
Automatice con REPOSO

ONTAP Select
NetApp
January 10, 2026

This PDF was generated from https://docs.netapp.com/es-es/ontap-select/concept_api_rest.html on
January 10, 2026. Always check docs.netapp.com for the latest.

Tabla de contenidos

Automatice con REPOSO . 1

Conceptos . 1

Base de servicios web REST para poner en marcha y gestionar clústeres de ONTAP Select 1

Cómo acceder a la API de despliegue de ONTAP Select . 2

ONTAP Select implementa características operativas básicas de API . 2

Solicite y responda la transacción de API para ONTAP Select . 4

Procesamiento asíncrono mediante el objeto Trabajo para ONTAP Select . 7

Acceso con un explorador . 8

Antes de acceder a la API de implementación de ONTAP Select con un explorador 8

Acceda a la página de documentación de implementación de ONTAP Select . 9

Comprender y ejecutar una llamada a la API de implementación de ONTAP Select 9

Procesos de flujo de trabajo. 10

Antes de utilizar los flujos de trabajo de la API de puesta en marcha de ONTAP Select 10

Flujo de trabajo 1: Cree un clúster de evaluación de un solo nodo ONTAP Select en ESXi. 10

Acceso con Python . 17

Antes de acceder a la API de implementación de ONTAP Select con Python . 17

Comprender los scripts de Python para la implementación de ONTAP Select . 17

Muestras de código Python . 19

Script para crear un cluster de ONTAP Select. 19

JSON para el script para crear un clúster de ONTAP Select. 26

Script para añadir una licencia de nodo de ONTAP Select . 31

Script para suprimir un cluster ONTAP Select . 34

Módulo Python de soporte común para ONTAP Select . 36

Script para cambiar el tamaño de los nodos del cluster ONTAP Select . 40

Automatice con REPOSO

Conceptos

Base de servicios web REST para poner en marcha y gestionar clústeres de
ONTAP Select

La transferencia de estado representacional (REST) es un estilo para crear aplicaciones
web distribuidas. Cuando se aplica al diseño de una API de servicios web, establece un
conjunto de tecnologías y prácticas recomendadas para exponer recursos basados en
servidor y administrar sus estados. Usa los protocolos y estándares más habituales para
proporcionar una base flexible para la implementación y gestión de clústeres de ONTAP
Select.

Con las restricciones clásicas y a la arquitectura

EL RESTO fue articulado formalmente por Roy Fielding en su doctorado "disertación" En UC Irvine en 2000.
Define un estilo arquitectónico a través de un conjunto de restricciones, que han mejorado colectivamente las
aplicaciones basadas en web y los protocolos subyacentes. Estas restricciones establecen una aplicación de
servicios web RESTful basada en una arquitectura de cliente/servidor que utiliza un protocolo de
comunicación sin estado.

Recursos y representación estatal

Los recursos son los componentes básicos de un sistema basado en la Web. Al crear una aplicación DE
SERVICIOS web DE REST, las tareas de diseño más tempranas incluyen:

• Identificación de los recursos basados en el sistema o en el servidor cada sistema utiliza y mantiene los
recursos. Un recurso puede ser un archivo, una transacción comercial, un proceso o una entidad
administrativa. Una de las primeras tareas en el diseño de una aplicación basada en servicios web DE
REST es identificar los recursos.

• Definición de estados de recursos y operaciones estatales asociadas los recursos siempre se encuentran
en uno de un número finito de estados. Los estados, así como las operaciones asociadas utilizadas para
afectar los cambios de estado, deben estar claramente definidos.

Los mensajes se intercambian entre el cliente y el servidor para acceder y cambiar el estado de los recursos
según el modelo genérico CRUD (Crear, Leer, Actualizar y Eliminar).

Extremos de URI

Todos los recursos REST deben definirse y ponerse a disposición mediante un esquema de direccionamiento
bien definido. Los extremos en los que se encuentran e identifican los recursos utilizan un identificador
uniforme de recursos (URI). El URI proporciona un marco general para crear un nombre único para cada
recurso de la red. El Localizador uniforme de recursos (URL) es un tipo de URI que se utiliza con los servicios
web para identificar y acceder a los recursos. Los recursos normalmente se exponen en una estructura
jerárquica similar a un directorio de archivos.

Mensajes HTTP

El Protocolo de transferencia de hipertexto (HTTP) es el protocolo utilizado por el cliente y servidor de
servicios web para intercambiar mensajes de solicitud y respuesta sobre los recursos. Como parte del diseño

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

de una aplicación de servicios web, los verbos HTTP (como GET y POST) se asignan a los recursos y a las
acciones de administración de estado correspondientes.

HTTP no tiene estado. Por lo tanto, para asociar un conjunto de solicitudes y respuestas relacionadas en una
transacción, se debe incluir información adicional en los encabezados HTTP transportados con los flujos de
datos de solicitud/respuesta.

Formato JSON

Aunque la información se puede estructurar y transferir entre un cliente y un servidor de varias maneras, la
opción más popular (y la que se usa con la API REST de deploy) es la notación de objetos JavaScript (JSON).
JSON es un estándar del sector para representar estructuras de datos simples en texto sin formato y se utiliza
para transferir información de estado que describe los recursos.

