Automatice con REPOSO
ONTAP Select

NetApp
October 24, 2025

This PDF was generated from https://docs.netapp.com/es-es/ontap-select-9151/concept_api_rest.html on
October 24, 2025. Always check docs.netapp.com for the latest.

Tabla de contenidos

Automatice con REPOSO
Conceptos
Base de servicios web DE REST
Como acceder a la API de implementacion
Implemente el control de versiones de API
Caracteristicas operativas basicas
Transaccion de API de solicitud y respuesta
Procesamiento asincrono mediante el objeto de trabajo
Acceso con un explorador
Antes de acceder a la API con un explorador
Acceda a la pagina de documentacion de despliegue
Entender y ejecutar una llamada API
Procesos de flujo de trabajo
Antes de usar los flujos de trabajo de la API
Flujo de trabajo 1: Cree un cluster de evaluacion de un solo nodo en ESXi
Acceso con Python
Antes de acceder a la APl mediante Python
Entiende los scripts de Python
Muestras de cddigo Python
Script para crear un cluster
JSON para el script a fin de crear un cluster
Script para afadir una licencia de nodo
Script para eliminar un cluster
Modulo de soporte comun
Script para cambiar el tamafio de los nodos del cluster

© O© N B WODNDDN -2 2~

AW W WN 22 2 A A A a4 a2 a A
- OO b ~ OO ©O © 000 0 ~ O O O ©

Automatice con REPOSO

Conceptos

Base de servicios web DE REST

La transferencia de estado representacional (REST) es un estilo para crear aplicaciones
web distribuidas. Cuando se aplica al disefio de una API de servicios web, establece un
conjunto de tecnologias y practicas recomendadas para exponer recursos basados en
servidor y administrar sus estados. Usa los protocolos y estandares mas habituales para
proporcionar una base flexible para la implementacion y gestion de clusteres de ONTAP
Select.

Con las restricciones clasicas y a la arquitectura

REST fue formalmente articulado por Roy Fielding en su doctorado "disertacion" en UC Irvine en 2000. Define
un estilo arquitectonico a través de un conjunto de restricciones, que han mejorado colectivamente las
aplicaciones basadas en web y los protocolos subyacentes. Estas restricciones establecen una aplicacion de
servicios web RESTful basada en una arquitectura de cliente/servidor que utiliza un protocolo de
comunicacion sin estado.

Recursos y representacion estatal

Los recursos son los componentes basicos de un sistema basado en la Web. Al crear una aplicacion DE
SERVICIOS web DE REST, las tareas de disefio mas tempranas incluyen:

* Identificacion de los recursos basados en el sistema o en el servidor cada sistema utiliza y mantiene los
recursos. Un recurso puede ser un archivo, una transaccion comercial, un proceso o una entidad
administrativa. Una de las primeras tareas en el disefio de una aplicacion basada en servicios web DE
REST es identificar los recursos.

« Definicion de estados de recursos y operaciones estatales asociadas los recursos siempre se encuentran
en uno de un numero finito de estados. Los estados, asi como las operaciones asociadas utilizadas para
afectar los cambios de estado, deben estar claramente definidos.

Los mensajes se intercambian entre el cliente y el servidor para acceder y cambiar el estado de los recursos
segun el modelo genérico CRUD (Crear, Leer, Actualizar y Eliminar).

Extremos de URI

Todos los recursos REST deben definirse y ponerse a disposicion mediante un esquema de direccionamiento
bien definido. Los extremos en los que se encuentran e identifican los recursos utilizan un identificador
uniforme de recursos (URI). EI URI proporciona un marco general para crear un nombre unico para cada
recurso de la red. El Localizador uniforme de recursos (URL) es un tipo de URI que se utiliza con los servicios
web para identificar y acceder a los recursos. Los recursos normalmente se exponen en una estructura
jerarquica similar a un directorio de archivos.

Mensajes HTTP

El Protocolo de transferencia de hipertexto (HTTP) es el protocolo utilizado por el cliente y servidor de
servicios web para intercambiar mensajes de solicitud y respuesta sobre los recursos. Como parte del disefio
de una aplicacion de servicios web, los verbos HTTP (como GET y POST) se asignan a los recursos y a las

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

acciones de administracion de estado correspondientes.

HTTP no tiene estado. Por lo tanto, para asociar un conjunto de solicitudes y respuestas relacionadas en una
transaccion, se debe incluir informacién adicional en los encabezados HTTP transportados con los flujos de
datos de solicitud/respuesta.

Formato JSON

Aunque la informacion se puede estructurar y transferir entre un cliente y un servidor de varias maneras, la
opcion mas popular (y la que se usa con la API REST de deploy) es la notacion de objetos JavaScript (JSON).
JSON es un estandar del sector para representar estructuras de datos simples en texto sin formato y se utiliza
para transferir informacion de estado que describe los recursos.

Coémo acceder a la APl de implementaciéon

Debido a la flexibilidad inherente de los servicios web de REST, se puede acceder a la
API de implementacién de ONTAP Select de varias maneras diferentes.

Implemente la interfaz de usuario nativa de la utilidad

La forma principal de acceder a la API se realiza a través de la interfaz de usuario web de implementacion de
ONTAP Select. El navegador realiza llamadas a la APl y reformatea los datos segun el disefio de la interfaz de
usuario. También se accede a la API a través de la interfaz de linea de comandos de Deploy Utility.

Pagina de documentacion en linea de ONTAP Select Deploy

La pagina de documentacién en linea ONTAP Select Deploy proporciona un punto de acceso alternativo
cuando se utiliza un explorador. Ademas de proporcionar una forma de ejecutar directamente llamadas API
individuales, la pagina también incluye una descripcion detallada de la AP, incluidos los parametros de
entrada y otras opciones para cada llamada. Las llamadas API se organizan en varias categorias o areas
funcionales diferentes.

