Desarrolle un complemento para la
aplicacion
SnapCenter Software 4.5

NetApp
September 29, 2025

This PDF was generated from https://docs.netapp.com/es-es/snapcenter-45/protect-
scc/concept_develop_a_plug_in_for_your_application.html on September 29, 2025. Always check

docs.netapp.com for the latest.

Tabla de contenidos

Desarrolle un complemento para la aplicacion
Descripcion general
Gestion de complementos genérica en todas las llamadas API
Desarrollo basado en PERL
Manejo general del plug-in
Estilo NATIVO
Manejo general del plug-in
Estilo Java
Limitaciones
Métodos admitidos
Tutorial
Plugin personalizado en SnapCenter
Plugin personalizado en SnapCenter

Desarrolle un complemento para la aplicacion

Descripcion general

El servidor de SnapCenter permite poner en marcha y gestionar sus aplicaciones como
complementos en SnapCenter. Las aplicaciones de su eleccion pueden conectarse al
servidor de SnapCenter para disfrutar de funcionalidades de proteccion y gestion de
datos.

SnapCenter le permite desarrollar complementos personalizados utilizando diferentes lenguajes de
programacion. Puede desarrollar un complemento personalizado utilizando Perl, Java, BATCH u otros
lenguajes de scripting.

Para utilizar plugins personalizados en SnapCenter, debe realizar las siguientes tareas:

» Cree un complemento para su aplicacion siguiendo las instrucciones de esta guia
» Cree un archivo de descripcién
» Exporte el plugin personalizado para instalarlo en el host de SnapCenter

« Cargue el archivo zip del plugin en el servidor de SnapCenter

Gestion de complementos genérica en todas las llamadas API
Para cada llamada a la API, utilice la siguiente informacion:

« Parametros del plugin
 codigos de salida
* Registrar mensajes de error

* Coherencia de datos

Utilice los parametros del plugin

Se pasa un conjunto de parametros al plug-in como parte de cada llamada API realizada. En la siguiente
tabla, se muestra informacion especifica de los parametros.

Parametro Especifico

ACCION Determina el nombre del flujo de trabajo. Por ejemplo,
descubra, copia de seguridad, archivoOrVolRestore o
cloneVolAndLun

RECURSOS Enumera los recursos que se deben proteger. UID y
tipo identifican un recurso. La lista se presenta al
plugin con el siguiente formato:

“<UID>,<TYPE>;<UID>,<TYPE>". Por ejemplo,
“Instance1,instancia;Instance2\\DB1,base de datos”

Parametro

NOMBRE_APLICACION

APP_IGNORE_ERROR

<RESOURCE_NAME>__APP_INSTANCE_USERNA
ME

<RESOURCE_NAME> APP_INSTANCE_PASSWO
RD

<CUSTOM_PARAM>_<RESOURCE_NAME>

Utilice los codigos de salida

Especifico

Determina qué plugin se esta utilizando. Por ejemplo,
DB2, MYSQL. El servidor SnapCenter cuenta con
compatibilidad integrada para las aplicaciones de la
lista. Este parametro distingue mayusculas de
minusculas.

(Y o N) esto hace que SnapCenter salga o no salga
cuando se encuentra un error de aplicacién. Esto es
util cuando se realiza el backup de varias bases de
datos y no se desea que un solo fallo detenga la
operacion de backup.

Se han establecido las credenciales de SnapCenter
para el recurso.

Se han establecido las credenciales de SnapCenter
para el recurso.

Todos los valores de clave personalizada de nivel de
recursos estan disponibles para los plug-ins con
“<RESOURCE_NAME>_". Por ejemplo, si una clave
personalizada es “MASTER_SLAVE” para un recurso
llamado “MySQLDB”, estara disponible como
MySQLDB_MASTER_SLAVE

El plugin devuelve el estado de la operacién a su host mediante codigos de salida. Cada cédigo tiene un
significado especifico y el plug-in utiliza el cédigo de salida derecho para indicar lo mismo.

En la siguiente tabla se muestran los codigos de error y su significado.

Cddigo de salida
0

99

100

101

otros

Especifico

Funcionamiento correcto.

La operacion solicitada no es compatible o esta
implementada.

Error en la operaciéon, omita la pausa y salga. La
funcion de inactividad esta predeterminada.

Error en la operacion, continte con la operacion de
backup.

Error en la operacion, ejecucion de la reanudacion y
salida.

Registrar mensajes de error

Los mensajes de error pasan del plugin al servidor de SnapCenter. El mensaje incluye el mensaje, el nivel de
registro y la Marca de hora.

En la tabla siguiente se enumeran los niveles y sus propositos.

Parametro Especifico
INFORMACION mensaje informativo
ADVERTIR mensaje de advertencia
ERROR mensaje de error
DEPURAR depurar mensaje
TRAZA mensaje de seguimiento

Conserve la consistencia de datos

Los plugins personalizados conservan datos entre operaciones de la misma ejecucién del flujo de trabajo. Por
ejemplo, un plugin puede almacenar datos al final de la inactividad, que se puede utilizar durante la operacion
de inactivacion.