Cómo acceder a la API de despliegue de ONTAP Select

Debido a la flexibilidad inherente de los servicios web de REST, se puede acceder a la
API de implementación de ONTAP Select de varias maneras diferentes.

La API REST incluida con ONTAP Select Deploy tiene asignado un número de versión. Este
número es independiente del número de versión de Deploy. La utilidad de administración
ONTAP Select 9.17.1 Deploy incluye la versión 3 de la API REST.

Implemente la interfaz de usuario nativa de la utilidad

La forma principal de acceder a la API se realiza a través de la interfaz de usuario web de implementación de
ONTAP Select. El navegador realiza llamadas a la API y reformatea los datos según el diseño de la interfaz de
usuario. También se accede a la API a través de la interfaz de línea de comandos de Deploy Utility.

Página de documentación en línea de ONTAP Select Deploy

La página de documentación en línea ONTAP Select Deploy proporciona un punto de acceso alternativo
cuando se utiliza un explorador. Además de proporcionar una forma de ejecutar directamente llamadas API
individuales, la página también incluye una descripción detallada de la API, incluidos los parámetros de
entrada y otras opciones para cada llamada. Las llamadas API se organizan en varias categorías o áreas
funcionales diferentes.

Programa personalizado

Puede acceder a la API de implementación utilizando cualquiera de los diferentes lenguajes y herramientas de
programación. Entre las opciones más populares se incluyen Python, Java y curl. Programa, script o
herramienta que usa la API actúa como cliente DE servicios web REST. Utilizar un lenguaje de programación
le permite comprender mejor la API y proporciona una oportunidad para automatizar las puestas en marcha de
ONTAP Select.

ONTAP Select implementa características operativas básicas de API

Mientras QUE REST establece un conjunto común de tecnologías y prácticas
recomendadas, los detalles de cada API pueden variar en función de las opciones de
diseño. Debe tener en cuenta los detalles y las características operativas de la API de
implementación de ONTAP Select antes de usar la API.

2

Host de hipervisor frente a nodo ONTAP Select

Un hypervisor host es la plataforma de hardware principal que aloja una máquina virtual ONTAP Select.
Cuando se implementa una máquina virtual ONTAP Select y está activa en un host de hipervisor, la máquina
virtual se considera un ONTAP Select node. Con la versión 3 de la API DE REST de implementación, los
objetos de host y nodo son distintos y separados. Esto permite una relación de uno a varios, donde uno o
varios nodos ONTAP Select pueden ejecutarse en el mismo host de hipervisor.

Identificadores de objeto

A cada instancia u objeto de recurso se le asigna un identificador único cuando se crea. Estos identificadores
son globalmente únicos dentro de una instancia específica de la implementación de ONTAP Select. Después
de emitir una llamada API que crea una nueva instancia de objeto, el valor de id asociado se devuelve al
llamador en la location Encabezado de la respuesta HTTP. Puede extraer el identificador y utilizarlo en
llamadas posteriores cuando haga referencia a la instancia del recurso.

El contenido y la estructura interna de los identificadores de objeto pueden cambiar en cualquier
momento. Solo se deben usar los identificadores en las llamadas API aplicables según sea
necesario cuando se hacen referencia a los objetos asociados.

Identificadores de solicitudes

A cada solicitud API de éxito se le asigna un identificador único. El identificador se muestra en la request-id
Encabezado de la respuesta HTTP asociada. Puede utilizar un identificador de solicitud para hacer referencia
colectivamente a las actividades de una única transacción específica de solicitud y respuesta de API. Por
ejemplo, puede recuperar todos los mensajes de eventos de una transacción basándose en el ID de solicitud

Llamadas síncronas y asíncronas

Hay dos formas principales de que un servidor realice una solicitud HTTP recibida desde un cliente:

• Síncrono el servidor realiza la solicitud inmediatamente y responde con un código de estado de 200, 201 o
204.

• Asincrónica el servidor acepta la solicitud y responde con un código de estado de 202. Esto indica que el
servidor ha aceptado la solicitud de cliente y ha iniciado una tarea en segundo plano para completar la
solicitud. El éxito o el fallo final no están disponibles de forma inmediata y se deben determinar mediante
llamadas API adicionales.

Confirmar que se ha completado un trabajo de ejecución prolongada

Por lo general, cualquier operación que puede tardar mucho tiempo en completarse se procesa de forma
asíncrona mediante una tarea en segundo plano en el servidor. Con la API Deploy REST, cada tarea en
segundo plano está anclada por un objeto Job que realiza un seguimiento de la tarea y proporciona
información, como el estado actual. Un objeto Job, incluido su identificador único, se devuelve en la respuesta
HTTP después de crear una tarea en segundo plano.

Puede consultar el objeto Job directamente para determinar el éxito o el error de la llamada API asociada.
Consulte procesamiento asíncrono mediante el objeto Job para obtener información adicional.

