
Desarrolle un complemento para la
aplicación
SnapCenter Software 5.0
NetApp
October 15, 2025

This PDF was generated from https://docs.netapp.com/es-es/snapcenter-50/protect-
scc/concept_develop_a_plug_in_for_your_application.html on October 15, 2025. Always check
docs.netapp.com for the latest.

Tabla de contenidos

Desarrolle un complemento para la aplicación . 1

Descripción general . 1

Gestión de complementos genérica en todas las llamadas API . 1

Desarrollo basado en PERL. 3

Manejo general del plug-in. 4

Estilo NATIVO . 12

Manejo general del plug-in. 12

Estilo Java . 15

Limitaciones . 15

Métodos admitidos . 16

Tutorial . 17

Plugin personalizado en SnapCenter. 23

Plugin personalizado en SnapCenter . 23

Desarrolle un complemento para la aplicación

Descripción general

El servidor de SnapCenter permite poner en marcha y gestionar sus aplicaciones como
complementos en SnapCenter. Las aplicaciones de su elección pueden conectarse al
servidor de SnapCenter para disfrutar de funcionalidades de protección y gestión de
datos.

SnapCenter le permite desarrollar complementos personalizados utilizando diferentes lenguajes de
programación. Puede desarrollar un complemento personalizado utilizando Perl, Java, BATCH u otros
lenguajes de scripting.

Para utilizar plugins personalizados en SnapCenter, debe realizar las siguientes tareas:

• Cree un complemento para su aplicación siguiendo las instrucciones de esta guía

• Cree un archivo de descripción

• Exporte el plugin personalizado para instalarlo en el host de SnapCenter

• Cargue el archivo zip del plugin en el servidor de SnapCenter

Gestión de complementos genérica en todas las llamadas API

Para cada llamada a la API, utilice la siguiente información:

• Parámetros del plugin

• códigos de salida

• Registrar mensajes de error

• Coherencia de datos

Utilice los parámetros del plugin

Se pasa un conjunto de parámetros al plug-in como parte de cada llamada API realizada. En la siguiente
tabla, se muestra información específica de los parámetros.

Parámetro Específico

ACCIÓN Determina el nombre del flujo de trabajo. Por ejemplo,
descubra, copia de seguridad, archivoOrVolRestore o
cloneVolAndLun

RECURSOS Enumera los recursos que se deben proteger. UID y
tipo identifican un recurso. La lista se presenta al
plugin con el siguiente formato:

“<UID>,<TYPE>;<UID>,<TYPE>”. Por ejemplo,
“Instance1,instancia;Instance2\\DB1,base de datos”

1

Parámetro Específico

NOMBRE_APLICACIÓN Determina qué plugin se está utilizando. Por ejemplo,
DB2, MYSQL. El servidor SnapCenter cuenta con
compatibilidad integrada para las aplicaciones de la
lista. Este parámetro distingue mayúsculas de
minúsculas.

APP_IGNORE_ERROR (Y o N) esto hace que SnapCenter salga o no salga
cuando se encuentra un error de aplicación. Esto es
útil cuando se realiza el backup de varias bases de
datos y no se desea que un solo fallo detenga la
operación de backup.

<RESOURCE_NAME>__APP_INSTANCE_USERNA
ME

Se han establecido las credenciales de SnapCenter
para el recurso.

<RESOURCE_NAME>_APP_INSTANCE_PASSWO
RD

Se han establecido las credenciales de SnapCenter
para el recurso.

<CUSTOM_PARAM>_<RESOURCE_NAME> Todos los valores de clave personalizada de nivel de
recursos están disponibles para los plug-ins con
“<RESOURCE_NAME>_”. Por ejemplo, si una clave
personalizada es “MASTER_SLAVE” para un recurso
llamado “MySQLDB”, estará disponible como
MySQLDB_MASTER_SLAVE

Utilice los códigos de salida

El plugin devuelve el estado de la operación a su host mediante códigos de salida. Cada código tiene un
significado específico y el plug-in utiliza el código de salida derecho para indicar lo mismo.

En la siguiente tabla se muestran los códigos de error y su significado.

Código de salida Específico

0 Funcionamiento correcto.

99 La operación solicitada no es compatible o está
implementada.

100 Error en la operación, omita la pausa y salga. La
función de inactividad está predeterminada.

101 Error en la operación, continúe con la operación de
backup.

otros Error en la operación, ejecución de la reanudación y
salida.

2

Registrar mensajes de error

Los mensajes de error pasan del plugin al servidor de SnapCenter. El mensaje incluye el mensaje, el nivel de
registro y la Marca de hora.