Los datos que se van a conservar se establecen como parte del objeto de resultado mediante el
complemento. Sigue un formato especifico y se describe con detalle en cada estilo de desarrollo de
complementos.

Desarrollo basado en PERL
Debe seguir ciertas convenciones mientras desarrolla el plugin con PERL.

 El contenido debe ser legible
» Debe implementar la configuraciéon de operaciones obligatorias, el modo de inactividad y la reanudacion
* Debe utilizar una sintaxis especifica para devolver los resultados al agente

* El contenido debe guardarse como archivo <PLUGIN_NAME>.pm
Las operaciones disponibles son

* Setenv

* version

* modo de inactividad

* inactivacion

* clone_pre, clone_post

* restaurar_pre, restaurar

* limpieza

Manejo general del plug-in

Uso del objeto Results

Todas las operaciones de plugin personalizado deben definir el objeto Results. Este objeto envia mensajes,
codigo de salida, stdout y stderr de vuelta al agente host.

Objeto resultados:

my Sresult = {

exit code => 0,

stdout => "",

stderr => "",
}i

Devolver el objeto Results:

return S$result;

Conservacion de la coherencia de los datos

Es posible conservar datos entre operaciones (excepto limpieza) como parte de la misma ejecucion del flujo
de trabajo. Esto se logra usando pares clave-valor. Los pares clave-valor de los datos se establecen como

parte del objeto de resultado y se conservan y estan disponibles en las operaciones posteriores del mismo
flujo de trabajo.

En el ejemplo de codigo siguiente se establecen los datos que se van a conservar:

my Sresult = {
exit code => 0,
stdout => "",
stderr => "",

}i
Sresult->{env}->{‘keyl’}
Sresult->{env}->{‘key2’}

‘valuel’;

‘value2’;

return Sresult

El codigo anterior establece dos pares clave-valor, que estan disponibles como entrada en la operacién
posterior. Los dos pares clave-valor se pueden acceder mediante el siguiente cédigo:

sub setENV ({
my ($self, Sconfig) = @ ;
my Sfirst value = Sconfig->{‘keyl’};
my Ssecond value = Sconfig->{‘key2’};

=== Logging error messages
Cada operacidn puede enviar mensajes al agente host, que muestra y
almacena el contenido. Un mensaje contiene el nivel de mensaje, una Marca

de tiempo y un texto de mensaje. Se admiten mensajes multilinea.

Load the SnapCreator::Event Class:
my SmsgObj = new SnapCreator::Event () ;
my @message a = ();

Utilice el método msgObj para capturar un mensaje mediante el método Collect.

$msgObj->collect (\@message a, INFO, "My INFO Message");
$msgObj->collect (\@message a, WARN, "My WARN Message");
$msgObj->collect (\@message a, ERROR, "My ERROR Message");
$msgObj->collect (\@message a, DEBUG, "My DEBUG Message");
$msgObj->collect (\@message a, TRACE, "My TRACE Message");

Aplicar mensajes al objeto resultados:

$result->{message} = \@message a;

Uso de los esparragos del plug-in

Los plugins personalizados deben exponer los talones del plug-in. Estos son métodos a los que llama el
servidor SnapCenter, en funcion de un flujo de trabajo.

Muioén de complemento

Setenv

Version

Deteccion

Opcional/obligatorio

obligatorio

Opcional

Opcional

Especifico

Este cdédigo auxiliar establece el
entorno y el objeto de
configuracion.

Aqui se debe realizar cualquier
analisis o manejo del entorno.
Cada vez que se llama un archivo
stub, el archivo stub setenv se
llama justo antes. Solo es
necesario para complementos DE
tipo PERL.

Este cddigo auxiliar se utiliza para
obtener la versién de la aplicacion.

Este archivo stub se utiliza para
detectar objetos de aplicacion
como la instancia o la base de
datos alojada en el agente o host.

Se espera que el complemento
devuelva los objetos de aplicacion
detectados en un formato
especifico como parte de la
respuesta. Este cddigo auxiliar solo
se utiliza en caso de que la
aplicacion esté integrada con
SnapDrive para Unix.

Sistema de archivos
Linux (Linux Flavors)
@ es compatible.
AlX/Solaris (Unix
Flavors) no son
compatibles.

Muioén de complemento

discovery_complete

Modo de inactividad

Inactivacion

Opcional/obligatorio

Opcional

obligatorio

obligatorio

Especifico

Este archivo stub se utiliza para
detectar objetos de aplicacion
como la instancia o la base de
datos alojada en el agente o host.

Se espera que el complemento
devuelva los objetos de aplicacion
detectados en un formato
especifico como parte de la
respuesta. Este codigo auxiliar solo
se utiliza en caso de que la
aplicacion esté integrada con
SnapDrive para Unix.