Además de utilizar el objeto Job, existen otras formas de determinar el éxito o el fallo de una solicitud, entre
las que se incluyen:

• Mensajes de eventos puede recuperar todos los mensajes de eventos asociados con una llamada API
específica utilizando el ID de solicitud devuelto con la respuesta original. Los mensajes de eventos

3

normalmente contienen una indicación de éxito o fallo, y también pueden ser útiles al depurar una
condición de error.

• Estado o estado de recurso varios de los recursos mantienen un valor de estado o estado al que puede
consultar para determinar indirectamente el éxito o el error de una solicitud.

Seguridad

La API de implementación utiliza las siguientes tecnologías de seguridad:

• Seguridad de la capa de transporte todo el tráfico enviado a través de la red entre el servidor de
implementación y el cliente se cifra a través de TLS. No se admite el uso del protocolo HTTP a través de
un canal no cifrado. Se admite la versión 1.2 de TLS.

• Autenticación HTTP la autenticación básica se utiliza para cada transacción de API. A cada solicitud se
agrega un encabezado HTTP, que incluye el nombre de usuario y la contraseña en una cadena base64.

Solicite y responda la transacción de API para ONTAP Select

Cada llamada de API de implementación se realiza como una solicitud HTTP a la
máquina virtual de implementación, que genera una respuesta asociada al cliente. Este
par de solicitud/respuesta se considera una transacción de API. Antes de utilizar la API
de implementación, debería estar familiarizado con las variables de entrada disponibles
para controlar una solicitud y el contenido del resultado de la respuesta.

Variables de entrada que controlan una solicitud API

Puede controlar cómo se procesa una llamada API mediante parámetros definidos en la solicitud HTTP.

Solicitar encabezados

Debe incluir varios encabezados en la solicitud HTTP, incluidos:

• Tipo de contenido Si el cuerpo de la solicitud incluye JSON, este encabezado debe establecerse en
Application/json.

• Acepte Si el cuerpo de respuesta incluirá JSON, este encabezado debe establecerse en Application/json.

• Autorización la autenticación básica se debe establecer con el nombre de usuario y la contraseña
codificados en una cadena base64.

Solicitar el cuerpo

El contenido del cuerpo de la solicitud varía en función de la llamada específica. El cuerpo de la solicitud
HTTP consta de uno de los siguientes elementos:

• Objeto JSON con variables de entrada (como el nombre de un clúster nuevo)

• Vacío

Filtrar objetos

Al emitir una llamada API que utilice GET, puede limitar o filtrar los objetos devueltos en función de cualquier
atributo. Por ejemplo, puede especificar un valor exacto para que coincida:

<field>=<query value>

4

Además de una coincidencia exacta, hay otros operadores disponibles para devolver un conjunto de objetos
sobre un rango de valores. ONTAP Select admite los operadores de filtrado que se muestran a continuación.

Operador Descripción

= Igual a.

< Menor que

> Mayor que

⇐ Menor o igual que

>= Mayor o igual que

O.

! No es igual a.

* Comodín codicioso

También puede devolver un conjunto de objetos basándose en si se establece o no un campo específico
utilizando la palabra clave null o su negación (!null) como parte de la consulta.

Selección de campos de objeto

De forma predeterminada, al emitir una llamada API mediante GET, sólo se devuelven los atributos que
identifican de forma exclusiva el objeto o los objetos. Este conjunto mínimo de campos actúa como clave para
cada objeto y varía según el tipo de objeto. Puede seleccionar propiedades de objeto adicionales mediante el
parámetro de consulta Campos de las siguientes formas:

• Los campos baratos especifican fields=* para recuperar los campos de objeto que se mantienen en la
memoria del servidor local o que requieren poco procesamiento para acceder.

• Los campos caros especifican fields=** para recuperar todos los campos de objeto, incluidos los que
requieren procesamiento de servidor adicional para tener acceso.

• Selección de campo personalizado fields=FIELDNAME para especificar el campo exacto que desea. Al
solicitar varios campos, los valores deben separarse con comas sin espacios.

Como práctica recomendada, siempre debe identificar los campos específicos que desea. Sólo
debe recuperar el conjunto de campos baratos o caros cuando sea necesario. NetApp
determina la clasificación económica y cara basándose en el análisis del rendimiento interno. La
clasificación de un campo determinado puede cambiar en cualquier momento.

Ordenar objetos en el conjunto de salida

Los registros de una colección de recursos se devuelven en el orden predeterminado definido por el objeto.
Puede cambiar el orden utilizando el parámetro de consulta Order_by con el nombre del campo y la dirección
de ordenación de la siguiente manera:
order_by=<field name> asc|desc

Por ejemplo, puede ordenar el campo de tipo en orden descendente seguido de id en orden ascendente:
order_by=type desc, id asc

Cuando se incluyan varios parámetros, los campos deben separarse con una coma.

