
Solución de base de datos vectorial con
NetApp
NetApp artificial intelligence solutions
NetApp
December 04, 2025

This PDF was generated from https://docs.netapp.com/es-es/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on December 04, 2025. Always check docs.netapp.com for the latest.

Tabla de contenidos

Solución de base de datos vectorial con NetApp. 1

Solución de base de datos vectorial con NetApp. 1

Introducción . 2

Introducción . 2

Descripción general de la solución . 2

Descripción general de la solución . 3

Base de datos de vectores. 3

Base de datos de vectores. 3

Requisito de tecnología . 7

Requisito de tecnología . 7

Requisitos de hardware . 7

Requisitos de software. 7

Procedimiento de implementación . 8

Procedimiento de despliegue. 8

Verificación de la solución . 9

Descripción general de la solución . 9

Configuración de un clúster Milvus con Kubernetes en instalaciones locales. 10

Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos 17

Protección de bases de datos vectoriales mediante SnapCenter . 24

Recuperación ante desastres mediante NetApp SnapMirror. 35

Validación del rendimiento de la base de datos vectorial . 37

Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector . 45

Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector . 45

Casos de uso de bases de datos vectoriales. 45

Casos de uso de bases de datos vectoriales . 45

Conclusión . 48

Conclusión . 48

Apéndice A: Valores.yaml. 49

Apéndice A: Valores.yaml . 49

Apéndice B: prepare_data_netapp_new.py . 70

Apéndice B: prepare_data_netapp_new.py . 70

Apéndice C: verify_data_netapp.py . 74

Apéndice C: verify_data_netapp.py . 74

Apéndice D: docker-compose.yml . 77

Apéndice D: docker-compose.yml . 77

Solución de base de datos vectorial con NetApp

Solución de base de datos vectorial con NetApp

Karthikeyan Nagalingam y Rodrigo Nascimento, NetApp

Este documento proporciona una exploración exhaustiva de la implementación y la
gestión de bases de datos vectoriales, como Milvus y pgvecto, una extensión
PostgreSQL de código abierto, utilizando las soluciones de almacenamiento de NetApp.
Se detallan las pautas de infraestructura para el uso de NetApp ONTAP y el
almacenamiento de objetos StorageGRID y se valida la aplicación de la base de datos
Milvus en AWS FSx ONTAP. El documento explica la dualidad archivo-objeto de NetApp
y su utilidad para bases de datos vectoriales y aplicaciones que admiten incrustaciones
vectoriales. Se destacan las capacidades de SnapCenter, el producto de gestión
empresarial de NetApp, al ofrecer funcionalidades de backup y restauración para bases
de datos vectoriales, garantizando la integridad y disponibilidad de los datos. El
documento profundiza más en la solución de nube híbrida de NetApp y analiza su papel
en la replicación y protección de datos en entornos locales y en la nube. Incluye
información sobre la validación del rendimiento de las bases de datos vectoriales en
NetApp ONTAP y concluye con dos casos de uso prácticos sobre IA generativa: RAG
con LLM y ChatAI interno de NetApp. Este documento sirve como una guía completa
para aprovechar las soluciones de almacenamiento de NetApp para administrar bases
de datos vectoriales.

La arquitectura de referencia se centra en lo siguiente:

1. "Introducción"

2. "Descripción general de la solución"

3. "Base de datos de vectores"

4. "Requisito de tecnología"

5. "Procedimiento de implementación"

6. "Descripción general de la verificación de la solución"

◦ "Configuración de un clúster Milvus con Kubernetes en instalaciones locales"

◦ Enlace: base de datos vectorial Milvus con Amazon FSx ONTAP para NetApp ONTAP[Milvus con
Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos]

◦ "Protección de bases de datos vectoriales mediante NetApp SnapCenter."

◦ "Recuperación ante desastres mediante NetApp SnapMirror"

◦ "Validación del rendimiento"

7. "Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector"

8. "Casos de uso de bases de datos vectoriales"

9. "Conclusión"

10. "Apéndice A: values.yaml"

1

11. "Apéndice B: prepare_data_netapp_new.py"

12. "Apéndice C: verify_data_netapp.py"

13. "Apéndice D: docker-compose.yml"

Introducción

Esta sección proporciona una introducción a la solución de base de datos vectorial para
NetApp.

Introducción

Las bases de datos vectoriales abordan de manera efectiva los desafíos que están diseñados para manejar
las complejidades de la búsqueda semántica en modelos de lenguaje grandes (LLM) y en inteligencia artificial
generativa (IA). A diferencia de los sistemas de gestión de datos tradicionales, las bases de datos vectoriales
son capaces de procesar y buscar en varios tipos de datos, incluidas imágenes, vídeos, texto, audio y otras
formas de datos no estructurados, utilizando el contenido de los datos en sí en lugar de etiquetas o rótulos.

Las limitaciones de los sistemas de gestión de bases de datos relacionales (RDBMS) están bien
documentadas, en particular sus dificultades con las representaciones de datos de alta dimensión y los datos
no estructurados comunes en las aplicaciones de IA. Los RDBMS a menudo requieren un proceso lento y
propenso a errores para aplanar los datos y convertirlos en estructuras más manejables, lo que genera
demoras e ineficiencias en las búsquedas. Sin embargo, las bases de datos vectoriales están diseñadas para
sortear estos problemas, ofreciendo una solución más eficiente y precisa para gestionar y buscar datos
complejos y de alta dimensión, facilitando así el avance de las aplicaciones de IA.

Este documento sirve como una guía completa para los clientes que actualmente utilizan o planean utilizar
bases de datos vectoriales y detalla las mejores prácticas para utilizar bases de datos vectoriales en
plataformas como NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP para NetApp ONTAP y
SnapCenter. El contenido proporcionado aquí cubre una variedad de temas:

• Pautas de infraestructura para bases de datos vectoriales, como Milvus, proporcionadas por el
almacenamiento de NetApp a través de NetApp ONTAP y el almacenamiento de objetos StorageGRID .

• Validación de la base de datos Milvus en AWS FSx ONTAP a través del almacén de archivos y objetos.

• Profundiza en la dualidad archivo-objeto de NetApp, demostrando su utilidad para datos en bases de
datos vectoriales y otras aplicaciones.

• Cómo el producto de gestión de protección de datos de NetApp, SnapCenter, ofrece funcionalidades de
respaldo y restauración para datos de bases de datos vectoriales.

• Cómo la nube híbrida de NetApp ofrece replicación y protección de datos en entornos locales y en la
nube.

• Proporciona información sobre la validación del rendimiento de bases de datos vectoriales como Milvus y
pgvector en NetApp ONTAP.

• Dos casos de uso específicos: Retrieval Augmented Generation (RAG) con Large Language Models (LLM)
y ChatAI del equipo de TI de NetApp , que ofrecen ejemplos prácticos de los conceptos y prácticas
descritos.

Descripción general de la solución

Esta sección proporciona una descripción general de la solución de base de datos

2

vectorial de NetApp .

Descripción general de la solución

Esta solución muestra los beneficios y capacidades distintivos que NetApp ofrece para abordar los desafíos
que enfrentan los clientes de bases de datos vectoriales. Al aprovechar NetApp ONTAP, StorageGRID, las
soluciones en nube de NetApp y SnapCenter, los clientes pueden agregar valor significativo a sus operaciones
comerciales. Estas herramientas no sólo abordan problemas existentes, sino que también mejoran la
eficiencia y la productividad, contribuyendo así al crecimiento general del negocio.

¿Por qué NetApp?

• Las ofertas de NetApp, como ONTAP y StorageGRID, permiten la separación del almacenamiento y el
cómputo, lo que posibilita una utilización óptima de los recursos según requisitos específicos. Esta
flexibilidad permite a los clientes escalar de forma independiente su almacenamiento utilizando soluciones
de almacenamiento de NetApp .

• Al aprovechar los controladores de almacenamiento de NetApp, los clientes pueden servir datos de
manera eficiente a su base de datos vectorial utilizando los protocolos NFS y S3. Estos protocolos facilitan
el almacenamiento de datos de clientes y administran el índice de la base de datos vectorial, eliminando la
necesidad de múltiples copias de datos a los que se accede a través de métodos de archivos y objetos.

• NetApp ONTAP proporciona soporte nativo para NAS y almacenamiento de objetos en los principales
proveedores de servicios de nube como AWS, Azure y Google Cloud. Esta amplia compatibilidad
garantiza una integración perfecta, lo que permite la movilidad de los datos del cliente, la accesibilidad
global, la recuperación ante desastres, la escalabilidad dinámica y el alto rendimiento.

