Configuracion de la base de datos

Enterprise applications

NetApp
February 10, 2026

This PDF was generated from https://docs.netapp.com/es-es/ontap-apps-dbs/postgres/postgres-
architecture.html on February 10, 2026. Always check docs.netapp.com for the latest.

Tabla de contenidos

Configuracion de la base de datos
Arquitectura
Parametros de inicializacion
Configuracién
BRINDIS
VACIO
Espacios de tabla

A B2 BADNDN -2 -

Configuracion de la base de datos

Arquitectura

PostgreSQL es un RDBMS basado en la arquitectura de cliente y servidor. Una instancia
PostgreSQL se conoce como un cluster de base de datos, que es una coleccion de
bases de datos en lugar de una coleccion de servidores.

PostgreSQL Basic Architecture

Liser US‘ET. ;.I-s-nr =
I VShirmMmry J
| Backend Process —%
CLOG butlars

Qsnor Bufters

[It
Rl 1
Wriber WAL WWribor Iww P

Hay tres elementos principales en una base de datos PostgreSQL: El postmaster, el front-end (cliente) y el
back-end El cliente envia solicitudes al postmaster con informacién como el protocolo IP y a qué base de
datos conectarse. El posmaster autentica la conexion y la pasa al proceso back-end para continuar la
comunicacion. El proceso back-end ejecuta la consulta y envia los resultados directamente al front-end
(cliente).

Una instancia PostgreSQL se basa en un modelo multiproceso en lugar de un modelo multithread. Genera
multiples procesos para diferentes trabajos, y cada proceso tiene su propia funcionalidad. Los procesos
principales incluyen el proceso del cliente, el proceso del escritor de WAL, el proceso del escritor en segundo
plano y el proceso del puntero de control:

» Cuando un proceso de cliente (primer plano) envia solicitudes de lectura o escritura a la instancia de
PostgreSQL, no lee ni escribe datos directamente en el disco. Primero almacena los datos en buffers
compartidos y buffers de registro de escritura anticipada (WAL).

* Un proceso de escritor WAL manipula el contenido de los buffers compartidos y los buffers WAL para
escribir en los logs WAL. Los registros WAL son normalmente registros de transacciones de PostgreSQL y
se escriben secuencialmente. Por lo tanto, para mejorar el tiempo de respuesta de la base de datos,
PostgreSQL primero escribe en los registros de transacciones y reconoce al cliente.

» Para poner la base de datos en un estado coherente, el proceso de escritor en segundo plano comprueba
periodicamente el buffer compartido para ver si hay paginas sucias. A continuacion, vacia los datos en los
archivos de datos que se almacenan en volumenes o LUN de NetApp.

 El proceso de puntero de control también se ejecuta periddicamente (con menos frecuencia que el
proceso en segundo plano) e impide cualquier modificacion en los buffers. Indica al proceso de escritor
WAL que escriba y vacie el registro de punto de control al final de los registros WAL que estan
almacenados en el disco NetApp. También indica al proceso de escritura en segundo plano que escriba 'y
vacie todas las paginas sucias en el disco.

Parametros de inicializacion

Cree un nuevo cluster de base de datos mediante initdb programa. An initdb script
crea los archivos de datos, las tablas del sistema y las bases de datos de plantilla
(template0 y template1) que definen el cluster.

La base de datos de plantillas representa una base de datos de stock. Contiene definiciones para tablas del
sistema, vistas estandar, funciones y tipos de dato. pgdata actia como argumento para el initdb script que
especifica la ubicacién del cluster de base de datos.

Todos los objetos de base de datos en PostgreSQL son administrados internamente por los OIDs respectivos.
Las tablas y los indices también se gestionan mediante OID individuales. Las relaciones entre los objetos de
base de datos y sus respectivos OID se almacenan en las tablas de catalogo del sistema adecuadas, segun el
tipo de objeto. Por ejemplo, los OIDs de las bases de datos y las tablas de pila se almacenan en
pg_databasey 'pg_class, respectivamente. Puede determinar los OID emitiendo consultas en el cliente
PostgreSQL.

Cada base de datos tiene sus propias tablas individuales y archivos de indice que estan restringidos a 1GB.
Cada tabla tiene dos archivos asociados, sufijos respectivamente con fsmy.. vm. Se les conoce como el
mapa de espacio libre y el mapa de visibilidad. Estos archivos almacenan la informacion sobre la capacidad
de espacio libre y tienen visibilidad en cada pagina del archivo de tabla. Los indices solo tienen mapas de
espacio libre individuales y no tienen mapas de visibilidad.

Lapg xlog/pg wal el directorio contiene los logs de escritura anticipada. Los registros de escritura
anticipada se utilizan para mejorar el rendimiento y la fiabilidad de las bases de datos. Cada vez que actualiza
una fila en una tabla, PostgreSQL escribe primero el cambio en el registro de escritura anticipada y, mas tarde,
escribe las modificaciones en las paginas de datos reales en un disco. La pg_x1og el directorio normalmente
contiene varios archivos, pero initdb crea solo el primero. Se afiaden archivos adicionales segun sea
necesario. Cada archivo xlog tiene 16MB cm de longitud.

