
BeeGFS sur NetApp avec E-Series Storage
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/fr-fr/beegfs/index.html on January 27, 2026.
Always check docs.netapp.com for the latest.

Sommaire
BeeGFS sur NetApp avec E-Series Storage . 1

Commencez . 2

Ce qui est inclus dans ce site. 2

Termes et concepts . 2

Utilisez des architectures vérifiées . 4

Présentation et configuration requise. 4

Présentation de la solution. 4

Présentation de l’architecture. 5

Exigences techniques . 9

Examen du design de la solution . 12

Présentation du design . 13

Configuration matérielle . 13

Configuration logicielle . 15

Vérification de la conception . 22

Instructions de dimensionnement . 28

Réglage des performances . 29

Élément de base haute capacité . 31

Déploiement de la solution. 32

Présentation du déploiement . 32

Découvrez l’inventaire Ansible . 33

Passez en revue les bonnes pratiques . 36

Déployez le matériel. 39

Déployez des logiciels . 43

Faites évoluer votre infrastructure au-delà de cinq éléments de base . 81

Pourcentages de surprovisionnement recommandés pour le pool de stockage . 82

Élément de base haute capacité . 82

Utiliser des architectures personnalisées. 85

Présentation et configuration requise. 85

Introduction . 85

Présentation du déploiement . 85

De formation. 86

Configuration initiale. 86

Installez et fixez les câbles. 86

Configurez les nœuds de fichier et de bloc . 90

Configurez le nœud de contrôle Ansible . 91

Définissez le système de fichiers BeeGFS . 92

Présentation d’Ansible Inventory . 92

Planifiez le système de fichiers . 93

Définir les nœuds de fichier et de bloc. 94

Définir les services BeeGFS . 112

Mapper les services BeeGFS sur les nœuds de fichiers . 118

Déployez le système de fichiers BeeGFS . 119

Présentation du PlayBook Ansible . 119

Déployez le cluster BeeGFS HA . 120

Déploiement de clients BeeGFS . 124

Vérifier le déploiement BeeGFS . 129

Déploiement des fonctionnalités et des intégrations . 131

Pilote BeeGFS CSI . 131

Configurer le chiffrement TLS pour BeeGFS v8 . 131

Présentation . 131

Utilisation d’une autorité de certification de confiance . 131

Création d’une autorité de certification locale . 132

Désactivation de TLS . 137

Gérer des clusters BeeGFS . 139

Présentation, concepts clés et terminologie. 139

Présentation . 139

Concepts clés. 139

Terminologie commune . 140

Quand utiliser Ansible contre l’outil pcs . 140

Vérifiez l’état du cluster . 141

Présentation . 141

Présentation de la sortie de pcs status. 141

Reconfigurer le cluster HA et BeeGFS. 142

Présentation . 142

Comment désactiver et activer la fonction de fencing . 142

Mettez à jour les composants du cluster HA . 143

Mise à niveau des services BeeGFS . 143

Mise à jour vers BeeGFS v8 . 146

Mise à niveau des packages Pacemaker et Corosync dans un cluster haute disponibilité. 157

Mettez à jour le micrologiciel de l’adaptateur de nœud de fichier . 160

Mettez à niveau la baie de stockage E-Series. 165

Entretien et maintenance . 167

Services de basculement/rétablissement . 167

Placer le cluster en mode maintenance. 169

Arrêtez et démarrez le cluster . 170

Remplacer les nœuds de fichiers . 171

Développez ou réduisez le cluster . 172

Résoudre les problèmes . 174

Présentation . 174

Guides de dépannage . 174

Problèmes courants . 178

Tâches courantes de dépannage . 179

Mentions légales . 181

Droits d’auteur . 181

Marques déposées. 181

Brevets . 181

Politique de confidentialité . 181

Source ouverte. 181

BeeGFS sur NetApp avec E-Series Storage

1

Commencez

Ce qui est inclus dans ce site

Ce site explique comment déployer et gérer BeeGFS sur NetApp à la fois sur les
architectures vérifiées NetApp (NVA) et sur les architectures personnalisées. Les designs
NVA sont minutieusement testés et fournissent aux clients des configurations de
référence et des conseils de dimensionnement afin de réduire les risques de déploiement
et d’accélérer la mise sur le marché. NetApp prend également en charge les
architectures BeeGFS sous forme de matériel NetApp, ce qui offre à vos clients et
partenaires la flexibilité nécessaire à la conception de systèmes de fichiers pour répondre
à un large éventail d’exigences. Ces deux approches exploitent Ansible pour le
déploiement, et offrent une approche de type appliance pour gérer BeeGFS à n’importe
quelle échelle sur un éventail flexible de matériel.

Termes et concepts

Les termes et concepts suivants s’appliquent à la solution BeeGFS sur NetApp.

Pour "Administrer les clusters BeeGFS"plus d’informations sur les termes et concepts propres à
l’interaction avec les clusters haute disponibilité BeeGFS, reportez-vous à la section.

Durée Description

L’IA L’intelligence artificielle.

Nœud de contrôle Ansible Machine physique ou virtuelle utilisée pour exécuter l’interface de ligne de
commande Ansible.

Inventaire Ansible Structure de répertoire contenant les fichiers YAML qui sont utilisés pour décrire
le cluster BeeGFS HA souhaité.

BMC Contrôleur de gestion de la carte mère. Parfois appelé processeur de service.

Blocs de nœuds NetApp E-Series

Clients Nœuds du cluster HPC exécutant des applications qui doivent utiliser le système
de fichiers. Parfois également appelé nœuds de calcul ou nœuds GPU.

DL Apprentissage profond.

nœuds de fichiers Serveurs de fichiers BeeGFS.

HAUTE DISPONIBILITÉ Haute disponibilité.

2

Durée Description

HIC Carte d’interface hôte.

HPC Informatique hautes performances.

Les workloads de type
HPC

Les charges de travail de type HPC se caractérisent généralement par plusieurs
nœuds de calcul ou GPU nécessitant l’accès au même dataset en parallèle pour
faciliter une tâche de calcul ou d’entraînement distribuée. Ces jeux de données
comprennent souvent des fichiers volumineux qui doivent être répartis sur
plusieurs nœuds de stockage physique, afin d’éliminer les goulets d’étranglement
matériels traditionnels qui empêchent l’accès simultané à un seul fichier.

ML Apprentissage machine.

NLP Traitement du langage naturel.

NLU Compréhension du langage naturel.

NVA Le programme NetApp Verified Architecture (NVA) propose des configurations de
référence et des conseils de dimensionnement pour des charges de travail et des
cas d’utilisation spécifiques. Ces solutions sont testées en profondeur, conçues
pour réduire les risques de déploiement et accélérer le délai de mise sur le
marché.

réseau de
stockage/réseau client

Réseau utilisé pour les clients pour communiquer avec le système de fichiers
BeeGFS. Il s’agit souvent du même réseau utilisé pour l’interface MPI (Parallel
message Passing interface) et d’autres communications d’applications entre les
nœuds de cluster HPC.

3

Utilisez des architectures vérifiées

Présentation et configuration requise

Présentation de la solution

La solution BeeGFS sur NetApp associe le système de fichiers parallèle BeeGFS aux
systèmes de stockage NetApp EF600 à une infrastructure fiable, évolutive et économique
qui s’adapte aux besoins des workloads les plus exigeants.

Programme NVA

La solution BeeGFS sur NetApp fait partie du programme NVA (NetApp Verified Architecture), qui fournit aux
clients des configurations de référence et des conseils de dimensionnement pour des workloads et des cas
d’utilisation spécifiques. Les solutions NVA sont minutieusement testées et conçues pour réduire les risques de
déploiement et accélérer le délai de mise sur le marché.

Présentation de la conception

La solution BeeGFS sur NetApp est une architecture modulaire qui peut être configurée pour de nombreux
workloads exigeants. Que ce soit pour gérer de nombreux fichiers de petite taille, des opérations de fichiers
volumineux ou une charge de travail hybride, le système de fichiers peut être personnalisé pour répondre à
ces besoins. Grâce à une structure matérielle à deux niveaux, la haute disponibilité est intégrée. Elle permet
un basculement indépendant sur plusieurs couches matérielles et garantit des performances prévisibles,
même en cas de dégradation partielle du système. Le système de fichiers BeeGFS permet de créer un
environnement haute performance et évolutif sur différentes distributions Linux. Il offre aux clients un seul
namespace de stockage facilement accessible. Pour en savoir plus, consultez le "présentation de
l’architecture".

Cas d’utilisation

Les utilisations suivantes s’appliquent à la solution BeeGFS sur NetApp :

• Systèmes NVIDIA DGX SuperPOD équipés de DGX avec DGX A100, H100, H200 et B200 GPU.

• L’intelligence artificielle (IA), comprenant le machine learning (ML), le deep learning (DL), le traitement du
langage naturel à grande échelle (NLP) et la compréhension du langage naturel (NLU). Pour plus
d’informations, voir "BeeGFS pour l’IA : faits plutôt que fiction".

• Informatique hautes performances (HPC), y compris les applications accélérées par MPI (interface de
transmission de messages) et d’autres techniques informatiques distribuées. Pour plus d’informations, voir
"Pourquoi BeeGFS va bien au-delà de l’HPC".

• Charges de travail applicatives caractérisées par :

◦ Lecture ou écriture dans des fichiers supérieurs à 1 Go

◦ Lecture ou écriture dans le même fichier par plusieurs clients (dizaines, centaines et milliers)

• Jeux de données de plusieurs téraoctets ou de plusieurs pétaoctets.

• Environnements qui nécessitent un seul espace de noms de stockage optimal pour un mélange de fichiers
de petite ou de grande taille.

4

https://www.netapp.com/blog/beefs-for-ai-fact-vs-fiction/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/

Avantages

Voici les principaux avantages de BeeGFS sur NetApp :

• La disponibilité de conceptions matérielles vérifiées permet l’intégration complète des composants
matériels et logiciels pour assurer des performances prévisibles et une fiabilité optimale.

• Déploiement et gestion avec Ansible pour une simplicité et une cohérence à grande échelle.

• Contrôle et observabilité fournis avec l’analyseur de performance E-Series et le plug-in BeeGFS. Pour plus
d’informations, voir "Présentation d’un cadre de surveillance des solutions NetApp E-Series".

• Haute disponibilité dotée d’une architecture de disques partagés qui assure la durabilité et la disponibilité
des données.

• Prise en charge des fonctionnalités modernes de gestion et d’orchestration des workloads à l’aide de
conteneurs et de Kubernetes. Pour plus d’informations, voir "Kubernetes et BeeGFS : un récit
d’investissement pérenne".

Présentation de l’architecture

La solution BeeGFS sur NetApp inclut des critères de conception architecturale qui
permettent de déterminer l’équipement, le câblage et les configurations qui sont requis
pour prendre en charge les workloads validés.

Architecture modulaire

Le système de fichiers BeeGFS peut être déployé et adapté de différentes manières, en fonction des besoins
en stockage. Par exemple, certains cas d’utilisation mettant en avant de nombreux fichiers de petite taille
bénéficieront d’une performance et d’une capacité supplémentaires de métadonnées, tandis que les cas
d’utilisation comportant moins de fichiers volumineux peuvent favoriser une capacité de stockage et des
performances supérieures pour le contenu réel des fichiers. Ces considérations ont un impact sur les
différentes dimensions du déploiement d’un système de fichiers parallèle, ce qui ajoute de la complexité à la
conception et au déploiement d’un système de fichiers.

En réponse à ces défis, NetApp a conçu une architecture d’éléments de base standard qui permet une
évolutivité horizontale de chaque catégorie. De façon générale, les éléments de base BeeGFS sont déployés
dans l’un des trois profils de configuration suivants :

• Un élément de base unique, incluant la gestion BeeGFS, les métadonnées et les services de stockage

• Des métadonnées BeeGFS plus un élément de base du stockage

• Un élément de base de stockage BeeGFS uniquement

Le seul changement matériel entre ces trois options est l’utilisation de lecteurs plus petits pour les
métadonnées BeeGFS. Dans le cas contraire, toutes les modifications de configuration sont appliquées via le
logiciel. En outre, avec Ansible comme moteur de déploiement, la configuration du profil souhaité pour un
élément de base particulier simplifie les tâches de configuration.

Pour plus de détails, voir Conception matérielle vérifiée.

Services de système de fichiers

Le système de fichiers BeeGFS inclut les principaux services suivants :

• Service de gestion. registres et contrôle tous les autres services.

5

https://www.netapp.com/blog/monitoring-netapp-eseries/
https://www.netapp.com/blog/kubernetes-meet-beegfs/
https://www.netapp.com/blog/kubernetes-meet-beegfs/

• Service de stockage. stocke le contenu des fichiers d’utilisateur distribués appelé fichiers de bloc de
données.

• Service de métadonnées. assure le suivi de la disposition du système de fichiers, du répertoire, des
attributs de fichier, etc.

• Service client. monte le système de fichiers pour accéder aux données stockées.

La figure suivante présente les composants et les relations de la solution BeeGFS utilisés avec les systèmes
NetApp E-Series.

En tant que système de fichiers parallèle, BeeGFS répartit ses fichiers sur plusieurs nœuds de serveur afin de
maximiser les performances en lecture/écriture et l’évolutivité. Les nœuds de serveur fonctionnent ensemble
pour fournir un système de fichiers unique pouvant être monté et accessible simultanément par d’autres
nœuds de serveur, communément appelés clients. Ces clients peuvent voir et consommer le système de
fichiers distribué de la même manière qu’un système de fichiers local tel que NTFS, XFS ou ext4.

Les quatre services principaux fonctionnent sur un large éventail de distributions Linux prises en charge et
communiquent via n’importe quel réseau compatible TCP/IP ou RDMA, y compris InfiniBand (IB), Omni-Path
(OPA) et RDMA over Converged Ethernet (RoCE). Les services de serveur BeeGFS (gestion, stockage et
métadonnées) sont des démons d’espace utilisateur, alors que le client est un module de noyau natif (sans
patchless). Tous les composants peuvent être installés ou mis à jour sans redémarrage. Vous pouvez en outre
exécuter n’importe quelle combinaison de services sur le même nœud.

Architecture HAUTE DISPONIBILITÉ

BeeGFS sur NetApp étend les fonctionnalités de la version BeeGFS Enterprise en créant une solution
entièrement intégrée avec du matériel NetApp qui offre une architecture haute disponibilité (HA) de disque
partagé.

6

L’édition communautaire BeeGFS peut être utilisée gratuitement. Cependant, l’édition entreprise
exige l’achat d’un contrat d’abonnement de support professionnel auprès d’un partenaire
comme NetApp. L’édition entreprise permet d’utiliser plusieurs fonctions supplémentaires,
notamment la résilience, l’application de quotas et les pools de stockage.

La figure suivante compare les architectures haute disponibilité sans partage et à disque partagé.

Pour plus d’informations, voir "Annonce de la haute disponibilité pour BeeGFS prise en charge par NetApp".

Nœuds vérifiés

La solution BeeGFS sur NetApp a vérifié les nœuds répertoriés ci-dessous.

Nœud Sous-jacent Détails

Bloc Système de
stockage EF600 de
NetApp

Une baie de stockage 2U 100 % NVMe haute performance conçue pour les
workloads exigeants

Fichier Serveur Lenovo
ThinkSystem SR665
V3

Serveur 2U à deux sockets avec PCIe 5.0, deux processeurs AMD EPYC
9124. Pour plus d’informations sur le Lenovo SR665 V3, reportez-vous à la
section "Site Web de Lenovo".

Serveur Lenovo
ThinkSystem SR665

Serveur 2U à deux sockets avec PCIe 4.0, deux processeurs AMD EPYC
7003. Pour plus d’informations sur le Lenovo SR665, reportez-vous à la
section "Site Web de Lenovo".

Conception matérielle vérifiée

Les éléments de base de la solution (illustrés dans la figure suivante) utilisent les serveurs de nœuds de
fichiers vérifiés pour la couche de fichiers BeeGFS et deux systèmes de stockage EF600 comme couche bloc.

7

https://www.netapp.com/blog/high-availability-beegfs/
https://lenovopress.lenovo.com/lp1608-thinksystem-sr665-v3-server
https://lenovopress.lenovo.com/lp1269-thinksystem-sr665-server

La solution BeeGFS sur NetApp s’exécute sur tous les éléments de base du déploiement. Le premier élément
de base déployé doit exécuter les services de gestion, de métadonnées et de stockage BeeGFS (également
appelés éléments de base). Tous les éléments de base suivants peuvent être configurés via le logiciel pour
étendre les métadonnées et les services de stockage, ou pour fournir des services de stockage exclusivement.
Cette approche modulaire permet de faire évoluer le système de fichiers en fonction des besoins d’une charge
de travail, tout en utilisant les mêmes plateformes matérielles sous-jacentes et la même conception d’éléments
de base.

Il est possible de déployer jusqu’à cinq éléments de base pour former un cluster Linux HA autonome. Cela
optimise la gestion des ressources avec Pacemaker et maintient une synchronisation efficace avec Corosync.
Un ou plusieurs de ces clusters haute disponibilité BeeGFS autonomes sont combinés pour créer un système
de fichiers BeeGFS accessible aux clients comme un seul namespace de stockage. Côté matériel, un seul
rack 42U peut accueillir jusqu’à cinq éléments de base, ainsi que deux commutateurs InfiniBand 1U pour le
réseau de stockage/données. Voir le graphique ci-dessous pour une représentation visuelle.

Un minimum de deux éléments de base est requis pour établir le quorum dans le cluster de
basculement. Un cluster à deux nœuds présente des limites qui peuvent empêcher un
basculement réussi. Vous pouvez configurer un cluster à deux nœuds en incorporant un
troisième périphérique comme disjoncteur d’attache ; cependant, cette documentation ne décrit
pas cette conception.

8

Ansible

BeeGFS sur NetApp est fourni et déployé à l’aide d’Ansible Automation, qui est hébergé sur GitHub et Ansible
Galaxy (la collection BeeGFS est disponible sur "Galaxy Ansible" et "NetApp E-Series GitHub"). Bien
qu’Ansible soit principalement testé avec le matériel utilisé pour assembler les éléments de base BeeGFS,
vous pouvez le configurer de sorte qu’il s’exécute sur presque tous les serveurs x86 à l’aide d’une distribution
Linux prise en charge.

Pour plus d’informations, voir "Déploiement de BeeGFS avec E-Series Storage".

Exigences techniques

Pour implémenter la solution BeeGFS sur NetApp, assurez-vous que votre
environnement répond aux exigences technologiques indiquées dans ce document.

9

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/netappeseries/beegfs/
https://www.netapp.com/blog/deploying-beegfs-eseries/

Configuration matérielle requise

Avant de commencer, assurez-vous que votre matériel répond aux spécifications suivantes pour un design
modulaire deuxième génération de la solution BeeGFS sur NetApp. Les composants exacts d’un déploiement
particulier peuvent varier en fonction des besoins du client.

Quantité Composant
matériel

De formation

2 Nœuds de fichiers
BeeGFS

Pour atteindre les performances attendues, chaque nœud de fichier doit
satisfaire ou dépasser les spécifications des nœuds de fichiers
recommandés.

Options de noeud de fichier recommandées :

• Lenovo ThinkSystem SR665 V3

◦ Processeurs: 2x AMD EPYC 9124 16C 3.0 GHz (configurés
comme deux zones NUMA).

◦ Mémoire : 256 Go (16 x 16 Go TruDDR5 4800 MHz RDIMM-A)

◦ Extension PCIe : quatre emplacements PCIe Gen5 x16 (deux par
zone NUMA)

◦ Divers:

▪ Deux disques en RAID 1 pour le système d’exploitation (1 To
7200 tr/min SATA)

▪ Port 1 GbE pour la gestion du système d’exploitation intrabande

▪ BMC 1GbE avec API Redfish pour la gestion des serveurs hors
bande

▪ Deux blocs d’alimentation remplaçables à chaud et ventilateurs
haute performance

2 Nœuds de bloc E-
Series (baie EF600)

Mémoire : 256 Go (128 Go par contrôleur). Adaptateur : 2 ports 200
Go/HDR (NVMe/IB). Lecteurs : configurés pour correspondre aux
métadonnées et à la capacité de stockage souhaitées.

8 Adaptateurs de carte
hôte InfiniBand (pour
les nœuds de
fichiers).

Les adaptateurs de carte hôte peuvent varier en fonction du modèle de
serveur du nœud de fichier. Recommandations pour les nœuds de fichiers
vérifiés :

• Lenovo ThinkSystem SR665 V3 Server:

◦ MCX755106AS-HEAT ConnectX-7, NDR200, QSFP112, 2 ports,
PCIe Gen5 x16, adaptateur InfiniBand

1 Switch réseau de
stockage

Le commutateur du réseau de stockage doit offrir une vitesse InfiniBand 200
Gbit/s. Modèles de commutateurs recommandés :

• Commutateur NVIDIA QM9700 Quantum 2 NDR InfiniBand

• Commutateur NVIDIA MQM8700 Quantum HDR InfiniBand

10

Exigences de câblage

Connexions directes des nœuds de bloc aux nœuds de fichier.

Quantité Référence Longueur

8 MCP1650-H001E30 (câble en cuivre passif NVIDIA, QSFP56, 200 Gbit/s) 1 m

Connexions entre les nœuds de fichiers et le commutateur de réseau de stockage. Sélectionnez l’option
de câble appropriée dans le tableau suivant en fonction de votre commutateur de stockage InfiniBand. + la
longueur de câble recommandée est de 2 M. toutefois, elle peut varier en fonction de l’environnement du
client.

Changer de modèle Type de câble Quantité Référence

NVIDIA QM9700 Fibre active
(émetteurs-
récepteurs
inclus)

2 MMA4Z00-NS (multimode, IB/ETH, 800 Go/s 2x400 Go/s
double port OSFP)

4 MFP7E20-Nxxx (multimode, câble fibre de séparation 4
canaux à deux canaux)

8 MMA1Z00-NS400 (multimode, IB/ETH, 400 Go/s, QSFP-
112 à port unique)

Cuivre passif 2 MCP7Y40-N002 (câble répartiteur en cuivre passif NVIDIA,
InfiniBand 800 Go/s à 4 200 Go/s, OSFP à 4 x QSFP112)

NVIDIA MQM8700 Fibre active 8 MFS1S00-H003E (câble fibre active NVIDIA, InfiniBand 200
Gbit/s, QSFP56)

Cuivre passif 8 MCP1650-H002E26 (câble en cuivre passif NVIDIA,
InfiniBand 200 Gbit/s, QSFP56)

Configuration logicielle et firmware requise

Pour assurer des performances et une fiabilité prévisibles, les versions de la solution BeeGFS sur NetApp sont
testées avec des versions spécifiques des composants logiciels et de firmware. Ces versions sont requises
pour l’implémentation de la solution.

Configuration requise pour les nœuds de fichiers

Logiciel Version

Red Hat Enterprise
Linux (RHEL)

Serveur physique RHEL 9.4 avec haute disponibilité (2 sockets). Remarque : les
nœuds de fichiers nécessitent un abonnement Red Hat Enterprise Linux Server valide
et le module complémentaire Red Hat Enterprise Linux High Availability.

Noyau Linux 5.14.0-427.42.1.el9_4.x86_64

Micrologiciel HCA Micrologiciel ConnectX-7 HCA Micrologiciel : 28.45.1200 + PXE : 3.7.0500 + UEFI :
14.38.0016

Micrologiciel ConnectX-6 HCA Micrologiciel : 20.43.2566 + PXE : 3.7.0500 + UEFI :
14.37.0013

11

Exigences liées aux nœuds en mode bloc EF600

Logiciel Version

SANtricity OS 11.90R3

NVSRAM N6000-890834-D02.dlp

Micrologiciel de
lecteur

Dernière version disponible pour les modèles de lecteurs utilisés. Voir la "Site du
firmware du disque E-Series".

Configuration requise pour le déploiement de logiciels

Le tableau suivant répertorie les exigences logicielles déployées automatiquement dans le cadre du
déploiement BeeGFS basé sur Ansible.

Logiciel Version

BeeGFS 7.4.6

Corosync 3.1.8-1

Stimulateur
cardiaque

2.1.7-5,2

PCS 0.11.7-2

Agents de clôture
(sébaste/apc)

4.10.0-62

Pilotes InfiniBand /
RDMA

MLNX_OFED_LINUX-23.10-3.2.2.1-LTS

Configuration requise pour le nœud de contrôle Ansible

La solution BeeGFS sur NetApp est déployée et gérée à partir d’un nœud de contrôle Ansible. Pour plus
d’informations, reportez-vous à la section "Documentation Ansible".

Les exigences logicielles répertoriées dans les tableaux suivants sont spécifiques à la version de la collection
NetApp BeeGFS Ansible indiquée ci-dessous.

Logiciel Version

Ansible 10.x

Cœur Ansible >= 2.13.0

Python 3,10

Packs Python supplémentaires Cryptographie-43.0.0, netaddr-1.3.0, ipaddr-2.2.0

Collection Ansible NetApp E-
Series BeeGFS

3.2.0

Examen du design de la solution

12

https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html

Présentation du design

Pour prendre en charge la solution BeeGFS sur NetApp, qui associe le système de
fichiers parallèle BeeGFS et les systèmes de stockage NetApp EF600, vous devez
utiliser un équipement, un câblage et des configurations spécifiques.

En savoir plus :

• "Configuration matérielle"

• "Configuration logicielle"

• "Vérification de la conception"

• "Instructions de dimensionnement"

• "Réglage des performances"

Architectures dérivées avec des variations de conception et de performances :

• "Élément de base haute capacité"

Configuration matérielle

La configuration matérielle de BeeGFS sur NetApp inclut des nœuds de fichiers et le
câblage réseau.

Configuration de nœud de fichiers

Les nœuds de fichiers ont deux sockets de CPU configurés en zones NUMA distinctes, qui incluent un accès
local à un nombre égal de slots PCIe et de mémoire.

Les adaptateurs InfiniBand doivent être placés dans les connecteurs ou les cartes de montage PCI appropriés,
de sorte que la charge de travail soit équilibrée sur les voies PCIe et les canaux de mémoire disponibles. Pour
équilibrer la charge de travail, vous pouvez isoler intégralement le travail des services BeeGFS vers un nœud
NUMA particulier. L’objectif est d’atteindre les mêmes performances pour chaque nœud de fichiers que s’il
s’agissait de deux serveurs à socket unique indépendants.

La figure suivante montre la configuration NUMA du nœud de fichiers.

13

Les processus BeeGFS sont épinglés à une zone NUMA particulière pour s’assurer que les interfaces utilisées
se trouvent dans la même zone. Cette configuration évite d’avoir besoin d’un accès à distance via la connexion
inter-socket. La connexion inter-sockets est parfois appelée liaison QPI ou GMI2 ; même dans les
architectures de processeurs modernes, ils peuvent être un goulot d’étranglement lors de l’utilisation de
réseaux haut débit comme HDR InfiniBand.

Configuration des câbles réseau

Dans un élément de base, chaque nœud de fichier est connecté à deux nœuds de bloc grâce à quatre
connexions InfiniBand redondantes. En outre, chaque nœud de fichiers dispose de quatre connexions
redondantes au réseau de stockage InfiniBand.

Dans la figure suivante, notez que :

• Tous les ports de nœuds de fichiers indiqués en vert sont utilisés pour la connexion au maillage Storage
Fabric ; tous les autres ports de nœuds de fichiers sont les connexions directes aux nœuds de blocs.

• Deux ports InfiniBand d’une zone NUMA spécifique se connectent aux contrôleurs A et B du même nœud
de bloc.

• Les ports du nœud NUMA 0 se connectent toujours au premier nœud de bloc.

• Les ports du nœud NUMA 1 se connectent au second nœud de bloc.

Lors de l’utilisation de câbles de séparation pour connecter le commutateur de stockage aux
nœuds de fichiers, un câble doit se brancher et se connecter aux ports indiqués en vert clair. Un
autre câble doit se brancher et se connecter aux ports indiqués en vert foncé. En outre, pour les
réseaux de stockage avec commutateurs redondants, les ports indiqués en vert clair doivent se
connecter à un commutateur, tandis que les ports en vert foncé doivent se connecter à un autre
commutateur.

La configuration de câblage illustrée dans la figure permet à chaque service BeeGFS de :

• Exécuter dans la même zone NUMA, quel que soit le nœud de fichier qui exécute le service BeeGFS.

• Disposer de chemins optimaux secondaires au réseau de stockage frontal et aux nœuds de blocs internes,
quel que soit l’endroit où une défaillance se produit

• Réduisez l’impact sur la performance si un nœud de fichiers ou un contrôleur d’un nœud de blocs
nécessite une maintenance.

Câblage pour exploiter la bande passante

Pour exploiter la bande passante bidirectionnelle PCIe complète, vérifiez que un port de chaque adaptateur
InfiniBand se connecte à la structure de stockage, et que l’autre port est connecté à un nœud de bloc.

14

La figure suivante montre la conception de câblage utilisée pour exploiter la bande passante bidirectionnelle
PCIe complète.

Pour chaque service BeeGFS, utilisez la même carte pour connecter le port préféré utilisé pour le trafic client
avec le chemin vers le contrôleur de nœuds de bloc qui est le principal propriétaire de ces volumes de
services. Pour plus d’informations, voir "Configuration logicielle".

Configuration logicielle

La configuration logicielle de BeeGFS sur NetApp inclut des composants réseau
BeeGFS, des nœuds de bloc EF600, des nœuds de fichiers BeeGFS, des groupes de
ressources et des services BeeGFS.

Configuration réseau BeeGFS

La configuration du réseau BeeGFS comprend les composants suivants.

• IP flottantes les adresses IP flottantes sont un type d’adresse IP virtuelle qui peut être routée

15

dynamiquement vers n’importe quel serveur du même réseau. Plusieurs serveurs peuvent posséder la
même adresse IP flottante, mais elle ne peut être active que sur un seul serveur à la fois.

Chaque service de serveur BeeGFS possède sa propre adresse IP qui peut se déplacer entre les nœuds
de fichiers en fonction de l’emplacement d’exécution du service de serveur BeeGFS. Cette configuration IP
flottante permet à chaque service de basculer indépendamment vers l’autre nœud de fichiers. Le client a
simplement besoin de connaître l’adresse IP d’un service BeeGFS particulier; il n’est pas nécessaire de
savoir quel nœud de fichier exécute actuellement ce service.

• Configuration multi-homing du serveur BeeGFS pour augmenter la densité de la solution, chaque
nœud de fichiers a plusieurs interfaces de stockage avec des adresses IP configurées dans le même
sous-réseau IP.

Des configurations supplémentaires sont nécessaires pour s’assurer que cette configuration fonctionne
comme prévu avec la pile réseau Linux, car par défaut, les requêtes à une interface peuvent être traitées
sur une autre interface si leurs adresses IP se trouvent dans le même sous-réseau. Outre d’autres
inconvénients, ce comportement par défaut rend impossible l’établissement ou la maintenance des
connexions RDMA.

Le déploiement Ansible gère le serrage du comportement de la RP (reverse path) et du protocole ARP
(Address Resolution Protocol), ainsi que la vérification du démarrage et de l’arrêt d’adresses IP flottantes ;
les routes et règles IP correspondantes sont créées dynamiquement pour permettre à la configuration
réseau multihomée de fonctionner correctement.

• La configuration multirail du client BeeGFS Multi-rail fait référence à la capacité d’une application à
utiliser plusieurs connexions réseau indépendantes, ou « rails », pour améliorer les performances.

BeeGFS implémente la prise en charge multirail afin de permettre l’utilisation de plusieurs interfaces IB
dans un seul sous-réseau IPoIB. Cette fonctionnalité permet notamment l’équilibrage dynamique de la
charge entre les cartes réseau RDMA, optimisant ainsi l’utilisation des ressources du réseau. Il s’intègre
également au système de stockage NVIDIA GPUDirect (GDS), qui offre une bande passante système
accrue et réduit la latence et l’utilisation sur le processeur du client.

Cette documentation fournit des instructions pour les configurations de sous-réseau IPoIB uniques. Les
configurations de sous-réseau Dual IPoIB sont prises en charge, mais ne fournissent pas les mêmes
avantages que les configurations à sous-réseau unique.

La figure suivante montre l’équilibrage du trafic sur plusieurs interfaces client BeeGFS.

16

Comme chaque fichier de BeeGFS est généralement réparti sur plusieurs services de stockage, la
configuration multi-rail permet au client d’atteindre un débit supérieur à celui d’un seul port InfiniBand. Par
exemple, l’exemple de code suivant montre une configuration commune de répartition des fichiers qui permet
au client d’équilibrer le trafic entre les deux interfaces :

+

17

root@beegfs01:/mnt/beegfs# beegfs-ctl --getentryinfo myfile

Entry type: file

EntryID: 11D-624759A9-65

Metadata node: meta_01_tgt_0101 [ID: 101]

Stripe pattern details:

+ Type: RAID0

+ Chunksize: 1M

+ Number of storage targets: desired: 4; actual: 4

+ Storage targets:

 + 101 @ stor_01_tgt_0101 [ID: 101]

 + 102 @ stor_01_tgt_0101 [ID: 101]

 + 201 @ stor_02_tgt_0201 [ID: 201]

 + 202 @ stor_02_tgt_0201 [ID: 201]

Configuration de nœud en mode bloc EF600

Les nœuds de blocs comprennent deux contrôleurs RAID actifs/actifs avec accès partagé au même ensemble
de lecteurs. En général, chaque contrôleur possède la moitié des volumes configurés sur le système, mais il
peut reprendre l’autre contrôleur si nécessaire.

Le logiciel de chemins d’accès multiples des nœuds de fichiers détermine le chemin actif et optimisé vers
chaque volume et le déplace automatiquement vers l’autre chemin d’accès en cas de défaillance du câble, de
l’adaptateur ou du contrôleur.

Le schéma suivant illustre la disposition du contrôleur dans les nœuds de bloc EF600.

Pour faciliter la solution haute disponibilité du disque partagé, les volumes sont mappés sur les deux nœuds
de fichiers de manière à ce qu’ils puissent prendre en charge les uns les autres selon les besoins. Le
diagramme suivant montre un exemple de configuration du service BeeGFS et de la propriété du volume
préféré pour des performances maximales. L’interface à gauche de chaque service BeeGFS indique l’interface
préférée que les clients et les autres services utilisent pour le contacter.

18

Dans l’exemple précédent, les clients et les services serveur préfèrent communiquer avec le service de
stockage 1 via l’interface i1b. Le service de stockage 1 utilise l’interface i1a comme chemin préféré pour
communiquer avec ses volumes (Storage_tgt_101, 102) sur le contrôleur A du premier nœud de bloc. Cette
configuration utilise la bande passante PCIe bidirectionnelle complète disponible pour l’adaptateur InfiniBand
et offre de meilleures performances avec un adaptateur HDR InfiniBand à deux ports que le tout avec PCIe
4.0.

Configuration de nœud de fichier BeeGFS

Les nœuds de fichiers BeeGFS sont configurés dans un cluster haute disponibilité (HA) pour faciliter le
basculement des services BeeGFS entre plusieurs nœuds de fichiers.

La conception du cluster HA repose sur deux projets Linux HA largement utilisés : Corosync pour
l’appartenance à un cluster et Pacemaker pour la gestion des ressources de cluster. Pour plus d’informations,
voir "Formation Red Hat pour les modules complémentaires haute disponibilité".

NetApp a rédigé et étendu plusieurs agents de ressources OCF (Open Cluster Framework) pour permettre au
cluster de démarrer et de surveiller intelligemment les ressources BeeGFS.

Clusters HA BeeGFS

De façon générale, lorsque vous démarrez un service BeeGFS (avec ou sans HA), quelques ressources
doivent être en place :

• Adresses IP où le service est accessible, généralement configurées par Network Manager.

• Les systèmes de fichiers sous-jacents sont utilisés comme cibles de BeeGFS pour stocker des données.

Celles-ci sont généralement définies dans /etc/fstab Et monté par systemd.

19

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters

• Un service systemd responsable du démarrage des processus BeeGFS lorsque les autres ressources sont
prêtes.

Sans logiciel supplémentaire, ces ressources ne démarrent que sur un seul nœud de fichiers. Par
conséquent, si le nœud de fichier passe hors ligne, une partie du système de fichiers BeeGFS est
inaccessible.

Comme plusieurs nœuds peuvent démarrer chaque service BeeGFS, Pacemaker doit s’assurer que chaque
service et chaque ressource dépendante sont exécutés sur un seul nœud à la fois. Par exemple, si deux
nœuds tentent de démarrer le même service BeeGFS, il y a un risque de corruption des données s’ils essaient
tous les deux d’écrire sur les mêmes fichiers sur la cible sous-jacente. Pour éviter ce scénario, Pacemaker
utilise Corosync pour maintenir en toute fiabilité l’état du cluster global en mode synchrone sur tous les nœuds
et établir le quorum.

En cas de défaillance dans le cluster, Pacemaker réagit et redémarre les ressources BeeGFS sur un autre
nœud. Dans certains cas, il se peut que Pacemaker ne puisse pas communiquer avec le nœud défectueux
d’origine pour confirmer que les ressources sont arrêtées. Pour vérifier que le nœud est arrêté avant de
redémarrer les ressources BeeGFS ailleurs, Pacemaker déligne le nœud défectueux, idéalement en retirant
l’alimentation.

De nombreux agents d’escrime open source sont disponibles pour permettre à Pacemaker de verrouiller un
nœud avec une unité de distribution d’alimentation (PDU) ou à l’aide du contrôleur BMC (Baseboard
Management Controller) de serveur avec des API telles que Redfish.

Lorsque BeeGFS est exécuté dans un cluster HA, tous les services BeeGFS et les ressources sous-jacentes
sont gérés par Pacemaker dans des groupes de ressources. Chaque service BeeGFS et les ressources dont il
dépend sont configurés dans un groupe de ressources qui assure le démarrage et l’arrêt des ressources dans
le bon ordre et qui sont situés sur le même nœud.

Pour chaque groupe de ressources BeeGFS, Pacemaker exécute une ressource de surveillance BeeGFS
personnalisée qui est chargée de détecter les conditions de défaillance et de déclencher intelligemment les
basculements lorsqu’un service BeeGFS n’est plus accessible sur un nœud particulier.

La figure suivante montre les services et les dépendances de BeeGFS contrôlés par Pacemaker.

