
Directrices de codificación para WFA
OnCommand Workflow Automation
NetApp
October 09, 2025

This PDF was generated from https://docs.netapp.com/es-es/workflow-automation/workflows/reference-
guidelines-for-variables.html on October 09, 2025. Always check docs.netapp.com for the latest.

Tabla de contenidos

Directrices de codificación para WFA. 1

Pautas para las variables. 1

Variables de PowerShell . 1

Variables Perl . 3

Directrices para indentación. 4

Directrices para comentarios . 5

Comentarios sobre PowerShell . 5

Comentarios Perl . 6

Directrices para el registro . 7

Registro de PowerShell . 7

Registro Perl . 8

Directrices para la gestión de errores . 9

Gestión de errores de PowerShell . 9

Gestión de errores Perl . 11

PowerShell general y convenciones Perl para WFA . 12

Módulos Perl con Windows . 13

Consideraciones sobre la adición de PowerShell y módulos Perl personalizados . 13

Cmdlets y funciones DE WFA . 14

Módulos de WFA PowerShell y Perl. 14

Módulos de PowerShell . 14

Módulos Perl . 14

Consideraciones que tener en cuenta al convertir comandos de PowerShell en Perl 17

Tipos de entrada de comandos . 17

Declaración de PowerShell . 17

Instrucción Perl . 18

Definición de comandos. 20

Directrices para los elementos básicos de WFA . 20

Directrices para SQL en WFA . 21

Directrices para las funciones de WFA . 24

Directrices para las entradas del diccionario WFA . 24

Directrices para comandos . 25

Directrices para flujos de trabajo . 28

Directrices para crear scripts de validación para tipos de sistema remoto . 33

Directrices para crear tipos de origen de datos . 33

Directrices de codificación para WFA

Debería comprender las directrices de codificación general de OnCommand Workflow
Automation (WFA), las convenciones de nomenclatura y las recomendaciones sobre la
creación de elementos básicos como filtros, funciones, comandos y flujos de trabajo.

Pautas para las variables

Debe tener en cuenta las directrices para PowerShell y las variables Perl de
OnCommand Workflow Automation (WFA) cuando cree un comando o un tipo de origen
de datos.

Variables de PowerShell

Directrices Ejemplo

Para parámetros de entrada de script:

• Utilice la caja Pascal.

• No utilice guiones bajos.

• No utilice abreviaturas.

$VolumeName

$AutoDeleteOptions

$Size

Para variables internas de script:

• Utilice la funda Camel.

• No utilice guiones bajos.

• No utilice abreviaturas.

$newVolume

$qtreeName

$time

Para funciones:

• Utilice la caja Pascal.

• No utilice guiones bajos.

• No utilice abreviaturas.

GetVolumeSize

Los nombres de variables no distinguen entre
mayúsculas y minúsculas. Sin embargo, para mejorar
la legibilidad, no debe utilizar mayúsculas diferente
para el mismo nombre.

$variable es igual que $Variable.

Los nombres de variables deben estar en inglés sin
formato y deben estar relacionados con la
funcionalidad del script.

Uso $name y no $a.

Declare explícitamente el tipo de datos de cada
variable.

[cadena]nombre

tamaño [int]

1

Directrices Ejemplo

No utilice caracteres especiales (! @ # & % , .) y
espacios de aplicaciones.

Ninguno

No utilice palabras clave reservadas de PowerShell. Ninguno

Agrupe los parámetros de entrada colocando primero
los parámetros obligatorios seguidos de los
parámetros opcionales.

param(

[parameter(Mandatory=$true)]

[string]$Type,

[parameter(Mandatory=$true)]

[string]$Ip,

[parameter(Mandatory=$false)]

[string]$VolumeName

)

Comentar todas las variables de entrada mediante
HelpMessage anotación con un mensaje de ayuda
significativo.

[parameter(Mandatory=$false,HelpMe

ssage="LUN to map")]

[string]$LUNName

No utilice «'Archivador'» como nombre de variable;
utilice «'Array'» en su lugar.

Ninguno

Uso ValidateSet anotación en los casos en los
que el argumento obtiene valores enumerados. Esto
se traduce automáticamente al tipo de datos Enum
para el parámetro.

[parameter(Mandatory=$false,HelpMe

ssage="Volume state")]

[ValidateSet("online","offline","r

estricted")]

[string]$State

Agregue un alias a un parámetro que termine con
"'_Capacity'" para indicar que el parámetro es de tipo
capacidad.

El comando «'Create Volume'» utiliza alias de la
siguiente forma:

[parameter(Mandatory=$false,HelpMe

ssage="Volume increment size in

MB")]

[Alias("AutosizeIncrementSize_Capa

city")]

[int]$AutosizeIncrementSize

2

Directrices Ejemplo

Agregue un alias a un parámetro que termine con
"'_Password'" para indicar que el parámetro es de tipo
de contraseña.

param (

 [parameter(Mandatory=$false,

HelpMessage="In order to create an

Active Directory machine account

for the CIFS server or setup CIFS

service for Storage Virtual

Machine, you must supply the

password of a Windows account with

sufficient privileges")]

[Alias("Pwd_Password")]

[string]$ADAdminPassword

)

Variables Perl

Directrices Ejemplo

Para parámetros de entrada de script:

• Utilice la caja Pascal.

• No utilice guiones bajos.

• No utilice abreviaturas.

$VolumeName

$AutoDeleteOptions

$Size

No utilice abreviaturas para las variables internas del
script.

$new_volume

$qtree_name

$time

No utilice abreviaturas para las funciones. get_volume_size

Los nombres de variables distinguen mayúsculas de
minúsculas. Para mejorar la legibilidad, no debe
utilizar mayúsculas diferente para el mismo nombre.

$variable no es lo mismo que $Variable.

Los nombres de variables deben estar en inglés sin
formato y deben estar relacionados con la
funcionalidad del script.

Uso $name y no $a.

Agrupe los parámetros de entrada colocando primero
los parámetros obligatorios, seguidos de los
parámetros opcionales.

Ninguno

3

Directrices Ejemplo

En la función GetOptions, declare explícitamente el
tipo de datos de cada variable para los parámetros de
entrada.

GetOptions(

 "Name=s"=>\$Name,

 "Size=i"=>\$Size

)

No utilice «'Archivador'» como nombre de variable;
utilice «'Array'» en su lugar.

