
Solution de base de données vectorielle
avec NetApp
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/fr-fr/netapp-solutions-ai/vector-db/ai-vdb-solution-
with-netapp.html on February 12, 2026. Always check docs.netapp.com for the latest.

Sommaire

Solution de base de données vectorielle avec NetApp . 1

Solution de base de données vectorielle avec NetApp . 1

Introduction. 2

Introduction . 2

Présentation de la solution. 3

Présentation de la solution. 3

Base de données vectorielles . 3

Base de données vectorielles . 3

Exigences technologiques . 7

Exigences technologiques . 7

Configuration matérielle requise . 7

Configuration logicielle requise . 8

Procédure de déploiement . 8

Procédure de déploiement . 8

Vérification de la solution . 10

Présentation de la solution. 10

Configuration du cluster Milvus avec Kubernetes sur site . 11

Milvus avec Amazon FSx ONTAP pour NetApp ONTAP - dualité fichier et objet 18

Protection de la base de données vectorielle à l’aide de SnapCenter. 25

Reprise après sinistre avec NetApp SnapMirror . 36

Validation des performances de la base de données vectorielle . 38

Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector . 46

Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector . 46

Cas d’utilisation de bases de données vectorielles . 46

Cas d’utilisation de bases de données vectorielles . 46

Conclusion . 49

Conclusion . 49

Annexe A : Values.yaml . 50

Annexe A : Values.yaml . 50

Annexe B : prepare_data_netapp_new.py . 71

Annexe B : prepare_data_netapp_new.py. 71

Annexe C : verify_data_netapp.py . 75

Annexe C : verify_data_netapp.py. 75

Annexe D : docker-compose.yml . 78

Annexe D : docker-compose.yml . 78

Solution de base de données vectorielle avec
NetApp

Solution de base de données vectorielle avec NetApp

Karthikeyan Nagalingam et Rodrigo Nascimento, NetApp

Ce document fournit une exploration approfondie du déploiement et de la gestion des
bases de données vectorielles, telles que Milvus et pgvecto, une extension PostgreSQL
open source, en utilisant les solutions de stockage de NetApp. Il détaille les directives
d’infrastructure pour l’utilisation du stockage d’objets NetApp ONTAP et StorageGRID et
valide l’application de la base de données Milvus dans AWS FSx ONTAP. Le document
explique la dualité fichier-objet de NetApp et son utilité pour les bases de données
vectorielles et les applications qui prennent en charge les intégrations vectorielles. Il met
l’accent sur les capacités de SnapCenter, le produit de gestion d’entreprise de NetApp,
en offrant des fonctionnalités de sauvegarde et de restauration pour les bases de
données vectorielles, garantissant l’intégrité et la disponibilité des données. Le document
approfondit davantage la solution de cloud hybride de NetApp, en discutant de son rôle
dans la réplication et la protection des données dans les environnements sur site et dans
le cloud. Il comprend des informations sur la validation des performances des bases de
données vectorielles sur NetApp ONTAP et se termine par deux cas d’utilisation
pratiques sur l’IA générative : RAG avec LLM et ChatAI interne de NetApp. Ce document
sert de guide complet pour exploiter les solutions de stockage de NetApp pour la gestion
des bases de données vectorielles.

L’architecture de référence se concentre sur les points suivants :

1. "Introduction"

2. "Présentation de la solution"

3. "Base de données vectorielles"

4. "Exigences technologiques"

5. "Procédure de déploiement"

6. "Présentation de la vérification des solutions"

◦ "Configuration du cluster Milvus avec Kubernetes sur site"

◦ lien : vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html [Milvus avec
Amazon FSx ONTAP pour NetApp ONTAP – dualité fichier et objet]

◦ "Protection de base de données vectorielle à l’aide de NetApp SnapCenter."

◦ "Reprise après sinistre avec NetApp SnapMirror"

◦ "Validation des performances"

7. "Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector"

8. "Cas d’utilisation de bases de données vectorielles"

9. "Conclusion"

1

10. "Annexe A : values.yaml"

11. "Annexe B : prepare_data_netapp_new.py"

12. "Annexe C : verify_data_netapp.py"

13. "Annexe D : docker-compose.yml"

Introduction

Cette section fournit une introduction à la solution de base de données vectorielle pour
NetApp.