En la tabla siguiente se enumeran los niveles y sus propósitos.

Parámetro Específico

INFORMACIÓN mensaje informativo

ADVERTIR mensaje de advertencia

ERROR mensaje de error

DEPURAR depurar mensaje

TRAZA mensaje de seguimiento

Conserve la consistencia de datos

Los plugins personalizados conservan datos entre operaciones de la misma ejecución del flujo de trabajo. Por
ejemplo, un plugin puede almacenar datos al final de la inactividad, que se puede utilizar durante la operación
de inactivación.

Los datos que se van a conservar se definen como parte del objeto de resultado mediante el plugin. Sigue un
formato específico y se describe en detalle bajo cada estilo de desarrollo de plug-in.

Desarrollo basado en PERL

Debe seguir ciertas convenciones mientras desarrolla el plugin con PERL.

• El contenido debe ser legible

• Debe implementar la configuración de operaciones obligatorias, el modo de inactividad y la reanudación

• Debe utilizar una sintaxis específica para devolver los resultados al agente

• El contenido debe guardarse como archivo <PLUGIN_NAME>.pm

Las operaciones disponibles son

• Setenv

• versión

• modo de inactividad

• inactivación

• clone_pre, clone_post

• restaurar_pre, restaurar

• limpieza

3

Manejo general del plug-in

Uso del objeto Results

Todas las operaciones de plugin personalizado deben definir el objeto Results. Este objeto envía mensajes,
código de salida, stdout y stderr de vuelta al agente host.

Objeto resultados:

my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

};

Devolver el objeto Results:

return $result;

Conservación de la coherencia de los datos

Es posible conservar datos entre operaciones (excepto limpieza) como parte de la misma ejecución del flujo
de trabajo. Esto se logra usando pares clave-valor. Los pares clave-valor de los datos se establecen como
parte del objeto de resultado y se conservan y están disponibles en las operaciones posteriores del mismo
flujo de trabajo.

En el ejemplo de código siguiente se establecen los datos que se van a conservar:

my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

};

 $result->{env}->{‘key1’} = ‘value1’;

 $result->{env}->{‘key2’} = ‘value2’;

 ….

 return $result

El código anterior establece dos pares clave-valor, que están disponibles como entrada en la operación
posterior. Los dos pares clave-valor se pueden acceder mediante el siguiente código:

4

sub setENV {

 my ($self, $config) = @_;

 my $first_value = $config->{‘key1’};

 my $second_value = $config->{‘key2’};

 …

}

 === Logging error messages

Cada operación puede enviar mensajes al agente host, que muestra y

almacena el contenido. Un mensaje contiene el nivel de mensaje, una Marca

de tiempo y un texto de mensaje. Se admiten mensajes multilínea.

Load the SnapCreator::Event Class:

my $msgObj = new SnapCreator::Event();

my @message_a = ();

Utilice el método msgObj para capturar un mensaje mediante el método Collect.

$msgObj->collect(\@message_a, INFO, "My INFO Message");

$msgObj->collect(\@message_a, WARN, "My WARN Message");

$msgObj->collect(\@message_a, ERROR, "My ERROR Message");

$msgObj->collect(\@message_a, DEBUG, "My DEBUG Message");

$msgObj->collect(\@message_a, TRACE, "My TRACE Message");

Aplicar mensajes al objeto resultados:

$result->{message} = \@message_a;

Uso de los espárragos del plug-in

Los plugins personalizados deben exponer los talones del plug-in. Estos son métodos a los que llama el
servidor SnapCenter, en función de un flujo de trabajo.

5

Muñón de complemento Opcional/obligatorio Específico

Setenv obligatorio Este código auxiliar establece el
entorno y el objeto de
configuración.

Aquí se debe realizar cualquier
análisis o manejo del entorno.
Cada vez que se llama un archivo
stub, el archivo stub setenv se
llama justo antes. Solo es
necesario para complementos DE
tipo PERL.

Versión Opcional Este código auxiliar se utiliza para
obtener la versión de la aplicación.

Detectar Opcional Este archivo stub se utiliza para
detectar objetos de aplicación
como la instancia o la base de
datos alojada en el agente o host.

Se espera que el complemento
devuelva los objetos de aplicación
detectados en un formato
específico como parte de la
respuesta. Este código auxiliar sólo
se utiliza en caso de que la
aplicación esté integrada con
SnapDrive para Unix.

Sistema de archivos
Linux (Linux Flavors)
es compatible.
AIX/Solaris (Unix
Flavors) no son
compatibles.