Configuracion
Existen varias configuraciones de ajuste PostgreSQL que pueden mejorar el rendimiento.
Los parametros mas utilizados son los siguientes:

* max_connections = <num>: El numero maximo de conexiones de base de datos que se deben tener al
mismo tiempo. Use este parametro para restringir el intercambio en disco y eliminar el rendimiento. En
funcion de los requisitos de la aplicacién, también puede ajustar este parametro para la configuracion del
pool de conexiones.

* shared buffers = <num>: El método mas simple para mejorar el rendimiento de su servidor de base
de datos. El valor por defecto es bajo para la mayoria del hardware moderno. Se establece durante la
implementacion en aproximadamente el 25% de la RAM disponible en el sistema. Esta configuracion de
parametro varia segun como funciona con instancias de base de datos concretas; es posible que tenga
que aumentar y disminuir los valores por prueba y error. Sin embargo, es probable que si lo establece alto,
el rendimiento se vea afectado.

* effective cache size = <num>:Este valor indica al optimizador de PostgreSQL cuanta memoria
PostgreSQL tiene disponible para almacenar datos en caché y ayuda a determinar si se debe usar un
indice. Un valor mayor aumenta la probabilidad de usar un indice. Este parametro se debe definir en la
cantidad de memoria asignada a. shared buffers Mas la cantidad de cache del sistema operativo
disponible. A menudo, este valor supera el 50% de la memoria total del sistema.

* work mem = <num>: Este parametro controla la cantidad de memoria que se utilizara en las operaciones
de ordenacion y las tablas hash. Si realiza una clasificacidn intensiva en su aplicacién, es posible que
necesite aumentar la cantidad de memoria, pero tenga cuidado. No es un parametro de todo el sistema,
sino uno por operacion. Si una consulta compleja tiene varias operaciones de ordenacion en ella, utiliza
varias unidades de memoria work_mem, y varios back-ends podrian estar haciendo esto
simultaneamente. Esta consulta a menudo puede hacer que el servidor de base de datos cambie si el
valor es demasiado grande. Esta opcidn se llamaba anteriormente sort_mem en versiones anteriores de
PostgreSQL.

* fsync = <boolean> (on or off): Este parametro determina si todas sus paginas WAL deben
sincronizarse con el disco mediante el uso de fsync() antes de que se confirme una transaccion.
Desactivarlo puede mejorar el rendimiento de escritura y activarlo aumenta la proteccion frente al riesgo
de dafio cuando el sistema se bloquea.

* checkpoint timeout: El proceso de punto de control vacia los datos confirmados en el disco. Esto
implica una gran cantidad de operaciones de lectura/escritura en disco. El valor se establece en segundos
y los valores mas bajos disminuyen el tiempo de recuperacion de fallos y el aumento de los valores puede
reducir la carga en los recursos del sistema reduciendo las llamadas de punto de control. En funcion de la
criticidad de la aplicacion, el uso y la disponibilidad de la base de datos, defina el valor de
checkpoint_timeout.

* commit delay = <num>Yy.. commit siblings = <num>: Estas opciones se utilizan juntas para
ayudar a mejorar el rendimiento mediante la escritura de multiples transacciones que se comprometen a la
vez. Si hay varios objetos COMMIT_SIDBINGS activos en el momento en que la transaccion se esta
confirmando, el servidor espera a COMMIT_DELAY microsegundos para intentar confirmar varias
transacciones a la vez.

* max_worker processes / max parallel workers: Configure el nimero 6ptimo de trabajadores
para los procesos. Max_parallel_workers corresponde al Num. De CPU disponibles. Dependiendo del
disefo de la aplicacion, las consultas pueden requerir un nimero menor de trabajadores para las
operaciones en paralelo. Es mejor mantener el valor de ambos parametros igual, pero ajustar el valor
después de la prueba.

* random _page cost = <num>: Este valor controla la forma en que PostgreSQL visualiza las lecturas de
disco no secuenciales. Un valor mas alto significa que PostgreSQL es mas probable que use una
exploracion secuencial en lugar de una exploracion de indice, lo que indica que su servidor tiene discos
rapidos Modificar esta configuracion después de evaluar otras opciones como optimizacion basada en
planes, aspirar, indexar para alterar consultas o esquemas.

* effective io_concurrency = <num>: Este parametro establece el nimero de operaciones de E/S
de disco simultaneas que PostgreSQL intenta ejecutar simultdneamente. Al aumentar este valor, aumenta
el numero de operaciones de I/0O que cualquier sesién de PostgreSQL individual intenta iniciar en paralelo.
El rango permitido es de 1 a 1.000, o cero para deshabilitar la emision de solicitudes de E/S asincronas.
Actualmente, esta configuracion soélo afecta a las exploraciones de pila de bitmap. Las unidades de estado
solido (SSD) y otro almacenamiento basado en memoria (NVMe) pueden procesar muchas solicitudes
concurrentes, con lo que el mejor valor puede ser entre cientos.