5

Paginación

Al emitir una llamada API mediante GET para acceder a una colección de objetos del mismo tipo, todos los
objetos coincidentes se devuelven de forma predeterminada. Si es necesario, puede limitar el número de
registros devueltos mediante el parámetro de consulta max_Records con la solicitud. Por ejemplo:
max_records=20

Si es necesario, puede combinar este parámetro con otros parámetros de consulta para restringir el conjunto
de resultados. Por ejemplo, el siguiente muestra hasta 10 eventos del sistema generados después de la hora
especificada:
time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

Puede emitir varias solicitudes para páginas a través de los eventos (o cualquier tipo de objeto). Cada llamada
API posterior debe utilizar un nuevo valor de tiempo basado en el último evento del último conjunto de
resultados.

Interpretar una respuesta API

Cada solicitud de API genera una respuesta al cliente. Puede examinar la respuesta para determinar si ha
tenido éxito y recuperar datos adicionales según sea necesario.

Código de estado HTTP

A continuación se describen los códigos de estado HTTP utilizados por la API de REST de despliegue.

Codificación Significado Descripción

200 DE ACUERDO Indica que las llamadas que no crean un objeto nuevo se han
realizado correctamente.

201 Creado Se ha creado correctamente un objeto; el encabezado de respuesta
de ubicación incluye el identificador único del objeto.

202 Aceptado Se inició un trabajo en segundo plano de ejecución prolongada para
realizar la solicitud, pero la operación aún no se ha completado.

400 Solicitud incorrecta La entrada de la solicitud no se reconoce o no es apropiada.

403 Prohibido Se deniega el acceso debido a un error de autorización.

404 No encontrado El recurso al que se hace referencia en la solicitud no existe.

405 Método no permitido El verbo HTTP de la solicitud no es compatible con el recurso.

409 Conflicto Error al intentar crear un objeto porque el objeto ya existe.

500 Error interno Se ha producido un error interno general en el servidor.

501 No implementada El URI es conocido pero no es capaz de realizar la solicitud.

Encabezados de respuesta

Se incluyen varios encabezados en la respuesta HTTP generada por el servidor de implementación, entre los
que se incluyen:

• ID de solicitud a cada solicitud API correcta se le asigna un identificador de solicitud único.

• Ubicación cuando se crea un objeto, el encabezado de ubicación incluye la dirección URL completa del
nuevo objeto, incluido el identificador de objeto único.

6

Cuerpo de respuesta

El contenido de la respuesta asociada a una solicitud API varía en función del objeto, el tipo de procesamiento
y el éxito o el fallo de la solicitud. El cuerpo de la respuesta se representa en JSON.

• Objeto único un solo objeto se puede devolver con un conjunto de campos basados en la solicitud. Por
ejemplo, se puede usar GET para recuperar las propiedades seleccionadas de un clúster mediante el
identificador único.

• Se pueden devolver varios objetos de una colección de recursos. En todos los casos, existe un formato
coherente utilizado, con num_records indica el número de registros y registros que contienen una matriz
de las instancias de objeto. Por ejemplo, puede recuperar todos los nodos definidos en un clúster
específico.

• Objeto de trabajo Si una llamada API se procesa de forma asíncrona, se devuelve un objeto Job que ancla
la tarea en segundo plano. Por ejemplo, la solicitud POST utilizada para implementar un clúster se
procesa de forma asíncrona y devuelve un objeto Job.

• Objeto error Si se produce un error, siempre se devuelve un objeto error. Por ejemplo, recibirá un error al
intentar crear un clúster con un nombre que ya existe.

• Vacío en determinados casos, no se devuelve ningún dato y el cuerpo de respuesta está vacío. Por
ejemplo, el cuerpo de respuesta está vacío después de utilizar DELETE para eliminar un host existente.

Procesamiento asíncrono mediante el objeto Trabajo para ONTAP Select

Algunas de las llamadas de implementación de API, especialmente las que crean o
modifican un recurso, pueden tardar más tiempo en completarse que otras llamadas. La
implementación de ONTAP Select procesa estas solicitudes de ejecución prolongada de
forma asíncrona.

Solicitudes asincrónicas descritas mediante el objeto Job

Después de realizar una llamada API que se ejecuta de forma asíncrona, el código de respuesta HTTP 202
indica que la solicitud se ha validado y aceptado correctamente, pero que aún no se ha completado. La
solicitud se procesa como una tarea en segundo plano que continúa ejecutándose después de la respuesta
HTTP inicial al cliente. La respuesta incluye el objeto Job anclando la solicitud, incluyendo su identificador
único.

Consulte la página de documentación en línea de implementación de ONTAP Select para
determinar qué llamadas API funcionan de forma asíncrona.

Consulte el objeto Job asociado a una solicitud API

El objeto Job devuelto en la respuesta HTTP contiene varias propiedades. Puede consultar la propiedad state
para determinar si la solicitud se completó correctamente. Un objeto Job puede estar en uno de los siguientes
estados:

• En cola

• Ejecutando

• Correcto

• Fallo

Existen dos técnicas que se pueden utilizar al sondear un objeto Job para detectar un estado de terminal para

7

la tarea, ya sea con éxito o con un error:

• El estado actual del trabajo de la solicitud de sondeo estándar se devuelve inmediatamente

• El estado del trabajo de solicitud de sondeo largo sólo se devuelve cuando se produce una de las
siguientes situaciones:

◦ El estado ha cambiado más recientemente que el valor de fecha y hora proporcionado en la solicitud
de sondeo

◦ El valor de tiempo de espera ha caducado (de 1 a 120 segundos)

Sondeo estándar y sondeo largo Utilice la misma llamada API para consultar un objeto Job. Sin embargo, una
solicitud de sondeo larga incluye dos parámetros de consulta: poll_timeout y.. last_modified.

