
Centre d'automatisation NetApp Console
NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/fr-fr/netapp-automation/solutions/bac-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

Sommaire
Centre d’automatisation NetApp Console . 1

Présentation du hub d’automatisation de la NetApp Console . 1

Amazon FSx for NetApp ONTAP . 1

Amazon FSx for NetApp ONTAP : passage au cloud . 1

Amazon FSx for NetApp ONTAP - Reprise après sinistre . 6

Azure NetApp Files. 11

Installez Oracle à l’aide de Azure NetApp Files . 11

Cloud Volumes ONTAP pour AWS. 17

Cloud Volumes ONTAP pour AWS : en rafale vers le cloud . 17

Cloud Volumes ONTAP pour Azure . 24

Cloud Volumes ONTAP pour Azure : en rafale vers le cloud . 24

Cloud Volumes ONTAP pour Google Cloud. 32

Cloud Volumes ONTAP pour Google Cloud - en rafale vers le cloud . 32

ONTAP . 39

Jour 0/1 . 39

Centre d’automatisation NetApp Console

Présentation du hub d’automatisation de la NetApp Console

La plateforme d’automatisation NetApp Console est un ensemble de solutions
d’automatisation mises à la disposition des clients, partenaires et employés de NetApp .
Le hub d’automatisation possède plusieurs fonctionnalités et avantages.

Un seul emplacement pour vos besoins d’automatisation

Vous pouvez accéder au "Centre d’automatisation NetApp Console" via l’interface utilisateur Web de la
console. Cela permet de centraliser les scripts, les playbooks et les modules nécessaires à l’amélioration
de l’automatisation et du fonctionnement de vos produits et services NetApp .

Les solutions sont créées et testées par NetApp

Toutes les solutions d’automatisation et tous les scripts ont été créés et testés par NetApp. Chaque solution
cible une demande ou un cas d’utilisation spécifique. La priorité est donnée à l’intégration avec les services
de fichiers et de données NetApp.

Documentation

Chacune des solutions d’automatisation comprend une documentation associée pour vous aider à
démarrer. Bien que les solutions soient accessibles via l’interface Web de la console, toute la
documentation est disponible sur ce site. La documentation est organisée en fonction des produits NetApp
et des services cloud.

Une base solide pour l’avenir

NetApp s’engage à aider ses clients à améliorer et à rationaliser l’automatisation de leurs centres de
données et de leurs environnements cloud. Nous prévoyons de continuer à améliorer la plateforme
d’automatisation Console afin de répondre aux exigences des clients, aux évolutions technologiques et à
l’intégration continue des produits.

Votre avis nous intéresse

L’équipe d’automatisation du service d’expérience client (CXO) de NetApp voudrait vous entendre. Si vous
avez des commentaires, des problèmes ou des demandes concernant des fonctionnalités, veuillez envoyer
un e-mail à équipe d’automatisation CXO.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP : passage au cloud

Vous pouvez utiliser cette solution d’automatisation pour provisionner Amazon FSx for
NetApp ONTAP avec des volumes et un FlexCache associé.

La gestion Amazon FSx for NetApp ONTAP est également appelée FSx pour ONTAP.

À propos de cette solution

À un niveau élevé, le code d’automatisation fourni avec cette solution effectue les actions suivantes :

• Provisionnez un système de fichiers FSX pour ONTAP de destination

• Provisionnement des SVM (Storage Virtual machines) pour le système de fichiers

1

https://console.netapp.com/automationHub
mailto:ng-cxo-automation-admins@NetApp.com

• Création d’une relation de peering de cluster entre les systèmes source et destination

• Création d’une relation de peering de SVM entre le système source et le système de destination pour
FlexCache

• Vous pouvez également créer des volumes FlexVol à l’aide de FSX pour ONTAP

• Créez un volume FlexCache dans FSX pour ONTAP, la source pointant vers un stockage sur site

L’automatisation est basée sur Docker et Docker compose qui doivent être installés sur la machine virtuelle
Linux comme décrit ci-dessous.

Avant de commencer

Pour terminer le provisionnement et la configuration, vous devez disposer des éléments suivants :

• Vous devez télécharger le "Amazon FSx for NetApp ONTAP : passage au cloud" solution d’automatisation
via l’interface utilisateur Web de la NetApp Console . La solution est conditionnée sous forme de fichier
AWS_FSxN_BTC.zip.

• Connectivité réseau entre les systèmes source et de destination.

• Une VM Linux présentant les caractéristiques suivantes :

◦ Distribution Linux basée sur Debian

◦ Déployé sur le même sous-ensemble VPC utilisé pour le provisionnement FSX pour ONTAP

• Compte AWS.

Étape 1 : installer et configurer Docker

Installez et configurez Docker sur une machine virtuelle Linux basée sur Debian.

Étapes

1. Préparez l’environnement.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

2. Installez Docker et vérifiez l’installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Ajoutez le groupe Linux requis avec un utilisateur associé.

Vérifiez d’abord si le groupe docker existe dans votre système Linux. Si ce n’est pas le cas, créez le

2

https://console.netapp.com/automationHub

groupe et ajoutez l’utilisateur. Par défaut, l’utilisateur de shell actuel est ajouté au groupe.

sudo groupadd docker

sudo usermod -aG docker $(whoami)

4. Activez les nouvelles définitions de groupe et d’utilisateur

Si vous avez créé un nouveau groupe avec un utilisateur, vous devez activer les définitions. Pour ce faire,
vous pouvez vous déconnecter de Linux puis vous reconnecter. Ou vous pouvez exécuter la commande
suivante.

newgrp docker

Étape 2 : installez Docker compose

Installez Docker compose sur une machine virtuelle Linux basée sur Debian.

Étapes

1. Installez Docker compose.

sudo curl -L

"https://github.com/docker/compose/releases/latest/download/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Vérifiez que l’installation a réussi.

docker-compose --version

Étape 3 : préparez l’image Docker

Vous devez extraire et charger l’image Docker fournie avec la solution d’automatisation.

Étapes

1. Copiez le fichier de solution AWS_FSxN_BTC.zip sur la machine virtuelle sur laquelle le code
d’automatisation sera exécuté.

scp -i ~/<private-key.pem> -r AWS_FSxN_BTC.zip user@<IP_ADDRESS_OF_VM>

Le paramètre d’entrée private-key.pem correspond à votre fichier de clé privée utilisé pour
l’authentification des serveurs virtuels AWS (instance EC2).

2. Accédez au dossier approprié avec le fichier de solution et décompressez le fichier.

3

unzip AWS_FSxN_BTC.zip

3. Accédez au nouveau dossier AWS_FSxN_BTC créé avec l’opération de décompression et répertoriez les
fichiers. Vous devriez voir le fichier aws_fsxn_flexcache_image_latest.tar.gz.

ls -la

4. Chargez le fichier image Docker. Le chargement doit normalement se terminer en quelques secondes.

docker load -i aws_fsxn_flexcache_image_latest.tar.gz

5. Vérifiez que l’image Docker est chargée.

docker images

Vous devriez voir l’image Docker aws_fsxn_flexcache_image avec la balise latest.

 REPOSITORY TAG IMAGE ID CREATED SIZE

aws_fsxn_flexcahce_image latest ay98y7853769 2 weeks ago 1.19GB

Étape 4 : créez un fichier d’environnement pour les identifiants AWS

Vous devez créer un fichier de variables locales pour l’authentification à l’aide de la clé d’accès et de la clé
secrète. Ajoutez ensuite le fichier au .env fichier.

Étapes

1. Créez le awsauth.env fichier à l’emplacement suivant :

path/to/env-file/awsauth.env

2. Ajoutez le contenu suivant au fichier :

access_key=<>

secret_key=<>

Le format doit doit être exactement comme indiqué ci-dessus sans espaces entre key et value.

3. Ajoutez le chemin d’accès absolu au fichier à .env l’aide de la AWS_CREDS variable. Par exemple :

AWS_CREDS=path/to/env-file/awsauth.env

4

Étape 5 : créer un volume externe

Vous avez besoin d’un volume externe pour vous assurer que les fichiers d’état Terraform et les autres fichiers
importants sont persistants. Ces fichiers doivent être disponibles pour Terraform afin d’exécuter le workflow et
les déploiements.

Étapes

1. Créez un volume externe en dehors de Docker compose.

Assurez-vous de mettre à jour le nom du volume (dernier paramètre) à la valeur appropriée avant
d’exécuter la commande.

docker volume create aws_fsxn_volume

2. Ajoutez le chemin d’accès au volume externe au fichier d’environnement à .env l’aide de la commande :

PERSISTENT_VOL=path/to/external/volume:/volume_name

N’oubliez pas de conserver le contenu du fichier existant et le formatage des deux points. Par exemple :

PERSISTENT_VOL=aws_fsxn_volume:/aws_fsxn_flexcache

Vous pouvez à la place ajouter un partage NFS en tant que volume externe à l’aide d’une commande, par
exemple :

PERSISTENT_VOL=nfs/mnt/document:/aws_fsx_flexcache

3. Mettre à jour les variables Terraform.

a. Naviguez jusqu’au dossier aws_fsxn_variables.

b. Vérifiez que les deux fichiers suivants existent : terraform.tfvars et variables.tf.

c. Mettez à jour les valeurs dans terraform.tfvars selon les besoins de votre environnement.

Voir "Ressource Terraform : système_fichier_aws_fsx_ONTAP" pour plus d’informations.

Étape 6 : provisionner Amazon FSx for NetApp ONTAP et FlexCache

Vous pouvez provisionner Amazon FSx for NetApp ONTAP et FlexCache.

Étapes

1. Accédez à la racine du dossier (AWS_FSXN_BTC) et exécutez la commande de provisionnement.

docker-compose -f docker-compose-provision.yml up

Cette commande crée deux conteneurs. Le premier conteneur déploie FSX pour ONTAP et le second
conteneur crée le peering de cluster, le peering de SVM, le volume de destination et FlexCache.

5

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

2. Surveiller le processus de provisionnement.

docker-compose -f docker-compose-provision.yml logs -f

Cette commande vous donne la sortie en temps réel, mais a été configurée pour capturer les journaux via
le fichier deployment.log. Vous pouvez modifier le nom de ces fichiers journaux en modifiant le fichier
et en .env mettant à jour les variables DEPLOYMENT_LOGS.

Étape 7 : Détruire Amazon FSx for NetApp ONTAP et FlexCache

Vous pouvez éventuellement supprimer et retirer Amazon FSx for NetApp ONTAP et FlexCache.

1. Définissez la variable flexcache_operation du terraform.tfvars fichier sur « détruire ».

2. Naviguez jusqu’au dossier racine (AWS_FSXN_BTC) et exécutez la commande suivante.

docker-compose -f docker-compose-destroy.yml up

Cette commande crée deux conteneurs. Le premier conteneur supprime FlexCache et le second
conteneur supprime FSX pour ONTAP.

3. Surveiller le processus de provisionnement.

docker-compose -f docker-compose-destroy.yml logs -f

Amazon FSx for NetApp ONTAP - Reprise après sinistre

Vous pouvez utiliser cette solution d’automatisation pour effectuer une sauvegarde de
reprise après sinistre d’un système source à l’aide d’ Amazon FSx for NetApp ONTAP .

La gestion Amazon FSx for NetApp ONTAP est également appelée FSx pour ONTAP.

À propos de cette solution

À un niveau élevé, le code d’automatisation fourni avec cette solution effectue les actions suivantes :

• Provisionnez un système de fichiers FSX pour ONTAP de destination

• Provisionnement des SVM (Storage Virtual machines) pour le système de fichiers

• Création d’une relation de peering de cluster entre les systèmes source et destination

• Création d’une relation de peering de SVM entre le système source et le système de destination pour
SnapMirror

• Créer des volumes de destination

• Création d’une relation SnapMirror entre les volumes source et de destination

• Lancez le transfert SnapMirror entre les volumes source et de destination

6

L’automatisation est basée sur Docker et Docker compose qui doivent être installés sur la machine virtuelle
Linux comme décrit ci-dessous.

Avant de commencer

Pour terminer le provisionnement et la configuration, vous devez disposer des éléments suivants :

• Vous devez télécharger le "Amazon FSx for NetApp ONTAP - Reprise après sinistre" solution
d’automatisation via l’interface utilisateur Web de la NetApp Console . La solution est conditionnée comme
suit : FSxN_DR.zip. Ce fichier zip contient AWS_FSxN_Bck_Prov.zip fichier que vous utiliserez pour
déployer la solution décrite dans ce document.

• Connectivité réseau entre les systèmes source et de destination.