6

Muñón de complemento Opcional/obligatorio Específico

discovery_complete Opcional Este archivo stub se utiliza para
detectar objetos de aplicación
como la instancia o la base de
datos alojada en el agente o host.

Se espera que el complemento
devuelva los objetos de aplicación
detectados en un formato
específico como parte de la
respuesta. Este código auxiliar sólo
se utiliza en caso de que la
aplicación esté integrada con
SnapDrive para Unix.

Sistema de archivos
Linux (Linux Flavors)
es compatible. AIX y
Solaris (versiones
Unix) no son
compatibles.

Modo de inactividad obligatorio Este stub es responsable de
realizar una pausa, lo que significa
colocar la aplicación en un estado
donde se puede crear una
instantánea. Esto se denomina
antes de la operación de snapshot.
Los metadatos de la aplicación que
se van a conservar deben definirse
como parte de la respuesta, que se
devolverá durante las siguientes
operaciones de clonado o
restauración en la copia Snapshot
de almacenamiento
correspondiente, en forma de
parámetros de configuración.

Inactivación obligatorio Este código auxiliar es responsable
de realizar un modo de inactividad,
lo que significa poner la aplicación
en un estado normal. Esto se
denomina después de crear una
snapshot.

7

Muñón de complemento Opcional/obligatorio Específico

clone_pre opcional Este archivo stub es responsable
de realizar tareas previas a la
clonación. Se supone que se utiliza
la interfaz de clonación del servidor
de SnapCenter integrada y se
activa al realizar la operación de
clonación.

clone_post opcional Este archivo stub es responsable
de realizar tareas posteriores a la
clonación. Esto supone que se
utiliza la interfaz de clonación del
servidor de SnapCenter integrada y
se activa solo al realizar una
operación de clonado.

restaurar_pre opcional Este archivo stub es responsable
de realizar tareas prerestore. Esto
supone que se utiliza la interfaz de
restauración de servidor de
SnapCenter incorporada y se
activa al realizar una operación de
restauración.

Restaurar opcional Este código auxiliar es responsable
de realizar tareas de restauración
de aplicaciones. Esto supone que
se utiliza la interfaz de restauración
de servidor de SnapCenter
incorporada y que solo se activa al
realizar una operación de
restauración.

8

Muñón de complemento Opcional/obligatorio Específico

Limpieza opcional Este archivo stub es responsable
de realizar una limpieza después
de las operaciones de backup,
restauración o clonado. La limpieza
puede realizarse durante la
ejecución normal del flujo de
trabajo o en caso de que se
produzca un error en el mismo.
Puede inferir el nombre del flujo de
trabajo bajo el cual se llama a la
limpieza haciendo referencia a LA
ACCIÓN de parámetro de
configuración, que puede ser copia
de seguridad, clonVolAndLun o
archivoOrVolRestore. El parámetro
DE configuración
ERROR_MESSAGE indica si se
produjo algún error al ejecutar el
flujo de trabajo. Si
ERROR_MESSAGE está definido
y NO es NULL, se llama a la
limpieza durante la ejecución de un
fallo de flujo de trabajo.

versión_aplicación Opcional SnapCenter utiliza este archivo
stub para que el complemento
gestione el detalle de la versión de
la aplicación.

Información sobre el paquete de plugins

Cada plugin debe tener la siguiente información:

9

package MOCK;

our @ISA = qw(SnapCreator::Mod);

=head1 NAME

MOCK - class which represents a MOCK module.

=cut

=head1 DESCRIPTION

MOCK implements methods which only log requests.

=cut

use strict;

use warnings;

use diagnostics;

use SnapCreator::Util::Generic qw (trim isEmpty);

use SnapCreator::Util::OS qw (isWindows isUnix getUid

createTmpFile);

use SnapCreator::Event qw (INFO ERROR WARN DEBUG COMMENT ASUP

CMD DUMP);

my $msgObj = new SnapCreator::Event();

my %config_h = ();

Operaciones

Puede codificar varias operaciones, como setenv, Version, Quiesce y UnQUIESCE, que son compatibles con
los plug-ins personalizados.

Funcionamiento de setenv

La operación setenv es necesaria para los complementos creados con PERL. Puede ajustar el ENV y acceder
fácilmente a los parámetros del plug-in.

sub setENV {

 my ($self, $obj) = @_;

 %config_h = %{$obj};

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 return $result;

}

Operación de versión

La operación de versión devuelve la información de la versión de la aplicación.

