Automatizar con REST
ONTAP Select

NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/es-es/ontap-select-9171/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Tabla de contenidos

Automatizar con REST
Conceptos
Fundacion de servicios web REST para implementar y administrar clusteres ONTAP Select
Como acceder a la API de implementacion de ONTAP Select
Caracteristicas operativas basicas de la API de implementacion de ONTAP Select
Transaccion de API de solicitud y respuesta para ONTAP Select
Procesamiento asincronico mediante el objeto Job para ONTAP Select
Acceder con un navegador
Antes de acceder a la API de implementacion de ONTAP Select con un navegador
Acceda a la pagina de documentacion de ONTAP Select Deploy
Comprender y ejecutar una llamada APl de ONTAP Select Deploy
Procesos de flujo de trabajo
Antes de utilizar los flujos de trabajo de la APl de ONTAP Select
Flujo de trabajo 1: Crear un cluster de evaluacién de nodo unico de ONTAP Select en ESXi
Acceso con Python
Antes de acceder a la API de implementacion de ONTAP Select mediante Python
Comprenda los scripts de Python para ONTAP Select Deploy
Ejemplos de cddigo de Python
Script para crear un cluster de ONTAP Select
JSON para script para crear un cluster de ONTAP Select
Script para agregar una licencia de nodo ONTAP Select
Script para eliminar un cluster de ONTAP Select
Modulo de Python de soporte comun para ONTAP Select
Script para cambiar el tamafio de los nodos del cluster ONTAP Select

© © 0 0o N PBADNDN -2 -~ -

B W W WN -2 A A A A a a a
O OO A OO O O N NN O O O

Automatizar con REST

Conceptos

Fundacion de servicios web REST para implementar y administrar clusteres
ONTAP Select

La Transferencia de Estado Representacional (REST) es un estilo para crear
aplicaciones web distribuidas. Al aplicarla al disefio de una API de servicios web,
establece un conjunto de tecnologias y mejores practicas para exponer recursos
basados en servidor y gestionar sus estados. Utiliza protocolos y estandares
convencionales para proporcionar una base flexible para la implementacion y gestion de
clusteres de ONTAP Select .

Arquitectura y restricciones clasicas

REST fue articulado formalmente por Roy Fielding en su tesis doctoral. "disertacion” en la UC Irvine en 2000.
Define un estilo arquitectonico mediante un conjunto de restricciones que, en conjunto, mejoran las
aplicaciones web y los protocolos subyacentes. Las restricciones establecen una aplicacion de servicios web
RESTful basada en una arquitectura cliente-servidor que utiliza un protocolo de comunicacion sin estado.

Recursos y representacion estatal

Los recursos son los componentes basicos de un sistema web. Al crear una aplicacion de servicios web
REST, las primeras tareas de disefio incluyen:

« Identificacion de recursos del sistema o del servidor. Todo sistema utiliza y mantiene recursos. Un recurso
puede ser un archivo, una transaccién comercial, un proceso o una entidad administrativa. Una de las
primeras tareas al disefiar una aplicacion basada en servicios web REST es identificar los recursos.

* Definicion de los estados de los recursos y las operaciones de estado asociadas. Los recursos siempre se
encuentran en uno de un numero finito de estados. Los estados, asi como las operaciones asociadas que
se utilizan para modificarlos, deben estar claramente definidos.

Se intercambian mensajes entre el cliente y el servidor para acceder y cambiar el estado de los recursos de
acuerdo con el modelo genérico CRUD (Crear, Leer, Actualizar y Eliminar).

Puntos finales URI

Cada recurso REST debe definirse y estar disponible mediante un esquema de direccionamiento bien
definido. Los puntos finales donde se ubican e identifican los recursos utilizan un Identificador Uniforme de
Recursos (URI). ElI URI proporciona un marco general para crear un nombre Unico para cada recurso en la
red. El Localizador Uniforme de Recursos (URL) es un tipo de URI que se utiliza con servicios web para
identificar y acceder a los recursos. Los recursos suelen exponerse en una estructura jerarquica similar a la de
un directorio de archivos.

Mensajes HTTP

El Protocolo de Transferencia de Hipertexto (HTTP) es el protocolo que utilizan el cliente y el servidor de
servicios web para intercambiar mensajes de solicitud y respuesta sobre los recursos. Al disefiar una
aplicacion de servicios web, los verbos HTTP (como GET y POST) se asignan a los recursos y a las acciones
de gestion de estado correspondientes.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

HTTP no tiene estado. Por lo tanto, para asociar un conjunto de solicitudes y respuestas relacionadas en una
misma transaccion, se debe incluir informacién adicional en los encabezados HTTP que acompaiian a los
flujos de datos de solicitud/respuesta.

Formato JSON

Si bien la informacién se puede estructurar y transferir entre un cliente y un servidor de varias maneras, la
opcién mas popular (y la que se utiliza con la APl REST de Deploy) es la Notacion de Objetos JavaScript
(JSON). JSON es un estandar de la industria para representar estructuras de datos simples en texto planoy
se utiliza para transferir informacion de estado que describe los recursos.

Como acceder a la API de implementacion de ONTAP Select

Debido a la flexibilidad inherente de los servicios web REST, se puede acceder a la API
de implementaciéon de ONTAP Select de varias maneras diferentes.

La APl REST incluida con ONTAP Select Deploy tiene asignado un numero de version. Este
@ numero es independiente del numero de version de Deploy. La utilidad de administracion
ONTAP Select 9.17.1 Deploy incluye la version 3 de la APl REST.