Programa personalizado

Puede acceder a la API de implementacion utilizando cualquiera de los diferentes lenguajes y herramientas de
programacion. Entre las opciones mas populares se incluyen Python, Java y curl. Programa, script o
herramienta que usa la API actua como cliente DE servicios web REST. Utilizar un lenguaje de programacion
le permite comprender mejor la API y proporciona una oportunidad para automatizar las puestas en marcha de
ONTAP Select.

Implemente el control de versiones de API

La API DE REST que se incluye con la implementacion de ONTAP Select tiene asignado
un numero de version. El numero de version de la APl es independiente del numero de
version de implementacion. Debe conocer la version de la APl que se incluye con su
versién de implementacion y cdmo esto puede afectar al uso que hace de la API.

La version actual de la utilidad de administracion de implementacion incluye la version 3 de la API DE REST.
Las versiones anteriores de la utilidad Deploy incluyen las siguientes versiones de API:

Implemente 2.8 y posterior
ONTAP Select Deploy 2.8 y todas las versiones posteriores incluyen la versiéon 3 de la APl DE REST.

Puesta en marcha 2.7.2 y anteriores
ONTAP Select Deploy 2.7.2 y todas las versiones anteriores incluyen la versién 2 de la APl DE REST.

Las versiones 2 y 3 de la APl REST no son compatibles. Si actualiza a Deploy 2.8 o posterior

@ desde una versién anterior que incluya la version 2 de la API, debe actualizar cualquier codigo
existente que acceda directamente a la API, asi como cualquier script que utilice la interfaz de
linea de comandos.

Caracteristicas operativas basicas

Mientras QUE REST establece un conjunto comun de tecnologias y practicas
recomendadas, los detalles de cada API pueden variar en funcion de las opciones de
disefio. Debe tener en cuenta los detalles y las caracteristicas operativas de la API de
implementaciéon de ONTAP Select antes de usar la API.

Host de hipervisor frente a nodo ONTAP Select

Un hypervisor host es la plataforma de hardware principal que aloja una maquina virtual ONTAP Select.
Cuando se implementa una maquina virtual ONTAP Select y esta activa en un host de hipervisor, la maquina
virtual se considera un ONTAP Select node. Con la version 3 de la APl DE REST de implementacion, los
objetos de host y nodo son distintos y separados. Esto permite una relaciéon de uno a varios, donde uno o
varios nodos ONTAP Select pueden ejecutarse en el mismo host de hipervisor.

Identificadores de objeto

A cada instancia u objeto de recurso se le asigna un identificador Unico cuando se crea. Estos identificadores
son globalmente unicos dentro de una instancia especifica de la implementacién de ONTAP Select. Después
de emitir una llamada API que crea una nueva instancia de objeto, el valor de ID asociado se devuelve al
llamador en 1location la cabecera de la respuesta HTTP. Puede extraer el identificador y utilizarlo en
llamadas posteriores cuando haga referencia a la instancia del recurso.

El contenido y la estructura interna de los identificadores de objeto pueden cambiar en cualquier
momento. Solo se deben usar los identificadores en las llamadas API aplicables segun sea
necesario cuando se hacen referencia a los objetos asociados.

Identificadores de solicitudes

A cada solicitud API de éxito se le asigna un identificador unico. El identificador se devuelve en request-id
la cabecera de la respuesta HTTP asociada. Puede utilizar un identificador de solicitud para hacer referencia
colectivamente a las actividades de una Unica transaccion especifica de solicitud y respuesta de API. Por

ejemplo, puede recuperar todos los mensajes de eventos de una transaccion basandose en el ID de solicitud

Llamadas sincronas y asincronas

Hay dos formas principales de que un servidor realice una solicitud HTTP recibida desde un cliente:

« Sincrono el servidor realiza la solicitud inmediatamente y responde con un codigo de estado de 200, 201 o
204.

» Asincroénica el servidor acepta la solicitud y responde con un codigo de estado de 202. Esto indica que el
servidor ha aceptado la solicitud de cliente y ha iniciado una tarea en segundo plano para completar la
solicitud. El éxito o el fallo final no estan disponibles de forma inmediata y se deben determinar mediante

llamadas API adicionales.

Confirmar que se ha completado un trabajo de ejecucién prolongada

Por lo general, cualquier operacion que puede tardar mucho tiempo en completarse se procesa de forma
asincrona mediante una tarea en segundo plano en el servidor. Con la API Deploy REST, cada tarea en
segundo plano esta anclada por un objeto Job que realiza un seguimiento de la tarea y proporciona
informacion, como el estado actual. Un objeto Job, incluido su identificador unico, se devuelve en la respuesta
HTTP después de crear una tarea en segundo plano.

Puede consultar el objeto Job directamente para determinar el éxito o el error de la llamada API asociada.
Consulte procesamiento asincrono mediante el objeto Job para obtener informacién adicional.

Ademas de utilizar el objeto Job, existen otras formas de determinar el éxito o el fallo de una solicitud, entre
las que se incluyen:

* Mensajes de eventos puede recuperar todos los mensajes de eventos asociados con una llamada API
especifica utilizando el ID de solicitud devuelto con la respuesta original. Los mensajes de eventos
normalmente contienen una indicacién de éxito o fallo, y también pueden ser Utiles al depurar una
condicioén de error.

» Estado o estado de recurso varios de los recursos mantienen un valor de estado o estado al que puede
consultar para determinar indirectamente el éxito o el error de una solicitud.

Seguridad

La API de implementacion utiliza las siguientes tecnologias de seguridad:

» Seguridad de la capa de transporte todo el trafico enviado a través de la red entre el servidor de
implementacion y el cliente se cifra a través de TLS. No se admite el uso del protocolo HTTP a través de
un canal no cifrado. Se admite la versién 1.2 de TLS.

» Autenticacion HTTP la autenticacion basica se utiliza para cada transaccién de API. A cada solicitud se
agrega un encabezado HTTP, que incluye el nombre de usuario y la contrasefia en una cadena base64.