• Con las sólidas capacidades de gestión de datos de NetApp, los clientes pueden tener la tranquilidad de
saber que sus datos están bien protegidos contra posibles riesgos y amenazas. NetApp prioriza la
seguridad de los datos, ofreciendo tranquilidad a los clientes con respecto a la seguridad e integridad de
su valiosa información.

Base de datos de vectores

Esta sección cubre la definición y el uso de una base de datos vectorial en las soluciones
de IA de NetApp .

Base de datos de vectores

Una base de datos vectorial es un tipo especializado de base de datos diseñada para manejar, indexar y
buscar datos no estructurados utilizando incrustaciones de modelos de aprendizaje automático. En lugar de
organizar los datos en un formato tabular tradicional, organiza los datos como vectores de alta dimensión,
también conocidos como incrustaciones vectoriales. Esta estructura única permite que la base de datos
maneje datos complejos y multidimensionales de manera más eficiente y precisa.

Una de las capacidades clave de una base de datos vectorial es el uso de IA generativa para realizar análisis.
Esto incluye búsquedas de similitud, donde la base de datos identifica puntos de datos que son similares a
una entrada dada, y detección de anomalías, donde puede detectar puntos de datos que se desvían
significativamente de la norma.

Además, las bases de datos vectoriales son adecuadas para manejar datos temporales o datos con marca de
tiempo. Este tipo de datos proporciona información sobre "qué" sucedió y cuándo sucedió, en secuencia y en
relación con todos los demás eventos dentro de un sistema de TI determinado. Esta capacidad de manejar y
analizar datos temporales hace que las bases de datos vectoriales sean particularmente útiles para

3

aplicaciones que requieren una comprensión de los eventos a lo largo del tiempo.

Ventajas de las bases de datos vectoriales para ML e IA:

• Búsqueda de alta dimensión: las bases de datos vectoriales se destacan en la gestión y recuperación de
datos de alta dimensión, que a menudo se generan en aplicaciones de IA y ML.

• Escalabilidad: Pueden escalar de manera eficiente para manejar grandes volúmenes de datos,
respaldando el crecimiento y la expansión de proyectos de IA y ML.

• Flexibilidad: Las bases de datos vectoriales ofrecen un alto grado de flexibilidad, lo que permite la
adaptación de diversos tipos y estructuras de datos.

• Rendimiento: Proporcionan gestión y recuperación de datos de alto rendimiento, fundamentales para la
velocidad y la eficiencia de las operaciones de IA y ML.

• Indexación personalizable: las bases de datos vectoriales ofrecen opciones de indexación personalizables,
lo que permite una organización y recuperación optimizadas de datos según necesidades específicas.

Bases de datos vectoriales y casos de uso.

Esta sección proporciona varias bases de datos vectoriales y detalles de sus casos de uso.

Faiss y ScaNN

Son bibliotecas que sirven como herramientas cruciales en el ámbito de la búsqueda vectorial. Estas
bibliotecas proporcionan una funcionalidad útil para la gestión y búsqueda de datos vectoriales, lo que las
convierte en recursos invaluables en esta área especializada de gestión de datos.

Elasticsearch

Es un motor de búsqueda y análisis ampliamente utilizado, que recientemente ha incorporado capacidades de
búsqueda vectorial. Esta nueva característica mejora su funcionalidad, permitiéndole manejar y buscar datos
vectoriales de manera más efectiva.

Piña

Es una base de datos vectorial robusta con un conjunto único de características. Admite vectores densos y
dispersos en su funcionalidad de indexación, lo que mejora su flexibilidad y adaptabilidad. Una de sus
principales fortalezas radica en su capacidad de combinar métodos de búsqueda tradicionales con la
búsqueda vectorial densa basada en IA, creando un enfoque de búsqueda híbrido que aprovecha lo mejor de
ambos mundos.

Pinecone, basado principalmente en la nube, está diseñado para aplicaciones de aprendizaje automático y se
integra bien con una variedad de plataformas, incluidas GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut
Plus, Elasticsearch, Haystack y más. Es importante tener en cuenta que Pinecone es una plataforma de
código cerrado y está disponible como una oferta de software como servicio (SaaS).

Dadas sus capacidades avanzadas, Pinecone es particularmente adecuado para la industria de la
ciberseguridad, donde sus capacidades de búsqueda de alta dimensión y búsqueda híbrida se pueden
aprovechar de manera efectiva para detectar y responder a las amenazas.

Croma

Es una base de datos vectorial que tiene una API central con cuatro funciones principales, una de las cuales
incluye un almacén de vectores de documentos en memoria. También utiliza la biblioteca Face Transformers
para vectorizar documentos, mejorando su funcionalidad y versatilidad. Chroma está diseñado para operar

4

tanto en la nube como en las instalaciones, ofreciendo flexibilidad según las necesidades del usuario. En
particular, se destaca en aplicaciones relacionadas con el audio, lo que lo convierte en una excelente opción
para motores de búsqueda basados en audio, sistemas de recomendación de música y otros casos de uso
relacionados con el audio.

Tejer

Es una base de datos vectorial versátil que permite a los usuarios vectorizar su contenido utilizando sus
módulos integrados o módulos personalizados, proporcionando flexibilidad según necesidades específicas.
Ofrece soluciones totalmente administradas y auto hospedadas, que se adaptan a una variedad de
preferencias de implementación.

Una de las características clave de Weaviate es su capacidad de almacenar tanto vectores como objetos,
mejorando sus capacidades de manejo de datos. Se utiliza ampliamente para una variedad de aplicaciones,
incluida la búsqueda semántica y la clasificación de datos en sistemas ERP. En el sector del comercio
electrónico, potencia los motores de búsqueda y recomendación. Weaviate también se utiliza para la
búsqueda de imágenes, la detección de anomalías, la armonización automatizada de datos y el análisis de
amenazas de ciberseguridad, lo que demuestra su versatilidad en múltiples dominios.

Redis

Redis es una base de datos vectorial de alto rendimiento conocida por su rápido almacenamiento en memoria,
que ofrece baja latencia para operaciones de lectura y escritura. Esto lo convierte en una excelente opción
para sistemas de recomendación, motores de búsqueda y aplicaciones de análisis de datos que requieren un
acceso rápido a los datos.

Redis admite varias estructuras de datos para vectores, incluidas listas, conjuntos y conjuntos ordenados.
También proporciona operaciones vectoriales como calcular distancias entre vectores o encontrar
intersecciones y uniones. Estas características son particularmente útiles para la búsqueda de similitud, la
agrupación en clústeres y los sistemas de recomendación basados en contenido.

En términos de escalabilidad y disponibilidad, Redis se destaca en el manejo de cargas de trabajo de alto
rendimiento y ofrece replicación de datos. También se integra bien con otros tipos de datos, incluidas las
bases de datos relacionales tradicionales (RDBMS). Redis incluye una función de publicación/suscripción
(Pub/Sub) para actualizaciones en tiempo real, lo que resulta beneficioso para administrar vectores en tiempo
real. Además, Redis es liviano y fácil de usar, lo que lo convierte en una solución fácil de usar para administrar
datos vectoriales.

Milvus

Es una base de datos vectorial versátil que ofrece una API como un almacén de documentos, muy parecido a
MongoDB. Se destaca por su soporte para una amplia variedad de tipos de datos, lo que lo convierte en una
opción popular en los campos de la ciencia de datos y el aprendizaje automático.

Una de las características únicas de Milvus es su capacidad de multivectorización, que permite a los usuarios
especificar en tiempo de ejecución el tipo de vector a utilizar para la búsqueda. Además, utiliza Knowwhere,
una biblioteca que se encuentra encima de otras bibliotecas como Faiss, para administrar la comunicación
entre las consultas y los algoritmos de búsqueda vectorial.

Milvus también ofrece una integración perfecta con los flujos de trabajo de aprendizaje automático, gracias a
su compatibilidad con PyTorch y TensorFlow. Esto lo convierte en una herramienta excelente para una
variedad de aplicaciones, incluido el comercio electrónico, el análisis de imágenes y videos, el reconocimiento
de objetos, la búsqueda de similitud de imágenes y la recuperación de imágenes basada en contenido. En el
ámbito del procesamiento del lenguaje natural, Milvus se utiliza para agrupar documentos, buscar semántica y
sistemas de preguntas y respuestas.