Sistema de archivos
Linux (Linux Flavors)
@ es compatible. AIX 'y
Solaris (versiones
Unix) no son
compatibles.

Este archivo stub es responsable
de realizar un modo de inactividad,
lo que significa colocar la
aplicacion en un estado en el que
puede crear una copia Snapshot.
Esto se llama antes de la
operacion de copia de Snapshot.
Los metadatos de la aplicacion que
se conservara deben definirse
como parte de la respuesta, que se
devolvera durante las operaciones
posteriores de clonado o
restauracion en la copia Snapshot
de almacenamiento
correspondiente en forma de
parametros de configuracion.

Este cddigo auxiliar es responsable
de realizar un modo de inactividad,
lo que significa poner la aplicacion
en un estado normal. Esto se llama
después de crear una copia
Snapshot.

Muioén de complemento

clone_pre

clone_post

restaurar_pre

Restaurar

Opcional/obligatorio

opcional

opcional

opcional

opcional

Especifico

Este archivo stub es responsable
de realizar tareas previas a la
clonacion. Se supone que se utiliza
la interfaz de clonacion del servidor
de SnapCenter integrada y se
activa al realizar la operacion de
clonacion.

Este archivo stub es responsable
de realizar tareas posteriores a la
clonacién. Esto supone que se
utiliza la interfaz de clonacién del
servidor de SnapCenter integrada y
se activa solo al realizar una
operacion de clonado.

Este archivo stub es responsable
de realizar tareas prerestore. Esto
supone que se utiliza la interfaz de
restauracion de servidor de
SnapCenter incorporada y se
activa al realizar una operacién de
restauracion.

Este cddigo auxiliar es responsable
de realizar tareas de restauracion
de aplicaciones. Esto supone que
se utiliza la interfaz de restauracion
de servidor de SnapCenter
incorporada y que solo se activa al
realizar una operacion de
restauracion.

Muioén de complemento Opcional/obligatorio
Limpieza opcional
version_aplicacion Opcional

Informacién sobre el paquete de plugins

Cada plugin debe tener la siguiente informacion:

Especifico

Este archivo stub es responsable
de realizar una limpieza después
de las operaciones de backup,
restauracion o clonado. La limpieza
puede realizarse durante la
ejecucion normal del flujo de
trabajo o en caso de que se
produzca un error en el mismo.
Puede inferir el nombre del flujo de
trabajo bajo el cual se llama a la
limpieza haciendo referencia a LA
ACCION de parametro de
configuracion, que puede ser copia
de seguridad, clonVolAndLun o
archivoOrVolRestore. El parametro
DE configuracion
ERROR_MESSAGE indica si se
produjo algun error al ejecutar el
flujo de trabajo. Si
ERROR_MESSAGE esta definido
y NO es NULL, se llama a la
limpieza durante la ejecucion de un
fallo de flujo de trabajo.

SnapCenter utiliza este archivo
stub para que el complemento
gestione el detalle de la version de
la aplicacion.

package MOCK;

our @ISA = gw(SnapCreator::Mod);

=headl NAME

MOCK - class which represents a MOCK module.

=cut

=headl DESCRIPTION

MOCK implements methods which only log requests.

=cut

use strict;

use warnings;

use diagnostics;

use SnapCreator::Util::Generic gw (trim isEmpty);
use SnapCreator::Util::0S gw (isWindows isUnix getUid
createTmpFile);

use SnapCreator::Event gw (INFO ERROR WARN DEBUG COMMENT ASUP
CMD DUMP) ;

my SmsgObj = new SnapCreator::Event();

my %$config h = ();

Operaciones

Puede codificar varias operaciones, como seteny, Version, Quiesce y UnQUIESCE, que son compatibles con
los plug-ins personalizados.

Funcionamiento de setenv

La operacion setenv es necesaria para los complementos creados con PERL. Puede ajustar el ENV y acceder
facilmente a los parametros del plug-in.

sub setENV {
my (Sself, Sobj) = @ ;
sconfig h = %${Sobj};
my Sresult = {
exit code => 0,
stdout => "",
stderr => "",
}i

return Sresult;

Operacién de version

La operacion de version devuelve la informacion de la version de la aplicacion.