• Une VM Linux présentant les caractéristiques suivantes :

◦ Distribution Linux basée sur Debian

◦ Déployé sur le même sous-ensemble VPC utilisé pour le provisionnement FSX pour ONTAP

• D’un compte AWS.

Étape 1 : installer et configurer Docker

Installez et configurez Docker sur une machine virtuelle Linux basée sur Debian.

Étapes

1. Préparez l’environnement.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent softwareproperties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

2. Installez Docker et vérifiez l’installation.

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker --version

3. Ajoutez le groupe Linux requis avec un utilisateur associé.

Vérifiez d’abord si le groupe docker existe dans votre système Linux. S’il n’existe pas, créez le groupe et
ajoutez l’utilisateur. Par défaut, l’utilisateur de shell actuel est ajouté au groupe.

sudo groupadd docker

sudo usermod -aG docker $(whoami)

7

https://console.netapp.com/automationHub

4. Activez les nouvelles définitions de groupe et d’utilisateur

Si vous avez créé un nouveau groupe avec un utilisateur, vous devez activer les définitions. Pour ce faire,
vous pouvez vous déconnecter de Linux puis vous reconnecter. Ou vous pouvez exécuter la commande
suivante.

newgrp docker

Étape 2 : installez Docker compose

Installez Docker compose sur une machine virtuelle Linux basée sur Debian.

Étapes

1. Installez Docker compose.

sudo curl -L

"https://github.com/docker/compose/releases/latest/download/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Vérifiez que l’installation a réussi.

docker-compose --version

Étape 3 : préparez l’image Docker

Vous devez extraire et charger l’image Docker fournie avec la solution d’automatisation.

Étapes

1. Copiez le fichier de solution AWS_FSxN_Bck_Prov.zip sur la machine virtuelle sur laquelle le code
d’automatisation sera exécuté.

scp -i ~/<private-key.pem> -r AWS_FSxN_Bck_Prov.zip

user@<IP_ADDRESS_OF_VM>

Le paramètre d’entrée private-key.pem correspond à votre fichier de clé privée utilisé pour
l’authentification des serveurs virtuels AWS (instance EC2).

2. Accédez au dossier approprié avec le fichier de solution et décompressez le fichier.

unzip AWS_FSxN_Bck_Prov.zip

3. Accédez au nouveau dossier AWS_FSxN_Bck_Prov créé avec l’opération de décompression et

8

répertoriez les fichiers. Vous devriez voir le fichier aws_fsxn_bck_image_latest.tar.gz.

ls -la

4. Chargez le fichier image Docker. Le chargement doit normalement se terminer en quelques secondes.

docker load -i aws_fsxn_bck_image_latest.tar.gz

5. Vérifiez que l’image Docker est chargée.

docker images

Vous devriez voir l’image Docker aws_fsxn_bck_image avec la balise latest.

 REPOSITORY TAG IMAGE ID CREATED SIZE

aws_fsxn_bck_image latest da87d4974306 2 weeks ago 1.19GB

Étape 4 : créez un fichier d’environnement pour les identifiants AWS

Vous devez créer un fichier de variables locales pour l’authentification à l’aide de la clé d’accès et de la clé
secrète. Ajoutez ensuite le fichier au .env fichier.

Étapes

1. Créez le awsauth.env fichier à l’emplacement suivant :

path/to/env-file/awsauth.env

2. Ajoutez le contenu suivant au fichier :

access_key=<>

secret_key=<>

Le format doit doit être exactement comme indiqué ci-dessus sans espaces entre key et value.

3. Ajoutez le chemin d’accès absolu au fichier à .env l’aide de la AWS_CREDS variable. Par exemple :

AWS_CREDS=path/to/env-file/awsauth.env

Étape 5 : créer un volume externe

Vous avez besoin d’un volume externe pour vous assurer que les fichiers d’état Terraform et les autres fichiers
importants sont persistants. Ces fichiers doivent être disponibles pour Terraform afin d’exécuter le workflow et
les déploiements.

9

Étapes

1. Créez un volume externe en dehors de Docker compose.

Assurez-vous de mettre à jour le nom du volume (dernier paramètre) à la valeur appropriée avant
d’exécuter la commande.

docker volume create aws_fsxn_volume

2. Ajoutez le chemin d’accès au volume externe au fichier d’environnement à .env l’aide de la commande :

PERSISTENT_VOL=path/to/external/volume:/volume_name

N’oubliez pas de conserver le contenu du fichier existant et le formatage des deux points. Par exemple :

PERSISTENT_VOL=aws_fsxn_volume:/aws_fsxn_bck

Vous pouvez à la place ajouter un partage NFS en tant que volume externe à l’aide d’une commande, par
exemple :

PERSISTENT_VOL=nfs/mnt/document:/aws_fsx_bck

3. Mettre à jour les variables Terraform.

a. Naviguez jusqu’au dossier aws_fsxn_variables.

b. Vérifiez que les deux fichiers suivants existent : terraform.tfvars et variables.tf.

c. Mettez à jour les valeurs dans terraform.tfvars selon les besoins de votre environnement.

Voir "Ressource Terraform : système_fichier_aws_fsx_ONTAP" pour plus d’informations.

Étape 6 : déployer la solution de sauvegarde

Vous pouvez déployer et provisionner la solution de sauvegarde de reprise sur incident.

Étapes

1. Naviguez jusqu’au dossier racine (AWS_FSxN_BCK_Prov) et exécutez la commande de provisionnement.

docker-compose up -d

Cette commande crée trois conteneurs. Le premier conteneur déploie FSX pour ONTAP. Le second
conteneur crée le peering de cluster, le peering de SVM et le volume de destination. Le troisième
conteneur crée la relation SnapMirror et lance le transfert SnapMirror.

2. Surveiller le processus de provisionnement.

docker-compose logs -f

10

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/fsx_ontap_file_system

Cette commande vous donne la sortie en temps réel, mais a été configurée pour capturer les journaux via
le fichier deployment.log. Vous pouvez modifier le nom de ces fichiers journaux en modifiant le fichier
et en .env mettant à jour les variables DEPLOYMENT_LOGS.

Azure NetApp Files

Installez Oracle à l’aide de Azure NetApp Files

Vous pouvez utiliser cette solution d’automatisation pour provisionner les volumes Azure
NetApp Files et installer Oracle sur une machine virtuelle disponible. Oracle utilise
ensuite les volumes pour le stockage des données.

À propos de cette solution

À un niveau élevé, le code d’automatisation fourni avec cette solution effectue les actions suivantes :

• Configuration d’un compte NetApp sur Azure

• Configurez un pool de capacité de stockage sur Azure

• Provisionnez les volumes Azure NetApp Files en fonction de la définition

• Créer les points de montage

• Montez les volumes Azure NetApp Files sur les points de montage

• Installez Oracle sur le serveur Linux

• Créez les auditeurs et la base de données

• Créer les bases de données enfichables (PDB)

• Démarrez l’écouteur et l’instance Oracle

• Installez et configurez azacsnap l’utilitaire pour prendre un instantané

Avant de commencer

Vous devez disposer des éléments suivants pour terminer l’installation :

• Vous devez télécharger le "Oracle avec Azure NetApp Files" solution d’automatisation via l’interface
utilisateur Web de la NetApp Console . La solution est conditionnée sous forme de fichier
na_oracle19c_deploy-master.zip.

• Une VM Linux présentant les caractéristiques suivantes :

◦ RHEL 8 (Standard_D8s_v3-RHEL-8)

◦ Déployé sur le même réseau virtuel Azure que celui utilisé pour le provisionnement Azure NetApp Files

• Un compte Azure

La solution d’automatisation est fournie sous forme d’image et exécutée à l’aide de Docker et Docker
compose. Vous devez installer les deux sur la machine virtuelle Linux comme décrit ci-dessous.

Vous devez également enregistrer la machine virtuelle avec RedHat à l’aide de la commande sudo
subscription-manager register. La commande vous invite à saisir les informations d’identification de
votre compte. Si nécessaire, vous pouvez créer un compte chez https://developers.redhat.com/.

11

https://console.netapp.com/automationHub

Étape 1 : installer et configurer Docker

Installez et configurez Docker sur une machine virtuelle RHEL 8 Linux.

Étapes

1. Installez le logiciel Docker à l’aide des commandes suivantes.

dnf config-manager --add

-repo=https://download.docker.com/linux/centos/docker-ce.repo

dnf install docker-ce --nobest -y

2. Démarrez Docker et affichez la version pour confirmer que l’installation a réussi.

systemctl start docker

systemctl enable docker

docker --version

3. Ajoutez le groupe Linux requis avec un utilisateur associé.

Vérifiez d’abord si le groupe docker existe dans votre système Linux. Si ce n’est pas le cas, créez le
groupe et ajoutez l’utilisateur. Par défaut, l’utilisateur de shell actuel est ajouté au groupe.

sudo groupadd docker

sudo usermod -aG docker $USER

4. Activez les nouvelles définitions de groupe et d’utilisateur

Si vous avez créé un nouveau groupe avec un utilisateur, vous devez activer les définitions. Pour ce faire,
vous pouvez vous déconnecter de Linux puis vous reconnecter. Ou vous pouvez exécuter la commande
suivante.

newgrp docker

Étape 2 : installez Docker compose et les utilitaires NFS

Installez et configurez Docker compose avec le package des utilitaires NFS.

Étapes

1. Installez Docker compose et affichez la version pour confirmer que l’installation a réussi.

12

dnf install curl -y

curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

docker-compose --version

2. Installez le package des utilitaires NFS.

sudo yum install nfs-utils

Étape 3 : téléchargez les fichiers d’installation d’Oracle

Téléchargez les fichiers d’installation et de correctifs Oracle requis, ainsi que azacsnap l’utilitaire.

Étapes

1. Connectez-vous à votre compte Oracle si nécessaire.

2. Téléchargez les fichiers suivants.

Fichier Description

LINUX.X64_193000_db_home.zip 19.3 outil de pose de base

p31281355_190000_Linux-x86-64.zip Patch 19.8 RU

p6880880_190000_Linux-x86-64.zip version 12.2.0.1.23 d’opatch

azacsnap_installer_v5.0.run programme d’installation
d’azacsnap

3. Placez tous les fichiers d’installation dans le dossier /tmp/archive.

4. Assurez-vous que tous les utilisateurs du serveur de base de données disposent d’un accès complet
(lecture, écriture, exécution) au dossier /tmp/archive.

Étape 4 : préparez l’image Docker

Vous devez extraire et charger l’image Docker fournie avec la solution d’automatisation.

Étapes

1. Copiez le fichier de solution na_oracle19c_deploy-master.zip sur la machine virtuelle sur laquelle
le code d’automatisation sera exécuté.

scp -i ~/<private-key.pem> -r na_oracle19c_deploy-master.zip

user@<IP_ADDRESS_OF_VM>

Le paramètre d’entrée private-key.pem correspond à votre fichier de clé privée utilisé pour
l’authentification d’une machine virtuelle Azure.

13

2. Accédez au dossier approprié avec le fichier de solution et décompressez le fichier.

unzip na_oracle19c_deploy-master.zip

3. Accédez au nouveau dossier na_oracle19c_deploy-master créé avec l’opération de décompression
et répertoriez les fichiers. Vous devriez voir le fichier ora_anf_bck_image.tar.

ls -lt

4. Chargez le fichier image Docker. Le chargement doit normalement se terminer en quelques secondes.

docker load -i ora_anf_bck_image.tar

5. Vérifiez que l’image Docker est chargée.

docker images

Vous devriez voir l’image Docker ora_anf_bck_image avec la balise latest.

 REPOSITORY TAG IMAGE ID CREATED SIZE

ora_anf_bck_image latest ay98y7853769 1 week ago 2.58GB

Étape 5 : créer un volume externe

Vous avez besoin d’un volume externe pour vous assurer que les fichiers d’état Terraform et les autres fichiers
importants sont persistants. Ces fichiers doivent être disponibles pour Terraform afin d’exécuter le workflow et
les déploiements.

Étapes

1. Créez un volume externe en dehors de Docker compose.

Assurez-vous de mettre à jour le nom du volume avant d’exécuter la commande.

docker volume create <VOLUME_NAME>

2. Ajoutez le chemin d’accès au volume externe au fichier d’environnement à .env l’aide de la commande :

PERSISTENT_VOL=path/to/external/volume:/ora_anf_prov.

N’oubliez pas de conserver le contenu du fichier existant et le formatage des deux points. Par exemple :

14

PERSISTENT_VOL= ora_anf _volume:/ora_anf_prov

3. Mettre à jour les variables Terraform.

a. Naviguez jusqu’au dossier ora_anf_variables.

b. Vérifiez que les deux fichiers suivants existent : terraform.tfvars et variables.tf.

c. Mettez à jour les valeurs dans terraform.tfvars selon les besoins de votre environnement.