5

Para esta solución, elegimos milvus para la validación de la solución. Para el rendimiento, utilizamos tanto
milvus como postgres(pgvecto.rs).

¿Por qué elegimos milvus para esta solución?

• Código abierto: Milvus es una base de datos vectorial de código abierto que fomenta el desarrollo y las
mejoras impulsados por la comunidad.

• Integración de IA: aprovecha la incorporación de aplicaciones de IA y búsqueda de similitud para mejorar
la funcionalidad de la base de datos vectorial.

• Manejo de grandes volúmenes: Milvus tiene la capacidad de almacenar, indexar y administrar más de mil
millones de vectores de incrustación generados por redes neuronales profundas (DNN) y modelos de
aprendizaje automático (ML).

• Fácil de usar: es fácil de usar y la configuración toma menos de un minuto. Milvus también ofrece SDK
para diferentes lenguajes de programación.

• Velocidad: Ofrece velocidades de recuperación increíblemente rápidas, hasta 10 veces más rápidas que
algunas alternativas.

• Escalabilidad y disponibilidad: Milvus es altamente escalable, con opciones para escalar verticalmente o
horizontalmente según sea necesario.

• Rica en funciones: admite diferentes tipos de datos, filtrado de atributos, compatibilidad con funciones
definidas por el usuario (UDF), niveles de consistencia configurables y tiempo de viaje, lo que la convierte
en una herramienta versátil para diversas aplicaciones.

Descripción general de la arquitectura de Milvus

Esta sección proporciona componentes y servicios de nivel superior que se utilizan en la arquitectura Milvus. *
Capa de acceso: está compuesta por un grupo de servidores proxy sin estado y actúa como capa frontal del
sistema y punto final para los usuarios. * Servicio de coordinación: asigna las tareas a los nodos de trabajo y

6

actúa como el cerebro del sistema. Tiene tres tipos de coordinador: coordenada raíz, coordenada de datos y
coordenada de consulta. * Nodos de trabajo: siguen las instrucciones del servicio coordinador y ejecutan
comandos DML/DDL activados por el usuario. Tiene tres tipos de nodos de trabajo: el nodo de consulta, el
nodo de datos y el nodo de índice. * Almacenamiento: es responsable de la persistencia de los datos. Incluye
almacenamiento de metadatos, agente de registros y almacenamiento de objetos. El almacenamiento de
NetApp , como ONTAP y StorageGRID, proporciona almacenamiento de objetos y almacenamiento basado en
archivos a Milvus tanto para datos de clientes como para datos de bases de datos vectoriales.

Requisito de tecnología

Esta sección proporciona una descripción general de los requisitos para la solución de
base de datos vectorial de NetApp .

Requisito de tecnología

Las configuraciones de hardware y software que se describen a continuación se utilizaron para la mayoría de
las validaciones realizadas en este documento, con excepción del rendimiento. Estas configuraciones sirven
como guía para ayudarle a configurar su entorno. Sin embargo, tenga en cuenta que los componentes
específicos pueden variar según los requisitos individuales del cliente.

Requisitos de hardware

Hardware Detalles

Par HA de matriz de almacenamiento AFF de NetApp * A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Dos volúmenes de grupo flexibles: metadatos y datos.
* El volumen NFS de metadatos tiene 12 volúmenes
persistentes con 250 GB. * Los datos son un volumen
ONTAP NAS S3

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPU * CPU Intel® Xeon® Gold 6142 a 2,60 GHz
* Memoria física de 256 GM * 1 puerto de red de 100
GbE

Redes 100 GbE

StorageGRID * 1 SG100, 3 SGF6024 * 3 24 de 7,68 TB

Requisitos de software

Software Detalles

Cúmulo de Milvus * GRÁFICO - milvus-4.1.11. * Versión de la aplicación:
2.3.4 * Paquetes dependientes como bookkeeper,
zookeeper, pulsar, etcd, proxy, querynode, trabajador

Kubernetes * Clúster K8s de 5 nodos * 1 nodo maestro y 4 nodos
de trabajo * Versión: 1.7.2

Pitón *3.10.12.

7

Procedimiento de implementación

En esta sección se analiza el procedimiento de implementación de la solución de base
de datos vectorial para NetApp.

Procedimiento de despliegue

En esta sección de implementación, utilizamos la base de datos vectorial milvus con Kubernetes para la
configuración del laboratorio como se muestra a continuación.

El almacenamiento de NetApp proporciona almacenamiento para que el clúster conserve los datos de los
clientes y los datos del clúster de Milvus.

Configuración de almacenamiento de NetApp – ONTAP

• Inicialización del sistema de almacenamiento

• Creación de una máquina virtual de almacenamiento (SVM)

• Asignación de interfaces de red lógicas

• Configuración y licencias de NFS, S3

Siga los pasos a continuación para NFS (sistema de archivos de red):

8

1. Cree un volumen FlexGroup para NFSv4. En nuestra configuración para esta validación, hemos utilizado
48 SSD, 1 SSD dedicado para el volumen raíz del controlador y 47 SSD distribuidos para NFSv4. Verifique
que la política de exportación de NFS para el volumen FlexGroup tenga permisos de lectura y escritura
para la red de nodos de Kubernetes (K8s). Si estos permisos no están disponibles, otorgue permisos de
lectura/escritura (rw) para la red de nodos K8s.

2. En todos los nodos de K8s, cree una carpeta y monte el volumen FlexGroup en esta carpeta a través de
una interfaz lógica (LIF) en cada nodo de K8s.

Siga los pasos a continuación para NAS S3 (Servicio de almacenamiento simple de almacenamiento
conectado a red):

1. Cree un volumen FlexGroup para NFS.

2. Configure un servidor de almacén de objetos con HTTP habilitado y el estado de administrador
establecido en "activo" mediante el comando "vserver object-store-server create". Tiene la opción de
habilitar HTTPS y configurar un puerto de escucha personalizado.

3. Cree un usuario de servidor de almacén de objetos mediante el comando "vserver object-store-server user
create -user <nombre de usuario>".

4. Para obtener la clave de acceso y la clave secreta, puede ejecutar el siguiente comando: "set diag;
vserver object-store-server user show -user <username>". Sin embargo, en el futuro, estas claves se
proporcionarán durante el proceso de creación del usuario o se podrán recuperar mediante llamadas a la
API REST.

5. Establezca un grupo de servidores de almacén de objetos utilizando el usuario creado en el paso 2 y
otorgue acceso. En este ejemplo, proporcionamos "Acceso completo".

6. Cree un depósito NAS configurando su tipo en "nas" y proporcionando la ruta al volumen NFSv3. También
es posible utilizar un bucket S3 para este propósito.

Configuración de almacenamiento de NetApp : StorageGRID

1. Instalar el software storageGRID.

2. Crear un inquilino y un depósito.

3. Crear usuario con el permiso requerido.

Por favor consulte más detalles en https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Verificación de la solución

Descripción general de la solución

Hemos realizado una validación integral de la solución centrada en cinco áreas clave,
cuyos detalles se describen a continuación. Cada sección profundiza en los desafíos que
enfrentan los clientes, las soluciones proporcionadas por NetApp y los beneficios
posteriores para el cliente.

1. "Configuración de un clúster Milvus con Kubernetes en instalaciones locales"Desafíos del cliente para
escalar de forma independiente en almacenamiento y computación, gestión efectiva de infraestructura y
gestión de datos. En esta sección, detallamos el proceso de instalación de un clúster Milvus en
Kubernetes, utilizando un controlador de almacenamiento NetApp para los datos del clúster y los datos del
cliente.

9

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

2. enlace: vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html[Milvus con Amazon
FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos] En esta sección, explicamos por qué
necesitamos implementar una base de datos vectorial en la nube, así como los pasos para implementar
una base de datos vectorial (milvus independiente) en Amazon FSx ONTAP para NetApp ONTAP dentro
de contenedores Docker.

3. "Protección de bases de datos vectoriales mediante NetApp SnapCenter."En esta sección, profundizamos
en cómo SnapCenter protege los datos de la base de datos vectorial y los datos de Milvus que residen en
ONTAP. Para este ejemplo, utilizamos un depósito NAS (milvusdbvol1) derivado de un volumen NFS
ONTAP (vol1) para datos de clientes y un volumen NFS separado (vectordbpv) para datos de
configuración del clúster Milvus.