10

sub version {
my Sversion result = {
major => 1,
minor => 2,
patch => 1,
build => 0
}i
my @message a = ();
SmsgObj->collect (\@message a, INFO, "VOLUMES
$config h{'VOLUMES'}");
$msgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::quiesce");
$version_result—>{message} = \@message_a;
return Sversion result;

Operaciones de inactivacion

La operacion de inactividad realiza una operacién de inactividad de la aplicaciéon en los recursos que se
enumeran en el parametro RESOURCES.

sub quiesce {
my Sresult = {
exit code => 0,
stdout => "",
stderr => "",
i
my @message a = ();
SmsgObj->collect (\@message a, INFO, "VOLUMES
$config h{'VOLUMES'}");
SmsgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::quiesce");
$result->{message} = \@message a;
return Sresult;

Funcionamiento de la reanudacion

La operacion de inactividad es necesaria para desactivar la activacion de la aplicacion. La lista de recursos
esta disponible en el parametro RESOURCES.

sub unquiesce {
my Sresult = {
exit code => 0,
stdout => "",
stderr => "",
i
my @message a = ();
$msgObj->collect (\@message a, INFO, "VOLUMES
Sconfig h{'VOLUMES'}");
$msgObj->collect (\@message a, INFO,
"Sconfig h{'APP NAME'}::unquiesce");
Sresult->{message} = \@message_a;
return Sresult;

Estilo NATIVO

SnapCenter admite lenguajes que no SEAN DE programacion PERL o lenguajes de
scripting para crear complementos. Esto se conoce como programaciéon DE estilo
NATIVO, que puede ser un archivo de secuencia de comandos o LOTE.

Los plugins DE estilo NATIVO deben seguir ciertas convenciones indicadas a continuacion:
El plugin debe ser ejecutable

» Para los sistemas Unix, el usuario que ejecuta el agente debe tener privilegios de ejecucion en el plug-in

* En los sistemas Windows, los complementos de PowerShell deben tener el sufijo .ps1, los demas scripts
de Windows deben tener el sufijo .cmd o .bat y el usuario debe ser ejecutable

* Los complementos deben reaccionar a los argumentos de la linea de comandos, como "-QUIESCE", "-
unQUIESCE"

* Los plug-ins deben devolver codigo de salida 99 en caso de que no se haya implementado una operacion
o funcion

* Los plugins deben utilizar una sintaxis especifica para devolver los resultados al servidor

Manejo general del plug-in

Mensajes de error de registro

Cada operacion puede enviar mensajes al servidor, que muestra y almacena el contenido. Un mensaje
contiene el nivel de mensaje, una Marca de tiempo y un texto de mensaje. Se admiten mensajes multilinea.

Formato:

SC_MSG#<level>#<timestamp>#<message>
SC_MESSAGE#<level>#<timestamp>#<message>

12

Uso de los esparragos del plug-in

Los complementos de SnapCenter deben implementar esparragos de complemento. Estos son métodos a los
que el servidor SnapCenter llama en funcién de un flujo de trabajo especifico.

Muioén de complemento Opcional/obligatorio
modo de inactividad obligatorio
inactivacion obligatorio

clone_pre opcional

clone_post Opcional
restaurar_pre Opcional

Especifico

Este cddigo auxiliar es responsable
de realizar una pausa. Coloca la
aplicacion en un estado en el que
podemos crear una copia
Snapshot. Esto se denomina antes
de la operacion de copia de
Snapshot de almacenamiento.

Este cddigo auxiliar es responsable
de realizar una pausa. Coloca la
aplicacion en un estado normal.
Esto se denomina después de la
operacién de copia de Snapshot de
almacenamiento.

Este archivo stub es responsable
de realizar tareas previas a la
clonacién. Esto supone que se
utiliza la interfaz de clonado de
SnapCenter incorporada y que solo
se activa mientras se realiza la
accion "clone_vol o clone_lun".

Este archivo stub es responsable
de realizar tareas posteriores a la
clonacién. Esto supone que utiliza
la interfaz de clonado de
SnapCenter integrada y que solo
se activa mientras se realizan
operaciones de «clone_vol o
clone_luny».

Este archivo stub es responsable
de realizar tareas previas a la
restauracion. Esto supone que se
utiliza la interfaz de restauracion de
SnapCenter integrada y que solo
se activa durante la operacion de
restauracion.

13

Munoén de complemento Opcional/obligatorio Especifico

restaurar opcional Este cddigo auxiliar es responsable
de realizar todas las acciones de
restauracion. Esto supone que no
esta utilizando la interfaz de
restauracion integrada. Se activa
durante la operacion de
restauracion.

Ejemplos

Windows PowerShell

Compruebe si la secuencia de comandos se puede ejecutar en el sistema. Si no puede ejecutar la secuencia
de comandos, defina el desvio de Set-ExecutionPolicy para la secuencia de comandos y vuelva a intentar la
operacion.

14

if ($args.length -ne 1) {
write-warning "You must specify a method";
break;
}
function log (Slevel, Smessage) {
$d = get-date
echo "SC MSG#$Slevel#Sd#Smessage"
}
function quiesce {
$app name = (get-item env:APP NAME) .value
log "INFO" "Quiescing application using script Sapp name";
log "INFO" "Quiescing application finished successfully"
}
function unquiesce {
Sapp name = (get-item env:APP NAME) .value
log "INFO" "Unquiescing application using script Sapp name";
log "INFO" "Unquiescing application finished successfully"

switch ($Sargs[0]) {

"—quiesce" {
quiesce;

}

"—unquiesce" {
unquiesce;

}

default {

write-error "Function $args[0] is not implemented";
exit 99;

exit 0;

Estilo Java

Un complemento personalizado de Java interactua directamente con una aplicacion
como base de datos, instancia, etc.