Ninguno

Perl no incluye la ValidateSet anotación para
valores enumerados. Utilice declaraciones explícitas
«'if'» para casos en los que el argumento obtenga
valores enumerados.

if

(defined$SpaceGuarantee&&!($SpaceG

uaranteeeq'none'

$SpaceGuaranteeeq’volume'

$SpaceGuaranteeeq’file')) { die’Illegal
SpaceGuarantee argument: \''.$SpaceGuarantee.'\''; }

Todos los comandos Perl WFA deben utilizar el
pragma "strict" para desalentar el uso de
construcciones inseguras para variables, referencias
y subrutinas.

use strict;

the above is equivalent to

use strictvars;

use strictsubs;

use strictrefs;

Todos los comandos Perl de WFA deben utilizar los
siguientes módulos Perl:

• Getopt

Se utiliza para especificar parámetros de entrada.

• WFAUtil

Esto se utiliza para las funciones de utilidad que
se proporcionan para el registro de comandos, la
generación de informes sobre el progreso de
comandos, la conexión con las controladoras de
la cabina, etc.

use Getopt::Long;

use NaServer;

use WFAUtil;

Directrices para indentación

Debe tener en cuenta las directrices para la sangría cuando se escribe un script de

4

PowerShell o Perl para OnCommand Workflow Automation (WFA).

Directrices Ejemplo

Una pestaña es igual a cuatro espacios vacíos.

Utilice tabulaciones y llaves para mostrar el principio
y el final de un bloque.

Script de PowerShell

if

($pair.length-ne 2)

{

throw "Got wrong input data"

}

Script Perl

if

(defined $MaxDirectorySize)

{

convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

}

Agregue líneas en blanco entre conjuntos de
operaciones o fragmentos de código. $options=$option.trim();

$pair=$option.split(" ");

Get-WFAlogger -Info -messages

$("split options: "+

$Pair)

Directrices para comentarios

Debe tener en cuenta las directrices para PowerShell y comentarios Perl en sus
secuencias de comandos para OnCommand Workflow Automation (WFA).

Comentarios sobre PowerShell

5

Directrices Ejemplo

Utilice el carácter # para un comentario de una sola
línea. # Single line comment

$options=$option.trim();

Utilice el carácter # para un comentario de fin de
línea. $options=$option.trim(); # End of

line

comment

Utilice los caracteres <# y #> para un comentario de
bloque. <#

This is

a

block comment

#>

$options=$option.trim();

Comentarios Perl

Directrices Ejemplo

Utilice el carácter # para el comentario de una línea.
convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

Utilice el carácter # para el comentario de fin de línea.
my $MaxDirectorySizeBytes =

$MaxDirect

orySiZe * 1024 * 1024; # convert

to Bytes

6

Directrices Ejemplo

Utilice el carácter # en cada línea con un # vacío al
principio y al final para crear un borde de comentario
para comentarios de varias líneas.

#

This is a multi-line comment.

Perl 5, unlike

Powershell, does not have direct

support for

multi-line comments. Please use

a '#'in every line

with an empty '#' at the

beginning and end to create

a comment border

#

No incluya código inactivo y comentado en los
comandos de WFA. Sin embargo, para realizar
pruebas, puede utilizar el mecanismo de
documentación antigua simple (POD) para comentar
el código.

=begin comment

 # Set deduplication

 if(defined $Deduplication &&

$Deduplication eq "enabled")

 {

 $wfaUtil-

>sendLog("Enabling

Deduplication");

 }

=end comment

=cut

Directrices para el registro

Debe conocer las directrices para iniciar sesión al escribir un script PowerShell o Perl
para OnCommand Workflow Automation (WFA).

Registro de PowerShell

Directrices Ejemplo

Utilice el cmdlet Get-WFALogger para el registro.
Get-WFALogger -Info -message

“Creating volume”

7

Directrices Ejemplo

Registre todas las acciones que requieran interacción
con paquetes internos como Data ONTAP, VMware y
PowerCLI.todos los mensajes de registro están
disponibles en registros de ejecución en el historial de
estado de ejecución de flujos de trabajo.

Ninguno

Registre todos los argumentos relevantes que se
pasan a paquetes internos.

Ninguno

Utilice los niveles de registro adecuados cuando
utilice el cmdlet Get-WFALogger, en función del
contexto de uso. -Info, -error, -warn y -Debug son los
distintos niveles de registro disponibles. Si no se
especifica un nivel de registro, el nivel de registro
predeterminado es Debug.

Ninguno

Registro Perl

Directrices Ejemplo

Utilice WFAUtil SendLog para el registro.
my wfa_util = WFAUtil->new();

eval {

$wfa_util->sendLog('INFO',

"Connecting to the

cluster: $DestinationCluster");

}

Registrar cada acción que requiere la interacción con
cualquier elemento externo al comando, como Data
ONTAP, VMware y WFA. Todos los mensajes de
registro que cree con la rutina WFAUtil SendLog se
almacenan en la base de datos WFA. Estos mensajes
de registro están disponibles para el flujo de trabajo y
el comando ejecutados.

Ninguno

Registre cada argumento relevante pasado a la rutina
que se llamó.

Ninguno

Use los niveles de registro adecuados.-Info, -error,
-warn y -Debug son los distintos niveles de registro
disponibles.

Ninguno

8

Directrices Ejemplo

Cuando inicie sesión en el nivel -Info, sea preciso y
conciso. No especifique detalles de implementación
como el nombre de clase y el nombre de función en
los mensajes de registro. Describa el paso exacto o el
error exacto en inglés normal.

El siguiente fragmento de código muestra un ejemplo
de un mensaje correcto y un mensaje erróneo:

$wfa_util->sendLog('WARN',

"Removing volume:

'.$VolumeName);

Good Message

$wfa_util->sendLog('WARN',

'Invoking volume-

destroy ZAPI: '.$VolumeName);

Bad message

Directrices para la gestión de errores

Debe tener en cuenta las directrices para la gestión de errores al escribir un script
PowerShell o Perl para OnCommand Workflow Automation (WFA).

Gestión de errores de PowerShell

Directrices Ejemplo

Los parámetros comunes añadidos a los cmdlets de
PowerShell Runtime incluyen parámetros de control
de errores como ErrorAction y WarningAction:

• El parámetro ErrorAction determina la forma en
que un cmdlet debe reaccionar ante un error que
no es de terminación del comando.

• El parámetro WarningAction determina cómo
debe reaccionar un cmdlet a una advertencia del
comando.

• Stop, SilentlyContinue, Inquire y Continue son los
valores válidos para los parámetros ErrorAction y
WarningAction.

Para obtener más información, puede utilizar la Get-
Help about_CommonParameters En la CLI de
PowerShell.

ErrorAction: El ejemplo siguiente muestra cómo
manejar un error que no es de terminación como un
error de terminación:

New-NcIgroup-Name $IgroupName-

Protocol $Protocol-Type$OSType-

ErrorActionstop

WarningAction

New-VM-Name $VMName-VM $SourceVM-

DataStore$DataStoreName-

VMHost$VMHost-

WarningActionSilentlyContinue

9

Directrices Ejemplo

Utilice la instrucción general "'try/catch'" si no se
conoce el tipo de excepción entrante. try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

Utilice la instrucción específica «'try/catch'» si conoce
el tipo de excepción entrante. try

{

"In Try/catch block"

}

catch[System.Net.WebExceptional],

[System.IO.