Introduction

Les bases de données vectorielles répondent efficacement aux défis conçus pour gérer les complexités de la
recherche sémantique dans les grands modèles de langage (LLM) et l’intelligence artificielle générative (IA).
Contrairement aux systèmes de gestion de données traditionnels, les bases de données vectorielles sont
capables de traiter et de rechercher différents types de données, notamment des images, des vidéos, du texte,
de l’audio et d’autres formes de données non structurées, en utilisant le contenu des données elles-mêmes
plutôt que des étiquettes ou des balises.

Les limites des systèmes de gestion de bases de données relationnelles (SGBDR) sont bien documentées, en
particulier leurs difficultés avec les représentations de données à haute dimension et les données non
structurées courantes dans les applications d’IA. Les SGBDR nécessitent souvent un processus long et sujet
aux erreurs d’aplatissement des données dans des structures plus faciles à gérer, ce qui entraîne des retards
et des inefficacités dans les recherches. Les bases de données vectorielles sont toutefois conçues pour
contourner ces problèmes, en offrant une solution plus efficace et plus précise pour la gestion et la recherche
de données complexes et de grande dimension, facilitant ainsi l’avancement des applications d’IA.

Ce document sert de guide complet pour les clients qui utilisent actuellement ou prévoient d’utiliser des bases
de données vectorielles, détaillant les meilleures pratiques d’utilisation des bases de données vectorielles sur
des plates-formes telles que NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP pour NetApp
ONTAP et SnapCenter. Le contenu fourni ici couvre une gamme de sujets :

• Directives d’infrastructure pour les bases de données vectorielles, comme Milvus, fournies par le stockage
NetApp via NetApp ONTAP et le stockage d’objets StorageGRID .

• Validation de la base de données Milvus dans AWS FSx ONTAP via un magasin de fichiers et d’objets.

• Plonge dans la dualité fichier-objet de NetApp, démontrant son utilité pour les données dans les bases de
données vectorielles ainsi que pour d’autres applications.

• Comment le produit de gestion de la protection des données de NetApp, SnapCenter, offre des
fonctionnalités de sauvegarde et de restauration pour les données de bases de données vectorielles.

• Comment le cloud hybride de NetApp offre la réplication et la protection des données dans les
environnements sur site et cloud.

• Fournit des informations sur la validation des performances des bases de données vectorielles telles que
Milvus et pgvector sur NetApp ONTAP.

• Deux cas d’utilisation spécifiques : Retrieval Augmented Generation (RAG) avec Large Language Models
(LLM) et ChatAI de l’équipe informatique de NetApp , offrant ainsi des exemples pratiques des concepts et
pratiques décrits.

2

Présentation de la solution

Cette section fournit un aperçu de la solution de base de données vectorielle NetApp .

Présentation de la solution

Cette solution présente les avantages et les capacités distinctifs que NetApp apporte pour relever les défis
auxquels sont confrontés les clients de bases de données vectorielles. En tirant parti de NetApp ONTAP,
StorageGRID, des solutions cloud de NetApp et de SnapCenter, les clients peuvent ajouter une valeur
significative à leurs opérations commerciales. Ces outils non seulement répondent aux problèmes existants,
mais améliorent également l’efficacité et la productivité, contribuant ainsi à la croissance globale de
l’entreprise.

Pourquoi NetApp?

• Les offres de NetApp, telles que ONTAP et StorageGRID, permettent la séparation du stockage et du
calcul, permettant une utilisation optimale des ressources en fonction d’exigences spécifiques. Cette
flexibilité permet aux clients de faire évoluer leur stockage de manière indépendante à l’aide des solutions
de stockage NetApp .

• En exploitant les contrôleurs de stockage de NetApp, les clients peuvent efficacement fournir des données
à leur base de données vectorielle à l’aide des protocoles NFS et S3. Ces protocoles facilitent le stockage
des données client et gèrent l’index de la base de données vectorielle, éliminant ainsi le besoin de
plusieurs copies de données accessibles via des méthodes de fichiers et d’objets.

• NetApp ONTAP fournit une prise en charge native du stockage NAS et d’objets auprès des principaux
fournisseurs de services cloud tels qu’AWS, Azure et Google Cloud. Cette large compatibilité garantit une
intégration transparente, permettant la mobilité des données client, l’accessibilité globale, la reprise après
sinistre, l’évolutivité dynamique et des performances élevées.

