

El tiempo de ejecución resultante con diez épocas de entrenamiento fue el siguiente:

real43m34.608s

user12m22.057s

sys2m30.127s

21

spark-python-scripts.html
spark-python-scripts.html

Se necesitaron más de 43 minutos para procesar datos de entrada, entrenar un modelo DNN, calcular la
precisión y producir puntos de control de TensorFlow y un archivo CSV para los resultados de la predicción.
Limitamos el número de épocas de entrenamiento a 10, que en la práctica suele establecerse en 100 para
garantizar una precisión satisfactoria del modelo. El tiempo de entrenamiento normalmente se escala
linealmente con el número de épocas.

A continuación, utilizamos los cuatro nodos de trabajo disponibles en el clúster y ejecutamos el mismo script
en yarn modo con datos en HDFS:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod

--local-submission-csv /tmp/submission_1.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_yarn.log 2>&1

El tiempo de ejecución resultante se mejoró de la siguiente manera:

real8m13.728s

user7m48.421s

sys1m26.063s

Con el modelo de Horovod y el paralelismo de datos en Spark, vimos una aceleración del tiempo de ejecución
de 5,29x yarn versus local Modo con diez épocas de entrenamiento. Esto se muestra en la siguiente figura
con las leyendas. HDFS y Local . El entrenamiento del modelo DNN de TensorFlow subyacente se puede
acelerar aún más con GPU si están disponibles. Planeamos realizar estas pruebas y publicar los resultados
en un futuro informe técnico.

Nuestra siguiente prueba comparó los tiempos de ejecución con datos de entrada que residen en NFS versus
HDFS. El volumen NFS en el AFF A800 se montó en /sparkdemo/horovod en los cinco nodos (uno
maestro y cuatro trabajadores) de nuestro clúster Spark. Ejecutamos un comando similar al de las pruebas
anteriores, con el --data- dir parámetro que ahora apunta al montaje NFS:

22

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkdemo/horovod

--local-submission-csv /tmp/submission_2.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_nfs.log 2>&1

El tiempo de ejecución resultante con NFS fue el siguiente:

real 5m46.229s

user 5m35.693s

sys 1m5.615s

Hubo una aceleración adicional de 1,43x, como se muestra en la siguiente figura. Por lo tanto, con un
almacenamiento all-flash de NetApp conectado a su clúster, los clientes disfrutan de los beneficios de la
transferencia y distribución rápida de datos para los flujos de trabajo de Horovod Spark, logrando una
aceleración de 7,55 veces en comparación con la ejecución en un solo nodo.

23

Modelos de aprendizaje profundo para el rendimiento de la predicción de CTR

Para los sistemas de recomendación diseñados para maximizar el CTR, es necesario aprender interacciones
de características sofisticadas detrás de los comportamientos de los usuarios que se puedan calcular
matemáticamente desde el orden bajo hasta el orden alto. Las interacciones de características de orden bajo
y de orden alto deberían ser igualmente importantes para un buen modelo de aprendizaje profundo sin
sesgarse hacia una u otra. Deep Factorization Machine (DeepFM), una red neuronal basada en máquinas de
factorización, combina máquinas de factorización para recomendación y aprendizaje profundo para el
aprendizaje de características en una nueva arquitectura de red neuronal.

Aunque las máquinas de factorización convencionales modelan interacciones de características por pares
como un producto interno de vectores latentes entre características y teóricamente pueden capturar
información de alto orden, en la práctica los profesionales del aprendizaje automático usualmente solo usan
interacciones de características de segundo orden debido a la alta complejidad de cálculo y almacenamiento.
Variantes de redes neuronales profundas como la de Google "Modelos anchos y profundos" Por otro lado,
aprende interacciones de características sofisticadas en una estructura de red híbrida combinando un modelo
lineal amplio y un modelo profundo.

Hay dos entradas para este modelo amplio y profundo: una para el modelo amplio subyacente y otra para el
profundo; la última parte aún requiere ingeniería de características experta y, por lo tanto, hace que la técnica
sea menos generalizable a otros dominios. A diferencia del modelo ancho y profundo, DeepFM se puede
entrenar de manera eficiente con características sin procesar sin ninguna ingeniería de características porque
su parte ancha y su parte profunda comparten la misma entrada y el vector de incrustación.

Primero procesamos el Criteo train.txt (11 GB) en un archivo CSV llamado ctr_train.csv almacenado
en un montaje NFS /sparkdemo/tr-4570-data usando run_classification_criteo_spark.py de
la sección"Scripts de Python para cada caso de uso principal." Dentro de este script, la función
process_input_file Realiza varios métodos de cadena para eliminar tabulaciones e insertar ',' como
delimitador y '\n' como nueva línea. Tenga en cuenta que solo necesita procesar el original. train.txt
una vez, para que el bloque de código se muestre como comentarios.

Para las siguientes pruebas de diferentes modelos DL, utilizamos ctr_train.csv como archivo de entrada.
En ejecuciones de prueba posteriores, el archivo CSV de entrada se leyó en un Spark DataFrame con un
esquema que contenía un campo de 'label' , características densas de números enteros ['I1', 'I2',
'I3', …, 'I13'] , y características dispersas ['C1', 'C2', 'C3', …, 'C26'] . La siguiente spark-
submit El comando toma un CSV de entrada, entrena los modelos DeepFM con una división del 20 % para la
validación cruzada y elige el mejor modelo después de diez épocas de entrenamiento para calcular la
precisión de la predicción en el conjunto de prueba:

(base) [root@n138 ~]# time spark-submit --master yarn --executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py --data

-dir file:///sparkdemo/tr-4570-data >

/tmp/run_classification_criteo_spark_local.log 2>&1

Tenga en cuenta que dado que el archivo de datos ctr_train.csv Si tiene más de 11 GB, debe establecer
un espacio suficiente spark.driver.maxResultSize mayor que el tamaño del conjunto de datos para
evitar errores.

24

https://arxiv.org/abs/1606.07792
spark-python-scripts.html

 spark = SparkSession.builder \

 .master("yarn") \

 .appName("deep_ctr_classification") \

 .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

 .config("spark.executor.cores", "1") \

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead', '1500') \

 .config('spark.driver.memoryOverhead', '1500') \

 .config("spark.sql.shuffle.partitions", "480") \

 .config("spark.sql.execution.arrow.enabled", "true") \

 .config("spark.driver.maxResultSize", "50gb") \

 .getOrCreate()

En lo anterior SparkSession.builder configuración que también habilitamos "Flecha apache" , que
convierte un Spark DataFrame en un Pandas DataFrame con el df.toPandas() método.

