
Déployez des logiciels
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-setup-
nodes.html on January 27, 2026. Always check docs.netapp.com for the latest.

Sommaire
Déployez des logiciels . 1

Configurez les nœuds de fichiers et les nœuds en mode bloc . 1

Configurez les nœuds de fichiers . 1

Configurez les nœuds en mode bloc . 2

Réglez les paramètres du système de nœud de fichiers en fonction des performances 2

Utilisez l’interface UEFI pour régler les paramètres du système . 2

Utilisez l’API Redfish pour régler les paramètres du système . 4

Configurez un nœud de contrôle Ansible . 4

Créez l’inventaire Ansible. 6

Étape 1 : définir la configuration de tous les éléments de base. 6

Étape 2 : définir la configuration des nœuds de fichiers et de blocs individuels . 7

Étape 3 : définissez une configuration à appliquer à tous les nœuds de fichiers et de blocs 9

Étape 4 : définissez la configuration qui doit s’appliquer à tous les nœuds de fichiers 10

Étape 5 : définir la configuration pour le nœud de bloc commun. 16

Définissez l’inventaire Ansible pour les éléments de base BeeGFS . 18

Étape 1 : créez le fichier d’inventaire Ansible . 19

Étape 2 : configurer l’inventaire d’un élément de base de gestion, de métadonnées et de stockage 19

Étape 3 : configurer l’inventaire d’un élément de base métadonnées + stockage. 25

Étape 4 : configurer l’inventaire pour un élément de base stockage uniquement 29

Déployez BeeGFS . 32

Configurer les clients BeeGFS. 35

Déployez des logiciels

Configurez les nœuds de fichiers et les nœuds en mode
bloc

Si la plupart des tâches de configuration logicielle sont automatisées au moyen des
collections Ansible fournies par NetApp, vous devez configurer la mise en réseau sur le
contrôleur de gestion de la carte de base (BMC) de chaque serveur et configurer le port
de gestion sur chaque contrôleur.

Configurez les nœuds de fichiers

1. Configurez la mise en réseau sur le contrôleur de gestion de la carte mère (BMC) de chaque serveur.

Pour savoir comment configurer la mise en réseau pour les nœuds de fichiers Lenovo SR665 V3 validés,
consultez le "Documentation Lenovo ThinkSystem".

Un contrôleur de gestion de la carte mère (BMC), parfois appelé processeur de service, est
le nom générique de la fonctionnalité de gestion hors bande intégrée dans diverses plates-
formes de serveurs qui fournissent un accès à distance même si le système d’exploitation
n’est pas installé ou accessible. Les fournisseurs vendent généralement cette fonctionnalité
avec leur propre marque. Par exemple, sur le Lenovo SR665, le contrôleur BMC est appelé
le contrôleur XClarity (XCC)_ de _Lenovo.

2. Configurez les paramètres du système pour des performances maximales.

Vous configurez les paramètres système à l’aide de la configuration UEFI (anciennement appelée BIOS)
ou en utilisant les API Redfish fournies par de nombreux BMCs. Les paramètres système varient en
fonction du modèle de serveur utilisé comme nœud de fichier.

Pour savoir comment configurer les paramètres système pour les nœuds de fichiers Lenovo SR665 V3
validés, consultez "Réglez les paramètres du système en fonction des performances" .

3. Installez Red Hat Enterprise Linux (RHEL) 9.4 et configurez le nom d’hôte et le port réseau utilisés pour
gérer le système d’exploitation, y compris la connectivité SSH à partir du nœud de contrôle Ansible.

Ne configurez pas d’adresses IP sur l’un des ports InfiniBand pour le moment.

Bien qu’il ne soit pas strictement nécessaire, les sections suivantes présument que les
noms d’hôte sont numérotés séquentiellement (comme h1-HN) et font référence aux tâches
qui doivent être effectuées sur les hôtes impairs et pairs.

4. Utilisez Red Hat Subscription Manager pour enregistrer et abonner le système afin de permettre
l’installation des packages requis à partir des référentiels officiels Red Hat et de limiter les mises à jour à la
version prise en charge de Red Hat : subscription-manager release --set=9.4 . Pour obtenir
des instructions, voir "Comment enregistrer et souscrire un système RHEL" et "Comment limiter les mises
à jour".

5. Activez le référentiel Red Hat contenant les packages requis pour la haute disponibilité.

1

https://pubs.lenovo.com/sr665-v3/
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://access.redhat.com/solutions/2761031

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Mettez à jour tous les micrologiciels HCA à la version recommandée dans le "Exigences
technologiques"Guide d’utilisation"Mettez à jour le micrologiciel de l’adaptateur de nœud de fichier".

Configurez les nœuds en mode bloc

Configurez les nœuds en mode bloc EF600 en configurant le port de gestion sur chaque contrôleur.

1. Configurez le port de gestion sur chaque contrôleur EF600.

Pour obtenir des instructions sur la configuration des ports, consultez le "Centre de documentation E-
Series".

2. Vous pouvez également définir le nom de la matrice de stockage pour chaque système.

La définition d’un nom peut faciliter la référence à chaque système dans les sections suivantes. Pour
obtenir des instructions sur la définition du nom de la matrice, reportez-vous à la "Centre de documentation
E-Series".