20

Pour que plusieurs services BeeGFS du même type soient démarrés sur le même nœud,
Pacemaker est configuré pour démarrer les services BeeGFS à l’aide de la méthode de
configuration Multi-mode. Pour plus d’informations, reportez-vous à la section "Documentation
BeeGFS sur Multi-mode".

Comme les services BeeGFS doivent pouvoir démarrer sur plusieurs nœuds, le fichier de configuration pour
chaque service (normalement situé à /etc/beegfs) Est stocké sur l’un des volumes E-Series utilisés comme
cible BeeGFS pour ce service. Cela rend la configuration et les données d’un service BeeGFS accessibles à
tous les nœuds qui peuvent avoir besoin d’exécuter le service.

21

https://doc.beegfs.io/latest/advanced_topics/multimode.html
https://doc.beegfs.io/latest/advanced_topics/multimode.html

tree stor_01_tgt_0101/ -L 2

stor_01_tgt_0101/

├── data
│ ├── benchmark
│ ├── buddymir
│ ├── chunks
│ ├── format.conf
│ ├── lock.pid
│ ├── nodeID
│ ├── nodeNumID
│ ├── originalNodeID
│ ├── targetID
│ └── targetNumID
└── storage_config
 ├── beegfs-storage.conf
 ├── connInterfacesFile.conf
 └── connNetFilterFile.conf

Vérification de la conception

Le design de deuxième génération de la solution BeeGFS sur NetApp a été vérifié à
l’aide de trois profils de configuration d’élément de base.

Les profils de configuration incluent les éléments suivants :

• Un élément de base unique, incluant la gestion BeeGFS, les métadonnées et les services de stockage.

• Des métadonnées BeeGFS plus un élément de base de stockage.

• Un élément de base BeeGFS uniquement pour le stockage.

Les éléments de base ont été reliés à deux commutateurs NVIDIA Quantum InfiniBand (MQM8700). Dix
clients BeeGFS étaient également connectés aux commutateurs InfiniBand et utilisés pour exécuter des
utilitaires de banc d’essai synthétiques.

La figure suivante montre la configuration BeeGFS utilisée pour valider la solution BeeGFS sur NetApp.

22

Répartition des fichiers BeeGFS

Les systèmes de fichiers parallèles ont notamment pour avantage de répartir les fichiers individuels sur
plusieurs cibles de stockage, qui peuvent représenter des volumes sur les mêmes systèmes de stockage
sous-jacents ou différents.

Dans BeeGFS, vous pouvez configurer la répartition par répertoire et par fichier pour contrôler le nombre de
cibles utilisées pour chaque fichier et pour contrôler la taille chunksize (ou taille de bloc) utilisée pour chaque
bande de fichier. Cette configuration permet au système de fichiers de prendre en charge différents types de
charges de travail et de profils d’E/S sans avoir à reconfigurer ou à redémarrer des services. Vous pouvez
appliquer les paramètres de bande à l’aide du beegfs-ctl Outil de ligne de commande ou avec des
applications qui utilisent l’API de répartition. Pour plus d’informations, consultez la documentation BeeGFS
pour "Répartition" et "API de répartition".

Pour obtenir les meilleures performances, les motifs de bande ont été ajustés tout au long des tests, et les
paramètres utilisés pour chaque test sont notés.

Tests de bande passante IOR : plusieurs clients

Les tests de bande passante IOR ont utilisé OpenMPI pour exécuter des travaux parallèles du générateur
d’E/S synthétique IOR (disponible à partir de "GitHub HPC") Sur l’ensemble des 10 nœuds clients à un ou
plusieurs blocs de construction BeeGFS. Sauf mention contraire :

• Tous les tests ont utilisé des E/S directes avec une taille de transfert de 1MiB.

• La répartition des fichiers BeeGFS est définie sur une taille chunksize de 1 Mo et une cible par fichier.

Les paramètres suivants ont été utilisés pour IOR avec le nombre de segments ajusté afin de maintenir la taille
de fichier d’agrégat à 5 Tio pour un élément de base et 40 Tio pour trois éléments de base.

mpirun --allow-run-as-root --mca btl tcp -np 48 -map-by node -hostfile

10xnodes ior -b 1024k --posix.odirect -e -t 1024k -s 54613 -z -C -F -E -k

Un élément de base BeeGFS (gestion, métadonnées et stockage)

La figure suivante montre les résultats du test IOR avec un seul élément de base BeeGFS (gestion,
métadonnées et stockage).

23

https://doc.beegfs.io/latest/advanced_topics/striping.html
https://doc.beegfs.io/latest/reference/striping_api.html
https://github.com/hpc/ior

Métadonnées BeeGFS + élément de base du stockage

La figure suivante présente les résultats du test IOR avec un seul élément de base de stockage +
métadonnées BeeGFS.

Élément de base BeeGFS uniquement pour le stockage

La figure suivante montre les résultats du test IOR avec un seul élément de base BeeGFS Storage
uniquement.

Trois éléments de base BeeGFS

La figure suivante montre les résultats du test IOR avec trois éléments de base BeeGFS.

24

Comme on pouvait s’y attendre, la différence de performances entre l’élément de base et les métadonnées
suivantes + l’élément de base du stockage est négligeable. En comparant les métadonnées + l’élément de
base du stockage et un élément de base uniquement destiné au stockage, on constate une légère
augmentation des performances de lecture en raison des disques supplémentaires utilisés comme cibles de
stockage. Toutefois, il n’y a pas de différence significative dans les performances d’écriture. Pour améliorer les
performances, vous pouvez ajouter plusieurs éléments de base pour faire évoluer les performances de
manière linéaire.

Tests de bande passante IOR : client unique

Le test de bande passante IOR a utilisé OpenMPI pour exécuter plusieurs processus IOR à l’aide d’un seul
serveur GPU hautes performances afin d’explorer les performances réalisables pour un même client.

Ce test compare également le comportement et les performances de relecture de BeeGFS lorsque le client est
configuré pour utiliser le cache de page du noyau Linux (tuneFileCacheType = native) par rapport à la
valeur par défaut buffered réglage.

Le mode de mise en cache native utilise le cache de page du noyau Linux sur le client, ce qui permet aux
opérations de relecture de provenir de la mémoire locale au lieu d’être retransmises sur le réseau.

Le diagramme suivant montre les résultats du test IOR avec trois éléments de base BeeGFS et un seul client.

La répartition BeeGFS pour ces tests a été définie sur une taille chunksize de 1 Mo avec huit
cibles par fichier.

Bien que les performances d’écriture et de lecture initiale soient supérieures en mode tampon par défaut, pour

25

les charges de travail qui relisent plusieurs fois les mêmes données, le mode de mise en cache natif a permis
d’optimiser considérablement les performances. Cette amélioration des performances de relecture est
importante pour les charges de travail telles que l’apprentissage profond qui relire le même dataset plusieurs
fois sur plusieurs séries de tests.

Test de performance des métadonnées

Les tests de performance des métadonnées ont utilisé l’outil MDTest (inclus dans IOR) pour mesurer la
performance des métadonnées de BeeGFS. Les tests ont utilisé OpenMPI pour exécuter des travaux
parallèles sur les dix nœuds clients.

Les paramètres suivants ont été utilisés pour exécuter le test de référence avec le nombre total de processus
passe de 10 à 320 par pas de 2x et avec une taille de fichier de 4 ko.

mpirun -h 10xnodes –map-by node np $processes mdtest -e 4k -w 4k -i 3 -I

16 -z 3 -b 8 -u

Les performances des métadonnées ont été mesurées en premier avec un ou deux blocs de base de stockage
+ métadonnées afin de montrer l’évolution des performances en ajoutant des éléments de base
supplémentaires.

Un seul élément de base de métadonnées BeeGFS + stockage

Le diagramme suivant montre les résultats MDTest avec un bloc de construction BeeGFS + stockage.

Deux métadonnées BeeGFS + éléments de base du stockage

Le diagramme suivant montre les résultats MDTest avec deux métadonnées BeeGFS + des modules de
stockage.

26

Validation fonctionnelle

Dans le cadre de la validation de cette architecture, NetApp a effectué plusieurs tests fonctionnels :

• Défaillance d’un seul port InfiniBand client en désactivant le port de commutateur.

• Défaillance d’un seul port InfiniBand de serveur en désactivant le port du commutateur.

• Déclenchement d’une mise hors tension immédiate d’un serveur à l’aide du contrôleur BMC.

• Placement normal d’un nœud en veille et basculement de service vers un autre nœud.

• Il est normal de remettre un nœud en ligne et de renvoyer les services vers le nœud d’origine.

• Mise hors tension de l’un des commutateurs InfiniBand à l’aide de la PDU. Tous les tests ont été réalisés
alors que les tests de stress étaient en cours avec le sysSessionChecksEnabled: false Paramètre
défini sur les clients BeeGFS. Aucune erreur ni interruption des E/S n’a été observée.

Il y a un problème connu (voir "Changement") Lorsque les connexions RDMA BeeGFS
client/serveur sont interrompues de façon inattendue, soit par la perte de l’interface principale
(comme défini dans la section connInterfacesFile) Ou un serveur BeeGFS est défaillant ;
les E/S du client actif peuvent se bloquer pendant dix minutes avant de reprendre. Ce problème
ne se produit pas lorsque les nœuds BeeGFS sont correctement placés en attente pour la
maintenance planifiée ou si TCP est utilisé.

Validation de NVIDIA DGX SuperPOD et BasePOD

NetApp a validé une solution de stockage pour NVIDIA DGX A100 SuperPOD à l’aide d’un système de fichiers
BeeGFS constitué de trois éléments de base avec les métadonnées plus le profil de configuration du stockage
appliqué. L’effort de qualification a participé au test de la solution décrite par cette architecture NVA avec vingt
serveurs GPU DGX A100 exécutant plusieurs bancs d’essai de stockage, d’apprentissage machine et
d’apprentissage profond. Basée sur la validation établie avec le DGX A100 SuperPOD de NVIDIA, la solution
BeeGFS sur NetApp a été approuvée pour les systèmes DGX SuperPOD H100, H200 et B200. Cette
extension repose sur le respect des bancs d’essai et des exigences système précédemment établis et validés
avec le système NVIDIA DGX A100

Pour plus d’informations, voir "NVIDIA DGX SuperPOD avec NetApp" et "NVIDIA DGX BasePOD".

27

https://github.com/netappeseries/beegfs/blob/master/CHANGELOG.md
https://www.netapp.com/pdf.html?item=/media/72718-nva-1167-DESIGN.pdf
https://www.nvidia.com/en-us/data-center/dgx-basepod/

Instructions de dimensionnement

La solution BeeGFS inclut des recommandations sur le dimensionnement de la
performance et de la capacité qui étaient basées sur des tests de vérification.

L’objectif de l’architecture modulaire est de créer une solution simple à dimensionner en ajoutant plusieurs
éléments de base pour répondre aux exigences d’un système BeeGFS particulier. À l’aide des lignes
directrices ci-dessous, vous pouvez estimer la quantité et les types de blocs de construction BeeGFS qui sont
nécessaires pour répondre aux exigences de votre environnement.

Notez que ces estimations sont les meilleures performances au cas par cas. Les applications de test des
performances synthétiques sont écrites et utilisées pour optimiser l’utilisation des systèmes de fichiers sous-
jacents d’une manière qui n’est pas forcément possible pour les applications réelles.

Dimensionnement de la performance

Le tableau suivant indique le dimensionnement de performance recommandé.

Profil de configuration 1MiB lit Écritures 1MiB

Métadonnées + stockage 62 GiBps 21 GiBps

Stockage uniquement 64 GiBps 21 GiBps

Le dimensionnement de la capacité des métadonnées est basé sur la « règle générale » selon laquelle 500 Go
de capacité suffisent pour environ 150 millions de fichiers sur BeeGFS. (Pour plus d’informations, consultez la
documentation BeeGFS pour "Configuration minimale requise".)

L’utilisation de fonctions telles que les listes de contrôle d’accès et le nombre de répertoires et de fichiers par
répertoire affecte également la vitesse de consommation de l’espace de métadonnées. Les estimations de
capacité de stockage tiennent compte de la capacité de disque utilisable ainsi que de la surcharge RAID 6 et
XFS.

Dimensionnement de la capacité pour les métadonnées + éléments de base du stockage

Le tableau suivant indique le dimensionnement de la capacité recommandé pour les métadonnées et les
éléments de base du stockage.

Taille du disque (2+2
RAID 1) groupes de
volumes de
métadonnées

Capacité des
métadonnées (nombre
de fichiers)

Taille des disques (RAID
6 8+2) groupes de
volumes de stockage

Capacité de stockage
(contenu de fichiers)

1,92 TO 1,938,577,200 1,92 TO 51,77 TO

3,84 TO 3,880,388,400 3,84 TO 103,55 TO

7,68 TO 8,125,278,000 7,68 TO 28.74 TO

15,3 TO 17,269,854,000 15,3 TO 460.60 TO

Lors du dimensionnement des métadonnées et des éléments de base de stockage, vous
pouvez réduire les coûts en utilisant des disques plus petits pour les groupes de volumes de
métadonnées et les groupes de volumes de stockage.

28

https://doc.beegfs.io/latest/system_design/system_requirements.html

Dimensionnement de la capacité pour les éléments de base uniquement destinés au stockage

Le tableau suivant indique la règle générale de dimensionnement de la capacité pour les éléments de base
uniquement liés au stockage.

Taille des disques (RAID 6 10+2) groupes de
volumes de stockage

Capacité de stockage (contenu de fichiers)

1,92 TO 59,89 TO

3,84 TO 11980 TO

7,68 TO 251,89TB

15,3 TO 58,55 TO

Les performances et la surcharge liée à la capacité de l’inclusion du service de gestion dans le
premier élément de base sont minimales, sauf si le verrouillage global des fichiers est activé.

Réglage des performances

La solution BeeGFS inclut des recommandations sur le réglage de la performance qui
étaient basées sur des tests de vérification.

Bien que BeeGFS fournit des performances raisonnables, NetApp a développé un ensemble de paramètres
d’ajustement recommandés pour optimiser les performances. Ces paramètres prennent en compte les
fonctionnalités des nœuds de bloc E-Series sous-jacents et les exigences spéciales requises pour exécuter
BeeGFS dans une architecture HA à disque partagé.

L’ajustement des performances des nœuds de fichiers

Les paramètres de réglage disponibles que vous pouvez configurer sont les suivants :

1. Paramètres système dans l’UEFI/BIOS des nœuds de fichiers. pour optimiser les performances, nous
vous recommandons de configurer les paramètres système sur le modèle de serveur que vous utilisez
comme nœuds de fichiers. Vous configurez les paramètres système lorsque vous configurez vos nœuds
de fichiers à l’aide de la configuration du système (UEFI/BIOS) ou des API Redfish fournies par le
contrôleur de gestion de la carte mère (BMC).

Les paramètres système varient en fonction du modèle de serveur que vous utilisez comme nœud de
fichier. Les paramètres doivent être configurés manuellement en fonction du modèle de serveur utilisé.
Pour savoir comment configurer les paramètres système pour les nœuds de fichiers Lenovo SR665 V3
validés, consultez "Réglez les paramètres du système de nœud de fichiers en fonction des performances" .

2. Paramètres par défaut pour les paramètres de configuration requis. les paramètres de configuration
requis affectent la configuration des services BeeGFS et la façon dont les volumes E-Series (dispositifs de
bloc) sont formatés et montés par Pacemaker. Voici les paramètres de configuration requis :

◦ Paramètres de configuration du service BeeGFS

Vous pouvez remplacer les paramètres par défaut des paramètres de configuration selon vos besoins.
Pour connaître les paramètres que vous pouvez ajuster en fonction de vos charges de travail ou de
vos cas d’utilisation spécifiques, reportez-vous au "Paramètres de configuration du service BeeGFS".

◦ Le formatage de volume et les paramètres de montage sont définis sur les valeurs par défaut

29

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

recommandées et ne doivent être ajustés que pour des cas d’utilisation avancés. Les valeurs par
défaut sont les suivantes :

▪ Optimiser le formatage du volume initial en fonction du type de cible (gestion, métadonnées ou
stockage, par exemple), de la configuration RAID et de la taille du segment du volume sous-jacent.

▪ Réglez la manière dont Pacemaker monte chaque volume pour vous assurer que les modifications
sont immédiatement transférées vers les nœuds de blocs E-Series. Cela empêche la perte de
données en cas d’échec des nœuds de fichier pour les écritures actives.

Pour connaître les paramètres que vous pouvez ajuster en fonction de vos charges de travail ou de
vos cas d’utilisation spécifiques, reportez-vous au "formatage du volume et paramètres de
configuration du montage".

3. Paramètres système du système d’exploitation Linux installé sur les nœuds de fichiers. Lorsque
vous créez l’inventaire Ansible à l’étape 4 de la section , vous pouvez remplacer les paramètres par défaut
du système d’exploitation Linux "Créez l’inventaire Ansible".

Les paramètres par défaut ont été utilisés pour valider la solution BeeGFS sur NetApp, mais vous pouvez
les modifier pour s’adapter à vos workloads ou à vos utilisations spécifiques. Voici quelques exemples de
paramètres système d’exploitation Linux que vous pouvez modifier :

◦ Files d’attente des E/S sur les dispositifs de bloc E-Series.

Vous pouvez configurer des files d’attente d’E/S sur les périphériques de bloc E-Series utilisés comme
cibles BeeGFS pour :

▪ Réglez l’algorithme de planification en fonction du type de périphérique (NVMe, HDD, etc.).

▪ Augmenter le nombre de demandes en attente.

▪ Réglez les tailles des demandes.

▪ Optimisez le comportement de lecture anticipée.

◦ Paramètres de la mémoire virtuelle.

Vous pouvez régler les paramètres de la mémoire virtuelle pour des performances de diffusion
optimales en continu.

◦ Paramètres CPU.

Vous pouvez régler le régulateur de fréquence de l’UC et d’autres configurations de l’UC pour obtenir
des performances maximales.

◦ Taille de la demande de lecture.

Vous pouvez augmenter la taille maximale des demandes de lecture pour les applications HCA
NVIDIA.

Réglage des performances des nœuds en mode bloc

En fonction des profils de configuration appliqués à un élément de base BeeGFS particulier, les groupes de
volumes configurés sur les nœuds de blocs changent légèrement. Par exemple, avec un nœud de bloc EF600
de 24 disques :

• Pour un seul élément de base, y compris la gestion BeeGFS, les métadonnées et les services de stockage
:

30

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279

◦ 1 groupe de volumes RAID 10 2+2 pour la gestion BeeGFS et les services de métadonnées

◦ 2 groupes de volumes RAID 6 8+2 pour les services de stockage BeeGFS

• Pour un élément de base de métadonnées + de stockage BeeGFS :

◦ 1 groupe de volumes RAID 10 2+2 pour les services de métadonnées BeeGFS

◦ 2 groupes de volumes RAID 6 8+2 pour les services de stockage BeeGFS

• Pour l’élément de base de stockage BeeGFS uniquement :

◦ 2 groupes de volumes RAID 6 10+2 pour les services de stockage BeeGFS

Comme BeeGFS a besoin d’un espace de stockage considérable pour la gestion et les
métadonnées par rapport au stockage, une seule option consiste à utiliser des disques plus
petits pour les groupes de volumes RAID 10. Les lecteurs plus petits doivent être insérés dans
les emplacements de lecteur les plus extérieurs. Pour plus d’informations, reportez-vous à la
section "instructions de déploiement".

Tous ces paramètres sont configurés par le déploiement Ansible, et plusieurs autres paramètres sont
généralement recommandés pour optimiser les performances/comportements :

• Ajustement de la taille du bloc de cache global à 32Kio et ajustement de la vidage du cache à la demande
à 80 %.

• Désactivation de l’équilibrage automatique (en veillant à ce que les attributions de volume du contrôleur
restent telles que prévues).

• Activation de la mise en cache de lecture et désactivation de la mise en cache de lecture anticipée

• Activation de la mise en cache d’écriture avec la mise en miroir et demande de sauvegarde sur batterie,
les caches sont donc conservés suite à la panne d’un contrôleur de nœud bloc.

• Spécification de l’ordre dans lequel les disques sont affectés aux groupes de volumes, en équilibrant les
E/S entre les canaux de disque disponibles.

Élément de base haute capacité

La solution BeeGFS est conçue de façon très performante. Les clients recherchant des
cas d’utilisation de grande capacité doivent observer les variations des caractéristiques
de conception et de performances décrites ici.

Configuration matérielle et logicielle

Les configurations matérielles et logicielles de l’élément de base haute capacité sont standard, mais les
contrôleurs EF600 doivent être remplacés par des contrôleurs EF300, avec une option qui permet de
connecter entre 1 et 7 tiroirs d’extension IOM avec 60 disques chacun pour chaque baie de stockage, un total
de 2 à 14 tiroirs d’extension par module.

Les clients qui déploient un design d’éléments de base haute capacité n’utilisent probablement que la
configuration de type élément de base, qui comprend la gestion BeeGFS, les métadonnées et les services de
stockage pour chaque nœud. Pour garantir une rentabilité accrue, les nœuds de stockage haute capacité
doivent provisionner des volumes de métadonnées sur les disques NVMe du boîtier de contrôleur EF300 et
provisionner les volumes de stockage sur les disques NL-SAS des tiroirs d’extension.

[]

31

Instructions de dimensionnement

Ces recommandations de dimensionnement supposent que les blocs de base haute capacité sont configurés
avec un groupe de volumes SSD NVMe 2+2 pour les métadonnées dans le boîtier EF300 de base et six
groupes de volumes NL-SAS 8+2 par plateau d’extension IOM pour le stockage.

Taille du disque
(disques durs
haute capacité)

Capacité par BB (1
plateau)

Capacité par BB (2
plateaux)

Capacité par BB (3
plateaux)

Capacité par BB (4
plateaux)

4 TO 43TB 878 TO 1317 TO 1756 TO

8 TO 878 TO 1756 TO 2634 TO 3512 TO

10 TO 1097 TO 2195 TO 3292 TO 4390 TO

12 To 1317 TO 2634 TO 3951 TO 5268 TO

16 TO 1756 TO 3512 TO 5268 TO 7024 TO

18 TO 1975 TO 3951 TO 5927 TO 7902 TO

Déploiement de la solution

Présentation du déploiement

BeeGFS sur NetApp peut être déployé sur des nœuds de blocs et de fichiers validés à
l’aide d’Ansible et de la conception d’éléments de base BeeGFS de NetApp.

Collections et rôles Ansible

La solution BeeGFS sur NetApp est déployée à l’aide d’Ansible, un moteur d’automatisation IT couramment
utilisé pour automatiser les déploiements d’applications. Ansible utilise une série de fichiers appelée
collectivement l’inventaire, qui modélise le système de fichiers BeeGFS que vous souhaitez déployer.

Ansible permet à des entreprises comme NetApp de développer leur activité grâce aux fonctionnalités
intégrées à l’aide de collections disponibles sur Ansible Galaxy (voir "Collection NetApp E-Series BeeGFS").
Elles comprennent des modules qui exécutent des fonctions ou des tâches spécifiques (telles que la création
d’un volume E-Series) ainsi que des rôles pouvant appeler plusieurs modules ou d’autres rôles. Cette
approche automatisée réduit la durée de déploiement du système de fichiers BeeGFS et du cluster HA sous-
jacent. De plus, il simplifie la maintenance et l’extension du cluster et du système de fichiers BeeGFS.

Pour plus de détails, voir "Découvrez l’inventaire Ansible".

Comme de nombreuses étapes sont nécessaires pour déployer la solution BeeGFS sur NetApp,
NetApp ne prend pas en charge le déploiement manuel de la solution.

Profils de configuration pour les éléments de base BeeGFS

Les procédures de déploiement couvrent les profils de configuration suivants :

• Un seul élément de base inclut des services de gestion, de métadonnées et de stockage.

• Un second élément de base qui inclut les métadonnées et les services de stockage.

• Un troisième élément inclut uniquement des services de stockage.

32

https://galaxy.ansible.com/netapp_eseries/santricity

Ces profils illustrent la gamme complète de profils de configuration recommandés pour les éléments de base
NetApp BeeGFS. Pour chaque déploiement, le nombre d’éléments de base de métadonnées et de stockage
ou de services de stockage uniquement peut varier en fonction des exigences de capacité et de performances.

Présentation des étapes de déploiement

Le déploiement implique plusieurs tâches générales :

Déploiement matériel

1. Assembler physiquement chaque élément de bâtiment.

2. Installez le rack et le matériel de câblage. Pour des procédures détaillées, voir "Déployez le matériel".

De déploiement logiciel

1. "Configurez les nœuds de fichiers et de blocs".

◦ Configurez les adresses IP BMC sur les nœuds de fichiers

◦ Installez un système d’exploitation pris en charge et configurez la mise en réseau de gestion sur les
nœuds de fichiers

◦ Configurez les adresses IP de gestion sur les nœuds de bloc

2. "Configurez un nœud de contrôle Ansible".

3. "Réglez les paramètres du système en fonction des performances".

4. "Créez l’inventaire Ansible".

5. "Définissez l’inventaire Ansible pour les éléments de base BeeGFS".

6. "Déploiement de BeeGFS avec Ansible".

7. "Configurer les clients BeeGFS".

Les procédures de déploiement incluent plusieurs exemples où du texte doit être copié dans un
fichier. Portez une attention particulière à tous les commentaires en ligne indiqués par les
caractères « # » ou « // » pour tout ce qui doit ou peut être modifié pour un déploiement
spécifique. Par exemple :

`beegfs_ha_ntp_server_pools: # THIS IS AN EXAMPLE OF A COMMENT!

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"`

Architectures dérivées avec variations dans les recommandations de déploiement :

• "Élément de base haute capacité"

Découvrez l’inventaire Ansible

Avant de commencer un déploiement, familiarisez-vous avec la configuration et
l’utilisation d’Ansible pour déployer la solution BeeGFS sur NetApp.

L’inventaire Ansible est une structure de répertoires répertoriant les nœuds de fichiers et de blocs sur lesquels
le système de fichiers BeeGFS doit être déployé. Il inclut les hôtes, les groupes et les variables qui décrivent le
système de fichiers BeeGFS souhaité. L’inventaire Ansible doit être stocké sur le nœud de contrôle Ansible,

33

qui est de toute machine ayant accès aux nœuds de fichiers et de blocs utilisés pour exécuter le PlayBook
Ansible. Les inventaires d’échantillons peuvent être téléchargés à partir du "NetApp E-Series BeeGFS
GitHub".

Modules et rôles Ansible

Pour appliquer la configuration décrite dans l’inventaire Ansible, utilisez les différents modules et rôles Ansible
fournis dans la collection NetApp E-Series (disponible dans le "NetApp E-Series BeeGFS GitHub") qui
déploient la solution de bout en bout.

Chaque rôle de la collection NetApp E-Series Ansible est un déploiement de bout en bout complet de la
solution BeeGFS sur NetApp. Les rôles utilisent les collections NetApp E-Series SANtricity, Host et BeeGFS
qui vous permettent de configurer le système de fichiers BeeGFS avec la haute disponibilité. Vous pouvez
ensuite provisionner et mapper le stockage, et vérifier que le stockage du cluster est prêt à être utilisé.

Bien que la documentation approfondie soit fournie avec les rôles, les procédures de déploiement décrivent
comment utiliser le rôle de déploiement d’une architecture vérifiée NetApp à l’aide de la conception de
l’élément de base BeeGFS deuxième génération.

Bien que la procédure de déploiement tenter d’offrir suffisamment de détails pour que
l’expérience précédente avec Ansible ne soit pas une condition préalable, vous devez avoir
quelques connaissances de Ansible et de la terminologie connexe.

Disposition de l’inventaire pour un cluster BeeGFS HA

Définissez un cluster BeeGFS haute disponibilité à l’aide de la structure d’inventaire Ansible.

Toute personne ayant déjà de l’expérience Ansible doit savoir que le rôle BeeGFS HA implémente une
méthode personnalisée pour identifier les variables (ou les faits) qui s’appliquent à chaque hôte. Cette
conception simplifie la structuration de l’inventaire Ansible afin de décrire les ressources pouvant s’exécuter
sur plusieurs serveurs.

Un inventaire Ansible comprend généralement les fichiers dans host_vars et group_vars, ainsi qu’un
inventory.yml fichier qui attribue des hôtes à des groupes spécifiques (et potentiellement des groupes à
d’autres groupes).

Ne créez pas de fichiers contenant le contenu de cette sous-section, qui est uniquement un
exemple.

Bien que cette configuration soit prédéterminée en fonction du profil de configuration, vous devez
généralement comprendre comment tout s’établit comme un inventaire Ansible, comme suit :

34

https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/getting_started/
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp01:

 netapp02:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

 meta_01: # Group representing a metadata service with ID 01.

 hosts:

 beegfs_01: # This service is preferred on the first file

node.

 beegfs_02: # And can failover to the second file node.

 meta_02: # Group representing a metadata service with ID 02.

 hosts:

 beegfs_02: # This service is preferred on the second file

node.

 beegfs_01: # And can failover to the first file node.

Pour chaque service, un fichier supplémentaire est créé sous group_vars description de sa configuration :

35

meta_01 - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: 8015

 connMetaPortUDP: 8015

 tuneBindToNumaZone: 0

floating_ips:

 - i1b: <IP>/<SUBNET_MASK>

 - i2b: <IP>/<SUBNET_MASK>

Type of BeeGFS service the HA resource group will manage.

beegfs_service: metadata # Choices: management, metadata, storage.

What block node should be used to create a volume for this service:

beegfs_targets:

 netapp01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25

 owning_controller: A

Cette disposition permet de définir le service, le réseau et la configuration de stockage BeeGFS pour chaque
ressource à un seul emplacement. En arrière-plan, le rôle BeeGFS rassemble la configuration nécessaire pour
chaque fichier et nœud de bloc en fonction de cette structure d’inventaire.

L’ID de noeud de type BeeGFS numérique et chaîne pour chaque service est automatiquement
configuré en fonction du nom du groupe. Ainsi, en plus de l’exigence générale Ansible pour que
les noms de groupe soient uniques, les groupes représentant un service BeeGFS doivent se
terminer par un nombre unique pour le type de service BeeGFS que le groupe représente. Par
exemple, META_01 et stor_01 sont autorisés, mais Metadata_01 et META_01 ne le sont pas.

Passez en revue les bonnes pratiques

Suivez les bonnes pratiques pour déployer la solution BeeGFS sur NetApp.

Conventions standard

Lors du montage physique et de la création du fichier d’inventaire Ansible, respecter les conventions standard
suivantes (pour plus d’informations, voir "Créez l’inventaire Ansible").

• Les noms d’hôte de nœud de fichiers sont numérotés séquentiellement (h01-HN), les chiffres inférieurs se
trouvant en haut du rack et les chiffres plus élevés en bas.

Par exemple, la convention de dénomination [location][row][rack]hN ressemble à : beegfs_01.

• Chaque nœud de bloc comprend deux contrôleurs de stockage, chacun avec son propre nom d’hôte.

36

Un nom de baie de stockage est utilisé pour désigner l’ensemble du système de stockage en mode bloc
dans le cadre d’un inventaire Ansible. Les noms de matrice de stockage doivent être numérotés de façon
séquentielle (a01 - an), et les noms d’hôte des contrôleurs individuels sont dérivés de cette convention de
nommage.

Par exemple, un nœud de bloc nommé ictad22a01 généralement peut avoir des noms d’hôte configurés
pour chaque contrôleur comme et , mais être référencé dans un inventaire Ansible comme ictad22a01-
a ictad22a01-b netapp_01.

• Les nœuds de fichiers et de blocs du même bloc de construction partagent le même schéma de
numérotation et sont adjacents les uns aux autres dans le rack, les deux nœuds de fichiers étant situés en
haut et les deux nœuds de bloc directement en dessous.

Par exemple, dans le premier module, les nœuds de fichiers h01 et h02 sont tous deux connectés
directement aux nœuds de bloc a01 et a02. De haut en bas, les noms d’hôte sont h01, h02, a01 et a02.

• Les blocs de construction sont installés dans un ordre séquentiel en fonction de leurs noms d’hôtes, de
sorte que les noms d’hôtes aux numéros inférieurs se trouvent en haut du rack et les noms d’hôtes aux
numéros supérieurs se trouvent en bas.

L’objectif est de réduire la longueur du câble qui passe en haut des commutateurs du rack et de définir une
pratique de déploiement standard afin de simplifier le dépannage. Pour les centres de données où cela
n’est pas autorisé en raison de problèmes liés à la stabilité des racks, l’inverse est certainement autorisé,
en remplissant le rack par le bas vers le haut.

Configuration du réseau de stockage InfiniBand

Moitié des ports InfiniBand sur chaque nœud de fichiers sont utilisés pour se connecter directement aux
nœuds de bloc. L’autre moitié est connectée aux commutateurs InfiniBand et est utilisée pour la connectivité
client-serveur BeeGFS. Pour déterminer la taille des sous-réseaux IPoIB utilisés pour les clients et les
serveurs BeeGFS, vous devez tenir compte de la croissance prévue de votre cluster Compute/GPU et de votre
système de fichiers BeeGFS. Si vous devez vous écarter des plages IP recommandées, n’oubliez pas que
chaque connexion directe d’un bloc de construction unique possède un sous-réseau unique et qu’il n’y a pas
de chevauchement avec les sous-réseaux utilisés pour la connectivité client-serveur.

Connexions directes

Les nœuds de fichiers et de blocs dans chaque bloc de construction utilisent toujours les adresses IP du
tableau suivant pour leurs connexions directes.

Ce schéma d’adressage adhère à la règle suivante : le troisième octet est toujours impair ou
pair, ce qui dépend du fait que le nœud de fichier est impair ou pair.

Nœud de
fichier

Port IB Adresse IP Nœud de
bloc

Port IB IP physique IP virtuel

Impair (h1) i1a 192.168.1.10 Impair (c1) 2a 192.168.1.100 192.168.1.101

Impair (h1) i2a 192.168.3.10 Impair (c1) 2a 192.168.3.100 192.168.3.101

Impair (h1) i3a 192.168.5.10 Pair (c2) 2a 192.168.5.100 192.168.5.101

Impair (h1) i4a 192.168.7.10 Pair (c2) 2a 192.168.7.100 192.168.7.101

Pair (h2) i1a 192.168.2.10 Impair (c1) 2b 192.168.2.100 192.168.2.101

37

Nœud de
fichier

Port IB Adresse IP Nœud de
bloc

Port IB IP physique IP virtuel

Pair (h2) i2a 192.168.4.10 Impair (c1) 2b 192.168.4.100 192.168.4.101

Pair (h2) i3a 192.168.6.10 Pair (c2) 2b 192.168.6.100 192.168.6.101

Pair (h2) i4a 192.168.8.10 Pair (c2) 2b 192.168.8.100 192.168.8.101

Schémas d’adressage IPoIB client-serveur BeeGFS

Chaque nœud de fichier exécute plusieurs services BeeGFS Server (gestion, métadonnées ou stockage).
Pour permettre à chaque service de basculer de manière indépendante vers l’autre nœud de fichiers, chaque
service est configuré avec des adresses IP uniques qui peuvent basculer entre les deux nœuds (parfois
appelées interfaces logiques ou LIF).

Bien qu’il ne soit pas obligatoire, ce déploiement suppose que les plages de sous-réseau IPoIB suivantes sont
utilisées pour ces connexions et définit un modèle d’adressage standard qui applique les règles suivantes :

• Le second octet est toujours impair ou pair, en fonction du fait que le port InfiniBand du nœud de fichiers
est impair ou pair.

• Les adresses IP du cluster BeeGFS sont toujours xxx. 127.100.yyy ou xxx.128.100.yyy.

En plus de l’interface utilisée pour la gestion du système d’exploitation intrabande, Corosync
peut utiliser des interfaces supplémentaires pour la synchronisation et la battements cardiaques
du cluster. Cela permet de s’assurer que la perte d’une interface unique n’entraîne pas l’arrêt
complet du cluster.

• Le service BeeGFS Management est toujours à xxx.yyy.101.0 ou xxx.yyy.102.0.

• Les services de métadonnées de BeeGFS sont toujours à xxx.yyy.101.zzz ou xxx.yyy.102.zzz.

• Les services de stockage BeeGFS sont toujours en xxx.yyy.103.zzz ou xxx.yyy.104.zzz.

• Adresses dans la plage 100.xxx.1.1 à 100.xxx.99.255 sont réservés aux clients.

Schéma d’adressage de sous-réseau unique IPoIB

Ce guide de déploiement utilisera un schéma de sous-réseau unique compte tenu des avantages répertoriés
dans le "architecture logicielle".

Sous-réseau : 100.127.0.0/16

Le tableau suivant fournit la plage pour un sous-réseau unique : 100.127.0.0/16.

Objectif Port InfiniBand Adresse IP ou plage

Cluster BeeGFS IP i1b ou i4b 100.127.100.1 - 100.127.100.255

Gestion BeeGFS i1b 100.127.101.0

i2b 100.127.102.0

Métadonnées BeeGFS i1b ou i3b 100.127.101.1 - 100.127.101.255

i2b ou i4b 100.127.102.1 - 100.127.102.255

38

Objectif Port InfiniBand Adresse IP ou plage

Stockage BeeGFS i1b ou i3b 100.127.103.1 - 100.127.103.255

i2b ou i4b 100.127.104.1 - 100.127.104.255

Clients BeeGFS (varie selon le client) 100.127.1.1 - 100.127.99.255

IPoIB deux schémas d’adressage de sous-réseau

Un schéma d’adressage à deux sous-réseaux n’est plus recommandé, mais peut encore être implémenté.
Reportez-vous aux tableaux ci-dessous pour connaître les deux schémas de sous-réseau recommandés.

Sous-réseau A : 100.127.0.0/16

Le tableau suivant indique la plage pour le sous-réseau A : 100.127.0.0/16.

Objectif Port InfiniBand Adresse IP ou plage

Cluster BeeGFS IP i1b 100.127.100.1 - 100.127.100.255

Gestion BeeGFS i1b 100.127.101.0

Métadonnées BeeGFS i1b ou i3b 100.127.101.1 - 100.127.101.255

Stockage BeeGFS i1b ou i3b 100.127.103.1 - 100.127.103.255

Clients BeeGFS (varie selon le client) 100.127.1.1 - 100.127.99.255

Sous-réseau B : 100.128.0.0/16

Le tableau suivant indique la plage pour le sous-réseau B : 100.128.0.0/16.