22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py:96, took

627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

Después de la división aleatoria, hay más de 36 millones de filas en el conjunto de datos de entrenamiento y 9
millones de muestras en el conjunto de prueba:

Training dataset size = 36672493

Testing dataset size = 9168124

Debido a que este informe técnico se centra en las pruebas de CPU sin utilizar ninguna GPU, es imperativo
que cree TensorFlow con los indicadores de compilador adecuados. Este paso evita invocar bibliotecas
aceleradas por GPU y aprovecha al máximo las extensiones vectoriales avanzadas (AVX) y las instrucciones
AVX2 de TensorFlow. Estas características están diseñadas para cálculos algebraicos lineales como suma
vectorizada, multiplicaciones de matrices dentro de un entrenamiento DNN de propagación hacia adelante o
hacia atrás. La instrucción FMA (Multiplicación y Suma Fusionada) disponible con AVX2 que utiliza registros
de punto flotante (FP) de 256 bits es ideal para códigos enteros y tipos de datos, lo que da como resultado
una aceleración de hasta 2x. Para los tipos de datos y códigos FP, AVX2 logra una aceleración del 8 % con
respecto a AVX.

25

https://arrow.apache.org/

2022-06-18 07:19:20.101478: I

tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary

is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the

following CPU instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the

appropriate compiler flags.

Para crear TensorFlow desde la fuente, NetApp recomienda usar "Bazel" . Para nuestro entorno, ejecutamos
los siguientes comandos en el indicador de shell para instalar dnf , dnf-plugins y Bazel.

yum install dnf

dnf install 'dnf-command(copr)'

dnf copr enable vbatts/bazel

dnf install bazel5

Debe habilitar GCC 5 o una versión más reciente para usar las características de C++17 durante el proceso
de compilación, que proporciona RHEL con la Biblioteca de colecciones de software (SCL). Los siguientes
comandos instalan devtoolset y GCC 11.2.1 en nuestro clúster RHEL 7.9:

subscription-manager repos --enable rhel-server-rhscl-7-rpms

yum install devtoolset-11-toolchain

yum install devtoolset-11-gcc-c++

yum update

scl enable devtoolset-11 bash

. /opt/rh/devtoolset-11/enable

Tenga en cuenta que los dos últimos comandos habilitan devtoolset-11 , que utiliza
/opt/rh/devtoolset-11/root/usr/bin/gcc (CCG 11.2.1). Además, asegúrese de que su git La
versión es mayor que 1.8.3 (viene con RHEL 7.9). Consulte esto "artículo" para actualizar git a 2.24.1.

Suponemos que ya ha clonado el último repositorio maestro de TensorFlow. Luego crea un workspace
directorio con un WORKSPACE archivo para compilar TensorFlow desde la fuente con AVX, AVX2 y FMA.
Ejecutar el configure archivo y especifique la ubicación binaria de Python correcta. "CUDA" está
deshabilitado para nuestras pruebas porque no usamos una GPU. A .bazelrc El archivo se genera según
su configuración. Además, editamos el archivo y lo configuramos. build
--define=no_hdfs_support=false para habilitar la compatibilidad con HDFS. Referirse a .bazelrc en
la sección"Scripts de Python para cada caso de uso principal," para obtener una lista completa de
configuraciones y banderas.

./configure

bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=

-mfpmath=both -k //tensorflow/tools/pip_package:build_pip_package

Después de crear TensorFlow con los indicadores correctos, ejecute el siguiente script para procesar el

26

https://bazel.build/
https://travis.media/how-to-upgrade-git-on-rhel7-and-centos7/
https://developer.nvidia.com/cuda-toolkit
spark-python-scripts.html

conjunto de datos de anuncios de Criteo Display, entrenar un modelo DeepFM y calcular el área bajo la curva
característica operativa del receptor (ROC AUC) a partir de los puntajes de predicción.

(base) [root@n138 examples]# ~/anaconda3/bin/spark-submit

--master yarn

--executor-memory 15g

--executor-cores 1

--num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py

--data-dir file:///sparkdemo/tr-4570-data

> . /run_classification_criteo_spark_nfs.log 2>&1

Después de diez épocas de entrenamiento, obtuvimos la puntuación AUC en el conjunto de datos de prueba:

27

Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary_crossentropy: 0.4974 - val_loss:

0.4629 - val_binary_crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary_crossentropy: 0.3271 - val_loss:

0.5146 - val_binary_crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary_crossentropy: 0.1928 - val_loss:

0.6166 - val_binary_crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary_crossentropy: 0.1383 - val_loss:

0.7261 - val_binary_crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary_crossentropy: 0.1102 - val_loss:

0.7961 - val_binary_crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary_crossentropy: 0.0921 - val_loss:

0.9502 - val_binary_crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary_crossentropy: 0.0750 - val_loss:

1.1329 - val_binary_crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary_crossentropy: 0.0622 - val_loss:

1.3794 - val_binary_crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary_crossentropy: 0.0527 - val_loss:

1.6115 - val_binary_crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary_crossentropy: 0.0442 - val_loss:

1.6768 - val_binary_crossentropy: 1.6740

test AUC 0.6337

De manera similar a los casos de uso anteriores, comparamos el tiempo de ejecución del flujo de trabajo de
Spark con datos que residen en diferentes ubicaciones. La siguiente figura muestra una comparación de la
predicción de CTR de aprendizaje profundo para un tiempo de ejecución de flujos de trabajo de Spark.

28

Solución de nube híbrida

Un centro de datos empresarial moderno es una nube híbrida que conecta múltiples
entornos de infraestructura distribuida a través de un plano de gestión de datos continuo
con un modelo operativo consistente, en las instalaciones y/o en múltiples nubes
públicas. Para aprovechar al máximo una nube híbrida, debe poder mover datos sin
problemas entre sus entornos locales y de múltiples nubes sin necesidad de realizar
conversiones de datos ni refactorizar aplicaciones.

Los clientes han indicado que comienzan su viaje a la nube híbrida moviendo almacenamiento secundario a la
nube para casos de uso como protección de datos o moviendo cargas de trabajo menos críticas para el
negocio, como desarrollo de aplicaciones y DevOps a la nube. Luego pasan a cargas de trabajo más críticas.
El alojamiento web y de contenido, el desarrollo de aplicaciones y DevOps, las bases de datos, los análisis y
las aplicaciones en contenedores se encuentran entre las cargas de trabajo de nube híbrida más populares.
La complejidad, el costo y los riesgos de los proyectos de IA empresarial han obstaculizado históricamente la
adopción de IA desde la etapa experimental hasta la producción.

