Solucidén de base de datos vectorial con
NetApp

NetApp artificial intelligence solutions

NetApp
December 04, 2025

This PDF was generated from https://docs.netapp.com/es-es/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on December 04, 2025. Always check docs.netapp.com for the latest.

Tabla de contenidos

Solucién de base de datos vectorial con NetApp

Solucién de base de datos vectorial con NetApp
Introduccion
Introduccion
Descripcion general de la solucion
Descripcion general de la solucion
Base de datos de vectores
Base de datos de vectores
Requisito de tecnologia
Requisito de tecnologia
Requisitos de hardware
Requisitos de software
Procedimiento de implementacién
Procedimiento de despliegue
Verificacion de la solucion
Descripcion general de la solucion

Configuracion de un cluster Milvus con Kubernetes en instalaciones locales
Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos
Proteccion de bases de datos vectoriales mediante SnapCenter
Recuperacion ante desastres mediante NetApp SnapMirror
Validacion del rendimiento de la base de datos vectorial
Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector
Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector

Casos de uso de bases de datos vectoriales
Casos de uso de bases de datos vectoriales
Conclusién
Conclusién
Apéndice A: Valores.yaml
Apéndice A: Valores.yaml|
Apéndice B: prepare_data_netapp_new.py
Apéndice B: prepare_data_netapp_new.py
Apéndice C: verify_data_netapp.py
Apéndice C: verify_data_netapp.py
Apéndice D: docker-compose.yml
Apéndice D: docker-compose.yml

© 00 0 N N N N W W WNDNDDND - -

NN NN NSRS A DA DRNDNDNOWON
NNhABROO©©O®®O®MO O ooNIoOSNO ©

Solucion de base de datos vectorial con NetApp

Soluciéon de base de datos vectorial con NetApp

Karthikeyan Nagalingam y Rodrigo Nascimento, NetApp

Este documento proporciona una exploracion exhaustiva de la implementacion y la
gestion de bases de datos vectoriales, como Milvus y pgvecto, una extension
PostgreSQL de cddigo abierto, utilizando las soluciones de almacenamiento de NetApp.
Se detallan las pautas de infraestructura para el uso de NetApp ONTAP y el
almacenamiento de objetos StorageGRID y se valida la aplicacion de la base de datos
Milvus en AWS FSx ONTAP. El documento explica la dualidad archivo-objeto de NetApp
y su utilidad para bases de datos vectoriales y aplicaciones que admiten incrustaciones
vectoriales. Se destacan las capacidades de SnapCenter, el producto de gestion
empresarial de NetApp, al ofrecer funcionalidades de backup y restauracion para bases
de datos vectoriales, garantizando la integridad y disponibilidad de los datos. El
documento profundiza mas en la solucion de nube hibrida de NetApp y analiza su papel
en la replicacion y proteccion de datos en entornos locales y en la nube. Incluye
informacidn sobre la validacion del rendimiento de las bases de datos vectoriales en
NetApp ONTAP y concluye con dos casos de uso practicos sobre IA generativa: RAG
con LLM y ChatAl interno de NetApp. Este documento sirve como una guia completa
para aprovechar las soluciones de almacenamiento de NetApp para administrar bases
de datos vectoriales.

La arquitectura de referencia se centra en lo siguiente:

1. "Introduccién”

"Descripcion general de la solucion”
"Base de datos de vectores"
"Requisito de tecnologia"

"Procedimiento de implementacion”

© o ~ w0 BN

"Descripcion general de la verificacion de la solucion”
° "Configuracion de un cluster Milvus con Kubernetes en instalaciones locales"

> Enlace: base de datos vectorial Milvus con Amazon FSx ONTAP para NetApp ONTAP[Milvus con
Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos]

> "Proteccion de bases de datos vectoriales mediante NetApp SnapCenter."
o "Recuperacion ante desastres mediante NetApp SnapMirror"
> "Validacion del rendimiento"

7. "Base de datos vectorial con Instaclustr usando PostgreSQL.: pgvector"

8. "Casos de uso de bases de datos vectoriales"

9. "Conclusion"

10. "Apéndice A: values.yaml"

11. "Apéndice B: prepare_data_netapp_new.py"
12. "Apéndice C: verify_data_netapp.py"

13. "Apéndice D: docker-compose.yml"

Introduccion

Esta seccion proporciona una introduccion a la solucion de base de datos vectorial para
NetApp.

Introduccion

Las bases de datos vectoriales abordan de manera efectiva los desafios que estan disefiados para manejar
las complejidades de la busqueda semantica en modelos de lenguaje grandes (LLM) y en inteligencia artificial
generativa (IA). A diferencia de los sistemas de gestion de datos tradicionales, las bases de datos vectoriales
son capaces de procesar y buscar en varios tipos de datos, incluidas imagenes, videos, texto, audio y otras
formas de datos no estructurados, utilizando el contenido de los datos en si en lugar de etiquetas o rétulos.

Las limitaciones de los sistemas de gestion de bases de datos relacionales (RDBMS) estan bien
documentadas, en particular sus dificultades con las representaciones de datos de alta dimension y los datos
no estructurados comunes en las aplicaciones de IA. Los RDBMS a menudo requieren un proceso lento y
propenso a errores para aplanar los datos y convertirlos en estructuras mas manejables, lo que genera
demoras e ineficiencias en las busquedas. Sin embargo, las bases de datos vectoriales estan disefiadas para
sortear estos problemas, ofreciendo una solucién mas eficiente y precisa para gestionar y buscar datos
complejos y de alta dimension, facilitando asi el avance de las aplicaciones de IA.

Este documento sirve como una guia completa para los clientes que actualmente utilizan o planean utilizar
bases de datos vectoriales y detalla las mejores practicas para utilizar bases de datos vectoriales en
plataformas como NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP para NetApp ONTAP y
SnapCenter. El contenido proporcionado aqui cubre una variedad de temas:

» Pautas de infraestructura para bases de datos vectoriales, como Milvus, proporcionadas por el
almacenamiento de NetApp a través de NetApp ONTAP y el almacenamiento de objetos StorageGRID .
« Validacioén de la base de datos Milvus en AWS FSx ONTAP a través del almacén de archivos y objetos.

* Profundiza en la dualidad archivo-objeto de NetApp, demostrando su utilidad para datos en bases de
datos vectoriales y otras aplicaciones.

» Como el producto de gestion de proteccion de datos de NetApp, SnapCenter, ofrece funcionalidades de
respaldo y restauracion para datos de bases de datos vectoriales.

* Cémo la nube hibrida de NetApp ofrece replicacion y proteccion de datos en entornos locales y en la
nube.

* Proporciona informacion sobre la validaciéon del rendimiento de bases de datos vectoriales como Milvus y
pgvector en NetApp ONTAP.

 Dos casos de uso especificos: Retrieval Augmented Generation (RAG) con Large Language Models (LLM)
y ChatAl del equipo de Tl de NetApp , que ofrecen ejemplos practicos de los conceptos y practicas
descritos.

Descripciéon general de la solucién

Esta seccion proporciona una descripcion general de la solucidn de base de datos

vectorial de NetApp .

Descripcion general de la solucién

Esta solucion muestra los beneficios y capacidades distintivos que NetApp ofrece para abordar los desafios
que enfrentan los clientes de bases de datos vectoriales. Al aprovechar NetApp ONTAP, StorageGRID, las
soluciones en nube de NetApp y SnapCenter, los clientes pueden agregar valor significativo a sus operaciones
comerciales. Estas herramientas no sélo abordan problemas existentes, sino que también mejoran la
eficiencia y la productividad, contribuyendo asi al crecimiento general del negocio.

¢Por qué NetApp?

* Las ofertas de NetApp, como ONTAP y StorageGRID, permiten la separacion del almacenamiento y el
coémputo, lo que posibilita una utilizacion 6ptima de los recursos segun requisitos especificos. Esta
flexibilidad permite a los clientes escalar de forma independiente su almacenamiento utilizando soluciones
de almacenamiento de NetApp .

» Al aprovechar los controladores de almacenamiento de NetApp, los clientes pueden servir datos de
manera eficiente a su base de datos vectorial utilizando los protocolos NFS y S3. Estos protocolos facilitan
el almacenamiento de datos de clientes y administran el indice de la base de datos vectorial, eliminando la
necesidad de multiples copias de datos a los que se accede a través de métodos de archivos y objetos.

* NetApp ONTAP proporciona soporte nativo para NAS y almacenamiento de objetos en los principales
proveedores de servicios de nube como AWS, Azure y Google Cloud. Esta amplia compatibilidad
garantiza una integracion perfecta, lo que permite la movilidad de los datos del cliente, la accesibilidad
global, la recuperacion ante desastres, la escalabilidad dinamica y el alto rendimiento.

» Con las sdlidas capacidades de gestion de datos de NetApp, los clientes pueden tener la tranquilidad de
saber que sus datos estan bien protegidos contra posibles riesgos y amenazas. NetApp prioriza la
seguridad de los datos, ofreciendo tranquilidad a los clientes con respecto a la seguridad e integridad de
su valiosa informacion.

Base de datos de vectores

Esta seccion cubre la definicion y el uso de una base de datos vectorial en las soluciones
de IA de NetApp .

Base de datos de vectores

Una base de datos vectorial es un tipo especializado de base de datos disefiada para manejar, indexar y
buscar datos no estructurados utilizando incrustaciones de modelos de aprendizaje automatico. En lugar de
organizar los datos en un formato tabular tradicional, organiza los datos como vectores de alta dimension,
también conocidos como incrustaciones vectoriales. Esta estructura unica permite que la base de datos
maneje datos complejos y multidimensionales de manera mas eficiente y precisa.

Una de las capacidades clave de una base de datos vectorial es el uso de IA generativa para realizar analisis.
Esto incluye busquedas de similitud, donde la base de datos identifica puntos de datos que son similares a
una entrada dada, y deteccion de anomalias, donde puede detectar puntos de datos que se desvian
significativamente de la norma.

Ademas, las bases de datos vectoriales son adecuadas para manejar datos temporales o datos con marca de
tiempo. Este tipo de datos proporciona informacion sobre "qué" sucedié y cuando sucedid, en secuencia y en
relacion con todos los demas eventos dentro de un sistema de Tl determinado. Esta capacidad de manejar y

analizar datos temporales hace que las bases de datos vectoriales sean particularmente utiles para

aplicaciones que requieren una comprension de los eventos a lo largo del tiempo.

Ventajas de las bases de datos vectoriales para ML e IA:

* Busqueda de alta dimension: las bases de datos vectoriales se destacan en la gestion y recuperacion de
datos de alta dimensién, que a menudo se generan en aplicaciones de |IA'y ML.

 Escalabilidad: Pueden escalar de manera eficiente para manejar grandes volumenes de datos,
respaldando el crecimiento y la expansién de proyectos de IAy ML.

* Flexibilidad: Las bases de datos vectoriales ofrecen un alto grado de flexibilidad, lo que permite la
adaptacién de diversos tipos y estructuras de datos.

» Rendimiento: Proporcionan gestion y recuperacion de datos de alto rendimiento, fundamentales para la
velocidad y la eficiencia de las operaciones de IAy ML.

* Indexacion personalizable: las bases de datos vectoriales ofrecen opciones de indexacion personalizables,
lo que permite una organizacion y recuperacion optimizadas de datos segun necesidades especificas.

Bases de datos vectoriales y casos de uso.

Esta seccion proporciona varias bases de datos vectoriales y detalles de sus casos de uso.

Faiss y ScaNN

Son bibliotecas que sirven como herramientas cruciales en el ambito de la busqueda vectorial. Estas
bibliotecas proporcionan una funcionalidad util para la gestion y busqueda de datos vectoriales, lo que las
convierte en recursos invaluables en esta area especializada de gestion de datos.

Elasticsearch

Es un motor de busqueda y analisis ampliamente utilizado, que recientemente ha incorporado capacidades de
busqueda vectorial. Esta nueva caracteristica mejora su funcionalidad, permitiéndole manejar y buscar datos
vectoriales de manera mas efectiva.

Pina

Es una base de datos vectorial robusta con un conjunto Unico de caracteristicas. Admite vectores densos y
dispersos en su funcionalidad de indexacioén, lo que mejora su flexibilidad y adaptabilidad. Una de sus
principales fortalezas radica en su capacidad de combinar métodos de busqueda tradicionales con la
busqueda vectorial densa basada en IA, creando un enfoque de busqueda hibrido que aprovecha lo mejor de
ambos mundos.

Pinecone, basado principalmente en la nube, esta disefiado para aplicaciones de aprendizaje automatico y se
integra bien con una variedad de plataformas, incluidas GCP, AWS, Open Al, GPT-3, GPT-3.5, GPT-4, Catgut
Plus, Elasticsearch, Haystack y mas. Es importante tener en cuenta que Pinecone es una plataforma de
codigo cerrado y esta disponible como una oferta de software como servicio (SaaS).

Dadas sus capacidades avanzadas, Pinecone es particularmente adecuado para la industria de la
ciberseguridad, donde sus capacidades de busqueda de alta dimension y busqueda hibrida se pueden
aprovechar de manera efectiva para detectar y responder a las amenazas.

Croma

Es una base de datos vectorial que tiene una API central con cuatro funciones principales, una de las cuales
incluye un almacén de vectores de documentos en memoria. También utiliza la biblioteca Face Transformers
para vectorizar documentos, mejorando su funcionalidad y versatilidad. Chroma esta disefiado para operar

tanto en la nube como en las instalaciones, ofreciendo flexibilidad segun las necesidades del usuario. En
particular, se destaca en aplicaciones relacionadas con el audio, lo que lo convierte en una excelente opcion
para motores de busqueda basados en audio, sistemas de recomendacion de musica y otros casos de uso
relacionados con el audio.

Tejer

Es una base de datos vectorial versatil que permite a los usuarios vectorizar su contenido utilizando sus
modulos integrados o modulos personalizados, proporcionando flexibilidad segun necesidades especificas.
Ofrece soluciones totalmente administradas y auto hospedadas, que se adaptan a una variedad de
preferencias de implementacion.