Bien qu’il ne soit pas strictement nécessaire, les rubriques suivantes présument que les noms
des matrices de stockage sont numérotés de façon séquentielle (comme c1 - CN) et font
référence aux étapes à suivre sur les systèmes pairs ou impairs.

Réglez les paramètres du système de nœud de fichiers en
fonction des performances

Pour optimiser les performances, nous vous recommandons de configurer les
paramètres système sur le modèle de serveur que vous utilisez en tant que nœuds de
fichiers.

Les paramètres système varient en fonction du modèle de serveur que vous utilisez comme nœud de fichier.
Cette rubrique décrit comment configurer les paramètres système des nœuds de fichiers serveur Lenovo
ThinkSystem SR665 validés.

Utilisez l’interface UEFI pour régler les paramètres du système

Le micrologiciel système du serveur Lenovo SR665 V3 contient de nombreux paramètres de réglage qui
peuvent être définis via l’interface UEFI. Ces paramètres de réglage peuvent affecter tous les aspects du
fonctionnement du serveur et de son fonctionnement.

Sous Configuration UEFI > Paramètres système, réglez les paramètres système suivants :

Menu mode de fonctionnement

2

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-technology-requirements.html
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-technology-requirements.html
..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

Paramètres système Changer en

Mode de fonctionnement Personnalisées

CTDP Manuel

Manuel CTDP 350

Limite de puissance de l’ensemble Manuel

Mode efficacité Désactiver

Contrôle global-état-contrôlé Désactiver

États P SOC P0

DF États C. Désactiver

État P. Désactiver

Activation de la mise hors tension de la mémoire Désactiver

Nœuds NUMA par socket NPS1

Menu périphériques et ports d’E/S.

Paramètres système Changer en

IOMMU Désactiver

Menu d’alimentation

Paramètres système Changer en

Frein d’alimentation PCIe Désactiver

Menu processeurs

Paramètres système Changer en

Contrôle global de l’état C. Désactiver

DF États C. Désactiver

Mode SMT Désactiver

3

Paramètres système Changer en

PC Désactiver

Utilisez l’API Redfish pour régler les paramètres du système

En plus de l’utilisation de la configuration UEFI, vous pouvez utiliser l’API Redfish pour modifier les paramètres
du système.

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

Pour plus d’informations sur le schéma Redfish, reportez-vous au "Site Web DMTF".

Configurez un nœud de contrôle Ansible

Pour configurer un nœud de contrôle Ansible, vous devez désigner une machine virtuelle
ou physique qui accède au réseau à tous les nœuds de blocs et de fichiers déployés
pour la solution BeeGFS sur NetApp.

Consultez le "Exigences techniques" pour obtenir la liste des versions de package recommandées. Les étapes
suivantes ont été testées sur Ubuntu 22.04. Pour connaître les étapes spécifiques à votre distribution Linux
préférée, consultez le "Documentation Ansible".

4

https://redfish.dmtf.org/redfish/schema_index
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

1. À partir de votre nœud de contrôle Ansible, installez les packages Python et Python Virtual Environment
suivants.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Créez un environnement virtuel Python.

python3 -m venv ~/pyenv

3. Activer l’environnement virtuel.

source ~/pyenv/bin/activate

4. Installez les packages Python requis dans l’environnement virtuel activé.

pip install ansible netaddr cryptography passlib

5. Installez la collection BeeGFS à l’aide d’Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Vérifiez que les versions installées d’Ansible, Python et de la collection BeeGFS correspondent
aux"Exigences techniques"

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Configurez SSH sans mot de passe pour permettre à Ansible d’accéder aux nœuds de fichiers BeeGFS
distants à partir du nœud de contrôle Ansible.

a. Le cas échéant, générez une paire de clés publiques sur le nœud de contrôle Ansible.

ssh-keygen

b. Configurez SSH sans mot de passe sur chacun des nœuds de fichiers.

ssh-copy-id <ip_or_hostname>

5

beegfs-technology-requirements.html#ansible-control-node-requirements

Do NOT configurez SSH sans mot de passe sur les nœuds de bloc. Cela n’est ni pris en charge
ni obligatoire.

Créez l’inventaire Ansible

Pour définir la configuration des nœuds de fichiers et de blocs, vous créez un inventaire
Ansible qui représente le système de fichiers BeeGFS que vous souhaitez déployer.
L’inventaire inclut les hôtes, les groupes et les variables décrivant le système de fichiers
BeeGFS souhaité.

Étape 1 : définir la configuration de tous les éléments de base

Définissez la configuration qui s’applique à tous les blocs de construction, quel que soit le profil de
configuration que vous pouvez appliquer individuellement.

Avant de commencer

• Choisissez un schéma d’adressage de sous-réseau pour votre déploiement. En raison des avantages
répertoriés dans le "architecture logicielle", il est recommandé d’utiliser un schéma d’adressage de sous-
réseau unique.

Étapes

1. Sur votre nœud de contrôle Ansible, identifiez un répertoire à utiliser pour stocker les fichiers d’inventaire
et de PlayBook Ansible.