Limitaciones

Existen ciertas limitaciones que debe tener en cuenta al desarrollar un plug-in utilizando el lenguaje de
programacion Java.

Caracteristica de plug-in Plugin de Java

Complejidad De bajo a mediano

Caracteristica de plug-in Plugin de Java

Huella de la memoria Hasta 10-20 MB

Dependencias con otras bibliotecas Bibliotecas para la comunicacion de aplicaciones
Numero de subprocesos 1

Tiempo de ejecucion de subprocesos Menos de una hora

Motivo de las limitaciones de Java

El objetivo del agente SnapCenter es garantizar una integracion de aplicaciones sélida, segura y continua. Al
admitir plug-ins de Java, es posible que los plug-ins introduzcan fugas de memoria y otros problemas no
deseados. Esas cuestiones son dificiles de abordar, especialmente cuando el objetivo es mantener las cosas
faciles de usar. Si la complejidad de un complemento no es demasiado compleja, es mucho menos probable
que los desarrolladores hubieran introducido los errores. El peligro del plug-in Java es que se ejecuten en la
misma JVM que el propio agente de SnapCenter. Cuando el plug-in se bloquea o pierde memoria, también
puede afectar negativamente al agente.

Métodos admitidos

Método Obligatorio Descripcion ¢Cuando y por quién?
Version Si Necesita obtener la El servidor o el agente de
version del plugin. SnapCenter para solicitar

la version del plugin.

Modo de inactividad Si Necesita realizar una Antes de que el servidor
pausa en la aplicacion. En de SnapCenter cree una
la mayoria de los casos, copia de Snapshot o
esto implica poner la realice un backup en
aplicacion en un estado general.
donde SnapCenter Server
puede crear un backup
(por ejemplo, una copia

Snapshot).

Inactivacion Si Necesita realizar una Después de que el
reanudacion de la servidor SnapCenter haya
aplicacion. En la mayoria creado una copia de
de los casos, esto Snapshot o haya

significa volver a poner la realizado un backup en
aplicacion en un estado general.

de funcionamiento

normal.

16

Método

Limpieza

ClonPree

ClonPost

RestauradoPre

Restaurar

Versién de appVersion

Tutorial

Obligatorio
No

No

No

No

No

No

Descripcion

Responsable de la
limpieza de cualquier
cosa que el plug-in
necesite limpiar.

Debe realizar las
acciones que deben
realizarse antes de
realizar una operacion de
clonado.

Debe realizar las
acciones que deben
realizarse después de
realizar una operacion de
clonado.

Debe ejecutar acciones
que deben realizarse
antes de solicitar la
operacion de
restauracion.

Responsable de la
restauracion/recuperacion
de una aplicacion.

Para recuperar la version
de la aplicaciéon que
gestiona el plugin.

¢ Cuando y por quién?

Cuando termina un flujo
de trabajo en el servidor
SnapCenter
(correctamente o con un
error).

Cuando un usuario activa
una accion "clonVol" o
"clonLun" y utiliza el
asistente de clonacién
integrado (GUI/CLI).

Cuando un usuario activa
una accion "clonVol" o
"clonLun" y utiliza el
asistente de clonacién
integrado (GUI/CLI).

Cuando un usuario activa
una operacion de
restauracion.

Cuando un usuario activa
una operacion de
restauracion.

Como parte de la
recogida de datos de
ASUP en cada flujo de
trabajo, como
Backup/Restore/Clone.

En esta seccién se describe cdmo crear un complemento personalizado mediante el lenguaje de

programacién Java.

Configuracion de eclipse

1. Cree un nuevo proyecto Java "TutorialPlugin" en Eclipse

2. Haga clic en Finalizar

3. Haga clic con el boton derecho del ratéon en nuevo proyecto — Propiedades — Java Build Path —

Bibliotecas — Anadir tarros externos

4. Desplacese a la carpeta ../lib/ del agente anfitrién y seleccione Jarras scAgent-5.0-core.jar y common-

5.0.jar

17

5. Seleccione el proyecto y haga clic con el botén derecho del ratén en la carpeta src — Nuevo — paquete
y cree un nuevo paquete con el nombre com.netapp.snapcreator.agent.plugin.TutorialPlugin

6. Haga clic con el botén derecho del ratén en el nuevo paquete y seleccione Nuevo — clase Java.
a. Introduzca el nombre como TutorialPlugin.

b. Haga clic en el botdn de exploracion de la superclase y busque "*AbstractPlugin". S6lo debe aparecer
un resultado:

"AbstractPlugin - com.netapp.snapcreator.agent.nextgen.plugin".
Haga clic en *Finalizar¥*.