Una de las caracteristicas clave de Weaviate es su capacidad de almacenar tanto vectores como objetos,
mejorando sus capacidades de manejo de datos. Se utiliza ampliamente para una variedad de aplicaciones,
incluida la busqueda semantica y la clasificacion de datos en sistemas ERP. En el sector del comercio
electronico, potencia los motores de busqueda y recomendacion. Weaviate también se utiliza para la
busqueda de imagenes, la deteccidn de anomalias, la armonizacién automatizada de datos y el analisis de
amenazas de ciberseguridad, lo que demuestra su versatilidad en multiples dominios.

Redis

Redis es una base de datos vectorial de alto rendimiento conocida por su rapido almacenamiento en memoria,
que ofrece baja latencia para operaciones de lectura y escritura. Esto lo convierte en una excelente opcion
para sistemas de recomendacion, motores de busqueda y aplicaciones de analisis de datos que requieren un
acceso rapido a los datos.

Redis admite varias estructuras de datos para vectores, incluidas listas, conjuntos y conjuntos ordenados.
También proporciona operaciones vectoriales como calcular distancias entre vectores o encontrar
intersecciones y uniones. Estas caracteristicas son particularmente utiles para la busqueda de similitud, la
agrupacion en clusteres y los sistemas de recomendacion basados en contenido.

En términos de escalabilidad y disponibilidad, Redis se destaca en el manejo de cargas de trabajo de alto
rendimiento y ofrece replicacion de datos. También se integra bien con otros tipos de datos, incluidas las
bases de datos relacionales tradicionales (RDBMS). Redis incluye una funcién de publicacion/suscripcion
(Pub/Sub) para actualizaciones en tiempo real, lo que resulta beneficioso para administrar vectores en tiempo
real. Ademas, Redis es liviano y facil de usar, lo que lo convierte en una solucién facil de usar para administrar
datos vectoriales.

Milvus

Es una base de datos vectorial versatil que ofrece una APl como un almacén de documentos, muy parecido a
MongoDB. Se destaca por su soporte para una amplia variedad de tipos de datos, lo que lo convierte en una
opcion popular en los campos de la ciencia de datos y el aprendizaje automatico.

Una de las caracteristicas unicas de Milvus es su capacidad de multivectorizacién, que permite a los usuarios
especificar en tiempo de ejecucion el tipo de vector a utilizar para la busqueda. Ademas, utiliza Knowwhere,
una biblioteca que se encuentra encima de otras bibliotecas como Faiss, para administrar la comunicacion
entre las consultas y los algoritmos de busqueda vectorial.

Milvus también ofrece una integracion perfecta con los flujos de trabajo de aprendizaje automatico, gracias a
su compatibilidad con PyTorch y TensorFlow. Esto lo convierte en una herramienta excelente para una
variedad de aplicaciones, incluido el comercio electrénico, el analisis de imagenes y videos, el reconocimiento
de objetos, la busqueda de similitud de imagenes y la recuperacion de imagenes basada en contenido. En el
ambito del procesamiento del lenguaje natural, Milvus se utiliza para agrupar documentos, buscar semantica y
sistemas de preguntas y respuestas.

Para esta solucion, elegimos milvus para la validacién de la solucion. Para el rendimiento, utilizamos tanto
milvus como postgres(pgvecto.rs).

¢Por qué elegimos milvus para esta solucion?

« Cddigo abierto: Milvus es una base de datos vectorial de codigo abierto que fomenta el desarrollo y las
mejoras impulsados por la comunidad.

* Integracion de IA: aprovecha la incorporacion de aplicaciones de IA y busqueda de similitud para mejorar
la funcionalidad de la base de datos vectorial.

* Manejo de grandes volumenes: Milvus tiene la capacidad de almacenar, indexar y administrar mas de mil
millones de vectores de incrustacion generados por redes neuronales profundas (DNN) y modelos de
aprendizaje automatico (ML).

 Facil de usar: es facil de usar y la configuracion toma menos de un minuto. Milvus también ofrece SDK
para diferentes lenguajes de programacion.

 Velocidad: Ofrece velocidades de recuperacion increiblemente rapidas, hasta 10 veces mas rapidas que
algunas alternativas.

 Escalabilidad y disponibilidad: Milvus es altamente escalable, con opciones para escalar verticalmente o
horizontalmente segun sea necesario.

* Rica en funciones: admite diferentes tipos de datos, filtrado de atributos, compatibilidad con funciones
definidas por el usuario (UDF), niveles de consistencia configurables y tiempo de viaje, lo que la convierte
en una herramienta versatil para diversas aplicaciones.

Descripcion general de la arquitectura de Milvus

| coardinator Servicas

- - o 5
SOK | restiul AP : Meta Store " Rootcggad Datagoorg Suarycoord
Arcens Layor B, /el
Mussage Stomagoe [WAL
1! Prosy
DML | Produco
E Kalka 7" Paultsar
Lend Batances §g "':E Controds
Promy
Saarch | Query 1 Cansume
| Worker Nodes
w7 *
Quary Meles Data Hodss Indox Modas
+
Lood Wirito " Wirite
| Dbject Storage Fahe =
Data Files . Indbox Files
Dudtalag Statslog Binlog Index Indiex
¥

MNetdpp StorageGRID - Object storage

AlFlash FAS - [e

CMNTAP

*

Esta seccidn proporciona componentes y servicios de nivel superior que se utilizan en la arquitectura Milvus.
Capa de acceso: esta compuesta por un grupo de servidores proxy sin estado y actia como capa frontal del
sistema y punto final para los usuarios. * Servicio de coordinacion: asigna las tareas a los nodos de trabajo y

actua como el cerebro del sistema. Tiene tres tipos de coordinador: coordenada raiz, coordenada de datos y
coordenada de consulta. * Nodos de trabajo: siguen las instrucciones del servicio coordinador y ejecutan
comandos DML/DDL activados por el usuario. Tiene tres tipos de nodos de trabajo: el nodo de consulta, el
nodo de datos y el nodo de indice. * Almacenamiento: es responsable de la persistencia de los datos. Incluye
almacenamiento de metadatos, agente de registros y almacenamiento de objetos. El almacenamiento de
NetApp , como ONTAP y StorageGRID, proporciona almacenamiento de objetos y almacenamiento basado en
archivos a Milvus tanto para datos de clientes como para datos de bases de datos vectoriales.

Requisito de tecnologia

Esta seccion proporciona una descripcion general de los requisitos para la solucion de

base de datos vectorial de NetApp .

Requisito de tecnologia

Las configuraciones de hardware y software que se describen a continuacion se utilizaron para la mayoria de
las validaciones realizadas en este documento, con excepcion del rendimiento. Estas configuraciones sirven
como guia para ayudarle a configurar su entorno. Sin embargo, tenga en cuenta que los componentes
especificos pueden variar segun los requisitos individuales del cliente.

Requisitos de hardware

Hardware

Par HA de matriz de almacenamiento AFF de NetApp

6 x FUJITSU PRIMERGY RX2540 M4

Redes
StorageGRID

Requisitos de software

Software

Cumulo de Milvus

Kubernetes

Piton

Detalles

* A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Dos volumenes de grupo flexibles: metadatos y datos.
* El volumen NFS de metadatos tiene 12 volumenes
persistentes con 250 GB. * Los datos son un volumen
ONTAP NAS S3

*64 CPU * CPU Intel® Xeon® Gold 6142 a 2,60 GHz
* Memoria fisica de 256 GM * 1 puerto de red de 100
GbE

100 GbE
*1 8G100, 3 SGF6024 * 324 de 7,68 TB

Detalles

* GRAFICO - milvus-4.1.11. * Versién de la aplicacion:
2.3.4 * Paquetes dependientes como bookkeeper,
zookeeper, pulsar, etcd, proxy, querynode, trabajador

* Cluster K8s de 5 nodos * 1 nodo maestro y 4 nodos
de trabajo * Version: 1.7.2

*3.10.12.

Procedimiento de implementacioén

En esta seccion se analiza el procedimiento de implementacion de la solucidén de base
de datos vectorial para NetApp.
Procedimiento de despliegue

En esta seccidon de implementacion, utilizamos la base de datos vectorial milvus con Kubernetes para la
configuracion del laboratorio como se muestra a continuacion.

.

000

|
|
I
|
s

Cal ™~

Milvus Cluster

190
000

o e e e e e
Y

[
I

g~ PR S R S S R N P S

Bucket File StorageGRID | Object storage)

2 S S U et
R T R R ol

El almacenamiento de NetApp proporciona almacenamiento para que el cluster conserve los datos de los
clientes y los datos del cluster de Milvus.

Configuracion de almacenamiento de NetApp — ONTAP

* Inicializacion del sistema de almacenamiento
 Creacion de una maquina virtual de almacenamiento (SVM)
+ Asignacion de interfaces de red logicas

» Configuracion y licencias de NFS, S3

Siga los pasos a continuacion para NFS (sistema de archivos de red):

1. Cree un volumen FlexGroup para NFSv4. En nuestra configuracion para esta validacion, hemos utilizado
48 SSD, 1 SSD dedicado para el volumen raiz del controlador y 47 SSD distribuidos para NFSv4. Verifique
que la politica de exportacion de NFS para el volumen FlexGroup tenga permisos de lectura y escritura
para la red de nodos de Kubernetes (K8s). Si estos permisos no estan disponibles, otorgue permisos de
lectura/escritura (rw) para la red de nodos K8s.

2. En todos los nodos de K8s, cree una carpeta y monte el volumen FlexGroup en esta carpeta a través de
una interfaz loégica (LIF) en cada nodo de K8s.

Siga los pasos a continuacion para NAS S3 (Servicio de almacenamiento simple de almacenamiento
conectado a red):

1. Cree un volumen FlexGroup para NFS.

2. Configure un servidor de almacén de objetos con HTTP habilitado y el estado de administrador
establecido en "activo" mediante el comando "vserver object-store-server create". Tiene la opcion de
habilitar HTTPS y configurar un puerto de escucha personalizado.

3. Cree un usuario de servidor de almacén de objetos mediante el comando "vserver object-store-server user
create -user <nombre de usuario>".

4. Para obtener la clave de acceso y la clave secreta, puede ejecutar el siguiente comando: "set diag;
vserver object-store-server user show -user <username>". Sin embargo, en el futuro, estas claves se
proporcionaran durante el proceso de creacién del usuario o se podran recuperar mediante llamadas a la
API REST.

5. Establezca un grupo de servidores de almacén de objetos utilizando el usuario creado en el paso 2 y
otorgue acceso. En este ejemplo, proporcionamos "Acceso completo".

6. Cree un depdsito NAS configurando su tipo en "nas" y proporcionando la ruta al volumen NFSv3. También
es posible utilizar un bucket S3 para este propésito.

Configuraciéon de almacenamiento de NetApp : StorageGRID

1. Instalar el software storageGRID.
2. Crear un inquilino y un depésito.

3. Crear usuario con el permiso requerido.

Por favor consulte mas detalles en https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Verificacion de la solucion

Descripcién general de la solucién

Hemos realizado una validacién integral de la solucion centrada en cinco areas clave,
cuyos detalles se describen a continuacion. Cada seccion profundiza en los desafios que
enfrentan los clientes, las soluciones proporcionadas por NetApp y los beneficios
posteriores para el cliente.

1. "Configuracion de un cluster Milvus con Kubernetes en instalaciones locales"Desafios del cliente para
escalar de forma independiente en almacenamiento y computacion, gestion efectiva de infraestructura y
gestion de datos. En esta seccidn, detallamos el proceso de instalacion de un cluster Milvus en
Kubernetes, utilizando un controlador de almacenamiento NetApp para los datos del cluster y los datos del
cliente.

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

2. enlace: vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.htmI[Milvus con Amazon
FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos] En esta seccidn, explicamos por qué
necesitamos implementar una base de datos vectorial en la nube, asi como los pasos para implementar
una base de datos vectorial (milvus independiente) en Amazon FSx ONTAP para NetApp ONTAP dentro
de contenedores Docker.

3. "Proteccion de bases de datos vectoriales mediante NetApp SnapCenter."En esta seccion, profundizamos
en como SnapCenter protege los datos de la base de datos vectorial y los datos de Milvus que residen en
ONTAP. Para este ejemplo, utilizamos un depdsito NAS (milvusdbvol1) derivado de un volumen NFS
ONTAP (vol1) para datos de clientes y un volumen NFS separado (vectordbpv) para datos de
configuracion del cluster Milvus.

4. "Recuperacion ante desastres mediante NetApp SnapMirror"En esta seccion, analizamos la importancia
de la recuperacion ante desastres (DR) para la base de datos vectorial y como el producto de
recuperacion ante desastres SnapMirror de NetApp proporciona una solucion DR para la base de datos
vectorial.

5. "Validacion del rendimiento"En esta seccién, nuestro objetivo es profundizar en la validacion del
rendimiento de bases de datos vectoriales, como Milvus y pgvecto.rs, centrandonos en sus caracteristicas
de rendimiento de almacenamiento, como el perfil de E/S y el comportamiento del controlador de
almacenamiento Netapp en apoyo de RAG y cargas de trabajo de inferencia dentro del ciclo de vida de
LLM. Evaluaremos e identificaremos cualquier diferenciador de rendimiento cuando estas bases de datos
se combinen con la solucion de almacenamiento ONTAP . Nuestro anadlisis se basara en indicadores clave
de rendimiento, como el nimero de consultas procesadas por segundo (QPS).

Configuracién de un cluster Milvus con Kubernetes en instalaciones locales

En esta seccion se analiza la configuracion del cluster milvus para la solucién de base de
datos vectorial para NetApp.

Configuracién de un cluster Milvus con Kubernetes en instalaciones locales

Los desafios del cliente para escalar de forma independiente en almacenamiento y computacion,
administracion efectiva de la infraestructura y administracion de datos, Kubernetes y las bases de datos
vectoriales juntas forman una solucidén poderosa y escalable para administrar operaciones de grandes datos.
Kubernetes optimiza los recursos y administra los contenedores, mientras que las bases de datos vectoriales
manejan eficientemente datos de alta dimensién y busquedas de similitud. Esta combinacion permite el
procesamiento rapido de consultas complejas en grandes conjuntos de datos y se adapta sin problemas a
volumenes de datos crecientes, lo que la hace ideal para aplicaciones de big data y cargas de trabajo de IA.