Sauf indication contraire, tous les fichiers et répertoires créés dans cette étape et les étapes suivantes sont
créés par rapport à ce répertoire.

2. Créez les sous-répertoires suivants :

host_vars

group_vars

packages

3. Créez un sous-répertoire pour les mots de passe de cluster et sécurisez le fichier en le chiffrant à l’aide
d’Ansible Vault (voir "Cryptage de contenu avec Ansible Vault") :

a. Créez le sous-répertoire group_vars/all.

b. Dans le group_vars/all répertoire, créez un fichier de mots de passe intitulé passwords.yml.

c. Remplissez le passwords.yml file avec les paramètres suivants, en remplaçant tous les
paramètres de nom d’utilisateur et de mot de passe en fonction de votre configuration :

6

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-design-software-architecture.html#beegfs-network-configuration
https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Exécutez ansible-vault encrypt passwords.yml et définissez un mot de passe de coffre-fort
lorsque vous y êtes invité.

Étape 2 : définir la configuration des nœuds de fichiers et de blocs individuels

Définissez la configuration qui s’applique aux nœuds de fichiers individuels et aux nœuds d’élément de base
individuels.

1. Sous host_vars/, Créez un fichier pour chaque noeud de fichier BeeGFS nommé <HOSTNAME>.yml
Avec le contenu suivant, en portant une attention particulière aux notes concernant le contenu à remplir
pour les adresses IP de cluster BeeGFS et les noms d’hôte se terminant par des nombres impairs et
impairs.

Initialement, les noms d’interface de nœud de fichier correspondent à ce qui est répertorié ici (comme ib0
ou ibs1f0). Ces noms personnalisés sont configurés dans Étape 4 : définissez la configuration qui doit
s’appliquer à tous les nœuds de fichiers.

7

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

8

Si vous avez déjà déployé le cluster BeeGFS, vous devez arrêter le cluster avant d’ajouter
ou de modifier des adresses IP configurées de manière statique, y compris les adresses IP
et IP du cluster utilisées pour NVMe/IB. Cette modification est nécessaire afin que ces
modifications prennent effet correctement et ne perturbent pas les opérations du cluster.

2. Sous host_vars/, Créez un fichier pour chaque noeud de bloc BeeGFS nommé <HOSTNAME>.yml et
remplissez-le avec le contenu suivant.

Faites particulièrement attention aux remarques concernant le contenu à remplir pour les noms de
matrices de stockage se terminant par des nombres pairs ou impairs.

Pour chaque noeud de bloc, créez un fichier et spécifiez <MANAGEMENT_IP> Pour un des deux
contrôleurs (généralement Un).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Étape 3 : définissez une configuration à appliquer à tous les nœuds de fichiers et
de blocs

Vous pouvez définir une configuration commune à un groupe d’hôtes sous group_vars dans un nom de

9

fichier correspondant au groupe. Cela empêche de répéter une configuration partagée à plusieurs endroits.

Description de la tâche

Les hôtes peuvent se trouver dans plusieurs groupes et au moment de l’exécution, Ansible choisit les variables
qui s’appliquent à un hôte donné en fonction de ses règles de priorité de variable. (Pour plus d’informations sur
ces règles, consultez la documentation Ansible pour "Utilisation de variables".)

Les affectations hôte-groupe sont définies dans le fichier d’inventaire Ansible réel, créé à la fin de cette
procédure.

Étape

Dans Ansible, vous pouvez définir n’importe quelle configuration que vous souhaitez appliquer à tous les hôtes
dans un groupe appelé All. Créez le fichier group_vars/all.yml avec le contenu suivant :

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Étape 4 : définissez la configuration qui doit s’appliquer à tous les nœuds de
fichiers

La configuration partagée pour les nœuds de fichiers est définie dans un groupe appelé ha_cluster. Les
étapes de cette section créent la configuration qui doit être incluse dans le group_vars/ha_cluster.yml
fichier.

Étapes

1. En haut du fichier, définissez les valeurs par défaut, y compris le mot de passe à utiliser comme sudo
utilisateur sur les nœuds de fichiers.

10

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

Si ansible_ssh_user est déjà root, vous pouvez omettre l'
ansible_become_password et spécifier l' `--ask-become-pass`option lors de l’exécution
du PlayBook.

2. Vous pouvez également configurer un nom pour le cluster haute disponibilité (HA) et spécifier un utilisateur
pour les communications intra-cluster.

Si vous modifiez le schéma d’adressage IP privé, vous devez également mettre à jour le schéma par
défaut beegfs_ha_mgmtd_floating_ip. Ceci doit correspondre à ce que vous configurez plus tard
pour le groupe de ressources BeeGFS Management.

Spécifiez un ou plusieurs e-mails qui doivent recevoir des alertes pour les événements du cluster à l’aide
de beegfs_ha_alert_email_list.

11

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

Tout en apparence redondant, beegfs_ha_mgmtd_floating_ip Est important lorsque
vous faites évoluer le système de fichiers BeeGFS au-delà d’un seul cluster HA. Les
clusters HA suivants sont déployés sans service de gestion BeeGFS et point
supplémentaires sur le service de gestion fourni par le premier cluster.