IOException]

{

"Got exception"

}

Utilice la declaración «'finally'» para liberar recursos.
try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

finally

{

"Release resources"

}

10

Directrices Ejemplo

Utilice variables automáticas de PowerShell para
acceder a la información acerca de excepciones. try

{

Get-WFALogger -Info -message

$("Creating

Ipspace: " + $Ipspace)

New-NaNetIpspace-Name $Ipspace

}

catch

{

Throw "Failed to create Ipspace.

Message:

" + $_.Exception.Message;

}

Gestión de errores Perl

11

Directrices Ejemplo

Perl no incluye compatibilidad con el idioma nativo
para bloques try/catch. Utilice bloques de evaluación
para comprobar y manejar errores. Mantenga los
bloques de evaluación lo más pequeños posible.

eval {

$wfa_util->sendLog('INFO',

"Quiescing the relationship :

$DestinationCluster://$Destination

Vserver

/$DestinationVolume"

);

$server->snapmirror_quiesce(

'destination-vserver' =>

$DestinationVserver,

'destination-volume' =>

$DestinationVolume

);

$wfa_util->sendLog('INFO',

'Quiesce operation

started successfully.');

};

$wfa_util->checkEvalFailure(

"Failed to quiesce the SnapMirror

relationship

$DestinationCluster://$Destination

Vserver

/$DestinationVolume",

 $@

);

PowerShell general y convenciones Perl para WFA

Debe comprender ciertas convenciones de PowerShell y Perl que se utilizan en WFA
para crear scripts consistentes con los scripts existentes.

• Utilice variables que le ayudarán a aclarar lo que desea que haga el script.

• Escriba un código legible que se pueda entender sin comentarios.

• Mantenga las secuencias de comandos y comandos tan simples como sea posible.

• Para scripts de PowerShell:

◦ Use los cmdlets siempre que sea posible.

◦ Invoque el código .NET cuando no haya ningún cmdlet disponible.

• Para scripts Perl:

12

◦ Termine siempre las declaraciones "da" con caracteres de nueva línea.

En ausencia de un carácter de salto de línea, se imprime el número de línea de script, lo cual no es útil
para depurar comandos Perl ejecutados por WFA.

◦ En el módulo «'getopt'», haga que los argumentos de cadena sean obligatorios en un comando.

Módulos Perl con Windows

Algunos módulos Perl están integrados con la distribución Perl de Windows Active state
para OnCommand Workflow Automation (WFA). Puede utilizar estos módulos Perl en su
código Perl para escribir comandos, solo si se combinan con Windows.

La siguiente tabla enumera los módulos de base de datos Perl que se combinan con Windows para WFA.

Módulo de base de datos Descripción

DBD::mysql Controlador de interfaz de base de datos Perl5 que
permite conectarse a la base de datos MySQL.

Pruebe::diminuto Minimiza los errores comunes con bloques de
evaluación.

XML::libxml Interfaz para libxml2 que proporciona a los
analizadores XML y HTML con interfaces DOM, SAX
y XMLReader.

DBD::Cassandra Controlador de interfaz de base de datos Perl5 para
Cassandra que utiliza el lenguaje de consulta CQL3.

Consideraciones sobre la adición de PowerShell y módulos
Perl personalizados

Debe tener en cuenta diferentes consideraciones antes de agregar PowerShell
personalizado y módulos Perl a OnCommand Workflow Automation (WFA). Los módulos
Perl y PowerShell personalizados permiten usar comandos personalizados para crear
flujos de trabajo.

• Durante la ejecución de comandos de WFA, todos los módulos personalizados de PowerShell se añaden
al directorio de instalación de WFA /Posh/modules se importan automáticamente.

• Todos los módulos Perl personalizados se han añadido al WFA/perl el directorio se incluye en la
biblioteca @INC.

• No se realiza un backup de los módulos Perl y PowerShell personalizados como parte de la operación de
backup de WFA.

• Los módulos Perl y PowerShell personalizados no se restauran como parte de la operación de
restauración de WFA.

Debe realizar manualmente la copia de seguridad de los módulos de PowerShell y Perl personalizados para

13

copiarlos en una nueva instalación de WFA.

El nombre de la carpeta del directorio de módulos debe ser el mismo que el del nombre del módulo.

Cmdlets y funciones DE WFA

OnCommand Workflow Automation (WFA) proporciona varios cmdlets de PowerShell, así
como funciones PowerShell y Perl que puede utilizar en sus comandos WFA.

Puede ver todos los cmdlets y las funciones de PowerShell que proporciona el servidor de WFA utilizando los
siguientes comandos de PowerShell:

• Get-Command -Module WFAWrapper

• Get-Command -Module WFA

Puede ver todas las funciones Perl proporcionadas por el servidor WFA en el WFAUtil.pm módulo. Las
secciones de ayuda, los cmdlets de WFA PowerShell ayudan y los métodos Perl de la ayuda del módulo de
ayuda WFA Support Links permite el acceso a todos los cmdlets y funciones de PowerShell y a las funciones
Perl.

Módulos de WFA PowerShell y Perl

Debe tener en cuenta la PowerShell o los módulos Perl de OnCommand Workflow
Automation (WFA) para escribir scripts para sus flujos de trabajo.

Módulos de PowerShell

Directrices Ejemplo

Utilice el kit de herramientas PS de Data ONTAP para
invocar API siempre que el kit de herramientas esté
disponible.

La Add VLAN command utiliza el kit de herramientas
de la siguiente manera:

Add-NaNetVlan-Interface $Interface-

Vlans$VlanID

Si no hay cmdlets disponibles en el Kit de
herramientas de PS de Data ONTAP, utilice Invoke-
SSH Comando para invocar la CLI en Data ONTAP.

Invoke-NaSsh-Name $ArrayName-Command

"ifconfig -a"-Credential $Credentials

Módulos Perl

El módulo NaServer se utiliza en los comandos WFA. El módulo NaServer permite la invocación de API Data
ONTAP, que se utilizan en la administración activa de sistemas Data ONTAP.

14

15

Directrices Ejemplo

Utilice el módulo NaServer para invocar las API
siempre que esté disponible el SDK de capacidad de
gestión de NetApp.