4. "Recuperación ante desastres mediante NetApp SnapMirror"En esta sección, analizamos la importancia
de la recuperación ante desastres (DR) para la base de datos vectorial y cómo el producto de
recuperación ante desastres SnapMirror de NetApp proporciona una solución DR para la base de datos
vectorial.

5. "Validación del rendimiento"En esta sección, nuestro objetivo es profundizar en la validación del
rendimiento de bases de datos vectoriales, como Milvus y pgvecto.rs, centrándonos en sus características
de rendimiento de almacenamiento, como el perfil de E/S y el comportamiento del controlador de
almacenamiento Netapp en apoyo de RAG y cargas de trabajo de inferencia dentro del ciclo de vida de
LLM. Evaluaremos e identificaremos cualquier diferenciador de rendimiento cuando estas bases de datos
se combinen con la solución de almacenamiento ONTAP . Nuestro análisis se basará en indicadores clave
de rendimiento, como el número de consultas procesadas por segundo (QPS).

Configuración de un clúster Milvus con Kubernetes en instalaciones locales

En esta sección se analiza la configuración del clúster milvus para la solución de base de
datos vectorial para NetApp.

Configuración de un clúster Milvus con Kubernetes en instalaciones locales

Los desafíos del cliente para escalar de forma independiente en almacenamiento y computación,
administración efectiva de la infraestructura y administración de datos, Kubernetes y las bases de datos
vectoriales juntas forman una solución poderosa y escalable para administrar operaciones de grandes datos.
Kubernetes optimiza los recursos y administra los contenedores, mientras que las bases de datos vectoriales
manejan eficientemente datos de alta dimensión y búsquedas de similitud. Esta combinación permite el
procesamiento rápido de consultas complejas en grandes conjuntos de datos y se adapta sin problemas a
volúmenes de datos crecientes, lo que la hace ideal para aplicaciones de big data y cargas de trabajo de IA.

1. En esta sección, detallamos el proceso de instalación de un clúster Milvus en Kubernetes, utilizando un
controlador de almacenamiento NetApp para los datos del clúster y los datos del cliente.

2. Para instalar un clúster Milvus, se requieren volúmenes persistentes (PV) para almacenar datos de varios
componentes del clúster Milvus. Estos componentes incluyen etcd (tres instancias), pulsar-bookie-journal
(tres instancias), pulsar-bookie-ledgers (tres instancias) y pulsar-zookeeper-data (tres instancias).

En el clúster Milvus, podemos usar Pulsar o Kafka como motor subyacente que respalda el
almacenamiento confiable y la publicación/suscripción de flujos de mensajes del clúster
Milvus. Para Kafka con NFS, NetApp ha implementado mejoras en ONTAP 9.12.1 y
versiones posteriores. Estas mejoras, junto con los cambios en NFSv4.1 y Linux incluidos
en RHEL 8.7 o 9.1 y versiones posteriores, resuelven el problema de "cambio de nombre
tonto" que puede ocurrir al ejecutar Kafka sobre NFS. Si está interesado en obtener
información más detallada sobre la ejecución de Kafka con la solución NFS de NetApp,
consulte:"este enlace" .

10

../data-analytics/kafka-nfs-introduction.html

3. Creamos un único volumen NFS desde NetApp ONTAP y establecimos 12 volúmenes persistentes, cada
uno con 250 GB de almacenamiento. El tamaño de almacenamiento puede variar según el tamaño del
clúster; por ejemplo, tenemos otro clúster donde cada PV tiene 50 GB. Consulte a continuación uno de los
archivos PV YAML para obtener más detalles; teníamos 12 archivos de este tipo en total. En cada archivo,
storageClassName se establece en 'predeterminado' y el almacenamiento y la ruta son únicos para cada
PV.

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Ejecute el comando 'kubectl apply' para cada archivo PV YAML para crear los volúmenes persistentes y
luego verifique su creación usando 'kubectl get pv'

11

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. Para almacenar datos de clientes, Milvus admite soluciones de almacenamiento de objetos como MinIO,
Azure Blob y S3. En esta guía, utilizamos S3. Los siguientes pasos se aplican tanto al almacén de objetos
ONTAP S3 como al StorageGRID . Usamos Helm para implementar el clúster Milvus. Descargue el
archivo de configuración, values.yaml, desde la ubicación de descarga de Milvus. Consulte el apéndice
para ver el archivo values.yaml que usamos en este documento.

6. Asegúrese de que 'storageClass' esté configurado como 'predeterminado' en cada sección, incluidas las
de registro, etcd, zookeeper y bookkeeper.

7. En la sección MinIO, desactive MinIO.

8. Cree un depósito NAS desde el almacenamiento de objetos ONTAP o StorageGRID e inclúyalos en un S3
externo con las credenciales de almacenamiento de objetos.

12

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

9. Antes de crear el clúster Milvus, asegúrese de que PersistentVolumeClaim (PVC) no tenga ningún recurso
preexistente.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilice Helm y el archivo de configuración values.yaml para instalar e iniciar el clúster Milvus.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verificar el estado de los PersistentVolumeClaims (PVC).

13

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Verifique el estado de los pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Asegúrese de que el estado de los pods sea "en ejecución" y funcione como se espera.

13. Pruebe la escritura y lectura de datos en el almacenamiento de objetos Milvus y NetApp .

◦ Escriba datos utilizando el programa Python "prepare_data_netapp_new.py".

14

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Lea los datos utilizando el archivo Python "verify_data_netapp.py".

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

15

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Con base en la validación anterior, la integración de Kubernetes con una base de datos vectorial,
como se demostró a través de la implementación de un clúster Milvus en Kubernetes usando un
controlador de almacenamiento NetApp , ofrece a los clientes una solución robusta, escalable y
eficiente para administrar operaciones de datos a gran escala. Esta configuración brinda a los clientes
la capacidad de manejar datos de alta dimensión y ejecutar consultas complejas de manera rápida y
eficiente, lo que la convierte en una solución ideal para aplicaciones de big data y cargas de trabajo de
IA. El uso de volúmenes persistentes (PV) para varios componentes del clúster, junto con la creación
de un único volumen NFS desde NetApp ONTAP, garantiza una utilización óptima de los recursos y la

16

gestión de datos. El proceso de verificar el estado de PersistentVolumeClaims (PVC) y pods, así como
probar la escritura y lectura de datos, brinda a los clientes la seguridad de contar con operaciones de
datos confiables y consistentes. El uso del almacenamiento de objetos ONTAP o StorageGRID para
los datos de los clientes mejora aún más la accesibilidad y la seguridad de los datos. En general, esta
configuración brinda a los clientes una solución de gestión de datos resistente y de alto rendimiento
que puede escalar sin problemas con sus crecientes necesidades de datos.

Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y
objetos

En esta sección se analiza la configuración del clúster milvus con Amazon FSx ONTAP
para la solución de base de datos vectorial para NetApp.

Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos

En esta sección, explicamos por qué necesitamos implementar una base de datos vectorial en la nube, así
como los pasos para implementar una base de datos vectorial (milvus independiente) en Amazon FSx ONTAP
para NetApp ONTAP dentro de contenedores Docker.

La implementación de una base de datos vectorial en la nube proporciona varios beneficios importantes,
especialmente para aplicaciones que requieren manejar datos de alta dimensión y ejecutar búsquedas de
similitud. En primer lugar, la implementación basada en la nube ofrece escalabilidad, lo que permite ajustar
fácilmente los recursos para adaptarse a los crecientes volúmenes de datos y cargas de consultas. Esto
garantiza que la base de datos pueda manejar de manera eficiente el aumento de demanda y al mismo tiempo
mantener un alto rendimiento. En segundo lugar, la implementación de la nube proporciona alta disponibilidad
y recuperación ante desastres, ya que los datos se pueden replicar en diferentes ubicaciones geográficas, lo
que minimiza el riesgo de pérdida de datos y garantiza un servicio continuo incluso durante eventos
inesperados. En tercer lugar, ofrece rentabilidad, ya que solo pagas por los recursos que utilizas y puedes
ampliar o reducir según la demanda, evitando así la necesidad de una inversión inicial sustancial en hardware.
Por último, implementar una base de datos vectorial en la nube puede mejorar la colaboración, ya que se
puede acceder a los datos y compartirlos desde cualquier lugar, lo que facilita el trabajo en equipo y la toma
de decisiones basada en datos. Verifique la arquitectura de milvus independiente con Amazon FSx ONTAP
para NetApp ONTAP utilizada en esta validación.