1. En esta seccion, detallamos el proceso de instalacion de un cluster Milvus en Kubernetes, utilizando un
controlador de almacenamiento NetApp para los datos del cluster y los datos del cliente.

2. Para instalar un cluster Milvus, se requieren volumenes persistentes (PV) para almacenar datos de varios
componentes del cluster Milvus. Estos componentes incluyen etcd (tres instancias), pulsar-bookie-journal
(tres instancias), pulsar-bookie-ledgers (tres instancias) y pulsar-zookeeper-data (tres instancias).

En el cluster Milvus, podemos usar Pulsar o Kafka como motor subyacente que respalda el
almacenamiento confiable y la publicacion/suscripcién de flujos de mensajes del cluster
Milvus. Para Kafka con NFS, NetApp ha implementado mejoras en ONTAP 9.12.1y

@ versiones posteriores. Estas mejoras, junto con los cambios en NFSv4.1 y Linux incluidos
en RHEL 8.7 0 9.1 y versiones posteriores, resuelven el problema de "cambio de nombre
tonto" que puede ocurrir al ejecutar Kafka sobre NFS. Si estd interesado en obtener
informacién mas detallada sobre la ejecucion de Kafka con la solucion NFS de NetApp,
consulte:"este enlace" .

10

../data-analytics/kafka-nfs-introduction.html

3. Creamos un unico volumen NFS desde NetApp ONTAP y establecimos 12 volumenes persistentes, cada
uno con 250 GB de almacenamiento. El tamafio de almacenamiento puede variar segun el tamafo del
cluster; por ejemplo, tenemos otro cluster donde cada PV tiene 50 GB. Consulte a continuacién uno de los
archivos PV YAML para obtener mas detalles; teniamos 12 archivos de este tipo en total. En cada archivo,
storageClassName se establece en 'predeterminado' y el almacenamiento y la ruta son Unicos para cada
PV.

root@node2:~# cat sai nfs to default pvl.yaml
apiVersion: vl
kind: PersistentVolume
metadata:
name: karthik-pvl
spec:
capacity:
storage: 250Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: default
local:
path: /vectordbsc/milvus/milvusl
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- node?2
- node3
- node4
- nodeb
- nodeb6
root@node2:~#

4. Ejecute el comando 'kubectl apply' para cada archivo PV YAML para crear los volumenes persistentes y
luego verifique su creacién usando 'kubectl get pv'

11

12

root@node2:~# for i in $(seq 1 12); do kubectl apply -f
sai nfs to default pv$Si.yaml; done
persistentvolume/karthik-pvl created
persistentvolume/karthik-pv2 created
persistentvolume/karthik-pv3 created
persistentvolume/karthik-pv4 created
persistentvolume/karthik-pv5 created
persistentvolume/karthik-pv6 created
persistentvolume/karthik-pv7 created
persistentvolume/karthik-pv8 created
persistentvolume/karthik-pv9 created
persistentvolume/karthik-pvl0 created
persistentvolume/karthik-pvll created
persistentvolume/karthik-pvl2 created
root@node?2: ~#

. Para almacenar datos de clientes, Milvus admite soluciones de almacenamiento de objetos como MinlO,

Azure Blob y S3. En esta guia, utilizamos S3. Los siguientes pasos se aplican tanto al almacén de objetos
ONTAP S3 como al StorageGRID . Usamos Helm para implementar el cluster Milvus. Descargue el
archivo de configuracion, values.yaml, desde la ubicacién de descarga de Milvus. Consulte el apéndice
para ver el archivo values.yaml que usamos en este documento.

. Asegurese de que 'storageClass' esté configurado como 'predeterminado’ en cada seccion, incluidas las

de registro, etcd, zookeeper y bookkeeper.

. En la seccién MinlO, desactive MinlO.

. Cree un depdsito NAS desde el almacenamiento de objetos ONTAP o StorageGRID e incluyalos en un S3

externo con las credenciales de almacenamiento de objetos.

FHAHHHA4HAaddaa At
External S3

- these configs are only used when “externalS3.enabled’

FHAFH AR H A AR A AR S
externalS3:

enabled: true

host: "192.168.150.167"

port: "80"

accessKey: "24G4C1316APP2BIPDESS"

secretKey: "Zd28p43rgZaU44PX ftT279z9nt4jBSro97387Bx"

useSSL: false

bucketName: "milvusdbvoll"
rootPath: ""

useIAM: false
cloudProvider: "aws"
iamEndpoint: ""

region: ""

useVirtualHost: false

9. Antes de crear el cluster Milvus, asegurese de que PersistentVolumeClaim (PVC) no tenga ningun recurso

preexistente.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node?2:~#

10. Utilice Helm y el archivo de configuracion values.yaml para instalar e iniciar el cluster Milvus.

root@node2:~# helm upgrade --install my-release milvus/milvus --set
global.storageClass=default -f values.yaml
Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verificar el estado de los PersistentVolumeClaims (PVC).

13

root@node2:~# kubectl get pvc

NAME

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-my-release-etcd-0

karthik-pv8 250G1 RWO default 3s
data-my-release-etcd-1

karthik-pv5 250G1 RWO default 2s
data-my-release-etcd-2

karthik-pv4 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0
karthik-pv10 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1
karthik-pv3 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2
karthik-pvl 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0
karthik-pv2 250G1i RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1
karthik-pv9 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2
karthik-pvll 250G1 RWO default 3s
my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0
karthik-pv7 250G1i RWO default 3s

root@node2:~#

12. Verifique el estado de los pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

<content removed to save page space>

Asegurese de que el estado de los pods sea "en ejecucion” y funcione como se espera.

13. Pruebe la escritura y lectura de datos en el almacenamiento de objetos Milvus y NetApp .

14

o Escriba datos utilizando el programa Python "prepare_data_netapp_new.py".

STATUS

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

root@node2:~# date;python3 prepare data netapp new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew update2 sc exist in Milvus:
False

=== Drop collection - hello milvus ntapnew update2 sc ===

=== Drop collection - hello milvus ntapnew update2 sc2 ===

=== Create collection "hello milvus ntapnew update2 sc’ ===

=== Start inserting entities ==
Number of entities in hello milvus ntapnew update2 sc: 3000
Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

> Lea los datos utilizando el archivo Python "verify_data_netapp.py".

root@node2:~# python3 verify data netapp.py
=== start connecting to Milvus ===
=== Milvus host: localhost ===

Does collection hello milvus ntapnew updateZ sc exist in Milvus: True

{'auto_id': False, 'description': 'hello milvus ntapnew update2Z sc',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': False}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',
'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello milvus ntapnew update2 sc : 3000

=== Start Creating index IVF FLAT ===
=== Start loading ===
=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':
0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':
0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

16

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':
0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with “random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,
0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.8236044¢0,
0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,
0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with “random > 0.5 ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':
0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':
0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':
0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':
0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello milvus ntapnew updateZ sc2 exist in Milvus:

True

{'auto id': True, 'description': 'hello milvus ntapnew update2 sc2',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': True}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Con base en la validacion anterior, la integracion de Kubernetes con una base de datos vectorial,
como se demostro a través de la implementacion de un cluster Milvus en Kubernetes usando un
controlador de almacenamiento NetApp , ofrece a los clientes una solucién robusta, escalable y
eficiente para administrar operaciones de datos a gran escala. Esta configuracion brinda a los clientes
la capacidad de manejar datos de alta dimension y ejecutar consultas complejas de manera rapida y
eficiente, lo que la convierte en una solucion ideal para aplicaciones de big data y cargas de trabajo de
IA. El uso de volumenes persistentes (PV) para varios componentes del cluster, junto con la creacion
de un unico volumen NFS desde NetApp ONTAP, garantiza una utilizacion 6ptima de los recursos y la

gestion de datos. El proceso de verificar el estado de PersistentVolumeClaims (PVC) y pods, asi como
probar la escritura y lectura de datos, brinda a los clientes la seguridad de contar con operaciones de
datos confiables y consistentes. El uso del almacenamiento de objetos ONTAP o StorageGRID para
los datos de los clientes mejora aun mas la accesibilidad y la seguridad de los datos. En general, esta
configuracion brinda a los clientes una solucion de gestion de datos resistente y de alto rendimiento
que puede escalar sin problemas con sus crecientes necesidades de datos.

Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y
objetos

En esta seccion se analiza la configuracion del cluster milvus con Amazon FSx ONTAP
para la solucién de base de datos vectorial para NetApp.

Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos

En esta seccion, explicamos por qué necesitamos implementar una base de datos vectorial en la nube, asi
como los pasos para implementar una base de datos vectorial (milvus independiente) en Amazon FSx ONTAP
para NetApp ONTAP dentro de contenedores Docker.

La implementacion de una base de datos vectorial en la nube proporciona varios beneficios importantes,
especialmente para aplicaciones que requieren manejar datos de alta dimension y ejecutar busquedas de
similitud. En primer lugar, la implementacion basada en la nube ofrece escalabilidad, lo que permite ajustar
facilmente los recursos para adaptarse a los crecientes volumenes de datos y cargas de consultas. Esto
garantiza que la base de datos pueda manejar de manera eficiente el aumento de demanda y al mismo tiempo
mantener un alto rendimiento. En segundo lugar, la implementacion de la nube proporciona alta disponibilidad
y recuperacion ante desastres, ya que los datos se pueden replicar en diferentes ubicaciones geogréficas, lo
que minimiza el riesgo de pérdida de datos y garantiza un servicio continuo incluso durante eventos
inesperados. En tercer lugar, ofrece rentabilidad, ya que solo pagas por los recursos que utilizas y puedes
ampliar o reducir segun la demanda, evitando asi la necesidad de una inversion inicial sustancial en hardware.
Por ultimo, implementar una base de datos vectorial en la nube puede mejorar la colaboracion, ya que se
puede acceder a los datos y compartirlos desde cualquier lugar, lo que facilita el trabajo en equipo y la toma
de decisiones basada en datos. Verifique la arquitectura de milvus independiente con Amazon FSx ONTAP
para NetApp ONTAP utilizada en esta validacion.

17

Subcomponents
Query Coord Data Coord Index Coord Root Coord
uery Node Data Node Index Node Pro
) ity | | | Fiony Al Workloads

Fmmmmmmmmm e mm—————— e ——————
1 1
O ' d |

' -
. I !
Reliable States ! 9 :
1 1
| [User requests (image)] ,
| Object Storage Key-Value-Meta-Store | 1
| & - :] |
: [Recommendation system] :
H '
1 1
: API calls for Similarity Similar images :
L 4 4 T \| embeddings search recommended to user |1
1
) y h 4 v Y Y i i
Bucket File ' 3 '
1
: Milvus cluster H
: :
1
1
1

FS)«’QP

Customer Data and Milvus config data /

Amazon FSXn for
NetApp ONTAP

1. Cree una instancia de Amazon FSx ONTAP para NetApp ONTAP y anote los detalles de la VPC, los
grupos de seguridad de VPC y la subred. Esta informacion sera necesaria al crear una instancia EC2.
Puede encontrar mas detalles aqui - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-
1#file-system-create

2. Cree una instancia EC2, asegurandose de que la VPC, los grupos de seguridad y la subred coincidan con
los de la instancia de Amazon FSx ONTAP para NetApp ONTAP .

3. Instale nfs-common usando el comando 'apt-get install nfs-common' y actualice la informacion del paquete
usando 'sudo apt-get update'.

4. Cree una carpeta de montaje y monte Amazon FSx ONTAP para NetApp ONTAP en ella.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/voll
/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on
172.31.255.228:/voll 973G 126G 848G 13% /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~5

5. Instale Docker y Docker Compose usando 'apt-get install'.

6. Configure un cluster Milvus basado en el archivo docker-compose.yaml, que se puede descargar del sitio
web de Milvus.

18

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
-0 docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
<removed some output to save page space>

7. En la seccion 'volumenes' del archivo docker-compose.yml, asigne el punto de montaje NFS de NetApp a
la ruta del contenedor Milvus correspondiente, especificamente en etcd, minio y
standalone.Verifique"Apéndice D: docker-compose.yml" Para obtener detalles sobre los cambios en yml

8. Verifique las carpetas y archivos montados.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -1ltrh
/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3 access.py
drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes
ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -ltrh
/home/ubuntu/milvusvectordb/volumes/

total O

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
ubuntu@ip-172-31-29-98:~$ 1s

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb
vectordbvoll

ubuntu@ip-172-31-29-98:~$

9. Ejecute 'docker-compose up -d' desde el directorio que contiene el archivo docker-compose.yml.

10. Verifique el estado del contenedor Milvus.

19

ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

Name Command State
Ports
milvus-etcd etcd -advertise-client-url ... Up (healthy)
2379/tcp, 2380/tcp
milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp, :::9000->9000/tcp, 0.0.0.0:9001-
>9001/tcp, :::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)
0.0.0.0:19530->19530/tcp, :::19530->19530/tcp, 0.0.0.0:9091-
>9091/tcp, :::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ 1s -ltrh /home/ubuntu/milvusvectordb/volumes/
total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milwvus
ubuntu@ip-172-31-29-98:~$

11. Para validar la funcionalidad de lectura y escritura de la base de datos vectorial y sus datos en Amazon
FSx ONTAP para NetApp ONTAP, utilizamos el SDK de Python Milvus y un programa de muestra de
PyMilvus. Instale los paquetes necesarios usando 'apt-get install python3-numpy python3-pip' e instale
PyMilvus usando 'pip3 install pymilvus'.