Implementar la interfaz de usuario nativa de la utilidad

La principal forma de acceder a la APl es a través de la interfaz web de ONTAP Select Deploy. El navegador
realiza llamadas a la APl y reformatea los datos segun el disefio de la interfaz. También se accede a la APl a
través de la interfaz de linea de comandos de la utilidad Deploy.

Pagina de documentacién en linea de ONTAP Select Deploy

La pagina de documentacion en linea de ONTAP Select Deploy ofrece un punto de acceso alternativo al usar
un navegador. Ademas de permitir la ejecucion directa de llamadas a la APl individuales, la pagina también
incluye una descripcion detallada de la API, incluyendo parametros de entrada y otras opciones para cada
llamada. Las llamadas a la API se organizan en varias areas o categorias funcionales.

Programa personalizado

Puede acceder a la API de implementacion mediante diversos lenguajes de programacion y herramientas. Las
opciones mas populares incluyen Python, Java y cURL. Un programa, script o herramienta que utiliza la API
actua como un cliente de servicios web REST. Usar un lenguaje de programacion le permite comprender
mejor la APl y le brinda la oportunidad de automatizar las implementaciones de ONTAP Select .

Caracteristicas operativas basicas de la APl de implementacion de ONTAP Select

Si bien REST establece un conjunto comun de tecnologias y mejores practicas, los
detalles de cada API pueden variar segun las opciones de disefio. Debe conocer los
detalles y las caracteristicas operativas de la API ONTAP Select Deploy antes de usarla.

Host de hipervisor versus ONTAP Select

Un host de hipervisor es la plataforma de hardware principal que aloja una maquina virtual ONTAP Select .
Cuando una maquina virtual de ONTAP Select se implementa y esta activa en un host de hipervisor, se
considera un nodo de ONTAP Select. Con la version 3 de la API REST de Deploy, los objetos de host y nodo
son independientes. Esto permite una relacion de uno a muchos, donde uno o mas nodos de ONTAP Select

pueden ejecutarse en el mismo host de hipervisor.

Identificadores de objetos

A cada instancia u objeto de recurso se le asigna un identificador Unico al crearse. Estos identificadores son
unicos globalmente dentro de una instancia especifica de ONTAP Select Deploy. Tras realizar una llamada a
la API que crea una nueva instancia de objeto, el valor de id asociado se devuelve al llamador en el
location encabezado de la respuesta HTTP. Puede extraer el identificador y usarlo en llamadas posteriores
al hacer referencia a la instancia del recurso.

El contenido y la estructura interna de los identificadores de objeto pueden cambiar en cualquier
momento. Solo debe usar los identificadores en las llamadas a la API correspondientes segun
sea necesario al referirse a los objetos asociados.

Identificadores de solicitud

A cada solicitud de API exitosa se le asigna un identificador unico. El identificador se devuelve en el
request-id encabezado de la respuesta HTTP asociada. Puede usar un identificador de solicitud para
referirse colectivamente a las actividades de una unica transaccion de solicitud-respuesta de API especifica.
Por ejemplo, puede recuperar todos los mensajes de evento de una transaccion segun el ID de la solicitud.

Llamadas sincrénicas y asincrénicas

Hay dos formas principales en que un servidor ejecuta una solicitud HTTP recibida de un cliente:

« Sincronico El servidor ejecuta la solicitud inmediatamente y responde con un cédigo de estado de 200,
201 0 204.

» Asincrono: El servidor acepta la solicitud y responde con un codigo de estado 202. Esto indica que el
servidor aceptd la solicitud del cliente e inicioé una tarea en segundo plano para completarla. El éxito o el
fracaso final no esta disponible de inmediato y debe determinarse mediante llamadas API adicionales.

Confirmar la finalizacion de un trabajo de larga duracion

Generalmente, cualquier operacion que tarde mucho tiempo en completarse se procesa asincronicamente
mediante una tarea en segundo plano en el servidor. Con la APl REST de Deploy, cada tarea en segundo
plano esta anclada por un objeto Job que la rastrea y proporciona informacién, como su estado actual. Un
objeto Job, con su identificador Unico, se devuelve en la respuesta HTTP tras crear una tarea en segundo
plano.

Puede consultar directamente el objeto "Job" para determinar si la lamada a la API asociada se realizo
correctamente o no. Consulte "Procesamiento asincrono con el objeto "Job™" para obtener mas informacion.

Ademas de utilizar el objeto Trabajo, existen otras formas de determinar el éxito o el fracaso de una solicitud,
entre ellas:

* Mensajes de evento: Puede recuperar todos los mensajes de evento asociados a una llamada API
especifica utilizando el ID de solicitud devuelto con la respuesta original. Los mensajes de evento suelen
indicar si la operacion fue correcta o no, y también pueden ser utiles al depurar una condicion de error.

» Estado o estado del recurso Varios de los recursos mantienen un valor de estado o estado que puede
consultar para determinar indirectamente el éxito o el fracaso de una solicitud.

Seguridad

La API de implementacion utiliza las siguientes tecnologias de seguridad:

» Seguridad de la capa de transporte: Todo el trafico enviado a través de la red entre el servidor de
implementacion y el cliente se cifra mediante TLS. No se admite el uso del protocolo HTTP en un canal sin
cifrar. Se admite la versiéon 1.2 de TLS.

 Autenticacion HTTP. La autenticacion basica se utiliza para cada transaccién de la API. Se afiade a cada
solicitud un encabezado HTTP que incluye el nombre de usuario y la contrasefia en una cadena base64.