17

1. Cree una instancia de Amazon FSx ONTAP para NetApp ONTAP y anote los detalles de la VPC, los
grupos de seguridad de VPC y la subred. Esta información será necesaria al crear una instancia EC2.
Puede encontrar más detalles aquí - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-
1#file-system-create

2. Cree una instancia EC2, asegurándose de que la VPC, los grupos de seguridad y la subred coincidan con
los de la instancia de Amazon FSx ONTAP para NetApp ONTAP .

3. Instale nfs-common usando el comando 'apt-get install nfs-common' y actualice la información del paquete
usando 'sudo apt-get update'.

4. Cree una carpeta de montaje y monte Amazon FSx ONTAP para NetApp ONTAP en ella.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Instale Docker y Docker Compose usando 'apt-get install'.

6. Configure un clúster Milvus basado en el archivo docker-compose.yaml, que se puede descargar del sitio
web de Milvus.

18

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. En la sección 'volúmenes' del archivo docker-compose.yml, asigne el punto de montaje NFS de NetApp a
la ruta del contenedor Milvus correspondiente, específicamente en etcd, minio y
standalone.Verifique"Apéndice D: docker-compose.yml" Para obtener detalles sobre los cambios en yml

8. Verifique las carpetas y archivos montados.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Ejecute 'docker-compose up -d' desde el directorio que contiene el archivo docker-compose.yml.

10. Verifique el estado del contenedor Milvus.

19

ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. Para validar la funcionalidad de lectura y escritura de la base de datos vectorial y sus datos en Amazon
FSx ONTAP para NetApp ONTAP, utilizamos el SDK de Python Milvus y un programa de muestra de
PyMilvus. Instale los paquetes necesarios usando 'apt-get install python3-numpy python3-pip' e instale
PyMilvus usando 'pip3 install pymilvus'.

12. Validar las operaciones de escritura y lectura de datos de Amazon FSx ONTAP para NetApp ONTAP en la
base de datos vectorial.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Verifique la operación de lectura utilizando el script verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

21

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

22

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. Si el cliente desea acceder (leer) datos NFS probados en la base de datos vectorial a través del protocolo
S3 para cargas de trabajo de IA, esto se puede validar utilizando un programa Python sencillo. Un ejemplo
de esto podría ser una búsqueda de similitud de imágenes de otra aplicación como se menciona en la
imagen que está al comienzo de esta sección.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

Esta sección demuestra eficazmente cómo los clientes pueden implementar y operar una configuración de
Milvus independiente dentro de contenedores Docker, utilizando NetApp FSx ONTAP de Amazon para el
almacenamiento de datos de NetApp ONTAP . Esta configuración permite a los clientes aprovechar el
poder de las bases de datos vectoriales para manejar datos de alta dimensión y ejecutar consultas
complejas, todo dentro del entorno escalable y eficiente de los contenedores Docker. Al crear una
instancia de Amazon FSx ONTAP para NetApp ONTAP y una instancia EC2 correspondiente, los clientes
pueden garantizar una utilización óptima de los recursos y una gestión de datos. La validación exitosa de
las operaciones de escritura y lectura de datos de FSx ONTAP en la base de datos vectorial brinda a los
clientes la garantía de operaciones de datos confiables y consistentes. Además, la capacidad de enumerar
(leer) datos de cargas de trabajo de IA a través del protocolo S3 ofrece una accesibilidad mejorada a los
datos. Por lo tanto, este proceso integral proporciona a los clientes una solución sólida y eficiente para
administrar sus operaciones de datos a gran escala, aprovechando las capacidades de FSx ONTAP de
Amazon para NetApp ONTAP.

Protección de bases de datos vectoriales mediante SnapCenter

En esta sección se describe cómo proporcionar protección de datos para la base de
datos vectorial mediante NetApp SnapCenter.

Protección de bases de datos vectoriales mediante NetApp SnapCenter.

Por ejemplo, en la industria de producción cinematográfica, los clientes a menudo poseen datos incrustados
importantes, como archivos de vídeo y audio. La pérdida de estos datos, debido a problemas como fallas en el

24

disco duro, puede tener un impacto significativo en sus operaciones, poniendo potencialmente en peligro
empresas multimillonarias. Hemos encontrado casos en los que se perdió contenido invaluable, lo que causó
interrupciones sustanciales y pérdidas financieras. Por lo tanto, garantizar la seguridad e integridad de estos
datos esenciales es de suma importancia en esta industria. En esta sección, profundizamos en cómo
SnapCenter protege los datos de la base de datos vectorial y los datos de Milvus que residen en ONTAP. Para
este ejemplo, utilizamos un depósito NAS (milvusdbvol1) derivado de un volumen NFS ONTAP (vol1) para
datos de clientes y un volumen NFS separado (vectordbpv) para datos de configuración del clúster Milvus. Por
favor, consulte la"aquí" para el flujo de trabajo de copia de seguridad de SnapCenter

1. Configure el host que se utilizará para ejecutar los comandos de SnapCenter .

2. Instalar y configurar el complemento de almacenamiento. Desde el host agregado, seleccione "Más
opciones". Navegue hasta el complemento de almacenamiento descargado y selecciónelo desde
el"Tienda de automatización de NetApp" . Instale el complemento y guarde la configuración.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Configurar el sistema de almacenamiento y el volumen: agregue el sistema de almacenamiento en
“Sistema de almacenamiento” y seleccione SVM (Máquina virtual de almacenamiento). En este ejemplo,
hemos elegido "vs_nvidia".

4. Establecer un recurso para la base de datos vectorial, incorporando una política de respaldo y un nombre
de instantánea personalizado.

◦ Habilite la copia de seguridad del grupo de consistencia con valores predeterminados y habilite
SnapCenter sin consistencia del sistema de archivos.

◦ En la sección Huella de almacenamiento, seleccione los volúmenes asociados con los datos del
cliente de la base de datos vectorial y los datos del clúster Milvus. En nuestro ejemplo, estos son
"vol1" y "vectordbpv".

◦ Cree una política para la protección de la base de datos vectorial y proteja el recurso de la base de
datos vectorial utilizando la política.

26

5. Inserte datos en el depósito NAS S3 mediante un script de Python. En nuestro caso, modificamos el script
de respaldo proporcionado por Milvus, concretamente 'prepare_data_netapp.py', y ejecutamos el comando
'sync' para vaciar los datos del sistema operativo.

27

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verifique los datos en el depósito NAS S3. En nuestro ejemplo, los archivos con la marca de tiempo '2024-
04-08 21:22' fueron creados por el script 'prepare_data_netapp.py'.

28

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Inicie una copia de seguridad utilizando la instantánea del grupo de consistencia (CG) del recurso
'milvusdb'

29

8. Para probar la funcionalidad de respaldo, agregamos una nueva tabla después del proceso de respaldo o
eliminamos algunos datos del NFS (depósito NAS S3).

Para esta prueba, imagine un escenario en el que alguien creó una colección nueva, innecesaria o
inapropiada después de la copia de seguridad. En tal caso, necesitaríamos revertir la base de datos
vectorial a su estado anterior a que se agregara la nueva colección. Por ejemplo, se han insertado nuevas
colecciones como 'hello_milvus_netapp_sc_testnew' y 'hello_milvus_netapp_sc_testnew2'.

30

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Ejecute una restauración completa del bucket NAS S3 desde la instantánea anterior.

31

10. Utilice un script de Python para verificar los datos de las colecciones 'hello_milvus_netapp_sc_test' y
'hello_milvus_netapp_sc_test2'.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verifique que la colección innecesaria o inapropiada ya no esté presente en la base de datos.

34

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

En conclusión, el uso de SnapCenter de NetApp para salvaguardar los datos de bases de datos vectoriales y
los datos Milvus que residen en ONTAP ofrece beneficios significativos a los clientes, particularmente en
industrias donde la integridad de los datos es primordial, como la producción cinematográfica. La capacidad
de SnapCenter para crear copias de seguridad consistentes y realizar restauraciones de datos completas
garantiza que los datos críticos, como archivos de audio y video integrados, estén protegidos contra pérdidas
debido a fallas del disco duro u otros problemas. Esto no sólo evita interrupciones operativas sino que también
protege contra pérdidas financieras sustanciales.

En esta sección, demostramos cómo se puede configurar SnapCenter para proteger los datos que residen en
ONTAP, incluida la configuración de hosts, la instalación y configuración de complementos de almacenamiento
y la creación de un recurso para la base de datos vectorial con un nombre de instantánea personalizado.
También mostramos cómo realizar una copia de seguridad utilizando la instantánea del grupo de consistencia
y verificar los datos en el depósito NAS S3.

