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Soluciones de almacenamiento de NetApp para
Apache Spark

TR-4570: Soluciones de almacenamiento de NetApp para
Apache Spark: Arquitectura, casos de uso y resultados de
rendimiento

Rick Huang, Karthikeyan Nagalingam, NetApp

Este documento se centra en la arquitectura Apache Spark, los casos de uso de los
clientes y la cartera de almacenamiento de NetApp relacionada con el analisis de big
data y la inteligencia artificial (IA). También presenta varios resultados de pruebas
utilizando herramientas de inteligencia artificial, aprendizaje automatico (ML) y
aprendizaje profundo (DL) estandar de la industria contra un sistema Hadoop tipico para
que pueda elegir la solucion Spark adecuada. Para comenzar, necesita una arquitectura
Spark, componentes apropiados y dos modos de implementacion (cluster y cliente).

Este documento también proporciona casos de uso de clientes para abordar problemas de configuracion y
analiza una descripcion general de la cartera de almacenamiento de NetApp relevante para analisis de big
data e IA, ML y DL con Spark. Luego finalizamos con los resultados de las pruebas derivadas de los casos de
uso especificos de Spark y la cartera de soluciones NetApp Spark.

Desafios del cliente

Esta seccion se centra en los desafios de los clientes con el analisis de big data y la IA/ML/DL en industrias de
crecimiento de datos, como el comercio minorista, el marketing digital, la banca, la fabricacion discreta, la
fabricacion de procesos, el gobierno y los servicios profesionales.

Rendimiento impredecible

Las implementaciones tradicionales de Hadoop generalmente utilizan hardware basico. Para mejorar el
rendimiento, debe ajustar la red, el sistema operativo, el cluster Hadoop, los componentes del ecosistema
como Spark y el hardware. Incluso si ajusta cada capa, puede ser dificil lograr los niveles de rendimiento
deseados porque Hadoop se ejecuta en hardware basico que no fue disefiado para un alto rendimiento en su
entorno.

Fallos de medios y nodos

Incluso en condiciones normales, el hardware comercial es propenso a fallar. Si falla un disco en un nodo de
datos, el maestro Hadoop considera, por defecto, que ese nodo no esta en buen estado. Luego, copia datos
especificos de ese nodo a través de la red desde réplicas a un nodo en buen estado. Este proceso ralentiza
los paquetes de red para cualquier trabajo de Hadoop. Luego, el cluster debe volver a copiar los datos y
eliminar los datos sobre replicados cuando el nodo en mal estado vuelva a un estado correcto.

Dependencia del proveedor de Hadoop

Los distribuidores de Hadoop tienen su propia distribucion de Hadoop con su propia version, lo que limita al
cliente a esas distribuciones. Sin embargo, muchos clientes requieren soporte para analisis en memoria que
no vincule al cliente a distribuciones especificas de Hadoop. Necesitan la libertad de cambiar distribuciones y



aun asi llevar consigo sus analisis.

Falta de soporte para mas de un idioma

Los clientes a menudo necesitan soporte para varios idiomas ademas de los programas Java MapReduce
para ejecutar sus trabajos. Opciones como SQL y scripts brindan mas flexibilidad para obtener respuestas,
mas opciones para organizar y recuperar datos y formas mas rapidas de mover datos a un marco de analisis.

Dificultad de uso

Desde hace algun tiempo, la gente se ha quejado de que Hadoop es dificil de usar. Aunque Hadoop se ha
vuelto mas simple y mas poderoso con cada nueva version, esta critica ha persistido. Hadoop requiere que
usted comprenda los patrones de programacion Java y MapReduce, un desafio para los administradores de
bases de datos y personas con habilidades de programacion tradicionales.

Marcos y herramientas complicados

Los equipos de IA empresariales enfrentan multiples desafios. Incluso con un conocimiento experto en ciencia
de datos, las herramientas y los marcos para diferentes ecosistemas de implementacion y aplicaciones
podrian no ser facilmente trasladables de uno a otro. Una plataforma de ciencia de datos debe integrarse
perfectamente con las plataformas de big data correspondientes creadas en Spark con facilidad de
movimiento de datos, modelos reutilizables, cédigo listo para usar y herramientas que respalden las mejores
practicas para crear prototipos, validar, controlar versiones, compartir, reutilizar e implementar rapidamente
modelos en produccion.

¢éPor qué elegir NetApp?
NetApp puede mejorar su experiencia con Spark de las siguientes maneras:

» El acceso directo a NFS de NetApp (que se muestra en la figura a continuacion) permite a los clientes
ejecutar trabajos de analisis de big data en sus datos NFSv3 o NFSv4 existentes o nuevos sin mover ni
copiar los datos. Evita copias multiples de datos y elimina la necesidad de sincronizar los datos con una
fuente.

« Almacenamiento mas eficiente y menos replicacion de servidores. Por ejemplo, la solucion NetApp E-
Series Hadoop requiere dos en lugar de tres réplicas de los datos, y la solucion FAS Hadoop requiere una
fuente de datos pero no replicacion ni copias de datos. Las soluciones de almacenamiento de NetApp
también producen menos trafico de servidor a servidor.

* Mejor comportamiento de los trabajos y clusteres de Hadoop durante fallas de unidades y nodos.

* Mejor rendimiento en la ingesta de datos.
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Por ejemplo, en el sector financiero y sanitario, el traslado de datos de un lugar a otro debe cumplir
obligaciones legales, lo que no es una tarea facil. En este escenario, el acceso directo de NetApp NFS analiza
los datos financieros y de atencion médica desde su ubicacion original. Otro beneficio clave es que el uso del
acceso directo NFS de NetApp simplifica la proteccion de los datos de Hadoop mediante el uso de comandos
nativos de Hadoop y la habilitaciéon de flujos de trabajo de proteccion de datos con la amplia cartera de gestion
de datos de NetApp.

El acceso directo NFS de NetApp ofrece dos tipos de opciones de implementacion para clusteres
Hadoop/Spark:

* De forma predeterminada, los clusteres Hadoop o Spark utilizan el sistema de archivos distribuido Hadoop
(HDFS) para el almacenamiento de datos y el sistema de archivos predeterminado. El acceso directo NFS
de NetApp puede reemplazar el HDFS predeterminado con almacenamiento NFS como sistema de
archivos predeterminado, lo que permite el analisis directo de datos NFS.

» En otra opcién de implementacion, el acceso directo NFS de NetApp admite la configuracion de NFS como
almacenamiento adicional junto con HDFS en un solo cluster Hadoop o Spark. En este caso, el cliente
puede compartir datos a través de exportaciones NFS y acceder a ellos desde el mismo cluster junto con
los datos HDFS.

Los beneficios clave de utilizar el acceso directo NFS de NetApp incluyen los siguientes:
* Analizar los datos desde su ubicacion actual, lo que evita la tarea, que consume mucho tiempo y
rendimiento, de mover datos analiticos a una infraestructura Hadoop como HDFS.

» Reducir el numero de réplicas de tres a una.

* Permitir a los usuarios disociar el procesamiento y el almacenamiento para escalarlos de forma
independiente.

* Proporcionar proteccidon de datos empresariales aprovechando las ricas capacidades de gestion de datos
de ONTAP.

« Certificacion con la plataforma de datos Hortonworks.

* Habilitacion de implementaciones de analisis de datos hibridos.



* Reducir el tiempo de backup aprovechando la capacidad multihilo dinamico.

Ver"TR-4657: Soluciones de datos en la nube hibrida de NetApp : Spark y Hadoop, basadas en casos de uso
de clientes" para realizar copias de seguridad de datos de Hadoop, realizar copias de seguridad y
recuperacion ante desastres desde la nube a las instalaciones locales, habilitar DevTest en datos de Hadoop
existentes, proteccion de datos y conectividad multicloud, y acelerar las cargas de trabajo de analisis.

Las siguientes secciones describen las capacidades de almacenamiento que son importantes para los clientes
de Spark.

Nivelacion de almacenamiento

Con los niveles de almacenamiento de Hadoop, puede almacenar archivos con diferentes tipos de
almacenamiento de acuerdo con una politica de almacenamiento. Los tipos de almacenamiento incluyen hot ,
cold,warm, all ssd,one ssd,ylazy persist.

Realizamos la validacion de la clasificacion en niveles del almacenamiento de Hadoop en un controlador de
almacenamiento NetApp AFF y un controlador de almacenamiento E-Series con unidades SSD y SAS con
diferentes politicas de almacenamiento. El cluster Spark con AFF-A800 tiene cuatro nodos de trabajo de
computo, mientras que el clister con E-Series tiene ocho. Esto es principalmente para comparar el
rendimiento de las unidades de estado sélido (SSD) frente a los discos duros (HDD).

La siguiente figura muestra el rendimiento de las soluciones NetApp para un SSD Hadoop.
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 La configuracién basica de NL-SAS utilizé ocho nodos de cémputo y 96 unidades NL-SAS. Esta
configuracion generd 1 TB de datos en 4 minutos y 38 segundos. Ver "Solucion NetApp E-Series TR-3969
para Hadoop" para obtener detalles sobre la configuracion del cluster y del almacenamiento.

» Con TeraGen, la configuracién SSD generd 1 TB de datos 15,66 veces mas rapido que la configuracion
NL-SAS. Ademas, la configuracion SSD utilizé la mitad del nUmero de nodos de computo y la mitad del
numero de unidades de disco (24 unidades SSD en total). Segun el tiempo de finalizacion del trabajo, fue
casi el doble de rapido que la configuracion NL-SAS.


hdcs-sh-solution-overview.html
hdcs-sh-solution-overview.html
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf
https://www.netapp.com/pdf.html?item=/media/16462-tr-3969.pdf

* Con TeraSort, la configuraciéon SSD ordend 1 TB de datos 1138,36 veces mas rapido que la configuracion
NL-SAS. Ademas, la configuracion SSD utilizé la mitad del numero de nodos de cémputo y la mitad del
numero de unidades de disco (24 unidades SSD en total). Por lo tanto, por unidad, fue aproximadamente
tres veces mas rapido que la configuracion NL-SAS.

« La conclusion es que la transicion de los discos giratorios a la tecnologia flash mejora el rendimiento. El
numero de nodos de computo no fue el cuello de botella. Con el almacenamiento all-flash de NetApp, el
rendimiento en tiempo de ejecucion escala bien.

* Con NFS, los datos eran funcionalmente equivalentes a estar agrupados todos juntos, lo que puede
reducir la cantidad de nodos de cémputo segun su carga de trabajo. Los usuarios del cluster Apache
Spark no tienen que reequilibrar manualmente los datos al cambiar la cantidad de nodos de cémputo.

Escalado del rendimiento - Escalamiento horizontal

Cuando necesita mas potencia de procesamiento de un cluster Hadoop en una solucion AFF , puede agregar
nodos de datos con una cantidad adecuada de controladores de almacenamiento. NetApp recomienda
comenzar con cuatro nodos de datos por matriz de controlador de almacenamiento y aumentar la cantidad a
ocho nodos de datos por controlador de almacenamiento, segun las caracteristicas de la carga de trabajo.

AFF y FAS son perfectos para analisis in situ. Segun los requisitos de calculo, puede agregar administradores
de nodos, y las operaciones no disruptivas le permiten agregar un controlador de almacenamiento a pedido
sin tiempo de inactividad. Ofrecemos funciones avanzadas con AFF y FAS, como compatibilidad con medios
NVME, eficiencia garantizada, reduccion de datos, calidad de servicio, analisis predictivo, niveles de nube,
replicacion, implementacion de nube y seguridad. Para ayudar a los clientes a satisfacer sus necesidades,
NetApp ofrece funciones como analisis del sistema de archivos, cuotas y equilibrio de carga integrado sin
costos de licencia adicionales. NetApp tiene un mejor rendimiento en cantidad de trabajos simultaneos, menor
latencia, operaciones mas simples y mayor rendimiento de gigabytes por segundo que nuestros competidores.
Ademas, NetApp Cloud Volumes ONTAP se ejecuta en los tres principales proveedores de nube.

Escalado del rendimiento: escalar hacia arriba

Las funciones de ampliacion le permiten agregar unidades de disco a los sistemas AFF, FAS y E-Series
cuando necesita capacidad de almacenamiento adicional. Con Cloud Volumes ONTAP, escalar el
almacenamiento al nivel de PB es una combinacién de dos factores: agrupar los datos poco utilizados en el
almacenamiento de objetos desde el almacenamiento en bloque y apilar licencias de Cloud Volumes ONTAP
sin procesamiento adicional.

Multiples protocolos

Los sistemas NetApp admiten la mayoria de los protocolos para implementaciones de Hadoop, incluidos SAS,
iISCSI, FCP, InfiniBand y NFS.