Siempre debe utilizar los sondeos largos para reducir la carga de trabajo en la máquina virtual
de implementación.

Procedimiento general para emitir una solicitud asincrónica

Puede utilizar el siguiente procedimiento de alto nivel para completar una llamada API asíncrona:

1. Emita la llamada de API asíncrona.

2. Reciba una respuesta HTTP 202 que indique la aceptación correcta de la solicitud.

3. Extraiga el identificador del objeto Job del cuerpo de respuesta.

4. Dentro de un bucle, realice lo siguiente en cada ciclo:

a. Obtener el estado actual del trabajo con una solicitud de sondeo largo

b. Si el trabajo se encuentra en un estado que no es terminal (en cola, en ejecución), vuelva a realizar el
bucle.

5. Deténgase cuando el trabajo alcance un estado terminal (correcto, fallo).

Acceso con un explorador

Antes de acceder a la API de implementación de ONTAP Select con un explorador

Hay varias cosas que debe tener en cuenta antes de utilizar la página de documentación
en línea de implementación.

Plan de implementación

Si piensa emitir llamadas API como parte de la realización de tareas administrativas o de implementación
específicas, debería considerar la creación de un plan de implementación. Estos planes pueden ser formales
o informales, y, por lo general, contienen sus objetivos y las llamadas a las API que se deben utilizar. Consulte
procesos de flujo de trabajo mediante la API DE REST de puesta en marcha para obtener más información.

Ejemplos de JSON y definiciones de parámetros

Cada llamada API se describe en la página de documentación usando un formato consistente. El contenido
incluye notas de implementación, parámetros de consulta y códigos de estado HTTP. Además, puede mostrar
detalles sobre JSON utilizado con las solicitudes y respuestas de API de la siguiente manera:

8

• Ejemplo de valor Si hace clic en ejemplo valor en una llamada API, se muestra una estructura JSON típica
para la llamada. Puede modificar el ejemplo según sea necesario y utilizarlo como entrada para su
solicitud.

• Si hace clic en Model, se muestra una lista completa de los parámetros JSON, con una descripción de
cada parámetro.

Precaución al emitir llamadas API

Todas las operaciones de API que se realizan mediante la página de documentación de implementación son
operaciones en directo. Debe tener cuidado de no crear, actualizar o eliminar por error la configuración u otros
datos.

Acceda a la página de documentación de implementación de ONTAP Select

Para ver la documentación en línea de la implementación de ONTAP Select, debe
acceder a la documentación de API, y también para emitir manualmente una llamada
API.

Antes de empezar

Debe tener lo siguiente:

• La dirección IP o el nombre de dominio de la máquina virtual de implementación de ONTAP Select

• Nombre de usuario y contraseña del administrador

Pasos

1. Escriba la dirección URL en su navegador y pulse Intro:

https://<ip_address>/api/ui

2. Inicie sesión con el nombre de usuario y la contraseña del administrador.

Resultado

Se muestra la página web de la documentación de despliegue con las llamadas organizadas por categoría en
la parte inferior de la página.

Comprender y ejecutar una llamada a la API de implementación de ONTAP Select

Los detalles de todas las llamadas API se documentan y se muestran usando un formato
común en la página web de documentación en línea de implementación de ONTAP
Select. Al comprender una única llamada API, puede acceder a los detalles de todas las
llamadas API e interpretarlos.

Antes de empezar

Debe haber iniciado sesión en la página web de documentación en línea de implementación de ONTAP
Select. Debe tener asignado el identificador único al clúster ONTAP Select cuando se creó el clúster.

Acerca de esta tarea

Puede recuperar la información de configuración que describe un clúster de ONTAP Select con su
identificador único. En este ejemplo, se devuelven todos los campos clasificados como baratos. Sin embargo,
como práctica recomendada, solo se deben solicitar los campos específicos que se necesitan.

9

Pasos

1. En la página principal, desplácese hasta la parte inferior y haga clic en Cluster.

2. Haga clic en GET /Clusters/{cluster_id} para mostrar los detalles de la llamada API utilizada para
devolver información acerca de un clúster ONTAP Select.

Procesos de flujo de trabajo

Antes de utilizar los flujos de trabajo de la API de puesta en marcha de ONTAP
Select

Debe prepararse para revisar y utilizar los procesos de flujo de trabajo.

Comprender las llamadas API utilizadas en los flujos de trabajo

La página de documentación en línea de ONTAP Select incluye los detalles de cada llamada a la API DE
REST. En lugar de repetir estos detalles aquí, cada llamada de API utilizada en los ejemplos de flujo de
trabajo incluye solo la información necesaria para localizar la llamada en la página de documentación.
Después de localizar una llamada API específica, puede revisar los detalles completos de la llamada, incluidos
los parámetros de entrada, formatos de salida, códigos de estado HTTP y tipo de procesamiento de
solicitudes.