Transaccion de API de solicitud y respuesta para ONTAP Select

Cada llamada a la API de Deploy se realiza como una solicitud HTTP a la maquina
virtual de Deploy, la cual genera una respuesta asociada para el cliente. Este par de
solicitud/respuesta se considera una transaccion de API. Antes de usar la APl de Deploy,
debe familiarizarse con las variables de entrada disponibles para controlar una solicitud y
el contenido de la salida de la respuesta.

Variables de entrada que controlan una solicitud de API

Puede controlar como se procesa una llamada API a través de parametros establecidos en la solicitud HTTP.

Encabezados de solicitud

Debe incluir varios encabezados en la solicitud HTTP, incluidos:

 content-type Si el cuerpo de la solicitud incluye JSON, este encabezado debe establecerse en
application/json.

* aceptar Si el cuerpo de la respuesta incluira JSON, este encabezado debe configurarse como
application/json.

 La autenticacion basica debe configurarse con el nombre de usuario y la contrasefa codificados en una
cadena base64.

Cuerpo de la solicitud

El contenido del cuerpo de la solicitud varia segun la llamada especifica. El cuerpo de la solicitud HTTP
consta de uno de los siguientes elementos:

* Objeto JSON con variables de entrada (por ejemplo, el nombre de un nuevo cluster)
* Vacio
Filtrar objetos

Al ejecutar una llamada a la API que usa GET, puede limitar o filtrar los objetos devueltos segun cualquier
atributo. Por ejemplo, puede especificar un valor exacto para que coincida:

<field>=<query value>

Ademas de la coincidencia exacta, existen otros operadores disponibles para devolver un conjunto de objetos
en un rango de valores. ONTAP Select admite los operadores de filtrado que se muestran a continuacion.

Operador Descripcion

= Igual a

< Menos que

> Mas que

& Menor o igual a

>= Mayor o igual que
O

! No es igual a

Comodin codicioso

También puede devolver un conjunto de objetos en funcidn de si un campo especifico esta configurado o no
utilizando la palabra clave null o su negacién (Inull) como parte de la consulta.

Seleccion de campos de objeto

De forma predeterminada, al ejecutar una llamada a la APl mediante GET, solo se devuelven los atributos que
identifican de forma unica el objeto o los objetos. Este conjunto minimo de campos actua como clave para
cada objeto y varia segun el tipo de objeto. Puede seleccionar propiedades adicionales del objeto mediante el
parametro de consulta "campos" de las siguientes maneras:

* Campos economicos Especificar fields=* para recuperar los campos del objeto que se mantienen en la
memoria local del servidor o que requieren poco procesamiento para acceder a ellos.

* Campos costosos Especificar fields=** para recuperar todos los campos del objeto, incluidos aquellos
que requieren procesamiento adicional del servidor para acceder a ellos.

* Seleccion de campo personalizado Usar fields=FIELDNAME para especificar el campo exacto que
desea. Al solicitar varios campos, los valores deben separarse con comas y sin espacios.

Como practica recomendada, siempre debe identificar los campos especificos que desea. Solo
debe recuperar el conjunto de campos econdmicos o costosos cuando sea necesario. NetApp

determina la clasificacion de econdmicos y costosos basandose en un analisis interno de

rendimiento. La clasificacion de un campo determinado puede cambiar en cualquier momento.

Ordenar objetos en el conjunto de salida

Los registros de una coleccion de recursos se devuelven en el orden predeterminado definido por el objeto.
Puedes cambiar el orden utilizando el parametro de consulta order_by con el nombre del campo y la direccion
de ordenacion de la siguiente manera:

order by=<field name> asc|desc

Por ejemplo, puede ordenar el campo "tipo" en orden descendente seguido del campo "id" en orden
ascendente:

order by=type desc, id asc

Al incluir varios parametros, debe separar los campos con una coma.

Paginaciéon

Al ejecutar una llamada a la APl mediante GET para acceder a una coleccién de objetos del mismo tipo, se
devuelven todos los objetos coincidentes por defecto. Si es necesario, se puede limitar el nimero de registros
devueltos mediante el parametro de consulta max_records con la solicitud. Por ejemplo:

max records=20

Si es necesario, puede combinar este parametro con otros parametros de consulta para limitar el conjunto de
resultados. Por ejemplo, el siguiente comando devuelve hasta 10 eventos del sistema generados después del
tiempo especificado:

time= 2019-04-04T15:41:29.140265Z&max records=10

Puedes emitir varias solicitudes para navegar por los eventos (o cualquier tipo de objeto). Cada llamada a la
API posterior debe usar un nuevo valor de tiempo basado en el ultimo evento del ultimo conjunto de
resultados.

Interpretar una respuesta de API

Cada solicitud de API genera una respuesta para el cliente. Puede examinarla para determinar si se realizd
correctamente y recuperar datos adicionales segun sea necesario.

Caodigo de estado HTTP

A continuacion se describen los codigos de estado HTTP utilizados por la APl REST de implementacion.

Cddigo Significado Descripciéon

200 DE ACUERDO Indica éxito para llamadas que no crean un nuevo objeto.

201 Creado Se ha creado correctamente un objeto; el encabezado de respuesta
de ubicacion incluye el identificador Unico del objeto.

202 Aceptado Se ha iniciado un trabajo en segundo plano de larga ejecucion para
ejecutar la solicitud, pero la operacion aun no se ha completado.

400 Solicitud incorrecta La entrada solicitada no se reconoce o es inadecuada.

403 Prohibido Se deniega el acceso debido a un error de autorizacion.

404 Extraviado El recurso al que se refiere la solicitud no existe.

405 Método no permitido El verbo HTTP en la solicitud no es compatible con el recurso.

409 Conflicto Se produjo un error al intentar crear un objeto porque el objeto ya
existe.

500 Error interno Se produjo un error interno general en el servidor.

501 No implementado Se conoce el URI pero no es capaz de realizar la solicitud.

Encabezados de respuesta
Se incluyen varios encabezados en la respuesta HTTP generada por el servidor de implementacion, incluidos:

 request-id A cada solicitud de API exitosa se le asigna un identificador de solicitud unico.