Con una solución de nube híbrida de NetApp , los clientes se benefician de herramientas integradas de
seguridad, gobernanza de datos y cumplimiento con un único panel de control para la gestión de datos y flujo
de trabajo en entornos distribuidos, al tiempo que optimizan el costo total de propiedad en función de su
consumo. La siguiente figura es un ejemplo de solución de un socio de servicios en la nube encargado de
proporcionar conectividad multi-nube para los datos de análisis de big data de los clientes.

29

En este escenario, los datos de IoT recibidos en AWS desde diferentes fuentes se almacenan en una
ubicación central en NetApp Private Storage (NPS). El almacenamiento NPS está conectado a clústeres
Spark o Hadoop ubicados en AWS y Azure, lo que permite que las aplicaciones de análisis de big data que se
ejecutan en múltiples nubes accedan a los mismos datos. Los principales requisitos y desafíos para este caso
de uso incluyen lo siguiente:

• Los clientes quieren ejecutar trabajos de análisis en los mismos datos utilizando múltiples nubes.

• Los datos deben recibirse de diferentes fuentes, como entornos locales y en la nube, a través de
diferentes sensores y concentradores.

• La solución debe ser eficiente y rentable.

• El principal desafío es construir una solución rentable y eficiente que ofrezca servicios de análisis híbridos
entre diferentes entornos locales y en la nube.

Nuestra solución de protección de datos y conectividad multicloud resuelve el problema de tener aplicaciones
de análisis de nube en múltiples hiperescaladores. Como se muestra en la figura anterior, los datos de los
sensores se transmiten y se incorporan al clúster de AWS Spark a través de Kafka. Los datos se almacenan
en un recurso compartido NFS que reside en NPS, que se encuentra fuera del proveedor de la nube dentro de
un centro de datos de Equinix.

Dado que NetApp NPS está conectado a Amazon AWS y Microsoft Azure a través de conexiones Direct
Connect y Express Route respectivamente, los clientes pueden aprovechar el módulo de análisis local para
acceder a los datos de los clústeres de análisis de Amazon y AWS. En consecuencia, dado que tanto el
almacenamiento local como el NPS ejecutan el software ONTAP , "SnapMirror" Puede reflejar los datos de
NPS en el clúster local, lo que proporciona análisis de nube híbrida en las instalaciones locales y en múltiples
nubes.

Para obtener el mejor rendimiento, NetApp generalmente recomienda utilizar múltiples interfaces de red y
conexiones directas o rutas expresas para acceder a los datos desde las instancias de la nube. Contamos con
otras soluciones de transferencia de datos, incluidas: "XCP" y "Copia y sincronización de BlueXP" para ayudar
a los clientes a construir clústeres Spark de nube híbrida que sean rentables, seguros y conscientes de las
aplicaciones.

Scripts de Python para cada caso de uso principal

Los siguientes tres scripts de Python corresponden a los tres casos de uso principales
probados. Primero es sentiment_analysis_sparknlp.py .

30

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service

TR-4570 Refresh NLP testing by Rick Huang

from sys import argv

import os

import sparknlp

import pyspark.sql.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline

from sparknlp import Finisher

Start Spark Session with Spark NLP

spark = sparknlp.start()

print("Spark NLP version:")

print(sparknlp.version())

print("Apache Spark version:")

print(spark.version)

spark = sparknlp.SparkSession.builder \

 .master("yarn") \

 .appName("test_hdfs_read_write") \

 .config("spark.executor.cores", "1") \

 .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-

nlp_2.12:3.4.3")\

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead','1000')\

 .config('spark.driver.memoryOverhead','1000')\

 .config("spark.sql.shuffle.partitions", "480")\

 .getOrCreate()

sc = spark.sparkContext

from pyspark.sql import SQLContext

sql = SQLContext(sc)

sqlContext = SQLContext(sc)

Download pre-trained pipelines & sequence classifier

explain_pipeline_model = PretrainedPipeline('explain_document_dl',

lang='en').model#pipeline_sa =

PretrainedPipeline("classifierdl_bertwiki_finance_sentiment_pipeline",

lang="en")

pipeline_finbert =

BertForSequenceClassification.loadSavedModel('/sparkusecase/bert_sequence_

classifier_finbert_en_3', spark)

sequenceClassifier = BertForSequenceClassification \

 .pretrained('bert_sequence_classifier_finbert', 'en') \

 .setInputCols(['token', 'document']) \

 .setOutputCol('class') \

 .setCaseSensitive(True) \

31

 .setMaxSentenceLength(512)

def process_sentence_df(data):

 # Pre-process: begin

 print("1. Begin DataFrame pre-processing...\n")

 print(f"\n\t2. Attaching DocumentAssembler Transformer to the

pipeline")

 documentAssembler = DocumentAssembler() \

 .setInputCol("text") \

 .setOutputCol("document") \

 .setCleanupMode("inplace_full")

 #.setCleanupMode("shrink", "inplace_full")

 doc_df = documentAssembler.transform(data)

 doc_df.printSchema()

 doc_df.show(truncate=50)

 # Pre-process: get rid of blank lines

 clean_df = doc_df.withColumn("tmp", F.explode("document")) \

 .select("tmp.result").where("tmp.end !=

-1").withColumnRenamed("result", "text").dropna()

 print("[OK!] DataFrame after initial cleanup:\n")

 clean_df.printSchema()

 clean_df.show(truncate=80)

 # for FinBERT

 tokenizer = Tokenizer() \

 .setInputCols(['document']) \

 .setOutputCol('token')

 print(f"\n\t3. Attaching Tokenizer Annotator to the pipeline")

 pipeline_finbert = Pipeline(stages=[

 documentAssembler,

 tokenizer,

 sequenceClassifier

])

 # Use Finisher() & construct PySpark ML pipeline

 finisher = Finisher().setInputCols(["token", "lemma", "pos",

"entities"])

 print(f"\n\t4. Attaching Finisher Transformer to the pipeline")

 pipeline_ex = Pipeline() \

 .setStages([

 explain_pipeline_model,

 finisher

])

 print("\n\t\t\t ---- Pipeline Built Successfully ----")