Soluciones operativas y soportadas

Las soluciones Hadoop descritas en este documento son compatibles con NetApp. Estas soluciones también
estan certificadas con los principales distribuidores de Hadoop. Para obtener mas informacion, consulte la
"Hortonworks" sitio y Cloudera "proceso de dar un titulo" y "pareja” sitios.

Publico objetivo
El mundo del analisis y la ciencia de datos afecta a multiples disciplinas en Tl y negocios:

« El cientifico de datos necesita la flexibilidad de utilizar las herramientas y bibliotecas que elija.


http://hortonworks.com/partner/netapp/
http://www.cloudera.com/partners/partners-listing.html?q=netapp
http://www.cloudera.com/partners/solutions/netapp.html

* El ingeniero de datos necesita saber como fluyen los datos y donde residen.

* Un ingeniero de DevOps necesita las herramientas para integrar nuevas aplicaciones de IAy ML en sus
canales de Cly CD.

» Los administradores y arquitectos de la nube deben poder configurar y gestionar recursos de nube hibrida.

* Los usuarios comerciales quieren tener acceso a aplicaciones de analisis, inteligencia artificial,
aprendizaje automatico y aprendizaje automatico.

En este informe técnico, describimos cémo NetApp AFF, E-Series, StorageGRID, acceso directo NFS, Apache
Spark, Horovod y Keras ayudan a cada uno de estos roles a aportar valor al negocio.

Tecnologia de soluciones

Apache Spark es un marco de programacion popular para escribir aplicaciones Hadoop
que funciona directamente con el sistema de archivos distribuidos Hadoop (HDFS).
Spark esta listo para produccion, admite el procesamiento de datos de transmision y es
mas rapido que MapReduce. Spark tiene almacenamiento en caché de datos en
memoria configurable para una iteracion eficiente, y el shell de Spark es interactivo para
aprender y explorar datos. Con Spark, puedes crear aplicaciones en Python, Scala o
Java. Las aplicaciones Spark constan de uno o mas trabajos que tienen una o mas
tareas.

Cada aplicacién Spark tiene un controlador Spark. En el modo YARN-Client, el controlador se ejecuta en el
cliente localmente. En el modo YARN-Cluster, el controlador se ejecuta en el cluster en el maestro de
aplicaciones. En el modo de cluster, la aplicacion continda ejecutandose incluso si el cliente se desconecta.
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Hay tres administradores de cluster:

* Auténomo. Este administrador es parte de Spark, lo que facilita la configuraciéon de un cluster.

* Mesos Apache. Este es un administrador de cluster general que también ejecuta MapReduce y otras
aplicaciones.

* HILO DE HADOOP. Este es un administrador de recursos en Hadoop 3.

El conjunto de datos distribuidos resilientes (RDD) es el componente principal de Spark. RDD recrea los datos
perdidos y faltantes a partir de los datos almacenados en la memoria del clUster y almacena los datos iniciales
que provienen de un archivo o se crean mediante programacion. Los RDD se crean a partir de archivos, datos
en la memoria u otro RDD. La programacion Spark realiza dos operaciones: transformacion y acciones. La
transformacion crea un nuevo RDD basado en uno existente. Las acciones devuelven un valor de un RDD.

Las transformaciones y acciones también se aplican a los conjuntos de datos y marcos de datos de Spark. Un
conjunto de datos es una coleccion distribuida de datos que proporciona los beneficios de los RDD (tipificacion
fuerte, uso de funciones lambda) con los beneficios del motor de ejecucién optimizado de Spark SQL. Se
puede construir un conjunto de datos a partir de objetos JVM y luego manipularlo mediante transformaciones
funcionales (mapa, flatMap, filtro, etc.). Un DataFrame es un conjunto de datos organizado en columnas con
nombre. Es conceptualmente equivalente a una tabla en una base de datos relacional o un marco de datos en
R/Python. Los DataFrames se pueden construir a partir de una amplia variedad de fuentes, como archivos de
datos estructurados, tablas en Hive/HBase, bases de datos externas locales o en la nube, o RDD existentes.



Las aplicaciones Spark incluyen uno o mas trabajos Spark. Los trabajos ejecutan tareas en ejecutores, y los
ejecutores se ejecutan en contenedores YARN. Cada ejecutor se ejecuta en un solo contenedor y los
ejecutores existen durante toda la vida de una aplicacion. Un ejecutor se fija después de que se inicia la
aplicacion y YARN no redimensiona el contenedor ya asignado. Un ejecutor puede ejecutar tareas
simultaneamente en datos en memoria.

Descripcion general de las soluciones Spark de NetApp

NetApp tiene tres carteras de almacenamiento: FAS/ AFF, E-Series y Cloud Volumes
ONTAP. Hemos validado AFF y el sistema de almacenamiento E-Series con ONTAP para
soluciones Hadoop con Apache Spark.

La estructura de datos impulsada por NetApp integra servicios y aplicaciones de gestion de datos (bloques de
construccion) para el acceso, control, proteccion y seguridad de los datos, como se muestra en la siguiente
figura.
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Los componentes basicos de la figura anterior incluyen:

* Acceso directo a NFS de NetApp . Proporciona los ultimos clusteres Hadoop y Spark con acceso directo
a volumenes NFS de NetApp sin requisitos de software o controladores adicionales.

* * Cloud Volumes ONTAP NetApp Cloud ONTAP y Google Cloud NetApp Volumes.* Almacenamiento
conectado definido por software basado en ONTAP que se ejecuta en Amazon Web Services (AWS) o
Azure NetApp Files (ANF) en los servicios de nube de Microsoft Azure.

» Tecnologia NetApp SnapMirror . Proporciona capacidades de proteccion de datos entre las instancias
locales y las de ONTAP Cloud o NPS.

* Proveedores de servicios en la nube. Estos proveedores incluyen AWS, Microsoft Azure, Google Cloud
e IBM Cloud.

* PaasS. Servicios de analisis basados en la nube como Amazon Elastic MapReduce (EMR) y Databricks en
AWS, asi como Microsoft Azure HDInsight y Azure Databricks.

La siguiente figura muestra la solucién Spark con almacenamiento NetApp .
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La solucion ONTAP Spark utiliza el protocolo de acceso directo NFS de NetApp para analisis locales y flujos
de trabajo de IA, ML y DL mediante el acceso a datos de produccion existentes. Los datos de produccion
disponibles para los nodos Hadoop se exportan para realizar trabajos de analisis y de inteligencia artificial,
aprendizaje automatico y aprendizaje automatico en el lugar. Puede acceder a los datos para procesarlos en
los nodos Hadoop con acceso directo a NetApp NFS o sin él. En Spark con el independiente o yarn
Administrador de clusteres, puede configurar un volumen NFS mediante file://<target volume> .
Validamos tres casos de uso con diferentes conjuntos de datos. Los detalles de estas validaciones se
presentan en la seccion "Resultados de las pruebas". (referencia cruzada)

La siguiente figura muestra el posicionamiento del almacenamiento Apache Spark/Hadoop de NetApp .
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Identificamos las caracteristicas Unicas de la solucion E-Series Spark, la solucion AFF/ FAS ONTAP Spark y la
soluciéon StorageGRID Spark, y realizamos pruebas y validaciones detalladas. Con base en nuestras
observaciones, NetApp recomienda la solucion E-Series para instalaciones nuevas y nuevas
implementaciones escalables, y la solucion AFF/ FAS para analisis locales, IA, ML y cargas de trabajo de DL
utilizando datos NFS existentes, y StorageGRID para IA, ML y DL y analisis de datos modernos cuando se
requiere almacenamiento de objetos.
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Un lago de datos es un repositorio de almacenamiento para grandes conjuntos de datos en formato nativo que
pueden usarse para trabajos de analisis, inteligencia artificial, aprendizaje automatico y aprendizaje
automatico. Creamos un repositorio de lago de datos para las soluciones Spark E-Series, AFF/ FAS y
StorageGRID SG6060. El sistema E-Series proporciona acceso HDFS al cluster Hadoop Spark, mientras que
se accede a los datos de produccion existentes a través del protocolo de acceso directo NFS al cluster
Hadoop. Para los conjuntos de datos que residen en el almacenamiento de objetos, NetApp StorageGRID
proporciona acceso seguro S3 y S3a.

Resumen del caso de uso

En esta pagina se describen las diferentes areas en las que se puede utilizar esta
solucion.

Transmision de datos

Apache Spark puede procesar datos de streaming, que se utilizan para procesos de extraccion,
transformacion y carga (ETL) de streaming, enriquecimiento de datos, deteccién de eventos de activacion y
analisis de sesiones complejas:

* Transmision ETL. Los datos se limpian y agregan continuamente antes de ingresarlos en los almacenes
de datos. Netflix utiliza Kafka y Spark Streaming para crear una solucion de recomendacion de peliculas
en linea y monitoreo de datos en tiempo real que puede procesar miles de millones de eventos por dia
desde diferentes fuentes de datos. Sin embargo, el ETL tradicional para el procesamiento por lotes se
trata de manera diferente. Estos datos se leen primero y luego se convierten a un formato de base de
datos antes de escribirse en la base de datos.

* Enriquecimiento de datos. Spark Streaming enriquece los datos en vivo con datos estaticos para permitir
un analisis de datos mas en tiempo real. Por ejemplo, los anunciantes en linea pueden ofrecer anuncios
personalizados y especificos basados en informacién sobre el comportamiento del cliente.

* Deteccion de eventos desencadenantes. Spark Streaming le permite detectar y responder rapidamente
a comportamientos inusuales que podrian indicar problemas potencialmente graves. Por ejemplo, las
instituciones financieras utilizan desencadenadores para detectar y detener transacciones fraudulentas, y
los hospitales utilizan desencadenadores para detectar cambios peligrosos para la salud detectados en los
signos vitales de un paciente.
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* Anadlisis de sesion complejo. Spark Streaming recopila eventos como la actividad del usuario después
de iniciar sesion en un sitio web o aplicacion, que luego se agrupan y analizan. Por ejemplo, Netflix utiliza
esta funcionalidad para ofrecer recomendaciones de peliculas en tiempo real.

Para obtener mas informacién sobre la configuracion de datos de transmision, la verificacion de Confluent
Kafka y las pruebas de rendimiento, consulte"TR-4912: Pautas recomendadas para el almacenamiento en
niveles de Confluent Kafka con NetApp" .

aprendizaje automatico

El marco integrado de Spark le ayuda a ejecutar consultas repetidas en conjuntos de datos utilizando la
biblioteca de aprendizaje automatico (MLIib). MLlib se utiliza en areas como agrupamiento, clasificacion y
reduccién de dimensionalidad para algunas funciones comunes de big data, como inteligencia predictiva,
segmentacion de clientes para fines de marketing y analisis de sentimientos. MLIib se utiliza en seguridad de
red para realizar inspecciones en tiempo real de paquetes de datos en busca de indicios de actividad
maliciosa. Ayuda a los proveedores de seguridad a conocer nuevas amenazas y mantenerse a la vanguardia
de los piratas informaticos mientras protegen a sus clientes en tiempo real.

aprendizaje profundo

TensorFlow es un marco de aprendizaje profundo popular utilizado en toda la industria. TensorFlow admite el
entrenamiento distribuido en un cluster de CPU o GPU. Este entrenamiento distribuido permite a los usuarios
ejecutarlo en una gran cantidad de datos con muchas capas profundas.

Hasta hace poco, si queriamos usar TensorFlow con Apache Spark, necesitabamos realizar todo el ETL
necesario para TensorFlow en PySpark y luego escribir los datos en un almacenamiento intermedio. Luego,
esos datos se cargarian en el cluster TensorFlow para el proceso de entrenamiento real. Este flujo de trabajo
requeria que el usuario mantuviera dos clusteres diferentes, uno para ETL y otro para el entrenamiento
distribuido de TensorFlow. Normalmente, ejecutar y mantener varios clisteres era una tarea tediosa y que
consumia mucho tiempo.

Los DataFrames y RDD en versiones anteriores de Spark no eran adecuados para el aprendizaje profundo
porque el acceso aleatorio era limitado. En Spark 3.0 con el proyecto Hydrogen, se agrega soporte nativo para
los marcos de aprendizaje profundo. Este enfoque permite la programacion no basada en MapReduce en el
cluster Spark.

Analisis interactivo

Apache Spark es lo suficientemente rapido para realizar consultas exploratorias sin muestrear con lenguajes
de desarrollo distintos de Spark, incluidos SQL, R y Python. Spark utiliza herramientas de visualizacién para
procesar datos complejos y visualizarlos de forma interactiva. Spark con transmisién estructurada realiza
consultas interactivas sobre datos en vivo en analisis web que le permiten ejecutar consultas interactivas
sobre la sesion actual de un visitante web.