El siguiente ejemplo muestra cómo se utiliza el
módulo NaServer para reanudar la operación
SnapMirror:

 eval {

 $wfa_util->sendLog('INFO',

 "Connecting to the

cluster: $DestinationCluster"

);

 my $server

 = $wfa_util-

>connect($DestinationClusterIp,

$DestinationVserver);

 my $sm_info = $server-

>snapmirror_get(

 'destination-vserver' =>

$DestinationVserver,

 'destination-volume' =>

$DestinationVolume

);

 my $sm_state = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'mirror-state'};

 my $sm_status = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'relationship-status'};

 $wfa_util->sendLog('INFO',

 "SnapMirror relationship

is $sm_state ($sm_status)");

 if ($sm_status ne 'quiesced')

{

 $wfa_util->sendLog('INFO',

 'The status needs to

be quiesced to resume transfer.');

 } else {

 my $result = $server-

>snapmirror_resume(

 'destination-vserver'

=> $DestinationVserver,

 'destination-volume'

=> $DestinationVolume

);

 $wfa_util->sendLog('INFO',
16

"Result of resume: $result");

 $wfa_util->sendLog('INFO',

'Resume operation started

successfully.');

 }

}

Directrices Ejemplo

Si no hay disponible una API de Data ONTAP,
invoque la CLI de Data ONTAP mediante el método
executeSysteminterd.

ExecuteSystemS4 no es compatible y
actualmente sólo está disponible para
Data ONTAP en 7-Mode.

Ninguno

Consideraciones que tener en cuenta al convertir
comandos de PowerShell en Perl

Debe tener en cuenta diferentes consideraciones al convertir los comandos de
PowerShell en Perl, porque PowerShell y Perl tienen diferentes funcionalidades.

Tipos de entrada de comandos

OnCommand Workflow Automation (WFA) permite a los diseñadores de flujos de trabajo utilizar cabinas y
hash como entrada para el comando al definir un comando. Estos tipos de entrada no se pueden utilizar
cuando el comando se define usando Perl. Si desea que un comando Perl acepte entradas array y hash,
puede definir la entrada como una cadena en el diseñador. La definición de comandos puede analizar la
entrada, que se pasa para crear una matriz o hash según sea necesario. La descripción de la entrada
describe el formato en el que se espera la entrada.

my @input_as_array = split(',', $InputString); #Parse the input string of

format val1,val2 into an array

my %input_as_hash = split /[;=]/, $InputString; #Parse the input string of

format key1=val1;key2=val2 into a hash.

Declaración de PowerShell

Los siguientes ejemplos muestran cómo puede pasar una entrada de cabina a PowerShell y Perl. En los
ejemplos se describe la entrada CronMonth, que especifica el mes en el que está programado que se ejecute
el trabajo cron. Los valores válidos son números enteros -1 a 11. Un valor de -1 indica que la programación se
ejecuta cada mes. Cualquier otro valor denota un mes específico, siendo 0 enero y 11 diciembre.

[parameter(Mandatory=$false, HelpMessage="Months in which the schedule

executes. This is a comma separated list of values from 0 through 11.

Value -1 means all months.")]

 [ValidateRange(-1, 11)]

 [array]$CronMonths,

17

Instrucción Perl

18

GetOptions(

 "Cluster=s" => \$Cluster,

 "ScheduleName=s" => \$ScheduleName,

 "Type=s" => \$Type,

 "CronMonths=s" => \$CronMonths,

) or die 'Illegal command parameters\n';

sub get_cron_months {

 return get_cron_input_hash('CronMonths', $CronMonths, 'cron-month',

-1,

 11);

}

sub get_cron_input_hash {

 my $input_name = shift;

 my $input_value = shift;

 my $zapi_element = shift;

 my $low = shift;

 my $high = shift;

 my $exclude = shift;

 if (!defined $input_value) {

 return undef;

 }

 my @values = split(',', $input_value);

 foreach my $val (@values) {

 if ($val !~ /^[+-]?\d+$/) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be an integer.\n";

 }

 if ($val < $low || $val > $high) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be from $low to $high.\n";

 }

 if (defined $exclude && $val == $exclude) {

 die

 "Invalid value '$input_value' for $input_name: $val is not

valid.\n";

 }

 }

 # do something

}

19

Definición de comandos

Una expresión de una línea en PowerShell que use un operador de canalización puede tener que ampliarse a
múltiples bloques de sentencias en Perl para lograr la misma funcionalidad. En la siguiente tabla se muestra
un ejemplo de uno de los comandos de espera.

Declaración de PowerShell Instrucción Perl

Get the latest job which moves

the specified volume to the

specified

 aggregate.

$job = Get-NcJob -Query $query

where {$_.JobDescription -eq "Split" +
$VolumeCloneName}

Select-Object -First 1 ----
my $result = $server-

>job_get_iter(

 'query' => {'job-type' =>

'VOL_CLONE_SPLIT'},

 'desired-attributes' => {

 'job-type' => '',

 'job-description' => '',

 'job-progress' => '',

 'job-state' => ''

 }

);

my @jobarray;

for my $job (@{ $result-

>{'attributes-list'}})

{

 my $description = $job->{'job-

description'};

 if($description =~

/$VolumeCloneName/)

 {

 push(@jobarray, $job)

 }

}

Directrices para los elementos básicos de WFA

Debe conocer las directrices para usar los elementos básicos de Workflow Automation.

20

Directrices para SQL en WFA

Debe estar al tanto de las directrices para usar SQL en OnCommand Workflow
Automation (WFA) a fin de escribir consultas SQL para WFA.

SQL se utiliza en las siguientes ubicaciones de WFA:

• Consultas SQL para rellenar las entradas del usuario para su selección

• Consultas SQL para crear filtros para filtrar objetos de un tipo de entrada de diccionario específico

• Datos estáticos en tablas en la base de datos de juegos

• Tipo de origen de datos personalizado de tipo SQL en el que los datos deben extraerse de un origen de
datos externo, como una base de datos de administración de configuración personalizada (CMDB).

• Consultas SQL para secuencias de comandos de reserva y verificación

Directrices Ejemplo

Las palabras clave reservadas de SQL deben tener
caracteres en mayúsculas. SELECT

 vserver.name

FROM

 cm_storage.vserver vserver

Los nombres de tablas y columnas deben tener
caracteres en minúsculas.

Tabla: Agregado

Columna: Used_Space_mb

Separe las palabras con un carácter de subrayado
(_). No se permiten espacios.

rendimiento_de_cabina

El nombre de la tabla se define en singular. Una tabla
es un conjunto de una o más entradas.

«'function'», no «'functions'»

21

Directrices Ejemplo

Utilice alias de tabla con nombres significativos en
consultas SELECCIONADAS. SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

22

Directrices Ejemplo

Si tiene que hacer referencia a un parámetro de
entrada de filtro o a un parámetro de entrada de
usuario en una consulta de filtro o una consulta de
usuario, utilice la sintaxis como
'${inputVariableName}.también puede utilizar la
sintaxis para hacer referencia a un parámetro de
definición de comandos en secuencias de comandos
de reserva y secuencias de comandos de
verificación.