Transaccioén de API de solicitud y respuesta

Cada llamada de API de implementacion se realiza como una solicitud HTTP a la
maquina virtual de implementacion, que genera una respuesta asociada al cliente. Este
par de solicitud/respuesta se considera una transaccion de API. Antes de utilizar la API
de implementacion, deberia estar familiarizado con las variables de entrada disponibles
para controlar una solicitud y el contenido del resultado de la respuesta.

Variables de entrada que controlan una solicitud API

Puede controlar como se procesa una llamada APIl mediante parametros definidos en la solicitud HTTP.

Solicitar encabezados

Debe incluir varios encabezados en la solicitud HTTP, incluidos:

* Tipo de contenido Si el cuerpo de la solicitud incluye JSON, este encabezado debe establecerse en
Application/json.

» Acepte Si el cuerpo de respuesta incluira JSON, este encabezado debe establecerse en Application/json.

 Autorizacion la autenticacion basica se debe establecer con el nombre de usuario y la contrasefa
codificados en una cadena base64.

Solicitar el cuerpo

El contenido del cuerpo de la solicitud varia en funcion de la llamada especifica. El cuerpo de la solicitud
HTTP consta de uno de los siguientes elementos:

* Objeto JSON con variables de entrada (como el nombre de un cluster nuevo)
* Vacio
Filtrar objetos

Al emitir una llamada API que utilice GET, puede limitar o filtrar los objetos devueltos en funcién de cualquier
atributo. Por ejemplo, puede especificar un valor exacto para que coincida:

<field>=<query value>

Ademas de una coincidencia exacta, hay otros operadores disponibles para devolver un conjunto de objetos
sobre un rango de valores. ONTAP Select admite los operadores de filtrado que se muestran a continuacion.

Operador Descripcion

= Igual a.

< Menor que

> Mayor que

& Menor o igual que

>= Mayor o igual que
0.

! No es igual a.

* Comodin codicioso

También puede devolver un conjunto de objetos basandose en si se establece o no un campo especifico
utilizando la palabra clave null o su negacién (Inull) como parte de la consulta.

Seleccion de campos de objeto

De forma predeterminada, al emitir una llamada API mediante GET, sélo se devuelven los atributos que
identifican de forma exclusiva el objeto o los objetos. Este conjunto minimo de campos actua como clave para
cada objeto y varia segun el tipo de objeto. Puede seleccionar propiedades de objeto adicionales mediante el
parametro de consulta Campos de las siguientes formas:

* Los campos de bajo coste especifican fields=* recuperar los campos de objeto que se mantienen en la
memoria del servidor local o que requieren poco procesamiento para acceder.

* Los campos caros especifican fields=** para recuperar todos los campos de objeto, incluidos los que
requieren un procesamiento de servidor adicional para acceder.

* Seleccidn de campo personalizado: Utilice fields=FIELDNAME para especificar el campo exacto que
desea. Al solicitar varios campos, los valores deben separarse con comas sin espacios.

Como practica recomendada, siempre debe identificar los campos especificos que desea. Sdlo

debe recuperar el conjunto de campos baratos o caros cuando sea necesario. NetApp
determina la clasificacion econdmica y cara basandose en el analisis del rendimiento interno. La
clasificacion de un campo determinado puede cambiar en cualquier momento.

Ordenar objetos en el conjunto de salida

Los registros de una coleccion de recursos se devuelven en el orden predeterminado definido por el objeto.
Puede cambiar el orden utilizando el parametro de consulta ORDER_BY con el nombre del campo y la
direccion de ordenacion de la siguiente manera:

order by=<field name> asc|desc

Por ejemplo, puede ordenar el campo de tipo en orden descendente seguido de id en orden ascendente:
order by=type desc, id asc

Cuando se incluyan varios parametros, los campos deben separarse con una coma.

Paginacion

Al emitir una llamada API mediante GET para acceder a una coleccién de objetos del mismo tipo, todos los
objetos coincidentes se devuelven de forma predeterminada. Si es necesario, puede limitar el nimero de
registros devueltos mediante el parametro de consulta max_Records con la solicitud. Por ejemplo:

max records=20

Si es necesario, puede combinar este parametro con otros parametros de consulta para restringir el conjunto
de resultados. Por ejemplo, lo siguiente devuelve hasta 10 eventos del sistema generados después del tiempo
especificado:

time= 2019-04-04T15:41:29.140265Z&max _records=10

Puede emitir varias solicitudes para paginas a través de los eventos (o cualquier tipo de objeto). Cada llamada
API posterior debe utilizar un nuevo valor de tiempo basado en el ultimo evento del ultimo conjunto de
resultados.

Interpretar una respuesta API

Cada solicitud de API genera una respuesta al cliente. Puede examinar la respuesta para determinar si ha
tenido éxito y recuperar datos adicionales segun sea necesario.

Codigo de estado HTTP

A continuacién se describen los codigos de estado HTTP utilizados por la APl de REST de despliegue.

Codificacion Significado Descripcion

200 DE ACUERDO Indica que las llamadas que no crean un objeto nuevo se han
realizado correctamente.

201 Creado Se ha creado correctamente un objeto; el encabezado de respuesta
de ubicacion incluye el identificador unico del objeto.

202 Aceptado Se inicid un trabajo en segundo plano de ejecucion prolongada para
realizar la solicitud, pero la operacién aun no se ha completado.

400 Solicitud incorrecta La entrada de la solicitud no se reconoce o no es apropiada.

Codificacion Significado Descripcion

403 Prohibido Se deniega el acceso debido a un error de autorizacion.

404 No encontrado El recurso al que se hace referencia en la solicitud no existe.
405 Método no permitido EIl verbo HTTP de la solicitud no es compatible con el recurso.
409 Conflicto Error al intentar crear un objeto porque el objeto ya existe.
500 Error interno Se ha producido un error interno general en el servidor.