» Ubicacion Cuando se crea un objeto, el encabezado de ubicacion incluye la URL completa del nuevo
objeto, incluido el identificador de objeto Unico.

Cuerpo de la respuesta

El contenido de la respuesta asociada a una solicitud de API varia segun el objeto, el tipo de procesamiento y
si la solicitud se ha realizado correctamente o no. El cuerpo de la respuesta se representa en JSON.

* Objeto unico. Se puede devolver un objeto Unico con un conjunto de campos segun la solicitud. Por
ejemplo, se puede usar GET para recuperar propiedades seleccionadas de un cluster mediante el
identificador unico.

» Multiples objetos Se pueden devolver varios objetos de una coleccién de recursos. En todos los casos se
utiliza un formato consistente, con num records indicando el nimero de registros y registros que
contienen una matriz de instancias de objetos. Por ejemplo, puede recuperar todos los nodos definidos en
un cluster especifico.

* Objeto de trabajo. Si una llamada a la API se procesa asincronicamente, se devuelve un objeto de trabajo
que ancla la tarea en segundo plano. Por ejemplo, la solicitud POST utilizada para implementar un cluster
se procesa asincronicamente y devuelve un objeto de trabajo.

» Objeto de error. Si se produce un error, siempre se devuelve un objeto de error. Por ejemplo, recibira un
error al intentar crear un cluster con un nombre ya existente.

* Vacio. En ciertos casos, no se devuelven datos y el cuerpo de la respuesta esta vacio. Por ejemplo, el
cuerpo de la respuesta esta vacio después de usar DELETE para eliminar un host existente.

Procesamiento asincrénico mediante el objeto Job para ONTAP Select

Algunas llamadas a la API de Deploy, en particular las que crean o modifican un recurso,
pueden tardar mas en completarse que otras. ONTAP Select Deploy procesa estas
solicitudes de larga duracion de forma asincroénica.

Solicitudes asincronicas descritas mediante el objeto Trabajo

Tras realizar una llamada a la API asincronica, el cédigo de respuesta HTTP 202 indica que la solicitud se ha
validado y aceptado correctamente, pero aun no se ha completado. La solicitud se procesa como una tarea en
segundo plano que continla ejecutandose después de la respuesta HTTP inicial al cliente. La respuesta
incluye el objeto Job que la ancla, incluyendo su identificador unico.

@ Debe consultar la pagina de documentacion en linea de ONTAP Select Deploy para determinar
qué llamadas API funcionan de forma asincronica.

Consultar el objeto de trabajo asociado con una solicitud de API

El objeto Job devuelto en la respuesta HTTP contiene varias propiedades. Puede consultar la propiedad de
estado para determinar si la solicitud se completé correctamente. Un objeto Job puede estar en uno de los
siguientes estados:

* Encola

» Correr

« Exito

* Falla

Hay dos técnicas que puede utilizar al sondear un objeto de trabajo para detectar un estado terminal para la
tarea, ya sea éxito o fracaso:

 Solicitud de sondeo estandar El estado actual del trabajo se devuelve inmediatamente

 Solicitud de sondeo larga El estado del trabajo se devuelve solo cuando ocurre una de las siguientes
situaciones:

> El estado ha cambiado mas recientemente que el valor de fecha y hora proporcionado en la solicitud
de encuesta

o El valor de tiempo de espera ha expirado (de 1 a 120 segundos)
El sondeo estandar y el sondeo largo utilizan la misma llamada API para consultar un objeto de trabajo. Sin

embargo, una solicitud de sondeo largo incluye dos parametros de consulta: poll timeouty
last modified.

Siempre debe utilizar un sondeo largo para reducir la carga de trabajo en la maquina virtual de
implementacion.

Procedimiento general para emitir una solicitud asincrénica
Puede utilizar el siguiente procedimiento de alto nivel para completar una llamada API asincronica:

1. Emite la llamada API asincronica.
2. Recibir una respuesta HTTP 202 indicando la aceptacion exitosa de la solicitud.
3. Extraiga el identificador del objeto Trabajo del cuerpo de la respuesta.
4. Dentro de un bucle, realice lo siguiente en cada ciclo:
a. Obtenga el estado actual del trabajo con una solicitud de sondeo largo
b. Si el trabajo esta en un estado no terminal (en cola, en ejecucion), realice el bucle nuevamente.

5. Detenerse cuando el trabajo alcance un estado terminal (éxito, fracaso).

Acceder con un navegador

Antes de acceder a la APl de implementacion de ONTAP Select con un navegador

Hay varias cosas que debe tener en cuenta antes de utilizar la pagina de documentacion
en linea de Deploy.

Plan de implementacién

Si planea realizar llamadas a la API al realizar tareas especificas de implementacion o administracion,
considere crear un plan de implementacion. Estos planes pueden ser formales o informales y generalmente
contienen sus objetivos y las llamadas a la API que se utilizaran. Consulte Procesos de flujo de trabajo que
utilizan la APl REST de implementacion para obtener mas informacion.