Objectif Port InfiniBand Adresse IP ou plage

Cluster BeeGFS IP i4b 100.128.100.1 - 100.128.100.255

Gestion BeeGFS i2b 100.128.102.0

Métadonnées BeeGFS i2b ou i4b 100.128.102.1 - 100.128.102.255

Stockage BeeGFS i2b ou i4b 100.128.104.1 - 100.128.104.255

Clients BeeGFS (varie selon le client) 100.128.1.1 - 100.128.99.255

Toutes les adresses IP comprises dans les plages ci-dessus ne sont pas utilisées dans cette
architecture vérifiée NetApp. Ils montrent comment les adresses IP peuvent être pré-allouées
pour faciliter l’extension du système de fichiers à l’aide d’un schéma d’adressage IP cohérent.
Dans ce schéma, les nœuds de fichiers BeeGFS et les ID de service correspondent au
quatrième octet d’une plage bien connue d’adresses IP. Le système de fichiers peut
évidemment évoluer au-delà de 255 nœuds ou services si nécessaire.

Déployez le matériel

Chaque module comprend deux nœuds de fichiers x86 validés directement connectés à
deux nœuds de bloc à l’aide de câbles InfiniBand HDR (200 Go).

39

Un minimum de deux éléments de base est requis pour établir le quorum dans le cluster de
basculement. Un cluster à deux nœuds présente des limites qui peuvent empêcher un
basculement réussi. Vous pouvez configurer un cluster à deux nœuds en incorporant un
troisième périphérique comme disjoncteur d’attache ; cependant, cette documentation ne décrit
pas cette conception.

Les étapes suivantes sont identiques pour chaque élément du cluster, qu’il soit utilisé pour exécuter les
métadonnées et les services de stockage BeeGFS ou uniquement des services de stockage, sauf indication
contraire.

Étapes

1. Configurez chaque nœud de fichiers BeeGFS avec quatre adaptateurs HCA (Host Channel Adapters) à
l’aide des modèles spécifiés dans le "Exigences techniques". Insérez les HCA dans les connecteurs PCIe
de votre nœud de fichiers conformément aux spécifications ci-dessous :

◦ Lenovo ThinkSystem SR665 V3 Server: utilisez les emplacements PCIe 1, 2, 4 et 5.

◦ Lenovo ThinkSystem SR665 Server: utilisez les emplacements PCIe 2, 3, 5 et 6.

2. Configurez chaque nœud de bloc BeeGFS avec une carte d’interface hôte (HIC) à deux ports 200 Go et
installez la HIC dans chacun de ses deux contrôleurs de stockage.

Placez les éléments de base de façon à ce que les deux nœuds de fichier BeeGFS se trouvent au-dessus
des nœuds de bloc BeeGFS. La figure suivante présente la configuration matérielle correcte pour l’élément
de base BeeGFS utilisant les serveurs Lenovo ThinkSystem SR665 V3 comme nœuds de fichiers (vue
arrière).

40

La configuration de l’alimentation électrique pour les cas d’utilisation en production doit
généralement utiliser des blocs d’alimentation redondants.

3. Si nécessaire, installez les lecteurs dans chacun des nœuds de bloc BeeGFS.

a. Si le module sera utilisé pour exécuter des métadonnées et des services de stockage BeeGFS et des
disques plus petits sont utilisés pour les volumes de métadonnées, vérifiez qu’ils sont renseignés dans
les emplacements de disque les plus à l’extérieur, comme indiqué dans la figure ci-dessous.

b. Pour toutes les configurations d’éléments de base, si un boîtier de disque n’est pas plein, assurez-vous
qu’un nombre égal de disques est utilisé dans les emplacements 0–11 et 12–23 pour des
performances optimales.

41

4. Connectez les nœuds de bloc et de fichier à l’aide de "Câbles en cuivre à connexion directe InfiniBand 200
Gbit/s HDR"la , de manière à ce qu’ils correspondent à la topologie illustrée dans la figure suivante.

42

Les nœuds répartis entre plusieurs éléments de base ne sont jamais directement
connectés. Chaque élément de base doit être considéré comme une unité autonome et
toute communication entre les éléments de base se fait par le biais de commutateurs
réseau.

5. Connectez les ports InfiniBand restants du nœud de fichiers au commutateur InfiniBand du réseau de
stockage en utilisant le "Câbles InfiniBand de 2 M." commutateur de stockage InfiniBand spécifique à votre
commutateur de stockage InfiniBand.

Lorsque vous utilisez des câbles de séparation pour connecter le commutateur de stockage à des nœuds
de fichiers, un câble doit être branché à partir du commutateur et se connecter aux ports indiqués en vert
clair. Un autre câble de séparation doit être branché à l’extérieur du commutateur et se connecter aux ports
indiqués en vert foncé.

En outre, pour les réseaux de stockage avec commutateurs redondants, les ports indiqués en vert clair
doivent se connecter à un commutateur, tandis que les ports en vert foncé doivent se connecter à un autre
commutateur.

6. Au besoin, assembler des éléments de construction supplémentaires en suivant les mêmes directives de
câblage.

Le nombre total d’éléments de base pouvant être déployés dans un rack unique dépend de
l’alimentation et du refroidissement disponibles sur chaque site.

Déployez des logiciels

Configurez les nœuds de fichiers et les nœuds en mode bloc

Si la plupart des tâches de configuration logicielle sont automatisées au moyen des
collections Ansible fournies par NetApp, vous devez configurer la mise en réseau sur le
contrôleur de gestion de la carte de base (BMC) de chaque serveur et configurer le port
de gestion sur chaque contrôleur.

Configurez les nœuds de fichiers

1. Configurez la mise en réseau sur le contrôleur de gestion de la carte mère (BMC) de chaque serveur.

43

Pour savoir comment configurer la mise en réseau pour les nœuds de fichiers Lenovo SR665 V3 validés,
consultez le "Documentation Lenovo ThinkSystem".

Un contrôleur de gestion de la carte mère (BMC), parfois appelé processeur de service, est
le nom générique de la fonctionnalité de gestion hors bande intégrée dans diverses plates-
formes de serveurs qui fournissent un accès à distance même si le système d’exploitation
n’est pas installé ou accessible. Les fournisseurs vendent généralement cette fonctionnalité
avec leur propre marque. Par exemple, sur le Lenovo SR665, le contrôleur BMC est appelé
le contrôleur XClarity (XCC)_ de _Lenovo.

2. Configurez les paramètres du système pour des performances maximales.

Vous configurez les paramètres système à l’aide de la configuration UEFI (anciennement appelée BIOS)
ou en utilisant les API Redfish fournies par de nombreux BMCs. Les paramètres système varient en
fonction du modèle de serveur utilisé comme nœud de fichier.

Pour savoir comment configurer les paramètres système pour les nœuds de fichiers Lenovo SR665 V3
validés, consultez "Réglez les paramètres du système en fonction des performances" .

3. Installez Red Hat Enterprise Linux (RHEL) 9.4 et configurez le nom d’hôte et le port réseau utilisés pour
gérer le système d’exploitation, y compris la connectivité SSH à partir du nœud de contrôle Ansible.

Ne configurez pas d’adresses IP sur l’un des ports InfiniBand pour le moment.

Bien qu’il ne soit pas strictement nécessaire, les sections suivantes présument que les
noms d’hôte sont numérotés séquentiellement (comme h1-HN) et font référence aux tâches
qui doivent être effectuées sur les hôtes impairs et pairs.

4. Utilisez Red Hat Subscription Manager pour enregistrer et abonner le système afin de permettre
l’installation des packages requis à partir des référentiels officiels Red Hat et de limiter les mises à jour à la
version prise en charge de Red Hat : subscription-manager release --set=9.4 . Pour obtenir
des instructions, voir "Comment enregistrer et souscrire un système RHEL" et "Comment limiter les mises
à jour".

5. Activez le référentiel Red Hat contenant les packages requis pour la haute disponibilité.

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Mettez à jour tous les micrologiciels HCA à la version recommandée dans le "Exigences
technologiques"Guide d’utilisation"Mettez à jour le micrologiciel de l’adaptateur de nœud de fichier".

Configurez les nœuds en mode bloc

Configurez les nœuds en mode bloc EF600 en configurant le port de gestion sur chaque contrôleur.

1. Configurez le port de gestion sur chaque contrôleur EF600.

Pour obtenir des instructions sur la configuration des ports, consultez le "Centre de documentation E-
Series".

2. Vous pouvez également définir le nom de la matrice de stockage pour chaque système.

44

https://pubs.lenovo.com/sr665-v3/
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://access.redhat.com/solutions/2761031
..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection

La définition d’un nom peut faciliter la référence à chaque système dans les sections suivantes. Pour
obtenir des instructions sur la définition du nom de la matrice, reportez-vous à la "Centre de documentation
E-Series".

Bien qu’il ne soit pas strictement nécessaire, les rubriques suivantes présument que les noms
des matrices de stockage sont numérotés de façon séquentielle (comme c1 - CN) et font
référence aux étapes à suivre sur les systèmes pairs ou impairs.

Réglez les paramètres du système de nœud de fichiers en fonction des performances

Pour optimiser les performances, nous vous recommandons de configurer les
paramètres système sur le modèle de serveur que vous utilisez en tant que nœuds de
fichiers.

Les paramètres système varient en fonction du modèle de serveur que vous utilisez comme nœud de fichier.
Cette rubrique décrit comment configurer les paramètres système des nœuds de fichiers serveur Lenovo
ThinkSystem SR665 validés.

Utilisez l’interface UEFI pour régler les paramètres du système

Le micrologiciel système du serveur Lenovo SR665 V3 contient de nombreux paramètres de réglage qui
peuvent être définis via l’interface UEFI. Ces paramètres de réglage peuvent affecter tous les aspects du
fonctionnement du serveur et de son fonctionnement.

Sous Configuration UEFI > Paramètres système, réglez les paramètres système suivants :

Menu mode de fonctionnement

Paramètres système Changer en

Mode de fonctionnement Personnalisées

CTDP Manuel

Manuel CTDP 350

Limite de puissance de l’ensemble Manuel

Mode efficacité Désactiver

Contrôle global-état-contrôlé Désactiver

États P SOC P0

DF États C. Désactiver

État P. Désactiver

45

https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

Paramètres système Changer en

Activation de la mise hors tension de la mémoire Désactiver

Nœuds NUMA par socket NPS1

Menu périphériques et ports d’E/S.

Paramètres système Changer en

IOMMU Désactiver

Menu d’alimentation

Paramètres système Changer en

Frein d’alimentation PCIe Désactiver

Menu processeurs

Paramètres système Changer en

Contrôle global de l’état C. Désactiver

DF États C. Désactiver

Mode SMT Désactiver

PC Désactiver

Utilisez l’API Redfish pour régler les paramètres du système

En plus de l’utilisation de la configuration UEFI, vous pouvez utiliser l’API Redfish pour modifier les paramètres
du système.

46

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

Pour plus d’informations sur le schéma Redfish, reportez-vous au "Site Web DMTF".

Configurez un nœud de contrôle Ansible

Pour configurer un nœud de contrôle Ansible, vous devez désigner une machine virtuelle
ou physique qui accède au réseau à tous les nœuds de blocs et de fichiers déployés
pour la solution BeeGFS sur NetApp.

Consultez le "Exigences techniques" pour obtenir la liste des versions de package recommandées. Les étapes
suivantes ont été testées sur Ubuntu 22.04. Pour connaître les étapes spécifiques à votre distribution Linux
préférée, consultez le "Documentation Ansible".

1. À partir de votre nœud de contrôle Ansible, installez les packages Python et Python Virtual Environment
suivants.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Créez un environnement virtuel Python.

47

https://redfish.dmtf.org/redfish/schema_index
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

python3 -m venv ~/pyenv

3. Activer l’environnement virtuel.

source ~/pyenv/bin/activate

4. Installez les packages Python requis dans l’environnement virtuel activé.

pip install ansible netaddr cryptography passlib

5. Installez la collection BeeGFS à l’aide d’Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Vérifiez que les versions installées d’Ansible, Python et de la collection BeeGFS correspondent
aux"Exigences techniques"

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Configurez SSH sans mot de passe pour permettre à Ansible d’accéder aux nœuds de fichiers BeeGFS
distants à partir du nœud de contrôle Ansible.

a. Le cas échéant, générez une paire de clés publiques sur le nœud de contrôle Ansible.

ssh-keygen

b. Configurez SSH sans mot de passe sur chacun des nœuds de fichiers.

ssh-copy-id <ip_or_hostname>

Do NOT configurez SSH sans mot de passe sur les nœuds de bloc. Cela n’est ni pris en charge
ni obligatoire.

Créez l’inventaire Ansible

Pour définir la configuration des nœuds de fichiers et de blocs, vous créez un inventaire
Ansible qui représente le système de fichiers BeeGFS que vous souhaitez déployer.
L’inventaire inclut les hôtes, les groupes et les variables décrivant le système de fichiers
BeeGFS souhaité.

48

beegfs-technology-requirements.html#ansible-control-node-requirements

Étape 1 : définir la configuration de tous les éléments de base

Définissez la configuration qui s’applique à tous les blocs de construction, quel que soit le profil de
configuration que vous pouvez appliquer individuellement.

Avant de commencer

• Choisissez un schéma d’adressage de sous-réseau pour votre déploiement. En raison des avantages
répertoriés dans le "architecture logicielle", il est recommandé d’utiliser un schéma d’adressage de sous-
réseau unique.

Étapes

1. Sur votre nœud de contrôle Ansible, identifiez un répertoire à utiliser pour stocker les fichiers d’inventaire
et de PlayBook Ansible.

Sauf indication contraire, tous les fichiers et répertoires créés dans cette étape et les étapes suivantes sont
créés par rapport à ce répertoire.

2. Créez les sous-répertoires suivants :

host_vars

group_vars

packages

3. Créez un sous-répertoire pour les mots de passe de cluster et sécurisez le fichier en le chiffrant à l’aide
d’Ansible Vault (voir "Cryptage de contenu avec Ansible Vault") :

a. Créez le sous-répertoire group_vars/all.

b. Dans le group_vars/all répertoire, créez un fichier de mots de passe intitulé passwords.yml.

c. Remplissez le passwords.yml file avec les paramètres suivants, en remplaçant tous les
paramètres de nom d’utilisateur et de mot de passe en fonction de votre configuration :

49

https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Exécutez ansible-vault encrypt passwords.yml et définissez un mot de passe de coffre-fort
lorsque vous y êtes invité.

Étape 2 : définir la configuration des nœuds de fichiers et de blocs individuels

Définissez la configuration qui s’applique aux nœuds de fichiers individuels et aux nœuds d’élément de base
individuels.

1. Sous host_vars/, Créez un fichier pour chaque noeud de fichier BeeGFS nommé <HOSTNAME>.yml
Avec le contenu suivant, en portant une attention particulière aux notes concernant le contenu à remplir
pour les adresses IP de cluster BeeGFS et les noms d’hôte se terminant par des nombres impairs et
impairs.

Initialement, les noms d’interface de nœud de fichier correspondent à ce qui est répertorié ici (comme ib0
ou ibs1f0). Ces noms personnalisés sont configurés dans Étape 4 : définissez la configuration qui doit
s’appliquer à tous les nœuds de fichiers.

50

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

51

Si vous avez déjà déployé le cluster BeeGFS, vous devez arrêter le cluster avant d’ajouter
ou de modifier des adresses IP configurées de manière statique, y compris les adresses IP
et IP du cluster utilisées pour NVMe/IB. Cette modification est nécessaire afin que ces
modifications prennent effet correctement et ne perturbent pas les opérations du cluster.

2. Sous host_vars/, Créez un fichier pour chaque noeud de bloc BeeGFS nommé <HOSTNAME>.yml et
remplissez-le avec le contenu suivant.

Faites particulièrement attention aux remarques concernant le contenu à remplir pour les noms de
matrices de stockage se terminant par des nombres pairs ou impairs.

Pour chaque noeud de bloc, créez un fichier et spécifiez <MANAGEMENT_IP> Pour un des deux
contrôleurs (généralement Un).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Étape 3 : définissez une configuration à appliquer à tous les nœuds de fichiers et de blocs

Vous pouvez définir une configuration commune à un groupe d’hôtes sous group_vars dans un nom de
fichier correspondant au groupe. Cela empêche de répéter une configuration partagée à plusieurs endroits.

52

Description de la tâche

Les hôtes peuvent se trouver dans plusieurs groupes et au moment de l’exécution, Ansible choisit les variables
qui s’appliquent à un hôte donné en fonction de ses règles de priorité de variable. (Pour plus d’informations sur
ces règles, consultez la documentation Ansible pour "Utilisation de variables".)

Les affectations hôte-groupe sont définies dans le fichier d’inventaire Ansible réel, créé à la fin de cette
procédure.

Étape

Dans Ansible, vous pouvez définir n’importe quelle configuration que vous souhaitez appliquer à tous les hôtes
dans un groupe appelé All. Créez le fichier group_vars/all.yml avec le contenu suivant :

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Étape 4 : définissez la configuration qui doit s’appliquer à tous les nœuds de fichiers

La configuration partagée pour les nœuds de fichiers est définie dans un groupe appelé ha_cluster. Les
étapes de cette section créent la configuration qui doit être incluse dans le group_vars/ha_cluster.yml
fichier.

Étapes

1. En haut du fichier, définissez les valeurs par défaut, y compris le mot de passe à utiliser comme sudo
utilisateur sur les nœuds de fichiers.

53

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

Si ansible_ssh_user est déjà root, vous pouvez omettre l'
ansible_become_password et spécifier l' `--ask-become-pass`option lors de l’exécution
du PlayBook.

2. Vous pouvez également configurer un nom pour le cluster haute disponibilité (HA) et spécifier un utilisateur
pour les communications intra-cluster.

Si vous modifiez le schéma d’adressage IP privé, vous devez également mettre à jour le schéma par
défaut beegfs_ha_mgmtd_floating_ip. Ceci doit correspondre à ce que vous configurez plus tard
pour le groupe de ressources BeeGFS Management.

Spécifiez un ou plusieurs e-mails qui doivent recevoir des alertes pour les événements du cluster à l’aide
de beegfs_ha_alert_email_list.

54

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

Tout en apparence redondant, beegfs_ha_mgmtd_floating_ip Est important lorsque
vous faites évoluer le système de fichiers BeeGFS au-delà d’un seul cluster HA. Les
clusters HA suivants sont déployés sans service de gestion BeeGFS et point
supplémentaires sur le service de gestion fourni par le premier cluster.

3. Configurer un agent d’escrime. (Pour plus de détails, voir "Configurer l’escrime dans un cluster Red Hat
haute disponibilité".) Le résultat suivant présente des exemples de configuration des agents de clôture
courants. Choisissez l’une de ces options.

Pour cette étape, gardez à l’esprit que :

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ Par défaut, l’escrime est activé, mais vous devez configurer un agent d’escrime.

◦ Le <HOSTNAME> spécifié dans le pcmk_host_map ou pcmk_host_list Doit correspondre au nom
d’hôte dans l’inventaire Ansible.

◦ L’utilisation du cluster BeeGFS sans escrime n’est pas prise en charge, particulièrement en production.
Cela permet de s’assurer que les services BeeGFS, y compris les dépendances de ressources comme
les périphériques de bloc, basculent en raison d’un problème, il n’y a aucun risque d’accès simultané
par plusieurs nœuds qui entraînent une corruption du système de fichiers ou tout autre comportement
indésirable ou inattendu. Si l’escrime doit être désactivé, reportez-vous aux notes générales du guide
de démarrage et de mise en place du rôle BeeGFS HA
beegfs_ha_cluster_crm_config_options["stonith-enabled"] à faux dans
ha_cluster.yml.

◦ Plusieurs dispositifs d’escrime au niveau des nœuds sont disponibles, et le rôle BeeGFS HA peut
configurer n’importe quel agent d’escrime disponible dans le référentiel de package Red Hat HA. Si
possible, utilisez un agent d’escrime qui fonctionne via l’alimentation sans coupure (UPS) ou l’unité de
distribution de l’alimentation en rack (RPDU), Parce que certains agents d’escrime, tels que le
contrôleur de gestion de la carte mère (BMC) ou d’autres dispositifs d’éclairage intégrés au serveur,
peuvent ne pas répondre à la demande de clôture dans certains scénarios de panne.

56

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Activez le réglage des performances recommandé dans le système d’exploitation Linux.

Si de nombreux utilisateurs trouvent les paramètres par défaut des paramètres de performance qui
fonctionnent généralement bien, vous pouvez également modifier les paramètres par défaut d’une charge
de travail donnée. Ainsi, ces recommandations sont incluses dans le rôle BeeGFS, mais ne sont pas
activées par défaut pour s’assurer que les utilisateurs connaissent le réglage appliqué à leur système de
fichiers.

Pour activer le réglage des performances, spécifiez :

57

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Facultatif) vous pouvez régler les paramètres d’ajustement des performances dans le système
d’exploitation Linux selon vos besoins.

Pour obtenir une liste complète des paramètres de réglage disponibles que vous pouvez ajuster, consultez
la section Réglages par défaut des performances du rôle haute disponibilité BeeGFS dans la section "E-
Series site GitHub BeeGFS". Les valeurs par défaut peuvent être remplacées pour tous les nœuds du
cluster dans ce fichier ou pour le host_vars fichier d’un nœud individuel.

6. Pour permettre une connectivité 200 Go/HDR complète entre les nœuds de bloc et de fichier, utilisez le
progiciel Open Subnet Manager (OpenSM) de NVIDIA Open Fabrics Enterprise distribution
(MLNX_OFED). La version MLNX_OFED de la présente "configuration requise pour le nœud de fichiers"
est fournie avec les packages OpenSM recommandés. Bien que le déploiement à l’aide d’Ansible soit pris
en charge, vous devez d’abord installer le pilote MLNX_OFED sur tous les nœuds de fichiers.

a. Remplissez les paramètres suivants dans group_vars/ha_cluster.yml (réglez les colis si
nécessaire) :

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Configurer le udev Règle pour assurer un mappage cohérent des identificateurs de port InfiniBand
logiques aux périphériques PCIe sous-jacents.

Le udev La règle doit être unique à la topologie PCIe de chaque plate-forme de serveur utilisée comme
nœud de fichier BeeGFS.

Utilisez les valeurs suivantes pour les nœuds de fichiers vérifiés :

58

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Facultatif) mettre à jour l’algorithme de sélection de cible de métadonnées.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

Lors des tests de vérification, randomrobin Est généralement utilisé pour s’assurer que les
fichiers de test étaient répartis de façon égale sur toutes les cibles de stockage BeeGFS
pendant l’évaluation des performances (pour plus d’informations sur l’analyse comparative,
consultez le site BeeGFS pour "Analyse comparative d’un système BeeGFS"). Avec une
utilisation réelle, il est possible que les cibles numérotées soient plus rapidement que les
cibles numérotées plus élevées. Omission randomrobin et il suffit d’utiliser la valeur par
défaut randomized la valeur a été indiquée pour fournir de bonnes performances tout en
utilisant toujours toutes les cibles disponibles.

Étape 5 : définir la configuration pour le nœud de bloc commun

La configuration partagée pour les nœuds de bloc est définie dans un groupe appelé
eseries_storage_systems. Les étapes de cette section créent la configuration qui doit être incluse dans le
group_vars/ eseries_storage_systems.yml fichier.

Étapes

1. Définissez la connexion Ansible sur local, indiquez le mot de passe système et spécifiez si les certificats

59

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

SSL doivent être vérifiés. (Normalement, Ansible utilise SSH pour la connexion aux hôtes gérés, mais dans
le cas des systèmes de stockage NetApp E-Series utilisés comme nœuds de bloc, les modules utilisent
l’API REST pour la communication.) En haut du fichier, ajoutez ce qui suit :

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. Pour assurer des performances optimales, installez les versions répertoriées pour les nœuds de bloc dans
"Exigences techniques".

Téléchargez les fichiers correspondants à partir du "Site de support NetApp". Vous pouvez les mettre à
niveau manuellement ou les inclure dans le packages/ Répertoire du nœud de contrôle Ansible, puis
remplissez les paramètres suivants dans eseries_storage_systems.yml Pour la mise à niveau avec
Ansible :

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Téléchargez et installez le dernier micrologiciel de lecteur disponible pour les lecteurs installés sur vos
nœuds de bloc à partir du "Site de support NetApp". Vous pouvez les mettre à niveau manuellement ou les
inclure dans packages/ le répertoire du nœud de contrôle Ansible, puis remplir les paramètres suivants
dans eseries_storage_systems.yml pour la mise à niveau à l’aide d’Ansible :

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Réglage eseries_drive_firmware_upgrade_drives_online à false Accélère la
mise à niveau, mais ne doit pas être effectuée avant le déploiement de BeeGFS. En effet,
ce paramètre nécessite l’arrêt de toutes les E/S des disques avant la mise à niveau afin
d’éviter les erreurs d’application. Bien que la mise à niveau en ligne du micrologiciel des
lecteurs avant la configuration des volumes soit toujours rapide, nous vous recommandons
de toujours définir cette valeur sur true pour éviter tout problème par la suite.

4. Pour optimiser les performances, effectuez les modifications suivantes de la configuration globale :

60

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

5. Pour optimiser le provisionnement et le comportement des volumes, spécifiez les paramètres suivants :

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

La valeur spécifiée pour eseries_storage_pool_usable_drives Est spécifique aux
nœuds de bloc NetApp EF600 et contrôle l’ordre dans lequel les disques sont affectés aux
nouveaux groupes de volumes. Cette commande permet de s’assurer que les E/S de
chaque groupe sont réparties de manière homogène entre les canaux des disques back-
end.

Définissez l’inventaire Ansible pour les éléments de base BeeGFS

Après avoir défini la structure d’inventaire générale Ansible, définissez la configuration de
chaque élément de base dans le système de fichiers BeeGFS.

Ces instructions de déploiement montrent comment déployer un système de fichiers composé d’un élément de
base, incluant la gestion, les métadonnées et les services de stockage, un deuxième élément de base avec
des métadonnées et des services de stockage, et un troisième élément de base uniquement dédié au
stockage.

Ces étapes sont destinées à afficher la gamme complète des profils de configuration standard que vous
pouvez utiliser pour configurer les éléments de base NetApp BeeGFS de façon à répondre aux exigences du
système de fichiers global BeeGFS.

Dans les sections suivantes et ceci, ajustez selon les besoins pour générer l’inventaire
représentant le système de fichiers BeeGFS que vous voulez déployer. Utilisez notamment des
noms d’hôte Ansible qui représentent chaque nœud de bloc ou de fichier et le schéma
d’adressage IP souhaité pour le réseau de stockage, afin de vous assurer qu’il peut évoluer
jusqu’au nombre de nœuds de fichiers et de clients BeeGFS.

61

Étape 1 : créez le fichier d’inventaire Ansible

Étapes

1. Créer un nouveau inventory.yml file, puis insérez les paramètres suivants en remplaçant les hôtes
sous eseries_storage_systems si nécessaire pour représenter les nœuds en mode bloc dans votre
déploiement. Les noms doivent correspondre au nom utilisé pour host_vars/<FILENAME>.yml.

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

Dans les sections suivantes, vous allez créer des groupes Ansible supplémentaires sous ha_cluster Qui
représentent les services BeeGFS que vous voulez exécuter dans le cluster.

Étape 2 : configurer l’inventaire d’un élément de base de gestion, de métadonnées et de stockage

Le premier élément de base ou du cluster doit inclure le service de gestion BeeGFS ainsi que les services de
métadonnées et de stockage :

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

 beegfs_01:

62

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_07:

63

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Créez le fichier group_vars/mgmt.yml et inclure les éléments suivants :

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Sous group_vars/, créez des fichiers pour les groupes de ressources meta_01 à meta_08 à l’aide du
modèle suivant, puis remplissez les valeurs des espaces réservés pour chaque service faisant référence
au tableau ci-dessous :

64

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

La taille du volume est indiquée sous forme de pourcentage du pool de stockage global
(également appelé groupe de volumes). NetApp recommande fortement de laisser une
certaine capacité libre dans chaque pool afin d’autoriser le sur-provisionnement SSD (pour
plus d’informations, voir "Présentation de la baie NetApp EF600"). Le pool de stockage,
beegfs_m1_m2_m5_m6, alloue également 1% de la capacité du pool pour le service de
gestion. Ainsi, pour les volumes de métadonnées dans le pool de stockage,
beegfs_m1_m2_m5_m6, Si vous utilisez des disques de 1,92 To ou 3,84 To, définissez cette
valeur sur 21.25; Pour les lecteurs 7,65 To, définissez cette valeur sur 22.25; Et pour les
disques de 15,3 To, définissez cette valeur sur 23.75.

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_01.yml 8015 i1b:100.127.1
01.1/16
i2b:100.127.1
02.1/16

0 netapp_01 beegfs_m1_
m2_m5_m6

A

meta_02.yml 8025 i2b:100.127.1
02.2/16
i1b:100.127.1
01.2/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1
01.3/16
i4b:100.127.1
02.3/16

1 netapp_02 beegfs_m3_
m4_m7_m8

A

65

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_04.yml 8045 i4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

0 netapp_01 beegfs_m1_
m2_m5_m6

A

meta_06.yml 8065 i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

1 netapp_02 beegfs_m3_
m4_m7_m8

A

meta_08.yml 8085 i4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

4. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_01 à stor_08 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

66

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

Pour connaître la taille correcte à utiliser, reportez-vous à la section "Pourcentages de
surprovisionnement recommandés pour le pool de stockage".

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_01.yml 8013 i1b:100.127.1
03.1/16
i2b:100.127.1
04.1/16

0 netapp_01 beegfs_s1_s2 A

stor_02.yml 8023 i2b:100.127.1
04.2/16
i1b:100.127.1
03.2/16

0 netapp_01 beegfs_s1_s2 B

stor_03.yml 8033 i3b:100.127.1
03.3/16
i4b:100.127.1
04.3/16

1 netapp_02 beegfs_s3_s4 A

stor_04.yml 8043 i4b:100.127.1
04.4/16
i3b:100.127.1
03.4/16

1 netapp_02 beegfs_s3_s4 B

67

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_05.yml 8053 i1b:100.127.1
03.5/16
i2b:100.127.1
04.5/16

0 netapp_01 beegfs_s5_s6 A

stor_06.yml 8063 i2b:100.127.1
04.6/16
i1b:100.127.1
03.6/16

0 netapp_01 beegfs_s5_s6 B

stor_07.yml 8073 i3b:100.127.1
03.7/16
i4b:100.127.1
04.7/16

1 netapp_02 beegfs_s7_s8 A

stor_08.yml 8083 i4b:100.127.1
04.8/16
i3b:100.127.1
03.8/16

1 netapp_02 beegfs_s7_s8 B

Étape 3 : configurer l’inventaire d’un élément de base métadonnées + stockage

Elles expliquent comment configurer un inventaire Ansible pour un élément de base de stockage + de
métadonnées BeeGFS.

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous la configuration existante :

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

 beegfs_03:

68

 beegfs_04:

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

69

2. Sous group_vars/, créez des fichiers pour les groupes de ressources meta_09 à meta_16 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Pour connaître la taille correcte à utiliser, reportez-vous à la section "Pourcentages de
surprovisionnement recommandés pour le pool de stockage".

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_09.yml 8015 i1b:100.127.1
01.9/16
i2b:100.127.1
02.9/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

A

meta_10.yml 8025 i2b:100.127.1
02.10/16
i1b:100.127.1
01.10/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_11.yml 8035 i3b:100.127.1
01.11/16
i4b:100.127.1
02.11/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

A

meta_12.yml 8045 i4b:100.127.1
02.12/16
i3b:100.127.1
01.12/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

70

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_13.yml 8055 i1b:100.127.1
01.13/16
i2b:100.127.1
02.13/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

A

meta_14.yml 8065 i2b:100.127.1
02.14/16
i1b:100.127.1
01.14/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_15.yml 8075 i3b:100.127.1
01.15/16
i4b:100.127.1
02.15/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

A

meta_16.yml 8085 i4b:100.127.1
02.16/16
i3b:100.127.1
01.16/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

3. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_09 à stor_16 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

71

Pour connaître la taille correcte à utiliser, voir "Pourcentages de surprovisionnement
recommandés pour le pool de stockage" ..

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_09.yml 8013 i1b:100.127.1
03.9/16
i2b:100.127.1
04.9/16

0 netapp_03 beegfs_s9_s1
0

A

stor_10.yml 8023 i2b:100.127.1
04.10/16
i1b:100.127.1
03.10/16

0 netapp_03 beegfs_s9_s1
0

B

stor_11.yml 8033 i3b:100.127.1
03.11/16
i4b:100.127.1
04.11/16

1 netapp_04 beegfs_s11_s
12

A

stor_12.yml 8043 i4b:100.127.1
04.12/16
i3b:100.127.1
03.12/16

1 netapp_04 beegfs_s11_s
12

B

stor_13.yml 8053 i1b:100.127.1
03.13/16
i2b:100.127.1
04.13/16

0 netapp_03 beegfs_s13_s
14

A

stor_14.yml 8063 i2b:100.127.1
04.14/16
i1b:100.127.1
03.14/16

0 netapp_03 beegfs_s13_s
14

B

stor_15.yml 8073 i3b:100.127.1
03.15/16
i4b:100.127.1
04.15/16

1 netapp_04 beegfs_s15_s
16

A

stor_16.yml 8083 i4b:100.127.1
04.16/16
i3b:100.127.1
03.16/16

1 netapp_04 beegfs_s15_s
16

B

Étape 4 : configurer l’inventaire pour un élément de base stockage uniquement

Procédure de configuration d’un inventaire Ansible pour un élément de base BeeGFS Storage uniquement. La
différence majeure entre l’installation de la configuration pour un bloc de métadonnées + stockage et un bloc
modulaire uniquement destiné au stockage, c’est l’omission de tous les groupes de ressources de
métadonnées et la modification criteria_drive_count de 10 à 12 pour chaque pool de stockage.

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous la configuration existante :

72

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_17 à stor_24 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

73

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

Pour connaître la taille correcte à utiliser, voir "Pourcentages de surprovisionnement
recommandés pour le pool de stockage" .

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_17.yml 8013 i1b:100.127.1
03.17/16
i2b:100.127.1
04.17/16

0 netapp_05 beegfs_s17_s
18

A

stor_18.yml 8023 i2b:100.127.1
04.18/16
i1b:100.127.1
03.18/16

0 netapp_05 beegfs_s17_s
18

B

stor_19.yml 8033 i3b:100.127.1
03.19/16
i4b:100.127.1
04.19/16

1 netapp_06 beegfs_s19_s
20

A

stor_20.yml 8043 i4b:100.127.1
04.20/16
i3b:100.127.1
03.20/16

1 netapp_06 beegfs_s19_s
20

B

74

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_21.yml 8053 i1b:100.127.1
03.21/16
i2b:100.127.1
04.21/16

0 netapp_05 beegfs_s21_s
22

A

stor_22.yml 8063 i2b:100.127.1
04.22/16
i1b:100.127.1
03.22/16

0 netapp_05 beegfs_s21_s
22

B

stor_23.yml 8073 i3b:100.127.1
03.23/16
i4b:100.127.1
04.23/16

1 netapp_06 beegfs_s23_s
24

A

stor_24.yml 8083 i4b:100.127.1
04.24/16
i3b:100.127.1
03.24/16

1 netapp_06 beegfs_s23_s
24

B

Déployez BeeGFS

Un déploiement et une gestion de la configuration impliquent d’exécuter un ou plusieurs
playbooks contenant les tâches Ansible requises pour exécuter et placer le système
global dans l’état souhaité.

Même si toutes les tâches peuvent être incluses dans un seul manuel de vente, il est difficile pour les
systèmes complexes de gérer cette tâche très rapidement. Ansible vous permet de créer et de distribuer des
rôles comme un moyen de packaging des playbooks réutilisables et du contenu associé (par exemple,
variables par défaut, tâches et gestionnaires). Pour plus d’informations, consultez la documentation Ansible
pour "Rôles".

Les rôles sont souvent distribués dans le cadre d’une collection Ansible contenant des rôles et des modules
associés. Donc, ces playbooks importent principalement plusieurs rôles distribués dans les différentes
collections NetApp E-Series Ansible.

Actuellement, au moins deux éléments de base (quatre nœuds de fichiers) sont nécessaires
pour déployer BeeGFS, à moins qu’un périphérique quorum distinct soit configuré comme un
disjoncteur d’attache pour limiter les problèmes lors de l’établissement du quorum avec un
cluster à deux nœuds.

Étapes

1. Créer un nouveau playbook.yml classez et incluez les éléments suivants :

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

75

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 tasks:

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

76

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

Ce PlayBook s’exécute pre_tasks Vérifiez que Python 3 est installé sur les nœuds de
fichiers et vérifiez que les balises Ansible fournies sont prises en charge.

2. Utilisez le ansible-playbook Commande avec les fichiers d’inventaire et de PlayBook lorsque vous
êtes prêt à déployer BeeGFS.

Le déploiement va s’exécuter tout pre_tasks, Puis demander confirmation de l’utilisateur avant de
poursuivre le déploiement BeeGFS.

Exécuter la commande suivante en réglant le nombre de fourches selon les besoins (voir la remarque ci-
dessous) :

ansible-playbook -i inventory.yml playbook.yml --forks 20

`forks`Pour les déploiements de plus grande envergure, il est recommandé de remplacer le
nombre par défaut de fourches (5) à l’aide du paramètre afin d’augmenter le nombre d’hôtes
configurés en parallèle par Ansible. (Pour plus d’informations, voir "Contrôle de l’exécution
de PlayBook".) Le paramètre valeur maximale dépend de la puissance de traitement
disponible sur le nœud de contrôle Ansible. L’exemple ci-dessus de 20 a été exécuté sur un
nœud de contrôle Ansible virtuel avec 4 processeurs (Intel® Xeon® Gold 6146 CPU à 3,20
GHz).

Selon la taille du déploiement et les performances réseau entre le nœud de contrôle Ansible et les nœuds
de fichier et bloc BeeGFS, la durée de déploiement peut varier.

Configurer les clients BeeGFS

Vous devez installer et configurer le client BeeGFS sur tous les hôtes qui doivent accéder
au système de fichiers BeeGFS, comme les nœuds de calcul ou les nœuds GPU. Pour

77

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

cette tâche, vous pouvez utiliser Ansible et la collection BeeGFS.