Consulte la documentacion de PostgreSQL para obtener una lista completa de los parametros de
configuracion de PostgreSQL.

BRINDIS

TOAST es la sigla en inglés de la Técnica de Almacenamiento de Atributos Sobredimensionados. PostgreSQL
utiliza un tamano de pagina fijo (comunmente 8KB) y no permite que las tuplas se abarquen varias paginas.
Por lo tanto, no es posible almacenar valores de campo grandes directamente. Cuando intenta almacenar una
fila que excede este tamaro, TOAST divide los datos de las columnas grandes en “pedazos” mas pequenos y
los almacena en una tabla de TOSTADAS.

Los grandes valores de atributos tostados se extraen (si se selecciona) solo en el momento en que se envia el
conjunto de resultados al cliente. La tabla en si es mucho mas pequefa y puede caber mas filas en la caché
de buffers compartida de lo que podria sin ningun almacenamiento fuera de linea (TOSTADO).

VACIO

En el funcionamiento normal de PostgreSQL, las tuplas que se eliminan o quedan obsoletas por una
actualizacién no se eliminan fisicamente de su tabla; permanecen presentes hasta que se ejecuta EL VACIO.
Por lo tanto, debe ejecutar EL VACIO periédicamente, especialmente en tablas actualizadas con frecuencia. A
continuacion, se debe reclamar el espacio que ocupa para que las nuevas filas lo reutilicen, a fin de evitar la
interrupcion del espacio en disco. Sin embargo, no devuelve el espacio al sistema operativo.

El espacio libre dentro de una pagina no esta fragmentado. EL VACIO reescribe todo el bloque,
empaquetando eficientemente las filas restantes y dejando un unico bloque contiguo de espacio libre en una
pagina.

Por el contrario, EL VACIO COMPLETO compacta activamente las tablas escribiendo una version
completamente nueva del archivo de tabla sin espacio muerto. Esta accion minimiza el tamano de la tabla,
pero puede tardar mucho tiempo. También requiere espacio adicional en disco para la nueva copia de la tabla
hasta que finalice la operacién. El objetivo del VACIO DE rutina es evitar la actividad COMPLETA DEL VACIO.
Este proceso no solo mantiene las tablas en su tamafio minimo, sino que también mantiene el uso constante
del espacio en disco.

Espacios de tabla
Al inicializar el cluster de la base de datos, se crean automaticamente dos tablespaces.

La pg global el tablespace se utiliza para catalogos de sistemas compartidos. La pg_default tablespace
es el tablespace por defecto de las bases de datos template1 y template0. Si la particion o el volumen en el
que se inicializ6 el cluster se queda sin espacio y no se puede ampliar, se puede crear un tablespace en una
particion diferente y utilizarlo hasta que se pueda volver a configurar el sistema.

Un indice muy utilizado se puede colocar en un disco rapido y de alta disponibilidad, como un dispositivo de
estado soélido. Ademas, se puede almacenar una tabla que almacene datos archivados que no se utilizan con
poca frecuencia o que no son criticos para el rendimiento en un sistema de disco menos costoso y mas lento
como las unidades SAS o SATA.

Los tablespaces forman parte del cluster de base de datos y no se pueden tratar como una recopilacion
autonoma de archivos de datos. Dependen de los metadatos contenidos en el directorio de datos principal y,
por lo tanto, no se pueden asociar a otro cluster de base de datos ni realizar copias de seguridad individuales.
Del mismo modo, si pierde un tablespace (mediante la supresion de archivos, fallos de disco, etc.), el cluster
de base de datos puede volverse ilegible 0 no se puede iniciar. Colocar un tablespace en un sistema de
archivos temporal como un disco RAM pone en riesgo la fiabilidad de todo el cluster.

Una vez creado, se puede utilizar un tablespace desde cualquier base de datos si el usuario solicitante tiene
suficientes privilegios. PostgreSQL utiliza enlaces simbdlicos para simplificar la implementacion de

tablespaces. PostgreSQL afiade una fila al pg_tablespace Tabla (una tabla en todo el cluster) y asigna un
nuevo identificador de objeto (OID) a esa fila. Por ultimo, el servidor utiliza el OID para crear un enlace
simbdlico entre el cluster y el directorio dado. El directorio $PGDATA/pg_tblspc contiene enlaces simbdlicos
que apuntan a cada uno de los tablespaces no incorporados definidos en el cluster.

Informacién de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

http://www.netapp.com/TM

	Configuración de la base de datos : Enterprise applications
	Tabla de contenidos
	Configuración de la base de datos
	Arquitectura
	Parámetros de inicialización
	Configuración
	BRINDIS
	VACÍO

	Espacios de tabla