Sistema de recomendacion

Alo largo de los afos, los sistemas de recomendacion han traido enormes cambios a nuestras vidas, a
medida que las empresas y los consumidores han respondido a cambios dramaticos en las compras en linea,
el entretenimiento en linea y muchas otras industrias. De hecho, estos sistemas se encuentran entre las
historias de éxito mas evidentes de la IA en la produccion. En muchos casos de uso practico, los sistemas de
recomendacién se combinan con |IA conversacional o chatbots interconectados con un backend de PNL para
obtener informacion relevante y producir inferencias utiles.

Hoy en dia, muchos minoristas estan adoptando modelos de negocio mas nuevos, como comprar en linea y
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recoger en la tienda, recoger en la acera, autopago, escanear y listo, y mas. Estos modelos han cobrado
relevancia durante la pandemia de COVID-19 al hacer que las compras sean mas seguras y comodas para los
consumidores. La IA es crucial para estas tendencias digitales crecientes, que estan influenciadas por el
comportamiento del consumidor y viceversa. Para satisfacer las crecientes demandas de los consumidores,
aumentar la experiencia del cliente, mejorar la eficiencia operativa y aumentar los ingresos, NetApp ayuda a
sus clientes empresariales y empresas a utilizar algoritmos de aprendizaje automatico y aprendizaje profundo
para disefar sistemas de recomendacion mas rapidos y precisos.

Existen varias técnicas populares que se utilizan para proporcionar recomendaciones, incluido el filtrado
colaborativo, los sistemas basados en contenido, el modelo de recomendacion de aprendizaje profundo
(DLRM) y las técnicas hibridas. Los clientes utilizaron anteriormente PySpark para implementar el filtrado
colaborativo para crear sistemas de recomendacion. Spark MLIib implementa minimos cuadrados alternos
(ALS) para el filtrado colaborativo, un algoritmo muy popular entre las empresas antes del surgimiento de
DLRM.

Procesamiento del lenguaje natural

La IA conversacional, posible gracias al procesamiento del lenguaje natural (PLN), es la rama de la IA que
ayuda a las computadoras a comunicarse con los humanos. La PNL prevalece en todos los sectores
industriales y en muchos casos de uso, desde asistentes inteligentes y chatbots hasta busquedas de Google y
texto predictivo. Segun un "Gartner" Prediccion: para 2022, el 70% de las personas interactuaran con
plataformas de |A conversacional a diario. Para una conversacion de alta calidad entre un humano y una
maquina, las respuestas deben ser rapidas, inteligentes y que suenen naturales.

Los clientes necesitan una gran cantidad de datos para procesar y entrenar sus modelos de PNL y
reconocimiento automatico de voz (ASR). También necesitan mover datos a través del borde, el nucleo y la
nube, y necesitan el poder de realizar inferencias en milisegundos para establecer una comunicacion natural
con los humanos. NetApp Al y Apache Spark son una combinacién ideal para computacion, almacenamiento,
procesamiento de datos, entrenamiento de modelos, ajuste e implementacion.

El analisis de sentimientos es un campo de estudio dentro de la PNL en el que se extraen sentimientos
positivos, negativos o neutrales del texto. El analisis de sentimientos tiene una variedad de casos de uso,
desde determinar el desempefio de los empleados del centro de soporte en conversaciones con las personas
que llaman hasta brindar respuestas de chatbot automatizadas apropiadas. También se ha utilizado para
predecir el precio de las acciones de una empresa basandose en las interacciones entre los representantes de
la empresa y la audiencia en las conferencias de ganancias trimestrales. Ademas, el analisis de sentimientos
se puede utilizar para determinar la opinion de un cliente sobre los productos, servicios o soporte
proporcionado por la marca.

Usamos el "Spark PNL" biblioteca de "Laboratorios John Snow" para cargar tuberias entrenadas previamente
y modelos de Representaciones de Codificador Bidireccional de Transformadores (BERT), incluidos
"sentimiento de las noticias financieras" y "FInBERT" , realizando tokenizacion, reconocimiento de entidades
nombradas, entrenamiento de modelos, ajuste y analisis de sentimientos a escala. Spark NLP es la unica
biblioteca de PNL de cédigo abierto en produccion que ofrece transformadores de ultima generacion como
BERT, ALBERT, ELECTRA, XLNet, DistiiBERT, RoBERTa, DeBERTa, XLM- RoBERTa, Longformer, ELMO,
Universal Sentence Encoder, Google T5, MarianMT y GPT2. La biblioteca funciona no solo en Python y R,
sino también en el ecosistema JVM (Java, Scala y Kotlin) a escala al extender Apache Spark de forma nativa.

Principales casos de uso y arquitecturas de IA, ML y DL

Los principales casos de uso y metodologia de IA, ML y DL se pueden dividir en las
siguientes secciones:
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Canalizaciones de Spark NLP e inferencia distribuida de TensorFlow

La siguiente lista contiene las bibliotecas de PNL de cddigo abierto mas populares que han sido adoptadas
por la comunidad de ciencia de datos en diferentes niveles de desarrollo:

» "Kit de herramientas de lenguaje natural (NLTK)" . El kit de herramientas completo para todas las técnicas
de PNL. Se mantiene desde principios de la década del 2000.

« "TextoBlob" . Una API de Python de herramientas de PNL facil de usar construida sobre NLTK y Pattern.
* "PNL de Stanford Core" . Servicios y paquetes de PNL en Java desarrollados por Stanford NLP Group.

» "Gensim" . Topic Modelling for Humans comenzé como una coleccion de scripts de Python para el
proyecto de la Biblioteca Checa de Matematicas Digitales.

» "SpaCy" . Flujos de trabajo de PNL industrial de extremo a extremo con Python y Cython con aceleracién
de GPU para transformadores.

« "Texto rapido" . Una biblioteca de PNL gratuita, liviana y de cddigo abierto para el aprendizaje de
incrustaciones de palabras y la clasificacion de oraciones creada por el laboratorio de investigacion de
inteligencia artificial (FAIR) de Facebook.

Spark NLP es una solucion unica y unificada para todas las tareas y requisitos de PNL que permite un
software escalable, de alto rendimiento y alta precision impulsado por PNL para casos de uso de produccion
reales. Aprovecha el aprendizaje por transferencia e implementa los ultimos algoritmos y modelos de ultima
generacion en la investigacion y en todas las industrias. Debido a la falta de soporte completo por parte de
Spark para las bibliotecas anteriores, Spark NLP se cred sobre "Spark ML" aprovechar el motor de
procesamiento de datos distribuido en memoria de propoésito general de Spark como una biblioteca de PNL de
nivel empresarial para flujos de trabajo de produccion de mision critica. Sus anotadores utilizan algoritmos
basados en reglas, aprendizaje automatico y TensorFlow para impulsar implementaciones de aprendizaje
profundo. Esto cubre tareas comunes de PNL que incluyen, entre otras, tokenizacion, lematizacion,
derivacion, etiquetado de partes del discurso, reconocimiento de entidades nombradas, correccion ortografica
y analisis de sentimientos.

Representaciones de codificador bidireccional a partir de transformadores (BERT) es una técnica de
aprendizaje automatico basada en transformadores para PNL. Popularizé el concepto de preentrenamiento y
ajuste fino. La arquitectura del transformador en BERT se originé a partir de la traducciéon automatica, que
modela las dependencias a largo plazo mejor que los modelos de lenguaje basados en redes neuronales
recurrentes (RNN). También introdujo la tarea de modelado de lenguaje enmascarado (MLM), donde un 15%
aleatorio de todos los tokens se enmascaran y el modelo los predice, lo que permite una verdadera
bidireccionalidad.

El analisis del sentimiento financiero es un desafio debido al lenguaje especializado y la falta de datos
etiquetados en ese dominio. FinBERT, un modelo de lenguaje basado en BERT preentrenado, fue adaptado al
dominio en "Reuters TRC2" , un corpus financiero, y ajustado con datos etiquetados ( "Frase financiera del
banco" ) para la clasificacion del sentimiento financiero. Los investigadores extrajeron 4.500 frases de
articulos de noticias con términos financieros. Luego, 16 expertos y estudiantes de maestria con experiencia
en finanzas etiquetaron las oraciones como positivas, neutrales y negativas. Creamos un flujo de trabajo
Spark de extremo a extremo para analizar el sentimiento de las transcripciones de las llamadas de ganancias
de las 10 principales empresas del NASDAQ de 2016 a 2020 utilizando FinBERT y otras dos canalizaciones
entrenadas previamente. "Explicar el documento DL" ) de Spark NLP.

El motor de aprendizaje profundo subyacente para Spark NLP es TensorFlow, una plataforma de codigo
abierto de extremo a extremo para el aprendizaje automatico que permite la creacion sencilla de modelos, la
produccion de ML sdlida en cualquier lugar y la experimentacion potente para la investigacién. Por lo tanto, al
ejecutar nuestros pipelines en Spark yarn cluster En este modo, basicamente estabamos ejecutando
TensorFlow distribuido con paralelizacion de datos y modelos en un nodo maestro y varios nodos de trabajo,

13


https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
https://stanfordnlp.github.io/CoreNLP/
https://radimrehurek.com/gensim/
https://spacy.io/
https://fasttext.cc/
https://spark.apache.org/docs/latest/ml-guide.html
https://trec.nist.gov/data/reuters/reuters.html
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10
https://nlp.johnsnowlabs.com/2020/03/19/explain_document_dl.html

asi como almacenamiento conectado a la red montado en el cluster.

Capacitacion distribuida de Horovod

La validacion central de Hadoop para el rendimiento relacionado con MapReduce se realiza con TeraGen,
TeraSort, TeraValidate y DFSIO (lectura y escritura). Los resultados de la validacion de TeraGen y TeraSort se
presentan en "Solucion NetApp E-Series para Hadoop" y en la seccidn "Niveles de almacenamiento” para
AFF.

Basandonos en las solicitudes de los clientes, consideramos que la capacitacion distribuida con Spark es uno
de los casos de uso mas importantes. En este documento, utilizamos el "Hovorod en Spark" para validar el
rendimiento de Spark con soluciones locales, nativas de la nube e hibridas de NetApp mediante controladores
de almacenamiento NetApp All Flash FAS (AFF), Azure NetApp Files y StorageGRID.

El paquete Horovod en Spark proporciona un envoltorio conveniente alrededor de Horovod que simplifica la
ejecucion de cargas de trabajo de entrenamiento distribuidas en clusteres Spark, lo que permite un ciclo de
disefio de modelo ajustado en el que el procesamiento de datos, el entrenamiento del modelo y la evaluacion
del modelo se realizan en Spark, donde residen los datos de entrenamiento e inferencia.

Hay dos API para ejecutar Horovod en Spark: una API de estimacion de alto nivel y una API de ejecucion de
nivel inferior. Aunque ambos utilizan el mismo mecanismo subyacente para ejecutar Horovod en los ejecutores
Spark, la API Estimator abstrae el procesamiento de datos, el ciclo de entrenamiento del modelo, los puntos
de control del modelo, la recopilacion de métricas y el entrenamiento distribuido. Utilizamos Horovod Spark
Estimators, TensorFlow y Keras para un flujo de trabajo de preparacion de datos de extremo a extremo y
entrenamiento distribuido basado en "Ventas en tiendas Kaggle Rossmann" competencia.

El guion keras_spark _horovod rossmann_estimator.py Se puede encontrar en la seccion"Scripts de
Python para cada caso de uso principal." Consta de tres partes:

» La primera parte realiza varios pasos de preprocesamiento de datos sobre un conjunto inicial de archivos
CSV proporcionados por Kaggle y recopilados por la comunidad. Los datos de entrada se separan en un
conjunto de entrenamiento con un validation subconjunto y un conjunto de datos de prueba.

* La segunda parte define un modelo de red neuronal profunda (DNN) Keras con funcién de activacion
sigmoidea logaritmica y un optimizador Adam, y realiza un entrenamiento distribuido del modelo utilizando
Horovod en Spark.

* La tercera parte realiza una prediccion en el conjunto de datos de prueba utilizando el mejor modelo que
minimiza el error absoluto medio general del conjunto de validacion. Luego crea un archivo CSV de salida.

Ver la seccidon"Aprendizaje automatico" para varios resultados de comparacion de tiempo de ejecucion.

Aprendizaje profundo multitrabajador con Keras para la prediccion del CTR

Con los recientes avances en plataformas y aplicaciones de ML, ahora se presta mucha atencion al
aprendizaje a escala. La tasa de clics (CTR) se define como el numero promedio de clics por cada cien
impresiones de anuncios en linea (expresado como porcentaje). Se adopta ampliamente como una métrica
clave en varios sectores industriales y casos de uso, incluidos el marketing digital, el comercio minorista, el
comercio electronico y los proveedores de servicios. Para obtener mas detalles sobre las aplicaciones de CTR
y los resultados del rendimiento del entrenamiento distribuido, consulte"Modelos de aprendizaje profundo para
el rendimiento de la prediccion de CTR" seccion.