Étape 6 : installez Oracle

Vous pouvez désormais provisionner et installer Oracle.

Étapes

1. Installez Oracle à l’aide de la séquence de commandes suivante.

docker-compose up terraform_ora_anf

bash /ora_anf_variables/setup.sh

docker-compose up linux_config

bash /ora_anf_variables/permissions.sh

docker-compose up oracle_install

2. Rechargez vos variables Bash et confirmez en affichant la valeur de ORACLE_HOME.

a. cd /home/oracle

b. source .bash_profile

c. echo $ORACLE_HOME

3. Vous devriez pouvoir vous connecter à Oracle.

sudo su oracle

Étape 7 : validation de l’installation d’Oracle

Vous devez confirmer que l’installation d’Oracle a réussi.

Étapes

1. Connectez-vous au serveur Oracle Linux et affichez la liste des processus Oracle. Cela confirme que
l’installation est terminée comme prévu et que la base de données Oracle est en cours d’exécution.

ps -ef | grep ora

2. Connectez-vous à la base de données pour examiner la configuration de la base de données et confirmer
que les PDB ont été créés correctement.

15

sqlplus / as sysdba

Vous devez voir les résultats similaires à ce qui suit :

SQL*Plus: Release 19.0.0.0.0 - Production on Thu May 6 12:52:51 2021

Version 19.8.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production

Version 19.8.0.0.0

3. Exécutez quelques commandes SQL simples pour confirmer que la base de données est disponible.

select name, log_mode from v$database;

show pdbs.

Étape 8 : installez l’utilitaire azacsnap et effectuez une sauvegarde de snapshot

Vous devez installer et exécuter azacsnap l’utilitaire pour effectuer une sauvegarde d’instantané.

Étapes

1. Installez le conteneur.

docker-compose up azacsnap_install

2. Passez au compte d’utilisateur de snapshot.

su - azacsnap

execute /tmp/archive/ora_wallet.sh

3. Configurer un fichier de détails de sauvegarde de stockage. Cela va créer le azacsnap.json fichier de
configuration.

cd /home/azacsnap/bin/

azacsnap -c configure –-configuration new

4. Effectuer une sauvegarde de snapshot.

16

azacsnap -c backup –-other data --prefix ora_test --retention=1

Étape 9 : migrer éventuellement un PDB sur site vers le cloud

Vous pouvez éventuellement migrer le boîtier de distribution électrique sur site vers le cloud.

Étapes

1. Définissez les variables dans les tfvars fichiers en fonction des besoins de votre environnement.

2. Migrer le PDB.

docker-compose -f docker-compose-relocate.yml up

Cloud Volumes ONTAP pour AWS

Cloud Volumes ONTAP pour AWS : en rafale vers le cloud

Cet article traite de la solution d’automatisation NetApp Cloud Volumes ONTAP pour
AWS, disponible pour les clients NetApp depuis le hub d’automatisation de la NetApp
Console .

La solution d’automatisation Cloud Volumes ONTAP pour AWS automatise le déploiement conteneurisé
d’Cloud Volumes ONTAP pour AWS à l’aide de Terraform, ce qui vous permet de déployer rapidement Cloud
Volumes ONTAP pour AWS sans aucune intervention manuelle.

Avant de commencer

• Vous devez télécharger le "Cloud Volumes ONTAP AWS : en rafale vers le cloud" Solution
d’automatisation via l’interface utilisateur Web de la console. La solution est conditionnée comme suit :
cvo_aws_flexcache.zip.

• Vous devez installer une machine virtuelle Linux sur le même réseau que Cloud Volumes ONTAP.

• Après avoir installé la machine virtuelle Linux, vous devez suivre les étapes de cette solution pour installer
les dépendances requises.

Étape 1 : installez Docker et Docker compose

Installez Docker

Les étapes suivantes utilisent le logiciel de distribution Ubuntu 20.04 Debian Linux comme exemple. Les
commandes que vous exécutez dépendent du logiciel de distribution Linux que vous utilisez. Reportez-vous à
la documentation spécifique du logiciel de distribution Linux pour votre configuration.

Étapes

1. Installez Docker en exécutant les commandes suivantes sudo :

17

https://console.netapp.com/automationHub

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent

software-properties-common curl -fsSL

https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Vérifiez l’installation :

docker –version

3. Vérifiez qu’un groupe nommé « docker » a été créé sur votre système Linux. Si nécessaire, créez le
groupe :

sudo groupadd docker

4. Ajoutez l’utilisateur qui doit accéder à Docker au groupe :

sudo usermod -aG docker $(whoami)

5. Vos modifications sont appliquées une fois que vous vous êtes déconnecter et que vous vous êtes de
nouveau connecté au terminal. Vous pouvez également appliquer les modifications immédiatement :

newgrp docker

Installez Docker compose

Étapes

1. Installez Docker compose en exécutant les commandes suivantes sudo :

sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Vérifiez l’installation :

18

docker-compose –version

Étape 2 : préparez l’image Docker

Étapes

1. Copiez le cvo_aws_flexcache.zip dossier sur la machine virtuelle Linux que vous souhaitez utiliser
pour déployer Cloud Volumes ONTAP :

scp -i ~/<private-key>.pem -r cvo_aws_flexcache.zip

<awsuser>@<IP_ADDRESS_OF_VM>:<LOCATION_TO_BE_COPIED>

◦ private-key.pem est votre fichier de clé privée pour la connexion sans mot de passe.

◦ awsuser Est le nom d’utilisateur de la machine virtuelle.

◦ IP_ADDRESS_OF_VM Est l’adresse IP de la machine virtuelle.

◦ LOCATION_TO_BE_COPIED est l’emplacement où le dossier sera copié.

2. Extraire le cvo_aws_flexcache.zip dossier. Vous pouvez extraire le dossier dans le répertoire actuel
ou dans un emplacement personnalisé.

Pour extraire le dossier dans le répertoire actuel, exécutez :

unzip cvo_aws_flexcache.zip

Pour extraire le dossier dans un emplacement personnalisé, exécutez :

unzip cvo_aws_flexcache.zip -d ~/<your_folder_name>

3. Une fois le contenu extrait, accédez au CVO_Aws_Deployment dossier et exécutez la commande
suivante pour afficher les fichiers :

 ls -la

Vous devriez voir une liste de fichiers, similaire à l’exemple suivant :

19

total 32

 drwxr-xr-x 8 user1 staff 256 Mar 23 12:26 .

 drwxr-xr-x 6 user1 staff 192 Mar 22 08:04 ..

 -rw-r--r-- 1 user1 staff 324 Apr 12 21:37 .env

 -rw-r--r-- 1 user1 staff 1449 Mar 23 13:19 Dockerfile

 drwxr-xr-x 15 user1 staff 480 Mar 23 13:19 cvo_Aws_source_code

 drwxr-xr-x 4 user1 staff 128 Apr 27 13:43 cvo_Aws_variables

 -rw-r--r-- 1 user1 staff 996 Mar 24 04:06 docker-compose-

deploy.yml

 -rw-r--r-- 1 user1 staff 1041 Mar 24 04:06 docker-compose-

destroy.yml

4. Localisez le cvo_aws_flexcache_ubuntu_image.tar fichier. Ce document contient l’image Docker
requise pour déployer Cloud Volumes ONTAP pour AWS.

5. Décompressez le fichier :

docker load -i cvo_aws_flexcache_ubuntu_image.tar

6. Attendez quelques minutes que l’image Docker se charge, puis vérifiez que l’image Docker a bien été
chargée :

docker images

Vous devez voir une image Docker nommée cvo_aws_flexcache_ubuntu_image avec la latest
balise, comme dans l’exemple suivant :

REPOSITORY TAG IMAGE ID CREATED

SIZE

 cvo_aws_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks ago

1.14GB

Vous pouvez modifier le nom de l’image Docker si nécessaire. Si vous modifiez le nom de
l’image Docker, veillez à mettre à jour le nom de l’image Docker dans les docker-
compose-deploy fichiers et docker-compose-destroy.

Étape 3 : création de fichiers de variables d’environnement

À ce stade, vous devez créer deux fichiers de variables d’environnement. Un fichier est destiné à
l’authentification des API AWS Resource Manager à l’aide des clés d’accès et secrètes AWS. Le deuxième
fichier permet de définir des variables d’environnement pour permettre aux modules de la console Terraform
de localiser et d’authentifier les API AWS.

Étapes

20

1. Créez le awsauth.env fichier à l’emplacement suivant :

path/to/env-file/awsauth.env

a. Ajoutez le contenu suivant au awsauth.env fichier :

access_key=<> secret_key=<>

Le format doit doit être exactement comme indiqué ci-dessus.

2. Ajoutez le chemin d’accès absolu au .env fichier.

Entrez le chemin absolu du awsauth.env fichier d’environnement correspondant à la variable
d’environnement AWS_CREDS.

AWS_CREDS=path/to/env-file/awsauth.env

3. Accédez au cvo_aws_variable dossier et mettez à jour la clé d’accès et la clé secrète dans le fichier
d’informations d’identification.

Ajoutez le contenu suivant au fichier :

aws_access_key_id=<> aws_secret_access_key=<>

Le format doit doit être exactement comme indiqué ci-dessus.

Étape 4 : Inscrivez-vous aux services intelligents NetApp

Inscrivez-vous aux services intelligents NetApp via votre fournisseur de cloud pour payer à l’heure (PAYGO) ou
via un contrat annuel. Les services intelligents NetApp incluent NetApp Backup and Recovery, Cloud Volumes
ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience et NetApp Disaster Recovery. La classification
des données NetApp est incluse dans votre abonnement sans frais supplémentaires.

Étapes

1. Depuis le portail Amazon Web Services (AWS), accédez à SaaS et sélectionnez *S’abonner aux services
intelligents NetApp *.

Vous pouvez utiliser le même groupe de ressources que Cloud Volumes ONTAP ou un autre groupe de
ressources.

2. Configurez le portail de la console NetApp pour importer l’abonnement SaaS dans la console.

Vous pouvez le configurer directement à partir du portail AWS.

Vous êtes redirigé vers le portail de la console pour confirmer la configuration.

3. Confirmez la configuration dans le portail de la console en sélectionnant Enregistrer.

Étape 5 : créer un volume externe

Vous devez créer un volume externe pour conserver les fichiers d’état Terraform et d’autres fichiers importants
persistants. Vous devez vous assurer que les fichiers sont disponibles pour Terraform pour exécuter le
workflow et les déploiements.

21

Étapes

1. Créer un volume externe en dehors de Docker compose :

docker volume create <volume_name>

Exemple :

docker volume create cvo_aws_volume_dst

2. Utilisez l’une des options suivantes :

a. Ajoutez un chemin de volume externe au .env fichier d’environnement.

Vous devez suivre le format exact indiqué ci-dessous.

Format :

PERSISTENT_VOL=path/to/external/volume:/cvo_aws

Exemple :
PERSISTENT_VOL=cvo_aws_volume_dst:/cvo_aws

b. Ajoutez des partages NFS comme volume externe.

Assurez-vous que le conteneur Docker peut communiquer avec les partages NFS et que les
autorisations appropriées, telles que lecture/écriture, sont configurées.

i. Ajoutez le chemin des partages NFS comme chemin d’accès au volume externe dans le fichier
Docker compose, comme illustré ci-dessous : format :

PERSISTENT_VOL=path/to/nfs/volume:/cvo_aws

Exemple :
PERSISTENT_VOL=nfs/mnt/document:/cvo_aws

3. Accédez au cvo_aws_variables dossier.

Le fichier de variable suivant doit apparaître dans le dossier :

◦ terraform.tfvars

◦ variables.tf

4. Modifiez les valeurs à l’intérieur du terraform.tfvars fichier en fonction de vos besoins.

Vous devez lire la documentation spécifique lors de la modification de l’une des valeurs de variable du
terraform.tfvars fichier. Ces valeurs peuvent varier en fonction de la région, des zones de
disponibilité et d’autres facteurs pris en charge par Cloud Volumes ONTAP pour AWS. Notamment les
licences, la taille des disques et la taille des machines virtuelles pour les nœuds uniques et les paires
haute disponibilité.

22

Toutes les variables de support pour l’agent de console et les modules Cloud Volumes ONTAP Terraform
sont déjà définies dans le variables.tf déposer. Vous devez faire référence aux noms de variables
dans le variables.tf fichier avant de l’ajouter au terraform.tfvars déposer.