Se incluye la siguiente información para cada llamada de API dentro de un flujo de trabajo para ayudar a
localizar la llamada en la página de documentación:

• Categoría las llamadas API se organizan en la página de documentación en categorías o áreas
relacionadas con la funcionalidad. Para ubicar una llamada API específica, desplácese hasta la parte
inferior de la página y haga clic en la categoría API correspondiente.

• Verbo HTTP el verbo HTTP identifica la acción realizada en un recurso. Cada llamada API se ejecuta a
través de un único verbo HTTP.

• Ruta de acceso la ruta de acceso determina el recurso específico al que se aplica la acción como parte de
la realización de una llamada. La cadena de ruta de acceso se anexa a la URL de núcleo para formar la
URL completa que identifica el recurso.

Construir una URL para acceder directamente a la API de REST

Además de la página de documentación de ONTAP Select, también puede acceder a la API DE REST de
puesta en marcha directamente mediante un lenguaje de programación como Python. En este caso, la URL
principal es ligeramente diferente a la URL utilizada al acceder a la página de documentación en línea. Al
acceder a la API directamente, debe anexar /api al dominio y la cadena de puerto. Por ejemplo:
http://deploy.mycompany.com/api

Flujo de trabajo 1: Cree un clúster de evaluación de un solo nodo ONTAP Select en
ESXi

Se puede poner en marcha un clúster de ONTAP Select de un solo nodo en un host
VMware ESXi gestionado por vCenter. El clúster se crea con una licencia de evaluación.

El flujo de trabajo de creación del clúster difiere en las siguientes situaciones:

• El host ESXi no está gestionado por vCenter (host independiente)

10

• Se utilizan varios nodos o hosts en el clúster

• Clúster se implementa en un entorno de producción con una licencia adquirida

• En lugar de VMware ESXi, se utiliza el hipervisor KVM

1. Registre la credencial de vCenter Server

Cuando se ponga en marcha en un host ESXi gestionado por una instancia de vCenter Server, debe añadir
una credencial antes de registrar el host. La utilidad de administración de implementación puede usar la
credencial para autenticar en vCenter.

Categoría Verbo HTTP Ruta

Puesta en
marcha

PUBLICAR /seguridad/credenciales

Rizo

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

Entrada JSON (paso 01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Tipo de procesamiento

Asíncrona

Salida

• ID de credencial en la cabecera de respuesta de ubicación

• Objeto de trabajo

2. Registre un host de hipervisor

Debe añadir un host de hipervisor donde se ejecutará la máquina virtual que contiene el nodo ONTAP Select.

Categoría Verbo HTTP Ruta

Clúster PUBLICAR /hosts

Rizo

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

11

Entrada JSON (paso 02)

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Tipo de procesamiento

Asíncrona

Salida

• ID de host en el encabezado de respuesta de ubicación

• Objeto de trabajo

3. Cree un clúster

Cuando se crea un clúster ONTAP Select, se registra la configuración básica de clúster y los nombres de los
nodos se generan automáticamente mediante la implementación.

Categoría Verbo HTTP Ruta

Clúster PUBLICAR /cluster

Rizo

El parámetro de consulta node_count se debe establecer como 1 para un clúster de un solo nodo.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

Entrada JSON (paso 03)

{

 "name": "my_cluster"

}

Tipo de procesamiento

Síncrona

Salida

• ID de clúster en el encabezado de respuesta de ubicación

12

4. Configure el clúster

Debe proporcionar varios atributos como parte de la configuración del clúster.

Categoría Verbo HTTP Ruta

Clúster PARCHE /cluster/{cluster_id}

Rizo

Debe proporcionar el ID de clúster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrada JSON (paso 04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Tipo de procesamiento

Síncrona

Salida

Ninguno

5. Recupere el nombre del nodo

La utilidad de administración Deploy genera automáticamente los identificadores de nodo y los nombres
cuando se crea un clúster. Para poder configurar un nodo, debe recuperar el ID asignado.

Categoría Verbo HTTP Ruta

Clúster OBTENGA /cluster/{cluster_id}/nodos

Rizo

Debe proporcionar el ID de clúster.

13

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Tipo de procesamiento

Síncrona

Salida

• La matriz registra cada uno de ellos describiendo un solo nodo con el ID y el nombre únicos

6. Configure los nodos

Debe proporcionar la configuración básica del nodo, que es la primera de las tres llamadas API que se usan
para configurar un nodo.

Categoría Verbo HTTP Ruta

Clúster RUTA /cluster/{cluster_id}/nodes/{node_id}

Rizo

Debe proporcionar el ID de clúster y el ID de nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrada JSON (paso 06)

Debe proporcionar el ID de host donde se ejecutará el nodo de ONTAP Select.

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

Tipo de procesamiento

Síncrona

Salida

Ninguno

7. Recupere las redes de nodos

En el clúster de un único nodo, debe identificar las redes de datos y gestión que utiliza el nodo. La red interna
no se usa con un clúster de un solo nodo.