SELECT

 volume.name AS Name,

 aggregate.name as Aggregate,

 volume.size_mb AS 'Total Size

(MB)',

 voulme.used_size_mb AS 'Used

Size (MB)',

 volume.space_guarantee AS

'Space Guarantee'

FROM

 cm_storage.cluster,

 cm_storage.aggregate,

 cm_storage.vserver,

 cm_storage.volume

WHERE

 cluster.id =

vserver.cluster_id

 AND aggregate.id =

volume.aggregate_id

 AND vserver.id =

voulme.vserver_id

 AND vserver.name =

'${VserverName}'

 AND cluster.name =

'${ClusterName}'

ORDER BY

 volume.name ASC

Utilice comentarios para consultas complejas.
Algunos de los estilos de comentario admitidos en las
consultas son los siguientes:

• «»--» hasta el final de la línea

Es obligatorio un espacio después del segundo
guión de este estilo de comentario.

• De un carácter «»#» hasta el final de la línea

• De un «»/" to the following "/'"secuencia

/*

multi-line

comment

*/

--line comment

SELECT

 ip as ip, # comment till end

of this line

 NAME as name

FROM --end of line comment

 storage.array

23

Directrices para las funciones de WFA

Puede crear funciones para encapsular la lógica más compleja y utilizada comúnmente
en una función llamada y, a continuación, reutilizar la función como valores de
parámetros de comandos o valores de parámetros de filtro en OnCommand Workflow
Automation (WFA).

Directrices Ejemplo

Utilice la caja Camel para un nombre de función. CalculateVolumeSize

Los nombres de las variables deben estar en inglés
normal y relacionados con la funcionalidad de la
función.

SplitByDelimiter

No utilice abreviaturas. CalculateVolumeSize, not calcVolSize

Las funciones se definen mediante MVFLEX
Expression Language (MVEL).

Ninguno

La definición de la función debe especificarse de
acuerdo con las directrices oficiales del lenguaje de
programación Java.

Ninguno

Directrices para las entradas del diccionario WFA

Debe conocer las directrices para crear entradas de diccionario en OnCommand
Workflow Automation (WFA).

Directrices Ejemplo

Los nombres de las entradas del diccionario sólo
deben contener caracteres alfanuméricos y guiones
bajos.

Licencia_clúster

Switch_23

Los nombres de las entradas del diccionario deben
comenzar con un carácter en mayúsculas. Comience
cada palabra en el nombre con un carácter en
mayúsculas y separe cada palabra con un guión bajo
(_).

Volumen

Array_License

Los nombres de atributos de entrada de diccionario
no deben incluir el nombre de la entrada de
diccionario.

Ninguno

Los atributos y las referencias de una entrada de
diccionario deben tener caracteres en minúsculas.

agregado, size_mb

24

Directrices Ejemplo

Separe las palabras con un guión bajo. No se
permiten espacios.

pool_recursos

Las entradas del diccionario no pueden incluir
referencias de un esquema diferente. Cuando una
entrada de diccionario requiere referencias cruzadas
a un objeto de un esquema diferente, asegúrese de
que todas las claves naturales del objeto al que se
hace referencia estén presentes en la entrada de
diccionario.

La entrada del diccionario Array_Performance
requiere todas las claves naturales de la entrada del
diccionario Array como atributos directos en él.

Utilice los tipos de datos adecuados para los
atributos.

Ninguno

Utilice el tipo de datos Long para los atributos
relacionados con el tamaño o el espacio.

Size_mb y available_size_mb en la entrada del
diccionario Storage.Volume

Utilice Enum cuando un atributo tenga un conjunto fijo
de valores.

raid_TYPE en la entrada del diccionario
Storage.Volume

Establezca "'para ser almacenado en caché'" como
true para un atributo o referencia cuando un origen de
datos proporcione valor para ese atributo o
referencia.para el origen de datos de Active IQ
Unified Manager, agregue atributos en caché si el
origen de datos puede proporcionarlo.

Ninguno

Establezca "'puede ser Nulo'" como true si el origen
de datos que proporciona el valor para este atributo o
referencia puede devolver NULL.

Ninguno

Proporcione una descripción significativa de cada
atributo y referencia.la descripción se muestra en los
detalles del comando al diseñar un flujo de trabajo.

Ninguno

No utilice «'id'» como nombre de un atributo en las
entradas del diccionario. Está reservado para uso
interno de WFA.

Ninguno

Información relacionada

Referencias al material de aprendizaje

Directrices para comandos

Debe tener en cuenta las directrices para crear comandos en OnCommand Workflow
Automation (WFA).

25

https://docs.netapp.com/es-es/workflow-automation/workflows/reference-references-to-learning-material.html

Directrices Ejemplo

Utilice un nombre fácilmente identificable para los
comandos.

Create Qtree

Utilice espacios para delimitar palabras y cada
palabra debe comenzar con un carácter en
mayúscula.

Create Volume

Proporcione una descripción para explicar la
funcionalidad del comando, incluido el resultado
esperado de los parámetros opcionales.

Ninguno

De manera predeterminada, el tiempo de espera para
los comandos estándar es de 600 segundos. El
tiempo de espera predeterminado se configura al
crear el comando. Cambie el valor predeterminado
solo si el comando puede tardar más tiempo en
completarse.

Create Volume comando

En caso de operaciones de ejecución prolongada,
cree dos comandos, uno para invocar la operación de
ejecución prolongada y otro para informar
periódicamente sobre el progreso de la operación. El
primer comando debería ser un Standard
Execution el tipo de comando y el segundo debería
ser Wait for Condition tipo de comando.

Create VSM y.. Wait for VSM comandos

Anteponga el Wait for condition Nombres de
comandos con "'wait'" para facilitar la identificación.

Wait for CM Volume Move

Utilizar un intervalo de espera adecuado para los
comandos "'wait for condition'". El valor especificado
rige el intervalo en el que se ejecuta el comando
Polling para comprobar si la operación de ejecución
prolongada ha finalizado.

60 intervalo de muestreo para Wait for VSM
comando

Para la Wait for condition comandos, utilice un
tiempo de espera apropiado según el tiempo
esperado para completar la operación de ejecución
prolongada. El tiempo esperado podría ser
considerablemente mayor si la operación implica
transferencia de datos a través de una red.

Una transferencia de base VSM puede tardar varios
días en completarse. Por lo tanto, el tiempo de
espera especificado es de 6 días.

Representación de cadena

La representación de cadena de un comando muestra los detalles de un comando en un diseño de flujo de
trabajo durante la planificación y ejecución. Sólo se pueden utilizar los parámetros de comando en la
representación de cadena de un comando.