Además, simulamos un escenario en el que se creó una colección innecesaria o inapropiada después de la
copia de seguridad. En tales casos, la capacidad de SnapCenter de realizar una restauración completa a partir
de una instantánea anterior garantiza que la base de datos vectorial pueda revertirse a su estado anterior a la
adición de la nueva colección, manteniendo así la integridad de la base de datos. Esta capacidad de restaurar
datos a un punto específico en el tiempo es invaluable para los clientes, brindándoles la seguridad de que sus
datos no solo están seguros, sino que también se mantienen correctamente. De este modo, el producto
SnapCenter de NetApp ofrece a sus clientes una solución robusta y fiable para la protección y gestión de
datos.

Recuperación ante desastres mediante NetApp SnapMirror

En esta sección se analiza la recuperación ante desastres (DR) con SnapMirror para la
solución de base de datos vectorial para NetApp.

35

Recuperación ante desastres mediante NetApp SnapMirror

La recuperación ante desastres es crucial para mantener la integridad y disponibilidad de una base de datos
vectorial, especialmente dada su función en la gestión de datos de alta dimensión y la ejecución de
búsquedas de similitud complejas. Una estrategia de recuperación ante desastres bien planificada e
implementada garantiza que los datos no se pierdan ni se vean comprometidos en caso de incidentes
imprevistos, como fallas de hardware, desastres naturales o ciberataques. Esto es especialmente importante
para las aplicaciones que dependen de bases de datos vectoriales, donde la pérdida o corrupción de datos
podría provocar importantes interrupciones operativas y pérdidas financieras. Además, un plan de
recuperación ante desastres sólido también garantiza la continuidad del negocio al minimizar el tiempo de
inactividad y permitir la rápida restauración de los servicios. Esto se logra a través del producto de replicación
de datos SnapMirror de NetApp en diferentes ubicaciones geográficas, copias de seguridad periódicas y
mecanismos de conmutación por error. Por lo tanto, la recuperación ante desastres no es sólo una medida de
protección, sino un componente crítico de una gestión responsable y eficiente de bases de datos vectoriales.

SnapMirror de NetApp proporciona replicación de datos de un controlador de almacenamiento NetApp ONTAP
a otro, y se utiliza principalmente para recuperación ante desastres (DR) y soluciones híbridas. En el contexto
de una base de datos vectorial, esta herramienta facilita la transición fluida de datos entre entornos locales y
en la nube. Esta transición se logra sin necesidad de realizar conversiones de datos ni refactorizar
aplicaciones, lo que mejora la eficiencia y la flexibilidad de la gestión de datos en múltiples plataformas.

La solución híbrida de NetApp en un escenario de base de datos vectorial puede aportar más ventajas:

1. Escalabilidad: la solución de nube híbrida de NetApp ofrece la capacidad de escalar sus recursos según
sus requisitos. Puede utilizar recursos locales para cargas de trabajo regulares y predecibles y recursos
en la nube como Amazon FSx ONTAP para NetApp ONTAP y Google Cloud NetApp Volume (NetApp
Volumes) para horas pico o cargas inesperadas.

2. Eficiencia de costos: el modelo de nube híbrida de NetApp le permite optimizar sus costos al utilizar
recursos locales para cargas de trabajo regulares y pagar por los recursos de la nube solo cuando los
necesita. Este modelo de pago por uso puede resultar bastante rentable con una oferta de servicios
instaclustr de NetApp . Para los principales proveedores de servicios locales y en la nube, instaclustr
brinda soporte y consultoría.

3. Flexibilidad: la nube híbrida de NetApp le brinda la flexibilidad de elegir dónde procesar sus datos. Por
ejemplo, puede optar por realizar operaciones vectoriales complejas en sus instalaciones donde tiene

36

hardware más potente y operaciones menos intensivas en la nube.

4. Continuidad del negocio: en caso de desastre, tener sus datos en una nube híbrida de NetApp puede
garantizar la continuidad del negocio. Puede cambiar rápidamente a la nube si sus recursos locales se ven
afectados. Podemos aprovechar NetApp SnapMirror para trasladar los datos desde las instalaciones
locales a la nube y viceversa.

5. Innovación: Las soluciones de nube híbrida de NetApp también pueden permitir una innovación más
rápida al brindar acceso a servicios y tecnologías de nube de vanguardia. Las innovaciones de NetApp en
la nube, como Amazon FSx ONTAP para NetApp ONTAP, Azure NetApp Files y Google Cloud NetApp
Volumes, son productos innovadores y NAS preferidos de los proveedores de servicios en la nube.

Validación del rendimiento de la base de datos vectorial

Esta sección destaca la validación del rendimiento que se realizó en la base de datos
vectorial.

Validación del rendimiento

La validación del rendimiento juega un papel fundamental tanto en las bases de datos vectoriales como en los
sistemas de almacenamiento, y actúa como un factor clave para garantizar un funcionamiento óptimo y una
utilización eficiente de los recursos. Las bases de datos vectoriales, conocidas por manejar datos de alta
dimensión y ejecutar búsquedas de similitud, necesitan mantener altos niveles de rendimiento para procesar
consultas complejas con rapidez y precisión. La validación del rendimiento ayuda a identificar cuellos de
botella, ajustar configuraciones y garantizar que el sistema pueda manejar las cargas esperadas sin
degradación del servicio. De manera similar, en los sistemas de almacenamiento, la validación del rendimiento
es esencial para garantizar que los datos se almacenen y recuperen de manera eficiente, sin problemas de
latencia o cuellos de botella que puedan afectar el rendimiento general del sistema. También ayuda a tomar
decisiones informadas sobre actualizaciones o cambios necesarios en la infraestructura de almacenamiento.
Por lo tanto, la validación del rendimiento es un aspecto crucial de la gestión del sistema y contribuye
significativamente a mantener una alta calidad del servicio, la eficiencia operativa y la confiabilidad general del
sistema.

En esta sección, nuestro objetivo es profundizar en la validación del rendimiento de bases de datos
vectoriales, como Milvus y pgvecto.rs, centrándonos en sus características de rendimiento de
almacenamiento, como el perfil de E/S y el comportamiento del controlador de almacenamiento Netapp en
apoyo de RAG y cargas de trabajo de inferencia dentro del ciclo de vida de LLM. Evaluaremos e
identificaremos cualquier diferenciador de rendimiento cuando estas bases de datos se combinen con la
solución de almacenamiento ONTAP . Nuestro análisis se basará en indicadores clave de rendimiento, como
el número de consultas procesadas por segundo (QPS).

Consulte la metodología utilizada para milvus y el progreso a continuación.

Detalles Milvus (independiente y en clúster) Postgres(pgvecto.rs) #

versión 2.3.2 0.2.0

Sistema de archivos XFS en LUN iSCSI

Generador de carga de trabajo "Banco VectorDB"– versión 0.0.5

Conjuntos de datos Conjunto de datos LAION * 10
millones de incrustaciones * 768
dimensiones * tamaño de conjunto
de datos de ~300 GB

37

https://github.com/zilliztech/VectorDBBench

Controlador de almacenamiento AFF 800 * Versión – 9.14.1 * 4 x
100 GbE – para milvus y 2 x 100
GbE para postgres * iscsi

VectorDB-Bench con clúster independiente Milvus

Realizamos la siguiente validación de rendimiento en el clúster independiente milvus con vectorDB-Bench. La
conectividad de red y servidor del clúster independiente milvus se muestra a continuación.

En esta sección, compartimos nuestras observaciones y resultados de la prueba de la base de datos
independiente de Milvus. . Seleccionamos DiskANN como el tipo de índice para estas pruebas. . La ingesta,
optimización y creación de índices para un conjunto de datos de aproximadamente 100 GB tomó alrededor de
5 horas. Durante la mayor parte de este período, el servidor Milvus, equipado con 20 núcleos (lo que equivale
a 40 vcpu cuando Hyper-Threading está habilitado), estuvo funcionando a su capacidad máxima de CPU del
100 %. Descubrimos que DiskANN es particularmente importante para conjuntos de datos grandes que
exceden el tamaño de la memoria del sistema. . En la fase de consulta, observamos una tasa de consultas por
segundo (QPS) de 10,93 con una recuperación de 0,9987. La latencia del percentil 99 para las consultas se
midió en 708,2 milisegundos.