• Grâce aux solides capacités de gestion des données de NetApp, les clients peuvent être assurés que leurs
données sont bien protégées contre les risques et menaces potentiels. NetApp accorde la priorité à la
sécurité des données, offrant ainsi aux clients la tranquillité d’esprit quant à la sécurité et à l’intégrité de
leurs précieuses informations.

Base de données vectorielles

Cette section couvre la définition et l’utilisation d’une base de données vectorielle dans
les solutions NetApp AI.

Base de données vectorielles

Une base de données vectorielle est un type de base de données spécialisé conçu pour gérer, indexer et
rechercher des données non structurées à l’aide d’intégrations provenant de modèles d’apprentissage
automatique. Au lieu d’organiser les données dans un format tabulaire traditionnel, il organise les données
sous forme de vecteurs de grande dimension, également appelés plongements vectoriels. Cette structure
unique permet à la base de données de gérer des données complexes et multidimensionnelles de manière
plus efficace et plus précise.

L’une des principales capacités d’une base de données vectorielle est son utilisation de l’IA générative pour
effectuer des analyses. Cela inclut les recherches de similarité, où la base de données identifie les points de
données qui ressemblent à une entrée donnée, et la détection d’anomalies, où elle peut repérer les points de
données qui s’écartent considérablement de la norme.

3

De plus, les bases de données vectorielles sont bien adaptées pour gérer des données temporelles ou des
données horodatées. Ce type de données fournit des informations sur « ce » qui s’est produit et quand cela
s’est produit, dans l’ordre et par rapport à tous les autres événements au sein d’un système informatique
donné. Cette capacité à gérer et à analyser des données temporelles rend les bases de données vectorielles
particulièrement utiles pour les applications qui nécessitent une compréhension des événements au fil du
temps.

Avantages de la base de données vectorielle pour le ML et l’IA :

• Recherche à haute dimension : les bases de données vectorielles excellent dans la gestion et la
récupération de données à haute dimension, qui sont souvent générées dans les applications d’IA et de
ML.

• Évolutivité : ils peuvent évoluer efficacement pour gérer de grands volumes de données, soutenant ainsi la
croissance et l’expansion des projets d’IA et de ML.

• Flexibilité : les bases de données vectorielles offrent un haut degré de flexibilité, permettant l’hébergement
de divers types et structures de données.

• Performances : Ils offrent une gestion et une récupération de données hautes performances, essentielles à
la rapidité et à l’efficacité des opérations d’IA et de ML.

• Indexation personnalisable : les bases de données vectorielles offrent des options d’indexation
personnalisables, permettant une organisation et une récupération optimisées des données en fonction de
besoins spécifiques.

Bases de données vectorielles et cas d’utilisation.

Cette section fournit diverses bases de données vectorielles et les détails de leurs cas d’utilisation.

Faiss et ScaNN

Ce sont des bibliothèques qui servent d’outils essentiels dans le domaine de la recherche vectorielle. Ces
bibliothèques offrent des fonctionnalités essentielles à la gestion et à la recherche de données vectorielles, ce
qui en fait des ressources inestimables dans ce domaine spécialisé de la gestion des données.

Elasticsearch

Il s’agit d’un moteur de recherche et d’analyse largement utilisé, qui a récemment intégré des capacités de
recherche vectorielle. Cette nouvelle fonctionnalité améliore ses fonctionnalités, lui permettant de gérer et de
rechercher plus efficacement les données vectorielles.

Pomme de pin

Il s’agit d’une base de données vectorielle robuste dotée d’un ensemble unique de fonctionnalités. Il prend en
charge les vecteurs denses et clairsemés dans sa fonctionnalité d’indexation, ce qui améliore sa flexibilité et
son adaptabilité. L’un de ses principaux atouts réside dans sa capacité à combiner des méthodes de
recherche traditionnelles avec une recherche vectorielle dense basée sur l’IA, créant ainsi une approche de
recherche hybride qui exploite le meilleur des deux mondes.

Principalement basé sur le cloud, Pinecone est conçu pour les applications d’apprentissage automatique et
s’intègre bien à une variété de plates-formes, notamment GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4,
Catgut Plus, Elasticsearch, Haystack, et plus encore. Il est important de noter que Pinecone est une plate-
forme à source fermée et est disponible en tant qu’offre de logiciel en tant que service (SaaS).

Compte tenu de ses capacités avancées, Pinecone est particulièrement bien adapté au secteur de la
cybersécurité, où ses capacités de recherche hautement dimensionnelle et de recherche hybride peuvent être

4

exploitées efficacement pour détecter et répondre aux menaces.