3. Configurer un agent d’escrime. (Pour plus de détails, voir "Configurer l’escrime dans un cluster Red Hat
haute disponibilité".) Le résultat suivant présente des exemples de configuration des agents de clôture
courants. Choisissez l’une de ces options.

Pour cette étape, gardez à l’esprit que :

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ Par défaut, l’escrime est activé, mais vous devez configurer un agent d’escrime.

◦ Le <HOSTNAME> spécifié dans le pcmk_host_map ou pcmk_host_list Doit correspondre au nom
d’hôte dans l’inventaire Ansible.

◦ L’utilisation du cluster BeeGFS sans escrime n’est pas prise en charge, particulièrement en production.
Cela permet de s’assurer que les services BeeGFS, y compris les dépendances de ressources comme
les périphériques de bloc, basculent en raison d’un problème, il n’y a aucun risque d’accès simultané
par plusieurs nœuds qui entraînent une corruption du système de fichiers ou tout autre comportement
indésirable ou inattendu. Si l’escrime doit être désactivé, reportez-vous aux notes générales du guide
de démarrage et de mise en place du rôle BeeGFS HA
beegfs_ha_cluster_crm_config_options["stonith-enabled"] à faux dans
ha_cluster.yml.

◦ Plusieurs dispositifs d’escrime au niveau des nœuds sont disponibles, et le rôle BeeGFS HA peut
configurer n’importe quel agent d’escrime disponible dans le référentiel de package Red Hat HA. Si
possible, utilisez un agent d’escrime qui fonctionne via l’alimentation sans coupure (UPS) ou l’unité de
distribution de l’alimentation en rack (RPDU), Parce que certains agents d’escrime, tels que le
contrôleur de gestion de la carte mère (BMC) ou d’autres dispositifs d’éclairage intégrés au serveur,
peuvent ne pas répondre à la demande de clôture dans certains scénarios de panne.

13

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Activez le réglage des performances recommandé dans le système d’exploitation Linux.

Si de nombreux utilisateurs trouvent les paramètres par défaut des paramètres de performance qui
fonctionnent généralement bien, vous pouvez également modifier les paramètres par défaut d’une charge
de travail donnée. Ainsi, ces recommandations sont incluses dans le rôle BeeGFS, mais ne sont pas
activées par défaut pour s’assurer que les utilisateurs connaissent le réglage appliqué à leur système de
fichiers.

Pour activer le réglage des performances, spécifiez :

14

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Facultatif) vous pouvez régler les paramètres d’ajustement des performances dans le système
d’exploitation Linux selon vos besoins.

Pour obtenir une liste complète des paramètres de réglage disponibles que vous pouvez ajuster, consultez
la section Réglages par défaut des performances du rôle haute disponibilité BeeGFS dans la section "E-
Series site GitHub BeeGFS". Les valeurs par défaut peuvent être remplacées pour tous les nœuds du
cluster dans ce fichier ou pour le host_vars fichier d’un nœud individuel.

6. Pour permettre une connectivité 200 Go/HDR complète entre les nœuds de bloc et de fichier, utilisez le
progiciel Open Subnet Manager (OpenSM) de NVIDIA Open Fabrics Enterprise distribution
(MLNX_OFED). La version MLNX_OFED de la présente "configuration requise pour le nœud de fichiers"
est fournie avec les packages OpenSM recommandés. Bien que le déploiement à l’aide d’Ansible soit pris
en charge, vous devez d’abord installer le pilote MLNX_OFED sur tous les nœuds de fichiers.

a. Remplissez les paramètres suivants dans group_vars/ha_cluster.yml (réglez les colis si
nécessaire) :

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Configurer le udev Règle pour assurer un mappage cohérent des identificateurs de port InfiniBand
logiques aux périphériques PCIe sous-jacents.

Le udev La règle doit être unique à la topologie PCIe de chaque plate-forme de serveur utilisée comme
nœud de fichier BeeGFS.

Utilisez les valeurs suivantes pour les nœuds de fichiers vérifiés :

15

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Facultatif) mettre à jour l’algorithme de sélection de cible de métadonnées.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

Lors des tests de vérification, randomrobin Est généralement utilisé pour s’assurer que les
fichiers de test étaient répartis de façon égale sur toutes les cibles de stockage BeeGFS
pendant l’évaluation des performances (pour plus d’informations sur l’analyse comparative,
consultez le site BeeGFS pour "Analyse comparative d’un système BeeGFS"). Avec une
utilisation réelle, il est possible que les cibles numérotées soient plus rapidement que les
cibles numérotées plus élevées. Omission randomrobin et il suffit d’utiliser la valeur par
défaut randomized la valeur a été indiquée pour fournir de bonnes performances tout en
utilisant toujours toutes les cibles disponibles.

Étape 5 : définir la configuration pour le nœud de bloc commun

La configuration partagée pour les nœuds de bloc est définie dans un groupe appelé
eseries_storage_systems. Les étapes de cette section créent la configuration qui doit être incluse dans le
group_vars/ eseries_storage_systems.yml fichier.