10

sub version {

 my $version_result = {

 major => 1,

 minor => 2,

 patch => 1,

 build => 0

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $version_result->{message} = \@message_a;

 return $version_result;

}

Operaciones de inactivación

La operación de inactividad realiza una operación de inactividad de la aplicación en los recursos que se
enumeran en el parámetro RESOURCES.

sub quiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

 $result->{message} = \@message_a;

 return $result;

}

Funcionamiento de la reanudación

La operación de inactividad es necesaria para desactivar la activación de la aplicación. La lista de recursos
está disponible en el parámetro RESOURCES.

11

sub unquiesce {

 my $result = {

 exit_code => 0,

 stdout => "",

 stderr => "",

 };

 my @message_a = ();

 $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

 $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::unquiesce");

 $result->{message} = \@message_a;

 return $result;

}

Estilo NATIVO

SnapCenter admite lenguajes que no SEAN DE programación PERL o lenguajes de
scripting para crear complementos. Esto se conoce como programación DE estilo
NATIVO, que puede ser un archivo de secuencia de comandos o LOTE.

Los plugins DE estilo NATIVO deben seguir ciertas convenciones indicadas a continuación:

El plugin debe ser ejecutable

• Para los sistemas Unix, el usuario que ejecuta el agente debe tener privilegios de ejecución en el plug-in

• En los sistemas Windows, los complementos de PowerShell deben tener el sufijo .ps1, los demás scripts
de Windows deben tener el sufijo .cmd o .bat y el usuario debe ser ejecutable

• Los complementos deben reaccionar a los argumentos de la línea de comandos, como "-QUIESCE", "-
unQUIESCE"

• Los plug-ins deben devolver código de salida 99 en caso de que no se haya implementado una operación
o función

• Los plugins deben utilizar una sintaxis específica para devolver los resultados al servidor

Manejo general del plug-in

Mensajes de error de registro

Cada operación puede enviar mensajes al servidor, que muestra y almacena el contenido. Un mensaje
contiene el nivel de mensaje, una Marca de tiempo y un texto de mensaje. Se admiten mensajes multilínea.

Formato:

SC_MSG#<level>#<timestamp>#<message>

SC_MESSAGE#<level>#<timestamp>#<message>

12

Uso de los espárragos del plug-in

Los complementos de SnapCenter deben implementar espárragos de complemento. Estos son métodos a los
que el servidor SnapCenter llama en función de un flujo de trabajo específico.

Muñón de complemento Opcional/obligatorio Específico

modo de inactividad obligatorio Este código auxiliar es responsable
de realizar una pausa. Sitúa la
aplicación en el estado en el que
podemos crear una snapshot. Esto
se denomina antes de una
operación de Snapshot del
almacenamiento.

inactivación obligatorio Este código auxiliar es responsable
de realizar una pausa. Coloca la
aplicación en un estado normal.
Esto se denomina después de una
operación de Snapshot de
almacenamiento.

clone_pre opcional Este archivo stub es responsable
de realizar tareas previas a la
clonación. Esto supone que se
utiliza la interfaz de clonado de
SnapCenter incorporada y que solo
se activa mientras se realiza la
acción "clone_vol o clone_lun".

clone_post Opcional Este archivo stub es responsable
de realizar tareas posteriores a la
clonación. Esto supone que utiliza
la interfaz de clonado de
SnapCenter integrada y que solo
se activa mientras se realizan
operaciones de «clone_vol o
clone_lun».

restaurar_pre Opcional Este archivo stub es responsable
de realizar tareas previas a la
restauración. Esto supone que se
utiliza la interfaz de restauración de
SnapCenter integrada y que solo
se activa durante la operación de
restauración.

13

Muñón de complemento Opcional/obligatorio Específico

restaurar opcional Este código auxiliar es responsable
de realizar todas las acciones de
restauración. Esto supone que no
está utilizando la interfaz de
restauración integrada. Se activa
durante la operación de
restauración.

Ejemplos

Windows PowerShell

Compruebe si la secuencia de comandos se puede ejecutar en el sistema. Si no puede ejecutar la secuencia
de comandos, defina el desvío de Set-ExecutionPolicy para la secuencia de comandos y vuelva a intentar la
operación.

14

if ($args.length -ne 1) {

 write-warning "You must specify a method";

 break;

}

function log ($level, $message) {

 $d = get-date

 echo "SC_MSG#$level#$d#$message"

}

function quiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Quiescing application using script $app_name";

 log "INFO" "Quiescing application finished successfully"

}

function unquiesce {

 $app_name = (get-item env:APP_NAME).value

 log "INFO" "Unquiescing application using script $app_name";

 log "INFO" "Unquiescing application finished successfully"

}

 switch ($args[0]) {

 "-quiesce" {

 quiesce;

}

"-unquiesce" {

 unquiesce;

}

default {

 write-error "Function $args[0] is not implemented";

 exit 99;

 }

}

exit 0;

Estilo Java

Un complemento personalizado de Java interactúa directamente con una aplicación
como base de datos, instancia, etc.