501 No implementada El URI es conocido pero no es capaz de realizar la solicitud.

Encabezados de respuesta

Se incluyen varios encabezados en la respuesta HTTP generada por el servidor de implementacioén, entre los
que se incluyen:

« ID de solicitud a cada solicitud API correcta se le asigna un identificador de solicitud Unico.

+ Ubicacion cuando se crea un objeto, el encabezado de ubicacion incluye la direccion URL completa del
nuevo objeto, incluido el identificador de objeto unico.

Cuerpo de respuesta

El contenido de la respuesta asociada a una solicitud API varia en funcién del objeto, el tipo de procesamiento
y el éxito o el fallo de la solicitud. El cuerpo de la respuesta se representa en JSON.

* Objeto Unico un solo objeto se puede devolver con un conjunto de campos basados en la solicitud. Por
ejemplo, se puede usar GET para recuperar las propiedades seleccionadas de un cluster mediante el
identificador unico.

» Se pueden devolver varios objetos de una coleccion de recursos. En todos los casos, se utiliza un formato
consistente, con num_records la indicacion del numero de registros y registros que contienen una matriz
de las instancias de objeto. Por ejemplo, puede recuperar todos los nodos definidos en un cluster
especifico.

* Objeto de trabajo Si una llamada API se procesa de forma asincrona, se devuelve un objeto Job que ancla
la tarea en segundo plano. Por ejemplo, la solicitud POST utilizada para implementar un clister se
procesa de forma asincrona y devuelve un objeto Job.

» Objeto error Si se produce un error, siempre se devuelve un objeto error. Por ejemplo, recibira un error al
intentar crear un cluster con un nombre que ya existe.

* Vacio en determinados casos, no se devuelve ningun dato y el cuerpo de respuesta esta vacio. Por
ejemplo, el cuerpo de respuesta esta vacio después de utilizar DELETE para eliminar un host existente.

Procesamiento asincrono mediante el objeto de trabajo

Algunas de las llamadas de implementacién de API, especialmente las que crean o
modifican un recurso, pueden tardar mas tiempo en completarse que otras llamadas. La
implementacién de ONTAP Select procesa estas solicitudes de ejecucion prolongada de
forma asincrona.

Solicitudes asincrénicas descritas mediante el objeto Job

Después de realizar una llamada API que se ejecuta de forma asincrona, el cédigo de respuesta HTTP 202

indica que la solicitud se ha validado y aceptado correctamente, pero que aun no se ha completado. La
solicitud se procesa como una tarea en segundo plano que continua ejecutandose después de la respuesta
HTTP inicial al cliente. La respuesta incluye el objeto Job anclando la solicitud, incluyendo su identificador
unico.

@ Consulte la pagina de documentacion en linea de implementacion de ONTAP Select para
determinar qué llamadas API funcionan de forma asincrona.

Consulte el objeto Job asociado a una solicitud API

El objeto Job devuelto en la respuesta HTTP contiene varias propiedades. Puede consultar la propiedad state
para determinar si la solicitud se completd correctamente. Un objeto Job puede estar en uno de los siguientes
estados:

* En cola

* Ejecutando

» Correcto

 Fallo
Existen dos técnicas que se pueden utilizar al sondear un objeto Job para detectar un estado de terminal para
la tarea, ya sea con éxito o con un error:

« El estado actual del trabajo de la solicitud de sondeo estandar se devuelve inmediatamente

« El estado del trabajo de solicitud de sondeo largo solo se devuelve cuando se produce una de las
siguientes situaciones:

o El estado ha cambiado mas recientemente que el valor de fecha y hora proporcionado en la solicitud
de sondeo

o El valor de tiempo de espera ha caducado (de 1 a 120 segundos)

Sondeo estandar y sondeo largo Utilice la misma llamada API para consultar un objeto Job. Sin embargo, una
solicitud de sondeo larga incluye dos parametros de consulta: poll timeout Y last modified.

Siempre debe utilizar los sondeos largos para reducir la carga de trabajo en la maquina virtual
de implementacion.
Procedimiento general para emitir una solicitud asincrénica
Puede utilizar el siguiente procedimiento de alto nivel para completar una llamada API asincrona:
1. Emita la llamada de API asincrona.

Reciba una respuesta HTTP 202 que indique la aceptacion correcta de la solicitud.

Extraiga el identificador del objeto Job del cuerpo de respuesta.

> 0N

Dentro de un bucle, realice lo siguiente en cada ciclo:
a. Obtener el estado actual del trabajo con una solicitud de sondeo largo

b. Si el trabajo se encuentra en un estado que no es terminal (en cola, en ejecucion), vuelva a realizar el
bucle.

5. Deténgase cuando el trabajo alcance un estado terminal (correcto, fallo).

Acceso con un explorador

Antes de acceder a la APl con un explorador

Hay varias cosas que debe tener en cuenta antes de utilizar la pagina de documentacion
en linea de implementacion.

Plan de implementacién

Si piensa emitir lamadas APl como parte de la realizacién de tareas administrativas o de implementacion
especificas, deberia considerar la creacion de un plan de implementacion. Estos planes pueden ser formales
o informales, y, por lo general, contienen sus objetivos y las llamadas a las API que se deben utilizar. Consulte
procesos de flujo de trabajo mediante la APl DE REST de puesta en marcha para obtener mas informacion.

Ejemplos de JSON y definiciones de parametros

Cada llamada API se describe en la pagina de documentacién usando un formato consistente. El contenido
incluye notas de implementacion, parametros de consulta y codigos de estado HTTP. Ademas, puede mostrar
detalles sobre JSON utilizado con las solicitudes y respuestas de API de la siguiente manera:

» Ejemplo de valor Si hace clic en ejemplo valor en una llamada API, se muestra una estructura JSON tipica
para la llamada. Puede modificar el ejemplo segun sea necesario y utilizarlo como entrada para su
solicitud.