14

Categoría Verbo HTTP Ruta

Clúster OBTENGA /cluster/{cluster_id}/nodes/{node_id}/redes

Rizo

Debe proporcionar el ID de clúster y el ID de nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Tipo de procesamiento

Síncrona

Salida

• Matriz de dos registros que describen una sola red para el nodo, incluyendo el identificador único y el
propósito

8. Configure la red del nodo

Debe configurar las redes de gestión y datos. La red interna no se usa con un clúster de un solo nodo.

Emita la siguiente llamada API dos veces, una por cada red.

Categoría Verbo HTTP Ruta

Clúster PARCHE /cluster/{cluster_id}/nodes/{node_id}/networks/{network_id}

Rizo

Debe proporcionar el ID de clúster, el ID de nodo y el ID de red.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrada JSON (paso 08)

Debe proporcionar el nombre de la red.

{

 "name": "sDOT_Network"

}

Tipo de procesamiento

Síncrona

15

Salida

Ninguno

9. Configure el pool de almacenamiento del nodo

El paso final de configurar un nodo es conectar un pool de almacenamiento. Se pueden determinar los pools
de almacenamiento disponibles a través del cliente web de vSphere, o bien, de manera opcional, mediante la
API DE REST Deploy.

Categoría Verbo HTTP Ruta

Clúster PARCHE /cluster/{cluster_id}/nodes/{node_id}/networks/{network_id}

Rizo

Debe proporcionar el ID de clúster, el ID de nodo y el ID de red.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrada JSON (paso 09)

La capacidad del pool es 2 TB.

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Tipo de procesamiento

Síncrona

Salida

Ninguno

10. Ponga en marcha el clúster

Después de configurar el clúster y el nodo, puede implementar el clúster.

Categoría Verbo HTTP Ruta

Clúster PUBLICAR /cluster/{cluster_id}/deploy

Rizo

Debe proporcionar el ID de clúster.

16

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

Entrada JSON (paso 10)

Debe proporcionar la contraseña de la cuenta de administrador de ONTAP.

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Tipo de procesamiento

Asíncrona

Salida

• Objeto de trabajo

Información relacionada

"Ponga en marcha una instancia de evaluación de 90 días de un clúster de ONTAP Select"

Acceso con Python

Antes de acceder a la API de implementación de ONTAP Select con Python

Debe preparar el entorno antes de ejecutar los scripts Python de ejemplo.

Antes de ejecutar los scripts de Python, debe asegurarse de que el entorno esté configurado correctamente:

• Debe instalarse la última versión aplicable de python2. Los códigos de las muestras se han probado
utilizando python2. También deben ser portátiles a Python3, pero no han sido probados para la
compatibilidad.

• Deben instalarse las solicitudes y las bibliotecas urllib3. Puede utilizar pip u otra herramienta de gestión
Python según sea necesario para su entorno.

• La estación de trabajo cliente donde se ejecutan los scripts debe tener acceso de red a la máquina virtual
ONTAP Select Deploy.

Además, debe tener la siguiente información:

• Dirección IP de la máquina virtual de implementación

• Nombre de usuario y contraseña de una cuenta de administrador de despliegue

Comprender los scripts de Python para la implementación de ONTAP Select

Los scripts Python de ejemplo le permiten realizar varias tareas diferentes. Debe
comprender los scripts antes de utilizarlos en una instancia de despliegue en directo.

17

https://docs.netapp.com/es-es/ontap-select/deploy-evaluation-ontap-select-ovf-template.html

Características de diseño comunes

Los scripts se han diseñado con las siguientes características comunes:

• Ejecutar desde la interfaz de línea de comandos en un equipo cliente puede ejecutar los scripts de Python
desde cualquier equipo cliente configurado correctamente. Consulte antes de comenzar para obtener más
información.

• Aceptar los parámetros de entrada de la CLI cada script se controla en la CLI a través de parámetros de
entrada.

• Leer archivo de entrada cada script lee un archivo de entrada según su propósito. Cuando crea o elimina
un clúster, debe proporcionar un archivo de configuración JSON. Al añadir una licencia de nodo, debe
proporcionar un archivo de licencia válido.

• Utilice un módulo de soporte común el módulo de soporte común deploy_Requests.py contiene una sola
clase. Cada uno de los scripts lo importa y lo utiliza.

Cree un clúster

Es posible crear un clúster de ONTAP Select con el script cluster.py. Según los parámetros de la CLI y el
contenido del archivo de entrada JSON, puede modificar el script en el entorno de implementación de la
manera siguiente:

• Hipervisor puede ponerse en marcha en ESXI o KVM (según la versión de puesta en marcha). Cuando se
pone en marcha en ESXi, el hipervisor puede gestionarse con vCenter o puede ser un host independiente.

• Tamaño del clúster puede poner en marcha un clúster de un solo nodo o de varios nodos.

• Licencia de evaluación o producción puede implementar un clúster con una evaluación o adquirir una
licencia para producción.