26

Directrices Ejemplo

Evite utilizar atributos que no tengan ningún valor. Un
atributo sin valor se muestra como NA.

VolName 10.68.66.212[NA]aggr1/testVol7

Separar diferentes entradas en la representación de
cadena usando los siguientes delimitadores: [] , / :

ArrayName[ArrayIp]

Proporcione etiquetas significativas a todos los
valores de la representación de cadenas.

Volume name=VolumeName

Lenguaje de definición de comandos

Los comandos se pueden escribir utilizando los siguientes lenguajes de secuencias de comandos
compatibles:

• PowerShell

• Perl

Definición de parámetros de comando

Los parámetros de comando se describen por Nombre, Descripción, Tipo, valor predeterminado del parámetro
y si el parámetro es obligatorio. El tipo de parámetro puede ser String, Boolean, Integer, Long, Double,
Enumeración, DateTime, capacidad, matriz, Hashtable, Una contraseña o un XmlDocument. Aunque los
valores para la mayoría de los tipos son intuitivos, los valores para Array y Hashtable deben tener un formato
determinado tal como se describe en la siguiente tabla:

Directrices Ejemplo

Asegúrese de que el valor de un tipo de entrada
Array es una lista de valores, separados por comas. [parameter(Mandatory=$false,

HelpMessage="Months in which the

schedule executes.")]

[array]$CronMonths

La entrada se pasa como sigue: 0,3,6,9

Asegúrese de que el valor de un tipo de entrada
Hashtable es una lista de pares clave=valor,
separados por punto y coma.

[parameter(Mandatory=$false,

HelpMessage="Volume names and size

(in MB)")]

[hashtable]$VolumeNamesAndSize

La entrada se pasa como sigue:
Volume1=100;Volume2=250;Volume3=50

27

Directrices para flujos de trabajo

Debe tener en cuenta las directrices para crear o modificar un flujo de trabajo predefinido
para OnCommand Workflow Automation (WFA).

Directrices generales

Directrices Ejemplo

Asigne un nombre al flujo de trabajo de modo que
refleje la operación que ejecuta el operador de
almacenamiento.

Create a CIFS Share

En el caso de los nombres de flujo de trabajo,
capitalice la letra inicial de la primera palabra y cada
palabra que sea un objeto. Capitalice letras para
abreviaturas y acrónimos.

Volumen

Qtree

Cree un recurso compartido CIFS Qtree de Clustered
Data ONTAP

En las descripciones del flujo de trabajo, incluya
todos los pasos importantes del flujo de trabajo,
incluidos los requisitos previos, el resultado del flujo
de trabajo o aspectos condicionales de la ejecución.

Consulte la descripción del flujo de trabajo de ejemplo
Create VMware NFS Datastore on

Clustered Data ONTAP Storage, lo que incluye
los requisitos previos.

Establezca "'preparado para la producción'" en true
sólo cuando el flujo de trabajo esté listo para la
producción y se pueda mostrar en la página del
portal.

Ninguno

De forma predeterminada, establezca «considerar
elementos reservados» en true. Al previsualizar un
flujo de trabajo para su ejecución, el planificador de
WFA considera todos los objetos que están
reservados junto con los objetos existentes en la
base de datos de caché. Los efectos de otros flujos
de trabajo programados o los flujos de trabajo que se
ejecutan en paralelo se tienen en cuenta al planificar
un flujo de trabajo específico si esta opción está
establecida en true.

• Situación 1

El flujo de trabajo 1 crea un volumen y está
programado para ejecutarse una semana
después. El flujo de trabajo 2 crea qtrees o LUN
en los volúmenes en los que se busca y, si el flujo
de trabajo 2 se ejecuta en un día
aproximadamente, debería desactivar
«'considerar elementos reservados» para el flujo
de trabajo 2 para impedir que se considere el
volumen que debe crearse en una semana.

• Situación 2

El flujo de trabajo 1 utiliza la Create Volume
comando. Si hay un flujo de trabajo programado 2
que consume 100 GB de un agregado, el flujo de
trabajo 1 debe tener en cuenta los requisitos para
el flujo de trabajo 2 durante la planificación.

28

Directrices Ejemplo

De forma predeterminada, "'Habilitar validación de
existencia de elementos'" se establece en true.

• Situación 1

Si crea un flujo de trabajo que primero quita un
volumen por nombre mediante el comando
Remove Volume solo si hay un volumen y se
vuelve a crear con otro comando, como Create
Volume o. Clone Volume, a continuación, el
flujo de trabajo no debe utilizar este indicador. El
efecto de eliminar el volumen no estará disponible
para el Create volume comando, lo que
provoca un error en el flujo de trabajo.

• Situación 2

La Create Volume el comando se utiliza en un
flujo de trabajo con un nombre específico
denominado «'vol198'».

Si esta opción está establecida en true, el
planificador de WFA comprueba durante la
planificación para ver si existe un volumen con
ese nombre en la cabina determinada. Si hay un
volumen, el flujo de trabajo falla durante la
planificación.

Cuando se selecciona el mismo comando más de
una vez en un flujo de trabajo, proporcione los
nombres de visualización adecuados para las
instancias de comandos.

El flujo de trabajo de ejemplo «'Crear, asignar y
proteger las LUN con SnapVault'» utiliza Create
Volume comando dos veces. Sin embargo, utiliza los
nombres de visualización como Create Primary
Volume y.. Create Secondary Volume
adecuadamente para el volumen primario y el
volumen de destino reflejado.

Entradas del usuario

Directrices Ejemplo

Nombres:

• Inicie el nombre con el carácter « »$».

• Utilice una letra mayúscula al principio de cada
palabra.

• Utilice letras mayúsculas para todos los términos
y abreviaturas.

• No utilice guiones bajos.

$Array

$VolumeName

29

Directrices Ejemplo

Nombres para mostrar:

• Utilice una letra mayúscula al principio de cada
palabra.

• Separe las palabras con espacios.

• Si las entradas tienen unidades específicas,
especifique la unidad entre paréntesis
directamente en el nombre de visualización.

Volume Name

Volume Size (MB)

Descripciones:

• Proporcione una descripción significativa para
cada información de usuario.

• Proporcione ejemplos cuando sea necesario.

Debe hacer esto especialmente cuando se
espera que la entrada del usuario esté en un
formato específico.

Las descripciones de entrada del usuario se
muestran como información sobre herramientas para
las entradas del usuario durante la ejecución del flujo
de trabajo.

Iniciadores que se van a agregar a un «'iGroup'». Por
ejemplo, IQN o WWPN del iniciador.

Escriba: Seleccione Enum como el tipo si desea
restringir la entrada a un conjunto específico de
valores.