12. Validar las operaciones de escritura y lectura de datos de Amazon FSx ONTAP para NetApp ONTAP en la
base de datos vectorial.

root@ip-172-31-29-98:~/pymilvus/examples# python3
prepare data netapp new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True
=== Drop collection - hello milvus ntapnew sc ===
=== Drop collection - hello milvus ntapnew sc2 ===
=== Create collection "hello milvus ntapnew sc ===
=== Start inserting entities ===

Number of entities in hello milvus ntapnew sc: 9000
root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/
<removed content to save page space >

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-cl117-4fba-8256-96cb7557cd6e
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-c117-4fba-8256-96cb7557cdéc/part.1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920/x1.meta

13. Verifique la operacion de lectura utilizando el script verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify data netapp.py
=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True

{'auto id': False, 'description': 'hello milvus ntapnew sc', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':

L}
14

'"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',

21

22

'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, ({'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}
Number of entities in Milvus: hello milvus ntapnew sc : 9000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},
random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':
0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with ‘random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,
0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],
"'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with “random > 0.5° ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':
0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':
0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello milvus ntapnew sc2 exist in Milvus: True

{'auto id': True, 'description': 'hello milvus ntapnew sc2', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is primary': True, 'auto id': True}, {'name': 'random', 'description':
'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}

14. Si el cliente desea acceder (leer) datos NFS probados en la base de datos vectorial a través del protocolo
S3 para cargas de trabajo de IA, esto se puede validar utilizando un programa Python sencillo. Un ejemplo
de esto podria ser una busqueda de similitud de imagenes de otra aplicacidn como se menciona en la
imagen que esta al comienzo de esta seccion.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3
/home/ubuntu/milvusvectordb/s3 access.py -i 172.31.255.228 --bucket
milvusnasvol —--access-key PY6UF318996I86NBYNDD --secret-key
hoPctr9aD88clj0SkIYZ2uPal03v1bgKAOc5feKo6F

OBJECTS in the bucket milvusnasvol are

R R i e i b b db b b b b 2 b b db b i dh b b b b b b 2 S b dE b 2b b I i Y

<output content removed to save page space>

bucket/files/insert 1og/448789845791611912/448789845791611913/4487898457
91611920/0/448789845791411917/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/1/448789845791411918/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411913/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/101/448789845791411914/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/102/448789845791411915/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/1c48abbe-
1546-4503-9084-28c629216¢c33/part.1

volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/0/448789845791411924/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/1/448789845791411925/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/101/448789845791411921/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/102/448789845791411922/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913,/448789845791611939/103/448789845791411923/b3def25f-
cll17-4fba-8256-96cb7557cd6ec/part.1
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/103/448789845791411923/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791211880
/448789845791211881,/448789845791411889/100/1/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791211880
/448789845791211881,/448789845791411889,/100/448789845791411912/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/1/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411919/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791611912
/448789845791611913/448789845791611939/100/1/x1.meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611939/100/448789845791411926/x1 .meta

RR IR b b b b b b b b b b b b b I b 4

root@ip-172-31-29-98:~/pymilvus/examples

Esta seccion demuestra eficazmente como los clientes pueden implementar y operar una configuracion de
Milvus independiente dentro de contenedores Docker, utilizando NetApp FSx ONTAP de Amazon para el
almacenamiento de datos de NetApp ONTAP . Esta configuracion permite a los clientes aprovechar el
poder de las bases de datos vectoriales para manejar datos de alta dimension y ejecutar consultas
complejas, todo dentro del entorno escalable y eficiente de los contenedores Docker. Al crear una
instancia de Amazon FSx ONTAP para NetApp ONTAP y una instancia EC2 correspondiente, los clientes
pueden garantizar una utilizacion optima de los recursos y una gestion de datos. La validacion exitosa de
las operaciones de escritura y lectura de datos de FSx ONTAP en la base de datos vectorial brinda a los
clientes la garantia de operaciones de datos confiables y consistentes. Ademas, la capacidad de enumerar
(leer) datos de cargas de trabajo de IA a través del protocolo S3 ofrece una accesibilidad mejorada a los
datos. Por lo tanto, este proceso integral proporciona a los clientes una solucion sélida y eficiente para
administrar sus operaciones de datos a gran escala, aprovechando las capacidades de FSx ONTAP de
Amazon para NetApp ONTAP.

Proteccion de bases de datos vectoriales mediante SnapCenter

En esta seccidn se describe como proporcionar proteccion de datos para la base de
datos vectorial mediante NetApp SnapCenter.

Proteccion de bases de datos vectoriales mediante NetApp SnapCenter.

Por ejemplo, en la industria de produccion cinematografica, los clientes a menudo poseen datos incrustados
importantes, como archivos de video y audio. La pérdida de estos datos, debido a problemas como fallas en el

24

disco duro, puede tener un impacto significativo en sus operaciones, poniendo potencialmente en peligro
empresas multimillonarias. Hemos encontrado casos en los que se perdioé contenido invaluable, lo que causoé
interrupciones sustanciales y pérdidas financieras. Por lo tanto, garantizar la seguridad e integridad de estos
datos esenciales es de suma importancia en esta industria. En esta seccion, profundizamos en como
SnapCenter protege los datos de la base de datos vectorial y los datos de Milvus que residen en ONTAP. Para
este ejemplo, utilizamos un depdsito NAS (milvusdbvol1) derivado de un volumen NFS ONTAP (vol1) para
datos de clientes y un volumen NFS separado (vectordbpv) para datos de configuracion del cluster Milvus. Por
favor, consulte la"aqui" para el flujo de trabajo de copia de seguridad de SnapCenter

1. Configure el host que se utilizara para ejecutar los comandos de SnapCenter .

e _ 9 10,182 83.137 - shiva snapoonler

v [snepCenter x =+

= » 2 O Mot seoure Bitpslocalhost@ 146, Hoste

M NetApp SnapCenter®
| Managed Hosts
Host Details
Host Name nodal
Hame

HostIP 10.63,150.204

Dverall Staties @ Running

srs000 2055021 i S
System Stand-alone

Credentials F

Plug-ins SnapCemter Plug-ins package 1.0 for Linux

Slorage Bk

£ More Optiens | Port, Inseall Pach, Add Flug-ins...

|
Submit Cancel || Resst

it s recommended to configurs Credentia! with non-root wuser aof
fram waing the oot Credentisl 1o & non-rogt Credential snd dai

Total §

2. Instalar y configurar el complemento de almacenamiento. Desde el host agregado, seleccione "Mas
opciones". Navegue hasta el complemento de almacenamiento descargado y seleccionelo desde
el"Tienda de automatizacion de NetApp" . Instale el complemento y guarde la configuracion.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

@ Open

Crganize v New folder
& Downlosds » ~
% Documents
&1 Pictures

e

8 This PC
B 30 Objects
B Desktop

4 [« snapcentes

§ o2

1 maxps

i mysaL

1 ORASCPM

1 Postgresal

| SnapCenter Plug-in for DPGLUE
1 SnapCenter Plug-in for MongeD8

[5) » SC-ANF » plugi v o

10.192.83.137 - shiva snapcenter

More Options

% Documents 1 storage
& Dowmicads i sveast
b Music
& Pictures
B Videos
T Local Disk (1)
= snapcenter (\\rty v

File name: || - ‘ Al Files

3. Configurar el sistema de almacenamiento y el volumen: agregue el sistema de almacenamiento en
“Sistema de almacenamiento” y seleccione SVM (Maquina virtual de almacenamiento). En este ejemplo,
hemos elegido "vs_nvidia".

A NetApp Snaplenter®
[EXTEER

ez Tiziags Tppooe)

.....

4. Establecer un recurso para la base de datos vectorial, incorporando una politica de respaldo y un nombre
de instantanea personalizado.

o Habilite la copia de seguridad del grupo de consistencia con valores predeterminados y habilite
SnapCenter sin consistencia del sistema de archivos.

o En la seccion Huella de almacenamiento, seleccione los voliUmenes asociados con los datos del
cliente de la base de datos vectorial y los datos del cluster Milvus. En nuestro ejemplo, estos son
"vol1" y "vectordbpv".

> Cree una politica para la proteccion de la base de datos vectorial y proteja el recurso de la base de
datos vectorial utilizando la politica.

26

Modify Storage Storage Resource X

o hrarns Summary
o Storage Footprint Name
Type
o Raspurce Settings
Host srgletaryer] masglanfiocal
| 4 Summary Mount Points

Credential Name

Storage Footpring

Storage System Volums LUN/Qtres

Custom Resource Parameters o

-

rrevos

5. Inserte datos en el depdsito NAS S3 mediante un script de Python. En nuestro caso, modificamos el script
de respaldo proporcionado por Milvus, concretamente 'prepare_data_netapp.py', y ejecutamos el comando
'sync' para vaciar los datos del sistema operativo.

27

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost
Does collection hello milvus netapp sc test exist in Milvus: False

=== Create collection "hello milvus netapp sc test ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc test: 3000
=== Create collection "hello milvus netapp sc test2 ===

Number of entities in hello milvus netapp sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo
'sync executed';" ; done
node?2

sync executed
node3
sync executed
node4
sync executed
nodeb
sync executed
nodeb6
sync executed
root@node2 :~#

6. Verifique los datos en el depdsito NAS S3. En nuestro ejemplo, los archivos con la marca de tiempo '2024-
04-08 21:22' fueron creados por el script 'prepare_data_netapp.py'.

28

root@node2:~# aws s3 1s —--profile ontaps3 s3://milvusdbvoll/
--recursive | grep '2024-04-08"

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/1
2024-04-08 21:18:12 5654

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/4
48950615990800869

2024-04-08 21:18:17 5656

stats 10g/448950615991000809/448950615991000810/448950615991001872/100/1
2024-04-08 21:18:15 5654

stats 1og/448950615991000809/448950615991000810/448950615991001872/100/4
48950615990800876

2024-04-08 21:22:46 5625

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/1
2024-04-08 21:22:45 5623

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/4
48950615990800899

2024-04-08 21:22:49 5656

stats 1og/448950615991003408/448950615991003409/448950615991003416/100/1
2024-04-08 21:22:47 5654

stats 10g/448950615991003408/448950615991003409/448950615991003416/100/4
48950615990800906

2024-04-08 21:22:52 5656

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/1
2024-04-08 21:22:50 5654

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/4
48950615990800913

root@node2:~#

7. Inicie una copia de seguridad utilizando la instantanea del grupo de consistencia (CG) del recurso
'milvusdb’

29

30

v [snapCenter x +
£+ r O O Notsecure Rigsy flocalhost8146/PluginCreatorinventoryProtect/Protectindex?Resource Type = Storage 20 ResourcefiHost= nul & PlugmMame=Storage# b+ o 2

M NetApp SnapCenter® B ©®- 1 msqanfadministrator SnapCent

Storage ‘ Resource - Details

o | Nartie Detalls for selected resource
] Name
w 20 mibwusdb
Type turage Resour
ﬁ 2a mikusnode2
Haost Name
| 20 vectordb
LI Mount Points
2 volumebackupl
:-l e = Credantisl Name
— Plug-in name
Last backup A ORI2024 2 14 PM (Completed)
A Resource Groups aleserver] mssola cal_Starage_milvusdt
Policy
Storage Footprint
SV Yolume Junction Fath LUN/Gtrae
iby
Custorn Resource Parameters
Koy Value
Total &

Para probar la funcionalidad de respaldo, agregamos una nueva tabla después del proceso de respaldo o
eliminamos algunos datos del NFS (depdsito NAS S3).

Para esta prueba, imagine un escenario en el que alguien cre6 una coleccidn nueva, innecesaria o
inapropiada después de la copia de seguridad. En tal caso, necesitariamos revertir la base de datos
vectorial a su estado anterior a que se agregara la nueva coleccion. Por ejemplo, se han insertado nuevas
colecciones como 'hello_milvus_netapp_sc_testnew'y 'hello_milvus_netapp_sc_testnew?2'.

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===
Does collection hello milvus netapp sc testnew exist in Milvus: False

=== Create collection "hello milvus netapp sc testnew ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc testnew: 3000
=== Create collection "hello milvus netapp sc testnew2 ===

Number of entities in hello milvus netapp sc testnew2: 6000
root@node2:~#

9. Ejecute una restauracion completa del bucket NAS S3 desde la instantanea anterior.

Job Details

Restore 'scaleserver1.mssglanf.local\Storage\milvusdb’

v ¥ Restore ‘scaleserveri.mssqlanflocal\Starageimilvusdb’

v v scaleserverl.mssqlanf.lacal

v Restore

W » Validate Plugin Parameters

L * Pre Restore Application

W » File or Volume Restore

W * Recover Application

v » Cleaning Storage Resources

W * Clear Catalog on Server

v » Application Clean-Up -

© Task Name: Restore Start Time: 04/08/2024 2:37:21 PM End Time: 04/08/2024 2:37:55 PM

View Logs Close

10. Utilice un script de Python para verificar los datos de las colecciones 'hello_milvus_netapp_sc_test'y

32

'hello_milvus_netapp_sc_test2'.