5. Selon vos besoins, vous pouvez activer ou désactiver FlexCache et FlexClone en définissant les options
suivantes sur true ou false.

Les exemples suivants activent FlexCache et FlexClone :

◦ is_flexcache_required = true

◦ is_flexclone_required = true

Étape 6 : déploiement de Cloud Volumes ONTAP pour AWS

Procédez comme suit pour déployer Cloud Volumes ONTAP pour AWS.

Étapes

1. Depuis le dossier racine, exécutez la commande suivante pour déclencher le déploiement :

docker-compose -f docker-compose-deploy.yml up -d

Deux conteneurs sont déclenchés, le premier conteneur déploie Cloud Volumes ONTAP et le second
envoie des données de télémétrie à AutoSupport.

Le deuxième conteneur attend jusqu’à ce que le premier conteneur termine toutes les étapes avec succès.

2. Surveiller la progression du processus de déploiement à l’aide des fichiers journaux :

docker-compose -f docker-compose-deploy.yml logs -f

Cette commande fournit des résultats en temps réel et capture les données dans les fichiers journaux
suivants :
deployment.log

telemetry_asup.log

Vous pouvez modifier le nom de ces fichiers journaux en modifiant le .env fichier à l’aide des variables
d’environnement suivantes :

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

Les exemples suivants montrent comment modifier les noms des fichiers journaux :

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

23

Une fois que vous avez terminé

Vous pouvez utiliser les étapes suivantes pour supprimer l’environnement temporaire et nettoyer les éléments
créés pendant le processus de déploiement.

Étapes

1. Si vous avez déployé FlexCache, définissez l’option suivante dans le terraform.tfvars fichier de
variables, cela nettoie les volumes FlexCache et supprime l’environnement temporaire créé
précédemment.

flexcache_operation = "destroy"

Les options possibles sont deploy et destroy.

2. Si vous avez déployé FlexClone, définissez l’option suivante dans le terraform.tfvars fichier de
variables, cela nettoie les volumes FlexClone et supprime l’environnement temporaire créé précédemment.

flexclone_operation = "destroy"

Les options possibles sont deploy et destroy.

Cloud Volumes ONTAP pour Azure

Cloud Volumes ONTAP pour Azure : en rafale vers le cloud

Cet article traite de la solution d’automatisation NetApp Cloud Volumes ONTAP pour
Azure, disponible pour les clients NetApp depuis le hub d’automatisation de la NetApp
Console .

La solution d’automatisation Cloud Volumes ONTAP pour Azure automatise le déploiement conteneurisé
d’Cloud Volumes ONTAP pour Azure à l’aide de Terraform, ce qui vous permet de déployer rapidement Cloud
Volumes ONTAP pour Azure sans aucune intervention manuelle.

Avant de commencer

• Vous devez télécharger le "Cloud Volumes ONTAP Azure : en rafale vers le cloud" Solution
d’automatisation via l’interface utilisateur Web de la console. La solution est conditionnée comme suit :
CVO-Azure-Burst-To-Cloud.zip.

• Vous devez installer une machine virtuelle Linux sur le même réseau que Cloud Volumes ONTAP.

• Après avoir installé la machine virtuelle Linux, vous devez suivre les étapes de cette solution pour installer
les dépendances requises.

Étape 1 : installez Docker et Docker compose

Installez Docker

Les étapes suivantes utilisent le logiciel de distribution Ubuntu 20.04 Debian Linux comme exemple. Les
commandes que vous exécutez dépendent du logiciel de distribution Linux que vous utilisez. Reportez-vous à
la documentation spécifique du logiciel de distribution Linux pour votre configuration.

Étapes

24

https://console.netapp.com/automationHub

1. Installez Docker en exécutant les commandes suivantes sudo :

sudo apt-get update

sudo apt-get install apt-transport-https cacertificates curl gnupg-agent

software-properties-common curl -fsSL

https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

sudo add-apt-repository “deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable”

sudo apt-get update

sudo apt-get install dockerce docker-ce-cli containerd.io

2. Vérifiez l’installation :

docker –version

3. Vérifiez qu’un groupe nommé « docker » a été créé sur votre système Linux. Si nécessaire, créez le
groupe :

sudo groupadd docker

4. Ajoutez l’utilisateur qui doit accéder à Docker au groupe :

sudo usermod -aG docker $(whoami)

5. Vos modifications sont appliquées une fois que vous vous êtes déconnecter et que vous vous êtes de
nouveau connecté au terminal. Vous pouvez également appliquer les modifications immédiatement :

newgrp docker

Installez Docker compose

Étapes

1. Installez Docker compose en exécutant les commandes suivantes sudo :

sudo curl -L

“https://github.com/docker/compose/releases/download/1.29.2/dockercompos

e-(ᵆ�ᵅ�ᵄ�ᵅ�ᵅ� − ᵆ�)−(uname -m)” -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Vérifiez l’installation :

25

docker-compose –version

Étape 2 : préparez l’image Docker

Étapes

1. Copiez le CVO-Azure-Burst-To-Cloud.zip dossier sur la machine virtuelle Linux que vous souhaitez
utiliser pour déployer Cloud Volumes ONTAP :

scp -i ~/<private-key>.pem -r CVO-Azure-Burst-To-Cloud.zip

<azureuser>@<IP_ADDRESS_OF_VM>:<LOCATION_TO_BE_COPIED>

◦ private-key.pem est votre fichier de clé privée pour la connexion sans mot de passe.

◦ azureuser Est le nom d’utilisateur de la machine virtuelle.

◦ IP_ADDRESS_OF_VM Est l’adresse IP de la machine virtuelle.

◦ LOCATION_TO_BE_COPIED est l’emplacement où le dossier sera copié.

2. Extraire le CVO-Azure-Burst-To-Cloud.zip dossier. Vous pouvez extraire le dossier dans le
répertoire actuel ou dans un emplacement personnalisé.

Pour extraire le dossier dans le répertoire actuel, exécutez :

unzip CVO-Azure-Burst-To-Cloud.zip

Pour extraire le dossier dans un emplacement personnalisé, exécutez :

unzip CVO-Azure-Burst-To-Cloud.zip -d ~/<your_folder_name>

3. Une fois le contenu extrait, accédez au CVO_Azure_Deployment dossier et exécutez la commande
suivante pour afficher les fichiers :

 ls -la

Vous devriez voir une liste de fichiers, similaire à l’exemple suivant :

26

drwxr-xr-x@ 11 user1 staff 352 May 5 13:56 .

drwxr-xr-x@ 5 user1 staff 160 May 5 14:24 ..

-rw-r--r--@ 1 user1 staff 324 May 5 13:18 .env

-rw-r--r--@ 1 user1 staff 1449 May 5 13:18 Dockerfile

-rw-r--r--@ 1 user1 staff 35149 May 5 13:18 LICENSE

-rw-r--r--@ 1 user1 staff 13356 May 5 14:26 README.md

-rw-r--r-- 1 user1 staff 354318151 May 5 13:51

cvo_azure_flexcache_ubuntu_image_latest

drwxr-xr-x@ 4 user1 staff 128 May 5 13:18 cvo_azure_variables

-rw-r--r--@ 1 user1 staff 996 May 5 13:18 docker-compose-deploy.yml

-rw-r--r--@ 1 user1 staff 1041 May 5 13:18 docker-compose-destroy.yml

-rw-r--r--@ 1 user1 staff 4771 May 5 13:18 sp_role.json

4. Localisez le cvo_azure_flexcache_ubuntu_image_latest.tar.gz fichier. Ce document contient
l’image Docker requise pour déployer Cloud Volumes ONTAP pour Azure.

5. Décompressez le fichier :

docker load -i cvo_azure_flexcache_ubuntu_image_latest.tar.gz

6. Attendez quelques minutes que l’image Docker se charge, puis vérifiez que l’image Docker a bien été
chargée :

docker images

Vous devez voir une image Docker nommée cvo_azure_flexcache_ubuntu_image_latest avec la
latest balise, comme dans l’exemple suivant :

REPOSITORY TAG IMAGE ID CREATED SIZE

cvo_azure_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks ago 1.14GB

Étape 3 : création de fichiers de variables d’environnement

À ce stade, vous devez créer deux fichiers de variables d’environnement. Un fichier est destiné à
l’authentification des API Azure Resource Manager à l’aide des informations d’identification du principal de
service. Le deuxième fichier permet de définir des variables d’environnement pour permettre aux modules de
la console Terraform de localiser et d’authentifier les API Azure.

Étapes

1. Créez une entité de service.

Avant de pouvoir créer les fichiers de variables d’environnement, vous devez créer une entité de service
en suivant les étapes de la section "Créez une application Azure Active Directory et une entité de service
pouvant accéder aux ressources".

27

https://learn.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://learn.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

2. Attribuez le rôle Contributor à l’entité de service nouvellement créée.

3. Créez un rôle personnalisé.

a. Recherchez le sp_role.json fichier et vérifiez les autorisations requises sous les actions
répertoriées.

b. Insérez ces autorisations et associez le rôle personnalisé au principal de service nouvellement créé.

4. Naviguez jusqu’à certificats et secrets et sélectionnez Nouveau secret client pour créer le secret client.

Lorsque vous créez le secret client, vous devez enregistrer les détails de la colonne valeur car vous ne
pourrez plus voir cette valeur. Vous devez également enregistrer les informations suivantes :

◦ ID client

◦ ID d’abonnement

◦ ID locataire

Vous aurez besoin de ces informations pour créer les variables d’environnement. Vous trouverez des
informations sur l’ID client et l’ID locataire dans la section Présentation de l’interface utilisateur
principale du service.

5. Créez les fichiers d’environnement.

a. Créez le azureauth.env fichier à l’emplacement suivant :

path/to/env-file/azureauth.env

i. Ajoutez le contenu suivant au fichier :

ClientID=<> clientSecret=<> subscriptionId=<> tenantId=<>

Le format doit doit être exactement comme indiqué ci-dessus, sans espace entre la clé et la valeur.

b. Créez le credentials.env fichier à l’emplacement suivant :

path/to/env-file/credentials.env

i. Ajoutez le contenu suivant au fichier :

AZURE_TENANT_ID=<> AZURE_CLIENT_SECRET=<> AZURE_CLIENT_ID=<>
AZURE_SUBSCRIPTION_ID=<>

Le format doit doit être exactement comme indiqué ci-dessus, sans espace entre la clé et la valeur.

6. Ajoutez les chemins de fichier absolus au .env fichier.

Entrez le chemin absolu du azureauth.env fichier d’environnement dans le .env fichier correspondant à
la AZURE_RM_CREDS variable d’environnement.

AZURE_RM_CREDS=path/to/env-file/azureauth.env

Entrez le chemin absolu du credentials.env fichier d’environnement dans le .env fichier
correspondant à la BLUEXP_TF_AZURE_CREDS variable d’environnement.

28

BLUEXP_TF_AZURE_CREDS=path/to/env-file/credentials.env

Étape 4 : Inscrivez-vous aux services intelligents NetApp

Inscrivez-vous aux services intelligents NetApp via votre fournisseur de cloud pour payer à l’heure (PAYGO) ou
via un contrat annuel. Les services intelligents NetApp incluent NetApp Backup and Recovery, Cloud Volumes
ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience et NetApp Disaster Recovery. La classification
des données NetApp est incluse dans votre abonnement sans frais supplémentaires

Étapes

1. Depuis le portail Azure, accédez à SaaS et sélectionnez *S’abonner aux services intelligents NetApp *.

2. Sélectionnez le plan Cloud Manager (par Cap PYGO par heure, WORM et services de données).

Vous pouvez utiliser le même groupe de ressources que Cloud Volumes ONTAP ou un autre groupe de
ressources.

3. Configurez le portail de la console pour importer l’abonnement SaaS dans la console.

Vous pouvez le configurer directement à partir du portail Azure en accédant à Détails du produit et du
plan et en sélectionnant l’option configurer le compte maintenant.

Vous serez ensuite redirigé vers le portail de la console pour confirmer la configuration.

4. Confirmez la configuration dans le portail de la console en sélectionnant Enregistrer.

Étape 5 : créer un volume externe

Vous devez créer un volume externe pour conserver les fichiers d’état Terraform et d’autres fichiers importants
persistants. Vous devez vous assurer que les fichiers sont disponibles pour Terraform pour exécuter le
workflow et les déploiements.

Étapes

1. Créer un volume externe en dehors de Docker compose :

docker volume create « volume_name »

Exemple :

docker volume create cvo_azure_volume_dst

2. Utilisez l’une des options suivantes :

a. Ajoutez un chemin de volume externe au .env fichier d’environnement.