Desde la perspectiva del almacenamiento, la base de datos emitió alrededor de 1000 operaciones por
segundo durante las fases de ingesta, optimización posterior a la inserción y creación del índice. En la fase de
consulta, demandó 32.000 operaciones por segundo.

En la siguiente sección se presentan las métricas de rendimiento del almacenamiento.

Fase de carga de trabajo Métrico Valor

Ingesta de datos y optimización
posterior a la inserción

IOPS < 1.000

Estado latente < 400 usecs

Carga de trabajo Mezcla de lectura y escritura,
principalmente escrituras

Tamaño de IO 64 KB

38

Fase de carga de trabajo Métrico Valor

Consulta IOPS Pico a los 32.000

Estado latente < 400 usecs

Carga de trabajo Lectura en caché al 100%

Tamaño de IO Principalmente 8 KB

El resultado de vectorDB-bench se muestra a continuación.

A partir de la validación del rendimiento de la instancia independiente de Milvus, es evidente que la
configuración actual es insuficiente para soportar un conjunto de datos de 5 millones de vectores con una
dimensionalidad de 1536. Hemos determinado que el almacenamiento posee recursos adecuados y no
constituye un cuello de botella en el sistema.

39

VectorDB-Bench con clúster milvus

En esta sección, analizamos la implementación de un clúster Milvus dentro de un entorno de Kubernetes. Esta
configuración de Kubernetes se construyó sobre una implementación de VMware vSphere, que alojaba los
nodos maestros y de trabajo de Kubernetes.

Los detalles de las implementaciones de VMware vSphere y Kubernetes se presentan en las siguientes
secciones.

40

En esta sección, presentamos nuestras observaciones y resultados de las pruebas de la base de datos
Milvus. *El tipo de índice utilizado fue DiskANN. * La siguiente tabla proporciona una comparación entre las
implementaciones independientes y en clúster cuando se trabaja con 5 millones de vectores con una
dimensionalidad de 1536. Observamos que el tiempo necesario para la ingesta de datos y la optimización
posterior a la inserción fue menor en la implementación del clúster. La latencia del percentil 99 para las
consultas se redujo seis veces en la implementación del clúster en comparación con la configuración
independiente. * Aunque la tasa de consultas por segundo (QPS) fue mayor en la implementación del clúster,
no estuvo en el nivel deseado.

Las imágenes a continuación proporcionan una vista de varias métricas de almacenamiento, incluida la

41

latencia del clúster de almacenamiento y el total de IOPS (operaciones de entrada/salida por segundo).

En la siguiente sección se presentan las métricas clave del rendimiento del almacenamiento.

Fase de carga de trabajo Métrico Valor

Ingesta de datos y optimización
posterior a la inserción

IOPS < 1.000

Estado latente < 400 usecs

Carga de trabajo Mezcla de lectura y escritura,
principalmente escrituras

Tamaño de IO 64 KB

Consulta IOPS Pico en 147.000

Estado latente < 400 usecs

Carga de trabajo Lectura en caché al 100%

Tamaño de IO Principalmente 8 KB

Con base en la validación del rendimiento tanto del Milvus independiente como del clúster Milvus,
presentamos los detalles del perfil de E/S de almacenamiento. * Observamos que el perfil de E/S permanece
consistente tanto en implementaciones independientes como en clúster. * La diferencia observada en el IOPS
máximo se puede atribuir a la mayor cantidad de clientes en la implementación del clúster.

vectorDB-Bench con Postgres (pgvecto.rs)

Realizamos las siguientes acciones en PostgreSQL(pgvecto.rs) usando VectorDB-Bench: Los detalles sobre
la conectividad de red y servidor de PostgreSQL (específicamente, pgvecto.rs) son los siguientes:

42

En esta sección, compartimos nuestras observaciones y resultados de las pruebas de la base de datos
PostgreSQL, específicamente utilizando pgvecto.rs. * Seleccionamos HNSW como el tipo de índice para estas
pruebas porque en el momento de la prueba, DiskANN no estaba disponible para pgvecto.rs. * Durante la fase
de ingesta de datos, cargamos el conjunto de datos Cohere, que consta de 10 millones de vectores con una
dimensionalidad de 768. Este proceso tardó aproximadamente 4,5 horas. * En la fase de consulta,
observamos una tasa de consultas por segundo (QPS) de 1,068 con un recall de 0,6344. La latencia del
percentil 99 para las consultas se midió en 20 milisegundos. Durante la mayor parte del tiempo de ejecución,
la CPU del cliente funcionó al 100 % de su capacidad.

Las imágenes a continuación proporcionan una vista de varias métricas de almacenamiento, incluidas las
IOPS totales (operaciones de entrada/salida por segundo) de latencia del clúster de almacenamiento.

 The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["Figura que muestra el diálogo de

entrada/salida o representa contenido escrito"]

Comparación del rendimiento entre milvus y postgres en Vector DB Bench

43

Basándonos en nuestra validación del rendimiento de Milvus y PostgreSQL utilizando VectorDBBench,
observamos lo siguiente:

• Tipo de índice: HNSW

• Conjunto de datos: Cohere con 10 millones de vectores en 768 dimensiones

Descubrimos que pgvecto.rs logró una tasa de consultas por segundo (QPS) de 1068 con un recall de 0,6344,
mientras que Milvus logró una tasa de QPS de 106 con un recall de 0,9842.

Si la alta precisión en sus consultas es una prioridad, Milvus supera a pgvecto.rs ya que recupera una mayor
proporción de elementos relevantes por consulta. Sin embargo, si el número de consultas por segundo es un
factor más crucial, pgvecto.rs supera a Milvus. Es importante señalar, sin embargo, que la calidad de los datos
recuperados a través de pgvecto.rs es menor, y alrededor del 37 % de los resultados de búsqueda son
elementos irrelevantes.

Observación basada en nuestras validaciones de desempeño:

Con base en nuestras validaciones de desempeño, hemos realizado las siguientes observaciones:

44

En Milvus, el perfil de E/S se parece mucho a una carga de trabajo OLTP, como la que se observa con Oracle
SLOB. El benchmark consta de tres fases: ingestión de datos, post-optimización y consulta. Las etapas
iniciales se caracterizan principalmente por operaciones de escritura de 64 KB, mientras que la fase de
consulta implica predominantemente lecturas de 8 KB. Esperamos que ONTAP gestione la carga de E/S de
Milvus de manera competente.

El perfil de E/S de PostgreSQL no presenta una carga de trabajo de almacenamiento desafiante. Dada la
implementación en memoria actualmente en curso, no observamos ninguna E/S de disco durante la fase de
consulta.

DiskANN surge como una tecnología crucial para la diferenciación del almacenamiento. Permite el
escalamiento eficiente de la búsqueda en bases de datos vectoriales más allá del límite de la memoria del
sistema. Sin embargo, es poco probable que se establezca una diferenciación en el rendimiento del
almacenamiento con índices de bases de datos vectoriales en memoria como HNSW.

También vale la pena señalar que el almacenamiento no juega un papel crítico durante la fase de consulta
cuando el tipo de índice es HSNW, que es la fase operativa más importante para las bases de datos
vectoriales que admiten aplicaciones RAG. La implicación aquí es que el rendimiento del almacenamiento no
afecta significativamente el rendimiento general de estas aplicaciones.

Base de datos vectorial con Instaclustr usando
PostgreSQL: pgvector

En esta sección se analizan los detalles de cómo el producto instaclustr se integra con la
funcionalidad pgvector de PostgreSQL en la solución de base de datos vectorial para
NetApp.

Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector

En esta sección, profundizamos en los detalles de cómo el producto instaclustr se integra con postgreSQL en
la funcionalidad pgvector. Tenemos un ejemplo de "Cómo mejorar la precisión y el rendimiento de su LLM con
PGVector y PostgreSQL: Introducción a las incrustaciones y el papel de PGVector". Por favor revise el"blog"
Para obtener más información.

Casos de uso de bases de datos vectoriales

Esta sección proporciona una descripción general de los casos de uso de la solución de
base de datos vectorial de NetApp .

Casos de uso de bases de datos vectoriales

En esta sección, analizamos dos casos de uso, como la recuperación de generación aumentada con modelos
de lenguaje grandes y el chatbot de TI de NetApp .