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus netapp sc test exist in Milvus: True

{'auto id': False, 'description': 'hello milvus netapp sc test', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':
'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1]}

Number of entities in Milvus: hello milvus netapp sc _test : 3000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':
0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':
0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},
random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':
0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with “random > 0.5 ===

query result:
-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],
'pk': 0}
search latency = 0.2257s

=== Start hybrid searching with "random > 0.5° ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':
0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':
0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':
0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':
0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello milvus netapp sc test2 exist in Milvus: True
{'auto_id': True, 'description': 'hello milvus netapp sc test2', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': True}, {'name': 'random', 'description':
v 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',
'"type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1}

Number of entities in Milvus: hello milvus netapp sc test2 : 6000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {
'"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {
"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {
"random': 0.7864676926688837}, random field: 0.7864676926688837
hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {
'random': 0.2209597460821181}, random field: 0.2209597460821181
hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

'random': 0.2209597460821181}, random
hit: id: 448950615990640004, distance:
"random': 0.7765521996186631}, random

search latency = 0.2381s

Start querying with
query result:
-{'embeddings': [0.15983285,
0.50356466, 0.8750043,
0.7820620141382767}
0.3106s

'random':

search latency =

Start hybrid searching with

hit:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:

'random':

0.5326684390871348}, random

0.5326684390871348}, random

0.7864676926688837}, random
448950615990640004,
0.7765521996186631}, random
0.7765521996186631}, random
448950615990640402,
0.9742541034109935},

0.4906s

random
search latency =
root@node2 :~#

‘random > 0.5°

0.72214717,
0.316556, 0.7871702],

‘random > 0.5°

id: 448950615990642008, distance:

448950615990645009, distance:

448950615990640618, distance:

distance:

448950615990643005, distance:

distance:

field: 0.2209597460821181
0.11571306735277176, entity:
field: 0.7765521996186631

0.7414838,
'pk':

0.44471496,

0.07805602252483368, entity:
field: 0.5326684390871348
0.07805602252483368, entity:
field: 0.5326684390871348
0.13562293350696564, entity:
field: 0.7864676926688837
0.11571306735277176, entity:
field: 0.7765521996186631
0.11571306735277176, entity:
field: 0.7765521996186631
0.13665105402469635, entity:
field: 0.9742541034109935

11. Verifique que la coleccion innecesaria o inapropiada ya no esté presente en la base de datos.

34

448950615990639798,

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost

Does collection hello milvus netapp sc testnew exist in Milvus: False
Traceback (most recent call last):
File "/root/verify data netapp.py", line 37, in <module>
recover collection = Collection(recover collection name)
File "/usr/local/lib/python3.10/dist-
packages/pymilvus/orm/collection.py"”, line 137, in init
raise SchemaNotReadyException (
pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:
(code=1, message=Collection 'hello milvus netapp sc testnew' not exist,
or you can pass in schema to create one.)>
root@node?2 : ~4

En conclusion, el uso de SnapCenter de NetApp para salvaguardar los datos de bases de datos vectoriales y
los datos Milvus que residen en ONTAP ofrece beneficios significativos a los clientes, particularmente en
industrias donde la integridad de los datos es primordial, como la produccién cinematografica. La capacidad
de SnapCenter para crear copias de seguridad consistentes y realizar restauraciones de datos completas
garantiza que los datos criticos, como archivos de audio y video integrados, estén protegidos contra pérdidas
debido a fallas del disco duro u otros problemas. Esto no sélo evita interrupciones operativas sino que también
protege contra pérdidas financieras sustanciales.

En esta seccidn, demostramos coémo se puede configurar SnapCenter para proteger los datos que residen en
ONTAP, incluida la configuracion de hosts, la instalacion y configuracion de complementos de almacenamiento
y la creacién de un recurso para la base de datos vectorial con un nombre de instantanea personalizado.
También mostramos como realizar una copia de seguridad utilizando la instantanea del grupo de consistencia
y verificar los datos en el depdsito NAS S3.

Ademas, simulamos un escenario en el que se cred una coleccidn innecesaria o inapropiada después de la
copia de seguridad. En tales casos, la capacidad de SnapCenter de realizar una restauracién completa a partir
de una instantanea anterior garantiza que la base de datos vectorial pueda revertirse a su estado anterior a la
adicion de la nueva coleccion, manteniendo asi la integridad de la base de datos. Esta capacidad de restaurar
datos a un punto especifico en el tiempo es invaluable para los clientes, brindandoles la seguridad de que sus
datos no solo estan seguros, sino que también se mantienen correctamente. De este modo, el producto
SnapCenter de NetApp ofrece a sus clientes una solucion robusta y fiable para la proteccién y gestion de
datos.

Recuperacion ante desastres mediante NetApp SnapMirror

En esta seccion se analiza la recuperacion ante desastres (DR) con SnapMirror para la
solucion de base de datos vectorial para NetApp.

35

Recuperacion ante desastres mediante NetApp SnapMirror

Milvus Cluster Milvus Cluster

Subcompanants Subcomponants

ety Coodd Dt Caard i Coond Rool Coard Ty Coodd Bata Coafd et G oot Coard

| Gy Noda | Dota Moda Indaa tode | Praxy | Crmry Nos | Pota tode Indiz Nods Proxy

Rellaile Siotos X * R Reliabie Stoles

Dbject Storoge | Ky~ oo~ Wigbo~hoe o Ciberc 2000 ¥y -Yohum-Ueta- Soote

ik 4 & E [B YR T YR T Y W

Y v VeryVyvg? ¥
Buckat Fila

'.'«‘.75:—
[l |

= Cloud

Providers

MetApp SnapMirror i eemmm g :
/ Data Mover :r Foity m !

La recuperacion ante desastres es crucial para mantener la integridad y disponibilidad de una base de datos
vectorial, especialmente dada su funcion en la gestion de datos de alta dimensién y la ejecucion de
busquedas de similitud complejas. Una estrategia de recuperacién ante desastres bien planificada e
implementada garantiza que los datos no se pierdan ni se vean comprometidos en caso de incidentes
imprevistos, como fallas de hardware, desastres naturales o ciberataques. Esto es especialmente importante
para las aplicaciones que dependen de bases de datos vectoriales, donde la pérdida o corrupcion de datos
podria provocar importantes interrupciones operativas y pérdidas financieras. Ademas, un plan de
recuperacion ante desastres solido también garantiza la continuidad del negocio al minimizar el tiempo de
inactividad y permitir la rapida restauracion de los servicios. Esto se logra a través del producto de replicacion
de datos SnapMirror de NetApp en diferentes ubicaciones geograficas, copias de seguridad periddicas y
mecanismos de conmutacion por error. Por lo tanto, la recuperacion ante desastres no es sélo una medida de
proteccion, sino un componente critico de una gestion responsable y eficiente de bases de datos vectoriales.

SnapMirror de NetApp proporciona replicacién de datos de un controlador de almacenamiento NetApp ONTAP
a otro, y se utiliza principalmente para recuperacion ante desastres (DR) y soluciones hibridas. En el contexto
de una base de datos vectorial, esta herramienta facilita la transicion fluida de datos entre entornos locales y
en la nube. Esta transicidn se logra sin necesidad de realizar conversiones de datos ni refactorizar
aplicaciones, lo que mejora la eficiencia y la flexibilidad de la gestion de datos en multiples plataformas.

La solucion hibrida de NetApp en un escenario de base de datos vectorial puede aportar mas ventajas:

1. Escalabilidad: la solucién de nube hibrida de NetApp ofrece la capacidad de escalar sus recursos segun
sus requisitos. Puede utilizar recursos locales para cargas de trabajo regulares y predecibles y recursos
en la nube como Amazon FSx ONTAP para NetApp ONTAP y Google Cloud NetApp Volume (NetApp
Volumes) para horas pico o cargas inesperadas.

2. Eficiencia de costos: el modelo de nube hibrida de NetApp le permite optimizar sus costos al utilizar
recursos locales para cargas de trabajo regulares y pagar por los recursos de la nube solo cuando los
necesita. Este modelo de pago por uso puede resultar bastante rentable con una oferta de servicios
instaclustr de NetApp . Para los principales proveedores de servicios locales y en la nube, instaclustr
brinda soporte y consultoria.

3. Flexibilidad: la nube hibrida de NetApp le brinda la flexibilidad de elegir donde procesar sus datos. Por
ejemplo, puede optar por realizar operaciones vectoriales complejas en sus instalaciones donde tiene

36

hardware mas potente y operaciones menos intensivas en la nube.

4. Continuidad del negocio: en caso de desastre, tener sus datos en una nube hibrida de NetApp puede
garantizar la continuidad del negocio. Puede cambiar rapidamente a la nube si sus recursos locales se ven
afectados. Podemos aprovechar NetApp SnapMirror para trasladar los datos desde las instalaciones
locales a la nube y viceversa.

5. Innovacion: Las soluciones de nube hibrida de NetApp también pueden permitir una innovacién mas
rapida al brindar acceso a servicios y tecnologias de nube de vanguardia. Las innovaciones de NetApp en
la nube, como Amazon FSx ONTAP para NetApp ONTAP, Azure NetApp Files y Google Cloud NetApp
Volumes, son productos innovadores y NAS preferidos de los proveedores de servicios en la nube.

Validacion del rendimiento de la base de datos vectorial

Esta seccion destaca la validacion del rendimiento que se realizé en la base de datos
vectorial.

Validacion del rendimiento

La validacién del rendimiento juega un papel fundamental tanto en las bases de datos vectoriales como en los
sistemas de almacenamiento, y actua como un factor clave para garantizar un funcionamiento 6ptimo y una
utilizacion eficiente de los recursos. Las bases de datos vectoriales, conocidas por manejar datos de alta
dimension y ejecutar busquedas de similitud, necesitan mantener altos niveles de rendimiento para procesar
consultas complejas con rapidez y precision. La validacion del rendimiento ayuda a identificar cuellos de
botella, ajustar configuraciones y garantizar que el sistema pueda manejar las cargas esperadas sin
degradacion del servicio. De manera similar, en los sistemas de almacenamiento, la validacion del rendimiento
es esencial para garantizar que los datos se almacenen y recuperen de manera eficiente, sin problemas de
latencia o cuellos de botella que puedan afectar el rendimiento general del sistema. También ayuda a tomar
decisiones informadas sobre actualizaciones o cambios necesarios en la infraestructura de almacenamiento.
Por lo tanto, la validacion del rendimiento es un aspecto crucial de la gestion del sistema y contribuye
significativamente a mantener una alta calidad del servicio, la eficiencia operativa y la confiabilidad general del
sistema.

En esta seccion, nuestro objetivo es profundizar en la validacion del rendimiento de bases de datos
vectoriales, como Milvus y pgvecto.rs, centrandonos en sus caracteristicas de rendimiento de
almacenamiento, como el perfil de E/S y el comportamiento del controlador de almacenamiento Netapp en
apoyo de RAG y cargas de trabajo de inferencia dentro del ciclo de vida de LLM. Evaluaremos e
identificaremos cualquier diferenciador de rendimiento cuando estas bases de datos se combinen con la
solucion de almacenamiento ONTAP . Nuestro analisis se basara en indicadores clave de rendimiento, como
el numero de consultas procesadas por segundo (QPS).

Consulte la metodologia utilizada para milvus y el progreso a continuacion.

Detalles Milvus (independiente y en cluster) Postgres(pgvecto.rs) #
version 2.3.2 0.2.0

Sistema de archivos XFS en LUN iSCSI

Generador de carga de trabajo "Banco VectorDB"- version 0.0.5

Conjuntos de datos Conjunto de datos LAION * 10

millones de incrustaciones * 768
dimensiones * tamafio de conjunto
de datos de ~300 GB

37

https://github.com/zilliztech/VectorDBBench

Controlador de almacenamiento AFF 800 * Version —9.14.1 * 4 x
100 GbE — para milvus y 2 x 100
GbE para postgres * iscsi

VectorDB-Bench con cluster independiente Milvus

Realizamos la siguiente validacion de rendimiento en el cluster independiente milvus con vectorDB-Bench. La
conectividad de red y servidor del cluster independiente milvus se muestra a continuacion.

Management network

...

'
: '
'
i '
i '
: '
, '
'
'
'
'
'

=
wle-A800-A-01 —
=

I I ; milvus-standalone | I I | I I |

wle-A800-A-02
”””l milvus-minio

milvus-etcd l |

iSCSI 100Gbps network docker

En esta seccidon, compartimos nuestras observaciones y resultados de la prueba de la base de datos
independiente de Milvus. . Seleccionamos DiskANN como el tipo de indice para estas pruebas. . La ingesta,
optimizacion y creacion de indices para un conjunto de datos de aproximadamente 100 GB tomo alrededor de
5 horas. Durante la mayor parte de este periodo, el servidor Milvus, equipado con 20 nucleos (lo que equivale
a 40 vcpu cuando Hyper-Threading esta habilitado), estuvo funcionando a su capacidad maxima de CPU del
100 %. Descubrimos que DiskANN es particularmente importante para conjuntos de datos grandes que
exceden el tamafo de la memoria del sistema. . En la fase de consulta, observamos una tasa de consultas por
segundo (QPS) de 10,93 con una recuperacion de 0,9987. La latencia del percentil 99 para las consultas se
midié en 708,2 milisegundos.

Desde la perspectiva del almacenamiento, la base de datos emitio alrededor de 1000 operaciones por
segundo durante las fases de ingesta, optimizacion posterior a la insercion y creacion del indice. En la fase de
consulta, demandé 32.000 operaciones por segundo.

En la siguiente seccidn se presentan las métricas de rendimiento del almacenamiento.

Fase de carga de trabajo Métrico Valor
Ingesta de datos y optimizacion IOPS <1.000
posterior a la insercion
Estado latente <400 usecs
Carga de trabajo Mezcla de lectura y escritura,

principalmente escrituras

Tamano de 10 64 KB

38

Fase de carga de trabajo Métrico Valor

Consulta IOPS Pico a los 32.000
Estado latente <400 usecs
Carga de trabajo Lectura en caché al 100%
Tamafo de IO Principalmente 8 KB

El resultado de vectorDB-bench se muestra a continuacion.

,/;g. VDB
-2~ Benchmark

Vector Database Benchmark

Filtering Search Performance Test (5M Dataset, 1536 Dim, Filter 1%) A

Qps (more is better)

Milvus

1093

Recall (more is better)

Vi L5 00987

Load_duration (less is better)

i v 15,3605

Serial_latency_p99 (less is better)

i L5 708-2ms

A partir de la validacién del rendimiento de la instancia independiente de Milvus, es evidente que la
configuracion actual es insuficiente para soportar un conjunto de datos de 5 millones de vectores con una

dimensionalidad de 1536. Hemos determinado que el almacenamiento posee recursos adecuados y no
constituye un cuello de botella en el sistema.

39

VectorDB-Bench con cluster milvus

En esta seccidn, analizamos la implementacion de un cluster Milvus dentro de un entorno de Kubernetes. Esta
configuracion de Kubernetes se construyo sobre una implementacion de VMware vSphere, que alojaba los
nodos maestros y de trabajo de Kubernetes.

Los detalles de las implementaciones de VMware vSphere y Kubernetes se presentan en las siguientes

iSCSI 100Gbps network vm-kube-worker-16 vm-kube-worker-19

secciones.
— ' g g g
E vm-kube-master-01 vm-kube-master-02 vm-kube-master-03 i
— - o
I I vm-kube-worker-14 vm-kube-worker-17 ;
wle-A800-A-02 = = n ;
VMware vSphere vm-kube-worker-15 vm-kube-worker-18 E

,------_------.