En este informe técnico utilizamos una variacion del "Conjunto de datos de registros de clics de Criteo en

terabytes" (ver TR-4904) para el aprendizaje profundo distribuido de multiples trabajadores que utiliza Keras
para crear un flujo de trabajo Spark con modelos de redes profundas y cruzadas (DCN), comparando su
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desempefio en términos de funcion de error de pérdida de registro con un modelo de regresion logistica Spark
ML de referencia. DCN captura de manera eficiente interacciones de caracteristicas efectivas de grados
limitados, aprende interacciones altamente no lineales, no requiere ingenieria de caracteristicas manual ni
busqueda exhaustiva y tiene un bajo costo computacional.

Los datos para los sistemas de recomendacion a escala web son en su mayoria discretos y categoricos, lo
que genera un espacio de caracteristicas grande y escaso que dificulta la exploracion de caracteristicas. Esto
ha limitado la mayoria de los sistemas a gran escala a modelos lineales como la regresion logistica. Sin
embargo, la clave para hacer buenas predicciones es identificar caracteristicas frecuentemente predictivas vy,
al mismo tiempo, explorar caracteristicas cruzadas poco comunes o no observadas. Los modelos lineales son
simples, interpretables y faciles de escalar, pero tienen un poder expresivo limitado.

Por otra parte, se ha demostrado que las caracteristicas cruzadas son significativas para mejorar la
expresividad de los modelos. Lamentablemente, a menudo se requiere ingenieria de caracteristicas manual o
una busqueda exhaustiva para identificar dichas caracteristicas. Generalizar a interacciones de caracteristicas
invisibles suele ser dificil. El uso de una red neuronal cruzada como DCN evita la ingenieria de caracteristicas
especificas de la tarea al aplicar explicitamente el cruce de caracteristicas de manera automatica. La red
cruzada consta de multiples capas, donde el mayor grado de interacciones esta determinado probablemente
por la profundidad de la capa. Cada capa produce interacciones de orden superior basadas en las existentes y
conserva las interacciones de las capas anteriores.

Una red neuronal profunda (DNN) promete capturar interacciones muy complejas entre caracteristicas. Sin
embargo, en comparacion con DCN, requiere casi un orden de magnitud mas de parametros, no puede formar
caracteristicas cruzadas de manera explicita y puede fallar en el aprendizaje eficiente de algunos tipos de
interacciones de caracteristicas. La red cruzada utiliza eficientemente la memoria y es facil de implementar. El
entrenamiento conjunto de los componentes cruzados y DNN captura de manera eficiente las interacciones de
caracteristicas predictivas y brinda un rendimiento de ultima generacion en el conjunto de datos CTR de
Criteo.

Un modelo DCN comienza con una capa de incrustacion y apilamiento, seguida de una red cruzada y una red
profunda en paralelo. A estas, a su vez, les sigue una capa de combinacion final que combina las salidas de
las dos redes. Los datos de entrada pueden ser un vector con caracteristicas dispersas y densas. En Spark,
las bibliotecas contienen el tipo SparsevVector . Por lo tanto, es importante que los usuarios distingan entre
ambos y tengan cuidado al llamar a sus respectivas funciones y métodos. En los sistemas de recomendacion
a escala web, como la prediccion de CTR, las entradas son principalmente caracteristicas categoricas, por
ejemplo 'country=usa' . Estas caracteristicas suelen codificarse como vectores one-hot, por ejemplo,
'[0,1,0, ..1".Codificacion one-hot (OHE) con SparseVector es util cuando se trabaja con conjuntos de
datos del mundo real con vocabularios en constante cambio y crecimiento. Modificamos los ejemplos en "CTR
profundo" para procesar vocabularios grandes, creando vectores de incrustacion en la capa de incrustacion y
apilamiento de nuestro DCN.

El "Conjunto de datos de anuncios de display de Criteo" predice la tasa de clics de los anuncios. Tiene 13
caracteristicas enteras y 26 caracteristicas categoricas en las que cada categoria tiene una alta cardinalidad.
Para este conjunto de datos, una mejora de 0,001 en la pérdida logaritmica es practicamente significativa
debido al gran tamafio de entrada. Una pequefia mejora en la precision de la prediccion para una gran base
de usuarios puede conducir potencialmente a un gran aumento en los ingresos de una empresa. El conjunto
de datos contiene 11 GB de registros de usuarios de un periodo de 7 dias, lo que equivale a alrededor de 41
millones de registros. Usamos Spark dataFrame.randomSplit () function Dividir aleatoriamente los
datos para entrenamiento (80%), validacion cruzada (10%) y el 10% restante para pruebas.

DCN se implement6 en TensorFlow con Keras. Hay cuatro componentes principales en la implementacion del
proceso de entrenamiento de modelos con DCN:

* Procesamiento e incrustacion de datos. Las caracteristicas de valor real se normalizan aplicando una
transformacion logaritmica. Para las caracteristicas categodricas, integramos las caracteristicas en vectores
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densos de dimension 6x(cardinalidad de categoria)1/4. La concatenacion de todas las incrustaciones da
como resultado un vector de dimension 1026.

Mejoramiento. Aplicamos optimizacion estocastica de minilotes con el optimizador Adam. El tamafo del
lote se establecio en 512. Se aplicé la normalizacion por lotes a la red profunda y la norma de recorte de
gradiente se establecié en 100.

Regularizacion. Utilizamos la detencion temprana, ya que no se encontré que la regularizacion o el
abandono de L2 fueran efectivos.

Hiperparametros. Informamos los resultados basados en una busqueda en cuadricula sobre el niumero
de capas ocultas, el tamano de la capa oculta, la tasa de aprendizaje inicial y el numero de capas
cruzadas. El numero de capas ocultas vario entre 2 y 5, con tamafos de capas ocultas que variaron entre
32 y 1024. Para DCN, el numero de capas cruzadas fue de 1 a 6. La tasa de aprendizaje inicial se ajusto
de 0,0001 a 0,001 con incrementos de 0,0001. Todos los experimentos se detuvieron anticipadamente en
el paso de entrenamiento 150 000, mas alla del cual comenzd a producirse un sobreajuste.

Ademas de DCN, también probamos otros modelos populares de aprendizaje profundo para la prediccion de
CTR, incluidos "DeepFM" , "Autolnt" , y "DCN v2" .

Arquitecturas utilizadas para la validaciéon

Para esta validacion, utilizamos cuatro nodos de trabajo y un nodo maestro con un par AFF-A800 HA. Todos
los miembros del cluster estaban conectados a través de conmutadores de red 10GbE.

Para esta validacion de la solucion NetApp Spark, utilizamos tres controladores de almacenamiento
diferentes: el E5760, el E5724 y el AFF-A800. Los controladores de almacenamiento de la Serie E se
conectaron a cinco nodos de datos con conexiones SAS de 12 Gbps. El controlador de almacenamiento de
par HA AFF proporciona volumenes NFS exportados a través de conexiones de 10 GbE a nodos de trabajo de
Hadoop. Los miembros del cluster Hadoop se conectaron a través de conexiones 10GbE en las soluciones
Hadoop E-Series, AFF y StorageGRID .
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Resultados de las pruebas

Utilizamos los scripts TeraSort y TeraValidate en la herramienta de evaluacion

17



comparativa TeraGen para medir la validacion del rendimiento de Spark con
configuraciones E5760, E5724 y AFF-A800. Ademas, se probaron tres casos de uso
principales: pipelines de Spark NLP y capacitacion distribuida de TensorFlow,
capacitacion distribuida de Horovod y aprendizaje profundo de multiples trabajadores
usando Keras para prediccion de CTR con DeepFM.

Para la validacion de E-Series y StorageGRID , utilizamos el factor de replicacion de Hadoop 2. Para la
validacion de AFF , solo utilizamos una fuente de datos.

La siguiente tabla enumera la configuracion de hardware para la validacion del rendimiento de Spark.

Tipo Nodos de trabajo  Tipo de unidad Unidades por nodo Controlador de
de Hadoop almacenamiento

SG6060 4 SAS 12 Par unico de alta

disponibilidad (HA)

E5760 4 SAS 60 Par de HA unico

E5724 4 SAS 24 Par de HA Unico

AFF800 4 Unidad de estado 6 Par de HA Unico

solido

La siguiente tabla enumera los requisitos de software.

Software Versién
RHEL 7,9
Entorno de ejecuciéon de OpenJDK 1.8.0
Maquina virtual de servidor OpenJDK de 64 bits 25,302
Git 2.241
GCC/G++ 11.2.1
Chispa 3.2.1
PySpark 3.1.2
SparkNLP 34.2
Flujo de tensor 29.0
Keras 29.0
Horovod 0.24.3

Analisis del sentimiento financiero

Nosotros publicamos"TR-4910: Analisis de sentimientos de las comunicaciones de los clientes con NetApp Al"
, en el que se construy6 una canalizacion de IA conversacional de extremo a extremo utilizando "Kit de
herramientas DataOps de NetApp" , almacenamiento AFF y sistema NVIDIA DGX. El pipeline realiza
procesamiento de sefiales de audio por lotes, reconocimiento automatico de voz (ASR), aprendizaje por
transferencia y analisis de sentimientos aprovechando el kit de herramientas DataOps. "SDK de NVIDIA Riva"
, y el "Marco del Tao" . Al ampliar el caso de uso del analisis de sentimientos a la industria de servicios
financieros, creamos un flujo de trabajo SparkNLP, cargamos tres modelos BERT para varias tareas de PNL,
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como el reconocimiento de entidades nombradas, y obtuvimos sentimientos a nivel de oracion para las
llamadas de ganancias trimestrales de las 10 principales empresas del NASDAQ.

El siguiente script sentiment analysis spark. py utiliza el modelo FInBERT para procesar

transcripciones en HDFS y producir recuentos de sentimientos positivos, neutrales y negativos, como se

muestra en la siguiente tabla:

-bash-4.2$ time ~/anaconda3/bin/spark-submit
--packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

—--master yarn

-—executor-memory 5g

-—executor-cores 1

--num-executors 160

--conf spark.driver.extradavaOptions="-XsslOm -XX:MaxPermSize=1024M"
-—-conf spark.executor.extradavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
hdfs:///datal/Transcripts/

> ./sentiment analysis hdfs.log 2>&l

reall3ml4.300s

user557mll.319s
sysd4m4d7.676s

La siguiente tabla enumera el analisis de sentimiento a nivel de oracion, tras la presentacion de resultados, de
las 10 principales empresas del NASDAQ de 2016 a 2020.

Recuent
osy
porcenta
jes de
sentimie
ntos

Recuento
s
positivos

Conteos
neutrales

Recuento
s
negativos

Recuento
s sin
categoriz
ar

(recuento
s totales)

En términos de porcentajes, la mayoria de las frases pronunciadas por los directores ejecutivos y directores

Las 10
empresa
s

7447

64067

1787

196

73497

AAPL

1567

6856

253

8676

AMD

743

7596

213

8552

Amazon Director

290

5086

84

76

5536

Ejecutiv
o

682

6650

189

7521

GOOGL

826

5914

97

6837

INTC

824

6099

282

7205

MSFT

904

5715

202

6822

NVDA

417

6189

89

6695
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financieros son factuales y, por lo tanto, transmiten un sentimiento neutral. Durante una conferencia telefénica
sobre ganancias, los analistas hacen preguntas que pueden transmitir un sentimiento positivo o negativo. Vale
la pena investigar mas a fondo cuantitativamente como el sentimiento negativo o positivo afecta los precios de
las acciones el mismo dia o el siguiente de negociacion.

La siguiente tabla enumera el andlisis de sentimiento a nivel de oracién para las 10 principales empresas del
NASDAQ, expresado en porcentaje.