Generación aumentada de recuperación (RAG) con modelos de lenguaje grandes (LLM)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

El operador NVIDIA Enterprise RAG LLM es una herramienta útil para implementar RAG en la empresa. Este
operador se puede utilizar para implementar un pipeline RAG completo. La tubería RAG se puede
personalizar para utilizar Milvus o pgvecto como base de datos vectorial para almacenar incrustaciones de la
base de conocimientos. Consulte la documentación para obtener más detalles.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figura 1) RAG empresarial impulsado por NVIDIA NeMo Microservices y NetApp

Caso de uso del chatbot de TI de NetApp

El chatbot de NetApp sirve como otro caso de uso en tiempo real para la base de datos vectorial. En este
caso, NetApp Private OpenAI Sandbox proporciona una plataforma eficaz, segura y eficiente para gestionar
las consultas de los usuarios internos de NetApp. Al incorporar estrictos protocolos de seguridad, sistemas
eficientes de gestión de datos y sofisticadas capacidades de procesamiento de IA, garantiza respuestas
precisas y de alta calidad a los usuarios en función de sus roles y responsabilidades en la organización a
través de la autenticación SSO. Esta arquitectura resalta el potencial de fusionar tecnologías avanzadas para

46

crear sistemas inteligentes centrados en el usuario.

El caso de uso se puede dividir en cuatro secciones principales.

Autenticación y verificación de usuarios:

• Las consultas de usuario primero pasan por el proceso de inicio de sesión único (SSO) de NetApp para
confirmar la identidad del usuario.

• Después de una autenticación exitosa, el sistema verifica la conexión VPN para garantizar una
transmisión de datos segura.

Transmisión y procesamiento de datos:

• Una vez validada la VPN, los datos se envían a MariaDB a través de las aplicaciones web NetAIChat o
NetAICreate. MariaDB es un sistema de base de datos rápido y eficiente utilizado para administrar y
almacenar datos de usuarios.

• Luego, MariaDB envía la información a la instancia de Azure de NetApp , que conecta los datos del
usuario con la unidad de procesamiento de IA.

Interacción con OpenAI y filtrado de contenido:

• La instancia de Azure envía las preguntas del usuario a un sistema de filtrado de contenido. Este sistema
limpia la consulta y la prepara para su procesamiento.

• Luego, la entrada limpiada se envía al modelo base de Azure OpenAI, que genera una respuesta basada
en la entrada.

Generación y moderación de respuestas:

• Primero se verifica la respuesta del modelo base para garantizar que sea precisa y cumpla con los
estándares de contenido.

• Después de pasar la verificación, la respuesta se envía de vuelta al usuario. Este proceso garantiza que el

47

usuario reciba una respuesta clara, precisa y adecuada a su consulta.

Conclusión

Esta sección concluye la solución de base de datos vectorial para NetApp.

Conclusión

En conclusión, este documento proporciona una descripción general completa de la implementación y la
administración de bases de datos vectoriales, como Milvus y pgvector, en soluciones de almacenamiento de
NetApp . Analizamos las pautas de infraestructura para aprovechar el almacenamiento de objetos NetApp
ONTAP y StorageGRID y validamos la base de datos Milvus en AWS FSx ONTAP a través del
almacenamiento de archivos y objetos.

Exploramos la dualidad archivo-objeto de NetApp, demostrando su utilidad no sólo para datos en bases de
datos vectoriales sino también para otras aplicaciones. También destacamos cómo SnapCenter, el producto
de gestión empresarial de NetApp, ofrece funcionalidades de backup, restauración y clonación para datos de
bases de datos vectoriales, garantizando la integridad y disponibilidad de los datos.

El documento también profundiza en cómo la solución de nube híbrida de NetApp ofrece replicación y
protección de datos en entornos locales y en la nube, brindando una experiencia de gestión de datos segura y
sin inconvenientes. Proporcionamos información sobre la validación del rendimiento de bases de datos
vectoriales como Milvus y pgvecto en NetApp ONTAP, ofreciendo información valiosa sobre su eficiencia y
escalabilidad.

Finalmente, analizamos dos casos de uso de IA generativa: RAG con LLM y ChatAI interno de NetApp. Estos
ejemplos prácticos subrayan las aplicaciones y los beneficios reales de los conceptos y prácticas descritos en
este documento. En general, este documento sirve como una guía completa para cualquiera que busque
aprovechar las potentes soluciones de almacenamiento de NetApp para administrar bases de datos
vectoriales.

Expresiones de gratitud

El autor desea expresar su más sincero agradecimiento a los siguientes colaboradores y a otras personas que
brindaron sus comentarios y sugerencias para que este documento sea valioso para los clientes y los campos
de NetApp .

1. Sathish Thyagarajan, ingeniero de marketing técnico, ONTAP AI & Analytics, NetApp

2. Mike Oglesby, ingeniero de marketing técnico, NetApp

3. AJ Mahajan, director sénior de NetApp

4. Joe Scott, gerente de ingeniería de rendimiento de carga de trabajo, NetApp

5. Puneet Dhawan, director sénior de gestión de productos Fsx, NetApp

6. Yuval Kalderon, gerente sénior de productos, equipo de productos FSx, NetApp

Dónde encontrar información adicional

Para obtener más información sobre la información que se describe en este documento, revise los siguientes
documentos y/o sitios web:

• Documentación de Milvus - https://milvus.io/docs/overview.md

• Documentación independiente de Milvus: https://milvus.io/docs/v2.0.x/install_standalone-docker.md

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• Documentación de productos de NetApphttps://www.netapp.com/support-and-training/documentation/[]

• instaclustr -"documentación de installclustr"

Historial de versiones

Versión Fecha Historial de versiones del
documento

Versión 1.0 abril de 2024 Lanzamiento inicial

Apéndice A: Valores.yaml

Esta sección proporciona un código YAML de muestra para los valores utilizados en la
solución de base de datos vectorial de NetApp .

Apéndice A: Valores.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

49

https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Individual components can be set to a different tolerations

tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

50

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

51

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

52

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

53

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

54

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

55

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

56

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

57

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

58

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

59

minio:

 enabled: false

 name: minio

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

60

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

61

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

 timeoutSeconds: 10

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

62

 anti_affinity: false

enableAntiAffinity: no

 components:

 zookeeper: true

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

63

 zookeeper:

 volumes:

 persistence: true

 data:

 name: data

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

64

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

65

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

66

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

67

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

68

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

69

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

 username: ""

 password: ""

root@node2:~#

Apéndice B: prepare_data_netapp_new.py

Esta sección proporciona un ejemplo de script de Python utilizado para preparar datos
para la base de datos vectorial.

Apéndice B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

70

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

71

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

72

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

73

Apéndice C: verify_data_netapp.py

Esta sección contiene un script de Python de muestra que se puede utilizar para validar
la base de datos vectorial en la solución de base de datos vectorial de NetApp .

Apéndice C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

74

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

75

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

76

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Apéndice D: docker-compose.yml

Esta sección incluye código YAML de muestra para la solución de base de datos
vectorial para NetApp.

Apéndice D: docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

77

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

78

Información de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico,
electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación
electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O
IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN
DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y
sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de
este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos
a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB
de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas
comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

79

http://www.netapp.com/TM

	Solución de base de datos vectorial con NetApp : NetApp artificial intelligence solutions
	Tabla de contenidos
	Solución de base de datos vectorial con NetApp
	Solución de base de datos vectorial con NetApp
	Introducción
	Introducción

	Descripción general de la solución
	Descripción general de la solución

	Base de datos de vectores
	Base de datos de vectores

	Requisito de tecnología
	Requisito de tecnología
	Requisitos de hardware
	Requisitos de software

	Procedimiento de implementación
	Procedimiento de despliegue

	Verificación de la solución
	Descripción general de la solución
	Configuración de un clúster Milvus con Kubernetes en instalaciones locales
	Milvus con Amazon FSx ONTAP para NetApp ONTAP : dualidad de archivos y objetos
	Protección de bases de datos vectoriales mediante SnapCenter
	Recuperación ante desastres mediante NetApp SnapMirror
	Validación del rendimiento de la base de datos vectorial

	Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector
	Base de datos vectorial con Instaclustr usando PostgreSQL: pgvector

	Casos de uso de bases de datos vectoriales
	Casos de uso de bases de datos vectoriales

	Conclusión
	Conclusión

	Apéndice A: Valores.yaml
	Apéndice A: Valores.yaml

	Apéndice B: prepare_data_netapp_new.py
	Apéndice B: prepare_data_netapp_new.py

	Apéndice C: verify_data_netapp.py
	Apéndice C: verify_data_netapp.py

	Apéndice D: docker-compose.yml
	Apéndice D: docker-compose.yml