...

40

|

|

i i |

Q000 |

- g~ -~ indexnode-0 indexnode-1 indexnode-2 indexnode-3 E |
© & o T '
|
|

my-release-etod my-release-minio my-release-milvus-indexnode

- - T T T e e e e e e e e e s ssss s ——ses 1 |
|

|

|

|

|

|

|

|

|

| - & : :
: my-release-pulsar-bookie my-release-pulsar-broker ; ® @ ® @ @ i
| = e querade-0 querymode-1 querynode-3 querynode-di
9 9 oo0000
| my-release-pulsar-proxy my-release-pulsar-recovery i
|

|

|

|

|

|

|

|

|

|

|

|

querynode-5 querynode-68 querynode-7 querynode-8 querwodn—ﬂi |

f '-.'; "-‘-n‘l v
. __ ‘ |
|

|

|

|

my-release-pulsar-zookeeper my-release-milvus-querynode

----- OO0O000O| -

kube-worker-14 kube-worker-15 kube-worker-16 kube-worker-17 kube-worker-18 kube-worker-19

| |
0-0-0

kube-master-01 kube-master-02 kube-master-03

En esta seccion, presentamos nuestras observaciones y resultados de las pruebas de la base de datos
Milvus. *El tipo de indice utilizado fue DiskANN. * La siguiente tabla proporciona una comparacion entre las
implementaciones independientes y en cluster cuando se trabaja con 5 millones de vectores con una
dimensionalidad de 1536. Observamos que el tiempo necesario para la ingesta de datos y la optimizacion
posterior a la insercion fue menor en la implementacion del cluster. La latencia del percentil 99 para las
consultas se redujo seis veces en la implementacion del cluster en comparacion con la configuracion
independiente. * Aunque la tasa de consultas por segundo (QPS) fue mayor en la implementacion del cluster,
no estuvo en el nivel deseado.

Metric | Milvus Standalone _| Milvus Cluster

QPS @ Recall 10.93 @ 0.9987 18.42 @ 0.9952 +40%
p99 Latency (less is better) 708.2 ms 117.6 ms -83%
Load Duration time (less is better) 18,360 secs 12,730 secs -30%

Las imagenes a continuacion proporcionan una vista de varias métricas de almacenamiento, incluida la

41

latencia del cluster de almacenamiento y el total de IOPS (operaciones de entrada/salida por segundo).

Cluster Latency = Total OPS

100K ops
75K ops
50K ops

25K ops
A r

oops I

17:30 18:00 18:30 19:00 19:30 20:00 20:30 PAR] 21:30 17:30 18:00 18:30 19:00 19:30 20:00 20:30 AR 21:30

== average == min == max == wle-a800-a-01 == wle-a800-a-02

En la siguiente seccidn se presentan las métricas clave del rendimiento del almacenamiento.

Fase de carga de trabajo Métrico Valor

Ingesta de datos y optimizacion IOPS <1.000

posterior a la insercion
Estado latente <400 usecs
Carga de trabajo Mezcla de lectura y escritura,

principalmente escrituras

Tamano de 10 64 KB

Consulta IOPS Pico en 147.000
Estado latente <400 usecs
Carga de trabajo Lectura en caché al 100%
Tamanio de 10 Principalmente 8 KB

Con base en la validacion del rendimiento tanto del Milvus independiente como del cluster Milvus,
presentamos los detalles del perfil de E/S de almacenamiento. * Observamos que el perfil de E/S permanece
consistente tanto en implementaciones independientes como en cluster. * La diferencia observada en el IOPS
maximo se puede atribuir a la mayor cantidad de clientes en la implementacion del cluster.

vectorDB-Bench con Postgres (pgvecto.rs)

Realizamos las siguientes acciones en PostgreSQL (pgvecto.rs) usando VectorDB-Bench: Los detalles sobre
la conectividad de red y servidor de PostgreSQL (especificamente, pgvecto.rs) son los siguientes:

42

Management network

wle-A800-A-01 ‘
— [T

wle-A800-A-02 —

Postgres

docker

En esta seccion, compartimos nuestras observaciones y resultados de las pruebas de la base de datos
PostgreSQL, especificamente utilizando pgvecto.rs. * Seleccionamos HNSW como el tipo de indice para estas
pruebas porque en el momento de la prueba, DiskANN no estaba disponible para pgvecto.rs. * Durante la fase
de ingesta de datos, cargamos el conjunto de datos Cohere, que consta de 10 millones de vectores con una
dimensionalidad de 768. Este proceso tardé aproximadamente 4,5 horas. * En la fase de consulta,
observamos una tasa de consultas por segundo (QPS) de 1,068 con un recall de 0,6344. La latencia del
percentil 99 para las consultas se midié en 20 milisegundos. Durante la mayor parte del tiempo de ejecucion,
la CPU del cliente funcioné al 100 % de su capacidad.

Las imagenes a continuacion proporcionan una vista de varias métricas de almacenamiento, incluidas las
IOPS totales (operaciones de entrada/salida por segundo) de latencia del cluster de almacenamiento.

« Summary

Cluster Latency Total OPS

The following section presents the key storage performance metrics.
image:pgvecto-storage-perf-metrics.png["Figura que muestra el didlogo de
entrada/salida o representa contenido escrito"]

Comparacion del rendimiento entre milvus y postgres en Vector DB Bench

43

.%-. VDB
',),,7' Benchmark

Vector Database Benchmark

Note that all testing was completed in July 2023, except for the times already noted.

Search Performance Test (10M Dataset, 768 Dim) A

Qps (more is better)

PgVectors-20c_250g 001 | 1068

Milvus-20c_250g 002 [106

Recall (more is better)

Mitvus-20c_250g_002 |, 0.9842
Pgvectors-20c_250g 001 | 0. 344

Serial_latency_p99 (less is better)

Mitvus-20c_250g 002 | 15.8ms
PgVectors-20c_250g 001 |, 20ms

Basandonos en nuestra validacion del rendimiento de Milvus y PostgreSQL utilizando VectorDBBench,
observamos lo siguiente:

 Tipo de indice: HNSW

« Conjunto de datos: Cohere con 10 millones de vectores en 768 dimensiones

Descubrimos que pgvecto.rs logré una tasa de consultas por segundo (QPS) de 1068 con un recall de 0,6344,
mientras que Milvus logré una tasa de QPS de 106 con un recall de 0,9842.

Si la alta precision en sus consultas es una prioridad, Milvus supera a pgvecto.rs ya que recupera una mayor
proporcion de elementos relevantes por consulta. Sin embargo, si el numero de consultas por segundo es un
factor mas crucial, pgvecto.rs supera a Milvus. Es importante sefalar, sin embargo, que la calidad de los datos
recuperados a través de pgvecto.rs es menor, y alrededor del 37 % de los resultados de busqueda son
elementos irrelevantes.

Observacion basada en nuestras validaciones de desempefio:

Con base en nuestras validaciones de desempefio, hemos realizado las siguientes observaciones:

44

En Milvus, el perfil de E/S se parece mucho a una carga de trabajo OLTP, como la que se observa con Oracle
SLOB. El benchmark consta de tres fases: ingestion de datos, post-optimizacion y consulta. Las etapas
iniciales se caracterizan principalmente por operaciones de escritura de 64 KB, mientras que la fase de
consulta implica predominantemente lecturas de 8 KB. Esperamos que ONTAP gestione la carga de E/S de
Milvus de manera competente.

El perfil de E/S de PostgreSQL no presenta una carga de trabajo de almacenamiento desafiante. Dada la
implementacion en memoria actualmente en curso, no observamos ninguna E/S de disco durante la fase de
consulta.

DiskANN surge como una tecnologia crucial para la diferenciacion del almacenamiento. Permite el
escalamiento eficiente de la busqueda en bases de datos vectoriales mas alla del limite de la memoria del
sistema. Sin embargo, es poco probable que se establezca una diferenciacion en el rendimiento del
almacenamiento con indices de bases de datos vectoriales en memoria como HNSW.

También vale la pena sefalar que el almacenamiento no juega un papel critico durante la fase de consulta
cuando el tipo de indice es HSNW, que es la fase operativa mas importante para las bases de datos
vectoriales que admiten aplicaciones RAG. La implicacion aqui es que el rendimiento del almacenamiento no
afecta significativamente el rendimiento general de estas aplicaciones.

Base de datos vectorial con Instaclustr usando
PostgreSQL: pgvector

En esta seccion se analizan los detalles de como el producto instaclustr se integra con la
funcionalidad pgvector de PostgreSQL en la solucién de base de datos vectorial para
NetApp.

Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector

En esta secciodn, profundizamos en los detalles de como el producto instaclustr se integra con postgreSQL en
la funcionalidad pgvector. Tenemos un ejemplo de "Cémo mejorar la precision y el rendimiento de su LLM con

PGVector y PostgreSQL.: Introduccion a las incrustaciones y el papel de PGVector". Por favor revise el"blog"
Para obtener mas informacion.

Casos de uso de bases de datos vectoriales

Esta seccion proporciona una descripcion general de los casos de uso de la solucion de
base de datos vectorial de NetApp .

Casos de uso de bases de datos vectoriales

En esta seccién, analizamos dos casos de uso, como la recuperacion de generacion aumentada con modelos
de lenguaje grandes y el chatbot de Tl de NetApp .

Generacion aumentada de recuperacion (RAG) con modelos de lenguaje grandes (LLM)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the
accuracy and reliability of Large Language Models, or LLMs, by augmenting
prompts with facts fetched from external sources. In a traditional RAG
deployment, vector embeddings are generated from an existing dataset and
then stored in a vector database, often referred to as a knowledgebase.
Whenever a user submits a prompt to the LLM, a vector embedding
representation of the prompt is generated, and the vector database is
searched using that embedding as the search query. This search operation
returns similar vectors from the knowledgebase, which are then fed to the
LIM as context alongside the original user prompt. In this way, an LLM can
be augmented with additional information that was not part of its original
training dataset.

El operador NVIDIA Enterprise RAG LLM es una herramienta util para implementar RAG en la empresa. Este
operador se puede utilizar para implementar un pipeline RAG completo. La tuberia RAG se puede
personalizar para utilizar Milvus o pgvecto como base de datos vectorial para almacenar incrustaciones de la
base de conocimientos. Consulte la documentacion para obtener mas detalles.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA
Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog
post for more information and to see a demo. Figure 1 provides an overview
of this architecture.

Figura 1) RAG empresarial impulsado por NVIDIA NeMo Microservices y NetApp

Existing data sources
(¢ ® N
WinkA Enterprine RAG

Kb naiog
O Amazon F3s for NolApp DNTAP

Any Kubarpolod - clawd oF an-gramiies

RaotAgy Intelligen) Data Storage
Al-fegh appllances; nalive clowd arvicos

Enterprise data protection and govemanos

fram NetApp

On-prem and/or eloud Datacenter

dws

o=

On-prem andfor cloud

Caso de uso del chatbot de Tl de NetApp

El chatbot de NetApp sirve como otro caso de uso en tiempo real para la base de datos vectorial. En este
caso, NetApp Private OpenAl Sandbox proporciona una plataforma eficaz, segura y eficiente para gestionar
las consultas de los usuarios internos de NetApp. Al incorporar estrictos protocolos de seguridad, sistemas
eficientes de gestion de datos y sofisticadas capacidades de procesamiento de IA, garantiza respuestas
precisas y de alta calidad a los usuarios en funcion de sus roles y responsabilidades en la organizacion a
través de la autenticacion SSO. Esta arquitectura resalta el potencial de fusionar tecnologias avanzadas para

46

crear sistemas inteligentes centrados en el usuario.

L E Q
User Azure OpenAl
Base Model
VPN 550
Filtering
File Upload
.- .
= e Client-side File
- — B¢ Cx @ S~
T Weaviate
Proxy - Server Web-App React Engine 53 Storage Vecto:' DB

File

w

_____ -

Server-side
M

a_ Ceee 8 J g
) Mongo DB
o
Redis n MariaDB @
ode—(E O
©
Chat History Rabbitmq Ingestion Azure OpenAl

Embedding Model

El caso de uso se puede dividir en cuatro secciones principales.

Autenticacion y verificacion de usuarios:
 Las consultas de usuario primero pasan por el proceso de inicio de sesion unico (SSO) de NetApp para
confirmar la identidad del usuario.

» Después de una autenticacion exitosa, el sistema verifica la conexiéon VPN para garantizar una
transmision de datos segura.

Transmisién y procesamiento de datos:

* Una vez validada la VPN, los datos se envian a MariaDB a través de las aplicaciones web NetAlChat o
NetAlCreate. MariaDB es un sistema de base de datos rapido y eficiente utilizado para administrar y
almacenar datos de usuarios.

* Luego, MariaDB envia la informacion a la instancia de Azure de NetApp , que conecta los datos del
usuario con la unidad de procesamiento de IA.

Interacciéon con OpenAl y filtrado de contenido:

 Lainstancia de Azure envia las preguntas del usuario a un sistema de filtrado de contenido. Este sistema
limpia la consulta y la prepara para su procesamiento.

* Luego, la entrada limpiada se envia al modelo base de Azure OpenAl, que genera una respuesta basada
en la entrada.

Generacion y moderacion de respuestas:

* Primero se verifica la respuesta del modelo base para garantizar que sea precisa y cumpla con los
estandares de contenido.

» Después de pasar la verificacion, la respuesta se envia de vuelta al usuario. Este proceso garantiza que el

47

usuario reciba una respuesta clara, precisa y adecuada a su consulta.

Conclusion

Esta seccion concluye la solucion de base de datos vectorial para NetApp.

Conclusion

En conclusion, este documento proporciona una descripcion general completa de la implementacion y la
administracion de bases de datos vectoriales, como Milvus y pgvector, en soluciones de almacenamiento de
NetApp . Analizamos las pautas de infraestructura para aprovechar el almacenamiento de objetos NetApp
ONTAP y StorageGRID y validamos la base de datos Milvus en AWS FSx ONTAP a través del
almacenamiento de archivos y objetos.

