Muestras de cédigo Python
ONTAP Select

NetApp
February 03, 2026

This PDF was generated from https://docs.netapp.com/es-es/ontap-select-
9151/reference_api_script_cc.html on February 03, 2026. Always check docs.netapp.com for the latest.

Tabla de contenidos

Muestras de cddigo Python

Script para crear un cluster

JSON para el script a fin de crear un cluster
Cluster de un solo nodo en ESXi
Cluster de un solo nodo en ESXi mediante vCenter
Cluster de un solo nodo en KVM

Script para anadir una licencia de nodo

Script para eliminar un cluster

Modulo de soporte comun

Script para cambiar el tamafio de los nodos del cluster

® o = -

11

16
18
22

Muestras de codigo Python

Script para crear un cluster

Puede utilizar el siguiente script para crear un cluster basado en los parametros definidos
en el script y en un archivo de entrada JSON.

#!/usr/bin/env python

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]
'hostname']) :
log_info("Registering vcenter {} credentials".format (vcenter|
'hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username', 'password

data['type'] = "vcenter"
deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.

Does nothing if the host credential already exists on the Deploy.

mman

log_debug_ trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials’,
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password’']}
deploy.post('/security/credentials', data)

def register unkown_hosts (deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log _debug trace()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log _info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host['user

log_info ("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''' POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log_debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

if not cluster id:
log _info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])

log _info ("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node count={}'.format (num nodes),
data)
cluster id = resp.headers.get('Location') .split('/"') [-1]

return cluster id

def get node_ids(deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'''

log_debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))
node ids = [node['id'] for node in response.json() .get('records')]
return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''' Set all the needed properties on a node '''
log_debug trace ()

log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number',6 'instance type',
'is storage efficiency enabled'] if k in
node'}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'nmame' in node:
data['name'] = node['name']

log_info ("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
'"'" Set the network information for a node '''

log_debug trace ()
1og_info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_pum_records('/Clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['wvlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''

log_debug trace ()

log _info ("Adding node '{}' storage properties".format (node id))
log_info ("Node storage: {}".format (node['storage']['pools']))

data = {'pool array': node['storage']['pools']} # use all the json
properties
deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}

deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def

create cluster config(deploy, config):

'''" Construct a cluster config in the deploy server using the input

json data '''

def

log _debug trace ()
cluster id = add cluster_ attributes (deploy, config)

node ids = get node_ ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug_ trace ()

log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']]|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log _debug trace() :
stack = traceback.extract_stack()
parent function = stack[-2] [2]

[o)

logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

log_and exit (msqg) :
logging.getlLogger ('deploy') .error (msqg)

exit(1l)

def configure logging (verbose):
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main(args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add _standalone host credentials (deploy, config)
register unkown hosts (deploy, config)
cluster id = create_cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)
def parseArgs () :
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main J g

args = parseArgs ()
main (args)

JSON para el script a fin de crear un cluster

Cuando crea o elimina un cluster de ONTAP Select con ejemplos de cédigo Python, debe
proporcionar un archivo JSON como entrada del script. Puede copiar y modificar la
muestra JSON adecuada en funcion de sus planes de implementacion.

Cluster de un solo nodo en ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by
"ontap image version": "9.7",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"
y

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |

{

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",

"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [1,

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Cluster de un solo nodo en ESXi mediante vCenter

"hosts": [

{

"name" :"host-1234",
"type" : "ESX"’

"mgmt server":"vcenter-1234"

1,

"cluster": {

"dns info": {"domains": ["labl.company-demo.com",

demo.com",

"lab2

.company-

"lab3.company-demo.com", "lab4.company-demo.com"

1,
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

I

"vcenter": {
"password":"mypassword2",
"hostname":"vcenter-1234",

"username":"selectadmin"
by
"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": |

{
"name" : "ONTAP-Management",
"purpose":"mgmt",

"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",

"storage": {
"disk":[1],
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster de un solo nodo en KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type'":"KVM",
"username" :"root"
}
I

"cluster": {
"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [

{

"serial number":"3200000nn",

com",

11

"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
]I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [1,

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Script para anadir una licencia de nodo

Se puede usar el siguiente script para afiadir una licencia de un nodo ONTAP Select.

#!/usr/bin/env python

File: add license.py
#

12

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R T T

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :
log_info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info ('Adding license for serial number: {}'.format (serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

14

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def get serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and exit("The license file seems to be missing the

serialNumber")

return serialNumber

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging () :
FORMAT = '$ (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main (args):
configure logging ()

serial number = get serial number from license (args.license)
deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number
if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post_new_license(deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

15

if name == ' main ':

args = parseArgs ()
main (args)

Script para eliminar un cluster

Es posible utilizar el siguiente script de la CLI para eliminar un cluster existente.

16

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusters/{}?fields=state’'.format(cluster id))
cluster data = response.]json() ['record']
if cluster data['state'] == 'powered on':

log _info ("Found the cluster to be online, modifying it to be

powered off.")

deploy.patch('/clusters/{}'.format(cluster id), {'availability':

'powered off'}, True)

def delete cluster (deploy, cluster id):
log_info ("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]|
'cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

17

if name == ' main Vg

args = parseArgs ()
main (args)

Moédulo de soporte comun

Todos los scripts de Python utilizan una clase Python comun en un unico médulo.

18

#!/usr/bin/env python

S+

R T T e

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json

import logging

import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy

path creation and header manipulations for simpler code.

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/json'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: $s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())

return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,

19

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def find resource(self, path, name, value):

''"" Returns the 'id' of the resource if it exists, otherwise None

None

resource
response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json() .get (
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):

'''" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query opt))

if response.status_code == 200

return response.json() .get('num records')
return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"

.format (
job id, poll timeout, last modified))

job body = response.json().get('record', {})

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs

break

def exit_pn_errors(self, response) :
if response.status_code >= 400:
self.logger.error ('FAILED request to URL: $s\nHEADERS: %s
\nRESPONSE BODY: %s',

21

S

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

cript para cambiar el tamano de los nodos del cluster

Puede usar el siguiente script para cambiar el tamafio de los nodos de un cluster de
ONTAP Select.

22

#!/usr/bin/env python

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S oS S S S S S S S S S S o o o

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If

arguments

are not provided,

printed and

the script will exit.

mwmn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

all required

an error message indicating the mismatch is

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argqument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin.'
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'’

' should be performed.

nodes in'
' the cluster.
in HA'

If a list of nodes is provided,

The default is to apply the resize to all

it must be provided

23

pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [
'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig(
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

24

logging.getlLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1

changes = _get request body (parsed args, cluster)

deploy.patch ('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == "' main ':

sys.exit (main())

25

Informacién de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

26

http://www.netapp.com/TM

	Muestras de código Python : ONTAP Select
	Tabla de contenidos
	Muestras de código Python
	Script para crear un clúster
	JSON para el script a fin de crear un clúster
	Clúster de un solo nodo en ESXi
	Clúster de un solo nodo en ESXi mediante vCenter
	Clúster de un solo nodo en KVM

	Script para añadir una licencia de nodo
	Script para eliminar un clúster
	Módulo de soporte común
	Script para cambiar el tamaño de los nodos del clúster