Étapes

1. Si nécessaire, configurez une connexion SSH sans mot de passe depuis le nœud de contrôle Ansible vers
chacun des hôtes que vous souhaitez configurer comme clients BeeGFS :

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Sous host_vars/, Créez un fichier pour chaque client BeeGFS nommé <HOSTNAME>.yml avec le
contenu suivant, en renseignant le texte de l’espace réservé contenant les informations correctes pour
votre environnement :

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

En cas de déploiement avec un schéma d’adressage de sous-réseau à deux, deux
interfaces InfiniBand doivent être configurées sur chaque client, une dans chacun des deux
sous-réseaux IPoIB de stockage. Si vous utilisez les exemples de sous-réseaux et les
plages recommandées pour chaque service BeeGFS répertorié ici, une interface doit être
configurée dans la plage 100.127.1.0 100.127.99.255 à et l’autre dans 100.128.1.0
à 100.128.99.255.

3. Créez un nouveau fichier client_inventory.yml, puis remplissez les paramètres suivants en haut :

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

78

Ne stockez pas les mots de passe en texte brut. Utilisez plutôt Ansible Vault (consultez la
documentation Ansible pour "Cryptage de contenu avec Ansible Vault") ou utilisez l' --ask
-become-pass option lors de l’exécution du manuel de vente.

4. Dans le client_inventory.yml Fichier, répertorie tous les hôtes qui doivent être configurés comme
clients BeeGFS sous beegfs_clients Définissez ensuite toute configuration supplémentaire requise
pour générer le module de noyau client BeeGFS.

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

Lorsque vous utilisez les pilotes OFED NVIDIA, assurez-vous que
beegfs_client_ofed_include_path pointe vers le "header include path" correct pour
votre installation Linux. Pour plus d’informations, consultez la documentation BeeGFS pour
"Prise en charge de RDMA".

5. Dans le client_inventory.yml Fichier, répertorie les systèmes de fichiers BeeGFS que vous
souhaitez monter au bas de tout ce qui a été défini précédemment vars.

79

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

Le beegfs_client_config représente les paramètres testés. Reportez-vous à la
documentation fournie avec le netapp_eseries.beegfs collection beegfs_client rôle
pour une vue d’ensemble complète de toutes les options. Cela inclut le montage de
plusieurs systèmes de fichiers BeeGFS ou le montage du même système de fichiers
BeeGFS plusieurs fois.

6. Créer un nouveau client_playbook.yml puis remplissez les paramètres suivants :

80

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Ignorer l’importation du netapp_eseries.host collecte et ipoib Rôle si vous avez déjà
installé les pilotes IB/RDMA requis et configuré les adresses IP sur les interfaces IPoIB
appropriées.

7. Pour installer et construire le client et monter BeeGFS, exécutez la commande suivante :

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Avant de placer le système de fichiers BeeGFS en production, nous vous recommandons fortement de
vous connecter à n’importe quel client et de l’exécuter beegfs-fsck --checkfs afin de garantir que
tous les nœuds sont accessibles et qu’aucun problème n’est signalé.

Faites évoluer votre infrastructure au-delà de cinq éléments de base

Vous pouvez configurer Pacemaker et Corosync pour qu’elle dépasse cinq éléments de
base (10 nœuds de fichiers). Toutefois, il y a des inconvénients pour les grands clusters,
et finalement Pacemaker et Corosync imposent un maximum de 32 nœuds.

NetApp n’a testé que les clusters BeeGFS HA pour jusqu’à 10 nœuds. Il n’est pas recommandé ou pris en
charge de faire évoluer des clusters individuels au-delà de cette limite. Toutefois, les systèmes de fichiers
BeeGFS nécessitent une évolutivité bien supérieure à 10 nœuds, et NetApp en est responsable dans la
solution BeeGFS sur NetApp.

En déployant plusieurs clusters HA contenant un sous-ensemble des éléments de base de chaque système de
fichiers, vous pouvez faire évoluer le système de fichiers BeeGFS indépendamment de toutes les limites
recommandées ou strictes sur les mécanismes de mise en cluster HA sous-jacents. Dans ce scénario,
procédez comme suit :

• Créez un nouvel inventaire Ansible représentant les clusters HA supplémentaires, puis ignorez la
configuration d’un autre service de gestion. Pointez plutôt le beegfs_ha_mgmtd_floating_ip variable
dans chaque cluster supplémentaire ha_cluster.yml Vers l’IP pour le premier service de gestion
BeeGFS.

81

• Lorsque vous ajoutez des clusters haute disponibilité supplémentaires sur le même système de fichiers,
vérifiez ce qui suit :

◦ Les ID de nœud BeeGFS sont uniques.

◦ Les noms de fichiers correspondant à chaque service sous group_vars est unique dans tous les
clusters.

◦ Les adresses IP du client et du serveur BeeGFS sont uniques dans tous les clusters.

◦ Le premier cluster HA contenant le service de gestion BeeGFS est exécuté avant de tenter de déployer
ou de mettre à jour des clusters supplémentaires.

• Maintenir les inventaires pour chaque cluster HA séparément dans leur propre arborescence de
répertoires.

La combinaison des fichiers d’inventaire de plusieurs clusters dans une arborescence de répertoires peut
entraîner des problèmes avec la façon dont le rôle BeeGFS HA agrège la configuration appliquée à un
cluster donné.

Chaque cluster haute disponibilité n’a aucune exigence à évoluer jusqu’à cinq éléments de base
avant d’en créer un nouveau. Dans bien des cas, la gestion requiert moins d’éléments de base
par cluster est plus simple. Une approche consiste à configurer les éléments de base de chaque
rack en tant que cluster haute disponibilité.

Pourcentages de surprovisionnement recommandés pour le pool de stockage

Lorsque vous suivez la configuration standard des quatre volumes par pool de stockage
pour les éléments de base de deuxième génération, consultez le tableau suivant.

Ce tableau fournit les pourcentages recommandés à utiliser comme taille de volume dans
eseries_storage_pool_configuration Pour chaque cible de stockage ou de métadonnées BeeGFS :

Taille du disque Taille

1,92 TO 18

3,84 TO 21.5

7,68 TO 22.5

15,3 TO 24

Les recommandations ci-dessus ne s’appliquent pas au pool de stockage contenant le service
de gestion, ce qui devrait réduire la taille ci-dessus de .25 % pour allouer 1 % du pool de
stockage aux données de gestion.

Pour comprendre comment ces valeurs ont été déterminées, reportez-vous à la section "Tr-4800 : Annexe A :
compréhension de la longévité et du sur-provisionnement des disques SSD".

Élément de base haute capacité

Le guide de déploiement de la solution BeeGFS standard décrit les procédures et les
recommandations pour répondre aux exigences des workloads de haute performance.
Les clients cherchant à répondre aux besoins en capacité élevés doivent observer les

82

https://www.netapp.com/media/17009-tr4800.pdf
https://www.netapp.com/media/17009-tr4800.pdf

variations du déploiement et les recommandations décrites ici.

Contrôleurs

Pour les éléments de base haute capacité, les contrôleurs EF600 doivent être remplacés par des contrôleurs
EF300, chacun avec une HIC Cascade installée pour l’extension SAS. Chaque nœud de bloc aura un nombre
minimal de SSD NVMe dans le boîtier de la baie pour le stockage de métadonnées BeeGFS et sera relié à des
tiroirs d’extension dotés de disques durs NL-SAS pour les volumes de stockage BeeGFS.

La configuration du noeud fichier à noeud bloc reste la même.

Placement des disques

Chaque nœud de bloc exige un minimum de 4 SSD NVMe pour le stockage de métadonnées BeeGFS. Ces
lecteurs doivent être placés dans les emplacements les plus extérieurs du boîtier.

83

Bacs d’extension

L’élément de base haute capacité peut être dimensionné avec 1-7, 60 tiroirs d’extension de disque par matrice
de stockage.

Pour obtenir des instructions sur le câble de chaque bac d’extension, "Consultez la section câblage EF300
pour les tiroirs disques".

84

https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^
https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^

Utiliser des architectures personnalisées

Présentation et configuration requise

Utilisez tous les systèmes de stockage NetApp E/EF-Series comme nœuds de bloc
BeeGFS et serveurs x86 comme nœuds de fichiers BeeGFS lors du déploiement de
clusters haute disponibilité BeeGFS à l’aide d’Ansible.

Les définitions de la terminologie utilisée dans cette section se trouvent à la "termes et
concepts" page.

Introduction

Même si "Architectures vérifiées NetApp" nous fournissons des configurations de référence prédéfinies et des
conseils sur le dimensionnement, certains clients et partenaires préfèrent peut-être concevoir des architectures
personnalisées mieux adaptées à des exigences spécifiques ou à des préférences matérielles spécifiques.
L’un des principaux avantages de BeeGFS sur NetApp est la possibilité de déployer des clusters HA à disque
partagé BeeGFS à l’aide d’Ansible, en simplifiant la gestion du cluster et en améliorant la fiabilité grâce aux
composants HA de NetApp. Le déploiement d’architectures BeeGFS sur NetApp est toujours réalisé à l’aide
d’Ansible, tout en conservant une approche de type appliance sur un éventail flexible de matériel.

Cette section présente les étapes générales requises pour déployer des systèmes de fichiers BeeGFS sur du
matériel NetApp et pour utiliser Ansible afin de configurer les systèmes de fichiers BeeGFS. Pour en savoir
plus sur les bonnes pratiques de conception des systèmes de fichiers BeeGFS et sur les exemples
optimisés"Architectures vérifiées NetApp", reportez-vous à la section.

Présentation du déploiement

Le déploiement d’un système de fichiers BeeGFS implique généralement les étapes suivantes :

• Configuration initiale :

◦ Installer/raccorder le matériel de fixation.

◦ Configurez les nœuds de fichiers et de blocs.

◦ Configurez un nœud de contrôle Ansible.

• Définissez le système de fichiers BeeGFS comme un inventaire Ansible.

• Exécutez Ansible sur des nœuds de fichiers et de blocs pour déployer BeeGFS.

◦ Vous pouvez également configurer des clients et monter BeeGFS.

Les sections suivantes couvriront ces étapes plus en détail.

Ansible gère toutes les tâches de provisionnement et de configuration des logiciels, y compris :

• Création/mappage de volumes sur des nœuds de blocs.

• Formatage/réglage des volumes sur les nœuds de fichiers.

• Installation/configuration du logiciel sur les nœuds de fichiers.

• Création du cluster HA et configuration des ressources BeeGFS et des services de système
de fichiers.

85

../second-gen/beegfs-solution-overview.html

De formation

La prise en charge de BeeGFS dans Ansible est activée "Galaxy Ansible" Ensemble de rôles et de modules
qui automatisent le déploiement et la gestion de bout en bout des clusters BeeGFS HA.

BeeGFS est également versionné suivant un schéma de gestion des versions <major>.<minor>.<patch> et la
collection conserve les rôles pour chaque version <major>.<minor> prise en charge de BeeGFS, par exemple
BeeGFS 7.2 ou BeeGFS 7.3. À mesure que les mises à jour de la collection sont publiées, la version patch
dans chaque rôle sera mise à jour pour pointer à la dernière version BeeGFS disponible pour cette branche de
publication (exemple : 7.2.8). Chaque version de la collection est également testée et prise en charge avec
des distributions et versions Linux spécifiques, actuellement Red Hat pour les nœuds de fichiers et Red Hat et
Ubuntu pour les clients. L’exécution d’autres distributions n’est pas prise en charge et l’exécution d’autres
versions (en particulier d’autres versions majeures) n’est pas recommandée.

Nœud de contrôle Ansible

Ce nœud contiendra l’inventaire et les manuels de vente utilisés pour gérer BeeGFS. Elle requiert :

• Ansible 6.x (noyau ansible 2.13)

• Python 3.6 (ou version ultérieure)

• Paquets Python (pip) : ipadr et netaddr

Il est également recommandé d’installer SSH sans mot de passe depuis le nœud de contrôle vers tous les
nœuds de fichiers et clients BeeGFS.

Nœuds de fichiers BeeGFS

Les nœuds de fichiers doivent exécuter Red Hat Enterprise Linux (RHEL) 9.4 et avoir accès au référentiel HA
contenant les packages requis (pacemaker, corosync, fence-agents-all, resource-agents). Par exemple, la
commande suivante peut être exécutée pour activer le référentiel approprié sur RHEL 9 :

subscription-manager repo-override repo=rhel-9-for-x86_64-

highavailability-rpms --add=enabled:1

Nœuds clients BeeGFS

Un rôle de client BeeGFS Ansible est disponible pour installer le paquet client BeeGFS et gérer le(s) BeeGFS
mount(s). Ce rôle a été testé avec RHEL 9.4 et Ubuntu 22.04.

Si vous n’utilisez pas Ansible pour configurer le client BeeGFS et monter BeeGFS, tout "BeeGFS prend en
charge la distribution et le noyau Linux" peut être utilisé.

Configuration initiale

Installez et fixez les câbles

Étapes nécessaires pour installer et câbler le matériel utilisé pour exécuter BeeGFS sur
NetApp.

86

https://galaxy.ansible.com/netapp_eseries/beegfs
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels

Planifier l’installation

Chaque système de fichiers BeeGFS est composé d’un certain nombre de nœuds de fichiers exécutant des
services BeeGFS à l’aide du stockage back-end fourni par un certain nombre de nœuds de blocs. Les nœuds
de fichiers sont configurés en un ou plusieurs clusters haute disponibilité pour assurer la tolérance aux pannes
des services BeeGFS. Chaque nœud de bloc est déjà une paire haute disponibilité actif-actif. Le nombre
minimal de nœuds de fichiers pris en charge dans chaque cluster haute disponibilité est de trois, et le nombre
maximum de nœuds de fichiers pris en charge dans chaque cluster est de dix. Les systèmes de fichiers
BeeGFS peuvent évoluer au-delà de dix nœuds en déployant plusieurs clusters HA indépendants qui
fonctionnent ensemble pour fournir un espace de noms de système de fichiers unique.

Généralement, chaque cluster haute disponibilité est déployé sous la forme d’éléments de base, où un certain
nombre de nœuds de fichiers (serveurs x86) sont directement connectés à un certain nombre de nœuds blocs
(généralement des systèmes de stockage E-Series). Cette configuration crée un cluster asymétrique où les
services BeeGFS peuvent uniquement s’exécuter sur certains nœuds de fichiers qui ont accès au stockage de
bloc back-end utilisé pour les cibles BeeGFS. L’équilibre entre des nœuds de fichier à bloc dans chaque
élément de base et le protocole de stockage utilisé pour les connexions directes dépend des exigences d’une
installation précise.

Une autre architecture de cluster haute disponibilité utilise une structure de stockage (également appelée
réseau SAN) entre les nœuds de fichiers et de blocs pour établir un cluster symétrique. Cela permet aux
services BeeGFS de s’exécuter sur n’importe quel nœud de fichiers d’un cluster HA particulier. En général, les
clusters symétriques ne sont pas aussi économiques en raison du matériel SAN supplémentaire, cette
documentation suppose l’utilisation d’un cluster asymétrique déployé en tant que série d’un ou plusieurs
éléments de base.

Assurez-vous que l’architecture de système de fichiers souhaitée pour un déploiement BeeGFS
particulier est bien comprise avant de poursuivre l’installation.

Matériel en rack

Lors de la planification de l’installation, il est important que tous les équipements de chaque élément de base
soient montés en rack dans des unités adjacentes. Il est recommandé d’installer les nœuds de fichiers
immédiatement au-dessus des nœuds de blocs dans chaque élément de base. Suivez la documentation du ou
des modèles de fichier et "bloc" les nœuds que vous utilisez lorsque vous installez des rails et du matériel
dans le rack.

Exemple d’un élément de base unique :

87

https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Exemple d’installation BeeGFS où il y a plusieurs éléments de base dans chaque cluster HA et plusieurs
clusters HA dans le système de fichiers :

88

Nœud de bloc et fichier de câble

En général, vous connecterons directement les ports HIC des nœuds de blocs E-Series à l’adaptateur Channel
hôte désigné (pour les protocoles InfiniBand) ou aux ports d’adaptateur bus hôte (pour les protocoles Fibre
Channel et autres) des nœuds de fichiers. La façon exacte d’établir ces connexions dépendra de l’architecture
de système de fichiers souhaitée, voici un exemple "Basé sur l’architecture vérifiée NetApp, BeeGFS sur
NetApp":

Nœuds de fichiers de câble vers le réseau client

Chaque nœud de fichier aura un certain nombre de ports InfiniBand ou Ethernet désignés pour le trafic client
BeeGFS. Selon l’architecture, chaque nœud de fichiers dispose d’une ou plusieurs connexions à un réseau
client/de stockage hautes performances, avec possibilité de recourir à plusieurs commutateurs pour assurer la
redondance et augmenter la bande passante. Voici un exemple de câblage client utilisant des commutateurs
réseau redondants, où les ports en vert foncé et en vert clair sont connectés à des commutateurs distincts :

89

Connexion réseau et alimentation de gestion

Établissez toutes les connexions réseau nécessaires pour les réseaux intrabande et hors bande.

Connectez tous les blocs d’alimentation en vous assurant que chaque nœud de fichier et de bloc dispose de
connexions à plusieurs unités de distribution d’alimentation pour la redondance (si disponible).

Configurez les nœuds de fichier et de bloc

Étapes manuelles nécessaires pour configurer les nœuds de blocs et de fichiers avant
d’exécuter Ansible.

Nœuds de fichiers

Configuration du contrôleur BMC (Baseboard Management Controller)

Un contrôleur de gestion de la carte mère (BMC), parfois appelé processeur de service, est le nom générique
de la fonctionnalité de gestion hors bande intégrée dans diverses plates-formes de serveurs qui fournissent un
accès à distance même si le système d’exploitation n’est pas installé ou accessible. Les fournisseurs vendent
généralement cette fonctionnalité avec leur propre marque. Par exemple, sur le Lenovo SR665, le contrôleur
BMC est appelé XCC (Lenovo XClarity Controller).

Suivez la documentation du fournisseur du serveur pour activer toutes les licences nécessaires pour accéder à
cette fonctionnalité et vérifier que le contrôleur BMC est connecté au réseau et configuré de manière
appropriée pour l’accès à distance.

Si vous souhaitez utiliser Redfish pour l’escrime basé sur BMC, assurez-vous que Redfish est
activé et que l’interface BMC est accessible à partir du système d’exploitation installé sur le
nœud de fichiers. Une configuration spéciale peut être nécessaire sur le commutateur réseau si
le contrôleur BMC et le système d’exploitation partagent la même interface réseau physique.

Réglage des paramètres système

À l’aide de l’interface de configuration du système (BIOS/UEFI), assurez-vous que les paramètres sont définis
pour optimiser les performances. Les paramètres exacts et les valeurs optimales varient en fonction du modèle
de serveur utilisé. Des conseils sont fournis pour "modèles de nœud de fichier vérifiés", sinon reportez-vous à
la documentation du fournisseur du serveur et aux meilleures pratiques en fonction de votre modèle.

90

Installer un système d’exploitation

Installez un système d’exploitation pris en charge en fonction de la configuration requise pour "ici"le nœud de
fichiers indiquée . Reportez-vous aux étapes supplémentaires ci-dessous en fonction de votre distribution
Linux.

Red Hat

, voir "Comment enregistrer et souscrire un système RHEL" et "Comment limiter les mises à jour" .

Activez le référentiel Red Hat contenant les packages requis pour la haute disponibilité :

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

Configurer le réseau de gestion

Configurez toutes les interfaces réseau nécessaires pour permettre la gestion intrabande du système
d’exploitation. Les étapes exactes dépendent de la distribution et de la version spécifiques de Linux utilisées.

Assurez-vous que SSH est activé et que toutes les interfaces de gestion sont accessibles
depuis le nœud de contrôle Ansible.

Mettre à jour le micrologiciel HCA et HBA

Assurez-vous que tous les HBA et les HCA exécutent les versions de micrologiciel prises en charge
répertoriées sur le "Matrice d’interopérabilité NetApp" et mettez à niveau si nécessaire. Des recommandations
supplémentaires pour les adaptateurs NVIDIA ConnectX sont disponibles "ici".

Nœuds de blocs

Suivez les étapes à "Mise en service de la gamme E-Series" pour configurer le port de gestion sur chaque
contrôleur de nœud de bloc et définir éventuellement le nom de la matrice de stockage pour chaque système.

Aucune configuration supplémentaire ne s’applique à garantir que tous les nœuds de bloc sont
accessibles depuis le nœud de contrôle Ansible. La configuration système restante sera
appliquée/gérée à l’aide d’Ansible.

Configurez le nœud de contrôle Ansible

Configurez un nœud de contrôle Ansible pour déployer et gérer le système de fichiers.

Présentation

Un nœud de contrôle Ansible est une machine Linux physique ou virtuelle utilisée pour gérer le cluster. Il doit
répondre aux exigences suivantes :

• Rencontrez le "de formation"rôle haute disponibilité BeeGFS, y compris les versions installées d’Ansible,
Python et tous les packages Python supplémentaires.

• Rencontrez l’agent "Configuration requise pour le nœud de contrôle Ansible" y compris les versions de
système d’exploitation.

91

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://imt.netapp.com/matrix/
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements

• Accès SSH et HTTPS à tous les nœuds de fichiers et de blocs.

Les étapes d’installation détaillées "ici"sont disponibles .

Définissez le système de fichiers BeeGFS

Présentation d’Ansible Inventory

L’inventaire Ansible est un ensemble de fichiers de configuration qui définissent le cluster
BeeGFS HA souhaité.

Présentation

Il est recommandé de suivre les pratiques Ansible standard pour l’organisation de votre "inventaire", y compris
l’utilisation de "sous-répertoires/fichiers" au lieu de stocker l’intégralité de l’inventaire dans un seul fichier.

L’inventaire Ansible pour un seul cluster BeeGFS HA est organisé comme suit :

Comme un seul système de fichiers BeeGFS peut s’étendre sur plusieurs clusters HA, il est
possible aux grandes installations de disposer de plusieurs inventaires Ansible. En règle
générale, il n’est pas recommandé de définir plusieurs clusters HA en tant qu’inventaire Ansible
unique pour éviter tout problème.

Étapes

1. Sur votre nœud de contrôle Ansible, créez un répertoire vide qui contiendra l’inventaire Ansible pour le

92

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

cluster BeeGFS que vous souhaitez déployer.

a. Si votre système de fichiers contient plusieurs clusters haute disponibilité, il est recommandé de créer
d’abord un répertoire pour le système de fichiers, puis des sous-répertoires pour l’inventaire
représentant chaque cluster haute disponibilité. Par exemple :

beegfs_file_system_1/

 beegfs_cluster_1/

 beegfs_cluster_2/

 beegfs_cluster_N/

2. Dans le répertoire contenant l’inventaire du cluster HA que vous souhaitez déployer, créez deux
répertoires group_vars et host_vars et deux fichiers inventory.yml et playbook.yml.

Les sections suivantes décrivent la définition du contenu de chacun de ces fichiers.

Planifiez le système de fichiers

Planifiez le déploiement du système de fichiers avant de créer l’inventaire Ansible.

Présentation

Avant de déployer le système de fichiers, vous devez définir les adresses IP, les ports et autres configurations
requis par tous les nœuds de fichiers, les nœuds de bloc et les services BeeGFS s’exécutant dans le cluster.
La configuration exacte varie en fonction de l’architecture du cluster, mais cette section définit les meilleures
pratiques et les étapes à suivre généralement applicables.

Étapes

1. Si vous utilisez un protocole de stockage IP (iser, iSCSI, NVMe/IB ou NVMe/RoCE) pour connecter les
nœuds de fichiers aux nœuds de bloc, remplissez la fiche suivante pour chaque élément de base. Chaque
connexion directe dans un seul bloc de construction doit disposer d’un sous-réseau unique et ne doit pas
se chevaucher avec les sous-réseaux utilisés pour la connectivité client-serveur.

Nœud de
fichier

Port IB Adresse IP Nœud de bloc Port IB IP physique Adresse IP
virtuelle (pour
EF600 avec
HDR IB
uniquement)

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<IP/SUBNET
>

Si les nœuds de fichier et de bloc de chaque module sont directement connectés, vous
pouvez souvent réutiliser les mêmes adresses IP/schéma pour plusieurs éléments de base.

2. Que vous utilisiez InfiniBand ou RDMA over Converged Ethernet (RoCE) pour le réseau de stockage,
remplissez la fiche suivante pour déterminer les plages IP qui seront utilisées pour les services de cluster
HA, les services de fichiers BeeGFS et les clients pour communiquer :

93

Objectif Port InfiniBand Adresse IP ou plage

IP(s) de cluster BeeGFS <INTERFACE(s)> <RANGE>

Gestion BeeGFS <INTERFACE(s)> <IP(s)>

Métadonnées BeeGFS <INTERFACE(s)> <RANGE>

Stockage BeeGFS <INTERFACE(s)> <RANGE>

Clients BeeGFS <INTERFACE(s)> <RANGE>

a. Si vous utilisez un seul sous-réseau IP, une seule feuille de calcul est nécessaire. Sinon, remplissez
également la feuille de calcul du second sous-réseau.

3. En fonction de ce qui précède, pour chaque élément de base du cluster, remplissez la feuille de travail
suivante définissant les services BeeGFS qu’il exécutera. Pour chaque service, spécifiez le ou les nœuds
de fichiers préférés/secondaires, le port réseau, les adresses IP flottantes, l’affectation de zone NUMA (si
nécessaire) et le ou les nœuds de bloc qui seront utilisés pour ses cibles. Reportez-vous aux directives
suivantes lorsque vous remplissez la fiche :

a. Spécifiez les services BeeGFS comme l’un ou l’autre mgmt.yml, meta_<ID>.yml, ou
storage_<ID>.yml Où ID représente un nombre unique pour tous les services BeeGFS de ce type
dans ce système de fichiers. Cette convention simplifie le renvoi à cette feuille de calcul dans les
sections suivantes tout en créant des fichiers pour configurer chaque service.

b. Les ports pour les services BeeGFS ne doivent être uniques qu’à travers un élément de construction
particulier. Assurez-vous que les services ayant le même numéro de port ne peuvent jamais être
exécutés sur le même nœud de fichier pour éviter les conflits de ports.

c. Si nécessaire, les services peuvent utiliser des volumes de plusieurs nœuds de blocs et/ou pool de
stockage (et tous les volumes ne doivent pas être détenus par le même contrôleur). Plusieurs services
peuvent également partager la même configuration de nœud de bloc et/ou de pool de stockage (des
volumes individuels seront définis dans une section ultérieure).

Service
BeeGFS
(nom de
fichier)

Nœuds de
fichiers

Port Adresses
IP
flottantes

Zone
NUMA

Nœud de
bloc

Pool de
stockage

Contrôleur
propriétair
e

<SERVICE
TYPE>_<I
D>.yml

<PREFER
RED FILE
NODE>
<SECOND
ARY FILE
NODE(s)>

<PORT> <INTERFA
CE>:<IP/S
UBNET>
<INTERFA
CE>:<IP/S
UBNET>

<NUMA
NODE/ZO
NE>

<BLOCK
NODE>

<STORAG
E
POOL/VOL
UME
GROUP>

<A OR B>

Pour en savoir plus sur les conventions standard, les bonnes pratiques "et des meilleures pratiques"et les
feuilles de calcul fournies, consultez "Définir des éléments de base BeeGFS"les sections et de l’architecture
vérifiée BeeGFS sur NetApp.

Définir les nœuds de fichier et de bloc

Configurer des nœuds de fichiers individuels

Spécifiez la configuration des nœuds de fichiers individuels à l’aide de variables hôte
(Host_var).

94

Présentation

Cette section décrit le remplissage d’un host_vars/<FILE_NODE_HOSTNAME>.yml fichier pour chaque
nœud de fichiers du cluster. Ces fichiers ne doivent contenir qu’une configuration unique à un nœud de fichier
particulier. Les points suivants sont généralement utilisés :

• Définition de l’IP ou du nom d’hôte Ansible doit utiliser pour se connecter au nœud.

• Configuration d’interfaces supplémentaires et d’adresses IP de cluster utilisées pour les services de cluster
HA (Pacemaker et Corosync) pour communiquer avec d’autres nœuds de fichiers. Par défaut, ces services
utilisent le même réseau que l’interface de gestion, mais des interfaces supplémentaires doivent être
disponibles pour la redondance. La pratique courante consiste à définir des adresses IP supplémentaires
sur le réseau de stockage, ce qui évite d’avoir recours à un cluster ou à un réseau de gestion
supplémentaire.

◦ Les performances des réseaux utilisés pour la communication en cluster ne sont pas critiques pour les
performances du système de fichiers. Avec la configuration de cluster par défaut, un réseau d’au moins
1 Gbit/s fournit généralement des performances suffisantes pour les opérations de cluster telles que la
synchronisation des États de nœud et la coordination des modifications de l’état des ressources du
cluster. Les réseaux lents/occupés peuvent entraîner des changements d’état des ressources qui
prennent plus de temps que d’habitude. Dans des cas extrêmes, les nœuds risquent d’être supprimés
du cluster s’ils ne peuvent pas envoyer des signaux cardiaques dans des délais raisonnables.

• Configuration des interfaces utilisées pour la connexion aux nœuds de bloc via le protocole souhaité (par
exemple : iSCSI/iser, NVMe/IB, NVMe/RoCE, FCP, etc.)

Étapes

En faisant référence au schéma d’adressage IP défini dans la "Planifiez le système de fichiers" section, pour
chaque nœud de fichier du cluster, créez un fichier host_vars/<FILE_NODE_HOSTNAME>/yml et
remplissez-le comme suit :

1. En haut de la page, indiquez l’IP ou le nom d’hôte Ansible doit utiliser pour SSH sur le nœud et le gérer :

ansible_host: "<MANAGEMENT_IP>"

2. Configurez des adresses IP supplémentaires qui peuvent être utilisées pour le trafic du cluster :

a. Si le type de réseau est "InfiniBand (avec IPoib)":

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Si le type de réseau est "RDMA over Converged Ethernet (RoCE)":

95

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Si le type de réseau est "Ethernet (TCP uniquement, pas de RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

3. Indiquez quelles adresses IP doivent être utilisées pour le trafic du cluster, avec des adresses IP préférées
répertoriées plus haut :

beegfs_ha_cluster_node_ips:

- <MANAGEMENT_IP> # Including the management IP is typically but not

required.

- <IP_ADDRESS> # Ex: 100.127.100.1

- <IP_ADDRESS> # Additional IPs as needed.

IPS configuré à l’étape deux ne sera pas utilisé comme adresses IP de cluster à moins
qu’elles ne soient incluses dans le beegfs_ha_cluster_node_ips liste. Cela vous
permet de configurer des adresses IP/interfaces supplémentaires à l’aide d’Ansible, qui
peuvent être utilisées à d’autres fins si nécessaire.

4. Si le nœud de fichiers doit communiquer pour bloquer les nœuds via un protocole IP, les adresses IP
doivent être configurées sur l’interface appropriée, ainsi que tous les packages requis pour ce protocole
installés/configurés.

a. En cas d’utilisation "ISCSI":

eseries_iscsi_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

b. En cas d’utilisation "Iser":

96

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md

eseries_ib_iser_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

c. En cas d’utilisation "NVMe/IB":

eseries_nvme_ib_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

d. En cas d’utilisation "NVMe/RoCE":

eseries_nvme_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Autres protocoles :

i. En cas d’utilisation "NVMe/FC", il n’est pas nécessaire de configurer des interfaces individuelles.
Le déploiement du cluster BeeGFS détecte automatiquement le protocole et installe/configure les
exigences selon les besoins. Si vous utilisez une structure pour connecter des nœuds de fichiers et
de blocs, assurez-vous que les commutateurs sont correctement zonés en suivant les meilleures
pratiques de NetApp et de votre fournisseur de commutateurs.

ii. L’utilisation de FCP ou de SAS ne nécessite pas l’installation ou la configuration de logiciels
supplémentaires. Si vous utilisez FCP, assurez-vous que les commutateurs sont correctement
zonés suivant "NetApp" et les meilleures pratiques de votre fournisseur de commutateurs.

iii. L’utilisation du SRP IB n’est pas recommandée pour le moment. Utilisez les technologies NVMe/IB
ou iser selon les systèmes que prennent en charge les nœuds bloc E-Series.

Cliquez sur "ici" par exemple, un fichier d’inventaire complet représentant un nœud de fichier unique.

Avancé : basculement des adaptateurs VPI NVIDIA ConnectX entre Ethernet et InfiniBand

Les adaptateurs NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) prennent en charge les protocoles
InfiniBand et Ethernet comme couche de transport. Le passage d’un mode à l’autre n’est pas négocié
automatiquement et doit être configuré à l’aide de mstconfig l’outil inclus dans mstflint, un package open
source qui fait partie du "Outils de fermeté NVIDIA (MFT)". La modification du mode des adaptateurs ne doit
être effectuée qu’une seule fois. Cette opération peut être effectuée manuellement ou incluse dans l’inventaire
Ansible dans le cadre de toute interface configurée à l’aide de la eseries-
[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce]_interfaces: section de l’inventaire pour que cette
opération soit vérifiée/appliquée automatiquement.

Par exemple, pour modifier le courant d’une interface en mode InfiniBand en Ethernet et pouvoir l’utiliser pour

97

https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml
https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters

RoCE :

1. Pour chaque interface que vous souhaitez configurer, spécifiez mstconfig en tant que mappage (ou
dictionnaire) spécifié LINK_TYPE_P<N> où <N> Est déterminé par le numéro de port HCA de l’interface.
Le <N> la valeur peut être déterminée en cours d’exécution grep PCI_SLOT_NAME
/sys/class/net/<INTERFACE_NAME>/device/uevent Et ajout de 1 au dernier numéro à partir du
nom du slot PCI et conversion en décimal.

a. Par exemple donné PCI_SLOT_NAME=0000:2f:00.2 (2 + 1 → port HCA 3) → LINK_TYPE_P3:
eth:

eseries_roce_interfaces:

- name: <INTERFACE>

 address: <IP/SUBNET>

 mstconfig:

 LINK_TYPE_P3: eth

Pour plus de détails, reportez-vous au "Documentation de la collection d’hôtes NetApp E-Series" pour le
type/protocole d’interface que vous utilisez.

Configurez des nœuds de bloc individuels

Spécifiez la configuration pour les nœuds de bloc individuels à l’aide de variables hôte
(Host_var).

Présentation

Cette section décrit le remplissage d’un host_vars/<BLOCK_NODE_HOSTNAME>.yml fichier pour chaque
nœud de bloc du cluster. Ces fichiers ne doivent contenir qu’une configuration unique à un nœud de bloc
particulier. Les points suivants sont généralement utilisés :

• Nom du système (tel qu’il s’affiche dans System Manager).

• L’URL HTTPS pour l’un des contrôleurs (utilisée pour gérer le système à l’aide de son API REST).

• Quels nœuds de fichiers de protocole de stockage utilisent pour se connecter à ce nœud en mode bloc ?

• Configuration des ports HIC (carte d’interface hôte), tels que les adresses IP (si nécessaire).

Étapes

En référençant le schéma d’adressage IP défini dans la "Planifiez le système de fichiers" section, pour chaque
nœud de bloc du cluster, créez un fichier host_vars/<BLOCK_NODE_HOSTNAME>/yml et remplissez-le
comme suit :

1. En haut de la page, spécifier le nom du système et l’URL HTTPS pour l’un des contrôleurs :

eseries_system_name: <SYSTEM_NAME>

eseries_system_api_url:

https://<MANAGEMENT_HOSTNAME_OR_IP>:8443/devmgr/v2/

98

https://github.com/netappeseries/host

2. Sélectionner "protocole" les nœuds de fichiers seront utilisés pour se connecter à ce nœud de bloc :

a. Protocoles pris en charge : auto, iscsi, fc, sas, ib_srp, ib_iser, nvme_ib, nvme_fc,
nvme_roce.

eseries_initiator_protocol: <PROTOCOL>

3. Selon le protocole utilisé, les ports HIC peuvent nécessiter des configurations supplémentaires. Si
nécessaire, la configuration du port HIC doit être définie de sorte que l’entrée supérieure de la
configuration de chaque contrôleur corresponde au port physique le plus à gauche de chaque contrôleur et
au port inférieur le plus à droite. Tous les ports nécessitent une configuration valide même s’ils ne sont pas
actuellement utilisés.

Reportez-vous également à la section ci-dessous si vous utilisez des nœuds de bloc EF600
(InfiniBand 200 Go) ou RoCE 200 Go avec les nœuds de bloc EF600.

a. Pour iSCSI :

99

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

eseries_controller_iscsi_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

Choices: enabled, disabled

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 gateway: # Port IPv4 gateway

 subnet_mask: # Port IPv4 subnet_mask

 mtu: # Port IPv4 mtu

 - (...) # Additional ports as needed.

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_iscsi_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_iscsi_port_config_method: dhcp # General port

configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_iscsi_port_gateway: # General port

IPv4 gateway for both controllers.

eseries_controller_iscsi_port_subnet_mask: # General port

IPv4 subnet mask for both controllers.

eseries_controller_iscsi_port_mtu: 9000 # General port

maximum transfer units (MTU) for both controllers. Any value greater

than 1500 (bytes).

b. Pour iser :

eseries_controller_ib_iser_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

c. Pour NVMe/IB :

100

eseries_controller_nvme_ib_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

d. Pour NVMe/RoCE :

eseries_controller_nvme_roce_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 subnet_mask: # Port IPv4 subnet_mask

 gateway: # Port IPv4 gateway

 mtu: # Port IPv4 mtu

 speed: # Port IPv4 speed

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_nvme_roce_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_nvme_roce_port_config_method: dhcp # General

port configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_nvme_roce_port_gateway: # General

port IPv4 gateway for both controllers.

eseries_controller_nvme_roce_port_subnet_mask: # General

port IPv4 subnet mask for both controllers.

eseries_controller_nvme_roce_port_mtu: 4200 # General

port maximum transfer units (MTU). Any value greater than 1500

(bytes).

eseries_controller_nvme_roce_port_speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

101

e. Les protocoles FC et SAS ne nécessitent pas de configuration supplémentaire. SRP n’est pas
recommandé correctement.