Vous devez suivre le format exact indiqué ci-dessous.

Format :

PERSISTENT_VOL=path/to/external/volume:/cvo_azure

29

Exemple :
PERSISTENT_VOL=cvo_azure_volume_dst:/cvo_azure

b. Ajoutez des partages NFS comme volume externe.

Assurez-vous que le conteneur Docker peut communiquer avec les partages NFS et que les
autorisations appropriées, telles que lecture/écriture, sont configurées.

i. Ajoutez le chemin des partages NFS comme chemin d’accès au volume externe dans le fichier
Docker compose, comme illustré ci-dessous : format :

PERSISTENT_VOL=path/to/nfs/volume:/cvo_azure

Exemple :
PERSISTENT_VOL=nfs/mnt/document:/cvo_azure

3. Accédez au cvo_azure_variables dossier.

Vous devriez voir les fichiers de variables suivants dans le dossier :

terraform.tfvars

variables.tf

4. Modifiez les valeurs à l’intérieur du terraform.tfvars fichier en fonction de vos besoins.

Vous devez lire la documentation spécifique lors de la modification de l’une des valeurs de variable du
terraform.tfvars fichier. Ces valeurs peuvent varier en fonction de la région, des zones de
disponibilité et d’autres facteurs pris en charge par Cloud Volumes ONTAP pour Azure. Notamment les
licences, la taille des disques et la taille des machines virtuelles pour les nœuds uniques et les paires
haute disponibilité.

Toutes les variables de support pour l’agent de console et les modules Cloud Volumes ONTAP Terraform
sont déjà définies dans le variables.tf déposer. Vous devez faire référence aux noms de variables
dans le variables.tf fichier avant de l’ajouter au terraform.tfvars déposer.

5. Selon vos besoins, vous pouvez activer ou désactiver FlexCache et FlexClone en définissant les options
suivantes sur true ou false.

Les exemples suivants activent FlexCache et FlexClone :

◦ is_flexcache_required = true

◦ is_flexclone_required = true

6. Si nécessaire, vous pouvez récupérer la valeur de la variable Terraform
az_service_principal_object_id à partir du service Azure Active Directory :

a. Accédez à applications d’entreprise –> toutes les applications et sélectionnez le nom du principal
de service que vous avez créé précédemment.

b. Copiez l’ID d’objet et insérez la valeur de la variable Terraform :

az_service_principal_object_id

30

Étape 6 : déploiement de Cloud Volumes ONTAP pour Azure

Procédez comme suit pour déployer Cloud Volumes ONTAP pour Azure.

Étapes

1. Depuis le dossier racine, exécutez la commande suivante pour déclencher le déploiement :

docker-compose up -d

Deux conteneurs sont déclenchés, le premier conteneur déploie Cloud Volumes ONTAP et le second
envoie des données de télémétrie à AutoSupport.

Le deuxième conteneur attend jusqu’à ce que le premier conteneur termine toutes les étapes avec succès.

2. Surveiller la progression du processus de déploiement à l’aide des fichiers journaux :

docker-compose logs -f

Cette commande fournit des résultats en temps réel et capture les données dans les fichiers journaux
suivants :

deployment.log

telemetry_asup.log

Vous pouvez modifier le nom de ces fichiers journaux en modifiant le .env fichier à l’aide des variables
d’environnement suivantes :

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

Les exemples suivants montrent comment modifier les noms des fichiers journaux :

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

Une fois que vous avez terminé

Vous pouvez utiliser les étapes suivantes pour supprimer l’environnement temporaire et nettoyer les éléments
créés pendant le processus de déploiement.

Étapes

1. Si vous avez déployé FlexCache, définissez l’option suivante dans le terraform.tfvars fichier, cela
nettoie les volumes FlexCache et supprime l’environnement temporaire créé précédemment.

flexcache_operation = "destroy"

Les options possibles sont deploy et destroy.

31

2. Si vous avez déployé FlexClone, définissez l’option suivante dans le terraform.tfvars fichier, cela
nettoie les volumes FlexClone et supprime l’environnement temporaire créé précédemment.

flexclone_operation = "destroy"

Les options possibles sont deploy et destroy.

Cloud Volumes ONTAP pour Google Cloud

Cloud Volumes ONTAP pour Google Cloud - en rafale vers le cloud

Cet article traite de la solution d’automatisation NetApp Cloud Volumes ONTAP pour
Google Cloud, disponible pour les clients NetApp depuis le hub d’automatisation de la
NetApp Console .

La solution d’automatisation Cloud Volumes ONTAP pour Google Cloud automatise le déploiement
conteneurisé d’Cloud Volumes ONTAP pour Google Cloud, ce qui vous permet de déployer rapidement Cloud
Volumes ONTAP pour Google Cloud sans aucune intervention manuelle.

Avant de commencer

• Vous devez télécharger le "Cloud Volumes ONTAP pour Google Cloud - en rafale vers le cloud" Solution
d’automatisation via l’interface utilisateur Web de la console. La solution est conditionnée comme suit :
cvo_gcp_flexcache.zip.

• Vous devez installer une machine virtuelle Linux sur le même réseau que Cloud Volumes ONTAP.

• Après avoir installé la machine virtuelle Linux, vous devez suivre les étapes de cette solution pour installer
les dépendances requises.

Étape 1 : installez Docker et Docker compose

Installez Docker

Les étapes suivantes utilisent le logiciel de distribution Ubuntu 20.04 Debian Linux comme exemple. Les
commandes que vous exécutez dépendent du logiciel de distribution Linux que vous utilisez. Reportez-vous à
la documentation spécifique du logiciel de distribution Linux pour votre configuration.

Étapes

1. Installez Docker en exécutant les commandes suivantes :

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-

agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

32

https://console.netapp.com/automationHub

2. Vérifiez l’installation :

docker –version

3. Vérifiez qu’un groupe nommé « docker » a été créé sur votre système Linux. Si nécessaire, créez le
groupe :

sudo groupadd docker

4. Ajoutez l’utilisateur qui doit accéder à Docker au groupe :

sudo usermod -aG docker $(whoami)

5. Vos modifications sont appliquées une fois que vous vous êtes déconnecter et que vous vous êtes de
nouveau connecté au terminal. Vous pouvez également appliquer les modifications immédiatement :

newgrp docker

Installez Docker compose

Étapes

1. Installez Docker compose en exécutant les commandes suivantes sudo :

sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

2. Vérifiez l’installation :

docker-compose –version

Étape 2 : préparez l’image Docker

Étapes

1. Copiez le cvo_gcp_flexcache.zip dossier sur la machine virtuelle Linux que vous souhaitez utiliser
pour déployer Cloud Volumes ONTAP :

33

scp -i ~/private-key.pem -r cvo_gcp_flexcache.zip

gcpuser@IP_ADDRESS_OF_VM:LOCATION_TO_BE_COPIED

◦ private-key.pem est votre fichier de clé privée pour la connexion sans mot de passe.

◦ gcpuser Est le nom d’utilisateur de la machine virtuelle.

◦ IP_ADDRESS_OF_VM Est l’adresse IP de la machine virtuelle.

◦ LOCATION_TO_BE_COPIED est l’emplacement où le dossier sera copié.

2. Extraire le cvo_gcp_flexcache.zip dossier. Vous pouvez extraire le dossier dans le répertoire actuel
ou dans un emplacement personnalisé.

Pour extraire le dossier dans le répertoire actuel, exécutez :

unzip cvo_gcp_flexcache.zip

Pour extraire le dossier dans un emplacement personnalisé, exécutez :

unzip cvo_gcp_flexcache.zip -d ~/<your_folder_name>

3. Une fois le contenu extrait, exécutez la commande suivante pour afficher les fichiers :

 ls -la

Vous devriez voir une liste de fichiers, similaire à l’exemple suivant :

 total 32

 drwxr-xr-x 8 user staff 256 Mar 23 12:26 .

 drwxr-xr-x 6 user staff 192 Mar 22 08:04 ..

 -rw-r--r-- 1 user staff 324 Apr 12 21:37 .env

 -rw-r--r-- 1 user staff 1449 Mar 23 13:19 Dockerfile

 drwxr-xr-x 15 user staff 480 Mar 23 13:19 cvo_gcp_source_code

 drwxr-xr-x 4 user staff 128 Apr 27 13:43 cvo_gcp_variables

 -rw-r--r-- 1 user staff 996 Mar 24 04:06 docker-compose-

deploy.yml

 -rw-r--r-- 1 user staff 1041 Mar 24 04:06 docker-compose-

destroy.yml

4. Localisez le cvo_gcp_flexcache_ubuntu_image.tar fichier. Ce document contient l’image Docker
requise pour déployer Cloud Volumes ONTAP pour Google Cloud.

5. Décompressez le fichier :

34

docker load -i cvo_gcp_flexcache_ubuntu_image.tar

6. Attendez quelques minutes que l’image Docker se charge, puis vérifiez que l’image Docker a bien été
chargée :

docker images

Vous devez voir une image Docker nommée cvo_gcp_flexcache_ubuntu_image avec la latest
balise, comme dans l’exemple suivant :

REPOSITORY TAG IMAGE ID CREATED

SIZE

 cvo_gcp_flexcache_ubuntu_image latest 18db15a4d59c 2 weeks

ago 1.14GB

Vous pouvez modifier le nom de l’image Docker si nécessaire. Si vous modifiez le nom de
l’image Docker, veillez à mettre à jour le nom de l’image Docker dans les docker-
compose-deploy fichiers et docker-compose-destroy.

Étape 3 : mettez à jour le fichier JSON

À ce stade, vous devez mettre à jour cxo-automation-gcp.json le fichier avec une clé de compte de
service pour authentifier le fournisseur Google Cloud.

1. Créez un compte de service avec des autorisations pour déployer Cloud Volumes ONTAP et un agent de
console"En savoir plus sur la création de comptes de service."

2. Téléchargez le fichier de clé pour le compte et mettez à jour le cxo-automation-gcp.json fichier avec
les informations du fichier de clé. Le cxo-automation-gcp.json fichier se trouve dans le
cvo_gcp_variables dossier.

35

https://cloud.google.com/iam/docs/service-accounts-create

Exemple

{

 "type": "service_account",

 "project_id": "",

 "private_key_id": "",

 "private_key": "",

 "client_email": "",

 "client_id": "",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url": "",

 "universe_domain": "googleapis.com"

}

Le format de fichier doit être exactement comme indiqué ci-dessus.

Étape 4 : Inscrivez-vous aux services intelligents NetApp

Inscrivez-vous aux services intelligents NetApp via votre fournisseur de cloud pour payer à l’heure (PAYGO) ou
via un contrat annuel. Les services intelligents NetApp incluent NetApp Backup and Recovery, Cloud Volumes
ONTAP, NetApp Cloud Tiering, NetApp Ransomware Resilience et NetApp Disaster Recovery. La classification
des données NetApp est incluse dans votre abonnement sans frais supplémentaires.

Étapes

1. Accédez au"Console Google Cloud" et sélectionnez *S’abonner aux services intelligents NetApp *.

2. Configurez le portail de la console NetApp pour importer l’abonnement SaaS dans la console.

Vous pouvez configurer cela directement depuis Google Cloud Platform. Vous serez redirigé vers le portail
de la console pour confirmer la configuration.

3. Confirmez la configuration dans le portail de la console en sélectionnant Enregistrer.

Pour plus d’informations, consultez la section "Gérer les informations d’identification et les abonnements
Google Cloud pour la console NetApp" .

Étape 5 : activation des API Google Cloud requises

Vous devez activer les API Google Cloud suivantes dans votre projet pour déployer Cloud Volumes ONTAP et
l’agent de la console.

• API Cloud Deployment Manager V2

• API de journalisation cloud

• API Cloud Resource Manager

• API du moteur de calcul

• API de gestion des identités et des accès

36

https://console.cloud.google.com/marketplace/product/netapp-cloudmanager/cloud-manager
https://docs.netapp.com/us-en/console-setup-admin/task-adding-gcp-accounts.html#associate-a-marketplace-subscription-with-google-cloud-credentials
https://docs.netapp.com/us-en/console-setup-admin/task-adding-gcp-accounts.html#associate-a-marketplace-subscription-with-google-cloud-credentials

"En savoir plus sur l’activation des API"

Étape 6 : créer un volume externe

Vous devez créer un volume externe pour conserver les fichiers d’état Terraform et d’autres fichiers importants
persistants. Vous devez vous assurer que les fichiers sont disponibles pour Terraform pour exécuter le
workflow et les déploiements.