Clase Java:

18

package com.netapp.snapcreator.agent.plugin.TutorialPlugin;
import
com.netapp.snapcreator.agent.nextgen.common.result.Describe
Result;
import
com.netapp.snapcreator.agent.nextgen.common.result.Result;
import
com.netapp.snapcreator.agent.nextgen.common.result.VersionR
esult;
import
com.netapp.snapcreator.agent.nextgen.context.Context;
import
com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;
public class TutorialPlugin extends AbstractPlugin {
@Override
public DescribeResult describe (Context context) {
// TODO Auto-generated method stub
return null;
}
@Override
public Result quiesce (Context context) {
// TODO Auto-generated method stub
return null;
}
@Override
public Result unquiesce (Context context) {
// TODO Auto-generated method stub
return null;
}
@Override
public VersionResult version() {
// TODO Auto-generated method stub
return null;

Implementacién de los métodos necesarios

La funcién de inactividad, la reanudacion y la version son métodos obligatorios que cada plugin de Java
personalizado debe implementar.

A continuacién, se muestra un método de version para obtener la version del plugin.

19

@Override
public VersionResult version() {
VersionResult versionResult = VersionResult.builder

.withMajor

.withPatch
.withBuild
Louild () ;

()
(1)
.withMinor (0)
(0)
(0)

return versionResult;

Below is the implementation of quiesce and unquiesce method. These will be
interacting with the application, which is being protected by SnapCenter
Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the
functionality that SnapCenter Agent provides the following to the plug-
in developers:

@Override
public Result quiesce (Context context) {
final Logger logger = context.getLogger () ;
/*
* TODO: Add application interaction here
*/

logger.error ("Something bad happened.");
logger.info ("Successfully handled application");

Result result = Result.builder ()
.withExitCode (0)
.withMessages (logger.getMessages ())
Jbuild() ;

return result;

El método se pasa en un objeto de contexto. Contiene varios asistentes, por ejemplo, un registrador y un
almacén de contexto, asi como informacion sobre la operacion actual (Workflow-1D, Job-ID). Podemos obtener
el registrador llamando al registrador de registros final = context.getLogger();. El objeto logger proporciona
métodos similares conocidos por otros marcos de registro, por ejemplo, logback. En el objeto Result, también
puede especificar el cédigo de salida. En este ejemplo, se devuelve cero, ya que no hubo ningun problema.
Otros codigos de salida pueden asignar a diferentes situaciones de fallo.

20

Utilizando el objeto Resultado

El objeto Result contiene los parametros siguientes:

Parametro

Gestion de

ExitCode

Apedrear

Stderr

Mensajes

Predeterminado

Configuracion vacia

Lista vacia

Lista vacia

Lista vacia

Descripcion

Este parametro se puede utilizar
para enviar parametros de
configuracion al servidor. Puede
ser parametros que el plugin desea
actualizar. Si este cambio se refleja
realmente en la configuracion del
servidor SnapCenter depende del
parametro
APP_CONF_PERSISTENCY=y o
N de la configuracion.

Indica el estado de la operacion.
Un "0" significa que la operacion se
ejecutod correctamente. Otros
valores indican errores o
advertencias.

Esto se puede utilizar para
transmitir mensajes stdout al
servidor SnapCenter.

Esto se puede utilizar para
transmitir mensajes stderr de
nuevo al servidor SnapCenter.

Esta lista contiene todos los
mensajes que un plug-in desea
volver al servidor. El servidor
SnapCenter muestra esos
mensajes en la CLI o en la GUI.

El agente de SnapCenter proporciona constructores ("Patron de creacion") para todos sus tipos de resultados.
Esto hace que su uso sea muy sencillo:

Result result

= Result.builder ()
.withExitCode (0)
.withStdout (stdout)
.withStderr (stderr)
.withConfig(configqg)

.withMessages (logger.getMessages())

build ()

Por ejemplo, establezca el codigo de salida en 0, establezca las listas para stdout y stderr, defina los

21

https://en.wikipedia.org/wiki/Builder_pattern

parametros de configuracion y también agregue los mensajes de registro que se enviaran de nuevo al
servidor. Si no necesita todos los parametros, envie solo los que necesite. Como cada parametro tiene un
valor predeterminado, si quita .witEExitCode(0) del cédigo siguiente, el resultado no se vera afectado:

Result result = Result.builder ()
.withExitCode (0)
.withMessages (logger.getMessages ())
Jbuild() ;

VersionResult

VersionResult informa a SnapCenter Server de la version del plugin. Como también hereda del resultado,
contiene los parametros config, exitCode, stdout, stderr y messages.

Parametro Predeterminado Descripcion

Importante 0 Campo de version principal del
plugin.

Menor 0 Campo de version secundaria del
plugin.

Parche 0 Campo de version de revision del
plugin.

Cree 0 Cree el campo de versién del
plugin.