 # Loading pipelines to annotate

 #result_ex_df = pipeline_ex.transform(clean_df)

 ex_model = pipeline_ex.fit(clean_df)

 annotations_finished_ex_df = ex_model.transform(clean_df)

 # result_sa_df = pipeline_sa.transform(clean_df)

32

 result_finbert_df = pipeline_finbert.fit(clean_df).transform(clean_df)

 print("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT

Pipeline Fitted Successfully ----")

 # Check the result entities

 print("[OK!] Simple explain ML pipeline result:\n")

 annotations_finished_ex_df.printSchema()

 annotations_finished_ex_df.select('text',

'finished_entities').show(truncate=False)

 # Check the result sentiment from FinBERT

 print("[OK!] Sentiment Analysis FinBERT pipeline result:\n")

 result_finbert_df.printSchema()

 result_finbert_df.select('text', 'class.result').show(80, False)

 sentiment_stats(result_finbert_df)

 return

def sentiment_stats(finbert_df):

 result_df = finbert_df.select('text', 'class.result')

 sa_df = result_df.select('result')

 sa_df.groupBy('result').count().show()

 # total_lines = result_clean_df.count()

 # num_neutral = result_clean_df.where(result_clean_df.result ==

['neutral']).count()

 # num_positive = result_clean_df.where(result_clean_df.result ==

['positive']).count()

 # num_negative = result_clean_df.where(result_clean_df.result ==

['negative']).count()

 # print(f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

 # print(f"Ratio of positive sentiment = {num_positive / total_lines}")

 # print(f"Ratio of negative sentiment = {num_negative /

total_lines}\n")

 return

def process_input_file(file_name):

 # Turn input file to Spark DataFrame

 print("START processing input file...")

 data_df = spark.read.text(file_name)

 data_df.show()

 # rename first column 'text' for sparknlp

 output_df = data_df.withColumnRenamed("value", "text").dropna()

 output_df.printSchema()

 return output_dfdef process_local_dir(directory):

 filelist = []

 for subdir, dirs, files in os.walk(directory):

 for filename in files:

 filepath = subdir + os.sep + filename

 print("[OK!] Will process the following files:")

 if filepath.endswith(".txt"):

 print(filepath)

33

 filelist.append(filepath)

 return filelist

def process_local_dir_or_file(dir_or_file):

 numfiles = 0

 if os.path.isfile(dir_or_file):

 input_df = process_input_file(dir_or_file)

 print("Obtained input_df.")

 process_sentence_df(input_df)

 print("Processed input_df")

 numfiles += 1

 else:

 filelist = process_local_dir(dir_or_file)

 for file in filelist:

 input_df = process_input_file(file)

 process_sentence_df(input_df)

 numfiles += 1

 return numfiles

def process_hdfs_dir(dir_name):

 # Turn input files to Spark DataFrame

 print("START processing input HDFS directory...")

 data_df = spark.read.option("recursiveFileLookup",

"true").text(dir_name)

 data_df.show()

 print("[DEBUG] total lines in data_df = ", data_df.count())

 # rename first column 'text' for sparknlp

 output_df = data_df.withColumnRenamed("value", "text").dropna()

 print("[DEBUG] output_df looks like: \n")

 output_df.show(40, False)

 print("[DEBUG] HDFS dir resulting data_df schema: \n")

 output_df.printSchema()

 process_sentence_df(output_df)

 print("Processed HDFS directory: ", dir_name)

 returnif __name__ == '__main__':

 try:

 if len(argv) == 2:

 print("Start processing input...\n")

 except:

 print("[ERROR] Please enter input text file or path to

process!\n")

 exit(1)

 # This is for local file, not hdfs:

 numfiles = process_local_dir_or_file(str(argv[1]))

 # For HDFS single file & directory:

 input_df = process_input_file(str(argv[1]))

 print("Obtained input_df.")

 process_sentence_df(input_df)

34

 print("Processed input_df")

 numfiles += 1

 # For HDFS directory of subdirectories of files:

 input_parse_list = str(argv[1]).split('/')

 print(input_parse_list)

 if input_parse_list[-2:-1] == ['Transcripts']:

 print("Start processing HDFS directory: ", str(argv[1]))

 process_hdfs_dir(str(argv[1]))

 print(f"[OK!] All done. Number of files processed = {numfiles}")

El segundo guión es keras_spark_horovod_rossmann_estimator.py .

Copyright 2022 NetApp, Inc.

Authored by Rick Huang

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

==

====

The below code was modified from: https://www.kaggle.com/c/rossmann-

store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sql.types as T

import pyspark.sql.functions as F

from pyspark import SparkConf, Row

from pyspark.sql import SparkSession

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,

Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

35

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint

parser = argparse.ArgumentParser(description='Horovod Keras Spark Rossmann

Estimator Example',

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--master',

 help='spark cluster to use for training. If set to

None, uses current default cluster. Cluster'

 'should be set up to provide a Spark task per

multiple CPU cores, or per GPU, e.g. by'

 'supplying `-c <NUM_GPUS>` in Spark Standalone

mode')

parser.add_argument('--num-proc', type=int,

 help='number of worker processes for training,

default: `spark.default.parallelism`')

parser.add_argument('--learning_rate', type=float, default=0.0001,

 help='initial learning rate')

parser.add_argument('--batch-size', type=int, default=100,

 help='batch size')

parser.add_argument('--epochs', type=int, default=100,

 help='number of epochs to train')

parser.add_argument('--sample-rate', type=float,

 help='desired sampling rate. Useful to set to low

number (e.g. 0.01) to make sure that '

 'end-to-end process works')

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

 help='location of data on local filesystem (prefixed

with file://) or on HDFS')

parser.add_argument('--local-submission-csv', default='submission.csv',

 help='output submission predictions CSV')

parser.add_argument('--local-checkpoint-file', default='checkpoint',

 help='model checkpoint')

parser.add_argument('--work-dir', default='/tmp',

 help='temporary working directory to write

intermediate files (prefix with hdfs:// to use HDFS)')

if __name__ == '__main__':

 args = parser.parse_args()

 # ================ #

 # DATA PREPARATION #

 # ================ #

 print('================')

 print('Data preparation')

 print('================')