Étapes

1. Créer un volume externe en dehors de Docker compose :

docker volume create <volume_name>

Exemple :

docker volume create cvo_gcp_volume_dst

2. Utilisez l’une des options suivantes :

a. Ajoutez un chemin de volume externe au .env fichier d’environnement.

Vous devez suivre le format exact indiqué ci-dessous.

Format :

PERSISTENT_VOL=path/to/external/volume:/cvo_gcp

Exemple :
PERSISTENT_VOL=cvo_gcp_volume_dst:/cvo_gcp

b. Ajoutez des partages NFS comme volume externe.

Assurez-vous que le conteneur Docker peut communiquer avec les partages NFS et que les
autorisations appropriées, telles que lecture/écriture, sont configurées.

i. Ajoutez le chemin des partages NFS comme chemin d’accès au volume externe dans le fichier
Docker compose, comme illustré ci-dessous : format :

PERSISTENT_VOL=path/to/nfs/volume:/cvo_gcp

Exemple :
PERSISTENT_VOL=nfs/mnt/document:/cvo_gcp

3. Accédez au cvo_gcp_variables dossier.

Le dossier doit contenir les fichiers suivants :

◦ terraform.tfvars

◦ variables.tf

37

https://cloud.google.com/apis/docs/getting-started#enabling_apis

4. Modifiez les valeurs à l’intérieur du terraform.tfvars fichier en fonction de vos besoins.

Vous devez lire la documentation spécifique lors de la modification de l’une des valeurs de variable du
terraform.tfvars fichier. Ces valeurs peuvent varier en fonction de la région, des zones de
disponibilité et d’autres facteurs pris en charge par Cloud Volumes ONTAP pour Google Cloud. Notamment
les licences, la taille des disques et la taille des machines virtuelles pour les nœuds uniques et les paires
haute disponibilité.

Toutes les variables de support pour l’agent de console et les modules Cloud Volumes ONTAP Terraform
sont déjà définies dans le variables.tf déposer. Vous devez faire référence aux noms de variables
dans le variables.tf fichier avant de l’ajouter au terraform.tfvars déposer.

5. Selon vos besoins, vous pouvez activer ou désactiver FlexCache et FlexClone en définissant les options
suivantes sur true ou false.

Les exemples suivants activent FlexCache et FlexClone :

◦ is_flexcache_required = true

◦ is_flexclone_required = true

Étape 7 : déploiement de Cloud Volumes ONTAP pour Google Cloud

Procédez comme suit pour déployer Cloud Volumes ONTAP pour Google Cloud.

Étapes

1. Depuis le dossier racine, exécutez la commande suivante pour déclencher le déploiement :

docker-compose -f docker-compose-deploy.yml up -d

Deux conteneurs sont déclenchés, le premier conteneur déploie Cloud Volumes ONTAP et le second
envoie des données de télémétrie à AutoSupport.

Le deuxième conteneur attend jusqu’à ce que le premier conteneur termine toutes les étapes avec succès.

2. Surveiller la progression du processus de déploiement à l’aide des fichiers journaux :

docker-compose -f docker-compose-deploy.yml logs -f

Cette commande fournit des résultats en temps réel et capture les données dans les fichiers journaux
suivants :
deployment.log

telemetry_asup.log

Vous pouvez modifier le nom de ces fichiers journaux en modifiant le .env fichier à l’aide des variables
d’environnement suivantes :

DEPLOYMENT_LOGS

TELEMETRY_ASUP_LOGS

38

Les exemples suivants montrent comment modifier les noms des fichiers journaux :

DEPLOYMENT_LOGS=<your_deployment_log_filename>.log

TELEMETRY_ASUP_LOGS=<your_telemetry_asup_log_filename>.log

Une fois que vous avez terminé

Vous pouvez utiliser les étapes suivantes pour supprimer l’environnement temporaire et nettoyer les éléments
créés pendant le processus de déploiement.

Étapes

1. Si vous avez déployé FlexCache, définissez l’option suivante dans le terraform.tfvars fichier, cela
nettoie les volumes FlexCache et supprime l’environnement temporaire créé précédemment.

flexcache_operation = "destroy"

Les options possibles sont deploy et destroy.

2. Si vous avez déployé FlexClone, définissez l’option suivante dans le terraform.tfvars fichier, cela
nettoie les volumes FlexClone et supprime l’environnement temporaire créé précédemment.

flexclone_operation = "destroy"

Les options possibles sont deploy et destroy.

ONTAP

Jour 0/1

Présentation de la solution ONTAP Day 0/1

Vous pouvez utiliser la solution d’automatisation ONTAP jour 0/1 pour déployer et
configurer un cluster ONTAP à l’aide d’Ansible. La solution est disponible auprès de
"Centre d’automatisation NetApp Console".

Des options de déploiement ONTAP flexibles

Selon les besoins, vous pouvez utiliser du matériel sur site ou simuler un ONTAP pour déployer et configurer
un cluster ONTAP à l’aide d’Ansible.

Matériel sur site

Vous pouvez déployer cette solution à l’aide d’un matériel sur site exécutant ONTAP, tel qu’un système FAS ou
AFF. Vous devez utiliser une VM Linux pour déployer et configurer le cluster ONTAP à l’aide d’Ansible.

Simuler ONTAP

Pour déployer cette solution à l’aide d’un simulateur ONTAP, vous devez télécharger la dernière version de
Simulate ONTAP depuis le site de support NetApp. Simulate ONTAP est un simulateur virtuel pour le logiciel
ONTAP. Simulez l’exécution de ONTAP dans un hyperviseur VMware sur un système Windows, Linux ou Mac.
Pour les hôtes Windows et Linux, vous devez utiliser l’hyperviseur VMware Workstation pour exécuter cette

39

https://console.netapp.com/automationHub

solution. Si vous disposez d’un Mac OS, utilisez l’hyperviseur VMware Fusion.

Effet superposé

Le framework Ansible simplifie le développement et la réutilisation de l’exécution de l’automatisation et des
tâches logiques. Le cadre fait la distinction entre les tâches de prise de décision (couche logique) et les étapes
d’exécution (couche d’exécution) dans l’automatisation. La compréhension du fonctionnement de ces couches
vous permet de personnaliser la configuration.

Un « PlayBook » Ansible exécute une série de tâches du début à la fin. Ce site.yml PlayBook contient le
logic.yml PlayBook et le execution.yml PlayBook.

Lors de l’exécution d’une demande, le site.yml PlayBook logic.yml appelle d’abord le PlayBook pour
exécuter la execution.yml demande de service.

Vous n’êtes pas tenu d’utiliser la couche logique de l’infrastructure. La couche logique offre des options
permettant d’étendre la capacité du cadre au-delà des valeurs codées en dur pour l’exécution. Vous pouvez
ainsi personnaliser les fonctionnalités de la structure, le cas échéant.

Couche logique

La couche logique comprend les éléments suivants :

• `logic.yml`Le manuel de vente

• Fichiers de tâches logiques dans le logic-tasks répertoire

Cette couche logique facilite la prise de décision complexe sans nécessiter une intégration personnalisée
significative (par exemple, connexion à ServiceNow). La couche logique est configurable et fournit des entrées
aux microservices.

La possibilité de contourner la couche logique est également fournie. Si vous souhaitez contourner la couche
logique, ne définissez pas la logic_operation variable. L’invocation directe du logic.yml PlayBook
permet d’effectuer un certain niveau de débogage sans exécution. Vous pouvez utiliser une instruction "debug"
pour vérifier que la valeur de raw_service_request est correcte.

Remarques importantes :

• Le logic.yml PlayBook recherche la logic_operation variable. Si la variable est définie dans la
requête, elle charge un fichier de tâche à partir du logic-tasks répertoire. Le fichier de tâche doit être
un fichier .yml. S’il n’y a pas de fichier de tâche correspondant et que la logic_operation variable est
définie, la couche logique échoue.

• La valeur par défaut de la logic_operation variable est no-op. Si la variable n’est pas explicitement
définie, elle prend par défaut la valeur no-op, qui n’exécute aucune opération.

• Si la raw_service_request variable est déjà définie, l’exécution passe à la couche d’exécution. Si la
variable n’est pas définie, la couche logique échoue.

Couche d’exécution

La couche d’exécution comprend les éléments suivants :

• `execution.yml`Le manuel de vente

La couche d’exécution effectue des appels d’API pour configurer un cluster ONTAP. Le execution.yml
PlayBook requiert que la raw_service_request variable soit définie lors de son exécution.

40

Prise en charge de la personnalisation

Vous pouvez personnaliser cette solution de différentes manières en fonction de vos besoins.

Les options de personnalisation sont les suivantes :

• Modification des playbooks Ansible

• Ajout de rôles

Personnalisez les fichiers Ansible

Le tableau suivant décrit les fichiers Ansible personnalisables contenus dans cette solution.

Emplacement Description

playbooks/inventory

/hosts

Contient un seul fichier avec une liste d’hôtes et de groupes.

playbooks/group_var

s/all/*

Ansible constitue un moyen pratique d’appliquer des variables à plusieurs hôtes
en même temps. Vous pouvez modifier tout ou partie des fichiers de ce dossier, y
compris cfg.yml, clusters.yml, defaults.yml, services.yml,
standards.yml et vault.yml.

playbooks/logic-

tasks

Soutient les tâches de prise de décision au sein d’Ansible et maintient la
séparation de la logique et de l’exécution. Vous pouvez ajouter à ce dossier des
fichiers correspondant au service concerné.

playbooks/vars/* Valeurs dynamiques utilisées dans les playbooks et les rôles Ansible pour assurer
la personnalisation, la flexibilité et la réutilisation des configurations. Si
nécessaire, vous pouvez modifier tout ou partie des fichiers de ce dossier.

Personnaliser les rôles

Vous pouvez également personnaliser la solution en ajoutant ou en modifiant les rôles Ansible, également
appelés microservices. Pour plus de détails, voir "Personnaliser".

Préparez-vous à utiliser la solution ONTAP Day 0/1

Avant de déployer la solution d’automatisation, vous devez préparer l’environnement
ONTAP et installer et configurer Ansible.

Considérations de planification initiale

Avant d’utiliser cette solution pour déployer un cluster ONTAP, passez en revue les exigences et
considérations suivantes.

Critères de base

Pour utiliser cette solution, vous devez répondre aux exigences de base suivantes :

• Vous devez avoir accès au logiciel ONTAP, sur site ou via un simulateur ONTAP.

• Vous devez savoir comment utiliser le logiciel ONTAP.

• Vous devez savoir utiliser les outils logiciels d’automatisation Ansible.

Planification

Avant de déployer cette solution d’automatisation, vous devez décider :

41

• Emplacement où vous allez exécuter le nœud de contrôle Ansible.

• Le système ONTAP, du matériel sur site ou un simulateur ONTAP.

• Que vous ayez besoin ou non de personnalisation.

Préparez le système ONTAP

Que vous utilisiez un système ONTAP sur site ou que vous simulez ONTAP, vous devez préparer
l’environnement avant de pouvoir déployer la solution d’automatisation.

Si vous le souhaitez, installez et configurez Simulate ONTAP

Si vous souhaitez déployer cette solution via un simulateur ONTAP, vous devez télécharger et exécuter
Simulate ONTAP.

Avant de commencer

• Vous devez télécharger et installer l’hyperviseur VMware que vous allez utiliser pour exécuter Simulate
ONTAP.

◦ Si vous disposez d’un système d’exploitation Windows ou Linux, utilisez VMware Workstation.

◦ Si vous disposez d’un système d’exploitation Mac, utilisez VMware Fusion.

Si vous utilisez un Mac OS, vous devez disposer d’un processeur Intel.

Étapes

Utilisez la procédure suivante pour installer deux simulateurs ONTAP dans votre environnement local :

1. Télécharger Simulate ONTAP à partir du "Site de support NetApp".

Bien que vous installiez deux simulateurs ONTAP, il vous suffit de télécharger une seule
copie du logiciel.

2. Si ce n’est pas déjà fait, démarrez votre application VMware.

3. Recherchez le fichier de simulateur téléchargé et cliquez avec le bouton droit de la souris pour l’ouvrir avec
l’application VMware.

4. Définissez le nom de la première instance ONTAP.

5. Attendez le démarrage du simulateur et suivez les instructions pour créer un cluster à un seul nœud.

Répétez les étapes pour la deuxième instance ONTAP.

6. Si vous le souhaitez, ajoutez un complément de disque complet.

Depuis chaque cluster, exécutez les commandes suivantes :

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

42

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

État du système ONTAP

Vous devez vérifier l’état initial du système ONTAP, qu’il soit sur site ou exécuté via un simulateur ONTAP.