Étapes

1. Définissez la connexion Ansible sur local, indiquez le mot de passe système et spécifiez si les certificats

16

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

SSL doivent être vérifiés. (Normalement, Ansible utilise SSH pour la connexion aux hôtes gérés, mais dans
le cas des systèmes de stockage NetApp E-Series utilisés comme nœuds de bloc, les modules utilisent
l’API REST pour la communication.) En haut du fichier, ajoutez ce qui suit :

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. Pour assurer des performances optimales, installez les versions répertoriées pour les nœuds de bloc dans
"Exigences techniques".

Téléchargez les fichiers correspondants à partir du "Site de support NetApp". Vous pouvez les mettre à
niveau manuellement ou les inclure dans le packages/ Répertoire du nœud de contrôle Ansible, puis
remplissez les paramètres suivants dans eseries_storage_systems.yml Pour la mise à niveau avec
Ansible :

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Téléchargez et installez le dernier micrologiciel de lecteur disponible pour les lecteurs installés sur vos
nœuds de bloc à partir du "Site de support NetApp". Vous pouvez les mettre à niveau manuellement ou les
inclure dans packages/ le répertoire du nœud de contrôle Ansible, puis remplir les paramètres suivants
dans eseries_storage_systems.yml pour la mise à niveau à l’aide d’Ansible :

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Réglage eseries_drive_firmware_upgrade_drives_online à false Accélère la
mise à niveau, mais ne doit pas être effectuée avant le déploiement de BeeGFS. En effet,
ce paramètre nécessite l’arrêt de toutes les E/S des disques avant la mise à niveau afin
d’éviter les erreurs d’application. Bien que la mise à niveau en ligne du micrologiciel des
lecteurs avant la configuration des volumes soit toujours rapide, nous vous recommandons
de toujours définir cette valeur sur true pour éviter tout problème par la suite.

4. Pour optimiser les performances, effectuez les modifications suivantes de la configuration globale :

17

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-technology-requirements.html
https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

5. Pour optimiser le provisionnement et le comportement des volumes, spécifiez les paramètres suivants :

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

La valeur spécifiée pour eseries_storage_pool_usable_drives Est spécifique aux
nœuds de bloc NetApp EF600 et contrôle l’ordre dans lequel les disques sont affectés aux
nouveaux groupes de volumes. Cette commande permet de s’assurer que les E/S de
chaque groupe sont réparties de manière homogène entre les canaux des disques back-
end.

Définissez l’inventaire Ansible pour les éléments de base
BeeGFS

Après avoir défini la structure d’inventaire générale Ansible, définissez la configuration de
chaque élément de base dans le système de fichiers BeeGFS.

Ces instructions de déploiement montrent comment déployer un système de fichiers composé d’un élément de
base, incluant la gestion, les métadonnées et les services de stockage, un deuxième élément de base avec
des métadonnées et des services de stockage, et un troisième élément de base uniquement dédié au
stockage.

Ces étapes sont destinées à afficher la gamme complète des profils de configuration standard que vous
pouvez utiliser pour configurer les éléments de base NetApp BeeGFS de façon à répondre aux exigences du
système de fichiers global BeeGFS.

18

Dans les sections suivantes et ceci, ajustez selon les besoins pour générer l’inventaire
représentant le système de fichiers BeeGFS que vous voulez déployer. Utilisez notamment des
noms d’hôte Ansible qui représentent chaque nœud de bloc ou de fichier et le schéma
d’adressage IP souhaité pour le réseau de stockage, afin de vous assurer qu’il peut évoluer
jusqu’au nombre de nœuds de fichiers et de clients BeeGFS.

Étape 1 : créez le fichier d’inventaire Ansible

Étapes

1. Créer un nouveau inventory.yml file, puis insérez les paramètres suivants en remplaçant les hôtes
sous eseries_storage_systems si nécessaire pour représenter les nœuds en mode bloc dans votre
déploiement. Les noms doivent correspondre au nom utilisé pour host_vars/<FILENAME>.yml.

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

Dans les sections suivantes, vous allez créer des groupes Ansible supplémentaires sous ha_cluster Qui
représentent les services BeeGFS que vous voulez exécuter dans le cluster.

Étape 2 : configurer l’inventaire d’un élément de base de gestion, de métadonnées
et de stockage

Le premier élément de base ou du cluster doit inclure le service de gestion BeeGFS ainsi que les services de
métadonnées et de stockage :

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

19

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

20

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_07:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Créez le fichier group_vars/mgmt.yml et inclure les éléments suivants :

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Sous group_vars/, créez des fichiers pour les groupes de ressources meta_01 à meta_08 à l’aide du
modèle suivant, puis remplissez les valeurs des espaces réservés pour chaque service faisant référence
au tableau ci-dessous :

21

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

La taille du volume est indiquée sous forme de pourcentage du pool de stockage global
(également appelé groupe de volumes). NetApp recommande fortement de laisser une
certaine capacité libre dans chaque pool afin d’autoriser le sur-provisionnement SSD (pour
plus d’informations, voir "Présentation de la baie NetApp EF600"). Le pool de stockage,
beegfs_m1_m2_m5_m6, alloue également 1% de la capacité du pool pour le service de
gestion. Ainsi, pour les volumes de métadonnées dans le pool de stockage,
beegfs_m1_m2_m5_m6, Si vous utilisez des disques de 1,92 To ou 3,84 To, définissez cette
valeur sur 21.25; Pour les lecteurs 7,65 To, définissez cette valeur sur 22.25; Et pour les
disques de 15,3 To, définissez cette valeur sur 23.75.