« Si hace clic en Model, se muestra una lista completa de los parametros JSON, con una descripcion de
cada parametro.

Precaucion al emitir lamadas API

Todas las operaciones de API que se realizan mediante la pagina de documentacion de implementacion son
operaciones en directo. Debe tener cuidado de no crear, actualizar o eliminar por error la configuracién u otros
datos.

Acceda a la pagina de documentacion de despliegue

Para ver la documentacién en linea de la implementaciéon de ONTAP Select, debe

acceder a la documentacién de API, y también para emitir manualmente una llamada
API.

Antes de empezar
Debe tener lo siguiente:

 La direccion IP o el nombre de dominio de la maquina virtual de implementacion de ONTAP Select

* Nombre de usuario y contrasefia del administrador

Pasos

1. Escriba la direccion URL en su navegador y pulse Intro:
https://<ip address>/api/ui

2. Inicie sesion con el nombre de usuario y la contrasena del administrador.

Resultado

Se muestra la pagina web de la documentacion de despliegue con las llamadas organizadas por categoria en
la parte inferior de la pagina.

Entender y ejecutar una llamada API

Los detalles de todas las llamadas API se documentan y se muestran usando un formato
comun en la pagina web de documentacion en linea de implementacion de ONTAP
Select. Al comprender una unica llamada API, puede acceder a los detalles de todas las
llamadas API e interpretarlos.

Antes de empezar

Debe haber iniciado sesion en la pagina web de documentacion en linea de implementacion de ONTAP
Select. Debe tener asignado el identificador Unico al cluster ONTAP Select cuando se creé el cluster.

Acerca de esta tarea

Puede recuperar la informacion de configuracion que describe un clister de ONTAP Select con su
identificador unico. En este ejemplo, se devuelven todos los campos clasificados como baratos. Sin embargo,
como practica recomendada, solo se deben solicitar los campos especificos que se necesitan.

Pasos
1. En la pagina principal, desplacese hasta la parte inferior y haga clic en Cluster.

2. Haga clic en GET /Clusters/{cluster_id} para mostrar los detalles de la llamada API utilizada para
devolver informacién acerca de un cluster ONTAP Select.

Procesos de flujo de trabajo

Antes de usar los flujos de trabajo de la API

Debe prepararse para revisar y utilizar los procesos de flujo de trabajo.

Comprender las llamadas API utilizadas en los flujos de trabajo

La pagina de documentacién en linea de ONTAP Select incluye los detalles de cada llamada a la API DE
REST. En lugar de repetir estos detalles aqui, cada llamada de API utilizada en los ejemplos de flujo de
trabajo incluye solo la informacion necesaria para localizar la llamada en la pagina de documentacion.
Después de localizar una llamada API especifica, puede revisar los detalles completos de la llamada, incluidos
los parametros de entrada, formatos de salida, cédigos de estado HTTP y tipo de procesamiento de
solicitudes.

Se incluye la siguiente informacion para cada llamada de API dentro de un flujo de trabajo para ayudar a
localizar la llamada en la pagina de documentacion:

» Categoria las llamadas API se organizan en la pagina de documentacion en categorias o areas
relacionadas con la funcionalidad. Para ubicar una llamada API especifica, desplacese hasta la parte
inferior de la pagina y haga clic en la categoria API correspondiente.

» Verbo HTTP el verbo HTTP identifica la accién realizada en un recurso. Cada llamada API se ejecuta a
través de un unico verbo HTTP.

» Ruta de acceso la ruta de acceso determina el recurso especifico al que se aplica la accion como parte de
la realizacion de una llamada. La cadena de ruta de acceso se anexa a la URL de nucleo para formar la

10

URL completa que identifica el recurso.

Construir una URL para acceder directamente a la APl de REST

Ademas de la pagina de documentacion de ONTAP Select, también puede acceder a la APl DE REST de
puesta en marcha directamente mediante un lenguaje de programacion como Python. En este caso, la URL
principal es ligeramente diferente a la URL utilizada al acceder a la pagina de documentacion en linea. Al
acceder a la API directamente, debe anexar /api al dominio y la cadena de puerto. Por ejemplo:
http://deploy.mycompany.com/api

Flujo de trabajo 1: Cree un cluster de evaluacion de un solo nodo en ESXi

Se puede poner en marcha un cluster de ONTAP Select de un solo nodo en un host

VMware ESXi gestionado por vCenter. El cluster se crea con una licencia de evaluacion.

El flujo de trabajo de creacion del cluster difiere en las siguientes situaciones:

» El host ESXi no esta gestionado por vCenter (host independiente)
 Se utilizan varios nodos o hosts en el cluster
« Cluster se implementa en un entorno de produccion con una licencia adquirida

* En lugar de VMware ESXi, se utiliza el hipervisor KVM

1. Registre la credencial de vCenter Server

Cuando se ponga en marcha en un host ESXi gestionado por una instancia de vCenter Server, debe anadir
una credencial antes de registrar el host. La utilidad de administracion de implementacion puede usar la
credencial para autenticar en vCenter.

Categoria Verbo HTTP Ruta

Puesta en PUBLICAR /seguridad/credenciales
marcha

Rizo

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

Entrada JSON (paso 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",
"username": "misteradmin@vsphere.local",

"password": "mypassword"

11

Tipo de procesamiento
Asincrona

Salida
* ID de credencial en la cabecera de respuesta de ubicacion

* Objeto de trabajo

2. Registre un host de hipervisor

Debe afadir un host de hipervisor donde se ejecutara la maquina virtual que contiene el nodo ONTAP Select.

Categoria Verbo HTTP Ruta
Cluster PUBLICAR /hosts

Rizo

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts’

Entrada JSON (paso 02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo de procesamiento
Asincrona

Salida
* ID de host en el encabezado de respuesta de ubicacion

* Objeto de trabajo

3. Cree un cluster

Cuando se crea un cluster ONTAP Select, se registra la configuracion basica de cluster y los nombres de los
nodos se generan automaticamente mediante la implementacion.