Porcenta Las 10 AAPL AMD Amazon Director GOOGL INTC MSFT NVDA

je de empresa Ejecutiv
sentimie s o
nto

Positivo  10.13% 18.06%  8.69% 5.24% 9.07% 12.08% 11.44% 13.25% 6.23%

Neutral  87.17% 79.02% 88.82% 91.87% 88.42% 86.50% 84.65% 83.77% 92.44%
Negativo 2.43% 2.92% 2.49% 1.52% 2.51% 1.42% 3.91% 2.96% 1.33%

Sin 0.27% 0% 0% 1.37% 0% 0% 0% 0.01% 0%
categoriz
ar

En términos del tiempo de ejecucion del flujo de trabajo, vimos una mejora significativa de 4,78x 1ocal modo
a un entorno distribuido en HDFS y una mejora adicional del 0,14 % al aprovechar NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp 2.12:3.4.3

—-—-master yarn

-—-executor-memory 5g

--executor-cores 1

-—-num-executors 160

-—-conf spark.driver.extraJdJavaOptions="-Xssl0m -XX:MaxPermSize=1024M"
--conf spark.executor.extradavaOptions="-XsslOm -XX:MaxPermSize=512M"
/sparkusecase/tr-4570-nlp/sentiment analysis spark.py
file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment analysis nfs.log 2>&l

reall3ml3.149s

user537m50.148s

sys4m46.173s

Como muestra la siguiente figura, el paralelismo de datos y modelos mejor6 el procesamiento de datos y la
velocidad de inferencia del modelo distribuido de TensorFlow. La ubicacion de datos en NFS produjo un
tiempo de ejecucion ligeramente mejor porque el cuello de botella del flujo de trabajo es la descarga de
modelos previamente entrenados. Si aumentamos el tamafio del conjunto de datos de transcripciones, la
ventaja de NFS es mas obvia.
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Spark NLP Sentiment Analysis End-toEnd Workflow Runtime
(Lower is better)

ves [ o0

Data Location

HDFS 0:13:14.300

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48 0:36:00 0:43:12 0:50:24 0:57:36 1:04:48 1:12:00
hh:mm:ss.sss

Entrenamiento distribuido con rendimiento de Horovod

El siguiente comando produjo informacién de tiempo de ejecucion y un archivo de registro en nuestro cluster
Spark usando un solo master nodo con 160 ejecutores cada uno con un nucleo. La memoria del ejecutor se
limitd a 5 GB para evitar errores de falta de memoria. Ver la seccion"Scripts de Python para cada caso de uso
principal" Para obtener mas detalles sobre el procesamiento de datos, el entrenamiento del modelo y el
calculo de la precision del modelo en keras spark horovod rossmann estimator.py.

(base) [root@nl38 horovod]# time spark-submit

--master local

—-—executor-memory 5g

-—executor-cores 1

--num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
—-—-epochs 10

-—-data-dir file:///sparkusecase/horovod
--local-submission-csv /tmp/submission 0.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator local. log 2>&l

El tiempo de ejecucion resultante con diez épocas de entrenamiento fue el siguiente:

reald4d3m34.608s
userl2m22.057s
sys2m30.127s
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Se necesitaron mas de 43 minutos para procesar datos de entrada, entrenar un modelo DNN, calcular la
precision y producir puntos de control de TensorFlow y un archivo CSV para los resultados de la prediccion.
Limitamos el numero de épocas de entrenamiento a 10, que en la practica suele establecerse en 100 para
garantizar una precision satisfactoria del modelo. El tiempo de entrenamiento normalmente se escala
linealmente con el numero de épocas.

A continuacién, utilizamos los cuatro nodos de trabajo disponibles en el cluster y ejecutamos el mismo script
en yarn modo con datos en HDFS:

(base) [root@nl38 horovod]# time spark-submit

—-—-master yarn

-—executor-memory 5g

--executor-cores 1 --num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
—-—epochs 10

-—-data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod
--local-submission-csv /tmp/submission 1.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator yarn.log 2>&l1

El tiempo de ejecucion resultante se mejord de la siguiente manera:

real8ml3.728s
user/md48.421s
syslm26.063s

Con el modelo de Horovod y el paralelismo de datos en Spark, vimos una aceleracion del tiempo de ejecucion
de 5,29x yarn versus local Modo con diez épocas de entrenamiento. Esto se muestra en la siguiente figura
con las leyendas. HDFS y Local . El entrenamiento del modelo DNN de TensorFlow subyacente se puede
acelerar aun mas con GPU si estan disponibles. Planeamos realizar estas pruebas y publicar los resultados
en un futuro informe técnico.

Nuestra siguiente prueba comparo los tiempos de ejecuciéon con datos de entrada que residen en NFS versus
HDFS. El volumen NFS en el AFF A800 se monto en /sparkdemo/horovod en los cinco nodos (uno
maestro y cuatro trabajadores) de nuestro cluster Spark. Ejecutamos un comando similar al de las pruebas
anteriores, con el --data- dir parametro que ahora apunta al montaje NFS:
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(base) [root@nl38 horovod]# time spark-submit

—--master yarn

-—executor-memory 5g

-—executor-cores 1

--num-executors 160
/sparkusecase/horovod/keras spark horovod rossmann estimator.py
-—epochs 10

--data-dir file:///sparkdemo/horovod
--local-submission-csv /tmp/submission 2.csv
--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras spark horovod rossmann estimator nfs.log 2>&l

El tiempo de ejecucion resultante con NFS fue el siguiente:

real 5m46.229s
user 5m35.693s
sys 1m5.615s

Hubo una aceleracion adicional de 1,43x, como se muestra en la siguiente figura. Por lo tanto, con un
almacenamiento all-flash de NetApp conectado a su cluster, los clientes disfrutan de los beneficios de la
transferencia y distribucion rapida de datos para los flujos de trabajo de Horovod Spark, logrando una
aceleracion de 7,55 veces en comparacion con la ejecuciéon en un solo nodo.

Horovod Spark Workflow Runtime
(Lower is better)

Seconds
0 500 1000 1500 2000 2500

3000

Input data location

NF'S - 346.229

23




Modelos de aprendizaje profundo para el rendimiento de la prediccién de CTR

Para los sistemas de recomendacion disefiados para maximizar el CTR, es necesario aprender interacciones
de caracteristicas sofisticadas detras de los comportamientos de los usuarios que se puedan calcular
matematicamente desde el orden bajo hasta el orden alto. Las interacciones de caracteristicas de orden bajo
y de orden alto deberian ser igualmente importantes para un buen modelo de aprendizaje profundo sin
sesgarse hacia una u otra. Deep Factorization Machine (DeepFM), una red neuronal basada en maquinas de
factorizacion, combina maquinas de factorizacién para recomendacion y aprendizaje profundo para el
aprendizaje de caracteristicas en una nueva arquitectura de red neuronal.

Aunque las maquinas de factorizacion convencionales modelan interacciones de caracteristicas por pares
como un producto interno de vectores latentes entre caracteristicas y teéricamente pueden capturar
informacion de alto orden, en la practica los profesionales del aprendizaje automatico usualmente solo usan
interacciones de caracteristicas de segundo orden debido a la alta complejidad de calculo y almacenamiento.
Variantes de redes neuronales profundas como la de Google "Modelos anchos y profundos" Por otro lado,
aprende interacciones de caracteristicas sofisticadas en una estructura de red hibrida combinando un modelo
lineal amplio y un modelo profundo.

Hay dos entradas para este modelo amplio y profundo: una para el modelo amplio subyacente y otra para el
profundo; la ultima parte aun requiere ingenieria de caracteristicas experta y, por lo tanto, hace que la técnica
sea menos generalizable a otros dominios. A diferencia del modelo ancho y profundo, DeepFM se puede
entrenar de manera eficiente con caracteristicas sin procesar sin ninguna ingenieria de caracteristicas porque
su parte ancha y su parte profunda comparten la misma entrada y el vector de incrustacion.

Primero procesamos el Criteo train. txt (11 GB) en un archivo CSV llamado ctr train.csv almacenado
en un montaje NFS /sparkdemo/tr-4570-data usando run classification criteo spark.py de
la seccion"Scripts de Python para cada caso de uso principal." Dentro de este script, la funcion
process_input file Realiza varios métodos de cadena para eliminar tabulaciones e insertar ', ' como
delimitadory '\n' como nueva linea. Tenga en cuenta que solo necesita procesar el original. train. txt
una vez, para que el bloque de cédigo se muestre como comentarios.

Para las siguientes pruebas de diferentes modelos DL, utilizamos ctr_ train.csv como archivo de entrada.
En ejecuciones de prueba posteriores, el archivo CSV de entrada se leyd en un Spark DataFrame con un
esquema que contenia un campo de 'label' , caracteristicas densas de numeros enteros ['I1', 'I2',
'13', .., 'I13'],y caracteristicas dispersas ['C1', 'C2', 'C3', .., 'C26'].La siguiente spark-
submit El comando toma un CSV de entrada, entrena los modelos DeepFM con una division del 20 % para la
validacion cruzada y elige el mejor modelo después de diez épocas de entrenamiento para calcular la
precision de la prediccion en el conjunto de prueba:

(base) [root@nl38 ~]# time spark-submit --master yarn --executor-memory 5g
-—executor-cores 1 —--num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py --data
-dir file:///sparkdemo/tr-4570-data >

/tmp/run classification criteo spark local.log 2>&l

Tenga en cuenta que dado que el archivo de datos ctr train.csv Sitiene mas de 11 GB, debe establecer
un espacio suficiente spark.driver.maxResultSize mayor que el tamafio del conjunto de datos para
evitar errores.
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spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500') \
.config('spark.driver.memoryOverhead', '1500'"') \
.config("spark.sgl.shuffle.partitions", "480") \
.config("spark.sqgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

En lo anterior SparkSession.builder configuracion que también habilitamos "Flecha apache" , que
convierte un Spark DataFrame en un Pandas DataFrame con el df . toPandas () método.

22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at
/sparkusecase/DeepCTR/examples/run classification criteo spark.py:96, took
627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

Después de la division aleatoria, hay mas de 36 millones de filas en el conjunto de datos de entrenamientoy 9
millones de muestras en el conjunto de prueba:

Training dataset size = 36672493
Testing dataset size = 9168124

Debido a que este informe técnico se centra en las pruebas de CPU sin utilizar ninguna GPU, es imperativo
que cree TensorFlow con los indicadores de compilador adecuados. Este paso evita invocar bibliotecas
aceleradas por GPU y aprovecha al maximo las extensiones vectoriales avanzadas (AVX) y las instrucciones
AVX2 de TensorFlow. Estas caracteristicas estan disefiadas para calculos algebraicos lineales como suma
vectorizada, multiplicaciones de matrices dentro de un entrenamiento DNN de propagacion hacia adelante o
hacia atras. La instruccion FMA (Multiplicacion y Suma Fusionada) disponible con AVX2 que utiliza registros
de punto flotante (FP) de 256 bits es ideal para cédigos enteros y tipos de datos, lo que da como resultado
una aceleracion de hasta 2x. Para los tipos de datos y cddigos FP, AVX2 logra una aceleracion del 8 % con
respecto a AVX.
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2022-06-18 07:19:20.101478: I
tensorflow/core/platform/cpu feature guard.cc:151] This TensorFlow binary
is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the
following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the
appropriate compiler flags.

Para crear TensorFlow desde la fuente, NetApp recomienda usar "Bazel" . Para nuestro entorno, ejecutamos
los siguientes comandos en el indicador de shell para instalar dnf , dnf-plugins y Bazel.

yum install dnf

dnf install 'dnf-command (copr)'
dnf copr enable vbatts/bazel
dnf install bazelb

Debe habilitar GCC 5 o una version mas reciente para usar las caracteristicas de C++17 durante el proceso
de compilacion, que proporciona RHEL con la Biblioteca de colecciones de software (SCL). Los siguientes
comandos instalan devtoolset y GCC 11.2.1 en nuestro cluster RHEL 7.9:

subscription-manager repos --enable rhel-server-rhscl-7-rpms
yum install devtoolset-11l-toolchain
yum install devtoolset-1ll-gcc-c++
yum update
scl enable devtoolset-11 bash
/opt/rh/devtoolset-11/enable

Tenga en cuenta que los dos ultimos comandos habilitan devtoolset-11, que utiliza
/opt/rh/devtoolset-11/root/usr/bin/gcc (CCG 11.2.1). Ademas, asegurese de que su git La
version es mayor que 1.8.3 (viene con RHEL 7.9). Consulte esto "articulo” para actualizar git a 2.24.1.

Suponemos que ya ha clonado el ultimo repositorio maestro de TensorFlow. Luego crea un workspace
directorio con un WORKSPACE archivo para compilar TensorFlow desde la fuente con AVX, AVX2 y FMA.
Ejecutar el configure archivo y especifique la ubicacion binaria de Python correcta. "CUDA" esta
deshabilitado para nuestras pruebas porque no usamos una GPU. A .bazelrc El archivo se genera segun
su configuracion. Ademas, editamos el archivo y lo configuramos. build
--define=no hdfs support=false para habilitar la compatibilidad con HDFS. Referirse a .bazelrc en
la seccién"Scripts de Python para cada caso de uso principal,” para obtener una lista completa de
configuraciones y banderas.

./configure
bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=
-mfpmath=both -k //tensorflow/tools/pip package:build pip package

Después de crear TensorFlow con los indicadores correctos, ejecute el siguiente script para procesar el
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conjunto de datos de anuncios de Criteo Display, entrenar un modelo DeepFM y calcular el area bajo la curva
caracteristica operativa del receptor (ROC AUC) a partir de los puntajes de prediccion.