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_01.yml 8015 i1b:100.127.1
01.1/16
i2b:100.127.1
02.1/16

0 netapp_01 beegfs_m1_
m2_m5_m6

A

meta_02.yml 8025 i2b:100.127.1
02.2/16
i1b:100.127.1
01.2/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1
01.3/16
i4b:100.127.1
02.3/16

1 netapp_02 beegfs_m3_
m4_m7_m8

A

22

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_04.yml 8045 i4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

0 netapp_01 beegfs_m1_
m2_m5_m6

A

meta_06.yml 8065 i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

1 netapp_02 beegfs_m3_
m4_m7_m8

A

meta_08.yml 8085 i4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

4. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_01 à stor_08 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

23

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

Pour connaître la taille correcte à utiliser, reportez-vous à la section "Pourcentages de
surprovisionnement recommandés pour le pool de stockage".

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_01.yml 8013 i1b:100.127.1
03.1/16
i2b:100.127.1
04.1/16

0 netapp_01 beegfs_s1_s2 A

stor_02.yml 8023 i2b:100.127.1
04.2/16
i1b:100.127.1
03.2/16

0 netapp_01 beegfs_s1_s2 B

stor_03.yml 8033 i3b:100.127.1
03.3/16
i4b:100.127.1
04.3/16

1 netapp_02 beegfs_s3_s4 A

stor_04.yml 8043 i4b:100.127.1
04.4/16
i3b:100.127.1
03.4/16

1 netapp_02 beegfs_s3_s4 B

24

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_05.yml 8053 i1b:100.127.1
03.5/16
i2b:100.127.1
04.5/16

0 netapp_01 beegfs_s5_s6 A

stor_06.yml 8063 i2b:100.127.1
04.6/16
i1b:100.127.1
03.6/16

0 netapp_01 beegfs_s5_s6 B

stor_07.yml 8073 i3b:100.127.1
03.7/16
i4b:100.127.1
04.7/16

1 netapp_02 beegfs_s7_s8 A

stor_08.yml 8083 i4b:100.127.1
04.8/16
i3b:100.127.1
03.8/16

1 netapp_02 beegfs_s7_s8 B

Étape 3 : configurer l’inventaire d’un élément de base métadonnées + stockage

Elles expliquent comment configurer un inventaire Ansible pour un élément de base de stockage + de
métadonnées BeeGFS.

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous la configuration existante :

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

 beegfs_03:

25

 beegfs_04:

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

26

2. Sous group_vars/, créez des fichiers pour les groupes de ressources meta_09 à meta_16 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Pour connaître la taille correcte à utiliser, reportez-vous à la section "Pourcentages de
surprovisionnement recommandés pour le pool de stockage".

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_09.yml 8015 i1b:100.127.1
01.9/16
i2b:100.127.1
02.9/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

A

meta_10.yml 8025 i2b:100.127.1
02.10/16
i1b:100.127.1
01.10/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_11.yml 8035 i3b:100.127.1
01.11/16
i4b:100.127.1
02.11/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

A

meta_12.yml 8045 i4b:100.127.1
02.12/16
i3b:100.127.1
01.12/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

27

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

meta_13.yml 8055 i1b:100.127.1
01.13/16
i2b:100.127.1
02.13/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

A

meta_14.yml 8065 i2b:100.127.1
02.14/16
i1b:100.127.1
01.14/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_15.yml 8075 i3b:100.127.1
01.15/16
i4b:100.127.1
02.15/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

A

meta_16.yml 8085 i4b:100.127.1
02.16/16
i3b:100.127.1
01.16/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

3. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_09 à stor_16 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

28

Pour connaître la taille correcte à utiliser, voir "Pourcentages de surprovisionnement
recommandés pour le pool de stockage" ..

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_09.yml 8013 i1b:100.127.1
03.9/16
i2b:100.127.1
04.9/16

0 netapp_03 beegfs_s9_s1
0

A

stor_10.yml 8023 i2b:100.127.1
04.10/16
i1b:100.127.1
03.10/16

0 netapp_03 beegfs_s9_s1
0

B

stor_11.yml 8033 i3b:100.127.1
03.11/16
i4b:100.127.1
04.11/16

1 netapp_04 beegfs_s11_s
12

A

stor_12.yml 8043 i4b:100.127.1
04.12/16
i3b:100.127.1
03.12/16

1 netapp_04 beegfs_s11_s
12

B

stor_13.yml 8053 i1b:100.127.1
03.13/16
i2b:100.127.1
04.13/16

0 netapp_03 beegfs_s13_s
14

A

stor_14.yml 8063 i2b:100.127.1
04.14/16
i1b:100.127.1
03.14/16

0 netapp_03 beegfs_s13_s
14

B

stor_15.yml 8073 i3b:100.127.1
03.15/16
i4b:100.127.1
04.15/16

1 netapp_04 beegfs_s15_s
16

A

stor_16.yml 8083 i4b:100.127.1
04.16/16
i3b:100.127.1
03.16/16

1 netapp_04 beegfs_s15_s
16

B

Étape 4 : configurer l’inventaire pour un élément de base stockage uniquement

Procédure de configuration d’un inventaire Ansible pour un élément de base BeeGFS Storage uniquement. La
différence majeure entre l’installation de la configuration pour un bloc de métadonnées + stockage et un bloc
modulaire uniquement destiné au stockage, c’est l’omission de tous les groupes de ressources de
métadonnées et la modification criteria_drive_count de 10 à 12 pour chaque pool de stockage.