 # Create Spark session for data preparation.

36

 conf = SparkConf() \

 .setAppName('Keras Spark Rossmann Estimator Example') \

 .set('spark.sql.shuffle.partitions', '480') \

 .set("spark.executor.cores", "1") \

 .set('spark.executor.memory', '5gb') \

 .set('spark.executor.memoryOverhead','1000')\

 .set('spark.driver.memoryOverhead','1000')

 if args.master:

 conf.setMaster(args.master)

 elif args.num_proc:

 conf.setMaster('local[{}]'.format(args.num_proc))

 spark = SparkSession.builder.config(conf=conf).getOrCreate()

 train_csv = spark.read.csv('%s/train.csv' % args.data_dir,

header=True)

 test_csv = spark.read.csv('%s/test.csv' % args.data_dir, header=True)

 store_csv = spark.read.csv('%s/store.csv' % args.data_dir,

header=True)

 store_states_csv = spark.read.csv('%s/store_states.csv' %

args.data_dir, header=True)

 state_names_csv = spark.read.csv('%s/state_names.csv' % args.data_dir,

header=True)

 google_trend_csv = spark.read.csv('%s/googletrend.csv' %

args.data_dir, header=True)

 weather_csv = spark.read.csv('%s/weather.csv' % args.data_dir,

header=True)

 def expand_date(df):

 df = df.withColumn('Date', df.Date.cast(T.DateType()))

 return df \

 .withColumn('Year', F.year(df.Date)) \

 .withColumn('Month', F.month(df.Date)) \

 .withColumn('Week', F.weekofyear(df.Date)) \

 .withColumn('Day', F.dayofmonth(df.Date))

 def prepare_google_trend():

 # Extract week start date and state.

 google_trend_all = google_trend_csv \

 .withColumn('Date', F.regexp_extract(google_trend_csv.week,

'(.*?) -', 1)) \

 .withColumn('State', F.regexp_extract(google_trend_csv.file,

'Rossmann_DE_(.*)', 1))

 # Map state NI -> HB,NI to align with other data sources.

 google_trend_all = google_trend_all \

 .withColumn('State', F.when(google_trend_all.State == 'NI',

'HB,NI').otherwise(google_trend_all.State))

 # Expand dates.

 return expand_date(google_trend_all)

 def add_elapsed(df, cols):

37

 def add_elapsed_column(col, asc):

 def fn(rows):

 last_store, last_date = None, None

 for r in rows:

 if last_store != r.Store:

 last_store = r.Store

 last_date = r.Date

 if r[col]:

 last_date = r.Date

 fields = r.asDict().copy()

 fields[('After' if asc else 'Before') + col] = (r.Date

- last_date).days

 yield Row(**fields)

 return fn

 df = df.repartition(df.Store)

 for asc in [False, True]:

 sort_col = df.Date.asc() if asc else df.Date.desc()

 rdd = df.sortWithinPartitions(df.Store.asc(), sort_col).rdd

 for col in cols:

 rdd = rdd.mapPartitions(add_elapsed_column(col, asc))

 df = rdd.toDF()

 return df

 def prepare_df(df):

 num_rows = df.count()

 # Expand dates.

 df = expand_date(df)

 df = df \

 .withColumn('Open', df.Open != '0') \

 .withColumn('Promo', df.Promo != '0') \

 .withColumn('StateHoliday', df.StateHoliday != '0') \

 .withColumn('SchoolHoliday', df.SchoolHoliday != '0')

 # Merge in store information.

 store = store_csv.join(store_states_csv, 'Store')

 df = df.join(store, 'Store')

 # Merge in Google Trend information.

 google_trend_all = prepare_google_trend()

 df = df.join(google_trend_all, ['State', 'Year',

'Week']).select(df['*'], google_trend_all.trend)

 # Merge in Google Trend for whole Germany.

 google_trend_de = google_trend_all[google_trend_all.file ==

'Rossmann_DE'].withColumnRenamed('trend', 'trend_de')

 df = df.join(google_trend_de, ['Year', 'Week']).select(df['*'],

google_trend_de.trend_de)

 # Merge in weather.

 weather = weather_csv.join(state_names_csv, weather_csv.file ==

state_names_csv.StateName)

38

 df = df.join(weather, ['State', 'Date'])

 # Fix null values.

 df = df \

 .withColumn('CompetitionOpenSinceYear',

F.coalesce(df.CompetitionOpenSinceYear, F.lit(1900))) \

 .withColumn('CompetitionOpenSinceMonth',

F.coalesce(df.CompetitionOpenSinceMonth, F.lit(1))) \

 .withColumn('Promo2SinceYear', F.coalesce(df.Promo2SinceYear,

F.lit(1900))) \

 .withColumn('Promo2SinceWeek', F.coalesce(df.Promo2SinceWeek,

F.lit(1)))

 # Days & months competition was open, cap to 2 years.

 df = df.withColumn('CompetitionOpenSince',

 F.to_date(F.format_string('%s-%s-15',

df.CompetitionOpenSinceYear,

df.CompetitionOpenSinceMonth)))

 df = df.withColumn('CompetitionDaysOpen',

 F.when(df.CompetitionOpenSinceYear > 1900,

 F.greatest(F.lit(0), F.least(F.lit(360 *

2), F.datediff(df.Date, df.CompetitionOpenSince))))

 .otherwise(0))

 df = df.withColumn('CompetitionMonthsOpen',

(df.CompetitionDaysOpen / 30).cast(T.IntegerType()))

 # Days & weeks of promotion, cap to 25 weeks.

 df = df.withColumn('Promo2Since',

 F.expr('date_add(format_string("%s-01-01",

Promo2SinceYear), (cast(Promo2SinceWeek as int) - 1) * 7)'))

 df = df.withColumn('Promo2Days',

 F.when(df.Promo2SinceYear > 1900,

 F.greatest(F.lit(0), F.least(F.lit(25 *

7), F.datediff(df.Date, df.Promo2Since))))

 .otherwise(0))

 df = df.withColumn('Promo2Weeks', (df.Promo2Days /

7).cast(T.IntegerType()))

 # Check that we did not lose any rows through inner joins.

 assert num_rows == df.count(), 'lost rows in joins'

 return df

 def build_vocabulary(df, cols):

 vocab = {}

 for col in cols:

 values = [r[0] for r in df.select(col).distinct().collect()]

 col_type = type([x for x in values if x is not None][0])

 default_value = col_type()

 vocab[col] = sorted(values, key=lambda x: x or default_value)

 return vocab

39

 def cast_columns(df, cols):

 for col in cols:

 df = df.withColumn(col,

F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))

 return df

 def lookup_columns(df, vocab):

 def lookup(mapping):

 def fn(v):

 return mapping.index(v)

 return F.udf(fn, returnType=T.IntegerType())

 for col, mapping in vocab.items():

 df = df.withColumn(col, lookup(mapping)(df[col]))

 return df

 if args.sample_rate:

 train_csv = train_csv.sample(withReplacement=False,

fraction=args.sample_rate)

 test_csv = test_csv.sample(withReplacement=False,

fraction=args.sample_rate)