Limitaciones

Existen ciertas limitaciones que debe tener en cuenta al desarrollar un plug-in utilizando el lenguaje de
programación Java.

Característica de plug-in Plugin de Java

Complejidad De bajo a mediano

15

Característica de plug-in Plugin de Java

Huella de la memoria Hasta 10-20 MB

Dependencias con otras bibliotecas Bibliotecas para la comunicación de aplicaciones

Número de subprocesos 1

Tiempo de ejecución de subprocesos Menos de una hora

Motivo de las limitaciones de Java

El objetivo del agente SnapCenter es garantizar una integración de aplicaciones sólida, segura y continua. Al
admitir plug-ins de Java, es posible que los plug-ins introduzcan fugas de memoria y otros problemas no
deseados. Esas cuestiones son difíciles de abordar, especialmente cuando el objetivo es mantener las cosas
fáciles de usar. Si la complejidad de un complemento no es demasiado compleja, es mucho menos probable
que los desarrolladores hubieran introducido los errores. El peligro del plug-in Java es que se ejecuten en la
misma JVM que el propio agente de SnapCenter. Cuando el plug-in se bloquea o pierde memoria, también
puede afectar negativamente al agente.

Métodos admitidos

Método Obligatorio Descripción ¿Cuándo y por quién?

Versión Sí Necesita obtener la
versión del plugin.

El servidor o el agente de
SnapCenter para solicitar
la versión del plugin.

Modo de inactividad Sí Necesita realizar una
pausa en la aplicación. En
la mayoría de los casos,
esto implica colocar la
aplicación en un estado
en el que el servidor de
SnapCenter pueda crear
un backup (por ejemplo,
una copia Snapshot).

Antes de que el servidor
de SnapCenter cree una
copia de Snapshot o
realice un backup en
general.

Inactivación Sí Necesita realizar una
reanudación de la
aplicación. En la mayoría
de los casos, esto
significa volver a poner la
aplicación en un estado
de funcionamiento
normal.

Después de que el
servidor de SnapCenter
haya creado una
snapshot o realizado una
backup en general.

16

Método Obligatorio Descripción ¿Cuándo y por quién?

Limpieza No Responsable de la
limpieza de cualquier
cosa que el plug-in
necesite limpiar.

Cuando termina un flujo
de trabajo en el servidor
SnapCenter
(correctamente o con un
error).

ClonPree No Debe realizar las
acciones que deben
realizarse antes de
realizar una operación de
clonado.

Cuando un usuario activa
una acción "clonVol" o
"clonLun" y utiliza el
asistente de clonación
integrado (GUI/CLI).

ClonPost No Debe realizar las
acciones que deben
realizarse después de
realizar una operación de
clonado.

Cuando un usuario activa
una acción "clonVol" o
"clonLun" y utiliza el
asistente de clonación
integrado (GUI/CLI).

RestauradoPre No Debe ejecutar acciones
que deben realizarse
antes de solicitar la
operación de
restauración.

Cuando un usuario activa
una operación de
restauración.

Restaurar No Responsable de la
restauración/recuperación
de una aplicación.

Cuando un usuario activa
una operación de
restauración.

Versión de appVersion No Para recuperar la versión
de la aplicación que
gestiona el plugin.

Como parte de la
recogida de datos de
ASUP en cada flujo de
trabajo, como
Backup/Restore/Clone.

Tutorial

En esta sección se describe cómo crear un complemento personalizado mediante el lenguaje de
programación Java.

Configuración de eclipse

1. Cree un nuevo proyecto Java "TutorialPlugin" en Eclipse

2. Haga clic en Finalizar

3. Haga clic con el botón derecho del ratón en nuevo proyecto → Propiedades → Java Build Path →
Bibliotecas → Añadir tarros externos

4. Desplácese a la carpeta ../lib/ del agente anfitrión y seleccione Jarras scAgent-5.0-core.jar y common-
5.0.jar

17

5. Seleccione el proyecto y haga clic con el botón derecho del ratón en la carpeta src → Nuevo → paquete

y cree un nuevo paquete con el nombre com.netapp.snapcreator.agent.plugin.TutorialPlugin

6. Haga clic con el botón derecho del ratón en el nuevo paquete y seleccione Nuevo → clase Java.

a. Introduzca el nombre como TutorialPlugin.

b. Haga clic en el botón de exploración de la superclase y busque "*AbstractPlugin". Sólo debe aparecer
un resultado:

 "AbstractPlugin - com.netapp.snapcreator.agent.nextgen.plugin".