Protocolo: «'iscsi», «'fcp», «mixta»

Tipo: Seleccione Query como tipo cuando el usuario
pueda seleccionar de entre los valores disponibles en
la caché de WFA.

$Array: Tipo DE CONSULTA con la siguiente
consulta:

SELECT

 ip, name

FROM

 storage.array

Tipo: Marque la entrada del usuario como bloqueada
cuando la entrada del usuario deba restringirse a los
valores que se obtienen de una consulta o estar
restringida sólo a los tipos de Enum admitidos.

$Array: Tipo de consulta bloqueado: Sólo se pueden
seleccionar las matrices de la caché.$Protocol: Tipo
de Enum bloqueado con valores válidos como iscsi,
fcp, mixto. No se admite ningún otro valor distinto del
válido.

30

Directrices Ejemplo

Tipo: Tipo de query Agregue columnas adicionales
como valores devueltos en la consulta cuando ayude
al operador de almacenamiento a elegir
correctamente la entrada del usuario.

$aggregate: Proporcione nombre, tamaño total y
tamaño disponible para que el operador conozca los
atributos antes de seleccionar el agregado.

Tipo: Consulta TypeSQL para entradas de usuario
puede hacer referencia a cualquier otra entrada de
usuario anterior. Esto puede utilizarse para limitar los
resultados de una consulta basada en otras entradas
de usuario, como unidades vFiler de una cabina,
volúmenes de un agregado o LUN de una máquina
virtual de almacenamiento (SVM).

En el flujo de trabajo de ejemplo Create a
Clustered Data ONTAP Volume, La consulta
para VserverName es la siguiente:

SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

La consulta hace referencia a ${ClusterName}, donde
$ClusterName es el nombre de la entrada de usuario
que precede a la entrada de usuario $VserverName.

Tipo: Utilice el tipo booleano con valores como "'true,
false'" para las entradas de usuario que son de
naturaleza booleana. Esto ayuda a escribir
expresiones internas en el diseño del flujo de trabajo
utilizando la entrada del usuario directamente. Por
ejemplo, $UserInputName en lugar de
$UserInputName == ''Yes'.

$CreateCIFSShare: Tipo booleano con valores
válidos como "'true'" o "'false'"

Tipo:para tipo de cadena y número, utilice
expresiones regulares en la columna valores cuando
desee validar el valor con formatos específicos.

Utilice expresiones regulares para las entradas de
dirección IP y máscara de red.

La entrada de usuario específica de la ubicación
puede expresarse como "'[A-Z][A-Z]\-0[1-9]'". Esta
información del usuario acepta valores como «'US-
01», «'NB-02», pero no «'nb-00».

Tipo: Para el tipo de número, se puede especificar
una validación basada en rango en la columna
valores.

Para el número de LUN que se van a crear, la
entrada en la columna valores es 1-20.

31

Directrices Ejemplo

Grupo: Agrupar las entradas de usuario relacionadas
en los cubos apropiados y nombrar al grupo.

«Información de almacenamiento» para todas las
entradas de los usuarios relacionadas con el
almacenamiento. «Detalles de datastore» para todas
las entradas de usuario relacionadas con VMware.

Obligatorio: Si el valor de cualquier entrada de
usuario es necesario para que el flujo de trabajo se
ejecute, marque la entrada de usuario como
obligatoria. Esto garantiza que la pantalla de entrada
del usuario acepte mandatorily esa entrada del
usuario.

«»$VolumeName» en el flujo de trabajo «'Create NFS
Volume».

Valor predeterminado: Si una entrada de usuario
tiene un valor predeterminado que puede funcionar
para la mayoría de las ejecuciones del flujo de
trabajo, proporcione los valores. Esto ayuda a permitir
al usuario proporcionar menos entradas durante la
ejecución, si el valor predeterminado cumple con el
propósito.

Ninguno

Constantes, variables y parámetros de retorno

Directrices Ejemplo

Constantes: Defina constantes cuando se utiliza un
valor común para definir parámetros en varios
comandos.

AGGREGATE_OVERPROMISO_THRESHOLD en
Create, map, and protect LUNs with

SnapVault sample workflow.

Constantes:nombres

• Utilice una letra mayúscula al principio de cada
palabra.

• Utilice letras mayúsculas para todos los términos
y abreviaturas.

• No utilice guiones bajos.

• Utilice letras mayúsculas para todas las letras de
nombres constantes.

AGGREGATE_USED_SPACE_THRESHOLD

ActualVolumeSizeInMB

Variables: Proporcione un nombre a un objeto
definido en uno de los cuadros de parámetros de
comando. Las variables se generan automáticamente
nombres y se pueden cambiar.

Ninguno

Variables: Los nombres utilizan caracteres en
minúscula para los nombres de variables.

volume1

recurso_compartido_cifs

32

Parámetros de retorno: Utilice parámetros de retorno
cuando la planificación y ejecución del flujo de trabajo
devuelva algunos valores calculados o seleccionados
durante la planificación. Los valores se ponen a
disposición en el modo de vista previa cuando el flujo
de trabajo se ejecuta también desde un servicio web.

Agregado: Si se selecciona el agregado mediante la
lógica de selección de recursos, el agregado
seleccionado real se puede definir como un
parámetro return.

Directrices para crear scripts de validación para tipos de sistema remoto

Debe tener en cuenta las directrices para crear scripts de validación que se utilicen para
probar los tipos de sistema remoto que defina en OnCommand Workflow Automation
(WFA).

• El script Perl que cree debe ser similar al script de ejemplo que se proporciona en la ventana Script de
validación.

• El resultado del script de validación debe ser similar al del script de muestra.

Ejemplo de script de validación

Check connectivity.

Return 1 on success.

Return 0 on failure and set $message

sub checkCredentials {

my ($host, $user, $passwd, $protocol, $port, $timeout) = @_;

#

Please add the code to check connectivity to $host using $protocol here.

#

return 1;

}

Directrices para crear tipos de origen de datos

Debe tener en cuenta las directrices para crear los tipos de origen de datos que se
utilizan para definir orígenes de datos personalizados para OnCommand Workflow
Automation (WFA).

Puede definir un tipo de origen de datos mediante uno de los siguientes métodos:

• SQL: Puede utilizar las directrices de WFA SQL para definir consultas seleccionadas de orígenes de datos
basadas en una base de datos externa.

• SCRIPT: Puede escribir una secuencia de comandos de PowerShell que proporcione los datos de un
esquema específico de entradas del diccionario.

Las directrices para crear tipos de origen de datos son las siguientes:

• Se debe utilizar el idioma de PowerShell para crear un script.

33

• El script de PowerShell debe proporcionar la salida de cada entrada de diccionario en su directorio de
trabajo actual.