 # Prepare data frames from CSV files.

 train_df = prepare_df(train_csv).cache()

 test_df = prepare_df(test_csv).cache()

 # Add elapsed times from holidays & promos, the data spanning training

& test datasets.

 elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']

 elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)

 .unionAll(test_df.select('Date', 'Store',

*elapsed_cols)),

 elapsed_cols)

 # Join with elapsed times.

 train_df = train_df \

 .join(elapsed, ['Date', 'Store']) \

 .select(train_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

 test_df = test_df \

 .join(elapsed, ['Date', 'Store']) \

 .select(test_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

 # Filter out zero sales.

 train_df = train_df.filter(train_df.Sales > 0)

 print('===================')

 print('Prepared data frame')

 print('===================')

 train_df.show()

 categorical_cols = [

 'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',

'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',

40

 'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',

'Promo2SinceYear', 'Events', 'Promo',

 'StateHoliday', 'SchoolHoliday'

]

 continuous_cols = [

 'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC',

'Min_TemperatureC', 'Max_Humidity',

 'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h',

'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_de',

 'BeforePromo', 'AfterPromo', 'AfterStateHoliday',

'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

]

 all_cols = categorical_cols + continuous_cols

 # Select features.

 train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()

 test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

 # Build vocabulary of categorical columns.

 vocab = build_vocabulary(train_df.select(*categorical_cols)

.unionAll(test_df.select(*categorical_cols)).cache(),

 categorical_cols)

 # Cast continuous columns to float & lookup categorical columns.

 train_df = cast_columns(train_df, continuous_cols + ['Sales'])

 train_df = lookup_columns(train_df, vocab)

 test_df = cast_columns(test_df, continuous_cols)

 test_df = lookup_columns(test_df, vocab)

 # Split into training & validation.

 # Test set is in 2015, use the same period in 2014 from the training

set as a validation set.

 test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]

 test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]

 one_year = datetime.timedelta(365)

 train_df = train_df.withColumn('Validation',

 (train_df.Date > test_min_date -

one_year) & (train_df.Date <= test_max_date - one_year))

 # Determine max Sales number.

 max_sales = train_df.agg(F.max(train_df.Sales)).collect()[0][0]

 # Convert Sales to log domain

 train_df = train_df.withColumn('Sales', F.log(train_df.Sales))

 print('===================================')

 print('Data frame with transformed columns')

 print('===================================')

 train_df.show()

 print('================')

 print('Data frame sizes')

 print('================')

41

 train_rows = train_df.filter(~train_df.Validation).count()

 val_rows = train_df.filter(train_df.Validation).count()

 test_rows = test_df.count()

 print('Training: %d' % train_rows)

 print('Validation: %d' % val_rows)

 print('Test: %d' % test_rows)

 # ============== #

 # MODEL TRAINING #

 # ============== #

 print('==============')

 print('Model training')

 print('==============')

 def exp_rmspe(y_true, y_pred):

 """Competition evaluation metric, expects logarithic inputs."""

 pct = tf.square((tf.exp(y_true) - tf.exp(y_pred)) /

tf.exp(y_true))

 # Compute mean excluding stores with zero denominator.

 x = tf.reduce_sum(tf.where(y_true > 0.001, pct,

tf.zeros_like(pct)))

 y = tf.reduce_sum(tf.where(y_true > 0.001, tf.ones_like(pct),

tf.zeros_like(pct)))

 return tf.sqrt(x / y)

 def act_sigmoid_scaled(x):

 """Sigmoid scaled to logarithm of maximum sales scaled by 20%."""

 return tf.nn.sigmoid(x) * tf.math.log(max_sales) * 1.2

 CUSTOM_OBJECTS = {'exp_rmspe': exp_rmspe,

 'act_sigmoid_scaled': act_sigmoid_scaled}

 # Disable GPUs when building the model to prevent memory leaks

 if LooseVersion(tf.__version__) >= LooseVersion('2.0.0'):

 # See https://github.com/tensorflow/tensorflow/issues/33168

 os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

 else:

K.set_session(tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})))

 # Build the model.

 inputs = {col: Input(shape=(1,), name=col) for col in all_cols}

 embeddings = [Embedding(len(vocab[col]), 10, input_length=1,

name='emb_' + col)(inputs[col])

 for col in categorical_cols]

 continuous_bn = Concatenate()([Reshape((1, 1), name='reshape_' +

col)(inputs[col])

 for col in continuous_cols])

 continuous_bn = BatchNormalization()(continuous_bn)

 x = Concatenate()(embeddings + [continuous_bn])

 x = Flatten()(x)

 x = Dense(1000, activation='relu',

42

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dense(500, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

 x = Dropout(0.5)(x)

 output = Dense(1, activation=act_sigmoid_scaled)(x)

 model = tf.keras.Model([inputs[f] for f in all_cols], output)

 model.summary()

 opt = tf.keras.optimizers.Adam(lr=args.learning_rate, epsilon=1e-3)

 # Checkpoint callback to specify options for the returned Keras model

 ckpt_callback = BestModelCheckpoint(monitor='val_loss', mode='auto',

save_freq='epoch')

 # Horovod: run training.

 store = Store.create(args.work_dir)

 backend = SparkBackend(num_proc=args.num_proc,

 stdout=sys.stdout, stderr=sys.stderr,

 prefix_output_with_timestamp=True)

 keras_estimator = hvd.KerasEstimator(backend=backend,

 store=store,

 model=model,

 optimizer=opt,

 loss='mae',

 metrics=[exp_rmspe],

 custom_objects=CUSTOM_OBJECTS,

 feature_cols=all_cols,

 label_cols=['Sales'],

 validation='Validation',

 batch_size=args.batch_size,

 epochs=args.epochs,

 verbose=2,

checkpoint_callback=ckpt_callback)

 keras_model =

keras_estimator.fit(train_df).setOutputCols(['Sales_output'])

 history = keras_model.getHistory()

 best_val_rmspe = min(history['val_exp_rmspe'])

 print('Best RMSPE: %f' % best_val_rmspe)

 # Save the trained model.

 keras_model.save(args.local_checkpoint_file)

 print('Written checkpoint to %s' % args.local_checkpoint_file)

 # ================ #

 # FINAL PREDICTION #

 # ================ #

43

 print('================')

 print('Final prediction')

 print('================')

 pred_df=keras_model.transform(test_df)

 pred_df.printSchema()

 pred_df.show(5)

 # Convert from log domain to real Sales numbers

 pred_df=pred_df.withColumn('Sales_pred', F.exp(pred_df.Sales_output))

 submission_df = pred_df.select(pred_df.Id.cast(T.IntegerType()),

pred_df.Sales_pred).toPandas()

 submission_df.sort_values(by=['Id']).to_csv(args.local_submission_csv,

index=False)

 print('Saved predictions to %s' % args.local_submission_csv)

 spark.stop()

El tercer guión es run_classification_criteo_spark.py .