Exploramos la dualidad archivo-objeto de NetApp, demostrando su utilidad no s6lo para datos en bases de
datos vectoriales sino también para otras aplicaciones. También destacamos cémo SnapCenter, el producto
de gestion empresarial de NetApp, ofrece funcionalidades de backup, restauracion y clonacion para datos de
bases de datos vectoriales, garantizando la integridad y disponibilidad de los datos.

El documento también profundiza en cémo la solucion de nube hibrida de NetApp ofrece replicacion y
proteccion de datos en entornos locales y en la nube, brindando una experiencia de gestion de datos segura y
sin inconvenientes. Proporcionamos informacién sobre la validacion del rendimiento de bases de datos
vectoriales como Milvus y pgvecto en NetApp ONTAP, ofreciendo informacién valiosa sobre su eficiencia y
escalabilidad.

Finalmente, analizamos dos casos de uso de IA generativa: RAG con LLM y ChatAl interno de NetApp. Estos
ejemplos practicos subrayan las aplicaciones y los beneficios reales de los conceptos y practicas descritos en
este documento. En general, este documento sirve como una guia completa para cualquiera que busque
aprovechar las potentes soluciones de almacenamiento de NetApp para administrar bases de datos
vectoriales.

Expresiones de gratitud

El autor desea expresar su mas sincero agradecimiento a los siguientes colaboradores y a otras personas que
brindaron sus comentarios y sugerencias para que este documento sea valioso para los clientes y los campos
de NetApp .

1. Sathish Thyagarajan, ingeniero de marketing técnico, ONTAP Al & Analytics, NetApp
. Mike Oglesby, ingeniero de marketing técnico, NetApp
. AJ Mahajan, director sénior de NetApp
. Joe Scott, gerente de ingenieria de rendimiento de carga de trabajo, NetApp

. Puneet Dhawan, director sénior de gestion de productos Fsx, NetApp

o o0 A WODN

. Yuval Kalderon, gerente sénior de productos, equipo de productos FSx, NetApp

Doénde encontrar informacion adicional

Para obtener mas informacion sobre la informacion que se describe en este documento, revise los siguientes
documentos y/o sitios web:

* Documentacion de Milvus - https://milvus.io/docs/overview.md

* Documentacion independiente de Milvus: https://milvus.io/docs/v2.0.x/install_standalone-docker.md

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

* Documentacion de productos de NetApphttps://www.netapp.com/support-and-training/documentation/[]

« instaclustr -"documentacion de installclustr”

Historial de versiones

Version Fecha Historial de versiones del
documento
Version 1.0 abril de 2024 Lanzamiento inicial

Apéndice A: Valores.yaml

Esta seccion proporciona un codigo YAML de muestra para los valores utilizados en la
solucion de base de datos vectorial de NetApp .

Apéndice A: Valores.yaml

root@node2:~# cat values.yaml
Enable or disable Milvus Cluster mode
cluster:

enabled: true

image:
all:
repository: milvusdb/milvus
tag: v2.3.4
pullPolicy: IfNotPresent
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-
image-private-registry/
##
pullSecrets:
- myRegistryKeySecretName
tools:
repository: milvusdb/milvus-config-tool
tag: v0.1.2
pullPolicy: IfNotPresent

Global node selector
If set, this will apply to all milvus components
Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations
If set, this will apply to all milvus components

49

https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

50

Individual components can be set to a different tolerations
tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity
affinity: {}

Global labels and annotations

If set, this will apply to all milvus components
labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

+H H = H

Note: this config will be the top priority which will override the
config
in the image and helm chart.

extraConfigFiles:
user.yaml: |+

For example enable rest http for milvus proxy
Proxy:
http:
enabled: true
Enable tlsMode and set the tls cert and key
tls:
serverPemPath: /etc/milvus/certs/tls.crt
serverKeyPath: /etc/milvus/certs/tls.key
common :
security:
tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster
(LoadBalancer service).
or access it from within the cluster (ClusterIP service). Set the
service type and the port to serve it.
ref: http://kubernetes.io/docs/user—-guide/services/
#4
service:
type: ClusterIP
port: 19530
portName: milvus
nodePort: ""

annotations: {}

labels: {}

List of IP addresses at which the Milvus service is available

Ref: https://kubernetes.io/docs/user-guide/services/#external-ips
#4

externallIPs: []

- externallpl

LoadBalancerSourcesRange is a list of allowed CIDR values, which are
combined with ServicePort to

set allowed inbound rules on the security group assigned to the master
load balancer

loadBalancerSourceRanges:

- 0.0.0.0/0

Optionally assign a known public LB IP

loadBalancerIP: 1.2.3.4

ingress:
enabled: false
annotations:
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/backend-protocol: GRPC
nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]"'
nginx.ingress.kubernetes.io/proxy-body-size: 4m
nginx.ingress.kubernetes.io/ssl-redirect: "true"
labels: {}
rules:
- host: "milvus-example.local"
path: "/"
pathType: "Prefix"
- host: "milvus-example2.local"
path: "/otherpath"
pathType: "Prefix"

tls: T[]

- secretName: chart-example-tls

hosts:

- milvus-example.local
serviceAccount:

create: false
name:
annotations:
labels:

metrics:

51

enabled: true

serviceMonitor:

Set this to "true’ to create ServiceMonitor for Prometheus operator

enabled: false

interval: "30s"

scrapeTimeout: "10s"

Additional labels that can be used so ServiceMonitor will be
discovered by Prometheus

additionalLabels: {}

livenessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 30
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 10
timeoutSeconds: 5

successThreshold: 1
failureThreshold: 5
log:

level: "info"

file:
maxSize: 300 # MB
maxAge: 10 # day
maxBackups: 20

format: "text" # text/json

persistence:
mountPath: "/milvus/logs"

If true, create/use a Persistent Volume Claim
If false, use emptyDir
##
enabled: false
annotations:

helm.sh/resource-policy: keep
persistentVolumeClaim:

existingClaim: ""

Milvus Logs Persistent Volume Storage Class

If defined, storageClassName: <storageClass>

If set to "-", storageClassName: "", which disables dynamic
provisioning

If undefined (the default) or set to null, no storageClassName
spec is

#4 set, choosing the default provisioner.

ReadWriteMany access mode required for milvus cluster.

#4

storageClass: default

accessModes: ReadWriteMany

size: 10Gi

subPath: ""

Heaptrack traces all memory allocations and annotates these events with
stack traces.
See more: https://github.com/KDE/heaptrack
Enable heaptrack in production is not recommended.
heaptrack:
image:

repository: milvusdb/heaptrack

tag: v0.1.0

pullPolicy: IfNotPresent

standalone:

replicas: 1 # Run standalone mode with replication disabled
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:

enabled: false
disk:

enabled: true

size:

enabled: false # Enable local storage size limit

profiling:

enabled: false # Enable live profiling

Default message queue for milvus standalone
Supported value: rocksmg, natsmg, pulsar and kafka
messageQueue: rocksmg

persistence:

53

mountPath: "/var/lib/milvus"
If true, alertmanager will create/use a Persistent Volume Claim
If false, use emptyDir
#H
enabled: true
annotations:
helm.sh/resource-policy: keep
persistentVolumeClaim:
existingClaim: ""
Milvus Persistent Volume Storage Class
If defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic
provisioning

If undefined (the default) or set to null, no storageClassName

spec is
set, choosing the default provisioner.
##
storageClass:

accessModes: ReadWriteOnce
size: 50Gi
subPath: ""

Proxy:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
http:
enabled: true # whether to enable http rest server
debugMode:
enabled: false
Mount a TLS secret into proxy pod
tls:
enabled: false
when enabling proxy.tls, all items below should be uncommented and the
key and crt values should be populated.
enabled: true

#

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base6d -w 0)
and $(cat tls.key | base64 -w 0)

H H= H H H= H H H= FH

key: LSOtLS1CRUdJJTiBQU--REDUCT
crt: LSOtLSICRUAJTiBDR--REDUCT
volumes:
— secret:
secretName: milvus-tls
name: milvus-tls
volumeMounts:
- mountPath: /etc/milvus/certs/
name: milvus-tls

rootCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Root Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

service:
port: 53100
annotations: {}
labels: {}
clusterIP: ""

queryCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Query Coordinator mode with replication disabled
resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

55

56

extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

service:
port: 19531
annotations: {}
labels: {}
clusterIP: ""

queryNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
disk:
enabled: true # Enable querynode load disk index, and search on disk
index
size:
enabled: false # Enable local storage size limit
profiling:
enabled: false # Enable live profiling

indexCoordinator:
enabled: true
You can set the number of replicas greater than 1, only if enable
active standby
replicas: 1 # Run Index Coordinator mode with replication disabled
resources: {}
nodeSelector: {}

affinity: {}

tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

service:
port: 31000
annotations: {}
labels: {}
clusterIP: ""
indexNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
disk:
enabled: true # Enable index node build disk vector index
size:
enabled: false # Enable local storage size limit

dataCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Data Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

57

affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

service:
port: 13333
annotations: {}
labels: {}
clusterIP: ""

dataNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling

mixCoordinator contains all coord
If you want to use mixcoord, enable this and disable all of other
coords
mixCoordinator:

enabled: false

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Mixture Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

58

heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

service:
annotations: {}
labels: {}
clusterIP: ""

attu:

enabled: false

name: attu

image:
repository: zilliz/attu
tag: v2.2.8
pullPolicy: IfNotPresent

service:

annotations: {}

labels: {}
type: ClusterIP
port: 3000

loadBalancerIP: ""
resources: {}
podLabels: {}
ingress:
enabled: false
annotations: {}
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
labels: {}
hosts:
- milvus-attu.local

tls: []

- secretName: chart-attu-tls
hosts:

- milvus-attu.local

Configuration values for the minio dependency
ref: https://github.com/minio/charts/blob/master/README .md
ki

59

60

minio:
enabled: false
name: minio
mode: distributed
image:
tag: "RELEASE.2023-03-20T20-16-187"
pullPolicy: IfNotPresent
accessKey: minioadmin
secretKey: minioadmin
existingSecret: ""
bucketName: "milvus-bucket"
rootPath: file
useIAM: false
iamEndpoint: ""
region: ""
useVirtualHost: false
podDisruptionBudget:
enabled: false
resources:
requests:
memory: 2Gi

gcsgateway:
enabled: false
replicas: 1
gcsKeyJson: "/etc/credentials/gcs_ key.json"
projectId: ""

service:
type: ClusterIP
port: 9000

persistence:
enabled: true
existingClaim: ""
storageClass:
accessMode: ReadWriteOnce
size: 500Gi

livenessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 1
successThreshold: 1
failureThreshold: 5

startupProbe:
enabled: true
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 60

Configuration values for the etcd dependency
ref: https://artifacthub.io/packages/helm/bitnami/etcd
##

etcd:

enabled: true

name: etcd

replicaCount: 3

pdb:
create: false

image:
repository: "milvusdb/etcd"
tag: "3.5.5-r2"
pullPolicy: IfNotPresent

service:
type: ClusterIP
port: 2379
peerPort: 2380

auth:
rbac:
enabled: false

persistence:
enabled: true
storageClass: default
accessMode: ReadWriteOnce
size: 10Gi

61

62

Change default timeout periods to mitigate zoobie probe process

livenessProbe:
enabled: true
timeoutSeconds: 10

readinessProbe:
enabled: true
periodSeconds: 20
timeoutSeconds: 10

Enable auto compaction

compaction by every 1000 revision
##

autoCompactionMode: revision
autoCompactionRetention: "1000"

Increase default quota to 4G

#H

extraknvVars:

- name: ETCD QUOTA BACKEND BYTES
value: "4294967296"

- name: ETCD HEARTBEAT INTERVAL
value: "500"

- name: ETCD ELECTION TIMEOUT
value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

pulsar:

enabled: true

name: pulsar

fullnameOverride: ""
persistence: true

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes,

message in pulsar.

rbac:
enabled: false
psp: false
limit to namespace: true

affinity:

Maximum size of each

anti affinity: false
enableAntiAffinity: no

components:
zookeeper: true
bookkeeper: true
bookkeeper - autorecovery
autorecovery: true
broker: true
functions: false
proxy: true
toolset: false
pulsar manager: false

monitoring:
prometheus: false
grafana: false
node exporter: false
alert manager: false

images:

broker:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

autorecovery:
repository: apachepulsar/pulsar
tag: 2.8.2
pullPolicy: IfNotPresent

zookeeper:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

bookie:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pProxy:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pulsar manager:
repository: apachepulsar/pulsar-manager
pullPolicy: IfNotPresent
tag: v0.1.0

63

zookeeper:
volumes:
persistence: true
data:
name: data
size: 20Gi #SSD Required
storageClassName: default
resources:
requests:
memory: 1024Mi
cpu: 0.3
configData:
PULSAR MEM: >
-Xms1024m
-Xmx1024m
PULSAR GC: >

-Dcom. sun.management . jmxremote

-Djute.maxbuffer=10485760

—-XX:+ParallelRefProcEnabled
-XX:+UnlockExperimentalVMOptions

—-XX:+DoEscapeAnalysis
-XX:+DisableExplicitGC
-XX:+PerfDisableSharedMem
-Dzookeeper.forceSync=no
pdb:
usePolicy: false

bookkeeper:
replicaCount: 3
volumes:
persistence: true
journal:
name: journal
size: 100Gi
storageClassName: default
ledgers:
name: ledgers
size: 200Gi
storageClassName: default
resources:
requests:
memory: 2048Mi
cpu: 1
configData:
PULSAR MEM: >

64

-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m

PULSAR GC: >
-Dio.netty.leakDetectionlLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:4UseGlGC -XX:MaxGCPauseMillis=10

-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+Exi1itOnOutOfMemoryError
-XX:+PerfDisableSharedMem
-XX:+PrintGCDetails

nettyMaxFrameSizeBytes: "104867840"

pdb:
usePolicy: false

broker:
component: broker
podMonitor:
enabled: false
replicaCount: 1
resources:
requests:
memory: 4096Mi
cpu: 1.5
configData:

PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m

PULSAR GC: >

-Dio.netty.leakDetectionlLevel=disabled

-Dio.netty.recycler.linkCapacity=1024

-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC

-XX:-ResizePLAB

-XX:+ExitOnOutOfMemoryError
maxMessageSize: "104857600"
defaultRetentionTimeInMinutes: "10080"
defaultRetentionSizeInMB: "-1"
backlogQuotaDefaultLimitGB: "8"
ttlDurationDefaultInSeconds: "259200"
subscriptionExpirationTimeMinutes: "3"
backlogQuotaDefaultRetentionPolicy: producer exception

pdb:

usePolicy: false

autorecovery:

resources:

requests:
memory: 512Mi

cpu: 1

proxy:
replicaCount: 1
podMonitor:
enabled: false
resources:
requests:
memory: 2048Mi
cpu: 1
service:
type: ClusterIP
ports:
pulsar: 6650
configData:
PULSAR MEM: >
-Xms2048m -Xmx2048m
PULSAR GC: >
-XX:MaxDirectMemorySize=2048m
httpNumThreads: "100"
pdb:
usePolicy: false

pulsar manager:
service:

type: ClusterIP

pulsar metadata:
component: pulsar-init

image:

the image used for running “pulsar-cluster-initialize” job
repository: apachepulsar/pulsar
tag: 2.8.2

Configuration values for the kafka dependency
ref: https://artifacthub.io/packages/helm/bitnami/kafka
##

kafka:
enabled: false
name: kafka
replicaCount: 3
image:
repository: bitnami/kafka
tag: 3.1.0-debian-10-r52
Increase graceful termination for kafka graceful shutdown
terminationGracePeriodSeconds: "90"
pdb:
create: false

Enable startup probe to prevent pod restart during recovering
startupProbe:
enabled: true

Kafka Java Heap size

heapOpts: "-Xmx4096m -Xms4096m"

maxMessageBytes: 10485760

defaultReplicationFactor: 3

offsetsTopicReplicationFactor: 3

Only enable time based log retention

logRetentionHours: 168

logRetentionBytes: -1

extrakEnvVars:

- name: KAFKA CFG_MAX PARTITION FETCH BYTES
value: "5242880"

- name: KAFKA CFG_MAX REQUEST SIZE
value: "5242880"

- name: KAFKA CFG REPLICA FETCH MAX BYTES
value: "10485760"

- name: KAFKA CFG_FETCH MESSAGE MAX BYTES
value: "5242880"

- name: KAFKA CFG LOG ROLL HOURS
value: "24"

persistence:

67

68

enabled: true
storageClass:

accessMode: ReadWriteOnce
size: 300Gi

metrics:
Prometheus Kafka exporter: exposes complimentary metrics to JMX
exporter
kafka:
enabled: false
image:
repository: bitnami/kafka-exporter
tag: 1.4.2-debian-10-rl182

Prometheus JMX exporter: exposes the majority of Kafkas metrics
Jjmx:
enabled: false
image:
repository: bitnami/jmx-exporter
tag: 0.16.1-debian-10-r245

To enable serviceMonitor, you must enable either kafka exporter or
jmx exporter.
And you can enable them both
serviceMonitor:
enabled: false

service:
type: ClusterIP
ports:
client: 9092

zookeeper:
enabled: true
replicaCount: 3

FHAH A
External S3
- these configs are only used when “externalS3.enabled’ is true
FHAH A
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "7Zd28p43rgzaU44PX ftT279z9nt4jBSro97j87Bx"

useSSL: false

bucketName: "milvusdbvoll"
rootPath: ""

useIAM: false
cloudProvider: "aws"
iamEndpoint: ™"

region: ""
useVirtualHost: false

FHEHHHHH AR A AR A A AR S A
GCS Gateway
- these configs are only used when "minio.gcsgateway.enabled™ is true
FHEHHHH AR AR A AR A AR A AR AR AR
externalGces:
bucketName: ""

FHHHHHFHAHEH AR E SRS
External etcd
- these configs are only used when “externalEtcd.enabled” is true
FHHHHHFHAHAH AR AR
externalEtcd:

enabled: false

the endpoints of the external etcd

##

endpoints:

- localhost:2379

FHAFH A H A AR
External pulsar
- these configs are only used when “externalPulsar.enabled’ is true
FHARH A H AR
externalPulsar:

enabled: false

host: localhost

port: 6650

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each
message in pulsar.

tenant: public

namespace: default

authPlugin: ™"

authParams: ""

IR SRR R R R &R &L AL
External kafka
- these configs are only used when “externalKafka.enabled® is true

igdddssasiaasdsaadiaasdaaadiaad it

69

externalKafka:
enabled: false
brokerList: localhost:9092
securityProtocol: SASL SSL
sasl:
mechanisms: PLAIN
username: ""
password: ""

root@node2: ~#

Apéndice B: prepare_data_netapp_new.py

Esta seccion proporciona un ejemplo de script de Python utilizado para preparar datos
para la base de datos vectorial.

Apéndice B: prepare_data_netapp_new.py

70

root@node2:~# cat prepare data netapp new.py

hello milvus.py demonstrates the basic operations of PyMilvus, a Python
SDK of Milvus.

connect to Milvus

create collection

insert data

create index

search, query, and hybrid search on entities

delete entities by PK

7. drop collection

S e S S o S o
o U W N R

import time

import os

import numpy as np
from pymilvus import (

connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

#num entities, dim = 3000, 8
num entities, dim = 3000, 16

C R o o o i
FHEHHEH

1. connect to Milvus

Add a new connection alias "default® for Milvus server in
"localhost:19530°

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as "localhost:19530°, you can omit
all

parameters and call the method as: “connections.connect ()
#

Note: the “using’ parameter of the following methods is default to
"default".

print (fmt.format ("start connecting to Milvus"))

N

host = os.environ.get ('MILVUS HOST')
if host == None:

host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

has = utility.has_collection("hello milvus ntapnew update2 sc")
print (f"Does collection hello milvus ntapnew update2 sc exist in Milvus:
{has}")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc"))
utility.drop collection("hello milvus ntapnew update2 sc'")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc2"))
utility.drop_collection("hello milvus ntapnew update2 sc2")

HHEHHHHF A A A H A AR A AR AR AR A H AR AR AR
FHAHHHE

2. create collection

We're going to create a collection with 3 fields.

-t Fom - Fom

| | field name | field type | other attributes | field description

=
+

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1] "pk" | Int64 | 1is primary=True | "primary field"

| auto id=False |

H — H= — =H*

| 2] "random" | Double | "a double field"

71

72

|3|"embeddings" | FloatVector]| dim=8 "float vector with dim

fields = [
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=False),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema = CollectionSchema (fields, "hello milvus ntapnew update2 sc")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc "))
hello milvus ntapnew update2 sc = Collection
"hello milvus ntapnew update2 sc", schema, consistency level="Strong")

id s s Exa LA E R A AR A ERA SRR R R R R R R AR RS EE AL
#HAHHH

3. insert data

We are going to insert 3000 rows of data into

"hello milvus ntapnew update2 sc®

Data to be inserted must be organized in fields.

#

The insert () method returns:

- either automatically generated primary keys by Milvus if auto id=True
in the schema;

- or the existing primary key field from the entities if auto id=False
in the schema.

print (fmt.format ("Start inserting entities"))
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result = hello milvus ntapnew update2 sc.insert(entities)

hello milvus ntapnew update2 sc.flush()
print (f"Number of entities in hello milvus ntapnew updateZ sc:

{hello milvus ntapnew update2 sc.num entities}") # check the num entites

create another collection
fields2 = |
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=True),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema2 = CollectionSchema (fields2, "hello milvus ntapnew update2 sc2")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc2 "))
hello milvus ntapnew update2 sc2 = Collection
"hello milvus ntapnew updateZ sc2", schemaZ2, consistency level="Strong")

entities2 = |
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result2 = hello milvus ntapnew update2 sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()
insert result2 = hello milvus ntapnew updateZ sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()

index params = {"index type": "IVF FLAT", "params": {"nlist": 128},
"metric type": "L2"}

hello milvus ntapnew update2 sc.create index("embeddings", index params)
#

hello milvus ntapnew update2 sc2.create index(field name="var", index name=

"scalar index")

index params2 = {"index type": "Trie"}

hello milvus ntapnew update2 sc2.create index("var", index params2)

print (f"Number of entities in hello milvus ntapnew update2 sc2:
{hello milvus ntapnew update2 sc2.num entities}") # check the num entites

root@node2:~#

73

Apéndice C: verify _data_netapp.py

Esta seccion contiene un script de Python de muestra que se puede utilizar para validar
la base de datos vectorial en la solucion de base de datos vectorial de NetApp .

Apéndice C: verify_data_netapp.py

root@node2:~# cat verify data netapp.py
import time
import os
import numpy as np
from pymilvus import (
connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

num entities, dim = 3000, 16
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

xS EEE
iR L&
1. get recovered collection hello milvus ntapnew update2 sc
print (fmt.format ("start connecting to Milwvus"))
host = os.environ.get ('MILVUS HOST')
if host == None:
host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

recover collections = ["hello milvus ntapnew update2 sc",

"hello milvus ntapnew updateZ sc2"]

for recover collection name in recover collections:

has = utility.has_collection(recover collection name)

74

print (f"Does collection {recover collection name} exist in Milvus:
{has}")

recover collection = Collection(recover collection name)

print (recover collection.schema)

recover collection.flush/()

print (f"Number of entities in Milvus: {recover collection name}
{recover collection.num entities}") # check the num entites

it EddaEasaEdsEdd s AR AR AR AR AR AR R AR AR SR AE AL
#HA#HH

4. create index

We are going to create an IVF FLAT index for
hello milvus ntapnew update2 sc collection.

create index() can only be applied to "FloatVector and
"BinaryVector fields.

print (fmt.format ("Start Creating index IVEF FLAT"))

index = {
"index type": "IVEF FLAT",
"metric type": "L2",

"params": {"nlist": 128},

recover collection.create index ("embeddings", index)

C i o o o o
#HEHAES

=+

5. search, query, and hybrid search
After data were inserted into Milvus and indexed, you can perform:
- search based on vector similarity

#

#

- query based on scalar filtering(boolean, int, etc.)

- hybrid search based on vector similarity and scalar filtering.
#

Before conducting a search or a query, you need to load the data in
"hello milvus into memory.

print (fmt.format ("Start loading"))

recover collection.load()

search based on vector similarity
print (fmt.format ("Start searching based on vector similarity"))

75

vectors to search = entities[-1][-2:]

search params = ({
"metric type": "L2",
"params": {"nprobe": 10},
}
start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, limit=3, output fields=["random"])
end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format(end time - start time))

query based on scalar filtering (boolean, int, etc.)
print (fmt.format ("Start gquerying with “random > 0.5 "))

start time = time.time ()

result = recover collection.query(expr="random > 0.5", output fields=
["random", "embeddings"])

end time = time.time ()

print (f"query result:\n-{result[0]}")
print (search latency fmt.format(end time - start time))

hybrid search
print (fmt.format ("Start hybrid searching with “random > 0.5°"))

start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, 1limit=3, expr="random > 0.5", output fields=["random"])

end time = time.time ()

for hits in result:
for hit in hits:

print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format (end time - start time))

FH A A R S
#HHH#

7. drop collection

Finally, drop the hello milvus, hello milvus ntapnew update2 sc

collection

#print (fmt.format (£f"Drop collection {recover collection name}"))

#utility.drop collection (recover collection name)

root@node2:~#

Apéndice D: docker-compose.yml

Esta seccion incluye codigo YAML de muestra para la solucion de base de datos
vectorial para NetApp.

Apéndice D: docker-compose.yml

version: '3.5'

services:
etcd:
container name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD_AUTO COMPACTION MODE=revision
= ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA BACKEND BYTES=4294967296
- ETCD SNAPSHOT COUNT=50000
volumes:
- /home/ubuntu/milvusvectordb/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen
-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s
retries: 3

minio:
container name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-187%
environment:
MINIO ACCESS KEY: miniocadmin

MINIO SECRET KEY: minioadmin
ports:
- "9001:9001"
- "9000:9000"
volumes:
- /home/ubuntu/milvusvectordb/volumes/minio:/minio data

command: minio server /minio data --console-address ":9001"
healthcheck:
test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s

retries: 3

standalone:
container name: milvus-standalone
image: milvusdb/milvus:v2.4.0-rc.1
command: ["milvus", "run", "standalone"]
security opt:
- seccomp:unconfined
environment:
ETCD ENDPOINTS: etcd:2379
MINIO ADDRESS: minio:9000
volumes:
- /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends on:
- "etcd"

- "minio"
networks:

default:

name: milwvus

78

Informacién de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

79

http://www.netapp.com/TM

	Solución de base de datos vectorial con NetApp : NetApp artificial intelligence solutions
	Tabla de contenidos
	Solución de base de datos vectorial con NetApp
	Solución de base de datos vectorial con NetApp
	Introducción
	Introducción

	Descripción general de la solución
	Descripción general de la solución

	Base de datos de vectores
	Base de datos de vectores

	Requisito de tecnología
	Requisito de tecnología
	Requisitos de hardware
	Requisitos de software

	Procedimiento de implementación
	Procedimiento de despliegue

	Verificación de la solución
	Descripción general de la solución
	Configuración de un clúster Milvus con Kubernetes en instalaciones locales
	Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos
	Protección de bases de datos vectoriales mediante SnapCenter
	Recuperación ante desastres mediante NetApp SnapMirror
	Validación del rendimiento de la base de datos vectorial

	Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector
	Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector

	Casos de uso de bases de datos vectoriales
	Casos de uso de bases de datos vectoriales

	Conclusión
	Conclusión

	Apéndice A: Valores.yaml
	Apéndice A: Valores.yaml

	Apéndice B: prepare_data_netapp_new.py
	Apéndice B: prepare_data_netapp_new.py

	Apéndice C: verify_data_netapp.py
	Apéndice C: verify_data_netapp.py

	Apéndice D: docker-compose.yml
	Apéndice D: docker-compose.yml