Por ejemplo:

VersionResult result = VersionResult.builder
.withMajor

.withPatch
.withBuild
Lbuild () ;

()
(1)
.withMinor (0)
(0)
(0)

Uso del objeto de contexto

El objeto Context proporciona los siguientes métodos:

Método de contexto Especifico

String getWorkflowld(); Devuelve el ID de flujo de trabajo que utiliza el
servidor SnapCenter para el flujo de trabajo actual.

22

Método de contexto Especifico

Config getconfig(); Devuelve la configuracion que se envia desde el
servidor SnapCenter al agente.

ID del flujo de trabajo

El ID de flujo de trabajo es el ID que utiliza el servidor de SnapCenter para hacer referencia a un flujo de
trabajo en ejecucion especifico.

Gestion de

Este objeto contiene (la mayoria) los parametros que un usuario puede establecer en la configuracion del
servidor SnapCenter. Sin embargo, debido a razones de seguridad, algunos de esos parametros pueden
filtrarse en el servidor. A continuacion figura un ejemplo de como acceder a la configuracion y recuperar un
parametro:

final Config config = context.getConfig();
String myParameter =
config.getParameter ("PLUGIN MANDATORY PARAMETER") ;

"/ MyParameter" contiene ahora el parametro leido en la configuracion del servidor SnapCenter Si no existe
una clave de parametro config, devolvera un valor de tipo String vacio ("").

Exportando el plugin

Debe exportar el plugin para instalarlo en el host de SnapCenter.
En Eclipse, realice las siguientes tareas:

1. Haga clic con el boton derecho en el paquete basico del complemento (en nuestro ejemplo
com.netapp.snapcreator.agent.plugin.TutorialPlugin).

2. Seleccione Exportar — Java — Archivo Jar

3. Haga clic en Siguiente.

4. En la siguiente ventana, especifique la ruta de acceso de archivo JAR de destino: tutorial_plugin.jar la
clase base del plugin se denomina TutorialPlugin.class, el plug-in debe agregarse a una carpeta con el
mismo nombre.

Si el plugin depende de bibliotecas adicionales, puede crear la siguiente carpeta: Lib/
Puede agregar archivos JAR en los que depende el plugin (por ejemplo, un controlador de base de datos).

Cuando SnapCenter carga el plug-in, asocia automaticamente todos los archivos JAR de esta carpeta y los
afnade a la classpath.

Plugin personalizado en SnapCenter

Plugin personalizado en SnapCenter

El complemento personalizado creado con Java, PERL o estilo NATIVO puede instalarse en el host utilizando

23

SnapCenter Server para permitir la proteccion de datos de su aplicacion. Debe haber exportado el plugin para
instalarlo en el host SnapCenter mediante el procedimiento proporcionado en este tutorial.

Crear un archivo de descripcion del plugin

Para cada plugin creado, debe tener un archivo de descripcion. El archivo de descripcion describe los detalles
del plugin. El nombre del archivo debe ser Plugin_descriptor.xml.

Usar atributos del archivo descriptor del plugin y su importancia

Atributo

Nombre

Version

DisplayName

PluginType

OSNAME

OSVersion

ResourceName

24

Descripcion

Nombre del plugin. Se permiten caracteres
alfanuméricos. Por ejemplo, DB2, MYSQL, MongoDB

Para los plugins creados con un estilo NATIVO,
asegurese de no proporcionar la extension del
archivo. Por ejemplo, si el nombre del plugin es
MongoDB.sh, especifique el nombre como MongoDB.

Version de plugin. Puede incluir tanto la version
principal como la secundaria. Por ejemplo, 1.0, 1.1,
2.0,2.1

El nombre del plugin que se mostrara en SnapCenter
Server. Si se escriben varias versiones del mismo
complemento, asegurese de que el nombre para
mostrar es el mismo en todas las versiones.

Idioma utilizado para crear el plug-in. Los valores
admitidos son Perl, Java y Native. El tipo de
complemento nativo incluye scripts de shell de
Unix/Linux, scripts de Windows, Python o cualquier
otro lenguaje de scripting.

El nombre del sistema operativo del host donde se ha
instalado el plugin. Los valores validos son Windows
y Linux. Es posible que un unico complemento esté
disponible para su puesta en marcha en varios tipos
de sistemas operativos, como el complemento DE
tipo PERL.

La version del sistema operativo del host donde se
instald el plugin.

Nombre del tipo de recurso que admite el plugin. Por
ejemplo, base de datos, instancia, colecciones.

Atributo
Padre

RequireFileSystemPlugin

ResourceRequiresAuthentication

RequireFileSystemClone

Descripcion

En caso de que el ResourceName dependa
jerarquicamente de otro tipo de recurso y, a
continuacion, Parent determina el atributo
resourcetype primario.

Por ejemplo, el complemento DB2, ResourceName
“Database” tiene una “instancia” principal.

Si o no Determina si la pestafia Recovery se muestra
en el asistente Restore.

Si o no Determina si los recursos, que se detectan
automaticamente o no se detectan automaticamente
necesitan credenciales para realizar las operaciones
de proteccion de datos después de detectar el
almacenamiento.