(base) [root@nl38 examples]# ~/anaconda3/bin/spark-submit
—--master yarn

-—executor-memory 15g

—-—executor-cores 1

-—-num-executors 160
/sparkusecase/DeepCTR/examples/run classification criteo spark.py
-—-data-dir file:///sparkdemo/tr-4570-data

> . /run classification criteo spark nfs.log 2>&l

Después de diez épocas de entrenamiento, obtuvimos la puntuacion AUC en el conjunto de datos de prueba:
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Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary crossentropy: 0.4974 - val loss:
0.4629 - val binary crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary crossentropy: 0.3271 - val loss:
0.5146 - val binary crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary crossentropy: 0.1928 - val loss:
0.6166 - val binary crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary crossentropy: 0.1383 - val loss:
0.7261 - val binary crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary crossentropy: 0.1102 - val loss:
0.7961 - val binary crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary crossentropy: 0.0921 - val loss:
0.9502 - val binary crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary crossentropy: 0.0750 - val loss:
1.1329 - val binary crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary crossentropy: 0.0622 - val loss:
1.3794 - val binary crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary crossentropy: 0.0527 - val loss:
1.6115 - val binary crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary crossentropy: 0.0442 - val loss:
1.6768 - val binary crossentropy: 1.6740

test AUC 0.6337

De manera similar a los casos de uso anteriores, comparamos el tiempo de ejecucion del flujo de trabajo de
Spark con datos que residen en diferentes ubicaciones. La siguiente figura muestra una comparacion de la
prediccion de CTR de aprendizaje profundo para un tiempo de ejecucion de flujos de trabajo de Spark.
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Solucion de nube hibrida

Un centro de datos empresarial moderno es una nube hibrida que conecta multiples
entornos de infraestructura distribuida a través de un plano de gestion de datos continuo
con un modelo operativo consistente, en las instalaciones y/o en multiples nubes
publicas. Para aprovechar al maximo una nube hibrida, debe poder mover datos sin
problemas entre sus entornos locales y de multiples nubes sin necesidad de realizar
conversiones de datos ni refactorizar aplicaciones.

Los clientes han indicado que comienzan su viaje a la nube hibrida moviendo almacenamiento secundario a la
nube para casos de uso como proteccion de datos o moviendo cargas de trabajo menos criticas para el
negocio, como desarrollo de aplicaciones y DevOps a la nube. Luego pasan a cargas de trabajo mas criticas.
El alojamiento web y de contenido, el desarrollo de aplicaciones y DevOps, las bases de datos, los analisis y
las aplicaciones en contenedores se encuentran entre las cargas de trabajo de nube hibrida mas populares.
La complejidad, el costo y los riesgos de los proyectos de |A empresarial han obstaculizado histéricamente la
adopcién de IA desde la etapa experimental hasta la produccion.

Con una solucion de nube hibrida de NetApp , los clientes se benefician de herramientas integradas de
seguridad, gobernanza de datos y cumplimiento con un unico panel de control para la gestién de datos y flujo
de trabajo en entornos distribuidos, al tiempo que optimizan el costo total de propiedad en funcién de su
consumo. La siguiente figura es un ejemplo de solucién de un socio de servicios en la nube encargado de
proporcionar conectividad multi-nube para los datos de analisis de big data de los clientes.
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EQUINIX 1 Keysiong

En este escenario, los datos de loT recibidos en AWS desde diferentes fuentes se almacenan en una
ubicacion central en NetApp Private Storage (NPS). El almacenamiento NPS esta conectado a clusteres
Spark o Hadoop ubicados en AWS y Azure, lo que permite que las aplicaciones de analisis de big data que se
ejecutan en multiples nubes accedan a los mismos datos. Los principales requisitos y desafios para este caso
de uso incluyen lo siguiente:

* Los clientes quieren ejecutar trabajos de analisis en los mismos datos utilizando multiples nubes.

 Los datos deben recibirse de diferentes fuentes, como entornos locales y en la nube, a través de
diferentes sensores y concentradores.

* La solucion debe ser eficiente y rentable.

* El principal desafio es construir una solucién rentable y eficiente que ofrezca servicios de analisis hibridos
entre diferentes entornos locales y en la nube.

Nuestra solucion de proteccion de datos y conectividad multicloud resuelve el problema de tener aplicaciones
de analisis de nube en multiples hiperescaladores. Como se muestra en la figura anterior, los datos de los
sensores se transmiten y se incorporan al clister de AWS Spark a través de Kafka. Los datos se almacenan
en un recurso compartido NFS que reside en NPS, que se encuentra fuera del proveedor de la nube dentro de
un centro de datos de Equinix.

Dado que NetApp NPS esta conectado a Amazon AWS y Microsoft Azure a través de conexiones Direct
Connect y Express Route respectivamente, los clientes pueden aprovechar el médulo de andlisis local para
acceder a los datos de los clusteres de analisis de Amazon y AWS. En consecuencia, dado que tanto el
almacenamiento local como el NPS ejecutan el software ONTAP , "SnapMirror" Puede reflejar los datos de
NPS en el cluster local, lo que proporciona analisis de nube hibrida en las instalaciones locales y en multiples
nubes.

Para obtener el mejor rendimiento, NetApp generalmente recomienda utilizar multiples interfaces de red y
conexiones directas o rutas expresas para acceder a los datos desde las instancias de la nube. Contamos con
otras soluciones de transferencia de datos, incluidas: "XCP" y "Copia y sincronizacion de BlueXP" para ayudar
a los clientes a construir clusteres Spark de nube hibrida que sean rentables, seguros y conscientes de las
aplicaciones.

Scripts de Python para cada caso de uso principal

Los siguientes tres scripts de Python corresponden a los tres casos de uso principales
probados. Primero es sentiment analysis sparknlp.py .
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https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html
https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US
https://cloud.netapp.com/cloud-sync-service

# TR-4570 Refresh NLP testing by Rick Huang

from sys import argv

import os

import sparknlp

import pyspark.sqgl.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline
from sparknlp import Finisher

# Start Spark Session with Spark NLP

spark = sparknlp.start()

print ("Spark NLP version:")

print (sparknlp.version())

print ("Apache Spark version:")

(
(
(
print (spark.version)
spark = sparknlp.SparkSession.builder \
.master ("yarn") \
.appName ("test hdfs read write") \
.config("spark.executor.cores", "1") \
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-
nlp 2.12:3.4.3")\
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1000")\
.config('spark.driver.memoryOverhead', '1000")\
.config("spark.sgl.shuffle.partitions™, "480")\
.getOrCreate ()
sc = spark.sparkContext
from pyspark.sqgl import SQLContext
sgl = SQLContext (sc)
sglContext = SQLContext (sc)
# Download pre-trained pipelines & sequence classifier
explain pipeline model = PretrainedPipeline('explain document dl',
lang='en') .model#pipeline sa =
PretrainedPipeline ("classifierdl bertwiki finance sentiment pipeline",
lang="en")
# pipeline finbert =
BertForSequenceClassification.loadSavedModel ('/sparkusecase/bert sequence
classifier finbert en 3', spark)

sequenceClassifier = BertForSequenceClassification \
.pretrained('bert sequence classifier finbert', 'en') \
.setInputCols (['token', 'document']) \

.setOutputCol ('class') \
.setCaseSensitive (True) \
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.setMaxSentencelLength (512)
def process sentence df (data):
# Pre-process: begin
print ("1. Begin DataFrame pre-processing...\n")
print (f"\n\t2. Attaching DocumentAssembler Transformer to the
pipeline")
documentAssembler = DocumentAssembler () \
.setInputCol ("text") \
.setOutputCol ("document™) \
.setCleanupMode ("inplace full")
#.setCleanupMode ("shrink", "inplace full")
doc_df = documentAssembler.transform(data)
doc_df.printSchema ()
doc df.show (truncate=50)
# Pre-process: get rid of blank lines
clean df = doc df.withColumn ("tmp", F.explode ("document")) \
.select ("tmp.result") .where ("tmp.end !=
-1") .withColumnRenamed ("result", "text") .dropna ()
print ("[OK!] DataFrame after initial cleanup:\n")
clean df.printSchema ()
clean df.show (truncate=80)
# for FinBERT
tokenizer = Tokenizer () \
.setInputCols (['document']) \
.setOutputCol ('token')
print (£"\n\t3. Attaching Tokenizer Annotator to the pipeline'")
pipeline finbert = Pipeline (stages=]|
documentAssembler,
tokenizer,
sequenceClassifier
1)
# Use Finisher () & construct PySpark ML pipeline
finisher = Finisher () .setInputCols(["token", "lemma", "pos",
"entities"])
print (£"\n\t4. Attaching Finisher Transformer to the pipeline")
pipeline ex = Pipeline() \
.setStages ([
explain pipeline model,
finisher
1)
print ("\n\t\t\t ---- Pipeline Built Successfully ----")
# Loading pipelines to annotate
#result ex df = pipeline ex.transform(clean df)
ex model = pipeline ex.fit (clean df)
annotations finished ex df = ex model.transform(clean df)
# result sa df = pipeline sa.transform(clean df)



result finbert df = pipeline finbert.fit (clean df).transform(clean df)
print ("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT
Pipeline Fitted Successfully ----")
# Check the result entities
print ("[OK!] Simple explain ML pipeline result:\n")
annotations finished ex df.printSchema ()
annotations finished ex df.select ('text',
'finished entities') .show(truncate=False)
# Check the result sentiment from FinBERT
print ("[OK!] Sentiment Analysis FinBERT pipeline result:\n")
result finbert df.printSchema ()
result finbert df.select('text', 'class.result').show(80, False)
sentiment stats(result finbert df)

return
def sentiment stats(finbert df):

result df = finbert df.select('text',K 'class.result')

sa df = result df.select('result')

sa_df.groupBy ('result') .count () .show ()

# total lines = result clean df.count()

# num neutral = result clean df.where(result clean df.result ==
['neutral']) .count ()

# num positive = result clean df.where(result clean df.result ==
['positive']) .count ()

# num negative = result clean df.where(result clean df.result ==
['negative']) .count ()

# print (f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

# print (f"Ratio of positive sentiment {num positive / total lines}")

# print (f"Ratio of negative sentiment
total lines}\n")

return

{num negative /

def process input file(file name) :
# Turn input file to Spark DataFrame
print ("START processing input file...")
data df = spark.read.text(file name)
data df.show ()
# rename first column 'text' for sparknlp
output df = data df.withColumnRenamed ("value", "text").dropna ()
output df.printSchema ()
return output dfdef process local dir(directory):
filelist = []
for subdir, dirs, files in os.walk(directory):
for filename in files:
filepath = subdir + os.sep + filename
print ("[OK!] Will process the following files:")
if filepath.endswith(".txt"):
print (filepath)
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def

def

filelist.append(filepath)
return filelist
process local dir or file(dir or file):
numfiles = 0
if os.path.isfile(dir or file):
input df = process input file(dir or file)
print ("Obtained input df.")
process sentence df (input df)
print ("Processed input df")
numfiles += 1
else:
filelist = process local dir(dir or file)
for file in filelist:
input df = process input file(file)
process sentence df (input df)
numfiles += 1
return numfiles
process hdfs dir(dir name) :
# Turn input files to Spark DataFrame
print ("START processing input HDFS directory...")
data df = spark.read.option("recursiveFileLookup",

"true") .text (dir name)

data df.show ()

print (" [DEBUG] total lines in data df = ", data df.count())

# rename first column 'text' for sparknlp

output df = data df.withColumnRenamed ("value", "text") .dropna/()
print (" [DEBUG] output df looks like: \n")

output df.show (40, False)

print (" [DEBUG] HDFS dir resulting data df schema: \n")

output df.printSchema ()

process sentence df (output df)

print ("Processed HDFS directory: ", dir name)
returnif name == "' main ':
try:
if len(argv) == 2:
print ("Start processing input...\n")
except:

print (" [ERROR] Please enter input text file or path to

process!\n")
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exit (1)
# This is for local file, not hdfs:
numfiles = process local dir or file(str(argv[l]))
# For HDFS single file & directory:
input df = process input file(str(argv[1l]))
print ("Obtained input df.")
process sentence df (input df)



print ("Processed input df")

numfiles += 1

# For HDFS directory of subdirectories of files:

input parse list = str(argv([1l]).split('/")

print (input parse list)

if input parse list[-2:-1] == ['Transcripts']:
print ("Start processing HDFS directory: ", str(argv([1l]))
process hdfs dir(str(argv[l]))

print (£" [OK!] All done. Number of files processed = {numfiles}")

El segundo guion es keras_spark horovod rossmann_estimator.py.