Vérifiez que la configuration système ONTAP requise est respectée :

• ONTAP est installé et fonctionne, aucun cluster n’est encore défini.

• La ONTAP démarre et affiche l’adresse IP pour accéder au cluster.

• Le réseau est accessible.

• Vous avez des identifiants d’administrateur.

• La bannière message du jour (MOTD) s’affiche avec l’adresse de gestion.

Installez le logiciel d’automatisation requis

Cette section explique comment installer Ansible et préparer la solution d’automatisation au déploiement.

Installez Ansible

Ansible peut être installé sur les systèmes Linux ou Windows.

La méthode de communication par défaut utilisée par Ansible pour communiquer avec un cluster ONTAP est
SSH.

Reportez-vous "Mise en route avec NetApp et Ansible : installation d’Ansible"à pour installer Ansible.

Ansible doit être installé sur le nœud de contrôle du système.

Téléchargez et préparez la solution d’automatisation

Vous pouvez suivre les étapes suivantes pour télécharger et préparer la solution d’automatisation pour le
déploiement.

1. Téléchargez le "ONTAP - jour 0/1 et amp ; vérifications de l’état" Solution d’automatisation via l’interface
utilisateur Web de la console. La solution est conditionnée comme suit : ONTAP_DAY0_DAY1.zip.

2. Extrayez le dossier zip et copiez les fichiers à l’emplacement souhaité sur le nœud de contrôle dans votre
environnement Ansible.

Configuration initiale de la structure Ansible

Effectuez la configuration initiale du framework Ansible :

1. Accédez à playbooks/inventory/group_vars/all.

2. Déchiffrement du vault.yml fichier :

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

Lorsque vous êtes invité à entrer le mot de passe du coffre-fort, entrez le mot de passe temporaire suivant
:

NetApp123!

43

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://console.netapp.com/automationHub

« NetApp123! » Est un mot de passe temporaire permettant de décrypter vault.yml le
fichier et le mot de passe du coffre-fort correspondant. Après la première utilisation, vous
devez crypter le fichier à l’aide de votre propre mot de passe.

3. Modifiez les fichiers Ansible suivants :

◦ clusters.yml - Modifiez les valeurs de ce fichier en fonction de votre environnement.

◦ vault.yml - Après avoir décrypté le fichier, modifiez les valeurs du cluster ONTAP, du nom
d’utilisateur et du mot de passe en fonction de votre environnement.

◦ cfg.yml - Définissez le chemin d’accès au fichier pour log2file et show_request sous cfg à
True pour afficher le raw_service_request.

La raw_service_request variable s’affiche dans les fichiers journaux et pendant l’exécution.

Chaque fichier répertorié contient des commentaires avec des instructions sur la façon de le
modifier en fonction de vos besoins.

4. Re-crypter le vault.yml fichier :

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

Vous êtes invité à choisir un nouveau mot de passe pour le coffre-fort lors du cryptage.

5. Accédez à playbooks/inventory/hosts un interpréteur Python valide et définissez-le.

6. Déployer le framework_test service :

La commande suivante exécute le na_ontap_info module avec une gather_subset valeur de
cluster_identity_info. Cette opération valide que la configuration de base est correcte et vérifie que
vous pouvez communiquer avec le cluster.

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

Exécutez la commande pour chaque cluster.

Si le résultat est réussi, vous devriez voir un résultat similaire à l’exemple suivant :

PLAY RECAP

**

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

44

Déployez le cluster ONTAP à l’aide de la solution

Une fois la préparation et la planification terminée, vous êtes prêt à utiliser la solution
ONTAP Day 0/1 pour configurer rapidement un cluster ONTAP à l’aide d’Ansible.

À tout moment au cours des étapes de cette section, vous pouvez choisir de tester une demande au lieu de
l’exécuter. Pour tester une demande, remplacez le site.yml PlayBook sur la ligne de commande par
logic.yml.

L' docs/tutorial-requests.txt`emplacement contient la version finale de
toutes les demandes de service utilisées tout au long de cette

procédure. Si vous avez des difficultés à exécuter une demande de

service, vous pouvez copier la demande pertinente du `tutorial-

requests.txt fichier vers l' `playbooks/inventory/group_vars/all/tutorial-
requests.yml`emplacement et modifier les valeurs codées en dur comme requis (adresse IP,
noms d’agrégats, etc.). Vous devriez alors être en mesure d’exécuter la demande avec succès.

Avant de commencer

• Ansible doit être installé sur votre système.

• Vous devez avoir téléchargé la solution ONTAP Day 0/1 et extrait le dossier à l’emplacement souhaité sur
le nœud de contrôle Ansible.

• L’état du système ONTAP doit répondre aux exigences et vous devez disposer des informations
d’identification nécessaires.

• Vous devez avoir effectué toutes les tâches requises décrites dans la "Préparation" section.

Dans les exemples de cette solution, on utilise les noms « Cluster_01 » et « Cluster_02 » pour
les deux clusters. Vous devez remplacer ces valeurs par les noms des clusters de votre
environnement.

Étape 1 : configuration initiale du cluster

À ce stade, vous devez effectuer certaines étapes initiales de configuration du cluster.

Étapes

1. Naviguez jusqu’à playbooks/inventory/group_vars/all/tutorial-requests.yml
l’emplacement et examinez la cluster_initial demande dans le fichier. Apportez les modifications
nécessaires à votre environnement.

2. Créez un fichier dans le logic-tasks dossier de la demande de service. Par exemple, créez un fichier
appelé cluster_initial.yml.

Copiez les lignes suivantes dans le nouveau fichier :

45

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

3. Définissez la raw_service_request variable.

Vous pouvez utiliser l’une des options suivantes pour définir la raw_service_request variable dans
cluster_initial.yml le fichier que vous avez créé dans le logic-tasks dossier :

◦ Option 1 : définissez manuellement la raw_service_request variable.

Ouvrez le tutorial-requests.yml fichier à l’aide d’un éditeur et copiez le contenu de la ligne 11 à
la ligne 165. Collez le contenu sous la raw service request variable dans le nouveau
cluster_initial.yml fichier, comme indiqué dans les exemples suivants :

46

Montrer l’exemple

Exemple de cluster_initial.yml fichier :

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

 service: cluster_initial

 operation: create

 std_name: none

 req_details:

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

 ontap_license:

 - hostname: "{{ cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

47

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - hostname: "{{ peer_cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

48

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 ontap_motd:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 message: "New MOTD"

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 message: "New MOTD"

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

49

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ peer_cluster_name }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ peer_cluster_name }}"

◦ Option 2 : utilisez un modèle Jinja pour définir la demande :

Vous pouvez également utiliser le format de modèle Jinja suivant pour obtenir la
raw_service_request valeur.

raw_service_request: "{{ cluster_initial }}"

4. Effectuez la configuration initiale du cluster pour le premier cluster :

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

50

Vérifiez qu’il n’y a pas d’erreur avant de continuer.

5. Répéter la commande pour le second cluster :

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

Vérifiez qu’il n’y a pas d’erreur pour le second cluster.

Lorsque vous faites défiler vers le haut vers le début de la sortie Ansible, vous devez voir la demande qui a
été envoyée à la structure, comme illustré ci-dessous :

51

Montrer l’exemple

TASK [Show the raw_service_request]

**

**

ok: [localhost] => {

 "raw_service_request": {

 "operation": "create",

 "req_details": {

 "ontap_aggr": [

 {

 "disk_count": 24,

 "hostname": "Cluster_01",

 "name": "n01_aggr1",

 "nodes": "Cluster_01-01",

 "raid_type": "raid4"

 }

],

 "ontap_license": [

 {

 "hostname": "Cluster_01",

 "license_codes": [

 "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

52

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

]

 }

],

 "ontap_motd": [

 {

 "hostname": "Cluster_01",

 "message": "New MOTD",

 "vserver": "Cluster_01"

 }

]

 },

 "service": "cluster_initial",

 "std_name": "none"

 }

}

6. Connectez-vous à chaque instance ONTAP et vérifiez que la demande a abouti.

Étape 2 : configurer les LIFs intercluster

Vous pouvez maintenant configurer les LIFs intercluster en ajoutant les définitions du LIF à la requête et en
cluster_initial définissant le ontap_interface microservice.

La définition de service et la demande fonctionnent ensemble pour déterminer l’action :

• Si vous fournissez une demande de service pour un microservice qui ne figure pas dans les définitions de
service, la demande n’est pas exécutée.

• Si vous fournissez une demande de service avec un ou plusieurs microservices définis dans les définitions
de service, mais que vous n’avez pas inclus dans la requête, la requête n’est pas exécutée.

Ce execution.yml PlayBook évalue la définition de service en analysant la liste des microservices dans
l’ordre indiqué :

• S’il existe une entrée dans la demande avec une clé de dictionnaire correspondant à l' `args`entrée
contenue dans les définitions de microservice, la demande est exécutée.

• S’il n’y a pas d’entrée correspondante dans la demande de service, la demande est ignorée sans erreur.

Étapes

53

1. Accédez au cluster_initial.yml fichier que vous avez créé précédemment et modifiez la demande
en ajoutant les lignes suivantes aux définitions de la demande :

54

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

55

2. Lancer la commande :

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. Connectez-vous à chaque instance pour vérifier si les LIFs ont été ajoutées au cluster :

Montrer l’exemple

Cluster_01::> net int show

 (network interface show)

 Logical Status Network Current

Current Is

Vserver Interface Admin/Oper Address/Mask Node

Port Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

 Cluster_01-01_mgmt up/up 10.0.0.101/24 Cluster_01-01

e0c true

 Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

 cluster_mgmt up/up 10.0.0.110/24 Cluster_01-01

e0c true

5 entries were displayed.

Le résultat indique que les LIFs ont été non ajoutées. En effet, le ontap_interface microservice doit
toujours être défini dans services.yml le fichier.

4. Vérifier que les LIFs ont été ajoutées à la raw_service_request variable.

56

Montrer l’exemple

L’exemple suivant montre que les LIFs ont été ajoutées à la requête :

 "ontap_interface": [

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 },

 {

 "address": "10.0.0.126",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

57

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 }

],

5. Définissez le ontap_interface microservice sous cluster_initial dans services.yml le fichier.

Copiez les lignes suivantes dans le fichier pour définir le microservice :

 - name: ontap_interface

 args: ontap_interface

 role: na/ontap_interface

6. Maintenant que le ontap_interface microservice a été défini dans la demande et le services.yml
fichier, réexécutez la demande :

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. Connectez-vous à chaque instance ONTAP et vérifiez que les LIF ont été ajoutées.

Étape 3 : si vous le souhaitez, configurez plusieurs clusters

Si nécessaire, vous pouvez configurer plusieurs clusters dans la même demande. Vous devez fournir des
noms de variable pour chaque cluster lors de la définition de la demande.

Étapes

1. Ajoutez une entrée pour le second cluster dans le cluster_initial.yml fichier pour configurer les
deux clusters dans la même demande.

L’exemple suivant affiche le ontap_aggr champ après l’ajout de la deuxième entrée.

58

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

2. Appliquez les modifications pour tous les autres éléments sous cluster_initial.

3. Ajouter le cluster peering à la demande en copiant les lignes suivantes dans le fichier :

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ cluster_peer }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ cluster_peer }}"

4. Exécutez la requête Ansible :

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

Étape 4 : configuration initiale du SVM

À ce stade de la procédure, on configure les SVM au sein du cluster.

Étapes

1. Mettre à jour la svm_initial requête dans tutorial-requests.yml le fichier pour configurer une
relation SVM et SVM peer.

Vous devez configurer les éléments suivants :

◦ SVM

59

◦ Relation entre SVM

◦ L’interface SVM pour chaque SVM

2. Mettez à jour les définitions de variables dans les svm_initial définitions de la demande. Vous devez
modifier les définitions de variables suivantes :

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

Pour mettre à jour les définitions, supprimez le '{}' après req_details pour la svm_initial
définition et ajoutez la définition correcte.

3. Créez un fichier dans le logic-tasks dossier de la demande de service. Par exemple, créez un fichier
appelé svm_initial.yml.

Copiez les lignes suivantes dans le fichier :

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

4. Définissez la raw_service_request variable.

Vous pouvez utiliser l’une des options suivantes pour définir la raw_service_request variable pour
svm_initial dans le logic-tasks dossier :

◦ Option 1 : définissez manuellement la raw_service_request variable.