Pour plus d’options de configuration des ports HIC et des protocoles hôte, notamment pour configurer iSCSI
CHAP, reportez-vous au "documentation" Inclus avec la collection SANtricity. Remarque lors du déploiement
de BeeGFS, la configuration du pool de stockage, du volume et d’autres aspects du provisionnement du
stockage sont configurés ailleurs et ne doivent pas être définis dans ce fichier.

Cliquez sur "ici" par exemple, un fichier d’inventaire complet représentant un nœud de bloc unique.

Avec l’utilisation de HDR (200 Go) InfiniBand ou RoCE 200 Gb avec les nœuds de bloc NetApp EF600 :

Pour utiliser l’InfiniBand HDR (200 Go) avec la baie EF600, une seconde IP « virtuelle » doit être configurée
pour chaque port physique. Vous trouverez ci-dessous un exemple de configuration correcte d’une baie EF600
équipée du système HIC InfiniBand HDR à deux ports :

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101 # Port 2a (virtual)

 - 192.168.2.101 # Port 2b (virtual)

 - 192.168.1.100 # Port 2a (physical)

 - 192.168.2.100 # Port 2b (physical)

 controller_b:

 - 192.168.3.101 # Port 2a (virtual)

 - 192.168.4.101 # Port 2b (virtual)

 - 192.168.3.100 # Port 2a (physical)

 - 192.168.4.100 # Port 2b (physical)

Spécifiez la configuration de nœud de fichier commun

Spécifiez une configuration de nœud de fichier commune à l’aide de variables de groupe
(Group_var).

Présentation

La configuration qui doit pommier à tous les noeuds de fichiers est définie à group_vars/ha_cluster.yml.
Elle comprend généralement :

• Détails sur la connexion et la connexion à chaque noeud de fichier.

• Configuration commune de réseau.

• Indique si les redémarrages automatiques sont autorisés.

• Configuration des États pare-feu et selinux.

• Configuration du cluster, y compris alertes et clôtures.

• Réglage des performances.

• Configuration du service Common BeeGFS.

102

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

Les options définies dans ce fichier peuvent également être définies sur des nœuds de fichiers
individuels, par exemple si des modèles de matériel mixtes sont utilisés, ou si vous avez des
mots de passe différents pour chaque nœud. La configuration des nœuds de fichiers individuels
est prioritaire sur la configuration dans ce fichier.

Étapes

Créez le fichier group_vars/ha_cluster.yml et remplir comme suit :

1. Indiquez comment le nœud Ansible Control doit s’authentifier auprès des hôtes distants :

ansible_ssh_user: root

ansible_become_password: <PASSWORD>

En particulier pour les environnements de production, ne stockez pas de mots de passe en
texte brut. Utilisez plutôt Ansible Vault (voir "Cryptage de contenu avec Ansible Vault") ou le
--ask-become-pass option lors de l’exécution du manuel de vente. Si le
ansible_ssh_user est déjà root, alors vous pouvez éventuellement omettre le
ansible_become_password.

2. Si vous configurez des adresses IP statiques sur des interfaces ethernet ou InfiniBand (par exemple, des
adresses IP de cluster) et que plusieurs interfaces se trouvent dans le même sous-réseau IP (par exemple
si ib0 utilise 192.168.1.10/24 et ib1 utilise 192.168.1.11/24), Des tables et des règles de routage IP
supplémentaires doivent être configurées pour que le support multihomé fonctionne correctement. Activez
simplement le crochet de configuration de l’interface réseau fourni comme suit :

eseries_ip_default_hook_templates:

 - 99-multihoming.j2

3. Lors du déploiement du cluster, en fonction du protocole de stockage, les nœuds doivent être redémarrés
pour faciliter la détection des dispositifs de blocs distants (volumes E-Series) ou l’application d’autres
aspects de la configuration. Par défaut, les nœuds vous demandent avant de redémarrer, mais vous
pouvez autoriser les nœuds à redémarrer automatiquement en spécifiant ce qui suit :

eseries_common_allow_host_reboot: true

a. Par défaut après un redémarrage, pour vous assurer que les périphériques de bloc et les autres
services sont prêts, Ansible attend jusqu’à ce que le système default.target est atteinte avant de
poursuivre le déploiement. Dans certains cas, lorsque la technologie NVMe/IB est utilisée, il peut
s’avérer insuffisant pour initialiser, détecter et se connecter aux périphériques distants. Cela peut
entraîner une poursuite prématurée et une défaillance du déploiement automatisé. Pour éviter ce
problème lors de l’utilisation de NVMe/IB, définissez également les éléments suivants :

103

https://docs.ansible.com/ansible/latest/vault_guide/index.html

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

4. Plusieurs ports de pare-feu sont nécessaires pour que les services de cluster BeeGFS et HA
communiquent. Sauf si vous souhaitez configurer le firwewall manuellement (non recommandé), spécifiez
les zones de pare-feu requises et les ports ouverts automatiquement :

beegfs_ha_firewall_configure: True

5. SELinux n’est pas encore pris en charge et il est recommandé de définir l’état sur Désactivé pour éviter les
conflits (en particulier lorsque RDMA est en cours d’utilisation). Définissez ce qui suit pour vous assurer
que SELinux est désactivé :

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

6. Configurez l’authentification pour que les nœuds de fichiers puissent communiquer, en ajustant les valeurs
par défaut en fonction des règles de votre entreprise :

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: hacluster # BeeGFS HA cluster

username.

beegfs_ha_cluster_password: hapassword # BeeGFS HA cluster

username's password.

beegfs_ha_cluster_password_sha512_salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. Sur la base de "Planifiez le système de fichiers"cette section, spécifiez l’IP de gestion BeeGFS pour ce
système de fichiers :

beegfs_ha_mgmtd_floating_ip: <IP ADDRESS>

Tout en apparence redondant, beegfs_ha_mgmtd_floating_ip Est important lorsque
vous faites évoluer le système de fichiers BeeGFS au-delà d’un seul cluster HA. Les
clusters HA suivants sont déployés sans service de gestion BeeGFS et point
supplémentaires sur le service de gestion fourni par le premier cluster.

8. Activez les alertes par e-mail si vous le souhaitez :

104

beegfs_ha_enable_alerts: True

E-mail recipient list for notifications when BeeGFS HA resources

change or fail.

beegfs_ha_alert_email_list: ["<EMAIL>"]

This dictionary is used to configure postfix service

(/etc/postfix/main.cf) which is required to set email alerts.

beegfs_ha_alert_conf_ha_group_options:

 # This parameter specifies the local internet domain name. This is

optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com)

 mydomain: <MY_DOMAIN>

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

9. L’activation de l’escrime est fortement recommandée, sinon les services peuvent être bloqués afin de
démarrer sur les nœuds secondaires lorsque le nœud principal tombe en panne.

a. Activer globalement l’escrime en spécifiant les éléments suivants :

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: True

i. Remarque tout support "propriété du cluster" peut également être spécifié ici si nécessaire. Ils ne
sont généralement pas nécessaires, car le rôle haute disponibilité BeeGFS est livré avec un certain
nombre de composants bien testés "valeurs par défaut".

b. Sélectionnez et configurez ensuite un agent d’escrime :

i. OPTION 1 : pour activer l’escrime à l’aide des unités de distribution d’alimentation APC :

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: <PDU_USERNAME>

 passwd: <PDU_PASSWORD>

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>

"

ii. OPTION 2 : pour activer l’escrime à l’aide des API Redfish fournies par le XCC Lenovo (et d’autres
CVM) :

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54

redfish: &redfish

 username: <BMC_USERNAME>

 password: <BMC_PASSWORD>

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

iii. Pour plus de détails sur la configuration d’autres agents de clôture, reportez-vous au
"Documentation Red Hat".

10. Le rôle BeeGFS HA peut appliquer de nombreux paramètres de réglage différents pour optimiser
davantage les performances. Ces paramètres incluent notamment l’optimisation de l’utilisation de la
mémoire du noyau et le blocage des E/S du périphérique. Le rôle est fourni avec un ensemble raisonnable
de "valeurs par défaut" tests basés sur des tests avec des nœuds de bloc NetApp E-Series, mais par
défaut, ces tests ne sont pas appliqués sauf si vous spécifiez :

beegfs_ha_enable_performance_tuning: True

a. Si nécessaire, spécifiez également les modifications apportées au réglage de performance par défaut
ici. Pour plus d’informations, reportez-vous à la documentation complète "paramètres d’ajustement des
performances" .

11. Pour garantir que les adresses IP flottantes (parfois appelées interfaces logiques) utilisées pour les
services BeeGFS peuvent basculer entre les nœuds de fichiers, toutes les interfaces réseau doivent être
nommées de façon cohérente. Par défaut, les noms d’interface réseau sont générés par le noyau, qui n’est
pas garanti de générer des noms cohérents, même sur des modèles de serveurs identiques avec des
cartes réseau installées dans les mêmes slots PCIe. Cela est également utile lors de la création
d’inventaires avant le déploiement de l’équipement et la génération de noms d’interfaces connus. Pour
garantir des noms de périphériques cohérents, en fonction d’un schéma fonctionnel du serveur ou lshw
-class network -businfo Sortie, spécifiez le mappage adresse PCIe vers interface logique souhaité
comme suit :

a. Pour les interfaces réseau InfiniBand (IPoIB) :

eseries_ipoib_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: i1a

b. Pour les interfaces réseau Ethernet :

106

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md

eseries_ip_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: e1a

Pour éviter les conflits lorsque les interfaces sont renommées (les empêchant d’être
renommées), vous ne devez pas utiliser de noms par défaut potentiels tels que eth0,
en9 f0, ib0 ou ibs4f0. la convention de nom la plus courante consiste à utiliser « e » ou «
i » pour Ethernet ou InfiniBand, suivi du numéro de connecteur PCIe, ainsi qu’une lettre
indiquant le port. Par exemple, le deuxième port d’un adaptateur InfiniBand installé dans
le logement 3 est : i3b.

Si vous utilisez un modèle de nœud de fichier vérifié, cliquez sur "ici" Exemples de
mappages de port adresse PCIe vers port logique.

12. Spécifiez éventuellement la configuration qui doit s’appliquer à tous les services BeeGFS dans le cluster.
Les valeurs de configuration par défaut sont disponibles "ici"et la configuration par service est spécifiée
ailleurs :

a. Service de gestion BeeGFS :

beegfs_ha_beegfs_mgmtd_conf_ha_group_options:

 <OPTION>: <VALUE>

b. Les services de métadonnées BeeGFS :

beegfs_ha_beegfs_meta_conf_ha_group_options:

 <OPTION>: <VALUE>

c. BeeGFS Services de stockage :

beegfs_ha_beegfs_storage_conf_ha_group_options:

 <OPTION>: <VALUE>

13. Depuis BeeGFS 7.2.7 et 7.3.1 "authentification de la connexion" doit être configuré ou explicitement
désactivé. Il existe quelques façons de configurer ce système à l’aide du déploiement Ansible :

a. Par défaut, le déploiement configure automatiquement l’authentification de connexion et génère un
connauthfile Qui sera distribué à tous les nœuds de fichiers et utilisé avec les services BeeGFS.
Ce fichier sera également placé/conservé sur le nœud de contrôle Ansible à
<INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile où il doit être conservé
(sécurisé) pour être réutilisé avec les clients qui doivent accéder à ce système de fichiers.

i. Pour générer une nouvelle clé spécifiez -e "beegfs_ha_conn_auth_force_new=True Lors
de l’exécution du manuel de vente Ansible. Remarque cette opération est ignorée si une
beegfs_ha_conn_auth_secret est défini.

ii. Pour les options avancées, reportez-vous à la liste complète des valeurs par défaut incluses avec
le "Rôle BeeGFS HA".

107

https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237
https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21

b. Un secret personnalisé peut être utilisé en définissant les éléments suivants dans ha_cluster.yml:

beegfs_ha_conn_auth_secret: <SECRET>

c. L’authentification de la connexion peut être entièrement désactivée (NON recommandée) :

beegfs_ha_conn_auth_enabled: false

Cliquez sur "ici" par exemple, un fichier d’inventaire complet représentant la configuration de nœud de fichier
commune.

Utilisation de la technologie InfiniBand HDR (200 Go) avec des nœuds de bloc NetApp EF600 :

Pour utiliser l’InfiniBand HDR (200 Go) avec l’EF600, le gestionnaire de sous-réseau doit prendre en charge la
virtualisation. Si les nœuds de fichiers et de blocs sont connectés à l’aide d’un commutateur, celui-ci doit être
activé sur le gestionnaire de sous-réseau pour la structure globale.

Si les nœuds de blocs et de fichiers sont directement connectés via InfiniBand, une instance de opensm doit
être configurée sur chaque nœud de fichiers pour chaque interface directement connectée à un nœud de bloc.
Pour ce faire, spécifiez configure: true quand "configuration des interfaces de stockage de nœud de
fichiers".

Actuellement, la version intégrée de opensm fournie avec les distributions Linux prises en charge ne prend pas
en charge la virtualisation. Il est nécessaire d’installer et de configurer la version de opensm à partir de NVIDIA
OpenFabrics Enterprise distribution (OFED). Même si le déploiement avec Ansible est toujours pris en charge,
quelques étapes supplémentaires sont requises :

1. À l’aide de curl ou de l’outil de votre choix, téléchargez les packages de la version d’OpenSM répertoriée
dans la "exigences technologiques" section du site Web de NVIDIA vers le <INVENTORY>/packages/
répertoire. Par exemple :

curl -o packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

curl -o packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

2. Sous group_vars/ha_cluster.yml définissez la configuration suivante :

108

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml

OpenSM package and configuration information

eseries_ib_opensm_allow_upgrades: true

eseries_ib_opensm_skip_package_validation: true

eseries_ib_opensm_rhel_packages: []

eseries_ib_opensm_custom_packages:

 install:

 - files:

 add:

 "packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 "packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 - packages:

 add:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 uninstall:

 - packages:

 remove:

 - opensm

 - opensm-libs

 files:

 remove:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

eseries_ib_opensm_options:

 virt_enabled: "2"

Spécifiez la configuration de nœud de bloc commun

Spécifiez une configuration de nœud de bloc commune à l’aide de variables de groupe
(Group_var).

Présentation

La configuration qui doit être pommeltée à tous les nœuds de bloc est définie à
group_vars/eseries_storage_systems.yml. Elle comprend généralement :

• Découvrez comment le nœud de contrôle Ansible doit se connecter aux systèmes de stockage E-Series
utilisés comme nœuds de bloc.

109

• Quelles versions de micrologiciel, de NVSRAM et de micrologiciel de lecteur les nœuds doivent s’exécuter.

• Configuration globale comprenant les paramètres de cache, la configuration de l’hôte et les paramètres de
provisionnement des volumes.

Les options définies dans ce fichier peuvent également être définies sur des nœuds de blocs
individuels, par exemple si des modèles de matériel mixtes sont en cours d’utilisation, ou si vous
disposez de mots de passe différents pour chaque nœud. La configuration des nœuds de blocs
individuels aura priorité sur la configuration dans ce fichier.

Étapes

Créez le fichier group_vars/eseries_storage_systems.yml et remplir comme suit :

1. Ansible n’utilise pas SSH pour se connecter aux nœuds de bloc et utilise plutôt des API REST. Pour ce
faire, nous devons définir :

ansible_connection: local

2. Spécifiez le nom d’utilisateur et le mot de passe pour gérer chaque nœud. Le nom d’utilisateur peut
éventuellement être omis (et sera par défaut admin), sinon vous pouvez spécifier n’importe quel compte
disposant de privilèges d’administrateur. Spécifiez également si les certificats SSL doivent être vérifiés ou
ignorés :

eseries_system_username: admin

eseries_system_password: <PASSWORD>

eseries_validate_certs: false

La liste des mots de passe en texte clair n’est pas recommandée. Utilisez un coffre-fort
Ansible ou fournissez le eseries_system_password Lors de l’exécution d’Ansible à
l’aide de --extra-var.

3. Spécifiez éventuellement le micrologiciel du contrôleur, la NVSRAM et le micrologiciel du lecteur qui
doivent être installés sur les nœuds. Ils devront être téléchargés sur le packages/ Avant d’exécuter
Ansible. Le micrologiciel du contrôleur E-Series et la NVSRAM sont téléchargés "ici" et les firmwares des
disques "ici":

110

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

eseries_firmware_firmware: "packages/<FILENAME>.dlp" # Ex.

"packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/<FILENAME>.dlp" # Ex.

"packages/N6000-880834-D08.dlp"

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

 # Additional firmware versions as needed.

eseries_drive_firmware_upgrade_drives_online: true # Recommended unless

BeeGFS hasn't been deployed yet, as it will disrupt host access if set

to "false".

Si cette configuration est spécifiée, Ansible met automatiquement à jour l’ensemble du
firmware, y compris le redémarrage des contrôleurs (si nécessaire) sans invite
supplémentaire. Cela ne devrait pas être perturbateur des E/S de l’hôte BeeGFS/O, mais
peut entraîner une diminution temporaire des performances.

4. Réglez les paramètres de configuration globale du système par défaut. Les options et valeurs répertoriées
ici sont généralement recommandées pour BeeGFS sur NetApp, mais elles peuvent être ajustées si
nécessaire :

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required by default.

5. Configurez les valeurs par défaut du provisionnement global du volume. Les options et valeurs
répertoriées ici sont généralement recommandées pour BeeGFS sur NetApp, mais elles peuvent être
ajustées si nécessaire :

eseries_volume_size_unit: pct # Required by default. This allows volume

capacities to be specified as a percentage, simplifying putting together

the inventory.

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

6. Si nécessaire, ajustez l’ordre dans lequel Ansible sélectionne les disques pour les pools de stockage et les
groupes de volumes, en gardant à l’esprit les meilleures pratiques suivantes :

a. Répertoriez tous les disques (potentiellement plus petits) à utiliser en premier pour les volumes de
gestion et/ou de métadonnées, et tous les volumes de stockage en dernier.

111

b. Veillez à équilibrer l’ordre de sélection des disques sur les canaux disponibles en fonction du ou des
modèles de tiroir disque/boîtier(s). Par exemple avec la baie EF600 sans extensions, les disques 0-11
se trouvent sur le canal 1, et les disques 12-23 sur le canal disque. Ainsi, une stratégie pour équilibrer
la sélection de l’entraînement est à sélectionner disk shelf:drive 99:0, 99:23, 99:1, 99:22, etc Si
plusieurs armoires sont disponibles, le premier chiffre représente l’ID de tiroir disque.

Optimal/recommended order for the EF600 (no expansion):

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99

:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Cliquez sur "ici" par exemple, un fichier d’inventaire complet représentant la configuration de nœud de bloc
commune.

Définir les services BeeGFS

Définissez le service de gestion BeeGFS

Les services BeeGFS sont configurés à l’aide de variables de groupe (Group_var).

Présentation

Cette section décrit la définition du service de gestion BeeGFS. Un seul service de ce type doit exister dans
le(s) cluster(s) haute disponibilité pour un système de fichiers particulier. La configuration de ce service inclut
la définition des éléments suivants :

• Le type de service (gestion).

• Définition de toute configuration qui ne doit s’appliquer qu’à ce service BeeGFS.

• Configuration d’une ou plusieurs adresses IP flottantes (interfaces logiques) sur lesquelles ce service peut
être atteint.

• Spécifier où/comment un volume doit être stocké des données pour ce service (cible de gestion BeeGFS).

Étapes

Créez un nouveau fichier group_vars/mgmt.yml et référencez la "Planifiez le système de fichiers" section
pour la remplir comme suit :

1. Indiquez ce fichier représente la configuration d’un service de gestion BeeGFS :

beegfs_service: management

2. Définissez toute configuration qui doit s’appliquer uniquement à ce service BeeGFS. Ce n’est
généralement pas nécessaire pour le service de gestion, sauf si vous devez activer des quotas, mais tout
paramètre de configuration pris en charge à partir de beegfs-mgmtd.conf peut être inclus. Remarque
les paramètres suivants sont configurés automatiquement/ailleurs et ne doivent pas être spécifiés ici :
storeMgmtdDirectory, connAuthFile, connDisableAuthentication, connInterfacesFile,
et connNetFilterFile.

112

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

 <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Configurez une ou plusieurs adresses IP flottantes que les autres services et clients utiliseront pour se
connecter à ce service (cela définit automatiquement le BeeGFS connInterfacesFile option) :

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.0/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Vous pouvez également spécifier un ou plusieurs sous-réseaux IP autorisés qui peuvent être utilisés pour
les communications sortantes (cela va automatiquement définir BeeGFS connNetFilterFile option) :

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Spécifiez la cible de gestion BeeGFS dans laquelle ce service stockera les données conformément aux
directives suivantes :

a. Le même nom de pool de stockage ou de groupe de volumes peut être utilisé pour plusieurs
services/cibles BeeGFS, tout simplement s’assurer d’utiliser la même chose name, raid_level,
criteria_*, et common_* configuration pour chaque service (les volumes répertoriés doivent être
différents).

b. La taille des volumes doit être indiquée comme pourcentage du groupe pool/volumes de stockage et le
total ne doit pas dépasser 100 pour tous les services/volumes utilisant un pool/groupe de volumes
spécifique. Remarque : lors de l’utilisation de disques SSD, il est recommandé de laisser un peu
d’espace libre dans le groupe de volumes afin d’optimiser les performances et la durée de vie des
disques SSD (cliquez "ici" pour plus de détails).

c. Cliquez sur "ici" pour obtenir la liste complète des options de configuration disponibles pour le
eseries_storage_pool_configuration. Notez certaines options telles que state, host,
host_type, workload_name, et workload_metadata des noms de volume et de volume sont
générés automatiquement et ne doivent pas être spécifiés ici.

113

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Cliquez sur "ici" Par exemple un fichier d’inventaire complet représentant un service de gestion BeeGFS.

Définissez le service de métadonnées BeeGFS

Les services BeeGFS sont configurés à l’aide de variables de groupe (Group_var).

Présentation

Cette section décrit la définition du service de métadonnées BeeGFS. Au moins un service de ce type doit
exister dans le(s) cluster(s) haute disponibilité pour un système de fichiers particulier. La configuration de ce
service inclut la définition des éléments suivants :

• Le type de service (métadonnées).

• Définition de toute configuration qui ne doit s’appliquer qu’à ce service BeeGFS.

• Configuration d’une ou plusieurs adresses IP flottantes (interfaces logiques) sur lesquelles ce service peut
être atteint.

• Spécifier où/comment un volume doit être stocké des données pour ce service (cible de métadonnées
BeeGFS).

Étapes

En faisant référence "Planifiez le système de fichiers"à la section, créez un fichier à
group_vars/meta_<ID>.yml pour chaque service de métadonnées du cluster et remplissez-le comme suit
:

1. Indiquez ce fichier représente la configuration d’un service de métadonnées BeeGFS :

beegfs_service: metadata

2. Définissez toute configuration qui doit s’appliquer uniquement à ce service BeeGFS. Au minimum, vous
devez spécifier le port TCP et UDP de votre choix, mais tout paramètre de configuration pris en charge à
partir de beegfs-meta.conf peut également être inclus. Remarque les paramètres suivants sont
configurés automatiquement/ailleurs et ne doivent pas être spécifiés ici : sysMgmtdHost,

114

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

storeMetaDirectory, connAuthFile, connDisableAuthentication, connInterfacesFile, et
connNetFilterFile.

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <TCP PORT>

 connMetaPortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configurez une ou plusieurs adresses IP flottantes que les autres services et clients utiliseront pour se
connecter à ce service (cela définit automatiquement le BeeGFS connInterfacesFile option) :

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Vous pouvez également spécifier un ou plusieurs sous-réseaux IP autorisés qui peuvent être utilisés pour
les communications sortantes (cela va automatiquement définir BeeGFS connNetFilterFile option) :

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Spécifiez la cible de métadonnées BeeGFS dans laquelle ce service stockera les données conformément
aux directives suivantes (ceci configurera également automatiquement l' storeMetaDirectory option) :

a. Le même nom de pool de stockage ou de groupe de volumes peut être utilisé pour plusieurs
services/cibles BeeGFS, tout simplement s’assurer d’utiliser la même chose name, raid_level,
criteria_*, et common_* configuration pour chaque service (les volumes répertoriés doivent être
différents).

b. La taille des volumes doit être indiquée comme pourcentage du groupe pool/volumes de stockage et le
total ne doit pas dépasser 100 pour tous les services/volumes utilisant un pool/groupe de volumes
spécifique. Remarque : lors de l’utilisation de disques SSD, il est recommandé de laisser un peu
d’espace libre dans le groupe de volumes afin d’optimiser les performances et la durée de vie des
disques SSD (cliquez "ici" pour plus de détails).

c. Cliquez sur "ici" pour obtenir la liste complète des options de configuration disponibles pour le
eseries_storage_pool_configuration. Notez certaines options telles que state, host,
host_type, workload_name, et workload_metadata des noms de volume et de volume sont
générés automatiquement et ne doivent pas être spécifiés ici.

115

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Cliquez sur "ici" Exemple de fichier d’inventaire complet représentant un service de métadonnées BeeGFS.

Définissez le service de stockage BeeGFS

Les services BeeGFS sont configurés à l’aide de variables de groupe (Group_var).

Présentation

Cette section décrit la définition du service de stockage BeeGFS. Au moins un service de ce type doit exister
dans le(s) cluster(s) haute disponibilité pour un système de fichiers particulier. La configuration de ce service
inclut la définition des éléments suivants :

• Le type de service (stockage).

• Définition de toute configuration qui ne doit s’appliquer qu’à ce service BeeGFS.

• Configuration d’une ou plusieurs adresses IP flottantes (interfaces logiques) sur lesquelles ce service peut
être atteint.

• Spécifier où/comment le ou les volumes doivent être stockés pour ce service (cibles de stockage
BeeGFS).

Étapes

En faisant référence "Planifiez le système de fichiers"à la section, créez un fichier à
group_vars/stor_<ID>.yml pour chaque service de stockage du cluster et remplissez-le comme suit :

1. Indiquez ce fichier représente la configuration d’un service de stockage BeeGFS :

beegfs_service: storage

2. Définissez toute configuration qui doit s’appliquer uniquement à ce service BeeGFS. Au minimum, vous
devez spécifier le port TCP et UDP de votre choix, mais tout paramètre de configuration pris en charge à
partir de beegfs-storage.conf peut également être inclus. Remarque les paramètres suivants sont
configurés automatiquement/ailleurs et ne doivent pas être spécifiés ici : sysMgmtdHost,
storeStorageDirectory, connAuthFile, connDisableAuthentication,

116

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

connInterfacesFile, et connNetFilterFile.

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <TCP PORT>

 connStoragePortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configurez une ou plusieurs adresses IP flottantes que les autres services et clients utiliseront pour se
connecter à ce service (cela définit automatiquement le BeeGFS connInterfacesFile option) :

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Vous pouvez également spécifier un ou plusieurs sous-réseaux IP autorisés qui peuvent être utilisés pour
les communications sortantes (cela va automatiquement définir BeeGFS connNetFilterFile option) :

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Spécifiez la ou les cibles de stockage BeeGFS où ce service stockera les données conformément aux
directives suivantes (ceci configurera également automatiquement l' storeStorageDirectory option) :

a. Le même nom de pool de stockage ou de groupe de volumes peut être utilisé pour plusieurs
services/cibles BeeGFS, tout simplement s’assurer d’utiliser la même chose name, raid_level,
criteria_*, et common_* configuration pour chaque service (les volumes répertoriés doivent être
différents).

b. La taille des volumes doit être indiquée comme pourcentage du groupe pool/volumes de stockage et le
total ne doit pas dépasser 100 pour tous les services/volumes utilisant un pool/groupe de volumes
spécifique. Remarque : lors de l’utilisation de disques SSD, il est recommandé de laisser un peu
d’espace libre dans le groupe de volumes afin d’optimiser les performances et la durée de vie des
disques SSD (cliquez "ici" pour plus de détails).

c. Cliquez sur "ici" pour obtenir la liste complète des options de configuration disponibles pour le
eseries_storage_pool_configuration. Notez certaines options telles que state, host,
host_type, workload_name, et workload_metadata des noms de volume et de volume sont
générés automatiquement et ne doivent pas être spécifiés ici.

117

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_s1_s2

 raid_level: <LEVEL> # One of: raid1, raid5, raid6,

raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

 # Multiple storage targets are supported / typical:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Cliquez sur "ici" Exemple de fichier d’inventaire complet représentant un service de stockage BeeGFS.

Mapper les services BeeGFS sur les nœuds de fichiers

Spécifiez quels nœuds de fichiers peuvent exécuter chaque service BeeGFS à l’aide de l'
inventory.yml fichier.

Présentation

Cette section explique comment créer le inventory.yml fichier. Cela inclut la liste de tous les nœuds de
bloc et la spécification des nœuds de fichier pouvant exécuter chaque service BeeGFS.

Étapes

Créez le fichier inventory.yml et remplir comme suit :

1. Dans la partie supérieure du fichier, créez la structure d’inventaire Ansible standard :

BeeGFS HA (High_Availability) cluster inventory.

all:

 children:

2. Créer un groupe contenant tous les nœuds de bloc participant à ce cluster haute disponibilité :

118

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 <BLOCK NODE HOSTNAME>:

 <BLOCK NODE HOSTNAME>:

 # Additional block nodes as needed.

3. Créez un groupe qui contiendra tous les services BeeGFS dans le cluster, ainsi que les nœuds de fichiers
qui les exécuteront :

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

4. Pour chaque service BeeGFS du cluster, définissez le ou les nœuds de fichiers préférés et secondaires qui
doivent exécuter ce service :

 <SERVICE>: # Ex. "mgmt", "meta_01", or "stor_01".

 hosts:

 <FILE NODE HOSTNAME>:

 <FILE NODE HOSTNAME>:

 # Additional file nodes as needed.

Cliquez sur "ici" exemple de fichier d’inventaire complet.

Déployez le système de fichiers BeeGFS

Présentation du PlayBook Ansible

Déploiement et gestion de clusters BeeGFS HA à l’aide d’Ansible.

Présentation

Les sections précédentes ont parcouru les étapes nécessaires à la création d’un inventaire Ansible
représentant un cluster BeeGFS HA. Cette section présente l’automatisation Ansible développée par NetApp
pour déployer et gérer le cluster.

Ansible : principaux concepts

Avant de commencer, il est utile de connaître quelques concepts clés Ansible :

• Les tâches à exécuter avec un inventaire Ansible sont définies dans ce qu’on appelle PlayBook.

◦ La plupart des tâches dans Ansible sont conçues pour être idempotent, ce qui signifie qu’elles
peuvent être exécutées plusieurs fois pour vérifier que la configuration/l’état désiré est toujours
appliqué sans briser les choses ou faire des mises à jour inutiles.

119

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

• La plus petite unité d’exécution dans Ansible est un module.

◦ Les playbooks classiques utilisent plusieurs modules.

▪ Exemples : télécharger un package, mettre à jour un fichier de configuration, démarrer/activer un
service.

◦ NetApp distribue des modules pour automatiser les systèmes NetApp E-Series.

• Une automatisation complexe est mieux prédéfinie.

◦ Il s’agit essentiellement d’un format standard permettant de distribuer un PlayBook réutilisable.

◦ NetApp distribue des rôles pour les hôtes Linux et les systèmes de fichiers BeeGFS.

BeeGFS HA role pour Ansible : concepts clés

Tout l’automatisation nécessaire au déploiement et à la gestion de chaque version de BeeGFS sur NetApp est
un rôle Ansible et distribué dans le "NetApp E-Series Ansible Collection pour BeeGFS":

• Ce rôle peut être considéré comme quelque part entre un installateur et un * moderne
déploiement/gestion moteur pour BeeGFS.

◦ Applique une infrastructure moderne en tant que pratiques du code et philosophie pour simplifier la
gestion de l’infrastructure de stockage à toute échelle.

◦ De la même façon que "Priez"le projet permet aux utilisateurs de déployer/gérer une distribution
Kubernetes complète pour une infrastructure de calcul scale-out.

• Il s’agit du format Software-defined que NetApp utilise pour créer, distribuer et gérer les solutions
BeeGFS sur NetApp.

◦ S’efforcer de créer une expérience de type appareil sans avoir à distribuer une distribution Linux
entière ou une image de grande taille.

◦ Inclut des agents de ressources de cluster conformes à la norme OCF (Open Cluster Framework) de
NetApp pour les cibles BeeGFS, les adresses IP et la surveillance personnalisés qui fournissent une
intégration Pacemaker/BeeGFS intelligente.

• Le rôle ne se limite pas au déploiement de l'« automatisation ». Il est destiné à gérer l’ensemble du cycle
de vie du système de fichiers, notamment :

◦ Modification et mise à jour de la configuration au niveau du service ou du cluster

◦ Automatisation de la réparation et de la restauration de clusters après une résolution des problèmes
matériels

◦ Simplification du réglage des performances avec des valeurs par défaut définies sur la base de tests
approfondis réalisés avec BeeGFS et les volumes NetApp.

◦ Vérification et correction de la dérive de configuration.

NetApp fournit également un rôle Ansible pour "Clients BeeGFS", Qui peut éventuellement être utilisé pour
installer des systèmes de fichiers BeeGFS et monter des nœuds de calcul/GPU/connexion.

Déployez le cluster BeeGFS HA

Spécifiez les tâches à exécuter pour déployer le cluster BeeGFS HA à l’aide d’un
PlayBook.

120

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/kubernetes-sigs/kubespray
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

Présentation

Cette section explique comment assembler le manuel de vente standard utilisé pour déployer/gérer BeeGFS
sur NetApp.

Étapes

Créez le manuel de vente Ansible

Créez le fichier playbook.yml et remplir comme suit :

1. Commencez par définir un ensemble de tâches (communément appelé « a ») "lecture") Qui ne doit
s’exécuter que sur les nœuds de blocs NetApp E-Series. Nous utilisons une tâche de pause avant
d’exécuter l’installation (pour éviter les exécutions accidentelles de PlayBook), puis importez la
nar_santricity_management rôle. Ce rôle permet d’appliquer toute configuration système générale
définie dans group_vars/eseries_storage_systems.yml ou individuellement host_vars/<BLOCK
NODE>.yml fichiers.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

2. Définissez la lecture qui s’exécutera sur tous les nœuds de fichiers et de blocs :

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

3. Dans ce module, nous pouvons définir, en option, un ensemble de « tâches préalables » à exécuter avant
de déployer le cluster de haute disponibilité. Cela peut être utile pour vérifier/installer des prérequis comme
Python. Nous pouvons également procéder à des vérifications avant vol, par exemple si les balises Ansible
fournies sont prises en charge :

 pre_tasks:

121

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

122

 loop: "{{ ansible_run_tags }}"

4. Enfin, ce jeu importe le rôle BeeGFS HA pour la version de BeeGFS que vous voulez déployer:

 tasks:

 - name: Verify the BeeGFS HA cluster is properly deployed.

 import_role:

 name: beegfs_ha_7_4 # Alternatively specify: beegfs_ha_7_3.

Un rôle BeeGFS HA est maintenu pour chaque version majeure.mineure de BeeGFS prise
en charge. Cela permet aux utilisateurs de choisir quand ils souhaitent mettre à niveau des
versions majeures/mineures. BeeGFS 7.3.x (beegfs_7_3) ou BeeGFS 7.2.x)
(`beegfs_7_2`sont actuellement pris en charge. Par défaut, les deux rôles déploieront la
dernière version de correctif BeeGFS au moment de la publication, bien que les utilisateurs
puissent choisir de la remplacer et de déployer le dernier correctif si nécessaire. Consultez
les dernières informations "guide de mise à niveau" pour plus de détails.

5. Facultatif : si vous souhaitez définir d’autres tâches, n’oubliez pas si les tâches doivent être dirigées vers
all Hôtes (y compris les systèmes de stockage E-Series) ou uniquement les nœuds de fichiers. Si
nécessaire, définissez une nouvelle lecture ciblant spécifiquement les nœuds de fichiers à l’aide de -
hosts: ha_cluster.

Cliquez sur "ici" par exemple de fichier playbook complet.

Installez les collections NetApp Ansible

La collection BeeGFS pour Ansible et toutes les dépendances sont conservées "Galaxy Ansible". Sur votre
nœud de contrôle Ansible, exécutez la commande suivante pour installer la dernière version :

ansible-galaxy collection install netapp_eseries.beegfs

Bien que cela ne soit pas généralement recommandé, il est également possible d’installer une version
spécifique de la collection :

ansible-galaxy collection install netapp_eseries.beegfs:

==<MAJOR>.<MINOR>.<PATCH>

À l’aide du manuel de vente

À partir du répertoire de votre nœud de contrôle Ansible contenant le inventory.yml et playbook.yml
exécutez le playbook comme suit :

ansible-playbook -i inventory.yml playbook.yml

Selon la taille du cluster, le déploiement initial peut prendre plus de 20 minutes. Si le déploiement échoue pour

123

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs

une raison quelconque, corrigez simplement n’importe quel problème (par exemple, un défaut de câblage, un
nœud n’a pas été démarré, etc.), puis redémarrez le PlayBook Ansible.

Lorsque "configuration de nœud de fichier commune"vous spécifiez , si vous choisissez l’option par défaut
pour qu’Ansible gère automatiquement l’authentification basée sur la connexion, vous connAuthFile pouvez
désormais trouver l' utilisé comme secret partagé à l’adresse
<playbook_dir>/files/beegfs/<sysMgmtdHost>_connAuthFile (par défaut). Tous les clients devant
accéder au système de fichiers devront utiliser ce secret partagé. Ce traitement est automatique si les clients
sont configurés à l’aide de "Rôle client BeeGFS".

Déploiement de clients BeeGFS

Vous pouvez également utiliser Ansible pour configurer les clients BeeGFS et monter le
système de fichiers.

Présentation

Pour accéder aux systèmes de fichiers BeeGFS, vous devez installer et configurer le client BeeGFS sur
chaque nœud qui doit monter le système de fichiers. Cette section explique comment effectuer ces tâches à
l’aide de la disponible "Rôle Ansible".