• Se debe dar nombre a los archivos de datos dictionary_entry.csv, donde el nombre de la entrada
del diccionario debe tener caracteres en minúsculas.

El tipo de origen de datos predefinido que recopila información de Performance Advisor utiliza un tipo de
origen de datos basado en SCRIPTS. Se denomina a los archivos de salida array_performance.csv
y.. aggregate_performance.csv.

• La .csv el archivo debe incluir el contenido en el orden exacto de los atributos de entrada del diccionario.

Una entrada de diccionario incluye atributos en el siguiente orden: Array_ip, date, day, hour, cpu_busy,
total_ops_por_seg, disk_throughput_per_s.

El script de PowerShell añade datos al .csv archivar en el mismo orden.

$values = get-Array-CounterValueString ([REF]$data)

Add-Content $arrayFile ([byte[]][char[]] "\N

t$arrayIP't$date't$day't$hour't$values'n")

• Debe utilizar codificación para asegurarse de que la salida de datos del script se carga en la caché de
WFA de forma precisa.

• Debe utilizar \N al introducir un valor Null en .csv archivo.

34

Información de copyright

Copyright © 2025 NetApp, Inc. Todos los derechos reservados. Imprimido en EE. UU. No se puede reproducir
este documento protegido por copyright ni parte del mismo de ninguna forma ni por ningún medio (gráfico,
electrónico o mecánico, incluidas fotocopias, grabaciones o almacenamiento en un sistema de recuperación
electrónico) sin la autorización previa y por escrito del propietario del copyright.

El software derivado del material de NetApp con copyright está sujeto a la siguiente licencia y exención de
responsabilidad:

ESTE SOFTWARE LO PROPORCIONA NETAPP «TAL CUAL» Y SIN NINGUNA GARANTÍA EXPRESA O
IMPLÍCITA, INCLUYENDO, SIN LIMITAR, LAS GARANTÍAS IMPLÍCITAS DE COMERCIALIZACIÓN O
IDONEIDAD PARA UN FIN CONCRETO, CUYA RESPONSABILIDAD QUEDA EXIMIDA POR EL PRESENTE
DOCUMENTO. EN NINGÚN CASO NETAPP SERÁ RESPONSABLE DE NINGÚN DAÑO DIRECTO,
INDIRECTO, ESPECIAL, EJEMPLAR O RESULTANTE (INCLUYENDO, ENTRE OTROS, LA OBTENCIÓN
DE BIENES O SERVICIOS SUSTITUTIVOS, PÉRDIDA DE USO, DE DATOS O DE BENEFICIOS, O
INTERRUPCIÓN DE LA ACTIVIDAD EMPRESARIAL) CUALQUIERA SEA EL MODO EN EL QUE SE
PRODUJERON Y LA TEORÍA DE RESPONSABILIDAD QUE SE APLIQUE, YA SEA EN CONTRATO,
RESPONSABILIDAD OBJETIVA O AGRAVIO (INCLUIDA LA NEGLIGENCIA U OTRO TIPO), QUE SURJAN
DE ALGÚN MODO DEL USO DE ESTE SOFTWARE, INCLUSO SI HUBIEREN SIDO ADVERTIDOS DE LA
POSIBILIDAD DE TALES DAÑOS.

NetApp se reserva el derecho de modificar cualquiera de los productos aquí descritos en cualquier momento y
sin aviso previo. NetApp no asume ningún tipo de responsabilidad que surja del uso de los productos aquí
descritos, excepto aquello expresamente acordado por escrito por parte de NetApp. El uso o adquisición de
este producto no lleva implícita ninguna licencia con derechos de patente, de marcas comerciales o cualquier
otro derecho de propiedad intelectual de NetApp.

Es posible que el producto que se describe en este manual esté protegido por una o más patentes de EE.
UU., patentes extranjeras o solicitudes pendientes.

LEYENDA DE DERECHOS LIMITADOS: el uso, la copia o la divulgación por parte del gobierno están sujetos
a las restricciones establecidas en el subpárrafo (b)(3) de los derechos de datos técnicos y productos no
comerciales de DFARS 252.227-7013 (FEB de 2014) y FAR 52.227-19 (DIC de 2007).

Los datos aquí contenidos pertenecen a un producto comercial o servicio comercial (como se define en FAR
2.101) y son propiedad de NetApp, Inc. Todos los datos técnicos y el software informático de NetApp que se
proporcionan en este Acuerdo tienen una naturaleza comercial y se han desarrollado exclusivamente con
fondos privados. El Gobierno de EE. UU. tiene una licencia limitada, irrevocable, no exclusiva, no transferible,
no sublicenciable y de alcance mundial para utilizar los Datos en relación con el contrato del Gobierno de los
Estados Unidos bajo el cual se proporcionaron los Datos. Excepto que aquí se disponga lo contrario, los Datos
no se pueden utilizar, desvelar, reproducir, modificar, interpretar o mostrar sin la previa aprobación por escrito
de NetApp, Inc. Los derechos de licencia del Gobierno de los Estados Unidos de América y su Departamento
de Defensa se limitan a los derechos identificados en la cláusula 252.227-7015(b) de la sección DFARS (FEB
de 2014).

Información de la marca comercial

NETAPP, el logotipo de NETAPP y las marcas que constan en http://www.netapp.com/TM son marcas
comerciales de NetApp, Inc. El resto de nombres de empresa y de producto pueden ser marcas comerciales
de sus respectivos propietarios.

35

http://www.netapp.com/TM

	Directrices de codificación para WFA : OnCommand Workflow Automation
	Tabla de contenidos
	Directrices de codificación para WFA
	Pautas para las variables
	Variables de PowerShell
	Variables Perl

	Directrices para indentación
	Directrices para comentarios
	Comentarios sobre PowerShell
	Comentarios Perl

	Directrices para el registro
	Registro de PowerShell
	Registro Perl

	Directrices para la gestión de errores
	Gestión de errores de PowerShell
	Gestión de errores Perl

	PowerShell general y convenciones Perl para WFA
	Módulos Perl con Windows

	Consideraciones sobre la adición de PowerShell y módulos Perl personalizados
	Cmdlets y funciones DE WFA
	Módulos de WFA PowerShell y Perl
	Módulos de PowerShell
	Módulos Perl

	Consideraciones que tener en cuenta al convertir comandos de PowerShell en Perl
	Tipos de entrada de comandos
	Declaración de PowerShell
	Instrucción Perl
	Definición de comandos

	Directrices para los elementos básicos de WFA
	Directrices para SQL en WFA
	Directrices para las funciones de WFA
	Directrices para las entradas del diccionario WFA
	Directrices para comandos
	Directrices para flujos de trabajo
	Directrices para crear scripts de validación para tipos de sistema remoto
	Directrices para crear tipos de origen de datos