.. Haga clic en *Finalizar*.

.. Clase Java:

18

package com.netapp.snapcreator.agent.plugin.TutorialPlugin;

import

com.netapp.snapcreator.agent.nextgen.common.result.Describe

Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.VersionR

esult;

import

com.netapp.snapcreator.agent.nextgen.context.Context;

import

com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;

public class TutorialPlugin extends AbstractPlugin {

 @Override

 public DescribeResult describe(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result quiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Result unquiesce(Context context) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public VersionResult version() {

 // TODO Auto-generated method stub

 return null;

 }

}

Implementación de los métodos necesarios

La función de inactividad, la reanudación y la versión son métodos obligatorios que cada plugin de Java
personalizado debe implementar.

A continuación, se muestra un método de versión para obtener la versión del plugin.

19

@Override

public VersionResult version() {

 VersionResult versionResult = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

 return versionResult;

}

Below is the implementation of quiesce and unquiesce method. These will be

interacting with the application, which is being protected by SnapCenter

Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the

functionality that SnapCenter Agent provides the following to the plug-

in developers:

@Override

 public Result quiesce(Context context) {

 final Logger logger = context.getLogger();

 /*

 * TODO: Add application interaction here

 */

logger.error("Something bad happened.");

logger.info("Successfully handled application");

 Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

 return result;

}

El método se pasa en un objeto de contexto. Contiene varios asistentes, por ejemplo, un registrador y un
almacén de contexto, así como información sobre la operación actual (Workflow-ID, Job-ID). Podemos obtener
el registrador llamando al registrador de registros final = context.getLogger();. El objeto logger proporciona
métodos similares conocidos por otros marcos de registro, por ejemplo, logback. En el objeto Result, también
puede especificar el código de salida. En este ejemplo, se devuelve cero, ya que no hubo ningún problema.
Otros códigos de salida pueden asignar a diferentes situaciones de fallo.

20

Utilizando el objeto Resultado

El objeto Result contiene los parámetros siguientes:

Parámetro Predeterminado Descripción

Gestión de Configuración vacía Este parámetro se puede utilizar
para enviar parámetros de
configuración al servidor. Puede
ser parámetros que el plugin desea
actualizar. Si este cambio se refleja
realmente en la configuración del
servidor SnapCenter depende del
parámetro
APP_CONF_PERSISTENCY=y o
N de la configuración.

ExitCode 0 Indica el estado de la operación.
Un "0" significa que la operación se
ejecutó correctamente. Otros
valores indican errores o
advertencias.

Apedrear Lista vacía Esto se puede utilizar para
transmitir mensajes stdout al
servidor SnapCenter.

Stderr Lista vacía Esto se puede utilizar para
transmitir mensajes stderr de
nuevo al servidor SnapCenter.

Mensajes Lista vacía Esta lista contiene todos los
mensajes que un plug-in desea
volver al servidor. El servidor
SnapCenter muestra esos
mensajes en la CLI o en la GUI.

El agente de SnapCenter proporciona creadores ("Patrón de creación") para todos sus tipos de resultados.
Esto hace que su uso sea muy sencillo:

Result result = Result.builder()

 .withExitCode(0)

 .withStdout(stdout)

 .withStderr(stderr)

 .withConfig(config)

 .withMessages(logger.getMessages())

 .build()

Por ejemplo, establezca el código de salida en 0, establezca las listas para stdout y stderr, defina los

21

https://en.wikipedia.org/wiki/Builder_pattern

parámetros de configuración y también agregue los mensajes de registro que se enviarán de nuevo al
servidor. Si no necesita todos los parámetros, envíe sólo los que necesite. Como cada parámetro tiene un
valor predeterminado, si quita .witEExitCode(0) del código siguiente, el resultado no se verá afectado:

Result result = Result.builder()

 .withExitCode(0)

 .withMessages(logger.getMessages())

 .build();

VersionResult

VersionResult informa a SnapCenter Server de la versión del plugin. Como también hereda del resultado,
contiene los parámetros config, exitCode, stdout, stderr y messages.

Parámetro Predeterminado Descripción

Importante 0 Campo de versión principal del
plugin.

Menor 0 Campo de versión secundaria del
plugin.