Ejemplos JSON y definiciones de parametros

Cada llamada a la API se describe en la pagina de documentacion con un formato uniforme. El contenido
incluye notas de implementacion, parametros de consulta y codigos de estado HTTP. Ademas, puede mostrar
detalles sobre el JSON utilizado con las solicitudes y respuestas de la API, como se indica a continuacion:

+ Valor de ejemplo: Si hace clic en "Valor de ejemplo" en una llamada API, se mostrara una estructura JSSON
tipica de la llamada. Puede modificar el ejemplo segun sea necesario y usarlo como entrada para su

solicitud.

* Modelo Si hace clic en Modelo, se muestra una lista completa de los parametros JSON, con una
descripcion de cada parametro.

Precaucion al realizar llamadas API

Todas las operaciones de API que realice mediante la pagina de documentacion de Implementacién son
operaciones en tiempo real. Tenga cuidado de no crear, actualizar ni eliminar por error la configuracion ni otros
datos.

Acceda a la pagina de documentaciéon de ONTAP Select Deploy

Debe acceder a la pagina de documentacion en linea de ONTAP Select Deploy para
mostrar la documentacion de la API, asi como para emitir manualmente una llamada a la
API.

Antes de empezar

Debes tener lo siguiente:

* Direccién IP o nombre de dominio de la maquina virtual ONTAP Select Deploy

* Nombre de usuario y contrasefia del administrador

Pasos
1. Escribe la URL en tu navegador y pulsa Enter:

https://<ip address>/api/ui
2. Sign in utilizando el nombre de usuario y la contrasefia del administrador.

Resultado

La pagina web de documentacion de Implementacién se muestra con las llamadas organizadas por categoria
en la parte inferior de la pagina.

Comprender y ejecutar una llamada APl de ONTAP Select Deploy

Los detalles de todas las llamadas API se documentan y se muestran en un formato
comun en la pagina web de documentacion en linea de ONTAP Select Deploy. Al
comprender una sola llamada API, puede acceder e interpretar los detalles de todas las
llamadas API.

Antes de empezar

Debe iniciar sesion en la pagina web de la documentacion en linea de ONTAP Select Deploy. Debe tener el
identificador Unico asignado a su cluster de ONTAP Select al crearlo.

Acerca de esta tarea

Puede recuperar la informacién de configuracion que describe un cluster de ONTAP Select mediante su
identificador unico. En este ejemplo, se devuelven todos los campos clasificados como econémicos. Sin
embargo, se recomienda solicitar solo los campos especificos necesarios.

Pasos

1. En la pagina principal, desplacese hasta la parte inferior y haga clic en Cluster.

2. Haga clic en GET /clusters/{cluster_id} para mostrar los detalles de la llamada API utilizada para
devolver informacién sobre un cluster de ONTAP Select .

Procesos de flujo de trabajo

Antes de utilizar los flujos de trabajo de la APl de ONTAP Select

Debe prepararse para revisar y utilizar los procesos de flujo de trabajo.

Comprender las llamadas API utilizadas en los flujos de trabajo

La pagina de documentacién en linea de ONTAP Select incluye los detalles de cada llamada a la APl REST.
En lugar de repetir estos detalles aqui, cada llamada a la API utilizada en los ejemplos de flujo de trabajo
incluye solo la informacién necesaria para localizarla en la pagina de documentacion. Después de localizar
una llamada a la API especifica, puede revisar todos sus detalles, incluyendo los parametros de entrada, los
formatos de salida, los codigos de estado HTTP y el tipo de procesamiento de la solicitud.

La siguiente informacion se incluye para cada llamada API dentro de un flujo de trabajo para ayudar a localizar
la llamada en la pagina de documentacion:

» Categoria: Las llamadas a la API se organizan en la pagina de documentacion en areas o categorias
funcionalmente relacionadas. Para encontrar una llamada a la API especifica, desplacese hasta la parte
inferior de la pagina y haga clic en la categoria de API correspondiente.

* Verbo HTTP. El verbo HTTP identifica la accion realizada en un recurso. Cada llamada a la API se ejecuta
mediante un unico verbo HTTP.

» Ruta: La ruta determina el recurso especifico al que se aplica la accion al realizar una llamada. La cadena
de ruta se anade a la URL principal para formar la URL completa que identifica el recurso.

Construya una URL para acceder directamente a la API REST

Ademas de la pagina de documentacion de ONTAP Select , también puede acceder a la APl REST de Deploy
directamente mediante un lenguaje de programacion como Python. En este caso, la URL principal es
ligeramente diferente a la URL utilizada para acceder a la pagina de documentacioén en linea. Para acceder
directamente a la API, debe anadir "/api" a la cadena de dominio y puerto. Por ejemplo:
http://deploy.mycompany.com/api

Flujo de trabajo 1: Crear un cluster de evaluaciéon de nodo unico de ONTAP Select
en ESXi

Puede implementar un cluster de ONTAP Select de un solo nodo en un host VMware
ESXi administrado por vCenter. El cluster se crea con una licencia de evaluacion.

El flujo de trabajo de creacidn de cluster difiere en las siguientes situaciones:

* El host ESXi no esta administrado por vCenter (host independiente)
 Se utilizan varios nodos o hosts dentro del cluster
« El cluster se implementa en un entorno de produccion con una licencia adquirida

 Se utiliza el hipervisor KVM en lugar de VMware ESXi

10

1. Registrar las credenciales del servidor vCenter

Al implementar en un host ESXi administrado por un servidor vCenter, debe agregar una credencial antes de
registrar el host. La utilidad de administracién de implementacién puede usar la credencial para autenticarse
en vCenter.