Étapes

Créez le fichier d’inventaire client

1. Si nécessaire, configurez une connexion SSH sans mot de passe depuis le nœud de contrôle Ansible vers
chacun des hôtes que vous souhaitez configurer comme clients BeeGFS :

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Sous host_vars/, Créez un fichier pour chaque client BeeGFS nommé <HOSTNAME>.yml avec le
contenu suivant, en renseignant le texte de l’espace réservé contenant les informations correctes pour
votre environnement :

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

3. Vous pouvez également inclure l’une des options suivantes si vous souhaitez utiliser les rôles de la
Collection d’hôtes NetApp E-Series pour configurer les interfaces InfiniBand ou Ethernet pour les clients
afin de se connecter à des nœuds de fichiers BeeGFS :

a. Si le type de réseau est "InfiniBand (avec IPoib)":

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

124

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib

b. Si le type de réseau est "RDMA over Converged Ethernet (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Si le type de réseau est "Ethernet (TCP uniquement, pas de RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

4. Créez un nouveau fichier client_inventory.yml Spécifiez l’utilisateur Ansible doit utiliser pour vous
connecter à chaque client, et le mot de passe Ansible doit utiliser pour la réaffectation des privilèges (cette
étape nécessite le mot de passe ansible_ssh_user être root ou avoir des privilèges sudo) :

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER>

 ansible_become_password: <PASSWORD>

Ne stockez pas les mots de passe en texte brut. Utilisez plutôt Ansible Vault (voir la
"Documentation Ansible" Pour le chiffrement de contenu avec Ansible Vault) ou utilisez le
--ask-become-pass option lors de l’exécution du manuel de vente.

5. Dans le client_inventory.yml Fichier, répertorie tous les hôtes qui doivent être configurés comme
clients BeeGFS sous beegfs_clients Grouper, puis se reporter aux commentaires en ligne et
supprimer toute configuration supplémentaire requise pour construire le module de noyau client BeeGFS
sur votre système :

125

https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://docs.ansible.com/ansible/latest/user_guide/vault.html

children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 <CLIENT HOSTNAME>:

 # Additional clients as needed.

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 #beegfs_client_ofed_enable: True

 #beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 #eseries_ib_skip: False # Default value.

 #beegfs_client_ofed_enable: False # Default value.

Lorsque vous utilisez les pilotes OFED de NVIDIA, assurez-vous que
beegfs_client_ofed_include_path pointe vers le "header include path" correct pour votre
installation Linux. Pour plus d’informations, consultez la documentation BeeGFS pour "Prise
en charge de RDMA".

6. Dans le client_inventory.yml Fichier, répertorie les systèmes de fichiers BeeGFS que vous
souhaitez monter sous n’importe quel fichier précédemment défini vars:

126

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

 # Specify additional file system mounts for this or other file

systems.

7. À partir de BeeGFS 7.2.7 et 7.3.1 "authentification de la connexion" doivent être configurés ou
explicitement désactivés. Selon la façon dont vous choisissez de configurer l’authentification basée sur la
connexion lors de "configuration de nœud de fichier commune"la spécification , vous devrez peut-être
ajuster la configuration de votre client :

a. Par défaut, le déploiement du cluster haute disponibilité configure automatiquement l’authentification
de connexion et génère un connauthfile Qui seront placées/conservées sur le nœud de contrôle
Ansible à <INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile. Par défaut, le rôle
client BeeGFS est configuré pour lire/distribuer ce fichier aux clients définis dans
client_inventory.yml, et aucune action supplémentaire n’est nécessaire.

i. Pour les options avancées, reportez-vous à la liste complète des valeurs par défaut incluses avec
le "Rôle client BeeGFS".

b. Si vous choisissez de spécifier un secret personnalisé avec beegfs_ha_conn_auth_secret
spécifiez-le dans le client_inventory.yml les fichiers ainsi :

beegfs_ha_conn_auth_secret: <SECRET>

c. Si vous choisissez de désactiver entièrement l’authentification basée sur la connexion avec
beegfs_ha_conn_auth_enabled, spécifiez cela dans le client_inventory.yml les fichiers
ainsi :

127

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs_ha_conn_auth_enabled: false

Pour obtenir la liste complète des paramètres pris en charge et des détails supplémentaires, reportez-vous au
"Documentation complète du client BeeGFS". Pour obtenir un exemple complet d’inventaire client, cliquez sur
"ici".

Créez le fichier BeeGFS client PlayBook

1. Créez un nouveau fichier client_playbook.yml

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

2. Facultatif : si vous souhaitez utiliser les rôles de la collection d’hôtes NetApp E-Series pour configurer les
interfaces pour les clients afin de vous connecter aux systèmes de fichiers BeeGFS, importez le rôle
correspondant au type d’interface que vous configurez :

a. Si vous utilisez InfiniBand (IPoIB) :

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

b. Si vous utilisez le protocole RDMA over Converged Ethernet (RoCE) :

 - name: Ensure IPoIB is configured

 import_role:

 name: roce

c. Si vous utilisez Ethernet (TCP uniquement, pas de RDMA) :

 - name: Ensure IPoIB is configured

 import_role:

 name: ip

3. Enfin, importez le rôle client BeeGFS pour installer le logiciel client et configurer les montages du système
de fichiers :

128

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

 # REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Pour obtenir un exemple de PlayBook client complet, cliquez sur "ici".

Exécutez le manuel de vente BeeGFS client

Pour installer/construire le client et monter BeeGFS, exécutez la commande suivante :

ansible-playbook -i client_inventory.yml client_playbook.yml

Vérifier le déploiement BeeGFS

Vérifiez le déploiement du système de fichiers avant de mettre le système en production.

Présentation

Avant de placer le système de fichiers BeeGFS en production, effectuez quelques vérifications.

Étapes

1. Connectez-vous à n’importe quel client et exécutez les opérations suivantes pour vous assurer que tous
les nœuds attendus sont présents/accessibles, et qu’il n’y a pas d’incohérences ou d’autres problèmes
signalés :

beegfs-fsck --checkfs

2. Arrêtez l’ensemble du cluster, puis redémarrez-le. Depuis n’importe quel nœud de fichiers, exécutez ce qui
suit :

pcs cluster stop --all # Stop the cluster on all file nodes.

pcs cluster start --all # Start the cluster on all file nodes.

pcs status # Verify all nodes and services are started and no failures

are reported (the command may need to be reran a few times to allow time

for all services to start).

3. Placez chaque nœud en veille et vérifiez que les services BeeGFS peuvent basculer vers un ou plusieurs
nœuds secondaires. Pour ce faire, connectez-vous à l’un des nœuds de fichiers et exécutez les opérations
suivantes :

129

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in

standby.

pcs status # Verify services are started on a secondary node and no

failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out

of standby.

pcs status # Verify the file node is back online and no failures are

reported.

pcs resource relocate run # Move all services back to their preferred

nodes.

pcs status # Verify services have moved back to the preferred node.

4. Utilisez des outils d’évaluation des performances tels que IOR et MDTest pour vérifier que les
performances du système de fichiers répondent aux attentes. La "Vérification de la conception"section
BeeGFS sur l’architecture vérifiée NetApp fournit des exemples de tests et de paramètres courants.

Des tests supplémentaires doivent être effectués en fonction des critères d’acceptation définis pour un site/une
installation spécifique.

130

Déploiement des fonctionnalités et des
intégrations

Pilote BeeGFS CSI

Configurer le chiffrement TLS pour BeeGFS v8

Configurez le chiffrement TLS pour sécuriser la communication entre les services de
gestion BeeGFS v8 et les clients.

Présentation

BeeGFS v8 introduit la prise en charge de TLS pour le chiffrement des communications réseau entre les outils
d’administration (tels que l' `beegfs`utilitaire en ligne de commande) et les services serveur BeeGFS comme
Management ou Remote. Ce guide explique comment configurer le chiffrement TLS dans votre cluster
BeeGFS à l’aide de trois méthodes de configuration TLS :

• Utilisation d’une autorité de certification de confiance : Utilisez des certificats signés par une autorité
de certification existante sur votre cluster BeeGFS.

• Création d’une autorité de certification locale : Création d’une autorité de certification locale et
utilisation de celle-ci pour signer les certificats de vos services BeeGFS. Cette approche convient aux
environnements où vous souhaitez gérer votre propre chaîne de confiance sans dépendre d’une autorité
de certification externe.

• TLS désactivé : Désactivez complètement TLS dans les environnements où le chiffrement n’est pas
requis ou pour le dépannage. Cette pratique est déconseillée car elle expose en clair des informations
potentiellement sensibles concernant la structure du système de fichiers interne et le fichier de
configuration.

Choisissez la méthode la mieux adaptée à votre environnement et à vos politiques organisationnelles.
Consultez la "BeeGFS TLS" documentation pour plus de détails.

Les machines exécutant le beegfs-client service n’ont pas besoin de TLS pour monter le
système de fichiers BeeGFS. TLS doit être configuré pour utiliser la CLI BeeGFS et d’autres
services BeeGFS, tels que remote et sync.

Utilisation d’une autorité de certification de confiance

Si vous avez accès à des certificats émis par une autorité de certification (CA) de confiance—qu’il s’agisse
d’une CA d’entreprise interne ou d’un fournisseur tiers—vous pouvez configurer BeeGFS v8 pour utiliser ces
certificats signés par la CA au lieu de générer des certificats auto-signés.

Déploiement d’un nouveau cluster BeeGFS v8

Pour un nouveau déploiement de cluster BeeGFS v8, configurez le fichier d’inventaire Ansible
user_defined_params.yml pour qu’il référence vos certificats signés par une autorité de certification :

131

https://doc.beegfs.io/latest/advanced_topics/tls.html

beegfs_ha_tls_enabled: true

beegfs_ha_ca_cert_src_path: files/beegfs/cert/ca_cert.pem

beegfs_ha_tls_cert_src_path: files/beegfs/cert/mgmtd_tls_cert.pem

beegfs_ha_tls_key_src_path: files/beegfs/cert/mgmtd_tls_key.pem

Si beegfs_ha_tls_config_options.alt_names n’est pas vide, Ansible générera
automatiquement un certificat TLS auto-signé et une clé, en utilisant les alt_names fournis
comme Subject Alternative Names (SANs) dans le certificat. Pour utiliser votre propre certificat
et clé TLS personnalisés (tels que spécifiés par beegfs_ha_tls_cert_src_path et
beegfs_ha_tls_key_src_path), vous devez commenter ou supprimer l’intégralité de la
section beegfs_ha_tls_config_options. Sinon, la génération du certificat auto-signé
prendra le dessus et votre certificat et clé personnalisés ne seront pas utilisés.

Configuration d’un cluster BeeGFS v8 existant

Pour un cluster BeeGFS v8 existant, définissez les chemins dans le fichier de configuration des services de
gestion BeeGFS sur les certificats signés par l’autorité de certification du nœud de fichiers :

tls-cert-file = /path/to/cert.pem

tls-key-file = /path/to/key.pem

Configuration des clients BeeGFS v8 avec des certificats signés par une autorité de certification

Pour configurer les clients BeeGFS v8 afin qu’ils fassent confiance aux certificats signés par une autorité de
certification à l’aide du pool de certificats système, définissez tls-cert-file = " dans le fichier de configuration de
chaque client. Si le pool de certificats système n’est pas utilisé, indiquez le chemin d’accès à un certificat local
en définissant tls-cert-file = <local cert>. Cette configuration permet aux clients d’authentifier les certificats
présentés par les services de gestion BeeGFS.

Création d’une autorité de certification locale

Si votre organisation souhaite créer sa propre infrastructure de certificats pour le cluster BeeGFS, vous pouvez
créer une autorité de certification (CA) locale pour émettre et signer les certificats de votre cluster BeeGFS.
Cette approche consiste à créer une CA qui signe les certificats des services de gestion BeeGFS, lesquels
sont ensuite distribués aux clients afin d’établir une chaîne de confiance. Suivez ces instructions pour
configurer une CA locale et déployer les certificats sur votre cluster BeeGFS v8 existant ou nouveau.

Déploiement d’un nouveau cluster BeeGFS v8

Pour un nouveau déploiement de BeeGFS v8, le beegfs_8 rôle Ansible se chargera de créer une autorité de
certification locale sur le nœud de contrôle et de générer les certificats nécessaires pour les services de
gestion. Cela peut être activé en définissant les paramètres suivants dans le fichier
user_defined_params.yml d’inventaire Ansible :

132

beegfs_ha_tls_enabled: true

beegfs_ha_ca_cert_src_path: files/beegfs/cert/local_ca_cert.pem

beegfs_ha_tls_cert_src_path: files/beegfs/cert/mgmtd_tls_cert.pem

beegfs_ha_tls_key_src_path: files/beegfs/cert/mgmtd_tls_key.pem

beegfs_ha_tls_config_options:

 alt_names: [<mgmt_service_ip>]

Si beegfs_ha_tls_config_options.alt_names n’est pas fourni, alors Ansible tentera
d’utiliser les certificats existants dans les chemins de certificat/clé spécifiés.

Configuration d’un cluster BeeGFS v8 existant

Pour un cluster BeeGFS existant, vous pouvez intégrer TLS en créant une autorité de certification locale et en
générant les certificats nécessaires pour les services de gestion. Mettez à jour les chemins dans le fichier de
configuration des services de gestion BeeGFS pour qu’ils pointent vers les certificats nouvellement créés.

Les instructions de cette section sont données à titre indicatif. Il convient de prendre les
précautions de sécurité appropriées lors de la manipulation des clés privées et des certificats.

Créer l’autorité de certification

Sur une machine de confiance, créez une autorité de certification locale pour signer les certificats de vos
services de gestion BeeGFS. Le certificat de l’autorité de certification sera distribué aux clients pour établir la
confiance et permettre une communication sécurisée avec les services BeeGFS.

Les instructions suivantes servent de référence pour la création d’une autorité de certification locale sur un
système basé sur RHEL.

1. Installez OpenSSL s’il n’est pas déjà installé :

dnf install openssl

2. Créez un répertoire de travail pour stocker les fichiers de certificat :

mkdir -p ~/beegfs_tls && cd ~/beegfs_tls

3. Générez la clé privée de la CA :

openssl genrsa -out ca_key.pem 4096

4. Créez un fichier de configuration CA nommé ca.cnf et ajustez les champs de nom unique pour qu’ils

133

correspondent à votre organisation :

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

x509_extensions = v3_ca

prompt = no

[req_distinguished_name]

C = <Country>

ST = <State>

L = <City>

O = <Organization>

OU = <OrganizationalUnit>

CN = BeeGFS-CA

[v3_ca]

basicConstraints = critical,CA:TRUE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

5. Générez le certificat d’autorité de certification. Ce certificat doit être valide pendant toute la durée de vie du
système, sinon vous devrez prévoir de régénérer les certificats avant leur expiration. Une fois un certificat
expiré, la communication entre certains composants ne sera plus possible et la mise à jour des certificats
TLS nécessitera généralement de redémarrer les services pour terminer.

La commande suivante génère un certificat d’autorité de certification valable 1 an :

openssl req -new -x509 -key ca_key.pem -out ca_cert.pem -days 365

-config ca.cnf

Bien que cet exemple utilise une période de validité d’un an par souci de simplicité, vous
devez ajuster le -days paramètre en fonction des exigences de sécurité de votre
organisation et mettre en place un processus de renouvellement de certificat.

Créer des certificats de service de gestion

Générez des certificats pour vos services de gestion BeeGFS et signez-les avec la CA que vous avez créée.
Ces certificats seront installés sur les nœuds de fichiers exécutant les services de gestion BeeGFS.

1. Générez la clé privée du service de gestion :

openssl genrsa -out mgmtd_tls_key.pem 4096

2. Créez un fichier de configuration de certificat nommé tls_san.cnf avec des Subject Alternative Names

134

(SAN) pour toutes les adresses IP du service de gestion :

[req]

default_bits = 4096

distinguished_name = req_distinguished_name

req_extensions = req_ext

prompt = no

[req_distinguished_name]

C = <Country>

ST = <State>

L = <City>

O = <Organization>

OU = <OrganizationalUnit>

CN = beegfs-mgmt

[req_ext]

subjectAltName = @alt_names

[v3_ca]

subjectAltName = @alt_names

basicConstraints = CA:FALSE

[alt_names]

IP.1 = <beegfs_mgmt_service_ip_1>

IP.2 = <beegfs_mgmt_service_ip_2>

Mettez à jour les champs de nom unique pour qu’ils correspondent à la configuration de votre CA et les
IP.1 et IP.2 valeurs avec les adresses IP de votre service de gestion.

3. Générez une demande de signature de certificat (CSR) :

openssl req -new -key mgmtd_tls_key.pem -out mgmtd_tls_csr.pem -config

tls_san.cnf

4. Signez le certificat avec votre CA (valable 1 an) :

openssl x509 -req -in mgmtd_tls_csr.pem -CA ca_cert.pem -CAkey

ca_key.pem -CAcreateserial -out mgmtd_tls_cert.pem -days 365 -sha256

-extensions v3_ca -extfile tls_san.cnf

Ajustez la période de validité du certificat (-days 365 en fonction des politiques de sécurité
de votre organisation. De nombreuses organisations exigent un renouvellement des
certificats tous les 1-2 ans.

135

5. Vérifiez que le certificat a été créé correctement :

openssl x509 -in mgmtd_tls_cert.pem -text -noout

Confirmez que la section Nom alternatif du sujet inclut toutes vos adresses IP de gestion.

Distribuer les certificats aux nœuds de fichiers

Distribuez le certificat d’autorité de certification et les certificats de service de gestion aux nœuds de fichiers et
aux clients appropriés.

1. Copiez le certificat d’autorité de certification (CA), le certificat du service de gestion et la clé de ce service
sur les nœuds de fichiers exécutant les services de gestion :

scp ca_cert.pem mgmtd_tls_cert.pem mgmtd_tls_key.pem

user@beegfs_01:/etc/beegfs/

scp ca_cert.pem mgmtd_tls_cert.pem mgmtd_tls_key.pem

user@beegfs_02:/etc/beegfs/

Pointez le service de gestion vers les certificats TLS

Mettez à jour la configuration du service de gestion BeeGFS pour activer TLS et référencer les certificats TLS
créés.

1. Depuis un nœud de fichier exécutant le service de gestion BeeGFS, modifiez le fichier de configuration du
service de gestion, par exemple à /mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml.
Ajoutez ou mettez à jour les paramètres liés à TLS suivants :

tls-disable = false

tls-cert-file = "/etc/beegfs/mgmtd_tls_cert.pem"

tls-key-file = "/etc/beegfs/mgmtd_tls_key.pem"

2. Prenez les mesures appropriées pour redémarrer en toute sécurité le service de gestion BeeGFS afin que
les modifications prennent effet :

systemctl restart beegfs-mgmtd

3. Vérifiez que le service de gestion a démarré avec succès :

journalctl -xeu beegfs-mgmtd

Recherchez les entrées de journal indiquant une initialisation TLS réussie et un chargement du certificat.

136

Successfully initialized certificate verification library.

Successfully loaded license certificate: TMP-XXXXXXXXXX

Configurer TLS pour les clients BeeGFS v8

Créer et distribuer des certificats signés par la CA locale à tous les clients BeeGFS qui nécessiteront une
communication avec les services de gestion BeeGFS.

1. Générez un certificat pour le client en utilisant le même processus que pour le certificat de service de
gestion ci-dessus, mais avec l’adresse IP ou le nom d’hôte du client dans le champ Subject Alternative
Name (SAN).

2. Copiez à distance et en toute sécurité le certificat du client sur le client et renommez le certificat en
cert.pem sur le client :

scp client_cert.pem user@client:/etc/beegfs/cert.pem

3. Redémarrez le service client BeeGFS sur tous les clients :

systemctl restart beegfs-client

4. Vérifiez la connectivité du client en exécutant une commande beegfs CLI, telle que :

beegfs health check

Désactivation de TLS

TLS peut être désactivé à des fins de dépannage ou si les utilisateurs le souhaitent. Cela est déconseillé car
cela expose en clair des informations potentiellement sensibles concernant la structure interne du système de
fichiers et le fichier de configuration. Suivez ces instructions pour désactiver TLS sur votre cluster BeeGFS v8
existant ou nouveau.

Déploiement d’un nouveau cluster BeeGFS v8

Pour un nouveau déploiement de cluster BeeGFS, le cluster peut être déployé avec TLS désactivé en
définissant le paramètre suivant dans le fichier user_defined_params.yml d’inventaire Ansible :

beegfs_ha_tls_enabled: false

Configuration d’un cluster BeeGFS v8 existant

Pour un cluster BeeGFS v8 existant, modifiez le fichier de configuration du service de gestion. Par exemple,
modifiez le fichier à /mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml et définissez :

137

tls-disable = true

Prenez les mesures appropriées pour redémarrer en toute sécurité le service de gestion afin que les
modifications prennent effet.

138

Gérer des clusters BeeGFS

Présentation, concepts clés et terminologie

Apprenez à gérer des clusters BeeGFS HA après leur déploiement.

Présentation

Cette section s’adresse aux administrateurs de cluster qui doivent gérer des clusters BeeGFS HA après leur
déploiement. Même ceux qui connaissent les clusters haute disponibilité Linux doivent lire attentivement ce
guide car il existe un certain nombre de différences dans la gestion du cluster, en particulier concernant la
reconfiguration, grâce à l’utilisation d’Ansible.

Concepts clés

Certains de ces concepts sont présentés sur la "termes et concepts"page principale, mais il est utile de les
réintroduire dans le contexte d’un cluster BeeGFS HA :

Cluster Node: Un serveur exécutant les services Pacemaker et Corosync et participant au cluster HA.

Nœud de fichiers : Nœud de cluster utilisé pour exécuter un ou plusieurs services de gestion, de
métadonnées ou de stockage BeeGFS.

Nœud de bloc : Un système de stockage NetApp E-Series qui fournit un stockage bloc aux nœuds de fichiers.
Ces nœuds ne participent pas au cluster BeeGFS HA car ils fournissent leurs propres capacités HA
autonomes. Chaque nœud est constitué de deux contrôleurs de stockage qui assurent une haute disponibilité
au niveau de la couche bloc.

Service BeeGFS: Un service de gestion, de métadonnées ou de stockage BeeGFS. Chaque nœud de fichiers
exécute un ou plusieurs services qui utilisent les volumes du nœud de bloc pour stocker leurs données.

Building Block : Un déploiement standardisé de nœuds de fichiers BeeGFS, de nœuds de blocs E-Series et
des services BeeGFS s’exécutent sur eux qui simplifient l’évolution d’un cluster/système de fichiers BeeGFS
HA grâce à une architecture vérifiée NetApp. Les clusters haute disponibilité personnalisés sont également
pris en charge, mais leur approche consiste souvent à adopter des éléments de base similaires pour simplifier
l’évolutivité.

BeeGFS HA Cluster: Nombre évolutif de nœuds de fichiers utilisés pour exécuter les services BeeGFS
sauvegardés par des nœuds de blocs pour stocker des données BeeGFS de façon hautement disponible.
Repose sur des composants open source éprouvés Pacemaker et Corosync avec Ansible pour le packaging et
le déploiement.

Cluster services: désigne les services Pacemaker et Corosync exécutés sur chaque nœud participant au
cluster. Notez qu’un nœud n’exécute pas de services BeeGFS et qu’il participe uniquement au cluster comme
un nœud « Tiebreaker » s’il n’y a que besoin de deux nœuds de fichiers.

Cluster Resources: pour chaque service BeeGFS s’exécutant dans le cluster, vous verrez une ressource de
moniteur BeeGFS et un groupe de ressources contenant des ressources pour les cibles BeeGFS, les
adresses IP (IP flottantes) et le service BeeGFS.

Ansible: Un outil de provisionnement logiciel, de gestion de la configuration et de déploiement des
applications, permettant ainsi une infrastructure comme du code. Tout cela est possible grâce au package de
clusters BeeGFS HA pour simplifier le processus de déploiement, de reconfiguration et de mise à jour de

139

BeeGFS sur NetApp.

Pcs: Une interface de ligne de commande disponible à partir de n’importe quel nœud de fichiers du cluster
utilisé pour interroger et contrôler l’état des nœuds et des ressources du cluster.

Terminologie commune

Basculement: chaque service BeeGFS a un noeud de fichier préféré qu’il fonctionne à moins que ce noeud
ne tombe en panne. Lorsqu’un service BeeGFS s’exécute sur un nœud de fichier non préféré/secondaire, il est
dit qu’il est en cours de basculement.

Retour arrière: le fait de déplacer les services BeeGFS d’un noeud de fichier non préféré vers leur noeud
préféré.

Paire HA : deux nœuds de fichiers qui accèdent au même ensemble de nœuds de bloc sont parfois appelés
paire HA. Ce terme est utilisé dans l’ensemble de NetApp pour désigner deux contrôleurs ou nœuds de
stockage qui peuvent « prendre le relais » les uns les autres.

Mode Maintenance : désactive la surveillance de toutes les ressources et empêche Pacemaker de déplacer
ou de gérer les ressources dans le cluster (voir également la section "mode maintenance").

Cluster HA: un ou plusieurs nœuds de fichiers exécutant les services BeeGFS qui peuvent basculer entre
plusieurs nœuds du cluster pour créer un système de fichiers BeeGFS haute disponibilité. Ils sont souvent
configurés en paires HA et qui peuvent exécuter un sous-ensemble des services BeeGFS dans le cluster.

Quand utiliser Ansible contre l’outil pcs

Quand devriez-vous utiliser Ansible par rapport à l’outil de ligne de commande pcs pour
gérer le cluster HA ?

Toutes les tâches de déploiement et de reconfiguration du cluster doivent être effectuées à l’aide d’Ansible à
partir d’un nœud de contrôle Ansible externe. Les modifications temporaires de l’état du cluster (par exemple,
placement des nœuds en veille ou en dehors) sont généralement effectuées en se connectant à un nœud du
cluster (de préférence un nœud qui n’est pas dégradé ou sur le point de subir des opérations de maintenance)
et en utilisant l’outil de ligne de commande pcs.

Tout changement de configuration de cluster, y compris les ressources, les contraintes, les propriétés et les
services BeeGFS, doit toujours être effectué à l’aide d’Ansible. Maintenir une copie à jour de l’inventaire et du
manuel de vente Ansible (idéalement en contrôle source pour suivre les modifications) fait partie de la
maintenance du cluster. Si vous devez modifier la configuration, mettez à jour l’inventaire et exécutez à
nouveau le PlayBook Ansible qui importe le rôle BeeGFS HA.

Le rôle HA gère le placement du cluster en mode maintenance, puis les modifications nécessaires avant de
redémarrer BeeGFS ou les services du cluster pour appliquer la nouvelle configuration. Le redémarrage
complet de nœud n’est généralement pas nécessaire en dehors du déploiement initial. Toutefois, le
redémarrage d’Ansible est généralement considéré comme une procédure « sûre », mais toujours
recommandé pendant les fenêtres de maintenance ou hors heures si les services BeeGFS doivent redémarrer.
Ces redémarrages ne doivent généralement pas provoquer d’erreurs d’application, mais peuvent nuire aux
performances (que certaines applications peuvent traiter mieux que d’autres).

Le réexécution Ansible est également une option pour rétablir l’état optimal de l’ensemble du cluster. Dans
certains cas, il peut récupérer l’état du cluster plus facilement qu’avec les pièces. Notamment en cas
d’urgence où le cluster est hors service, une fois que tous les nœuds sont sauvegardées, Ansible peut
récupérer le cluster plus rapidement et de façon plus fiable que toute tentative d’utilisation de pcs.

140

Vérifiez l’état du cluster

Utilisez les pièces pour voir l’état du bloc d’instruments.

Présentation

Exécution pcs status À partir de n’importe quel nœud de cluster est le moyen le plus simple de voir l’état
global du cluster et l’état de chaque ressource (par exemple, les services BeeGFS et leurs dépendances).
Cette section présente ce que vous trouverez dans les résultats du pcs status commande.

Présentation de la sortie de pcs status

Courez pcs status Sur n’importe quel nœud de cluster où les services de cluster (Pacemaker et Corosync)
sont démarrés. Le haut de la sortie affiche un récapitulatif du cluster :

[root@beegfs_01 ~]# pcs status

Cluster name: hacluster

Cluster Summary:

 * Stack: corosync

 * Current DC: beegfs_01 (version 2.0.5-9.el8_4.3-ba59be7122) - partition

with quorum

 * Last updated: Fri Jul 1 13:37:18 2022

 * Last change: Fri Jul 1 13:23:34 2022 by root via cibadmin on

beegfs_01

 * 6 nodes configured

 * 235 resource instances configured

La section ci-dessous liste les nœuds du cluster :

Node List:

 * Node beegfs_06: standby

 * Online: [beegfs_01 beegfs_02 beegfs_04 beegfs_05]

 * OFFLINE: [beegfs_03]

Cela indique notamment tous les nœuds en veille ou hors ligne. Les nœuds en veille font toujours partie du
cluster, mais sont marqués comme non éligibles pour l’exécution des ressources. Les nœuds hors ligne
indiquent que les services du cluster ne s’exécutent pas sur ce nœud, soit en raison d’un arrêt manuel, soit en
raison du redémarrage ou de l’arrêt du nœud.

Lorsque les nœuds démarrent initialement, les services de cluster sont arrêtés et doivent être
démarrés manuellement pour éviter de basculer accidentellement des ressources sur un nœud
défaillant.

Si les nœuds sont en attente ou hors ligne en raison d’une raison non administrative (par exemple, une
panne), un texte supplémentaire s’affiche à côté de l’état du nœud entre parenthèses. Par exemple, si
l’escrime est désactivé et qu’une ressource rencontre une défaillance, vous verrez Node <HOSTNAME>:

141

standby (on-fail). Un autre état possible est Node <HOSTNAME>: UNCLEAN (offline), qui sera
brièvement vu comme un nœud est clôturé, mais persistera si l’escrime a échoué indiquant que le cluster ne
peut pas confirmer l’état du nœud (cela peut bloquer les ressources de démarrer sur d’autres noeuds).

La section suivante affiche la liste de toutes les ressources du cluster et leur état :

Full List of Resources:

 * mgmt-monitor (ocf::eseries:beegfs-monitor): Started beegfs_01

 * Resource Group: mgmt-group:

 * mgmt-FS1 (ocf::eseries:beegfs-target): Started beegfs_01

 * mgmt-IP1 (ocf::eseries:beegfs-ipaddr2): Started beegfs_01

 * mgmt-IP2 (ocf::eseries:beegfs-ipaddr2): Started beegfs_01

 * mgmt-service (systemd:beegfs-mgmtd): Started beegfs_01

[...]

Tout comme les nœuds, un texte supplémentaire s’affiche en regard de l’état de la ressource entre
parenthèses s’il y a des problèmes avec la ressource. Par exemple, si Pacemaker demande un arrêt de
ressource et qu’il ne s’effectue pas dans le temps alloué, Pacemaker tente de verrouiller le nœud. Si l’escrime
est désactivé ou que l’opération d’escrime échoue, l’état de la ressource sera FAILED <HOSTNAME>
(blocked) Et Pacemaker ne pourra pas démarrer sur un autre nœud.

Il est utile de noter que les clusters BeeGFS HA utilisent un certain nombre d’agents de ressources
personnalisées de BeeGFS optimisés pour les OCF. En particulier, le moniteur BeeGFS est responsable du
déclenchement d’un basculement lorsque les ressources BeeGFS sur un nœud donné ne sont pas
disponibles.

Reconfigurer le cluster HA et BeeGFS

Utilisez Ansible pour reconfigurer le cluster.

Présentation

En général, la reconfiguration d’un aspect du cluster BeeGFS haute disponibilité doit être effectuée en mettant
à jour votre inventaire Ansible et en réexécutant ansible-playbook la commande. Cela inclut la mise à jour
des alertes, la modification de la configuration de l’escrime permanent ou l’ajustement de la configuration du
service BeeGFS. Ils sont ajustés à l’aide du group_vars/ha_cluster.yml fichier et une liste complète des
options se trouve dans la "Spécifiez la configuration de nœud de fichier commun" section.

Pour plus d’informations sur les options de configuration que les administrateurs doivent connaître lors des
opérations de maintenance ou de maintenance du cluster, consultez ci-dessous.

Comment désactiver et activer la fonction de fencing

Par défaut, l’escrime est activé/requis lors de la configuration du cluster. Dans certains cas, il peut être
souhaitable de désactiver temporairement l’escrime pour s’assurer que les nœuds ne s’arrêtent pas
accidentellement lors de certaines opérations de maintenance (par exemple, la mise à niveau du système
d’exploitation). Bien que cette fonction puisse être désactivée manuellement, les administrateurs doivent en
être conscients des compromis.

142

OPTION 1 : désactivez l’escrime avec Ansible (recommandé).

Lorsque l’escrime est désactivé à l’aide d’Ansible, l’action en cas d’échec du moniteur BeeGFS passe de «
clôture » à « veille ». Cela signifie que si le moniteur BeeGFS détecte une défaillance, il tente de placer le
nœud en veille et de basculer tous les services BeeGFS. En dehors du dépannage/test actif, ceci est
généralement plus souhaitable que l’option 2. L’inconvénient est que si une ressource ne s’arrête pas sur le
nœud d’origine, elle sera bloquée pour commencer ailleurs (c’est pourquoi une clôture est généralement
nécessaire pour les grappes de production).

1. Dans votre inventaire Ansible à groups_vars/ha_cluster.yml ajoutez la configuration suivante :

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: False

2. Exécutez à nouveau le manuel de vente Ansible afin d’appliquer les modifications apportées au cluster.

OPTION 2 : désactivez manuellement l’escrime.

Dans certains cas, vous pouvez désactiver temporairement l’escrime sans qu’il soit nécessaire de réexécuter
Ansible, afin de faciliter le dépannage ou le test du cluster.

Dans cette configuration, si le moniteur BeeGFS détecte une défaillance, le cluster tente
d’arrêter le groupe de ressources correspondant. Il NE déclenchera PAS un basculement
complet ni ne tentera de redémarrer ou de déplacer le groupe de ressources affecté vers un
autre hôte. Pour restaurer le système, traitez les problèmes avant de l’exécuter pcs resource
cleanup ou placez manuellement le nœud en veille.

Étapes :

1. Pour déterminer si l’escrime (stonith) est globalement activé ou désactivé : pcs property show
stonith-enabled

2. Pour désactiver la séquence d’escrime : pcs property set stonith-enabled=false

3. Pour activer la séquence d’escrime : pcs property set stonith-enabled=true

Ce paramètre sera remplacé la prochaine fois que vous exécuterez le playbook Ansible.

Mettez à jour les composants du cluster HA

Mise à niveau des services BeeGFS

Utilisez Ansible pour mettre à jour la version de BeeGFS exécutée sur votre cluster HA.

Présentation

BeeGFS applique un major.minor.patch schéma de gestion des versions. Des rôles Ansible haute
disponibilité BeeGFS sont fournis pour chaque major.minor version prise en charge (par exemple,
beegfs_ha_7_2 et beegfs_ha_7_3). Chaque rôle HA est épinglé à la dernière version de correctif BeeGFS
disponible au moment de la publication de la collection Ansible.

143

Ansible doit être utilisé pour toutes les mises à niveau de BeeGFS, y compris le passage entre les versions
majeure, mineure et corrective de BeeGFS. Pour mettre à jour BeeGFS, vous devrez d’abord mettre à jour la
collection Ansible BeeGFS, ce qui intégrera également les derniers correctifs et améliorations de
l’automatisation du déploiement/gestion et du cluster HA sous-jacent. Même après la mise à jour vers la
dernière version de la collection, BeeGFS ne sera pas mis à niveau tant que ansible-playbook n’aura pas
été exécuté avec l' -e "beegfs_ha_force_upgrade=true" activé. Pour plus de détails sur chaque mise à
niveau, consultez la "Documentation de mise à niveau BeeGFS" pour votre version actuelle.

Si vous effectuez une mise à niveau vers BeeGFS v8, consultez plutôt la "Mise à jour vers
BeeGFS v8"procédure.

Chemins de mise à niveau testés

Les voies de mise à niveau suivantes ont été testées et vérifiées :

Version
d’origine

Mettre à
niveau la
version

Multirail Détails

7.2.6 7.3.2 Oui. Mise à niveau de la collection beegfs de v3.0.1 à v3.1.0, multirail
ajouté

7.2.6 7.2.8 Non Mise à niveau de la collection beegfs de v3.0.1 à v3.1.0

7.2.8 7.3.1 Oui. Mise à niveau avec beegfs collection v3.1.0, multirail ajouté

7.3.1 7.3.2 Oui. Mise à niveau avec beegfs collection v3.1.0

7.3.2 7.4.1 Oui. Mise à niveau avec beegfs collection v3.2.0

7.4.1 7.4.2 Oui. Mise à niveau avec beegfs collection v3.2.0

7.4.2 7.4.6 Oui. Mise à niveau avec beegfs collection v3.2.0

7.4.6 8,0 Oui. Mettez à niveau en suivant les instructions dans la "Mise à jour vers
BeeGFS v8" procédure.

7.4.6 8,1 Oui. Mettez à niveau en suivant les instructions dans la "Mise à jour vers
BeeGFS v8" procédure.

7.4.6 8,2 Oui. Mettez à niveau en suivant les instructions dans la "Mise à jour vers
BeeGFS v8" procédure.

Étapes de mise à niveau BeeGFS

Les sections suivantes expliquent comment mettre à jour la collection BeeGFS Ansible et BeeGFS. Portez une
attention particulière à toute étape(s) supplémentaire(s) pour la mise à jour de BeeGFS version majeure ou
mineure.

Étape 1 : mise à niveau de la collection BeeGFS

Pour les mises à niveau de collecte avec accès à "Galaxy Ansible", exécutez la commande suivante :

ansible-galaxy collection install netapp_eseries.beegfs --upgrade

Pour les mises à niveau hors ligne de la collection, téléchargez la collection à partir de "Galaxy Ansible" en

144

https://doc.beegfs.io/latest/advanced_topics/upgrade.html
https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/netapp_eseries/beegfs

cliquant sur le bouton souhaité Install Version` puis Download tarball. Transférez le tarball sur votre
nœud de contrôle Ansible, puis exécutez la commande suivante.

ansible-galaxy collection install netapp_eseries-beegfs-<VERSION>.tar.gz

--upgrade

Voir "Installation de Collections" pour en savoir plus.

Étape 2 : mise à jour de l’inventaire Ansible

Apportez toutes les mises à jour requises ou souhaitées aux fichiers d’inventaire Ansible de votre cluster. Voir
la section Notes de mise à niveau de la version ci-dessous pour plus de détails sur vos exigences spécifiques
de mise à niveau. Voir la section "Présentation d’Ansible Inventory" pour des informations générales sur la
configuration de votre inventaire BeeGFS HA.