Si o no Determina si el plugin requiere la integracion
del plugin del sistema de archivos para el flujo de
trabajo de clonado.

A continuacion, se muestra un ejemplo del archivo Plugin_descriptor.xml para el plugin personalizado DB2:

25

<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>
<SupportedOS>

<0S>

<0OSName>windows</OSName>

<0SVersion>2012</0SVersion>

</0S>

<0S>

<OSName>Linux</0OSName>

<0OSVersion>7</0SVersion>

</0S>

</Supported0OS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>
<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>
<RequireFileSystemPlugin>no</RequireFileSystemPlugin>
<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>
<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>
</Plugin>

Creacion de un archivo ZIP

Después de desarrollar un plugin y crear un archivo descriptor, es necesario afiadir los archivos del plugin y el
archivo Plugin_descriptor.xml a una carpeta y zip.

Debe tener en cuenta lo siguiente antes de crear un archivo ZIP:

* El nombre de script debe ser el mismo que el del plugin.

* Para el plugin PERL, la carpeta ZIP debe contener una carpeta con el archivo de script y el archivo
descriptor debe estar fuera de esta carpeta. El nombre de la carpeta debe ser el mismo que el del plugin.

 Para los plugins distintos al plugin PERL, la carpeta ZIP debe contener el descriptor y los archivos de
script.

* La version de SO debe ser un numero.

Ejemplos:

26

* DB2 plug-in: Agregue el archivo DB2.pm y Plugin_descriptor.xml a “DB2.zip”.

* Plug-in desarrollado con Java: Aiada archivos JAR, archivos JAR dependientes y archivo
Plugin_descriptor.xml a una carpeta y zip.

Cargando el archivo ZIP del plugin

Es necesario cargar el archivo ZIP del plugin en el servidor de SnapCenter para que el plugin se pueda
implementar en el host deseado.

Puede cargar el plugin mediante la interfaz de usuario o cmdlets de.
ul:

» Cargue el archivo ZIP del plug-in como parte del asistente de flujo de trabajo Add o Modify Host

* Haga clic en “Seleccionar para cargar el complemento personalizado”
PowerShell:
* Cmdlet Upload-SmPIluginPackage
Por ejemplo, PS> Upload-SmPluginPackage -AbsolutePath c:\DB2_1.zip

Para obtener informacion detallada sobre los cmdlets de PowerShell, use la ayuda de cmdlets de
SnapCenter o consulte la informacion de referencia sobre cmdlets.

"Guia de referencia de cmdlets de SnapCenter Software".

Implementacion de los plugins personalizados

El complemento personalizado cargado ahora esta disponible para su implementacién en el host deseado
como parte del flujo de trabajo Add y Modify Host. Es posible cargar varias versiones de plugins en
SnapCenter Server y seleccionar la version deseada para implementarla en un host especifico.

Para obtener mas informacion sobre como cargar el plugin, consulte, "Afada hosts e instale paquetes de
plugins en hosts remotos"

https://library.netapp.com/ecm/ecm_download_file/ECMLP2877143
https://docs.netapp.com/es-es/snapcenter-45/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html
https://docs.netapp.com/es-es/snapcenter-45/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html

Informacién de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningin medio (grafico,
electrénico o mecanico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperacion
electrénico) sin la autorizacion previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright esta sujeto a la siguiente licencia y exencion de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTIA EXPRESA O
IMPLICITA, INCLUYENDO, SIN LIMITAR, LAS GARANTIAS IMPLICITAS DE COMERCIALIZACION O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGUN CASO NETAPP SERA RESPONSABLE DE NINGUN DANO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCION
DE BIENES O SERVICIOS SUSTITUTIVOS, PERDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCION DE LAACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORIA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGUN MODO DEL USO DE ESTE SOFTWARE, INCLUSO S| HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DANOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aqui descritos en cualquier momento y
sin aviso previo. NetApp no asume ningun tipo de responsabilidad que surja del uso de los productos aqui
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisiciéon de
este producto no lleva implicita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o mas patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgacion por parte del gobierno estan sujetos
a las restricciones establecidas en el subparrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aqui contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informatico de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relacion con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aqui se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobacién por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la clausula 252.227-7015(b) de la seccién DFARS (FEB
de 2014).

Informacién de la marca comercial
NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas

comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

28

http://www.netapp.com/TM

	Desarrolle un complemento para la aplicación : SnapCenter Software 4.5
	Tabla de contenidos
	Desarrolle un complemento para la aplicación
	Descripción general
	Gestión de complementos genérica en todas las llamadas API

	Desarrollo basado en PERL
	Manejo general del plug-in

	Estilo NATIVO
	Manejo general del plug-in

	Estilo Java
	Limitaciones
	Métodos admitidos
	Tutorial

	Plugin personalizado en SnapCenter
	Plugin personalizado en SnapCenter