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sql import SparkSession, SQLContext, Row, DataFrame

from pyspark.mllib import linalg as mllib_linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector

from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as

mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD

from pyspark.ml import linalg as ml_linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp # exp(-t) = e^-t

from operator import add

from pyspark.sql.functions import udf, split, lit

from pyspark.sql.functions import size, sum as sqlsum

import pyspark.sql.functions as F

import pyspark.sql.types as T

44

from pyspark.sql.types import ArrayType, StructType, StructField,

LongType, StringType, IntegerType, FloatType

from pyspark.sql.functions import explode, col, log, when

from collections import defaultdict

import pandas as pd

import pyspark.pandas as ps

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.models import DeepFM

from deepctr.feature_column import SparseFeat, DenseFeat,

get_feature_names

spark = SparkSession.builder \

 .master("yarn") \

 .appName("deep_ctr_classification") \

 .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

 .config("spark.executor.cores", "1") \

 .config('spark.executor.memory', '5gb') \

 .config('spark.executor.memoryOverhead', '1500') \

 .config('spark.driver.memoryOverhead', '1500') \

 .config("spark.sql.shuffle.partitions", "480") \

 .config("spark.sql.execution.arrow.enabled", "true") \

 .config("spark.driver.maxResultSize", "50gb") \

 .getOrCreate()

spark.conf.set("spark.sql.execution.arrow.enabled", "true") # deprecated

print("Apache Spark version:")

print(spark.version)

sc = spark.sparkContext

sqlContext = SQLContext(sc)

parser = argparse.ArgumentParser(description='Spark DCN CTR Prediction

Example',

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

 help='location of data on local filesystem (prefixed

with file://) or on HDFS')

def process_input_file(file_name, sparse_feat, dense_feat):

 # Need this preprocessing to turn Criteo raw file into CSV:

 print("START processing input file...")

 # only convert the file ONCE

 # sample = open(file_name)

 # sample = '\n'.join([str(x.replace('\n', '').replace('\t', ',')) for

x in sample])

 # # Add header in data file and save as CSV

 # header = ','.join(str(x) for x in (['label'] + dense_feat +

45

sparse_feat))

 # with open('/sparkdemo/tr-4570-data/ctr_train.csv', mode='w',

encoding="utf-8") as f:

 # f.write(header + '\n' + sample)

 # f.close()

 # print("Raw training file processed and saved as CSV: ", f.name)

 raw_df = sqlContext.read.option("header", True).csv(file_name)

 raw_df.show(5, False)

 raw_df.printSchema()

 # convert columns I1 to I13 from string to integers

 conv_df = raw_df.select(col('label').cast("double"),

 *(col(i).cast("float").alias(i) for i in

raw_df.columns if i in dense_feat),

 *(col(c) for c in raw_df.columns if c in

sparse_feat))

 print("Schema of raw_df with integer columns type changed:")

 conv_df.printSchema()

 # result_pdf = conv_df.select("*").toPandas()

 tmp_df = conv_df.na.fill(0, dense_feat)

 result_df = tmp_df.na.fill('-1', sparse_feat)

 result_df.show()

 return result_df

if __name__ == "__main__":

 args = parser.parse_args()

 # Pandas read CSV

 # data = pd.read_csv('%s/criteo_sample.txt' % args.data_dir)

 # print("Obtained Pandas df.")

 dense_features = ['I' + str(i) for i in range(1, 14)]

 sparse_features = ['C' + str(i) for i in range(1, 27)]

 # Spark read CSV

 # process_input_file('%s/train.txt' % args.data_dir, sparse_features,

dense_features) # run only ONCE

 spark_df = process_input_file('%s/data.txt' % args.data_dir,

sparse_features, dense_features) # sample data

 # spark_df = process_input_file('%s/ctr_train.csv' % args.data_dir,

sparse_features, dense_features)

 print("Obtained Spark df and filled in missing features.")

 data = spark_df

 # Pandas

 #data[sparse_features] = data[sparse_features].fillna('-1',)

 #data[dense_features] = data[dense_features].fillna(0,)

 target = ['label']

 label_npa = data.select("label").toPandas().to_numpy()

 print("label numPy array has length = ", len(label_npa)) # 45,840,617

w/ 11GB dataset

 label_npa.ravel()

46

 label_npa.reshape(len(label_npa),)

 # 1.Label Encoding for sparse features,and do simple Transformation

for dense features

 print("Before LabelEncoder():")

 data.printSchema() # label: float (nullable = true)

 for feat in sparse_features:

 lbe = LabelEncoder()

 tmp_pdf = data.select(feat).toPandas().to_numpy()

 tmp_ndarray = lbe.fit_transform(tmp_pdf)

 print("After LabelEncoder(), tmp_ndarray[0] =", tmp_ndarray[0])

 # print("Data tmp PDF after lbe transformation, the output ndarray

has length = ", len(tmp_ndarray)) # 45,840,617 for 11GB dataset

 tmp_ndarray.ravel()

 tmp_ndarray.reshape(len(tmp_ndarray),)

 out_ndarray = np.column_stack([label_npa, tmp_ndarray])

 pdf = pd.DataFrame(out_ndarray, columns=['label', feat])

 s_df = spark.createDataFrame(pdf)

 s_df.printSchema() # label: double (nullable = true)

 print("Before joining data df with s_df, s_df example rows:")

 s_df.show(1, False)

 data = data.drop(feat).join(s_df, 'label').drop('label')

 print("After LabelEncoder(), data df example rows:")

 data.show(1, False)

 print("Finished processing sparse_features: ", feat)

 print("Data DF after label encoding: ")

 data.show()

 data.printSchema()

 mms = MinMaxScaler(feature_range=(0, 1))