Étape 3 : mise à jour du PlayBook Ansible (uniquement en cas de mise à jour des versions principales ou secondaires)

Si vous passez d’une version majeure à une version mineure, dans le playbook.yml fichier utilisé pour
déployer et gérer le cluster, mettez à jour le nom du beegfs_ha_<VERSION> rôle pour refléter la version
souhaitée. Par exemple, si vous souhaitez déployer BeeGFS 7.4 beegfs_ha_7_4:

- hosts: all

 gather_facts: false

 any_errors_fatal: true

 collections:

 - netapp_eseries.beegfs

 tasks:

 - name: Ensure BeeGFS HA cluster is setup.

 ansible.builtin.import_role: # import_role is required for tag

availability.

 name: beegfs_ha_7_4

Pour plus de détails sur le contenu de ce fichier PlayBook"Déployez le cluster BeeGFS HA", reportez-vous à la
section.

Étape 4 : exécutez la mise à niveau BeeGFS

Pour appliquer la mise à jour BeeGFS :

ansible-playbook -i inventory.yml beegfs_ha_playbook.yml -e

"beegfs_ha_force_upgrade=true" --tags beegfs_ha

En coulisse, le rôle haute disponibilité BeeGFS gère :

• Assurez-vous que le cluster est dans un état optimal avec chaque service BeeGFS situé sur son nœud
préféré.

• Mettre le cluster en mode maintenance.

145

https://docs.ansible.com/ansible/latest/collections_guide/collections_installing.html
../custom/architectures-deploy-ha-cluster.html

• Mettre à jour les composants du cluster haute disponibilité (le cas échéant)

• Mettez à niveau chaque nœud de fichiers un par un en procédant comme suit :

◦ Mettez le système en veille et basculez ses services vers le nœud secondaire.

◦ Mise à jour des packs BeeGFS.

◦ Proposer de nouveaux services.

• Déplacez le cluster hors du mode maintenance.

Notes de mise à niveau de la version

Mise à jour de BeeGFS version 7.2.6 ou 7.3.0

Modifications de l’authentification basée sur la connexion

BeeGFS version 7.3.2 et ultérieures nécessitent que l’authentification basée sur la connexion soit configurée.
Les services ne démarreront pas sans l’une des options suivantes :

• Spécifier un connAuthFile, ou

• Paramétrage connDisableAuthentication=true dans le fichier de configuration du service.

Il est fortement recommandé d’activer l’authentification basée sur la connexion pour des raisons de sécurité.
Voir "Authentification basée sur la connexion BeeGFS" pour plus d’informations.

Les beegfs_ha* rôles génèrent et distribuent automatiquement le fichier d’authentification à :

• Tous les nœuds de fichiers du cluster

• Le nœud de contrôle Ansible à
<playbook_directory>/files/beegfs/<beegfs_mgmt_ip_address>_connAuthFile

Le beegfs_client rôle détectera et appliquera automatiquement ce fichier aux clients lorsqu’il sera présent.

Si vous n’avez pas utilisé le beegfs_client rôle pour configurer les clients, vous devez
distribuer manuellement le fichier d’authentification à chaque client et configurer le paramètre
connAuthFile dans le fichier beegfs-client.conf. Lors d’une mise à niveau depuis une
version de BeeGFS sans authentification basée sur la connexion, les clients perdront l’accès
sauf si vous désactivez l’authentification basée sur la connexion pendant la mise à niveau en
définissant beegfs_ha_conn_auth_enabled: false dans
group_vars/ha_cluster.yml (non recommandé).

Pour plus de détails et d’options de configuration alternatives, consultez l’étape de configuration de
l’authentification de connexion dans la section "Spécifiez la configuration de nœud de fichier commun".

Mise à jour vers BeeGFS v8

Suivez ces étapes pour mettre à niveau votre cluster BeeGFS HA de la version 7.4.6 à
BeeGFS v8.

Présentation

BeeGFS v8 introduit plusieurs changements importants qui nécessitent une configuration supplémentaire

146

https://doc.beegfs.io/7.3.2/advanced_topics/authentication.html#connectionbasedauth

avant la mise à niveau depuis BeeGFS v7. Ce document vous guide dans la préparation de votre cluster aux
nouvelles exigences de BeeGFS v8, puis dans la mise à niveau vers BeeGFS v8.

Avant de procéder à la mise à niveau vers BeeGFS v8, assurez-vous que votre système
exécute au moins BeeGFS 7.4.6. Tout cluster exécutant une version antérieure à BeeGFS 7.4.6
doit d’abord "Mise à jour vers la version 7.4.6" avant de poursuivre cette procédure de mise à
niveau vers BeeGFS v8.

Principaux changements dans BeeGFS v8

BeeGFS v8 introduit les changements majeurs suivants :

• Application des licences : BeeGFS v8 requiert une licence pour utiliser les fonctionnalités premium telles
que les pools de stockage, les cibles de stockage distantes, BeeOND, et plus encore. Procurez-vous une
licence valide pour votre cluster BeeGFS avant la mise à niveau. Si nécessaire, vous pouvez obtenir une
licence d’évaluation temporaire de BeeGFS v8 auprès du "Portail de licences BeeGFS".

• Migration de la base de données du service de gestion : Pour activer la configuration avec le nouveau
format basé sur TOML dans BeeGFS v8, vous devez migrer manuellement votre base de données du
service de gestion BeeGFS v7 vers le format BeeGFS v8 mis à jour.

• Chiffrement TLS : BeeGFS v8 introduit TLS pour sécuriser la communication entre les services. Vous
devrez générer et distribuer des certificats TLS pour le service de gestion BeeGFS et l' `beegfs`utilitaire en
ligne de commande dans le cadre de la mise à niveau.

Pour plus de détails et les modifications supplémentaires apportées à BeeGFS 8, consultez le "Guide de mise
à niveau BeeGFS v8.0.0".

La mise à niveau vers BeeGFS v8 nécessite une interruption du cluster. De plus, les clients
BeeGFS v7 ne peuvent pas se connecter aux clusters BeeGFS v8. Coordonnez soigneusement
le calendrier de mise à niveau entre le cluster et les clients afin de minimiser l’impact sur les
opérations.

Préparez votre cluster BeeGFS pour la mise à niveau

Avant de commencer la mise à niveau, préparez soigneusement votre environnement afin d’assurer une
transition en douceur et de minimiser l’interruption.

1. Assurez-vous que votre cluster est dans un état sain, avec tous les services BeeGFS exécutés sur leurs
nœuds préférés. À partir d’un nœud de fichiers exécutant les services BeeGFS, vérifiez que toutes les
ressources Pacemaker sont exécutées sur leurs nœuds préférés :

pcs status

2. Enregistrez et sauvegardez la configuration de votre cluster.

a. Consultez le "Documentation de sauvegarde BeeGFS" pour obtenir des instructions sur la sauvegarde
de la configuration de votre cluster.

b. Sauvegardez le répertoire de données de gestion existant :

147

https://beegfs.io/license/
https://doc.beegfs.io/8.0/advanced_topics/upgrade.html
https://doc.beegfs.io/8.0/advanced_topics/upgrade.html
https://doc.beegfs.io/7.4.6/advanced_topics/backup.html

cp -r /mnt/mgmt_tgt_mgmt01/data

/mnt/mgmt_tgt_mgmt01/data_beegfs_v7_backup_$(date +%Y%m%d)

c. Exécutez les commandes suivantes depuis un client beegfs et enregistrez leur sortie pour référence :

beegfs-ctl --getentryinfo --verbose /path/to/beegfs/mountpoint

d. Si vous utilisez la mise en miroir, recueillez des informations détaillées sur l’état :

beegfs-ctl --listtargets --longnodes --state --spaceinfo

--mirrorgroups --nodetype=meta

beegfs-ctl --listtargets --longnodes --state --spaceinfo

--mirrorgroups --nodetype=storage

3. Préparez vos clients à l’interruption beegfs-client des services. Pour chaque client, exécutez :

systemctl stop beegfs-client

4. Pour chaque cluster Pacemaker, désactivez STONITH. Cela vous permettra de vérifier l’intégrité du cluster
après la mise à niveau sans provoquer de redémarrages inutiles des nœuds.

pcs property set stonith-enabled=false

5. Pour tous les clusters Pacemaker dans l’espace de noms BeeGFS, utilisez PCS pour arrêter le cluster :

pcs cluster stop --all

Mettez à niveau les packages BeeGFS

Sur tous les nœuds de fichiers du cluster, ajoutez le dépôt de paquets BeeGFS v8 correspondant à votre
distribution Linux. Des instructions pour utiliser les dépôts officiels BeeGFS sont disponibles à "page de
téléchargement BeeGFS". Sinon, configurez votre dépôt miroir local BeeGFS en conséquence.

La procédure suivante décrit comment procéder à l’aide du dépôt officiel BeeGFS 8.2 sur des nœuds de
fichiers RHEL 9. Effectuez les étapes suivantes sur tous les nœuds de fichiers du cluster :

1. Importez la clé GPG de BeeGFS :

rpm --import https://www.beegfs.io/release/beegfs_8.2/gpg/GPG-KEY-beegfs

2. Importez le dépôt BeeGFS :

148

https://www.beegfs.io/c/download/
https://www.beegfs.io/c/download/

curl -L -o /etc/yum.repos.d/beegfs-rhel9.repo

https://www.beegfs.io/release/beegfs_8.2/dists/beegfs-rhel9.repo

Supprimez tous les dépôts BeeGFS précédemment configurés pour éviter les conflits avec
le nouveau dépôt BeeGFS v8.

3. Videz le cache de votre gestionnaire de paquets :

dnf clean all

4. Sur tous les nœuds de fichiers, mettez à jour les paquets BeeGFS vers BeeGFS 8.2.

dnf update beegfs-mgmtd beegfs-storage beegfs-meta libbeegfs-ib

Dans un cluster standard, le beegfs-mgmtd package ne sera mis à jour que sur les deux
premiers nœuds de fichiers.

Mettre à niveau la base de données de gestion

Sur l’un des nœuds de fichiers exécutant le service de gestion BeeGFS, effectuez les étapes suivantes pour
migrer la base de données de gestion de BeeGFS v7 vers v8.

1. Lister tous les périphériques NVMe et filtrer selon la cible de gestion :

nvme netapp smdevices | grep mgmt_tgt

a. Notez le chemin d’accès au périphérique dans la sortie.

b. Montez le périphérique cible de gestion sur le point de montage cible de gestion existant (remplacez
/dev/nvmeXnY par le chemin d’accès à votre périphérique) :

mount /dev/nvmeXnY /mnt/mgmt_tgt_mgmt01/

2. Importez vos données de gestion BeeGFS 7 dans le nouveau format de base de données en exécutant :

/opt/beegfs/sbin/beegfs-mgmtd --import-from

-v7=/mnt/mgmt_tgt_mgmt01/data/

Résultat attendu:

149

Created new database version 3 at "/var/lib/beegfs/mgmtd.sqlite".

Successfully imported v7 management data from

"/mnt/mgmt_tgt_mgmt01/data/".

L’importation automatique peut échouer dans certains cas en raison des exigences de
validation plus strictes dans BeeGFS v8. Par exemple, si des cibles sont affectées à des
pools de stockage inexistants, l’importation échouera. Si la migration de la base de données
échoue, ne procédez pas à la mise à niveau. Contactez le support NetApp pour obtenir de
l’aide concernant la résolution des problèmes de migration de la base de données. À titre de
solution temporaire, vous pouvez rétrograder les packages BeeGFS v8 et continuer à
utiliser BeeGFS v7 pendant que le problème est résolu.

3. Déplacez le fichier SQLite généré vers le point de montage du service de gestion :

mv /var/lib/beegfs/mgmtd.sqlite /mnt/mgmt_tgt_mgmt01/data/

4. Déplacez le fichier généré beegfs-mgmtd.toml vers le point de montage du service de gestion :

mv /etc/beegfs/beegfs-mgmtd.toml /mnt/mgmt_tgt_mgmt01/mgmt_config/

La préparation du fichier de configuration beegfs-mgmtd.toml sera effectuée après avoir terminé les
étapes de configuration de la licence et du chiffrement TLS dans les sections suivantes.

Configurer les licences

1. Installez les packages de licence beegfs sur tous les nœuds qui exécutent le service de gestion beegfs. Il
s’agit généralement des deux premiers nœuds du cluster :

dnf install libbeegfs-license

2. Téléchargez votre fichier de licence BeeGFS v8 sur les nœuds de gestion et placez-le à :

/etc/beegfs/license.pem

Configurer le chiffrement TLS

BeeGFS v8 requiert le chiffrement TLS pour sécuriser les communications entre les services de gestion et les
clients. Il existe trois options pour configurer le chiffrement TLS sur les communications réseau entre les
services de gestion et les services clients. La méthode recommandée et la plus sécurisée consiste à utiliser
des certificats signés par une autorité de certification de confiance. Vous pouvez également créer votre propre
autorité de certification locale pour signer les certificats de votre cluster BeeGFS. Pour les environnements où
le chiffrement n’est pas requis ou pour le dépannage, TLS peut être entièrement désactivé, bien que cela soit
déconseillé car cela expose des informations sensibles au réseau.

150

Avant de continuer, suivez les instructions du "Configurer le chiffrement TLS pour BeeGFS 8" guide pour
configurer le chiffrement pour votre environnement.

Configuration du service de gestion des mises à jour

Préparez le fichier de configuration du service de gestion BeeGFS v8 en transférant manuellement les
paramètres de votre fichier de configuration BeeGFS v7 dans le fichier
/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml.

1. Sur le nœud de gestion où la cible de gestion est montée, référencez le
/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.conf fichier de service de gestion pour
BeeGFS 7, puis transférez tous les paramètres dans le fichier
/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml. Pour une configuration de base, votre
beegfs-mgmtd.toml pourrait ressembler à ce qui suit :

beemsg-port = 8008

grpc-port = 8010

log-level = "info"

node-offline-timeout = "900s"

quota-enable = false

auth-disable = false

auth-file = "/etc/beegfs/<mgmt_service_ip>_connAuthFile"

db-file = "/mnt/mgmt_tgt_mgmt01/data/mgmtd.sqlite"

license-disable = false

license-cert-file = "/etc/beegfs/license.pem"

tls-disable = false

tls-cert-file = "/etc/beegfs/mgmtd_tls_cert.pem"

tls-key-file = "/etc/beegfs/mgmtd_tls_key.pem"

interfaces = ['i1b:mgmt_1', 'i2b:mgmt_2']

Adaptez tous les chemins selon les besoins pour correspondre à votre environnement et à votre
configuration TLS.

2. Sur chaque nœud de fichiers exécutant des services de gestion, modifiez votre fichier de service systemd
pour qu’il pointe vers le nouvel emplacement du fichier de configuration.

sudo sed -i 's|ExecStart=.*|ExecStart=nice -n -3

/opt/beegfs/sbin/beegfs-mgmtd --config-file

/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-mgmtd.toml|'

/etc/systemd/system/beegfs-mgmtd.service

a. Recharger systemd :

systemctl daemon-reload

3. Pour chaque nœud de fichier exécutant des services de gestion, ouvrez le port 8010 pour la

151

communication gRPC du service de gestion.

a. Ajoutez le port 8010/tcp à la zone beegfs :

sudo firewall-cmd --zone=beegfs --permanent --add-port=8010/tcp

b. Rechargez le pare-feu pour appliquer la modification :

sudo firewall-cmd --reload

Mettre à jour le script de surveillance BeeGFS

Le script OCF de `beegfs-monitor`Pacemaker nécessite des mises à jour pour prendre en charge le nouveau
format de configuration TOML et la gestion des services systemd. Mettez à jour le script sur un nœud du
cluster, puis copiez le script mis à jour sur tous les autres nœuds.

1. Créez une sauvegarde du script actuel :

cp /usr/lib/ocf/resource.d/eseries/beegfs-monitor

/usr/lib/ocf/resource.d/eseries/beegfs-monitor.bak.$(date +%F)

2. Mettez à jour le chemin du fichier de configuration de gestion de .conf à .toml :

sed -i 's|mgmt_config/beegfs-mgmtd\.conf|mgmt_config/beegfs-mgmtd.toml|'

/usr/lib/ocf/resource.d/eseries/beegfs-monitor

Sinon, localisez manuellement le bloc suivant dans le script :

case $type in

 management)

 conf_path="${configuration_mount}/mgmt_config/beegfs-mgmtd.conf"

 ;;

Et remplacez-le par :

case $type in

 management)

 conf_path="${configuration_mount}/mgmt_config/beegfs-mgmtd.toml"

 ;;

3. Mettez à jour les get_interfaces() et get_subnet_ips() fonctions pour prendre en charge la
configuration TOML :

152

a. Ouvrez le script dans un éditeur de texte :

vi /usr/lib/ocf/resource.d/eseries/beegfs-monitor

b. Localisez les deux fonctions : get_interfaces() et get_subnet_ips().

c. Supprimez les deux fonctions complètes, en commençant à get_interfaces() jusqu’à la fin de
get_subnet_ips().

d. Copiez et collez les fonctions mises à jour suivantes à leur place :

153

Return network communication interface name(s) from the BeeGFS

resource's connInterfaceFile

get_interfaces() {

 # Determine BeeGFS service network IP interfaces.

 if ["$type" = "management"]; then

 interfaces_line=$(grep "^interfaces =" "$conf_path")

 interfaces_list=$(echo "$interfaces_line" | sed "s/.*= \[\(.*

\)\]/\1/")

 interfaces=$(echo "$interfaces_list" | tr -d "'" | tr -d " " | tr

',' '\n')

 for entry in $interfaces; do

 echo "$entry" | cut -d ':' -f 1

 done

 else

 connInterfacesFile_path=$(grep "^connInterfacesFile" "$conf_path"

| tr -d "[:space:]" | cut -f 2 -d "=")

 if [-f "$connInterfacesFile_path"]; then

 while read -r entry; do

 echo "$entry" | cut -f 1 -d ':'

 done < "$connInterfacesFile_path"

 fi

 fi

}

Return list containing all the BeeGFS resource's usable IP

addresses. *Note that these are filtered by the connNetFilterFile

entries.

get_subnet_ips() {

 # Determine all possible BeeGFS service network IP addresses.

 if ["$type" != "management"]; then

 connNetFilterFile_path=$(grep "^connNetFilterFile" "$conf_path" |

tr -d "[:space:]" | cut -f 2 -d "=")

 filter_ips=""

 if [-n "$connNetFilterFile_path"] && [-e

$connNetFilterFile_path]; then

 while read -r filter; do

 filter_ips="$filter_ips $(get_ipv4_subnet_addresses $filter)"

 done < $connNetFilterFile_path

 fi

 echo "$filter_ips"

 fi

}

154

e. Enregistrez et quittez l’éditeur de texte.

f. Exécutez la commande suivante pour vérifier le script pour des erreurs de syntaxe avant de
poursuivre. L’absence de résultat indique que le script est syntaxiquement correct.

bash -n /usr/lib/ocf/resource.d/eseries/beegfs-monitor

4. Copiez le script OCF mis à jour beegfs-monitor sur tous les autres nœuds du cluster pour garantir la
cohérence :

scp /usr/lib/ocf/resource.d/eseries/beegfs-monitor

user@node:/usr/lib/ocf/resource.d/eseries/beegfs-monitor

Remettre le cluster en ligne

1. Une fois toutes les étapes de mise à niveau précédentes terminées, remettez le cluster en ligne en
démarrant les services BeeGFS sur tous les nœuds.

pcs cluster start --all

2. Vérifiez que le beegfs-mgmtd service a démarré correctement :

journalctl -xeu beegfs-mgmtd

Le résultat attendu comprend des lignes telles que :

Started Cluster Controlled beegfs-mgmtd.

Loaded config file from "/mnt/mgmt_tgt_mgmt01/mgmt_config/beegfs-

mgmtd.toml"

Successfully initialized certificate verification library.

Successfully loaded license certificate: TMP-113489268

Opened database at "/mnt/mgmt_tgt_mgmt01/data/mgmtd.sqlite"

Listening for BeeGFS connections on [::]:8008

Serving gRPC requests on [::]:8010

Si des erreurs apparaissent dans les journaux, vérifiez les chemins d’accès au fichier de
configuration de gestion et assurez-vous que toutes les valeurs ont été correctement
transférées depuis le fichier de configuration BeeGFS 7.

3. Exécutez pcs status et vérifiez que le cluster est sain et que les services sont démarrés sur leurs
nœuds préférés.

4. Une fois que le cluster est vérifié comme étant sain, réactivez STONITH :

155

pcs property set stonith-enabled=true

5. Passez à la section suivante pour mettre à niveau les clients BeeGFS dans le cluster et vérifier l’état de
santé du cluster BeeGFS.

Mise à niveau des clients BeeGFS

Après avoir réussi la mise à niveau de votre cluster vers BeeGFS v8, vous devez également mettre à niveau
tous les clients BeeGFS.

Les étapes suivantes décrivent le processus de mise à niveau des clients BeeGFS sur un système basé sur
Ubuntu.

1. Si ce n’est pas déjà fait, arrêtez le service client BeeGFS :

systemctl stop beegfs-client

2. Ajoutez le dépôt de paquets BeeGFS v8 pour votre distribution Linux. Des instructions pour utiliser les
dépôts officiels BeeGFS se trouvent à "^Page de téléchargement BeeGFS". Sinon, configurez votre dépôt
miroir BeeGFS local en conséquence.

Les étapes suivantes utilisent le dépôt officiel BeeGFS 8.2 sur un système basé sur Ubuntu :

3. Importez la clé GPG de BeeGFS :

wget https://www.beegfs.io/release/beegfs_8.2/gpg/GPG-KEY-beegfs -O

/etc/apt/trusted.gpg.d/beegfs.asc

4. Téléchargez le fichier du dépôt :

wget https://www.beegfs.io/release/beegfs_8.2/dists/beegfs-noble.list -O

/etc/apt/sources.list.d/beegfs.list

Supprimez tous les dépôts BeeGFS précédemment configurés pour éviter les conflits avec
le nouveau dépôt BeeGFS v8.

5. Mettez à jour les packages clients BeeGFS :

apt-get update

apt-get install --only-upgrade beegfs-client

6. Configurez TLS pour le client. TLS est requis pour utiliser la CLI BeeGFS. Consultez la "Configurer le
chiffrement TLS pour BeeGFS 8" procédure pour configurer TLS sur le client.

7. Démarrez le service client BeeGFS :

156

https://www.beegfs.io/c/download/

systemctl start beegfs-client

Vérifier la mise à jour

Après avoir terminé la mise à niveau vers BeeGFS v8, exécutez les commandes suivantes pour vérifier que la
mise à niveau a réussi.

1. Vérifiez que l’inode racine appartient bien au même nœud de métadonnées qu’auparavant. Cela devrait se
faire automatiquement si vous avez utilisé la import-from-v7 fonctionnalité dans le service de gestion :

beegfs entry info /mnt/beegfs

2. Vérifiez que tous les nœuds et cibles sont en ligne et en bon état :

beegfs health check

Si la vérification de la « capacité disponible » signale que les cibles manquent d’espace
libre, vous pouvez ajuster les seuils du « pool de capacité » définis dans le beegfs-
mgmtd.toml fichier afin qu’ils soient mieux adaptés à votre environnement.

Mise à niveau des packages Pacemaker et Corosync dans un cluster haute
disponibilité

Procédez comme suit pour mettre à niveau les packages Pacemaker et Corosync dans
un cluster HA.

Présentation

La mise à niveau de Pacemaker et Corosync garantit que le cluster bénéficie de nouvelles fonctionnalités, de
nouveaux correctifs de sécurité et d’améliorations des performances.

Approche de mise à niveau

Il existe deux approches recommandées pour la mise à niveau d’un cluster : une mise à niveau par
déploiement ou un arrêt complet du cluster. Chaque approche a ses propres avantages et inconvénients. La
procédure de mise à niveau peut varier en fonction de la version de votre Pacemaker. Reportez-vous à la
documentation de ClusterLabs "Mise à niveau d’un cluster Pacemaker"pour déterminer quelle approche
utiliser. Avant de suivre une approche de mise à niveau, vérifiez que :

• Les nouveaux packages Pacemaker et Corosync sont pris en charge dans la solution NetApp BeeGFS.

• Il existe des sauvegardes valides pour votre système de fichiers BeeGFS et la configuration de cluster
Pacemaker.

• Le cluster est en bon état.

157

https://clusterlabs.org/projects/pacemaker/doc/3.0/Pacemaker_Administration/html/upgrading.html

Mise à jour du déploiement

Cette méthode implique de supprimer chaque nœud du cluster, de le mettre à niveau, puis de le réintégrer
dans le cluster jusqu’à ce que tous les nœuds exécutent la nouvelle version. Cette approche assure le
fonctionnement continu du cluster, ce qui est idéal pour les clusters haute disponibilité de plus grande taille,
mais comporte le risque d’exécuter des versions mixtes lors du processus. Cette approche doit être évitée
dans un cluster à deux nœuds.

1. Vérifiez que le cluster est dans un état optimal, chaque service BeeGFS étant exécuté sur le nœud favori.
Voir "Vérifiez l’état du cluster" pour plus de détails.

2. Pour la mise à niveau du nœud, mettez-le en mode veille afin d’exploiter (ou de déplacer) tous les services
BeeGFS :

pcs node standby <HOSTNAME>

3. Vérifier que les services du nœud ont été vidangés en exécutant :

pcs status

Assurez-vous qu’aucun service n’est signalé comme Started sur le nœud en veille.

Selon la taille de votre cluster, le déplacement des services vers le nœud sœur peut prendre
quelques secondes, voire quelques minutes. Si un service BeeGFS ne démarre pas sur le
nœud Sister, reportez-vous au "Guides de dépannage".

4. Arrêter le cluster sur le nœud :

pcs cluster stop <HOSTNAME>

5. Mettez à niveau les packages Pacemaker, Corosync et pcs sur le nœud :

Les commandes du gestionnaire de paquets varient selon le système d’exploitation. Les
commandes suivantes sont destinées aux systèmes exécutant RHEL 8 et versions
ultérieures.

dnf update pacemaker-<version>

dnf update corosync-<version>

dnf update pcs-<version>

6. Démarrer les services de cluster Pacemaker sur le nœud :

158

pcs cluster start <HOSTNAME>

7. Si le pcs pack a été mis à jour, réauthentifier le nœud avec le cluster :

pcs host auth <HOSTNAME>

8. Vérifiez que la configuration du stimulateur est toujours valide avec l' `crm_verify`outil.

Cette vérification doit être effectuée une seule fois lors de la mise à niveau du cluster.

crm_verify -L -V

9. Mettre le nœud hors veille :

pcs node unstandby <HOSTNAME>

10. Retransférez tous les services BeeGFS vers le nœud de votre choix :

pcs resource relocate run

11. Répétez les étapes précédentes pour chaque nœud du cluster jusqu’à ce que tous les nœuds exécutent
les versions Pacemaker, Corosync et pcs souhaitées.

12. Enfin, exécutez pcs status et vérifiez que le cluster fonctionne correctement et Current DC indique la
version du stimulateur souhaitée.

Si le Current DC indique « version limite », un nœud du cluster fonctionne toujours avec la
version précédente de Pacemaker et doit être mis à niveau. Si un nœud mis à niveau ne
parvient pas à rejoindre le cluster ou si les ressources ne démarrent pas, consultez les
journaux du cluster et consultez les notes de mise à jour ou les guides de l’utilisateur
Pacemaker pour connaître les problèmes de mise à niveau connus.

Arrêt complet du cluster

Dans cette approche, tous les nœuds et toutes les ressources du cluster sont arrêtés, les nœuds sont mis à
niveau, puis le cluster est redémarré. Cette approche est nécessaire si les versions Pacemaker et Corosync
ne prennent pas en charge une configuration en version mixte.

1. Vérifiez que le cluster est dans un état optimal, chaque service BeeGFS étant exécuté sur le nœud favori.
Voir "Vérifiez l’état du cluster" pour plus de détails.

2. Arrêtez le logiciel de cluster (Pacemaker et Corosync) sur tous les nœuds.

159

Selon la taille du cluster, l’arrêt de tout le cluster peut prendre quelques secondes, voire
quelques minutes.

pcs cluster stop --all

3. Une fois les services de cluster arrêtés sur tous les nœuds, mettez à niveau les packages Pacemaker,
Corosync et pcs sur chaque nœud en fonction de vos besoins.

Les commandes du gestionnaire de paquets varient selon le système d’exploitation. Les
commandes suivantes sont destinées aux systèmes exécutant RHEL 8 et versions
ultérieures.

dnf update pacemaker-<version>

dnf update corosync-<version>

dnf update pcs-<version>

4. Une fois la mise à niveau de tous les nœuds effectuée, démarrez le logiciel du cluster sur tous les nœuds :

pcs cluster start --all

5. Si le pcs pack a été mis à jour, réauthentifier chaque nœud du cluster :

pcs host auth <HOSTNAME>

6. Enfin, exécutez pcs status et vérifiez que le cluster est en bon état et Current DC indique la version
correcte du Pacemaker.

Si le Current DC indique « version limite », un nœud du cluster fonctionne toujours avec la
version précédente de Pacemaker et doit être mis à niveau.

Mettez à jour le micrologiciel de l’adaptateur de nœud de fichier

Procédez comme suit pour mettre à jour les cartes ConnectX-7 du nœud de fichiers vers
la dernière version du micrologiciel.

Présentation

La mise à jour du firmware de l’adaptateur ConnectX-7 peut être nécessaire pour prendre en charge un
nouveau pilote MLNX_OFED, activer de nouvelles fonctionnalités ou corriger des bogues. Ce guide utilisera

160

l’utilitaire NVIDIA mlxfwmanager pour les mises à jour de la carte en raison de sa facilité d’utilisation et de
son efficacité.

Mise à niveau

Ce guide présente deux approches de mise à jour du firmware de la carte ConnectX-7 : une mise à jour en
continu et une mise à jour de cluster à deux nœuds. Choisissez l’approche de mise à jour appropriée en
fonction de la taille de votre cluster. Avant d’effectuer les mises à jour du micrologiciel, vérifiez que :

• Un pilote MLNX_OFED pris en charge est installé, reportez-vous au "exigences technologiques".

• Il existe des sauvegardes valides pour votre système de fichiers BeeGFS et la configuration de cluster
Pacemaker.

• Le cluster est en bon état.

Préparation de la mise à jour du micrologiciel

Il est recommandé d’utiliser l’utilitaire de NVIDIA mlxfwmanager pour mettre à jour le micrologiciel de
l’adaptateur d’un nœud, qui est fourni avec le pilote MLNX_OFED de NVIDIA. Avant de commencer les mises
à jour, téléchargez l’image du micrologiciel de la carte à partir de "Site de support NVIDIA" et stockez-la sur
chaque nœud de fichier.

Pour les cartes Lenovo ConnectX-7, utilisez l' `mlxfwmanager_LES`outil, disponible sur la page
NVIDIA"Micrologiciel OEM".

Approche de mise à jour par roulement

Cette approche est recommandée pour tout cluster haute disponibilité de plus de deux nœuds. Cette approche
implique de mettre à jour le firmware des adaptateurs sur un nœud de fichiers à la fois afin que le cluster haute
disponibilité puisse continuer à traiter les demandes, bien qu’il soit recommandé d’éviter de traiter les E/S
pendant ce temps.

1. Vérifiez que le cluster est dans un état optimal, chaque service BeeGFS étant exécuté sur le nœud favori.
Voir "Vérifiez l’état du cluster" pour plus de détails.

2. Choisissez un nœud de fichiers à mettre à jour et placez-le en mode veille pour drains (ou déplacer) tous
les services BeeGFS de ce nœud :

pcs node standby <HOSTNAME>

3. Vérifier que les services du nœud ont été vidangés en exécutant :

pcs status

Vérifiez qu’aucun service ne signale le Started nœud en mode veille.

Selon la taille du cluster, le déplacement des services BeeGFS peut prendre quelques
secondes, voire quelques minutes. Si un service BeeGFS ne démarre pas sur le nœud
Sister, reportez-vous au "Guides de dépannage".

161

https://network.nvidia.com/support/firmware/firmware-downloads/
https://network.nvidia.com/support/firmware/lenovo-intelligent-cluster/

4. Mettez à jour le micrologiciel de l’adaptateur à l’aide de mlxfwmanager.

 mlxfwmanager -i <path/to/firmware.bin> -u

Notez PCI Device Name que pour chaque adaptateur recevant des mises à jour de micrologiciel.

5. Réinitialisez chaque carte à l’aide de l' `mlxfwreset`utilitaire pour appliquer le nouveau micrologiciel.

Certaines mises à jour du micrologiciel peuvent nécessiter un redémarrage pour appliquer la
mise à jour. Reportez-vous "Limitations de mlxfwreset de NVIDIA"à pour obtenir des
conseils. Si un redémarrage est nécessaire, effectuez un redémarrage au lieu de réinitialiser
les adaptateurs.

a. Arrêter le service openhm :

systemctl stop opensm

b. Exécutez la commande suivante pour chacune des PCI Device Name opérations précédemment
notées.

mlxfwreset -d <pci_device_name> reset -y

c. Démarrer le service openhm :

systemctl start opensm

d. Redémarrez le eseries_nvme_ib.service .

systemctl restart eseries_nvme_ib.service

e. Vérifiez que les volumes de la baie de stockage de la série E sont présents.

multipath -ll

1. Exécutez ibstat et vérifiez que toutes les cartes fonctionnent avec la version de micrologiciel souhaitée :

ibstat

2. Démarrer les services de cluster Pacemaker sur le nœud :

162

https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw

pcs cluster start <HOSTNAME>

3. Mettre le nœud hors veille :

pcs node unstandby <HOSTNAME>

4. Retransférez tous les services BeeGFS vers le nœud de votre choix :

pcs resource relocate run

Répétez ces étapes pour chaque nœud de fichiers du cluster jusqu’à ce que tous les adaptateurs aient été mis
à jour.

Approche de mise à jour des clusters à deux nœuds

Cette approche est recommandée pour les clusters haute disponibilité à deux nœuds uniquement. Cette
approche est similaire à une mise à jour propagée, mais elle comprend des étapes supplémentaires pour
éviter tout temps d’indisponibilité des services lorsque les services de cluster d’un nœud sont arrêtés.

1. Vérifiez que le cluster est dans un état optimal, chaque service BeeGFS étant exécuté sur le nœud favori.
Voir "Vérifiez l’état du cluster" pour plus de détails.

2. Choisissez un nœud de fichiers à mettre à jour et placez le nœud en mode veille, ce qui draine (ou
déplace) tous les services BeeGFS de ce nœud :

pcs node standby <HOSTNAME>

3. Vérifier que les ressources du nœud ont été vidées en exécutant :

pcs status

Vérifiez qu’aucun service ne signale le Started nœud en mode veille.

Selon la taille du cluster, le reporting par les services BeeGFS peut prendre quelques
secondes, voire quelques minutes, comme Started sur le nœud jumeau. Si un service
BeeGFS ne démarre pas, reportez-vous au "Guides de dépannage".

4. Placer le cluster en mode maintenance.

pcs property set maintenance-mode=true

5. Mettez à jour le micrologiciel de l’adaptateur à l’aide de mlxfwmanager.

163

 mlxfwmanager -i <path/to/firmware.bin> -u

Notez PCI Device Name que pour chaque adaptateur recevant des mises à jour de micrologiciel.

6. Réinitialisez chaque carte à l’aide de l' `mlxfwreset`utilitaire pour appliquer le nouveau micrologiciel.

Certaines mises à jour du micrologiciel peuvent nécessiter un redémarrage pour appliquer la
mise à jour. Reportez-vous "Limitations de mlxfwreset de NVIDIA"à pour obtenir des
conseils. Si un redémarrage est nécessaire, effectuez un redémarrage au lieu de réinitialiser
les adaptateurs.

a. Arrêter le service openhm :

systemctl stop opensm

b. Exécutez la commande suivante pour chacune des PCI Device Name opérations précédemment
notées.

mlxfwreset -d <pci_device_name> reset -y

c. Démarrer le service openhm :

systemctl start opensm

7. Exécutez ibstat et vérifiez que toutes les cartes fonctionnent avec la version de micrologiciel souhaitée :

ibstat

8. Démarrer les services de cluster Pacemaker sur le nœud :

pcs cluster start <HOSTNAME>

9. Mettre le nœud hors veille :

pcs node unstandby <HOSTNAME>

10. Sortir le cluster du mode de maintenance.

pcs property set maintenance-mode=false

164

https://docs.nvidia.com/networking/display/mftv4310/mlxfwreset+%E2%80%93+loading+firmware+on+5th+generation+devices+tool#src-3566627427_safe-id-bWx4ZndyZXNldOKAk0xvYWRpbmdGaXJtd2FyZW9uNXRoR2VuZXJhdGlvbkRldmljZXNUb29sLW1seGZ3cmVzZXRMaW1pdGF0aW9ucw

11. Retransférez tous les services BeeGFS vers le nœud de votre choix :

pcs resource relocate run

Répétez ces étapes pour chaque nœud de fichiers du cluster jusqu’à ce que tous les adaptateurs aient été mis
à jour.

Mettez à niveau la baie de stockage E-Series

Suivez ces étapes pour mettre à niveau les composants de la baie de stockage E-Series
du cluster HA.

Présentation

En conservant les baies de stockage NetApp E-Series de votre cluster de haute disponibilité à jour avec le
dernier firmware, vous bénéficiez de performances optimales et d’une sécurité renforcée. Les mises à jour du
micrologiciel de la baie de stockage sont appliquées via le système d’exploitation SANtricity, la NVSRAM et les
fichiers de micrologiciel du lecteur.

Bien que les baies de stockage puissent être mises à niveau avec le cluster haute disponibilité
en ligne, il est recommandé de placer le cluster en mode de maintenance pour toutes les mises
à niveau.

Étapes de mise à niveau du nœud de bloc

Les étapes suivantes expliquent comment mettre à jour le firmware des baies de stockage à l’aide de la
Netapp_Eseries.Santricity collection Ansible. Avant de continuer, consultez le "Mise à niveau" pour la
mise à jour des systèmes E-Series.

La mise à niveau vers SANtricity OS 11.80 ou versions ultérieures est possible uniquement à
partir de 11.70.5P1. La baie de stockage doit d’abord être mise à niveau vers 11.70.5P1 avant
d’appliquer d’autres mises à niveau.