Categoria Verbo HTTP Ruta
Cluster PUBLICAR [cluster

12

Rizo
El parametro de consulta node_count se debe establecer como 1 para un cluster de un solo nodo.

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

Entrada JSON (paso 03)

"name": "my cluster"

Tipo de procesamiento
Sincrona

Salida
* ID de cluster en el encabezado de respuesta de ubicacion

4. Configure el cluster

Debe proporcionar varios atributos como parte de la configuracion del cluster.

Categoria Verbo HTTP Ruta
Cluster PARCHE [cluster/{cluster_id}

Rizo
Debe proporcionar el ID de cluster.

curl -iX PATCH -H 'Content-Type: application/Jjson' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (paso 04)

"dns_info": {

"domains": ["labl.company-demo.com"],

"dns ips": ["10.206.80.135", "10.206.80.136"]

by

"ontap image version": "9.5",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",
"netmask": "255.255.255.192",

"ntp servers": {"10.206.80.183"}

13

Tipo de procesamiento
Sincrona

Salida
Ninguno
5. Recupere el nombre del nodo

La utilidad de administracion Deploy genera automaticamente los identificadores de nodo y los nombres
cuando se crea un cluster. Para poder configurar un nodo, debe recuperar el ID asignado.

Categoria Verbo HTTP Ruta
Cluster OBTENGA [cluster/{cluster_id}/nodos

Rizo
Debe proporcionar el ID de cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=1id, name'

Tipo de procesamiento
Sincrona

Salida
» La matriz registra cada uno de ellos describiendo un solo nodo con el ID y el nombre unicos

6. Configure los nodos

Debe proporcionar la configuracion basica del nodo, que es la primera de las tres llamadas API que se usan
para configurar un nodo.

Categoria Verbo HTTP Ruta
Cluster RUTA [cluster/{cluster_id}/nodes/{node_id}

Rizo
Debe proporcionar el ID de cluster y el ID de nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (paso 06)
Debe proporcionar el ID de host donde se ejecutara el nodo de ONTAP Select.

14

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Tipo de procesamiento
Sincrona

Salida
Ninguno
7. Recupere las redes del nodo

En el cluster de un Unico nodo, debe identificar las redes de datos y gestion que utiliza el nodo. La red interna
no se usa con un cluster de un solo nodo.

Categoria Verbo HTTP Ruta
Cluster OBTENGA [cluster/{cluster_id}/nodes/{node_id}/redes

Rizo
Debe proporcionar el ID de cluster y el ID de nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Tipo de procesamiento
Sincrona

Salida
» Matriz de dos registros que describen una sola red para el nodo, incluyendo el identificador Unico y el
proposito

8. Configure la conexién a redes del nodo

Debe configurar las redes de gestién y datos. La red interna no se usa con un cluster de un solo nodo.

@ Emita la siguiente llamada API dos veces, una por cada red.

Categoria Verbo HTTP Ruta
Cluster PARCHE [cluster/{cluster_id}/nodes/{node_id}/networks/{network id}

15

Rizo
Debe proporcionar el ID de cluster, el ID de nodo y el ID de red.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrada JSON (paso 08)
Debe proporcionar el nombre de la red.

"name": "sDOT Network"

Tipo de procesamiento
Sincrona

Salida
Ninguno
9. Configure el pool de almacenamiento del nodo

El paso final de configurar un nodo es conectar un pool de almacenamiento. Se pueden determinar los pools
de almacenamiento disponibles a través del cliente web de vSphere, o bien, de manera opcional, mediante la
API DE REST Depiloy.

Categoria Verbo HTTP Ruta
Cluster PARCHE [cluster/{cluster_id}/nodes/{node_id}/networks/{network_id}

Rizo
Debe proporcionar el ID de cluster, el ID de nodo y el ID de red.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (paso 09)
La capacidad del pool es 2 TB.

16

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo de procesamiento
Sincrona

Salida
Ninguno
10. Ponga en marcha el cluster
Después de configurar el cluster y el nodo, puede implementar el cluster.

Categoria Verbo HTTP Ruta
Cluster PUBLICAR [cluster/{cluster_id}/deploy

Rizo
Debe proporcionar el ID de cluster.

curl -1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrada JSON (paso 10)
Debe proporcionar la contrasena de la cuenta de administrador de ONTAP.

"ontap credentials": {

"password": "mypassword"

Tipo de procesamiento
Asincrona

Salida
* Objeto de trabajo

17

Acceso con Python

Antes de acceder a la APl mediante Python
Debe preparar el entorno antes de ejecutar los scripts Python de ejemplo.
Antes de ejecutar los scripts de Python, debe asegurarse de que el entorno esta configurado correctamente:

* Debe instalarse la ultima versién aplicable de python2. Los cddigos de las muestras se han probado
utilizando python2. También deben ser portatiles a Python3, pero no han sido probados para la
compatibilidad.

» Deben instalarse las solicitudes y las bibliotecas urllib3. Puede utilizar pip u otra herramienta de gestion
Python segun sea necesario para su entorno.

« La estacién de trabajo cliente donde se ejecutan los scripts debe tener acceso de red a la maquina virtual
ONTAP Select Deploy.

Ademas, debe tener la siguiente informacion:

* Direccion IP de la maquina virtual de implementacion

* Nombre de usuario y contrasefia de una cuenta de administrador de despliegue

Entiende los scripts de Python

Los scripts Python de ejemplo le permiten realizar varias tareas diferentes. Debe
comprender los scripts antes de utilizarlos en una instancia de despliegue en directo.

Caracteristicas de disefio comunes

Los scripts se han disefiado con las siguientes caracteristicas comunes:

 Ejecutar desde la interfaz de linea de comandos en un equipo cliente puede ejecutar los scripts de Python
desde cualquier equipo cliente configurado correctamente. Consulte antes de comenzar para obtener mas
informacion.