Los parámetros de entrada de la CLI para el script incluyen:

• Nombre de host o dirección IP del servidor de implementación

• Contraseña de la cuenta de usuario administrador

• Nombre del archivo de configuración JSON

• Indicador detallado para la salida de mensajes

Añada una licencia de nodo

Si decide implementar un clúster de producción, debe agregar una licencia para cada nodo utilizando el script
add_license.py. Puede añadir la licencia antes o después de implementar el clúster.

Los parámetros de entrada de la CLI para el script incluyen:

• Nombre de host o dirección IP del servidor de implementación

• Contraseña de la cuenta de usuario administrador

• Nombre del archivo de licencia

• Nombre de usuario de ONTAP con privilegios para añadir la licencia

• Contraseña del usuario de ONTAP

18

Elimine un clúster

Es posible eliminar un clúster ONTAP Select existente con el script delete_cluster.py.

Los parámetros de entrada de la CLI para el script incluyen:

• Nombre de host o dirección IP del servidor de implementación

• Contraseña de la cuenta de usuario administrador

• Nombre del archivo de configuración JSON

Muestras de código Python

Script para crear un cluster de ONTAP Select

Puede utilizar el siguiente script para crear un clúster basado en los parámetros definidos
en el script y en un archivo de entrada JSON.

#!/usr/bin/env python

##--

#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

19

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter[

'hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter[

'hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username', 'password

']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

 hosts = config.get('hosts', [])

 for host in hosts:

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

 if 'password' in host and not deploy.resource_exists(

'/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host['name

']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host[

'password']}

 deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

20

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host[

'type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

 host_config['credential'] = {

 "password": host['password'], "username": host['user

']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

 '''

 log_debug_trace()

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

21

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

22

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource('/clusters/{}/nodes/{}/networks

'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

23

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

 node_ids = get_node_ids(deploy, cluster_id)

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'][

'ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

24

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

 logging.WARNING)

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

 cluster_id = create_cluster_config(deploy, config)

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

25

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

JSON para el script para crear un clúster de ONTAP Select

Cuando crea o elimina un clúster de ONTAP Select con ejemplos de código Python, debe
proporcionar un archivo JSON como entrada del script. Puede copiar y modificar la
muestra JSON adecuada en función de sus planes de implementación.

Clúster de un solo nodo en ESXi

{

 "hosts": [

 {

 "password": "mypassword1",

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

26

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Clúster de un solo nodo en ESXi mediante vCenter

{

 "hosts": [

 {

27

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

28

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

Clúster de un solo nodo en KVM

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

29

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

30

Script para añadir una licencia de nodo de ONTAP Select

Se puede usar el siguiente script para añadir una licencia de un nodo ONTAP Select.

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

31

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

 data = {}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

32

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

its used

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

33

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help=

'Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Script para suprimir un cluster ONTAP Select

Es posible utilizar el siguiente script de la CLI para eliminar un clúster existente.

#!/usr/bin/env python

##--

#

File: delete_cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

34

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config[

'cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

35

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Módulo Python de soporte común para ONTAP Select

Todos los scripts de Python utilizan una clase Python común en un único módulo.

#!/usr/bin/env python

##--

#

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

36

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

37

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

38

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get(

'num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

 def resource_exists(self, path, name, value):

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

39

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Script para cambiar el tamaño de los nodos del cluster ONTAP Select

Puede usar el siguiente script para cambiar el tamaño de los nodos de un clúster de
ONTAP Select.

#!/usr/bin/env python

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

40

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

41

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

 if not cluster_id:

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json()[

'record']

def _get_request_body(parsed_args, cluster):

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

42

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

 return 1

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

 sys.exit(main())

43

Información de copyright

Copyright © 2026 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico,
electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación
electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O
IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN
DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y
sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de
este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos
a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB
de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas
comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

44

http://www.netapp.com/TM

	Automatice con REPOSO : ONTAP Select
	Tabla de contenidos
	Automatice con REPOSO
	Conceptos
	Base de servicios web REST para poner en marcha y gestionar clústeres de ONTAP Select
	Cómo acceder a la API de despliegue de ONTAP Select
	ONTAP Select implementa características operativas básicas de API
	Solicite y responda la transacción de API para ONTAP Select
	Procesamiento asíncrono mediante el objeto Trabajo para ONTAP Select

	Acceso con un explorador
	Antes de acceder a la API de implementación de ONTAP Select con un explorador
	Acceda a la página de documentación de implementación de ONTAP Select
	Comprender y ejecutar una llamada a la API de implementación de ONTAP Select

	Procesos de flujo de trabajo
	Antes de utilizar los flujos de trabajo de la API de puesta en marcha de ONTAP Select
	Flujo de trabajo 1: Cree un clúster de evaluación de un solo nodo ONTAP Select en ESXi

	Acceso con Python
	Antes de acceder a la API de implementación de ONTAP Select con Python
	Comprender los scripts de Python para la implementación de ONTAP Select

	Muestras de código Python
	Script para crear un cluster de ONTAP Select
	JSON para el script para crear un clúster de ONTAP Select
	Script para añadir una licencia de nodo de ONTAP Select
	Script para suprimir un cluster ONTAP Select
	Módulo Python de soporte común para ONTAP Select
	Script para cambiar el tamaño de los nodos del cluster ONTAP Select