Categoria verbo HTTP Camino
Desplegar CORREO /seguridad/credenciales
Rizo

curl -1X POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

Entrada JSON (paso 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Tipo de procesamiento
Asincronico

Produccion
¢ ID de credencial en el encabezado de respuesta de ubicacion

* Objeto de trabajo

2. Registrar un host de hipervisor

Debe agregar un host de hipervisor donde se ejecutara la maquina virtual que contiene el nodo ONTAP Select

Categoria verbo HTTP Camino
Grupo CORREO /anfitriones
Rizo

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts'

Entrada JSON (paso 02)

11

"hosts": [
{

"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo de procesamiento
Asincronico

Produccion
* ID de host en el encabezado de respuesta de ubicacion

* Objeto de trabajo
3. Crear un cluster

Cuando se crea un cluster de ONTAP Select , se registra la configuracion basica del cluster y Deploy genera
automaticamente los nombres de los nodos.

Categoria verbo HTTP Camino
Grupo CORREO /grupos
Rizo

El parametro de consulta node_count debe establecerse en 1 para un cluster de un solo nodo.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"'

Entrada JSON (paso 03)

"name": "my cluster"

Tipo de procesamiento
Sincrénico

Produccion
* ID de cluster en el encabezado de respuesta de ubicacion

12

4. Configurar el cluster

Hay varios atributos que debes proporcionar como parte de la configuracion del cluster.

Categoria verbo HTTP Camino

Grupo PARCHE [clusters/{id_del_cluster}

Rizo
Debe proporcionar el ID del cluster.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (paso 04)

"dns_info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
by
"ontap image version": "9.5",

"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"netmask": "255.255.255.192",

"ntp servers": {"10.206.80.183"}

Tipo de procesamiento
Sincronico

Produccion
Ninguno
5. Recupere el nombre del nodo

La utilidad de administracion de implementacién genera automaticamente los identificadores y nombres de los
nodos al crear un cluster. Antes de configurar un nodo, debe recuperar el ID asignado.

Categoria verbo HTTP Camino
Grupo CONSEGUIR /clusters/{id_de_cluster}/nodos
Rizo

Debe proporcionar el ID del cluster.

13

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Tipo de procesamiento
Sincrénico

Produccién
» La matriz registra cada uno describiendo un solo nodo con un ID y nombre unicos

6. Configurar los nodos

Debe proporcionar la configuracion basica del nodo, que es la primera de las tres llamadas API utilizadas para
configurar un nodo.

Categoria verbo HTTP Camino

Grupo CAMINO [clusteres/{id_de_cluster}/nodos/{id_de nodo}

Rizo
Debe proporcionar el ID del cluster y el ID del nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (paso 06)
Debe proporcionar el ID del host donde se ejecutara el nodo ONTAP Select .

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Tipo de procesamiento
Sincronico

Produccioén
Ninguno

7. Recuperar las redes de nodos

Debe identificar las redes de datos y administracion que utiliza el nodo en el cluster de un solo nodo. La red
interna no se utiliza con un cluster de un solo nodo.

14

Categoria verbo HTTP Camino

Grupo CONSEGUIR /clusteres/{id_de_cluster}/nodos/{id_de nodo}/redes

Rizo
Debe proporcionar el ID del cluster y el ID del nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Tipo de procesamiento
Sincrénico

Produccion

» Matriz de dos registros, cada uno de los cuales describe una Unica red para el nodo, incluido el ID
unico y el proposito

8. Configurar la red del nodo

Debe configurar las redes de datos y administracion. La red interna no se utiliza con un cluster de un solo
nodo.

(D Emita la siguiente llamada API dos veces, una para cada red.
Categoria verbo HTTP Camino
Grupo PARCHE [clusteres/{id_de_cluster}/nodos/{id_de nodo}/redes/{id_de_red}
Rizo

Debe proporcionar el ID del cluster, el ID del nodo y el ID de la red.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrada JSON (paso 08)
Debe proporcionar el nombre de la red.

"name": "sDOT Network"

Tipo de procesamiento
Sincrénico

15

Produccion
Ninguno
9. Configurar el grupo de almacenamiento del nodo

El ultimo paso para configurar un nodo es conectar un pool de almacenamiento. Puede determinar los pools
de almacenamiento disponibles mediante el cliente web de vSphere o, opcionalmente, mediante la API REST
de implementacion.

Categoria verbo HTTP Camino

Grupo PARCHE [clusteres/{id_de_cluster}/nodos/{id_de nodo}/redes/{id_de red}

Rizo
Debe proporcionar el ID del cluster, el ID del nodo y el ID de la red.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (paso 09)
La capacidad del pool es de 2 TB.

"pool array": |
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo de procesamiento
Sincrénico

Produccioén
Ninguno

10. Implementar el cluster

Una vez configurados el cluster y el nodo, puede implementar el cluster.

Categoria verbo HTTP Camino

Grupo CORREO [clusters/{id_de_cluster}/implementar

Rizo
Debe proporcionar el ID del cluster.

16

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrada JSON (paso 10)
Debe proporcionar la contrasena para la cuenta de administrador de ONTAP .

"ontap credentials": {

"password": "mypassword"

Tipo de procesamiento
Asincronico

Produccion
* Objeto de trabajo

Informacion relacionada

"Implementar una instancia de evaluacion de 90 dias de un cluster ONTAP Select"

Acceso con Python

Antes de acceder a la API de implementacion de ONTAP Select mediante Python
Debe preparar el entorno antes de ejecutar los scripts de Python de muestra.
Antes de ejecutar los scripts de Python, debe asegurarse de que el entorno esté configurado correctamente:

» Se requiere la ultima version aplicable de Python2. Los cédigos de ejemplo se han probado con Python2.
Deberian ser portables a Python3, pero no se ha probado su compatibilidad.