Ouvrez le tutorial-requests.yml fichier à l’aide d’un éditeur et copiez le contenu de la ligne 179

60

à la ligne 222. Collez le contenu sous la raw service request variable dans le nouveau
svm_initial.yml fichier, comme indiqué dans les exemples suivants :

61

Montrer l’exemple

Exemple de svm_initial.yml fichier :

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

 service: svm_initial

 operation: create

 std_name: none

 req_details:

 ontap_vserver:

 - hostname: "{{ cluster_name }}"

 name: "{{ vserver_name }}"

 root_volume_aggregate: n01_aggr1

 - hostname: "{{ peer_cluster_name }}"

 name: "{{ peer_vserver }}"

 root_volume_aggregate: n01_aggr1

 ontap_vserver_peer:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 peer_vserver: "{{ peer_vserver }}"

 applications: snapmirror

 peer_options:

 hostname: "{{ peer_cluster_name }}"

 ontap_interface:

62

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 interface_name: data01

 role: data

 address: 10.0.0.200

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_vserver }}"

 interface_name: data01

 role: data

 address: 10.0.0.201

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

◦ Option 2 : utilisez un modèle Jinja pour définir la demande :

Vous pouvez également utiliser le format de modèle Jinja suivant pour obtenir la
raw_service_request valeur.

raw_service_request: "{{ svm_initial }}"

5. Exécutez la demande :

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

6. Connectez-vous à chaque instance ONTAP et validez la configuration.

7. Ajouter les interfaces SVM

Définissez le ontap_interface service sous svm_initial dans services.yml le fichier et exécutez
à nouveau la demande :

63

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

8. Connectez-vous à chaque instance ONTAP et vérifiez que les interfaces du SVM ont été configurées.

Étape 5 : vous pouvez éventuellement définir une demande de service de façon dynamique

Dans les étapes précédentes, la raw_service_request variable est codée en dur. Ceci est utile pour
l’apprentissage, le développement et les tests. Vous pouvez également générer une demande de service de
manière dynamique.

La section suivante fournit une option pour produire dynamiquement les requis si vous ne voulez pas les
raw_service_request intégrer à des systèmes de niveau supérieur.

• Si la logic_operation variable n’est pas définie dans la commande, le logic.yml
fichier n’importe aucun fichier du logic-tasks dossier. Cela signifie que le
raw_service_request doit être défini en dehors d’Ansible et fourni au cadre d’exécution.

• Un nom de fichier de tâche dans le logic-tasks dossier doit correspondre à la valeur de
la logic_operation variable sans l’extension .yml.

• Les fichiers de tâches dans le logic-tasks dossier définissent dynamiquement un
raw_service_request. la seule exigence est qu’un valide raw_service_request soit
défini comme la dernière tâche dans le fichier approprié.

Définition dynamique d’une demande de service

Il existe plusieurs façons d’appliquer une tâche logique pour définir dynamiquement une demande de service.
Certaines de ces options sont répertoriées ci-dessous :

• À l’aide d’un fichier de tâches Ansible du logic-tasks dossier

• Appel d’un rôle personnalisé qui renvoie des données adaptées à la conversion en
raw_service_request variable.

• Appel d’un autre outil hors de l’environnement Ansible pour fournir les données requises. Par exemple, un
appel d’API REST vers Active IQ Unified Manager.

Les exemples de commandes suivants définissent de façon dynamique une demande de service pour chaque
cluster à l’aide du tutorial-requests.yml fichier :

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

64

Étape 6 : déployer la solution ONTAP dès le début de l’année 0/1

À ce stade, vous devez déjà avoir terminé les tâches suivantes :

• Révision et modification de tous les fichiers dans en playbooks/inventory/group_vars/all
fonction de vos besoins. Chaque fichier contient des commentaires détaillés qui vous aideront à effectuer
les modifications.

• Ajout de tous les fichiers de tâches requis dans le logic-tasks répertoire.

• Ajout de tous les fichiers de données requis dans le playbook/vars répertoire.

Utilisez les commandes suivantes pour déployer la solution ONTAP Day 0/1 et vérifier l’état de santé de votre
déploiement :

À ce stade, vous devez déjà avoir décrypté et modifié le vault.yml fichier et il doit être crypté
avec votre nouveau mot de passe.

• Exécutez le service ONTAP jour 0 :

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Exécutez le service ONTAP Day 1 :

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Appliquer les paramètres à l’échelle du cluster :

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• Exécuter des vérifications de l’état :

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

Personnalisez la solution ONTAP Day 0/1

Pour personnaliser la solution ONTAP Day 0/1 en fonction de vos exigences, vous
pouvez ajouter ou modifier des rôles Ansible.

65

Les rôles représentent les microservices dans le framework Ansible. Chaque microservice effectue une
opération. Par exemple, ONTAP Day 0 est un service qui contient plusieurs microservices.

Ajoutez des rôles Ansible

Vous pouvez ajouter des rôles Ansible afin de personnaliser la solution en fonction de votre environnement.
Les rôles requis sont définis par des définitions de service dans le framework Ansible.

Un rôle doit répondre aux exigences suivantes pour être utilisé en tant que microservice :

• Acceptez une liste d’arguments dans la args variable.

• Utilisez la structure Ansible « bloc, sauvetage, toujours » en fonction des exigences de chaque bloc.

• Utilisez un seul module Ansible et définissez une seule tâche dans le bloc.

• Mettre en œuvre tous les paramètres de module disponibles conformément aux exigences détaillées dans
cette section.

Structure de microservice requise

Chaque rôle doit prendre en charge les variables suivantes :

• mode: Si le mode est défini sur test le rôle tente d’importer le test.yml qui indique ce que le rôle fait
sans l’exécuter réellement.

Il n’est pas toujours possible de le mettre en œuvre en raison de certaines
interdépendances.

• status: L’état global de l’exécution du PlayBook. Si la valeur n’est pas définie sur success le rôle n’est
pas exécuté.

• args : Une liste de dictionnaires spécifiques aux rôles avec des clés correspondant aux noms des
paramètres de rôle.

• global_log_messages: Collecte des messages de journal pendant l’exécution du PlayBook. Une entrée
est générée chaque fois que le rôle est exécuté.

• log_name: Le nom utilisé pour faire référence au rôle dans les global_log_messages entrées.

• task_descr: Une brève description de ce que fait le rôle.

• service_start_time: Horodatage utilisé pour suivre l’heure d’exécution de chaque rôle.

• playbook_status: Le statut du PlayBook Ansible.

• role_result: La variable qui contient la sortie de rôle et est incluse dans chaque message dans les
global_log_messages entrées.

Exemple de structure de rôle

L’exemple suivant fournit la structure de base d’un rôle qui implémente un microservice. Dans cet exemple,
vous devez modifier les variables de votre configuration.

66

Montrer l’exemple

Structure des rôles de base :

- name: Set some role attributes

 set_fact:

 log_name: "<LOG_NAME>"

 task_descr: "<TASK_DESCRIPTION>"

- name: "{{ log_name }}"

 block:

 - set_fact:

 service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

 - name: "Provision the new user"

 <MODULE_NAME>:

#---

 # COMMON ATTRIBUTES

#---

 hostname: "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

 username: "{{

clusters[loop_arg['hostname']]['username'] }}"

 password: "{{

clusters[loop_arg['hostname']]['password'] }}"

 cert_filepath: "{{ loop_arg['cert_filepath']

| default(omit) }}"

 feature_flags: "{{ loop_arg['feature_flags']

| default(omit) }}"

 http_port: "{{ loop_arg['http_port']

| default(omit) }}"

 https: "{{ loop_arg['https']

| default('true') }}"

 ontapi: "{{ loop_arg['ontapi']

| default(omit) }}"

 key_filepath: "{{ loop_arg['key_filepath']

| default(omit) }}"

 use_rest: "{{ loop_arg['use_rest']

| default(omit) }}"

 validate_certs: "{{ loop_arg['validate_certs']

| default('false') }}"

67

 <MODULE_SPECIFIC_PARAMETERS>

#---

 # REQUIRED ATTRIBUTES

#---

 required_parameter: "{{ loop_arg['required_parameter']

}}"

#---

 # ATTRIBUTES w/ DEFAULTS

#---

 defaulted_parameter: "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

#---

 # OPTIONAL ATTRIBUTES

#---

 optional_parameter: "{{ loop_arg['optional_parameter']

| default(omit) }}"

 loop: "{{ args }}"

 loop_control:

 loop_var: loop_arg

 register: role_result

 rescue:

 - name: Set role status to FAIL

 set_fact:

 playbook_status: "failed"

 always:

 - name: add log msg

 vars:

 role_log:

 role: "{{ log_name }}"

 timestamp:

 start_time: "{{service_start_time}}"

 end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

 service_status: "{{ playbook_status }}"

 result: "{{role_result}}"

 set_fact:

 global_log_msgs: "{{ global_log_msgs + [role_log] }}"

68

Variables utilisées dans l’exemple de rôle :

• <NAME>: Une valeur remplaçable qui doit être fournie pour chaque microservice.

• <LOG_NAME>: Le nom de forme court du rôle utilisé à des fins de journalisation. Par exemple
ONTAP_VOLUME, .

• <TASK_DESCRIPTION>: Une brève description de ce que fait le microservice.

• <MODULE_NAME>: Nom du module Ansible pour la tâche.

Le PlayBook de niveau supérieur execute.yml spécifie la netapp.ontap collection. Si le
module fait partie de la netapp.ontap collection, il n’est pas nécessaire de spécifier
entièrement le nom du module.

• <MODULE_SPECIFIC_PARAMETERS>: Paramètres du module Ansible spécifiques au module utilisé pour
implémenter le microservice. La liste suivante décrit les types de paramètres et leur mode de
regroupement.

◦ Paramètres requis : tous les paramètres requis sont spécifiés sans valeur par défaut.

◦ Paramètres ayant une valeur par défaut spécifique au microservice (différente d’une valeur par défaut
spécifiée par la documentation du module).

◦ Tous les autres paramètres utilisent default(omit) comme valeur par défaut.

Utilisation de dictionnaires multi-niveaux comme paramètres de module

Certains modules Ansible fournis par NetApp utilisent des dictionnaires multiniveaux pour les paramètres de
module (par exemple, des groupes de règles de QoS fixes et adaptatifs).

L’utilisation default(omit) seule ne fonctionne pas lorsque ces dictionnaires sont utilisés, surtout lorsqu’il y
en a plus d’un et qu’ils s’excluent mutuellement.

Si vous devez utiliser des dictionnaires multiniveaux comme paramètres de module, vous devez diviser la
fonctionnalité en plusieurs microservices (rôles) de sorte que chacun d’entre eux puisse fournir au moins une
valeur de dictionnaire de second niveau pour le dictionnaire approprié.

Les exemples suivants présentent les groupes de règles de QoS fixes et adaptatifs répartis sur deux
microservices.

Le premier microservice contient des valeurs de groupe de règles QoS fixes :

69

fixed_qos_options:

 capacity_shared: "{{

loop_arg['fixed_qos_options']['capacity_shared'] | default(omit)

}}"

 max_throughput_iops: "{{

loop_arg['fixed_qos_options']['max_throughput_iops'] | default(omit)

}}"

 min_throughput_iops: "{{

loop_arg['fixed_qos_options']['min_throughput_iops'] | default(omit)

}}"

 max_throughput_mbps: "{{

loop_arg['fixed_qos_options']['max_throughput_mbps'] | default(omit)

}}"

 min_throughput_mbps: "{{

loop_arg['fixed_qos_options']['min_throughput_mbps'] | default(omit)

}}"

Le second microservice contient les valeurs des groupes de règles de QoS adaptative :

adaptive_qos_options:

 absolute_min_iops: "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

 expected_iops: "{{

loop_arg['adaptive_qos_options']['expected_iops'] | default(omit) }}"

 peak_iops: "{{

loop_arg['adaptive_qos_options']['peak_iops'] | default(omit) }}"

70

Informations sur le copyright

Copyright © 2025 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

71

http://www.netapp.com/TM

	Centre d’automatisation NetApp Console : NetApp Automation
	Sommaire
	Centre d’automatisation NetApp Console
	Présentation du hub d’automatisation de la NetApp Console
	Amazon FSx for NetApp ONTAP
	Amazon FSx for NetApp ONTAP : passage au cloud
	Amazon FSx for NetApp ONTAP - Reprise après sinistre

	Azure NetApp Files
	Installez Oracle à l’aide de Azure NetApp Files

	Cloud Volumes ONTAP pour AWS
	Cloud Volumes ONTAP pour AWS : en rafale vers le cloud

	Cloud Volumes ONTAP pour Azure
	Cloud Volumes ONTAP pour Azure : en rafale vers le cloud

	Cloud Volumes ONTAP pour Google Cloud
	Cloud Volumes ONTAP pour Google Cloud - en rafale vers le cloud

	ONTAP
	Jour 0/1