Étapes

1. Dans inventory.yml, remplissez les paramètres suivants sous la configuration existante :

29

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Sous group_vars/, créez des fichiers pour les groupes de ressources stor_17 à stor_24 à l’aide du
modèle suivant, puis remplissez les valeurs de paramètre fictif pour chaque service référençant l’exemple :

30

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

Pour connaître la taille correcte à utiliser, voir "Pourcentages de surprovisionnement
recommandés pour le pool de stockage" .

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_17.yml 8013 i1b:100.127.1
03.17/16
i2b:100.127.1
04.17/16

0 netapp_05 beegfs_s17_s
18

A

stor_18.yml 8023 i2b:100.127.1
04.18/16
i1b:100.127.1
03.18/16

0 netapp_05 beegfs_s17_s
18

B

stor_19.yml 8033 i3b:100.127.1
03.19/16
i4b:100.127.1
04.19/16

1 netapp_06 beegfs_s19_s
20

A

stor_20.yml 8043 i4b:100.127.1
04.20/16
i3b:100.127.1
03.20/16

1 netapp_06 beegfs_s19_s
20

B

31

https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://docs.netapp.com/fr-fr/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html

Nom du
fichier

Port Adresses IP
flottantes

Zone NUMA Nœud de
bloc

Pool de
stockage

Contrôleur
propriétaire

stor_21.yml 8053 i1b:100.127.1
03.21/16
i2b:100.127.1
04.21/16

0 netapp_05 beegfs_s21_s
22

A

stor_22.yml 8063 i2b:100.127.1
04.22/16
i1b:100.127.1
03.22/16

0 netapp_05 beegfs_s21_s
22

B

stor_23.yml 8073 i3b:100.127.1
03.23/16
i4b:100.127.1
04.23/16

1 netapp_06 beegfs_s23_s
24

A

stor_24.yml 8083 i4b:100.127.1
04.24/16
i3b:100.127.1
03.24/16

1 netapp_06 beegfs_s23_s
24

B

Déployez BeeGFS

Un déploiement et une gestion de la configuration impliquent d’exécuter un ou plusieurs
playbooks contenant les tâches Ansible requises pour exécuter et placer le système
global dans l’état souhaité.

Même si toutes les tâches peuvent être incluses dans un seul manuel de vente, il est difficile pour les
systèmes complexes de gérer cette tâche très rapidement. Ansible vous permet de créer et de distribuer des
rôles comme un moyen de packaging des playbooks réutilisables et du contenu associé (par exemple,
variables par défaut, tâches et gestionnaires). Pour plus d’informations, consultez la documentation Ansible
pour "Rôles".

Les rôles sont souvent distribués dans le cadre d’une collection Ansible contenant des rôles et des modules
associés. Donc, ces playbooks importent principalement plusieurs rôles distribués dans les différentes
collections NetApp E-Series Ansible.

Actuellement, au moins deux éléments de base (quatre nœuds de fichiers) sont nécessaires
pour déployer BeeGFS, à moins qu’un périphérique quorum distinct soit configuré comme un
disjoncteur d’attache pour limiter les problèmes lors de l’établissement du quorum avec un
cluster à deux nœuds.

Étapes

1. Créer un nouveau playbook.yml classez et incluez les éléments suivants :

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

32

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 - netapp_eseries.santricity

 tasks:

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

33

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

Ce PlayBook s’exécute pre_tasks Vérifiez que Python 3 est installé sur les nœuds de
fichiers et vérifiez que les balises Ansible fournies sont prises en charge.

2. Utilisez le ansible-playbook Commande avec les fichiers d’inventaire et de PlayBook lorsque vous
êtes prêt à déployer BeeGFS.

Le déploiement va s’exécuter tout pre_tasks, Puis demander confirmation de l’utilisateur avant de
poursuivre le déploiement BeeGFS.

Exécuter la commande suivante en réglant le nombre de fourches selon les besoins (voir la remarque ci-
dessous) :

ansible-playbook -i inventory.yml playbook.yml --forks 20

`forks`Pour les déploiements de plus grande envergure, il est recommandé de remplacer le
nombre par défaut de fourches (5) à l’aide du paramètre afin d’augmenter le nombre d’hôtes
configurés en parallèle par Ansible. (Pour plus d’informations, voir "Contrôle de l’exécution
de PlayBook".) Le paramètre valeur maximale dépend de la puissance de traitement
disponible sur le nœud de contrôle Ansible. L’exemple ci-dessus de 20 a été exécuté sur un
nœud de contrôle Ansible virtuel avec 4 processeurs (Intel® Xeon® Gold 6146 CPU à 3,20
GHz).