1. Vérifiez que votre nœud de contrôle Ansible utilise la dernière collection SANtricity Ansible.

◦ Pour les mises à niveau de collecte avec accès à "Galaxy Ansible", exécutez la commande suivante :

ansible-galaxy collection install netapp_eseries.santricity --upgrade

◦ Pour les mises à niveau hors ligne, téléchargez le fichier tarball de "Galaxy Ansible"la collection à partir
de , transférez-le vers votre nœud de contrôle et exécutez :

ansible-galaxy collection install netapp_eseries-santricity-

<VERSION>.tar.gz --upgrade

Voir "Installation de Collections" pour en savoir plus.

165

https://docs.netapp.com/us-en/e-series/upgrade-santricity/overview-upgrade-consider-task.html
https://galaxy.ansible.com/netapp_eseries/beegfs
https://galaxy.ansible.com/ui/repo/published/netapp_eseries/santricity/
https://docs.ansible.com/ansible/latest/collections_guide/collections_installing.html

2. Obtenez la dernière version du micrologiciel pour votre matrice de stockage et vos lecteurs.

a. Téléchargez les fichiers du micrologiciel.

▪ SANtricity OS et NVSRAM : naviguez jusqu’au "Site de support NetApp" et téléchargez la
dernière version de SANtricity OS et NVSRAM pour votre modèle de matrice de stockage.

▪ Microprogramme de lecteur : naviguez jusqu’au "Site du firmware du disque E-Series"et
téléchargez le dernier micrologiciel pour chacun des modèles de lecteur de votre matrice de
stockage.

b. Stockez les fichiers du système d’exploitation SANtricity, de la NVSRAM et du firmware des disques
dans le <inventory_directory>/packages répertoire du nœud de contrôle Ansible.

3. Si nécessaire, mettez à jour les fichiers d’inventaire Ansible de votre cluster afin d’inclure toutes les baies
de stockage (nœuds de bloc) nécessitant des mises à jour. Pour obtenir des conseils, voir "Présentation
d’Ansible Inventory"la section.

4. Assurez-vous que le cluster est optimal avec chaque service BeeGFS sur le nœud de votre choix. Voir
"Vérifiez l’état du cluster" pour plus de détails.

5. Placez le cluster en mode maintenance en suivant les instructions de "Placer le cluster en mode
maintenance"la section .

6. Créez un nouveau PlayBook Ansible nommé update_block_node_playbook.yml. Remplissez le
manuel avec le contenu suivant en remplaçant le système d’exploitation SANtricity, la NVSRAM et les
versions de firmware des disques par le chemin de mise à niveau souhaité :

- hosts: eseries_storage_systems

 gather_facts: false

 any_errors_fatal: true

 collections:

 - netapp_eseries.santricity

 vars:

 eseries_firmware_firmware: "packages/<SantricityOS>.dlp"

 eseries_firmware_nvsram: "packages/<NVSRAM>.dlp"

 eseries_drive_firmware_firmware_list:

 - "packages/<drive_firmware>.dlp"

 eseries_drive_firmware_upgrade_drives_online: true

 tasks:

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

7. Pour démarrer les mises à jour, exécutez la commande suivante à partir de votre nœud de contrôle Ansible
:

ansible-playbook -i inventory.yml update_block_node_playbook.yml

8. Une fois le manuel de vente terminé, vérifiez que chaque baie de stockage est dans un état optimal.

9. Déplacez le cluster hors du mode de maintenance et vérifiez qu’il est dans un état optimal, chaque service

166

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

BeeGFS étant sur le nœud privilégié.

Entretien et maintenance

Services de basculement/rétablissement

Déplacement des services BeeGFS entre les nœuds du cluster.

Présentation

Les services BeeGFS peuvent basculer entre les nœuds du cluster pour s’assurer que les clients sont en
mesure de continuer à accéder au système de fichiers en cas de défaillance d’un nœud ou si vous devez
effectuer une maintenance planifiée. Cette section décrit différentes méthodes permettant aux administrateurs
d’effectuer une réparation sur le cluster après une reprise d’activité ou de déplacer manuellement les services
entre les nœuds.

Étapes

Basculement et rétablissement

Basculement (planifié)

De manière générale, lorsque vous devez mettre un nœud de fichier unique hors ligne pour les opérations de
maintenance, vous devez déplacer (ou vidanger) tous les services BeeGFS depuis ce nœud. Pour ce faire, le
nœud peut d’abord être en veille :

pcs node standby <HOSTNAME>

Après vérification de l’utilisation pcs status toutes les ressources ont été redémarrées sur le nœud de
fichier secondaire, vous pouvez arrêter ou apporter d’autres modifications au nœud si nécessaire.

Restauration (après un basculement planifié)

Lorsque vous êtes prêt à restaurer les services BeeGFS sur le nœud préféré s’exécutent d’abord pcs
status Et vérifiez dans la « liste de nœuds » que l’état est en veille. Si le nœud a été redémarré, il s’affiche
hors ligne jusqu’à ce que vous mettent les services du cluster en ligne :

pcs cluster start <HOSTNAME>

Une fois le nœud mis en ligne hors veille, grâce à :

pcs node unstandby <HOSTNAME>

Enfin, transférez tous les services BeeGFS vers leurs nœuds préférés avec :

pcs resource relocate run

167

Retour arrière (après basculement non planifié)

Si un nœud présente un défaut matériel ou autre, le cluster haute disponibilité doit réagir automatiquement et
déplacer ses services vers un nœud sain, ce qui permet aux administrateurs de prendre des mesures
correctives. Avant de continuer, reportez-vous à "dépannage"la section pour déterminer la cause du
basculement et résoudre tout problème en suspens. Une fois le nœud mis sous tension et en bon état, vous
pouvez continuer à le restaurer.

Lorsqu’un nœud démarre après un redémarrage non planifié (ou planifié), les services de cluster ne sont pas
configurés pour démarrer automatiquement. Vous devez donc mettre le nœud en ligne avec :

pcs cluster start <HOSTNAME>

Ensuite, nettoyez toute défaillance de ressource et réinitialisez l’historique d’escrime du nœud :

pcs resource cleanup node=<HOSTNAME>

pcs stonith history cleanup <HOSTNAME>

Vérifier dans pcs status le nœud est en ligne et fonctionne correctement. Par défaut, les services BeeGFS
ne sont pas automatiquement rebasculer afin d’éviter tout déplacement accidentel des ressources vers un
nœud malsain. Une fois que vous êtes prêt à renvoyer toutes les ressources du cluster à leurs nœuds préférés
avec :

pcs resource relocate run

Déplacement de services BeeGFS individuels vers d’autres nœuds de fichiers

Déplacer définitivement un service BeeGFS vers un nouveau noeud de fichier

Si vous souhaitez modifier de manière permanente le nœud de fichier favori pour un service BeeGFS, ajustez
l’inventaire Ansible de sorte que le nœud préféré soit répertorié en premier et exécutez à nouveau le PlayBook
Ansible.

Par exemple, dans cet exemple de inventory.yml fichier, beegfs_01 est le nœud de fichiers préféré pour
exécuter le service de gestion BeeGFS :

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

Inverser l’ordre ferait que les services de gestion seraient préférés sur beegfs_02:

168

 mgmt:

 hosts:

 beegfs_02:

 beegfs_01:

Déplacer temporairement un service BeeGFS vers un autre nœud de fichier

De manière générale, si un nœud est en cours de maintenance, il convient d’utiliser [les étapes de
basculement et de retour arrière](#le basculement et la restauration) pour déplacer tous les services hors de
ce nœud.

Si vous devez déplacer un service individuel vers un autre nœud de fichiers :

pcs resource move <SERVICE>-monitor <HOSTNAME>

Ne spécifiez pas les ressources individuelles ou le groupe de ressources. Spécifiez toujours le
nom du moniteur pour le service BeeGFS que vous souhaitez déplacer. Par exemple, pour
déplacer le service de gestion BeeGFS vers beegfs_02, exécutez : pcs resource move
mgmt-monitor beegfs_02. Ce processus peut être répété afin de déplacer un ou plusieurs
services hors de leurs nœuds préférés. Vérifiez à l’aide des pcs status services qui ont été
déplacés/démarrés sur le nouveau nœud.

Pour déplacer un service BeeGFS vers son nœud préféré, effacez d’abord les contraintes de ressources
temporaires (en répétant cette étape comme nécessaire pour plusieurs services) :

pcs resource clear <SERVICE>-monitor

Ensuite, une fois prêt à rapatrier les services sur les nœuds de leur choix :

pcs resource relocate run

Notez que cette commande permet de transférer tous les services qui ne disposent plus de contraintes
temporaires en termes de ressources, situés sur les nœuds de leur choix.

Placer le cluster en mode maintenance

Empêcher le cluster de haute disponibilité de réagir accidentellement aux changements
prévus dans l’environnement.

Présentation

Le fait de mettre le cluster en mode maintenance désactive toute la surveillance des ressources et empêche
Pacemaker de déplacer ou de gérer des ressources dans le cluster. Toutes les ressources restent exécutées
sur leurs nœuds d’origine, peu importe la condition de panne temporaire qui empêcherait leur accès. Voici
quelques scénarios recommandés/utiles :

169

• Maintenance du réseau pouvant interrompre temporairement les connexions entre les nœuds de fichiers et
les services BeeGFS.

• Mises à niveau des nœuds de blocs.

• Mises à jour du système d’exploitation de nœud de fichiers, du noyau ou d’autres modules.

En général, la seule raison de placer manuellement le cluster en mode de maintenance est d’éviter que le
système ne réagisse à des modifications externes de l’environnement. Si un nœud individuel du cluster
nécessite une réparation physique, n’utilisez pas le mode de maintenance et placez simplement ce nœud en
veille après la procédure ci-dessus. Notez que le changement d’Ansible place automatiquement le cluster en
mode de maintenance pour faciliter la plupart des opérations de maintenance logicielle, y compris les mises à
niveau et les modifications de configuration.

Étapes

Pour vérifier si le cluster est en mode maintenance, exécutez :

pcs property config

La maintenance-mode propriété n’apparaît pas si le cluster fonctionne normalement. Si le cluster est
actuellement en mode maintenance, la propriété indique true. Pour activer le mode maintenance, exécutez :

pcs property set maintenance-mode=true

Vous pouvez vérifier en exécutant l’état pcs et en vous assurant que toutes les ressources affichent « (non
géré) ». Pour mettre le cluster hors mode maintenance, exécutez :

pcs property set maintenance-mode=false

Arrêtez et démarrez le cluster

Arrêt et démarrage du cluster HA avec élégance.

Présentation

Cette section décrit comment arrêter et redémarrer le cluster BeeGFS. Par exemple, la maintenance électrique
ou la migration d’un data Center à l’autre ou d’un rack peut être nécessaire.

Étapes

Si, pour une raison quelconque, vous devez arrêter tout le cluster BeeGFS et arrêter tous les services
exécutent :

pcs cluster stop --all

Il est également possible d’arrêter le cluster sur des nœuds individuels (qui basculeront automatiquement les
services vers un autre nœud), bien qu’il soit d’abord recommandé de mettre le nœud en veille (voir la

170

"basculement" section) :

pcs cluster stop <HOSTNAME>

Pour démarrer les ressources et les services du cluster sur tous les nœuds, exécutez :

pcs cluster start --all

Ou démarrer les services sur un nœud spécifique avec :

pcs cluster start <HOSTNAME>

À ce stade, exécuter pcs status Et vérifiez que le cluster et les services BeeGFS démarrent sur tous les
nœuds et que les services sont exécutés sur les nœuds que vous attendez.

Selon la taille du cluster, l’arrêt de l’ensemble du cluster peut prendre des secondes ou des
minutes, ou s’afficher comme démarré dans pcs status. si pcs cluster <COMMAND> se
bloque pendant plus de cinq minutes, avant d’exécuter « Ctrl+C » pour annuler la commande,
connectez-vous à chaque nœud du cluster et utilisez pcs status pour voir si les services de
cluster (Corosync/Pacemaker) sont toujours en cours d’exécution sur ce nœud. A partir de
n’importe quel nœud où le cluster est toujours actif, vous pouvez vérifier les ressources qui
bloquent le cluster. Résoudre manuellement le problème et la commande doit être terminée ou
réexécutée pour arrêter les services restants.

Remplacer les nœuds de fichiers

Remplacement d’un noeud de fichier si le serveur d’origine est défectueux.

Présentation

Voici un aperçu des étapes nécessaires au remplacement d’un noeud de fichier dans le cluster. Ces étapes
présupposent que le nœud de fichier a échoué en raison d’un problème matériel et a été remplacé par un
nouveau nœud de fichier identique.

Étapes :

1. Remplacez physiquement le nœud de fichiers et restaurez tout le câblage vers le nœud de bloc et le
réseau de stockage.

2. Réinstallez le système d’exploitation sur le nœud de fichier, y compris l’ajout d’abonnements Red Hat.

3. Configurez la mise en réseau BMC et la gestion sur le nœud de fichiers.

4. Mettez à jour l’inventaire Ansible si le nom d’hôte, l’IP, les mappages de l’interface PCIe vers l’interface
logique ou tout autre élément modifié concernant le nouveau nœud de fichier. En général, cette opération
n’est pas nécessaire si le nœud a été remplacé par le même matériel serveur et que vous utilisez la
configuration réseau d’origine.

a. Par exemple, si le nom d’hôte a changé, créez (ou renommez) le fichier d’inventaire du nœud
(host_vars/<NEW_NODE>.yml`) Puis dans le fichier d’inventaire Ansible (inventory.yml),

171

remplacer le nom de l’ancien nœud par le nouveau nom de nœud :

all:

 ...

 children:

 ha_cluster:

 children:

 mgmt:

 hosts:

 node_h1_new: # Replaced "node_h1" with "node_h1_new"

 node_h2:

5. Depuis un des autres nœuds du cluster, supprimer l’ancien nœud : pcs cluster node remove
<HOSTNAME>.

NE PAS POURSUIVRE AVANT D’EXÉCUTER CETTE ÉTAPE.

6. Sur le nœud de contrôle Ansible :

a. Supprimez l’ancienne clé SSH avec :

`ssh-keygen -R <HOSTNAME_OR_IP>`

b. Configurez SSH sans mot de passe sur le nœud remplacer par :

ssh-copy-id <USER>@<HOSTNAME_OR_IP>

7. Exécutez à nouveau le PlayBook Ansible pour configurer le nœud et l’ajouter au cluster :

ansible-playbook -i <inventory>.yml <playbook>.yml

8. A ce stade, exécuter pcs status et vérifiez que le nœud remplacé est maintenant répertorié et que les
services sont en cours d’exécution.

Développez ou réduisez le cluster

Ajouter ou supprimer des éléments de base du cluster.

Présentation

Cette section présente divers éléments à prendre en compte et diverses options pour ajuster la taille de votre
cluster BeeGFS HA. La taille du cluster est généralement ajustée en ajoutant ou en supprimant des éléments
de base, qui sont généralement deux nœuds de fichiers configurés comme une paire haute disponibilité. Il est
également possible d’ajouter ou de supprimer des nœuds de fichiers individuels (ou d’autres types de nœuds
de cluster) si nécessaire.

172

Ajout d’un module au cluster

Considérations

Le développement du cluster par l’ajout d’éléments de base supplémentaires est un processus simple. Avant
de commencer, les restrictions s’imposent concernant le nombre minimal et maximal de nœuds de cluster
dans chaque cluster haute disponibilité. Déterminer si vous devez ajouter des nœuds au cluster haute
disponibilité existant ou créer un nouveau cluster haute disponibilité. En général, chaque élément de base se
compose de deux nœuds de fichiers, mais trois nœuds représentent le nombre minimum de nœuds par cluster
(pour établir le quorum) et dix est le nombre maximum recommandé (testé). Pour les scénarios avancés, il est
possible d’ajouter un nœud « Tiebreaker » unique qui n’exécute aucun service BeeGFS lors du déploiement
d’un cluster à deux nœuds. Si vous envisagez un tel déploiement, contactez le support NetApp.

Gardez à l’esprit ces restrictions et toute future croissance des clusters lorsque vous décidez d’étendre le
cluster. Par exemple, si vous disposez d’un cluster à six nœuds et que vous devez en ajouter quatre autres, il
est recommandé de simplement démarrer un nouveau cluster haute disponibilité.

N’oubliez pas qu’un seul système de fichiers BeeGFS peut consister en plusieurs clusters HA
indépendants. Les systèmes de fichiers peuvent ainsi continuer à évoluer au-delà des limites
recommandées/strictes des composants de cluster haute disponibilité sous-jacents.

Étapes

Lorsque vous ajoutez un élément de base à votre cluster, vous devez créer les host_vars fichiers pour
chacun des nouveaux nœuds de fichiers et nœuds de blocs (baies E-Series). Les noms de ces hôtes doivent
être ajoutés à l’inventaire, ainsi que les nouvelles ressources à créer. Les group_vars fichiers
correspondants devront être créés pour chaque nouvelle ressource. Voir la "utilisez des architectures
personnalisées" section pour plus de détails.

Une fois les fichiers corrects créés, il suffit de relancer l’automatisation à l’aide de la commande :

ansible-playbook -i <inventory>.yml <playbook>.yml

Retrait d’un module du cluster

Il y a plusieurs considérations à garder à l’esprit lorsque vous devez retirer un élément de construction, par
exemple :

• Quels sont les services BeeGFS exécutés dans cet élément de base ?

• Les nœuds de fichiers ne sont-ils que ceux qui sont mis hors service et ceux qui doivent être associés à de
nouveaux nœuds de fichiers ?

• Si l’ensemble du bloc de construction est retiré, les données doivent-elles être déplacées vers un nouveau
bloc de construction, dispersées vers les nœuds existants du cluster ou déplacées vers un nouveau
système de fichiers BeeGFS ou un autre système de stockage ?

• Cela peut-il avoir lieu en cas de panne ou doit-il être effectué sans interruption ?

• L’élément de base est-il activement utilisé ou contient-il principalement des données qui ne sont plus
actives ?

Étant donné la diversité des points de départ et des États de terminaison, veuillez contacter le support NetApp
afin que nous puissions identifier et vous aider à mettre en œuvre la meilleure stratégie en fonction de votre
environnement et de vos besoins.

173

Résoudre les problèmes

Dépannage d’un cluster BeeGFS HA

Présentation

Dans cette section, vous apprendrez à rechercher et à dépanner diverses défaillances et d’autres scénarios
possibles liés à l’utilisation d’un cluster BeeGFS HA.

Guides de dépannage

Étude des basculements inattendus

Lorsqu’un nœud est fermé de façon inattendue et que ses services sont déplacés vers un autre nœud, la
première étape doit s’assurer que le cluster indique des défaillances de ressource en bas du pcs status. En
général, rien ne sera présent si l’escrime s’est terminé avec succès et que les ressources ont été redémarrées
sur un autre noeud.

Généralement, l’étape suivante consiste à rechercher dans les journaux système à l’aide de journalctl Sur
l’un des nœuds de fichiers restants (les journaux Pacemaker sont synchronisés sur tous les nœuds). Si vous
connaissez l’heure de l’échec, vous pouvez lancer la recherche juste avant l’échec (généralement au moins
dix minutes avant l’apparition de l’échec est recommandée) :

journalctl --since "<YYYY-MM-DD HH:MM:SS>"

Les sections suivantes montrent un texte commun que vous pouvez gresser dans les journaux pour affiner
davantage l’enquête.

Étapes à suivre pour rechercher/résoudre

Étape 1 : vérifier si le moniteur BeeGFS a détecté une défaillance :

Si le basculement a été déclenché par le moniteur BeeGFS, une erreur s’affiche (si ce n’est pas le cas, passez
à l’étape suivante).

journalctl --since "<YYYY-MM-DD HH:MM:SS>" | grep -i unexpected

[...]

Jul 01 15:51:03 beegfs_01 pacemaker-schedulerd[9246]: warning: Unexpected

result (error: BeeGFS service is not active!) was recorded for monitor of

meta_08-monitor on beegfs_02 at Jul 1 15:51:03 2022

Dans cet exemple, BeeGFS service META_08 s’est arrêté pour une raison quelconque. Pour poursuivre le
dépannage, nous devons démarrer beegfs_02 et consulter les journaux du service à l’adresse
/var/log/beegfs-meta-meta_08_tgt_0801.log. Par exemple, le service BeeGFS peut avoir rencontré
une erreur d’application en raison d’un problème interne ou d’un problème sur le nœud.

174

Contrairement aux logs de Pacemaker, les logs des services BeeGFS ne sont pas distribués à
tous les nœuds du cluster. Pour examiner ces types de défaillances, les journaux du nœud
d’origine où la défaillance est requise.

Les problèmes possibles pouvant être signalés par le moniteur sont les suivants :

• Les cibles ne sont pas accessibles !

◦ Description : indique que les volumes de bloc n’ont pas été accessibles.

◦ Dépannage :

▪ Si le service n’a pas non plus démarré sur le nœud de fichier secondaire, confirmez que le nœud
de bloc fonctionne correctement.

▪ Vérifiez si des problèmes physiques empêchent l’accès aux nœuds de blocs depuis ce nœud de
fichiers, par exemple des adaptateurs ou des câbles InfiniBand défectueux.

• Le réseau est inaccessible !

◦ Description : aucun des adaptateurs utilisés par les clients pour se connecter à ce service BeeGFS
n’était en ligne.

◦ Dépannage :

▪ Si plusieurs ou tous les nœuds de fichiers sont affectés, vérifiez s’il y a une défaillance sur le
réseau utilisée pour connecter les clients BeeGFS et le système de fichiers.

▪ Recherchez les problèmes physiques susceptibles d’empêcher l’accès des clients à partir de ce
nœud de fichiers, par exemple des adaptateurs ou des câbles InfiniBand défectueux.

• Le service BeeGFS n’est pas actif!

◦ Description : un service BeeGFS s’est arrêté de façon inattendue.

◦ Dépannage :

▪ Sur le nœud de fichier qui signale l’erreur, vérifiez les journaux du service eGFS impacté pour voir
s’il signale une panne. Dans ce cas, ouvrez un dossier auprès du support NetApp afin que le
problème puisse être examiné.

▪ Si aucune erreur n’est signalée dans le journal BeeGFS, vérifiez les journaux du journal pour voir si
systemd a enregistré une raison pour laquelle le service a été arrêté. Dans certains scénarios, le
service BeeGFS n’a peut-être pas été donné la possibilité de consigner tous les messages avant la
fin du processus (par exemple si quelqu’un a exécuté kill -9 <PID>).

Étape 2 : vérifiez si le nœud a quitté le cluster de manière inattendue

Si le nœud a subi une défaillance matérielle catastrophique (par exemple, la carte système est morte) ou s’il y
avait une panique du noyau ou un problème logiciel similaire, le moniteur BeeGFS ne signale pas d’erreur. Au
lieu de cela, recherchez le nom d’hôte et les messages de Pacemaker indiquant que le nœud a été perdu de
façon inattendue :

175

journalctl --since "<YYYY-MM-DD HH:MM:SS>" | grep -i <HOSTNAME>

[...]

Jul 01 16:18:01 beegfs_01 pacemaker-attrd[9245]: notice: Node beegfs_02

state is now lost

Jul 01 16:18:01 beegfs_01 pacemaker-controld[9247]: warning:

Stonith/shutdown of node beegfs_02 was not expected

Étape 3 : vérifier que Pacemaker a pu verrouiller le nœud

Dans tous les scénarios, Pacemaker tente de limiter le nœud pour vérifier qu’il est réellement hors ligne (les
messages exacts peuvent varier en fonction de la cause de l’escrime) :

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Cluster

node beegfs_02 will be fenced: peer is no longer part of the cluster

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Node

beegfs_02 is unclean

Jul 01 16:18:02 beegfs_01 pacemaker-schedulerd[9246]: warning: Scheduling

Node beegfs_02 for STONITH

Si l’action de clôture s’effectue correctement, des messages comme :

Jul 01 16:18:14 beegfs_01 pacemaker-fenced[9243]: notice: Operation 'off'

[2214070] (call 27 from pacemaker-controld.9247) for host 'beegfs_02' with

device 'fence_redfish_2' returned: 0 (OK)

Jul 01 16:18:14 beegfs_01 pacemaker-fenced[9243]: notice: Operation 'off'

targeting beegfs_02 on beegfs_01 for pacemaker-

controld.9247@beegfs_01.786df3a1: OK

Jul 01 16:18:14 beegfs_01 pacemaker-controld[9247]: notice: Peer

beegfs_02 was terminated (off) by beegfs_01 on behalf of pacemaker-

controld.9247: OK

Si l’action d’escrime a échoué pour une raison quelconque, les services BeeGFS ne pourront pas redémarrer
sur un autre nœud pour éviter la corruption des données. Ce serait un problème à étudier séparément si, par
exemple, le dispositif d’escrime (PDU ou BMC) était inaccessible ou mal configuré.

Echec des actions de ressource de l’adresse (en bas de l’état pcs)

Si une ressource requise pour exécuter un service BeeGFS échoue, un basculement est déclenché par le
moniteur BeeGFS. Si cela se produit, il est probable qu’aucune « action de ressource ayant échoué » ne soit
répertoriée pcs status en bas de et vous devez vous reporter aux étapes à suivre "retour arrière après un
basculement non planifié"pour savoir comment .

Dans le cas contraire, il ne devrait y avoir que deux scénarios où vous verrez des « actions de ressource
échouées ».

176

Étapes à suivre pour rechercher/résoudre

Scénario 1 : un problème temporaire ou permanent a été détecté avec un agent d’escrime et il a été
redémarré ou déplacé vers un autre nœud.

Certains agents d’escrime sont plus fiables que d’autres et chacun mettra en œuvre sa propre méthode de
surveillance pour s’assurer que le dispositif d’escrime est prêt. En particulier, l’agent d’escrime de Redfish a
été vu pour signaler des actions de ressources échouées comme les suivantes, même s’il se présente toujours
commencé :

 * fence_redfish_2_monitor_60000 on beegfs_01 'not running' (7):

call=2248, status='complete', exitreason='', last-rc-change='2022-07-26

08:12:59 -05:00', queued=0ms, exec=0ms

Un agent d’escrime signalant l’échec des actions de ressources sur un nœud particulier ne devrait pas
déclencher un basculement des services BeeGFS s’exécutant sur ce nœud. Il devrait simplement être
redémarré automatiquement sur le même nœud ou sur un autre nœud.

Étapes à suivre pour résoudre :

1. Si l’agent d’escrime refuse systématiquement de s’exécuter sur tout ou sous-ensemble de nœuds, vérifiez
si ces nœuds peuvent se connecter à l’agent d’escrime et vérifiez que l’agent d’escrime est configuré
correctement dans l’inventaire Ansible.

a. Par exemple, si un agent d’escrime Redfish (BMC) s’exécute sur le même nœud qu’il est responsable
de l’escrime, et que la gestion du système d’exploitation et les adresses IP BMC sont sur la même
interface physique, certaines configurations de commutateurs réseau ne permettent pas la
communication entre les deux interfaces (pour éviter les boucles réseau). Par défaut, le cluster HA
tente d’éviter de placer des agents d’escrime sur le nœud qu’ils sont responsables de l’escrime, mais
cela peut se produire dans certains scénarios/configurations.

2. Une fois tous les problèmes résolus (ou si le problème semble éphémère), exécutez pcs resource
cleanup pour réinitialiser les actions de ressources ayant échoué.

Scénario 2 : le moniteur BeeGFS a détecté un problème et déclenché un basculement, mais pour une
raison quelconque, les ressources ne peuvent pas démarrer sur un nœud secondaire.

Si l’escrime est activé et que la ressource n’a pas été bloquée pour s’arrêter sur le nœud d’origine (voir la
section de dépannage pour « attente (en cas d’échec) »), les raisons les plus probables incluent des
problèmes de démarrage de la ressource sur un nœud secondaire car :

• Le nœud secondaire était déjà hors ligne.

• Un problème de configuration physique ou logique a empêché le système secondaire d’accéder aux
volumes de bloc utilisés comme cibles BeeGFS.

Étapes à suivre pour résoudre :

1. Pour chaque entrée des actions de ressources ayant échoué :

a. Confirmez que l’action de ressource échouée était une opération de démarrage.

b. En fonction de la ressource indiquée et du nœud spécifié dans les actions de ressources ayant échoué
:

i. Recherchez et corrigez tout problème externe qui empêche le nœud de démarrer la ressource

177

spécifiée. Par exemple, si l’adresse IP BeeGFS (IP flottante) n’a pas démarré, vérifiez qu’au moins
une des interfaces requises est connectée/en ligne et câblée au commutateur réseau approprié. Si
une cible BeeGFS (périphérique de bloc/volume E-Series) est défectueuse, vérifiez que les
connexions physiques vers le(s) nœud(s) du bloc principal sont connectées comme prévu, et
vérifiez que les nœuds du bloc sont en bon état.

c. Si aucun problème externe n’est évident et que vous souhaitez en savoir plus sur la cause première,
nous vous recommandons d’ouvrir un dossier auprès des services de support de NetApp avant de
poursuivre, car les étapes suivantes peuvent compliquer ou empêcher l’analyse des causes profondes
(RCA).

2. Après la résolution de tout problème externe :

a. Commentez tous les nœuds non fonctionnels à partir du fichier Ansible Inventory.yml et exécutez à
nouveau le PlayBook Ansible complet pour vous assurer que toute la configuration logique est
correctement configurée sur le ou les nœuds secondaires.

i. Remarque : n’oubliez pas d’annuler la commentaire de ces nœuds et d’exécuter à nouveau le
manuel de vente une fois les nœuds sains et vous êtes prêt à revenir en arrière.

b. Vous pouvez également tenter de restaurer manuellement le cluster :

i. Remettre en ligne tous les nœuds en utilisant : pcs cluster start <HOSTNAME>

ii. Effacer toutes les actions de ressources ayant échoué à l’aide de : pcs resource cleanup

iii. Exécutez l’état pcs et vérifiez que tous les services commencent comme prévu.

iv. Si nécessaire, exécutez pcs resource relocate run pour renvoyer les ressources vers le
nœud de votre choix (s’il est disponible).

Problèmes courants

Les services BeeGFS ne sont pas de basculement ou de retour arrière sur demande

Question probable: le pcs resource relocate la commande d’exécution a été exécutée mais n’a jamais
réussi.

Comment vérifier : Exécuter pcs constraint --full Et recherchez les contraintes d’emplacement avec
un ID de pcs-relocate-<RESOURCE>.

Comment résoudre : Exécuter pcs resource relocate clear puis repassage pcs constraint
--full pour vérifier que les contraintes supplémentaires sont supprimées.

Un nœud dans l’état pcs affiche "attente (on-fail)" lorsque l’escrime est désactivé

Problème probable : Pacemaker n’a pas pu confirmer avec succès que toutes les ressources ont été arrêtées
sur le nœud qui a échoué.

Comment résoudre:

1. Courez pcs status enfin, recherchez les ressources qui ne sont pas « démarrées » et affichez les
erreurs en bas de la page et résolvez les problèmes.

2. Pour rétablir l’exécution en ligne du nœud pcs resource cleanup --node=<HOSTNAME>.

178

Après un basculement inattendu, les ressources indiquent « Started (on-fail) » (démarré (on-fail)) dans
l’état pcs (pcs) lorsque l’escrime est activé

Problème probable : Un problème s’est produit qui a déclenché un basculement, mais Pacemaker n’a pas pu
vérifier que le nœud était clôturé. Cela pourrait se produire parce que l’escrime était mal configuré ou qu’il y
avait un problème avec l’agent d’escrime (par exemple : l’unité de distribution d’alimentation était déconnectée
du réseau).

Comment résoudre:

1. Vérifiez que le nœud est réellement hors tension.

Si le nœud que vous spécifiez n’est pas réellement arrêté, mais que vous exécutez les
services ou les ressources du cluster, une corruption des données ou une défaillance du
cluster se produit.

2. Confirmer manuellement l’escrime avec : pcs stonith confirm <NODE>

À ce stade, les services devraient finir le basculement et être redémarrés sur un autre noeud en bon état.

Tâches courantes de dépannage

Redémarrez chaque service BeeGFS

Normalement, si un service BeeGFS doit être redémarré (par exemple pour faciliter une modification de la
configuration), il doit être fait en mettant à jour l’inventaire Ansible et en exécutant de nouveau le manuel de
vente. Dans certains cas, il peut être souhaitable de redémarrer des services individuels pour accélérer le
dépannage, par exemple pour modifier le niveau de journalisation sans avoir à attendre l’exécution du manuel
de vente dans son intégralité.

Sauf si des modifications manuelles sont également ajoutées à l’inventaire Ansible, elles seront
rétablies au prochain exécution du PlayBook Ansible.

Option 1 : redémarrage contrôlé par le système

S’il y a un risque que le service BeeGFS ne redémarre pas correctement avec la nouvelle configuration, tout
d’abord placer le cluster en mode maintenance pour empêcher le moniteur BeeGFS de détecter le service est
arrêté et déclencher un basculement non souhaité :

pcs property set maintenance-mode=true

Si nécessaire, modifiez la configuration des services à l’adresse /mnt/<SERVICE_ID>/_config/beegfs-
.conf (exemple : /mnt/meta_01_tgt_0101/metadata_config/beegfs-meta.conf) puis utilisez
systemd pour le redémarrer :

systemctl restart beegfs-*@<SERVICE_ID>.service

Exemple : systemctl restart beegfs-meta@meta_01_tgt_0101.service

179

Option 2 : redémarrage contrôlé par le stimulateur cardiaque

Si vous n’êtes pas préoccupé par la nouvelle configuration, le service peut s’arrêter de façon inattendue (par
exemple, en modifiant simplement le niveau de journalisation), ou vous êtes dans une fenêtre de maintenance
et ne vous préoccupez pas des temps d’arrêt, il vous suffit de redémarrer le moniteur BeeGFS pour le service
que vous voulez redémarrer :

pcs resource restart <SERVICE>-monitor

Par exemple, pour redémarrer le service de gestion BeeGFS : pcs resource restart mgmt-monitor

180

Mentions légales
Les mentions légales donnent accès aux déclarations de copyright, aux marques, aux
brevets, etc.

Droits d’auteur
"https://www.netapp.com/company/legal/copyright/"

Marques déposées
NetApp, le logo NETAPP et les marques mentionnées sur la page des marques commerciales NetApp sont
des marques commerciales de NetApp, Inc. Les autres noms de sociétés et de produits peuvent être des
marques commerciales de leurs propriétaires respectifs.

"https://www.netapp.com/company/legal/trademarks/"

Brevets
Vous trouverez une liste actuelle des brevets appartenant à NetApp à l’adresse suivante :

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Politique de confidentialité
"https://www.netapp.com/company/legal/privacy-policy/"

Source ouverte
Les fichiers de notification fournissent des informations sur les droits d’auteur et les licences de tiers utilisés
dans le logiciel NetApp.

"Remarque : pour les systèmes d’exploitation SANtricity E-Series/EF-Series"

181

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://library.netapp.com/ecm/ecm_download_file/ECMLP2874738

Informations sur le copyright

Copyright © 2026 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

182

http://www.netapp.com/TM

	BeeGFS sur NetApp avec E-Series Storage : BeeGFS on NetApp with E-Series Storage
	Sommaire
	BeeGFS sur NetApp avec E-Series Storage
	Commencez
	Ce qui est inclus dans ce site
	Termes et concepts

	Utilisez des architectures vérifiées
	Présentation et configuration requise
	Présentation de la solution
	Présentation de l’architecture
	Exigences techniques

	Examen du design de la solution
	Présentation du design
	Configuration matérielle
	Configuration logicielle
	Vérification de la conception
	Instructions de dimensionnement
	Réglage des performances
	Élément de base haute capacité

	Déploiement de la solution
	Présentation du déploiement
	Découvrez l’inventaire Ansible
	Passez en revue les bonnes pratiques
	Déployez le matériel
	Déployez des logiciels
	Faites évoluer votre infrastructure au-delà de cinq éléments de base
	Pourcentages de surprovisionnement recommandés pour le pool de stockage
	Élément de base haute capacité

	Utiliser des architectures personnalisées
	Présentation et configuration requise
	Introduction
	Présentation du déploiement
	De formation

	Configuration initiale
	Installez et fixez les câbles
	Configurez les nœuds de fichier et de bloc
	Configurez le nœud de contrôle Ansible

	Définissez le système de fichiers BeeGFS
	Présentation d’Ansible Inventory
	Planifiez le système de fichiers
	Définir les nœuds de fichier et de bloc
	Définir les services BeeGFS
	Mapper les services BeeGFS sur les nœuds de fichiers

	Déployez le système de fichiers BeeGFS
	Présentation du PlayBook Ansible
	Déployez le cluster BeeGFS HA
	Déploiement de clients BeeGFS
	Vérifier le déploiement BeeGFS

	Déploiement des fonctionnalités et des intégrations
	Pilote BeeGFS CSI
	Configurer le chiffrement TLS pour BeeGFS v8
	Présentation
	Utilisation d’une autorité de certification de confiance
	Création d’une autorité de certification locale
	Désactivation de TLS

	Gérer des clusters BeeGFS
	Présentation, concepts clés et terminologie
	Présentation
	Concepts clés
	Terminologie commune

	Quand utiliser Ansible contre l’outil pcs
	Vérifiez l’état du cluster
	Présentation
	Présentation de la sortie de pcs status

	Reconfigurer le cluster HA et BeeGFS
	Présentation
	Comment désactiver et activer la fonction de fencing

	Mettez à jour les composants du cluster HA
	Mise à niveau des services BeeGFS
	Mise à jour vers BeeGFS v8
	Mise à niveau des packages Pacemaker et Corosync dans un cluster haute disponibilité
	Mettez à jour le micrologiciel de l’adaptateur de nœud de fichier
	Mettez à niveau la baie de stockage E-Series

	Entretien et maintenance
	Services de basculement/rétablissement
	Placer le cluster en mode maintenance
	Arrêtez et démarrez le cluster
	Remplacer les nœuds de fichiers
	Développez ou réduisez le cluster

	Résoudre les problèmes
	Présentation
	Guides de dépannage
	Problèmes courants
	Tâches courantes de dépannage

	Mentions légales
	Droits d’auteur
	Marques déposées
	Brevets
	Politique de confidentialité
	Source ouverte