Parche 0 Campo de versión de revisión del
plugin.

Cree 0 Cree el campo de versión del
plugin.

Por ejemplo:

VersionResult result = VersionResult.builder()

 .withMajor(1)

 .withMinor(0)

 .withPatch(0)

 .withBuild(0)

 .build();

Uso del objeto de contexto

El objeto Context proporciona los siguientes métodos:

Método de contexto Específico

String getWorkflowId(); Devuelve el ID de flujo de trabajo que utiliza el
servidor SnapCenter para el flujo de trabajo actual.

22

Método de contexto Específico

Config getconfig(); Devuelve la configuración que se envía desde el
servidor SnapCenter al agente.

ID del flujo de trabajo

El ID de flujo de trabajo es el ID que utiliza el servidor de SnapCenter para hacer referencia a un flujo de
trabajo en ejecución específico.

Gestión de

Este objeto contiene (la mayoría) los parámetros que un usuario puede establecer en la configuración del
servidor SnapCenter. Sin embargo, debido a razones de seguridad, algunos de esos parámetros pueden
filtrarse en el servidor. A continuación figura un ejemplo de cómo acceder a la configuración y recuperar un
parámetro:

final Config config = context.getConfig();

String myParameter =

config.getParameter("PLUGIN_MANDATORY_PARAMETER");

«// MyParameter » ahora contiene el parámetro leído desde la configuración en el servidor de SnapCenter Si
no existe una clave de parámetro de configuración, devolverá una cadena vacía ('').

Exportando el plugin

Debe exportar el plugin para instalarlo en el host de SnapCenter.

En Eclipse, realice las siguientes tareas:

1. Haga clic con el botón derecho en el paquete básico del complemento (en nuestro ejemplo
com.netapp.snapcreator.agent.plugin.TutorialPlugin).

2. Seleccione Exportar → Java → Archivo Jar

3. Haga clic en Siguiente.

4. En la siguiente ventana, especifique la ruta de acceso de archivo JAR de destino: tutorial_plugin.jar la
clase base del plugin se denomina TutorialPlugin.class, el plug-in debe agregarse a una carpeta con el
mismo nombre.

Si el plugin depende de bibliotecas adicionales, puede crear la siguiente carpeta: Lib/

Puede agregar archivos JAR en los que depende el plugin (por ejemplo, un controlador de base de datos).
Cuando SnapCenter carga el plug-in, asocia automáticamente todos los archivos JAR de esta carpeta y los
añade a la classpath.

Plugin personalizado en SnapCenter

Plugin personalizado en SnapCenter

El complemento personalizado creado con Java, PERL o estilo NATIVO puede instalarse en el host utilizando

23

SnapCenter Server para permitir la protección de datos de su aplicación. Debe haber exportado el plugin para
instalarlo en el host SnapCenter mediante el procedimiento proporcionado en este tutorial.

Crear un archivo de descripción del plugin

Para cada plugin creado, debe tener un archivo de descripción. El archivo de descripción describe los detalles
del plugin. El nombre del archivo debe ser Plugin_descriptor.xml.

Usar atributos del archivo descriptor del plugin y su importancia

Atributo Descripción

Nombre Nombre del plugin. Se permiten caracteres
alfanuméricos. Por ejemplo, DB2, MYSQL, MongoDB

Para los plugins creados con un estilo NATIVO,
asegúrese de no proporcionar la extensión del
archivo. Por ejemplo, si el nombre del plugin es
MongoDB.sh, especifique el nombre como MongoDB.

Versión Versión de plugin. Puede incluir tanto la versión
principal como la secundaria. Por ejemplo, 1.0, 1.1,
2.0, 2.1

DisplayName El nombre del plugin que se mostrará en SnapCenter
Server. Si se escriben varias versiones del mismo
complemento, asegúrese de que el nombre para
mostrar es el mismo en todas las versiones.

PluginType Idioma utilizado para crear el plugin. Los valores
soportados son Perl, Java y Native. El tipo de
complemento nativo incluye scripts de shell de
Unix/Linux, scripts de Windows, Python o cualquier
otro lenguaje de scripting.

OSNAME El nombre del sistema operativo del host donde se ha
instalado el plugin. Los valores válidos son Windows
y Linux. Es posible que un único complemento esté
disponible para su puesta en marcha en varios tipos
de sistemas operativos, como el complemento DE
tipo PERL.

OSVersion La versión del sistema operativo del host donde se
instaló el plugin.

ResourceName Nombre del tipo de recurso que admite el plugin. Por
ejemplo, base de datos, instancia, colecciones.