Copyright 2022 NetApp, Inc.
Authored by Rick Huang

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

H H= H H H FH H H H H H H H H H

# The below code was modified from: https://www.kaggle.com/c/rossmann-—
store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sqgl.types as T

import pyspark.sqgl.functions as F

from pyspark import SparkConf, Row

from pyspark.sgl import SparkSession

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,
Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd
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from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint

parser = argparse.ArgumentParser (description='Horovod Keras Spark Rossmann

Estimator Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--master',
help='spark cluster to use for training. If set to
None, uses current default cluster. Cluster'
'should be set up to provide a Spark task per
multiple CPU cores, or per GPU, e.g. by'
'supplying "“-c <NUM GPUS>" in Spark Standalone
mode ")
parser.add argument ('--num-proc', type=int,
help='number of worker processes for training,
default: “spark.default.parallelism ')
parser.add argument ('--learning rate', type=float, default=0.0001,
help='initial learning rate')
parser.add argument ('--batch-size', type=int, default=100,
help='batch size')
parser.add argument ('--epochs', type=int, default=100,
help="'number of epochs to train')
parser.add argument ('--sample-rate', type=float,
help='desired sampling rate. Useful to set to low
number (e.g. 0.01) to make sure that '
'end-to-end process works')
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed
with file://) or on HDFS')
parser.add argument ('--local-submission-csv', default='submission.csv',
help="'output submission predictions CSV')
parser.add argument ('--local-checkpoint-file', default='checkpoint’,
help="'model checkpoint')
parser.add argument ('--work-dir', default='/tmp',
help='temporary working directory to write
intermediate files (prefix with hdfs:// to use HDFS)')

if name == ' main Vg

args = parser.parse_args ()

G===———————"!
# DATA PREPARATION #
# S #
print(':=::::::::::::::')

print ('Data preparation')
print('::::::::::::::::')
# Create Spark session for data preparation.
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conf = SparkConf () \

.setAppName ('Keras Spark Rossmann Estimator Example') \
.set ('spark.sgl.shuffle.partitions', '480') \

.set ("spark.executor.cores", "1") \

.set ('spark.executor.memory', '5gb') \

.set ('spark.executor.memoryOverhead', '1000")\
.set ('spark.driver.memoryOverhead', '1000")
if args.master:
conf.setMaster (args.master)
elif args.num proc:
conf.setMaster('local[{}]'.format (args.num proc))
spark = SparkSession.builder.config(conf=conf) .getOrCreate ()
train csv = spark.read.csv('$s/train.csv' % args.data dir,
header=True)
test csv = spark.read.csv('%$s/test.csv' % args.data dir, header=True)
store csv = spark.read.csv('%s/store.csv' % args.data dir,
header=True)
store states csv = spark.read.csv('%s/store states.csv' %
args.data dir, header=True)
state names csv = spark.read.csv('%s/state names.csv' % args.data dir,
header=True)
google trend csv = spark.read.csv('$s/googletrend.csv' %
args.data dir, header=True)
weather csv = spark.read.csv('%s/weather.csv' % args.data dir,
header=True)
def expand date (df):
df = df.withColumn ('Date', df.Date.cast (T.DateType()))
return df \
.withColumn ('Year', F.year (df.Date)) \
.withColumn ('Month', F.month (df.Date)) \
.withColumn ('Week', F.weekofyear (df.Date)) \
.withColumn ('Day', F.dayofmonth (df.Date))
def prepare google trend() :
# Extract week start date and state.
google trend all = google trend csv \
.withColumn ('Date', F.regexp extract (google trend csv.week,
P(.x2) =, 1)) N
.withColumn ('State', F.regexp extract(google trend csv.file,
'Rossmann DE (.*)', 1))
# Map state NI -> HB,NI to align with other data sources.
google trend all = google trend all \
.withColumn ('State', F.when(google trend all.State == 'NI',
'"HB,NI') .otherwise (google trend all.State))
# Expand dates.
return expand date (google trend all)
def add elapsed(df, cols):
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def add elapsed column(col, asc):
def fn (rows) :
last store, last date = None, None

for r in rows:

if last store != r.Store:
last store = r.Store
last date = r.Date
if rlcoll]l:
last date = r.Date

fields = r.asDict () .copy ()
fields[ ('After' if asc else 'Before') + col] = (r.Date
- last _date) .days
yield Row (**fields)
return fn
df = df.repartition(df.Store)
for asc in [False, True]:
sort col = df.Date.asc() if asc else df.Date.desc()
rdd df .sortWithinPartitions (df.Store.asc (), sort col).rdd
for col in cols:

rdd = rdd.mapPartitions(add elapsed column(col, asc))
df = rdd.toDF ()
return df
def prepare df (df):
num rows = df.count ()
# Expand dates.
df = expand date (df)

df = df \
.withColumn ('Open', df.Open != '0"') \
.withColumn ('Promo', df.Promo != '0') \
.withColumn ('StateHoliday', df.StateHoliday != '0') \
.withColumn ('SchoolHoliday', df.SchoolHoliday != '0")

# Merge in store information.

store = store csv.join(store states csv, 'Store')

df = df.join(store, 'Store')

# Merge in Google Trend information.

google trend all = prepare google trend()

df = df.join(google trend all, ['State',K 'Year',
'Week']) .select (df['*'], google trend all.trend)

# Merge in Google Trend for whole Germany.

google trend de = google trend all[google trend all.file ==
'Rossmann DE'].withColumnRenamed('trend', 'trend de')

df = df.join(google trend de, ['Year',K 'Week']).select(df['*'],
google trend de.trend de)

# Merge in weather.

weather = weather csv.join(state names csv, weather csv.file ==
state names csv.StateName)



df = df.join(weather, ['State', 'Date'l])
# Fix null values.
df = df \
.withColumn ('CompetitionOpenSinceYear',
F.coalesce (df.CompetitionOpenSinceYear, F.1it(1900))) \
.withColumn ('CompetitionOpenSinceMonth',
F.coalesce (df.CompetitionOpenSinceMonth, F.1it(1))) \
.withColumn ('Promo2SinceYear', F.coalesce (df.Promo2SinceYear,
F.1it (1900))) \
.withColumn ('Promo2SinceWeek', F.coalesce (df.Promo2SinceWeek,
F.1lit(1)))
# Days & months competition was open, cap to 2 years.
df = df.withColumn ('CompetitionOpenSince’,
F.to date(F.format string('%s-%s-15",
df.CompetitionOpenSinceYear,

df.CompetitionOpenSinceMonth)))
df = df.withColumn ('CompetitionDaysOpen',
F.when (df.CompetitionOpenSinceYear > 1900,
F.greatest (F.1it (0), F.least(F.lit (360 *
2), F.datediff (df.Date, df.CompetitionOpenSince))))
.otherwise (0))
df = df.withColumn ('CompetitionMonthsOpen’,
(df .CompetitionDaysOpen / 30) .cast(T.IntegerType()))
# Days & weeks of promotion, cap to 25 weeks.
df = df.withColumn ('Promo2Since’',
F.expr ('date add(format string("%s-01-01",
Promo2SinceYear), (cast (Promo2SinceWeek as int) - 1) * 7)"'))
df = df.withColumn ('Promo2Days',
F.when (df.Promo2SinceYear > 1900,
F.greatest (F.1it (0), F.least(F.1lit (25 *
7), F.datediff (df.Date, df.Promo2Since))))
.otherwise (0))
df = df.withColumn ('Promo2Weeks', (df.Promo2Days /
7) .cast (T.IntegerType()))
# Check that we did not lose any rows through inner joins.
assert num rows == df.count(), 'lost rows in joins'
return df
def build vocabulary(df, cols):
vocab = {}
for col in cols:
values = [r[0] for r in df.select(col) .distinct () .collect () ]
col type = type([x for x in values if x is not None] [0])
default value = col type()
vocab[col] = sorted(values, key=lambda x: x or default value)

return vocab
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def cast columns (df, cols):
for col in cols:
df = df.withColumn (col,
F.coalesce(df[col].cast(T.FloatType()), F.1it(0.0)))
return df
def lookup columns (df, vocab):
def lookup (mapping) :
def fn(v) :
return mapping.index (v)
return F.udf (fn, returnType=T.IntegerType ())
for col, mapping in vocab.items () :
df = df.withColumn (col, lookup (mapping) (df[col]))
return df
if args.sample rate:
train csv = train csv.sample (withReplacement=False,
fraction=args.sample rate)
test csv = test csv.sample (withReplacement=False,
fraction=args.sample rate)
# Prepare data frames from CSV files.
train df = prepare df(train csv) .cache ()
test df = prepare df (test csv) .cache()
# Add elapsed times from holidays & promos, the data spanning training
& test datasets.
elapsed cols = ['Promo', 'StateHoliday', 'SchoolHoliday']
elapsed = add elapsed(train df.select('Date', 'Store', *elapsed cols)
.unionAll (test df.select('Date', 'Store',
*elapsed cols)),
elapsed cols)
# Join with elapsed times.
train df = train df \
.join(elapsed, ['Date', 'Store']) \
.select (train df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed cols])
test df = test df \
.Join (elapsed, ['Date', 'Store'l) \

.select (test df['*'], *[prefix + col for prefix in ['Before',
'"After'] for col in elapsed cols])
# Filter out zero sales.
train df = train df.filter(train df.Sales > 0)

print ('Prepared data frame')
print ('===================")
train df.show ()
categorical cols = [
'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',
'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',



'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',
'Promo2SinceYear', 'Events', 'Promo',
'StateHoliday', 'SchoolHoliday'
]
continuous cols = |
'CompetitionDistance', 'Max TemperatureC', 'Mean TemperatureC',
'Min TemperatureC', 'Max Humidity',
'Mean Humidity', 'Min Humidity', 'Max Wind SpeedKm h',
'Mean Wind SpeedKm h', 'CloudCover', 'trend', 'trend de',
'BeforePromo', 'AfterPromo', 'AfterStateHoliday',

'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'
]
all cols = categorical cols + continuous cols
# Select features.
train df = train df.select(*(all cols + ['Sales', 'Date'])).cache()
test df = test df.select(*(all cols + ['Id', 'Date']l)) .cache()

# Build vocabulary of categorical columns.
vocab = build vocabulary(train df.select (*categorical cols)

.unionAll (test df.select (*categorical cols)) .cache(),
categorical cols)
# Cast continuous columns to float & lookup categorical columns.

train df = cast columns(train df, continuous cols + ['Sales'])
train df = lookup columns (train df, vocab)
test df = cast columns(test df, continuous cols)

test df = lookup columns (test df, vocab)
# Split into training & validation.

# Test set is in 2015, use the same period in 2014 from the training

set as a validation set.

test df.agg(F.min(test df.Date)).collect () [0][0]
test df.agg(F.max(test df.Date)) .collect() [0][0]
one year = datetime.timedelta(365)

test min date

test max date

train df = train df.withColumn('Validation',
(train df.Date > test min date -
one year) & (train df.Date <= test max date - one year))
# Determine max Sales number.
max sales = train df.agg(F.max(train df.Sales)).collect () [0][O]
# Convert Sales to log domain
train df = train df.withColumn('Sales', F.log(train df.Sales))

print ('Data frame with transformed columns')
print ( e === = = % )
train df.show ()

41



train rows = train df.filter (~train df.Validation) .count ()
val rows = train df.filter(train df.Validation) .count ()
test rows = test df.count ()

print ('Training: %d' % train rows)

print ('Validation: %d' % val rows)

print ('Test: %d' % test rows)

# ============== §
# MODEL TRAINING #
# ============== {
prlat (' s=—m=——e—==—eu)

print ('Model training')
print ('s==s===========")
def exp rmspe(y true, y pred):
"""Competition evaluation metric, expects logarithic inputs."""
pct = tf.square((tf.exp(y true) - tf.exp(y pred)) /
tf.exp(y true))
# Compute mean excluding stores with zero denominator.
x = tf.reduce sum(tf.where(y true > 0.001, pct,
tf.zeros like(pct)))
y = tf.reduce sum(tf.where(y true > 0.001, tf.ones like(pct),
tf.zeros like (pct)))
return tf.sqgrt(x / vy)
def act sigmoid scaled(x):
"""Sigmoid scaled to logarithm of maximum sales scaled by 20%."""
return tf.nn.sigmoid(x) * tf.math.log(max sales) * 1.2
CUSTOM OBJECTS = {'exp rmspe': exp rmspe,
'act sigmoid scaled': act sigmoid scaled}
# Disable GPUs when building the model to prevent memory leaks
if LooseVersion(tf. version ) >= LooseVersion('2.0.0"):
# See https://github.com/tensorflow/tensorflow/issues/33168
os.environ['CUDA VISIBLE DEVICES'] = '-1'
else:

K.set session(tf.Session(config=tf.ConfigProto(device count={'GPU': 0})))
# Build the model.
inputs = {col: Input (shape=(1,), name=col) for col in all cols}
embeddings = [Embedding(len(vocab[col]), 10, input length=1,
name="'emb ' + col) (inputs[col])
for col in categorical cols]
continuous bn = Concatenate () ([Reshape((1, 1), name='reshape ' +
col) (inputs[col])

for col in continuous cols])

continuous bn = BatchNormalization () (continuous bn)
x = Concatenate () (embeddings + [continuous bn])

x = Flatten () (x)

x = Dense (1000, activation='relu',



kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)

X Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dense (1000, activation='relu',

kernel regularizer=tf.keras.regularizers.12(0.00005)) (x)
x = Dense (500, activation='relu',

kernel regularizer=tf.keras.regularizers.l12(0.00005)) (x)

x = Dropout (0.5) (x)

output = Dense(l, activation=act sigmoid scaled) (x)

model = tf.keras.Model ([inputs[f] for f in all cols], output)
model . summary ()

opt = tf.keras.optimizers.Adam(lr=args.learning rate, epsilon=le-3)

# Checkpoint callback to specify options for the returned Keras model
ckpt callback = BestModelCheckpoint (monitor='val loss', mode='auto',

save freg='epoch')
# Horovod: run training.
store = Store.create(args.work dir)
backend = SparkBackend (num proc=args.num proc,
stdout=sys.stdout, stderr=sys.stderr,
prefix output with timestamp=True)
keras estimator = hvd.KerasEstimator (backend=backend,
store=store,
model=model,
optimizer=opt,
loss="mae',
metrics=[exp rmspe],
custom objects=CUSTOM OBJECTS,
feature cols=all cols,
label cols=['Sales'],
validation='Validation',
batch size=args.batch size,
epochs=args.epochs,
verbose=2,

checkpoint callback=ckpt callback)
keras model =
keras estimator.fit (train df) .setOutputCols(['Sales output'])
history = keras model.getHistory ()
best val rmspe = min(history['val exp rmspe'])
print ('Best RMSPE: $f' % best val rmspe)
# Save the trained model.
keras model.save (args.local checkpoint file)

Q

print ('Written checkpoint to %s' % args.local checkpoint file)

f mmmmmmmemeeee
# FINAL PREDICTION #
f == ¢
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print ('Final prediction')

print ('================")

pred df=keras model.transform(test df)

pred df.printSchema ()

pred df.show(5)

# Convert from log domain to real Sales numbers

pred df=pred df.withColumn ('Sales pred', F.exp(pred df.Sales output))

submission df = pred df.select (pred df.Id.cast(T.IntegerType()),
pred df.Sales pred) .toPandas()

submission df.sort values(by=['Id']).to csv(args.local submission csv,
index=False)

print ('Saved predictions to %s' % args.local submission csv)
spark.stop ()

El tercer guion es run classification criteo spark.py.

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model selection import train test split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sqgl import SparkSession, SQLContext, Row, DataFrame
from pyspark.mllib import linalg as mllib linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector
from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as
mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark.ml import linalg as ml linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors
from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp # exp(-t) = e*-t

from operator import add

from pyspark.sqgl.functions import udf, split, 1lit

from pyspark.sqgl.functions import size, sum as sglsum

import pyspark.sqgl.functions as F

import pyspark.sgl.types as T
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from pyspark.sqgl.types import ArrayType, StructType, StructField,
LongType, StringType, IntegerType, FloatType
from pyspark.sqgl.functions import explode, col, log, when
from collections import defaultdict
import pandas as pd
import pyspark.pandas as ps
from sklearn.metrics import log loss, roc_auc score
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from deepctr.models import DeepFM
from deepctr.feature column import SparseFeat, DenseFeat,
get feature names
spark = SparkSession.builder \
.master ("yarn") \
.appName ("deep ctr classification") \
.config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-
utils 2.12:0.1.0") \

.config("spark.executor.cores", "1") \
.config('spark.executor.memory', '5gb') \
.config('spark.executor.memoryOverhead', '1500') \
.config('spark.driver.memoryOverhead', '1500') \
.config("spark.sqgl.shuffle.partitions", "480") \
.config("spark.sgl.execution.arrow.enabled", "true") \
.config("spark.driver.maxResultSize", "50gb") \
.getOrCreate ()

# spark.conf.set ("spark.sgl.execution.arrow.enabled", "true") # deprecated

print ("Apache Spark version:")

print (spark.version)

sc = spark.sparkContext

sglContext = SQLContext (sc)

parser = argparse.ArgumentParser (description='Spark DCN CTR Prediction
Example',

formatter class=argparse.ArgumentDefaultsHelpFormatter)
parser.add argument ('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed

with file://) or on HDFS')
def process input file(file name, sparse feat, dense feat):

# Need this preprocessing to turn Criteo raw file into CSV:

print ("START processing input file...")

# only convert the file ONCE

# sample = open(file name)

# sample = '\n'.join([str(x.replace('\n', '').replace('\t', ','")) for
X in sample])

# # Add header in data file and save as CSV

# header = ','.join(str(x) for x in (['label'] + dense feat +
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sparse feat))
# with open('/sparkdemo/tr-4570-data/ctr train.csv', mode='w',

encoding="utf-8") as f:
# f.write (header + '\n' + sample)
# f.close ()
# print ("Raw training file processed and saved as CSV: ", f.name)
raw df = sglContext.read.option("header", True).csv(file name)

raw _df.show (5, False)

raw df.printSchema ()

# convert columns Il to I13 from string to integers

conv_df = raw df.select(col('label') .cast ("double"),

*(col (i) .cast ("float") .alias (i) for i in
raw df.columns if i in dense feat),
*(col(c) for ¢ in raw df.columns if c in

sparse feat))

print ("Schema of raw df with integer columns type changed:")

conv_df.printSchema ()

# result pdf = conv _df.select ("*") .toPandas ()

tmp df = conv _df.na.fill (0, dense feat)

result df = tmp df.na.fill('-1', sparse feat)

result df.show()

return result df
if name == " main ":

args = parser.parse_args ()

# Pandas read CSV

# data = pd.read csv('%s/criteo sample.txt' % args.data dir)

# print ("Obtained Pandas df.")

dense features = ['I' + str(i) for i in range(l, 14)]

sparse features = ['C' + str(i) for i in range(l, 27)]

# Spark read CSV

# process _input file('%s/train.txt' % args.data dir, sparse features,
dense features) # run only ONCE

spark df = process input file('%$s/data.txt' % args.data dir,
sparse features, dense features) # sample data

# spark df = process input file('$s/ctr train.csv' % args.data dir,
sparse features, dense features)

print ("Obtained Spark df and filled in missing features.")

data = spark df

# Pandas

#data[sparse features] = data[sparse features].fillna('-1', )
#data[dense features] = datal[dense features].fillna (0, )

target = ['label']

label npa = data.select ("label") .toPandas () .to numpy ()

print ("label numPy array has length = ", len(label npa)) # 45,840,617

w/ 11GB dataset
label npa.ravel ()



for

has

label npa.reshape(len(label npa), )
# 1.Label Encoding for sparse features,and do simple Transformation
dense features
print ("Before LabelEncoder () :")
data.printSchema () # label: float (nullable = true)
for feat in sparse features:
lbe = LabelEncoder ()
tmp pdf = data.select (feat) .toPandas () .to numpy ()
tmp ndarray = lbe.fit transform(tmp pdf)
print ("After LabelEncoder(), tmp ndarray[0] =", tmp ndarrayl[0])
# print ("Data tmp PDF after lbe transformation, the output ndarray
length = ", len(tmp ndarray)) # 45,840,617 for 11GB dataset
tmp ndarray.ravel ()
tmp ndarray.reshape (len(tmp ndarray), )
out ndarray = np.column stack([label npa, tmp ndarray])
pdf = pd.DataFrame (out ndarray, columns=['label',6 feat])
s _df = spark.createDataFrame (pdf)
s _df.printSchema () # label: double (nullable = true)
print ("Before joining data df with s df, s df example rows:")
s _df.show(l, False)
data = data.drop(feat).join(s_df, 'label').drop('label')
print ("After LabelEncoder (), data df example rows:")
data.show(l, False)
print ("Finished processing sparse features: ", feat)
print ("Data DF after label encoding: ")
data.show ()
data.printSchema ()

mms = MinMaxScaler (feature range=(0, 1))

# data[dense features] = mms.fit transform(data[dense features]) # for
Pandas df

tmp pdf = data.select (dense features) .toPandas () .to numpy ()

tmp ndarray = mms.fit transform(tmp pdf)

tmp ndarray.ravel ()

tmp ndarray.reshape (len(tmp ndarray), len(tmp ndarray[0]))
out ndarray = np.column stack([label npa, tmp ndarray])

pdf = pd.DataFrame (out ndarray, columns=['label'] + dense features)
s df = spark.createDataFrame (pdf)

s_df.printSchema ()

data.drop (*dense features) .join(s df, 'label').drop('label')
print ("Finished processing dense features: ", dense features)
print ("Data DF after MinMaxScaler: ")

data.show ()

# 2.count #unique features for each sparse field,and record dense

feature field name

fixlen feature columns = [SparseFeat (feat,
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vocabulary size=data.select (feat) .distinct().count() + 1, embedding dim=4)

for i, feat in enumerate (sparse features)] +
\
[DenseFeat (feat, 1, ) for feat in
dense features]
dnn_feature columns = fixlen feature columns
linear feature columns = fixlen feature columns
feature names = get feature names (linear feature columns +

dnn_ feature columns)

# 3.generate input data for model

# train, test = train test split(data.toPandas(), test size=0.2,
random state=2020) # Pandas; might hang for 11GB data

train, test = data.randomSplit (weights=[0.8, 0.2], seed=200)

print ("Training dataset size = ", train.count())

print ("Testing dataset size = ", test.count())

# Pandas:

# train model input = {name: train[name] for name in feature names}
# test model input = {name: test[name] for name in feature names}

# Spark DF:

train model input = {}

test model input = {}
for name in feature names:
if name.startswith('I"):
tr pdf = train.select (name) .toPandas ()
train model input[name] = pd.to numeric (tr pdf[name])
ts pdf = test.select (name) .toPandas ()
test model input[name] = pd.to numeric(ts pdf[name])
# 4.Define Model, train,predict and evaluate
model = DeepFM(linear feature columns, dnn feature columns,
task="binary"')
model.compile ("adam", "binary crossentropy",
metrics=['binary crossentropy'], )
lb pdf = train.select(target) .toPandas ()
history = model.fit (train model input,
pd.to numeric(lb pdf['label']) .values,
batch size=256, epochs=10, verbose=2,
validation split=0.2, )
pred ans = model.predict (test model input, batch size=256)
print ("test LogLoss",
round (log loss (pd.to numeric(test.select (target) .toPandas()) .values,
pred ans), 4))
print ("test AUC",
round (roc_auc_score (pd.to numeric (test.select (target) .toPandas()) .values,
pred ans), 4))



Conclusion

En este documento, analizamos la arquitectura de Apache Spark, los casos de uso de
los clientes y la cartera de almacenamiento de NetApp en relacion con el big data, el
analisis moderno y la inteligencia artificial, el aprendizaje automatico y el aprendizaje
automatico. En nuestras pruebas de validacion de rendimiento basadas en herramientas
de evaluacion comparativa estandar de la industria y la demanda de los clientes, las
soluciones NetApp Spark demostraron un rendimiento superior en relacion con los
sistemas Hadoop nativos. Una combinacion de los casos de uso de clientes y los
resultados de rendimiento presentados en este informe pueden ayudarlo a elegir una
solucion Spark adecuada para su implementacion.

Dénde encontrar informacion adicional
En este TR se utilizaron las siguientes referencias:
* Arquitectura y componentes de Apache Spark
"http://spark.apache.org/docs/latest/cluster-overview.html"
» Casos de uso de Apache Spark
"https://www.qubole.com/blog/big-data/apache-spark-use-cases/"
» Spark PNL
"https://www.johnsnowlabs.com/spark-nlp/"
* BERT
"https://arxiv.org/abs/1810.04805"
* Red profunda y cruzada para predicciones de clics en anuncios
"https://arxiv.org/abs/1708.05123"
* FlexGroup
https://www.netapp.com/pdf.html?item=/media/7337-tr4557pdf.pdf
* ETL de transmision
"https://www.infoq.com/articles/apache-spark-streaming”
» Soluciones NetApp E-Series para Hadoop
"https://www.netapp.com/media/16420-tr-3969.pdf"
» Soluciones de analisis de datos modernos de NetApp

"Soluciones de analisis de datos"
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* SnapMirror
"https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html"

* XCP
https://mysupport.netapp.com/documentation/docweb/index.html?productiD=63942&language=en-US

» Copia y sincronizacion de BlueXP
"https://cloud.netapp.com/cloud-sync-service"

* Kit de herramientas DataOps

"https://github.com/NetApp/netapp-dataops-toolkit"
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