* Las bibliotecas Requests y urllib3 deben estar instaladas. Puede usar pip u otra herramienta de
administracion de Python segun sea necesario para su entorno.

« La estacion de trabajo cliente donde se ejecutan los scripts debe tener acceso de red a la maquina virtual
ONTAP Select Deploy.

Ademas, deberas contar con la siguiente informacion:

* Direccion IP de la maquina virtual de implementacion

* Nombre de usuario y contrasefia de una cuenta de administrador de Deploy

Comprenda los scripts de Python para ONTAP Select Deploy

Los scripts de ejemplo de Python permiten realizar diversas tareas. Es recomendable
comprenderlos antes de usarlos en una instancia de Deploy activa.

17

https://docs.netapp.com/es-es/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html

Caracteristicas de disefio comunes

Los scripts han sido disefiados con las siguientes caracteristicas comunes:

 Ejecutar desde la interfaz de linea de comandos en un equipo cliente. Puede ejecutar los scripts de
Python desde cualquier equipo cliente correctamente configurado. Consulte "Antes de comenzar" para
obtener mas informacion.

» Aceptar parametros de entrada CLI Cada script se controla en la CLI a través de parametros de entrada.

* Leer archivo de entrada. Cada script lee un archivo de entrada segun su propdsito. Al crear o eliminar un
cluster, debe proporcionar un archivo de configuracion JSON. Al agregar una licencia de nodo, debe
proporcionar un archivo de licencia valido.

« Usar un modulo de soporte comun. El médulo de soporte comun deploy requests.py contiene una sola
clase. Se importa y utiliza en cada script.

Crear un cltster

Puede crear un cluster de ONTAP Select con el script cluster.py. Segun los parametros de la CLl y el
contenido del archivo de entrada JSON, puede adaptar el script a su entorno de implementacion de la
siguiente manera:

* Hipervisor: Puede implementar en ESXI| o KVM (segun la versién de implementacioén). Al implementar en
ESXi, el hipervisor puede ser administrado por vCenter o puede ser un host independiente.

» Tamano del cluster Puede implementar un cluster de un solo nodo o de varios nodos.

* Licencia de evaluacién o produccion Puede implementar un cluster con una licencia de evaluacién o
comprada para produccion.

Los parametros de entrada CLI para el script incluyen:

* Nombre de host o direccion IP del servidor de implementacion
» Contrasefia para la cuenta de usuario administrador
* Nombre del archivo de configuracion JSON

« Bandera verbosa para la salida del mensaje

Agregar una licencia de nodo

Si decide implementar un cluster de produccion, debe agregar una licencia para cada nodo mediante el script
add_license.py. Puede agregar la licencia antes o después de implementar el cluster.

Los parametros de entrada CLI para el script incluyen:

* Nombre de host o direccion IP del servidor de implementacion

» Contrasefa para la cuenta de usuario administrador

* Nombre del archivo de licencia

* Nombre de usuario de ONTAP con privilegios para agregar la licencia

» Contrasefia para el usuario de ONTAP

Eliminar un cluster

Puede eliminar un cluster de ONTAP Select existente mediante el script delete_cluster.py.

18

Los parametros de entrada CLI para el script incluyen:

* Nombre de host o direccién IP del servidor de implementacion
» Contrasefia para la cuenta de usuario administrador

* Nombre del archivo de configuracion JSON

Ejemplos de cédigo de Python

Script para crear un cluster de ONTAP Select

Puede utilizar el siguiente script para crear un cluster basado en parametros definidos
dentro del script y un archivo de entrada JSON.

#!/usr/bin/env python

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R T e

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):

""" Add credentials for the vcenter if present in the config

log_debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',

19

'hostname', vcenter]|
'hostname']) :

log_info ("Registering vcenter {} credentials".format (vcenter|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add_standalone_host credentials(deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log_debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource_ exists (
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password’'] }

deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):
LI |

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log_debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log _and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type']}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

log debug trace()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns info', 'ntp servers']}

21

22

num nodes = len(config['nodes'])
log _info ("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node count={}'.format (num nodes),
data)
cluster id = resp.headers.get('Location') .split('/") [-1]

return cluster id

def get node_ids(deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'''

log_debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids [node['id'] for node in response.json() .get('records')]

return node ids

def add node_ attributes(deploy, cluster id, node_ id, node):

Set all the needed properties on a node '''
log _debug trace ()

log_info ("Adding node '{}' properties".format(node id))

data = {k: node[k] for k in ['ip', 'serial number',6 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find resource('/hosts', 'name', node['host name'])
if not host id:
log _and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format (data))
deploy.patch('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
""" Set the network information for a node '''
log_debug trace ()

log _info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'l])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.£format (

cluster id, node id, network id), data)

def add node_storage (deploy, cluster id, node id, node):
''' Set all the storage information on a node '''
log debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log_info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (

23

'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),

data)

if 'disks' in node['storage'] and node['storage']['disks']:

data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def

create cluster config(deploy, config):
""" Construct a cluster config in the deploy server using the input

json data '''

def

log_debug trace ()
cluster id = add cluster attributes(deploy, config)

node ids = get node ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_ storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, configq):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug trace ()

log _info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

data, wait for job=True)

def log debug trace():

stack = traceback.extract stack()
parent function = stack[-2] [2]

Q

logging.getLogger ('deploy') .debug('Calling $s()' % parent function)

def log_info (msg) :

24

logging.getlLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msg)
exit (1)

def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)

def main(args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add _vcenter credentials (deploy, config)
add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)
cluster id = create cluster config(deploy, configq)
deploy cluster (deploy, cluster id, config)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')

parser.add argument('-c', '--config file', help='Filename of the

cluster config')

parser.add argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON para script para crear un cliuster de ONTAP Select

Al crear o eliminar un cluster de ONTAP Select con ejemplos de cédigo de Python, debe
proporcionar un archivo JSON como entrada al script. Puede copiar y modificar el
ejemplo JSON correspondiente segun sus planes de implementacion.