24

Atributo Descripción

Padre En caso de que el ResourceName dependa
jerárquicamente de otro tipo de recurso y, a
continuación, Parent determina el atributo
resourcetype primario.

Por ejemplo, el complemento DB2, ResourceName
“Database” tiene una “instancia” principal.

RequireFileSystemPlugin Sí o No Determina si la pestaña de recuperación se
muestra en el asistente de restauración.

ResourceRequiresAuthentication Sí o No Determina si los recursos, que se detectan
automáticamente o no se detectan automáticamente,
necesitan credenciales para realizar las operaciones
de protección de datos después de detectar el
almacenamiento.

RequireFileSystemClone Sí o No Determina si el plugin requiere integración de
plugin del sistema de archivos para el flujo de trabajo
de clonado.

A continuación, se muestra un ejemplo del archivo Plugin_descriptor.xml para el plugin personalizado DB2:

25

<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>

<SupportedOS>

<OS>

<OSName>windows</OSName>

<OSVersion>2012</OSVersion>

</OS>

<OS>

<OSName>Linux</OSName>

<OSVersion>7</OSVersion>

</OS>

</SupportedOS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>

<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>

<RequireFileSystemPlugin>no</RequireFileSystemPlugin>

<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>

<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>

</Plugin>

Creación de un archivo ZIP

Después de desarrollar un plugin y crear un archivo descriptor, es necesario añadir los archivos del plugin y el
archivo Plugin_descriptor.xml a una carpeta y zip.

Debe tener en cuenta lo siguiente antes de crear un archivo ZIP:

• El nombre de script debe ser el mismo que el del plugin.

• Para el plugin PERL, la carpeta ZIP debe contener una carpeta con el archivo de script y el archivo
descriptor debe estar fuera de esta carpeta. El nombre de la carpeta debe ser el mismo que el del plugin.

• Para los plugins distintos al plugin PERL, la carpeta ZIP debe contener el descriptor y los archivos de
script.

• La versión de SO debe ser un número.

Ejemplos:

26

• DB2 plug-in: Agregue el archivo DB2.pm y Plugin_descriptor.xml a “DB2.zip”.

• Plug-in desarrollado con Java: Añada archivos JAR, archivos JAR dependientes y archivo
Plugin_descriptor.xml a una carpeta y zip.

Cargando el archivo ZIP del plugin

Es necesario cargar el archivo ZIP del plugin en el servidor de SnapCenter para que el plugin se pueda
implementar en el host deseado.

Puede cargar el plugin mediante la interfaz de usuario o cmdlets de.

UI:

• Cargue el archivo ZIP del plug-in como parte del asistente de flujo de trabajo Add o Modify Host

• Haga clic en “Seleccionar para cargar el complemento personalizado”

PowerShell:

• Cmdlet Upload-SmPluginPackage

Por ejemplo, PS> Upload-SmPluginPackage -AbsolutePath c:\DB2_1.zip

Para obtener información detallada sobre los cmdlets de PowerShell, use la ayuda de cmdlets de
SnapCenter o consulte la información de referencia sobre cmdlets.

"Guía de referencia de cmdlets de SnapCenter Software".

Implementación de los plugins personalizados

El complemento personalizado cargado ahora está disponible para su implementación en el host deseado
como parte del flujo de trabajo Add y Modify Host. Es posible cargar varias versiones de plugins en
SnapCenter Server y seleccionar la versión deseada para implementarla en un host específico.

Para obtener más información sobre cómo cargar el plugin, consulte: "Añada hosts e instale paquetes de
plugins en hosts remotos"

27

https://docs.netapp.com/us-en/snapcenter-cmdlets-50/index.html
https://docs.netapp.com/es-es/snapcenter-50/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html
https://docs.netapp.com/es-es/snapcenter-50/protect-scc/task_add_hosts_and_install_plug_in_packages_on_remote_hosts_scc.html

Información de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico,
electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación
electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O
IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN
DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y
sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de
este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos
a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB
de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas
comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

28

http://www.netapp.com/TM

	Desarrolle un complemento para la aplicación : SnapCenter Software 5.0
	Tabla de contenidos
	Desarrolle un complemento para la aplicación
	Descripción general
	Gestión de complementos genérica en todas las llamadas API

	Desarrollo basado en PERL
	Manejo general del plug-in

	Estilo NATIVO
	Manejo general del plug-in

	Estilo Java
	Limitaciones
	Métodos admitidos
	Tutorial

	Plugin personalizado en SnapCenter
	Plugin personalizado en SnapCenter