 # data[dense_features] = mms.fit_transform(data[dense_features]) # for

Pandas df

 tmp_pdf = data.select(dense_features).toPandas().to_numpy()

 tmp_ndarray = mms.fit_transform(tmp_pdf)

 tmp_ndarray.ravel()

 tmp_ndarray.reshape(len(tmp_ndarray), len(tmp_ndarray[0]))

 out_ndarray = np.column_stack([label_npa, tmp_ndarray])

 pdf = pd.DataFrame(out_ndarray, columns=['label'] + dense_features)

 s_df = spark.createDataFrame(pdf)

 s_df.printSchema()

 data.drop(*dense_features).join(s_df, 'label').drop('label')

 print("Finished processing dense_features: ", dense_features)

 print("Data DF after MinMaxScaler: ")

 data.show()

 # 2.count #unique features for each sparse field,and record dense

feature field name

 fixlen_feature_columns = [SparseFeat(feat,

47

vocabulary_size=data.select(feat).distinct().count() + 1, embedding_dim=4)

 for i, feat in enumerate(sparse_features)] +

\

 [DenseFeat(feat, 1,) for feat in

dense_features]

 dnn_feature_columns = fixlen_feature_columns

 linear_feature_columns = fixlen_feature_columns

 feature_names = get_feature_names(linear_feature_columns +

dnn_feature_columns)

 # 3.generate input data for model

 # train, test = train_test_split(data.toPandas(), test_size=0.2,

random_state=2020) # Pandas; might hang for 11GB data

 train, test = data.randomSplit(weights=[0.8, 0.2], seed=200)

 print("Training dataset size = ", train.count())

 print("Testing dataset size = ", test.count())

 # Pandas:

 # train_model_input = {name: train[name] for name in feature_names}

 # test_model_input = {name: test[name] for name in feature_names}

 # Spark DF:

 train_model_input = {}

 test_model_input = {}

 for name in feature_names:

 if name.startswith('I'):

 tr_pdf = train.select(name).toPandas()

 train_model_input[name] = pd.to_numeric(tr_pdf[name])

 ts_pdf = test.select(name).toPandas()

 test_model_input[name] = pd.to_numeric(ts_pdf[name])

 # 4.Define Model,train,predict and evaluate

 model = DeepFM(linear_feature_columns, dnn_feature_columns,

task='binary')

 model.compile("adam", "binary_crossentropy",

 metrics=['binary_crossentropy'],)

 lb_pdf = train.select(target).toPandas()

 history = model.fit(train_model_input,

pd.to_numeric(lb_pdf['label']).values,

 batch_size=256, epochs=10, verbose=2,

validation_split=0.2,)

 pred_ans = model.predict(test_model_input, batch_size=256)

 print("test LogLoss",

round(log_loss(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

 print("test AUC",

round(roc_auc_score(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

48

Conclusión

En este documento, analizamos la arquitectura de Apache Spark, los casos de uso de
los clientes y la cartera de almacenamiento de NetApp en relación con el big data, el
análisis moderno y la inteligencia artificial, el aprendizaje automático y el aprendizaje
automático. En nuestras pruebas de validación de rendimiento basadas en herramientas
de evaluación comparativa estándar de la industria y la demanda de los clientes, las
soluciones NetApp Spark demostraron un rendimiento superior en relación con los
sistemas Hadoop nativos. Una combinación de los casos de uso de clientes y los
resultados de rendimiento presentados en este informe pueden ayudarlo a elegir una
solución Spark adecuada para su implementación.

Dónde encontrar información adicional

En este TR se utilizaron las siguientes referencias:

• Arquitectura y componentes de Apache Spark

"http://spark.apache.org/docs/latest/cluster-overview.html"

• Casos de uso de Apache Spark

"https://www.qubole.com/blog/big-data/apache-spark-use-cases/"

• Spark PNL

"https://www.johnsnowlabs.com/spark-nlp/"

• BERT

"https://arxiv.org/abs/1810.04805"

• Red profunda y cruzada para predicciones de clics en anuncios

"https://arxiv.org/abs/1708.05123"

• FlexGroup

https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf

• ETL de transmisión

"https://www.infoq.com/articles/apache-spark-streaming"

• Soluciones NetApp E-Series para Hadoop

"https://www.netapp.com/media/16420-tr-3969.pdf"

• Soluciones de análisis de datos modernos de NetApp

"Soluciones de análisis de datos"

49

http://spark.apache.org/docs/latest/cluster-overview.html
https://www.qubole.com/blog/big-data/apache-spark-use-cases/
https://www.johnsnowlabs.com/spark-nlp/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1708.05123
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
https://www.infoq.com/articles/apache-spark-streaming
https://www.netapp.com/media/16420-tr-3969.pdf
https://docs.netapp.com/es-es/netapp-solutions-ai/data-analytics/index.html

• SnapMirror

"https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html"

• XCP

https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US

• Copia y sincronización de BlueXP

"https://cloud.netapp.com/cloud-sync-service"

• Kit de herramientas DataOps

"https://github.com/NetApp/netapp-dataops-toolkit"

50

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service
https://github.com/NetApp/netapp-dataops-toolkit

Información de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico,
electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación
electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O
IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN
DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y
sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de
este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos
a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB
de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas
comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

51

http://www.netapp.com/TM

	Soluciones de almacenamiento de NetApp para Apache Spark : NetApp artificial intelligence solutions
	Tabla de contenidos
	Soluciones de almacenamiento de NetApp para Apache Spark
	TR-4570: Soluciones de almacenamiento de NetApp para Apache Spark: Arquitectura, casos de uso y resultados de rendimiento
	Desafíos del cliente
	¿Por qué elegir NetApp?

	Público objetivo
	Tecnología de soluciones
	Descripción general de las soluciones Spark de NetApp
	Resumen del caso de uso
	Transmisión de datos
	aprendizaje automático
	aprendizaje profundo
	Análisis interactivo
	Sistema de recomendación
	Procesamiento del lenguaje natural

	Principales casos de uso y arquitecturas de IA, ML y DL
	Canalizaciones de Spark NLP e inferencia distribuida de TensorFlow
	Capacitación distribuida de Horovod
	Aprendizaje profundo multitrabajador con Keras para la predicción del CTR
	Arquitecturas utilizadas para la validación

	Resultados de las pruebas
	Análisis del sentimiento financiero
	Entrenamiento distribuido con rendimiento de Horovod
	Modelos de aprendizaje profundo para el rendimiento de la predicción de CTR

	Solución de nube híbrida
	Scripts de Python para cada caso de uso principal
	Conclusión
	Dónde encontrar información adicional