Cluster de un solo nodo en ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"
}o

"nodes": [

26

"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

I
"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Cluster de un solo nodo en ESXi mediante vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",

"mgmt server":"vcenter-1234"

false,

27

28

1,

"cluster": {

"dns info": {"domains": ["labl.company-demo.com", "lab2

demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,
"dns ips": ["10.206.80.135","10.206.80

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password" :"mypassword2",
"hostname":"vcenter-1234",
"username":"selectadmin"

by

"nodes": [
{

"serial number": "3200000nn",

"ip":"10.206.80.114",

"name" : "node-1",

"networks": |

{

"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan":null

"name": "ONTAP-External",
"purpose":"data",
"vlan":null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

.136"]

.142"7,

.company-

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1],
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster de un solo nodo en KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type'":"KVM",
"username" :"root"
}
I

"cluster": {

"dns info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" : "CBF4ED97",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

29

"netmask":"255.255.254.0"
}o

"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian":1234
by
{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

Script para agregar una licencia de nodo ONTAP Select

Puede utilizar el siguiente script para agregar una licencia para un nodo ONTAP Select .

30

#!/usr/bin/env python

File: add license.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new license (deploy, license filename) :
log_info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):

log_info ('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

31

32

def put used license(deploy, serial number, license filename,
ontap username, ontap password) :

""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and exit("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msg)
exit (1)

def configure logging() :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .

setLevel (logging.WARNING)

def main (args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post_new_license(deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add

33

the license. Only provide if the license is used by a Node.')
parser.add_argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == "' main ':
args = parseArgs ()
main (args)

Script para eliminar un cluster de ONTAP Select

Puede utilizar el siguiente script CLI para eliminar un cluster existente.

34

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1s provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import Jjson
import logging

from deploy requests import DeployRequests
def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusterS/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete cluster (deploy, cluster id):

log_info("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]|
'cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)
delete cluster (deploy, cluster id)
def parseArgs () :
parser = argparse.ArgumentParser (description='Uses the ONTAP Select

Deploy API to delete a cluster')
parser.add argument('-d', '--deploy', required=True, type=str, help=

35

'Hostname or IP address of Deploy server')

parser.add _argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()
if name == ' main ':
args = parseArgs ()
main (args)

Moédulo de Python de soporte comun para ONTAP Select

Todos los scripts de Python utilizan una clase Python comun en un solo médulo.

#!/usr/bin/env python

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import Jjson
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

36

def init_(self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:

self.logger.debug('POST DATA: %s', data)

response = requests.post(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,

37

auth=self.auth, verify=False,
data=data,
files=files)
else:

self.logger.debug('PUT DATA:"')

response = requests.put(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())
return response

def find resource(self, path, name, value):
''"" Returns the 'id' of the resource if it exists, otherwise None

resource = None

response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json () .get (

38

'num records') >= 1:
resource = response.json().get('records') [0].get('id")
return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

if response.status code == 200
return response.json() .get('num records')
return None

def resource_exists(self, path, name, wvalue):
return self.find resource (path, name, value) is not None

def wait_for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"

.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})
Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job _body.get('last modified')
Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)

exit (1) # End the script if a failure occurs

break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: $s\nHEADERS: $%s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers[key] for key in ['Location',
'request-id'] if key in response.headers}

Script para cambiar el tamaio de los nodos del cluster ONTAP Select

Puede utilizar el siguiente script para cambiar el tamafo de los nodos en un cluster de
ONTAP Select .

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import sys

40

from deploy requests import DeployRequests

def parse_ args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(

2

41

'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all
nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body (parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args

.nodes]

changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

42

mman

logging.basicConfig (
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=

logging.INFO,)

logging.getLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args ()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

43

Informacién de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

44

http://www.netapp.com/TM

	Automatizar con REST : ONTAP Select
	Tabla de contenidos
	Automatizar con REST
	Conceptos
	Fundación de servicios web REST para implementar y administrar clústeres ONTAP Select
	Cómo acceder a la API de implementación de ONTAP Select
	Características operativas básicas de la API de implementación de ONTAP Select
	Transacción de API de solicitud y respuesta para ONTAP Select
	Procesamiento asincrónico mediante el objeto Job para ONTAP Select

	Acceder con un navegador
	Antes de acceder a la API de implementación de ONTAP Select con un navegador
	Acceda a la página de documentación de ONTAP Select Deploy
	Comprender y ejecutar una llamada API de ONTAP Select Deploy

	Procesos de flujo de trabajo
	Antes de utilizar los flujos de trabajo de la API de ONTAP Select
	Flujo de trabajo 1: Crear un clúster de evaluación de nodo único de ONTAP Select en ESXi

	Acceso con Python
	Antes de acceder a la API de implementación de ONTAP Select mediante Python
	Comprenda los scripts de Python para ONTAP Select Deploy

	Ejemplos de código de Python
	Script para crear un clúster de ONTAP Select
	JSON para script para crear un clúster de ONTAP Select
	Script para agregar una licencia de nodo ONTAP Select
	Script para eliminar un clúster de ONTAP Select
	Módulo de Python de soporte común para ONTAP Select
	Script para cambiar el tamaño de los nodos del clúster ONTAP Select