Selon la taille du déploiement et les performances réseau entre le nœud de contrôle Ansible et les nœuds
de fichier et bloc BeeGFS, la durée de déploiement peut varier.

34

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

Configurer les clients BeeGFS

Vous devez installer et configurer le client BeeGFS sur tous les hôtes qui doivent accéder
au système de fichiers BeeGFS, comme les nœuds de calcul ou les nœuds GPU. Pour
cette tâche, vous pouvez utiliser Ansible et la collection BeeGFS.

Étapes

1. Si nécessaire, configurez une connexion SSH sans mot de passe depuis le nœud de contrôle Ansible vers
chacun des hôtes que vous souhaitez configurer comme clients BeeGFS :

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Sous host_vars/, Créez un fichier pour chaque client BeeGFS nommé <HOSTNAME>.yml avec le
contenu suivant, en renseignant le texte de l’espace réservé contenant les informations correctes pour
votre environnement :

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

En cas de déploiement avec un schéma d’adressage de sous-réseau à deux, deux
interfaces InfiniBand doivent être configurées sur chaque client, une dans chacun des deux
sous-réseaux IPoIB de stockage. Si vous utilisez les exemples de sous-réseaux et les
plages recommandées pour chaque service BeeGFS répertorié ici, une interface doit être
configurée dans la plage 100.127.1.0 100.127.99.255 à et l’autre dans 100.128.1.0
à 100.128.99.255.

3. Créez un nouveau fichier client_inventory.yml, puis remplissez les paramètres suivants en haut :

35

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

Ne stockez pas les mots de passe en texte brut. Utilisez plutôt Ansible Vault (consultez la
documentation Ansible pour "Cryptage de contenu avec Ansible Vault") ou utilisez l' --ask
-become-pass option lors de l’exécution du manuel de vente.

4. Dans le client_inventory.yml Fichier, répertorie tous les hôtes qui doivent être configurés comme
clients BeeGFS sous beegfs_clients Définissez ensuite toute configuration supplémentaire requise
pour générer le module de noyau client BeeGFS.

36

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

Lorsque vous utilisez les pilotes OFED NVIDIA, assurez-vous que
beegfs_client_ofed_include_path pointe vers le "header include path" correct pour
votre installation Linux. Pour plus d’informations, consultez la documentation BeeGFS pour
"Prise en charge de RDMA".

5. Dans le client_inventory.yml Fichier, répertorie les systèmes de fichiers BeeGFS que vous
souhaitez monter au bas de tout ce qui a été défini précédemment vars.

37

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

Le beegfs_client_config représente les paramètres testés. Reportez-vous à la
documentation fournie avec le netapp_eseries.beegfs collection beegfs_client rôle
pour une vue d’ensemble complète de toutes les options. Cela inclut le montage de
plusieurs systèmes de fichiers BeeGFS ou le montage du même système de fichiers
BeeGFS plusieurs fois.

6. Créer un nouveau client_playbook.yml puis remplissez les paramètres suivants :

38

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Ignorer l’importation du netapp_eseries.host collecte et ipoib Rôle si vous avez déjà
installé les pilotes IB/RDMA requis et configuré les adresses IP sur les interfaces IPoIB
appropriées.

7. Pour installer et construire le client et monter BeeGFS, exécutez la commande suivante :

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Avant de placer le système de fichiers BeeGFS en production, nous vous recommandons fortement de
vous connecter à n’importe quel client et de l’exécuter beegfs-fsck --checkfs afin de garantir que
tous les nœuds sont accessibles et qu’aucun problème n’est signalé.

39

Informations sur le copyright

Copyright © 2026 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

40

http://www.netapp.com/TM

	Déployez des logiciels : BeeGFS on NetApp with E-Series Storage
	Sommaire
	Déployez des logiciels
	Configurez les nœuds de fichiers et les nœuds en mode bloc
	Configurez les nœuds de fichiers
	Configurez les nœuds en mode bloc

	Réglez les paramètres du système de nœud de fichiers en fonction des performances
	Utilisez l’interface UEFI pour régler les paramètres du système
	Utilisez l’API Redfish pour régler les paramètres du système

	Configurez un nœud de contrôle Ansible
	Créez l’inventaire Ansible
	Étape 1 : définir la configuration de tous les éléments de base
	Étape 2 : définir la configuration des nœuds de fichiers et de blocs individuels
	Étape 3 : définissez une configuration à appliquer à tous les nœuds de fichiers et de blocs
	Étape 4 : définissez la configuration qui doit s’appliquer à tous les nœuds de fichiers
	Étape 5 : définir la configuration pour le nœud de bloc commun

	Définissez l’inventaire Ansible pour les éléments de base BeeGFS
	Étape 1 : créez le fichier d’inventaire Ansible
	Étape 2 : configurer l’inventaire d’un élément de base de gestion, de métadonnées et de stockage
	Étape 3 : configurer l’inventaire d’un élément de base métadonnées + stockage
	Étape 4 : configurer l’inventaire pour un élément de base stockage uniquement

	Déployez BeeGFS
	Configurer les clients BeeGFS