» Aceptar los parametros de entrada de la CLI cada script se controla en la CLI a través de parametros de
entrada.

« Leer archivo de entrada cada script lee un archivo de entrada segun su proposito. Cuando crea o elimina
un cluster, debe proporcionar un archivo de configuracion JSON. Al aiadir una licencia de nodo, debe
proporcionar un archivo de licencia valido.

« Utilice un médulo de soporte comun el médulo de soporte comun deploy Requests.py contiene una sola
clase. Cada uno de los scripts lo importa y lo utiliza.

Cree un cluster

Es posible crear un cluster de ONTAP Select con el script cluster.py. Segun los parametros de la CLI y el
contenido del archivo de entrada JSON, puede modificar el script en el entorno de implementacién de la
manera siguiente:

* Hipervisor puede ponerse en marcha en ESXI o KVM (segun la version de puesta en marcha). Cuando se
pone en marcha en ESXi, el hipervisor puede gestionarse con vCenter o puede ser un host independiente.

» Tamano del cluster puede poner en marcha un cluster de un solo nodo o de varios nodos.

18

* Licencia de evaluacién o produccion puede implementar un cluster con una evaluacién o adquirir una
licencia para produccion.

Los parametros de entrada de la CLI para el script incluyen:

* Nombre de host o direccion IP del servidor de implementacion
» Contrasefia de la cuenta de usuario administrador
* Nombre del archivo de configuracion JSON

¢ Indicador detallado para la salida de mensajes

Anada una licencia de nodo

Si decide implementar un cluster de produccion, debe agregar una licencia para cada nodo utilizando el script
add_license.py. Puede afadir la licencia antes o después de implementar el cluster.

Los parametros de entrada de la CLI para el script incluyen:

* Nombre de host o direccion IP del servidor de implementacion
» Contrasefia de la cuenta de usuario administrador
* Nombre del archivo de licencia
* Nombre de usuario de ONTAP con privilegios para afadir la licencia
» Contrasefia del usuario de ONTAP
Elimine un cluster
Es posible eliminar un cluster ONTAP Select existente con el script delete_cluster.py.

Los parametros de entrada de la CLI para el script incluyen:

* Nombre de host o direccién IP del servidor de implementacion
» Contrasefa de la cuenta de usuario administrador

* Nombre del archivo de configuracion JSON

Muestras de cédigo Python

Script para crear un cluster

Puede utilizar el siguiente script para crear un cluster basado en los parametros definidos
en el script y en un archivo de entrada JSON.

#!/usr/bin/env python

e
#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

19

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= o S = S S S S S $E o

import traceback
import argparse
import Jjson
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter
['"hostname']) :
log info("Registering vcenter {} credentials".format (vcenter
['hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username',
'password']}
data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log debug trace ()

hosts = config.get ('hosts', [1])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.

20

If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists
('/security/credentials',
'hostname',
host['name']) :
log info("Registering host {} credentials".format (host]|
'name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}

deploy.post ('/security/credentials', data)

def register unkown hosts(deploy, config):
""" Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host
["type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log info(
"Registering from vcenter {mgmt server}".format (**
host))
if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host]|
'user']}

21

log info("Registering {type} host {name}".format (**host))
data["hosts"].append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log info("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster configlk] for k in |
'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns _info', 'ntp servers']}
num nodes = len(config['nodes'])
log info("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node_count:{}'.format(num_nodes),
data)
cluster id = resp.headers.get ('Location').split('/") [-1]
return cluster id
def get node ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'"''
log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids = [node['id'] for node in response.json() .get('records')]
return node ids

22

def add node_attributes(deploy, cluster id, node id, node):

'''" Set all the needed properties on a node '''

log _debug trace ()
log info("Adding node '{}' properties".format (node id))

data = {k: nodelk] for k in ['ip', 'serial number', 'instance type',

'is storage efficiency enabled'] if k in
node}

Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:

log and exit ("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))

deploy.patch('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):

'"'" Set the network information for a node '''

log debug trace ()
log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

23

24

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource (
'/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch ('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):

Set all the storage information on a node '''
log _debug trace ()

log info("Adding node '{}' storage properties".format (node id))

log info("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (

'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),

data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage'](['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,
node id), data)

def create cluster config(deploy, config):
""" Construct a cluster config in the deploy server using the input
json data '''

log debug trace ()
cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node configq)
add node storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log debug trace ()
log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'
]['ontap admin password']}}
deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format
(cluster id),
data, wait for job=True)

def log debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]

Q

logging.getlLogger ('deploy') .debug('Calling $s()' % parent function)

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:

logging.basicConfig(level=1logging.DEBUG, format=FORMAT)

else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main (args):

25

configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add_vcenter credentials (deploy, config)
add standalone host credentials(deploy, config)
register unkown hosts(deploy, config)
cluster id = create cluster config(deploy, config)
deploy cluster(deploy, cluster id, config)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '—--password', help='Admin password of Deploy
server')
parser.add argument ('-c', '--config file', help='Filename of the

cluster config')
parser.add argument ('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON para el script a fin de crear un cluster

Cuando crea o elimina un cluster de ONTAP Select con ejemplos de cédigo Python, debe
proporcionar un archivo JSON como entrada del script. Puede copiar y modificar la
muestra JSON adecuada en funcion de sus planes de implementacion.

Cluster de un solo nodo en ESXi

"hosts": [
{

26

"password": "mypasswordl",

"name": "host-1234",
"type": "ESX",
"username": "admin"

}
1,

"cluster": {

"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]

by
"ontap image version": "9.7",
"gateway": "10.206.80.1",

ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"
by

"nodes": [
{

"serial number": "3200000nn",

"ip": "10.206.80.114",

"name": "node-1",

"networks": [

{

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlian": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

com",

27

"host name": "host-1234",

"is storage efficiency enabled": false,

"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",

"capacity": 4802666790125

Cluster de un solo nodo en ESXi mediante vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "lab2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {

28

"password" : "mypassword2",
"hostname":"vcenter-1234",

"username" :"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" : "node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan":null

"name": "ONTAP-Internal",
"purpose":"internal",

"vlan" :null

1,

"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

false,

29

Cluster de un solo nodo en KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",
"username" :"root"
}
1,

"cluster": {

"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlian":1234

by

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

30

com",

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Script para anadir una licencia de nodo

Se puede usar el siguiente script para afadir una licencia de un nodo ONTAP Select.

#!/usr/bin/env python

=

H FH= FH H H FH H H H H H H H H H

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

31

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_license (deploy, license filename) :
log info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={"license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):

log info('Adding license for serial number: {}'.format (serial number))

deploy.put ('/licensing/licenses/{}'.format (serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}
put license(deploy, serial number, data, files)
def put free license (deploy, serial number, license filename) :
data = {}

files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

32

def get serial number from license(license filename) :

''"" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get ('statusResp', {})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:

log and exit ("The license file seems to be missing the

serialNumber")

def

def

def

return serialNumber

1og_info(msg):
logging.getLogger ('deploy') .info (msqg)

log _and exit (msqg):
logging.getLogger ('deploy') .error (msg)
exit (1)

configure logging() :

FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .

setlLevel (logging.WARNING)

def main(args):

configure logging /()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-

number

its

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if
used

if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to

33

the node
if args.ontap username and args.ontap password:
put used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post new license(deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument ('-1', '--license', required=True, type=str, help
='Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password',6 type=str,
help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_ args ()
if name == ' main ':
args = parseArgs ()
main (args)

Script para eliminar un cluster

Es posible utilizar el siguiente script de la CLI para eliminar un cluster existente.

#!/usr/bin/env python

File: delete cluster.py

34

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S S S S S SR S S SR S S oE

import argparse
import Jjson
import logging

from deploy requests import DeployRequests
def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusters/{}?fields=state’'.format (cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':

log info("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_ cluster (deploy, cluster id):
log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format(cluster_id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :

35

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'

logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlogger ('requests.packages.urllib3.connectionpool') .
setlLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info ("Found the cluster {} with id: {}.".format (config
['cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of Deploy server')

parser.add argument ('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_ args ()

if name == ' main ':
args = parseArgs ()
main (args)

Médulo de soporte comun

Todos los scripts de Python utilizan una clase Python comun en un unico médulo.

#!/usr/bin/env python

36

R T TR

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import Jjson

import logging

import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy")

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

37

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put (self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug ('PUT DATA:"')
response = requests.put (self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job(response.json())

return response

def get(self, path):
""" Get a resource object from the specified path """

38

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job(response.json())

return response

def find resource(self, path, name, value):
''"'" Returns the 'id' of the resource if it exists, otherwise None

None
self.get ('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status_code == 200 and response.json() .get

resource

response

("num records') >= 1:
resource = response.json().get('records') [0].get ('id")

return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query opt))

if response.status_code == 200
return response.json().get ('num records')
return None

def resource exists(self, path, name, value):
return self.find resource(path, name, value) is not None

def wait for job(self, response, poll timeout=120):
last modified = response['job']['last modified']

40

job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))
job body = response.json().get ('record', {})
Show interesting message updates
message = job body.get ('message', ''")
self.logger.info ('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job_body.get ('last modified')
Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on _errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers(response),
response. text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):

'''" Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Script para cambiar el tamano de los nodos del cluster

Puede usar el siguiente script para cambiar el tamafio de los nodos de un cluster de
ONTAP Select.

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing
this
script and returns the resulting namespace. If all required
arguments
are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'

' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all

nodes in'
' the cluster. If a list of nodes is provided, it must be provided

in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_ args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args

.cluster)
if not cluster id:

42

QN

return None

o

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).json

'record']

def get request body(parsed args, cluster):

the

mwiwn mwmnn

Build the request body
changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args

.nodes]

changes|['nodes'] = [

{'instance type': parsed args.instance type, 'id': node['id']} for

node 1in nodes]

return changes

def main() :

mwiwn

Set up the resize operation by gathering the necessary data and

then send

the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig (

format='[%(asctime)s] [%(levelname)5s] % (message)s', level=

logging.INFO,)

logging.getlLogger ('requests.packages.urllib3') .setLevel (logging

.WARNING)

parsed args = parse args|()
deploy = DeployRequests (parsed args.deploy, parsed args

.deploy password)

cluster = get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %

parsed args.cluster)

return 1

43

44

changes = get request body(parsed args,

[¢)

cluster)

deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job

=True)

if name == ' main U g

sys.exit (main())

Informacién de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

45

http://www.netapp.com/TM

	Automatice con REPOSO : ONTAP Select
	Tabla de contenidos
	Automatice con REPOSO
	Conceptos
	Base de servicios web DE REST
	Cómo acceder a la API de implementación
	Implemente el control de versiones de API
	Características operativas básicas
	Transacción de API de solicitud y respuesta
	Procesamiento asíncrono mediante el objeto de trabajo

	Acceso con un explorador
	Antes de acceder a la API con un explorador
	Acceda a la página de documentación de despliegue
	Entender y ejecutar una llamada API

	Procesos de flujo de trabajo
	Antes de usar los flujos de trabajo de la API
	Flujo de trabajo 1: Cree un clúster de evaluación de un solo nodo en ESXi

	Acceso con Python
	Antes de acceder a la API mediante Python
	Entiende los scripts de Python

	Muestras de código Python
	Script para crear un clúster
	JSON para el script a fin de crear un clúster
	Script para añadir una licencia de nodo
	Script para eliminar un clúster
	Módulo de soporte común
	Script para cambiar el tamaño de los nodos del clúster