Chroma

Il s’agit d’une base de données vectorielle dotée d’une API principale avec quatre fonctions principales, dont
l’une comprend un magasin de vecteurs de documents en mémoire. Il utilise également la bibliothèque Face
Transformers pour vectoriser les documents, améliorant ainsi sa fonctionnalité et sa polyvalence. Chroma est
conçu pour fonctionner à la fois dans le cloud et sur site, offrant une flexibilité en fonction des besoins des
utilisateurs. Il excelle particulièrement dans les applications liées à l’audio, ce qui en fait un excellent choix
pour les moteurs de recherche basés sur l’audio, les systèmes de recommandation musicale et d’autres cas
d’utilisation liés à l’audio.

Tisser

Il s’agit d’une base de données vectorielle polyvalente qui permet aux utilisateurs de vectoriser leur contenu à
l’aide de ses modules intégrés ou de modules personnalisés, offrant une flexibilité en fonction des besoins
spécifiques. Il propose des solutions entièrement gérées et auto-hébergées, répondant à une variété de
préférences de déploiement.

L’une des principales caractéristiques de Weaviate est sa capacité à stocker à la fois des vecteurs et des
objets, améliorant ainsi ses capacités de gestion des données. Il est largement utilisé pour une gamme
d’applications, notamment la recherche sémantique et la classification des données dans les systèmes ERP.
Dans le secteur du e-commerce, il alimente les moteurs de recherche et de recommandation. Weaviate est
également utilisé pour la recherche d’images, la détection d’anomalies, l’harmonisation automatisée des
données et l’analyse des menaces de cybersécurité, démontrant ainsi sa polyvalence dans plusieurs
domaines.

Redis

Redis est une base de données vectorielle hautes performances connue pour son stockage rapide en
mémoire, offrant une faible latence pour les opérations de lecture-écriture. Cela en fait un excellent choix pour
les systèmes de recommandation, les moteurs de recherche et les applications d’analyse de données qui
nécessitent un accès rapide aux données.

Redis prend en charge diverses structures de données pour les vecteurs, notamment les listes, les ensembles
et les ensembles triés. Il fournit également des opérations vectorielles telles que le calcul des distances entre
les vecteurs ou la recherche d’intersections et d’unions. Ces fonctionnalités sont particulièrement utiles pour la
recherche de similarité, le clustering et les systèmes de recommandation basés sur le contenu.

En termes d’évolutivité et de disponibilité, Redis excelle dans la gestion des charges de travail à haut débit et
offre la réplication des données. Il s’intègre également bien avec d’autres types de données, y compris les
bases de données relationnelles traditionnelles (SGBDR). Redis inclut une fonctionnalité de
publication/abonnement (Pub/Sub) pour les mises à jour en temps réel, ce qui est bénéfique pour la gestion
des vecteurs en temps réel. De plus, Redis est léger et simple à utiliser, ce qui en fait une solution conviviale
pour la gestion des données vectorielles.

Milvus

Il s’agit d’une base de données vectorielle polyvalente qui offre une API semblable à un magasin de
documents, un peu comme MongoDB. Il se distingue par sa prise en charge d’une grande variété de types de
données, ce qui en fait un choix populaire dans les domaines de la science des données et de l’apprentissage
automatique.

L’une des fonctionnalités uniques de Milvus est sa capacité de multi-vectorisation, qui permet aux utilisateurs
de spécifier au moment de l’exécution le type de vecteur à utiliser pour la recherche. De plus, il utilise

5

Knowwhere, une bibliothèque qui se trouve au-dessus d’autres bibliothèques comme Faiss, pour gérer la
communication entre les requêtes et les algorithmes de recherche vectorielle.

Milvus offre également une intégration transparente avec les workflows d’apprentissage automatique, grâce à
sa compatibilité avec PyTorch et TensorFlow. Cela en fait un excellent outil pour une gamme d’applications,
notamment le commerce électronique, l’analyse d’images et de vidéos, la reconnaissance d’objets, la
recherche de similarité d’images et la récupération d’images basée sur le contenu. Dans le domaine du
traitement du langage naturel, Milvus est utilisé pour le regroupement de documents, la recherche sémantique
et les systèmes de réponses aux questions.

Pour cette solution, nous avons choisi Milvus pour la validation de la solution. Pour les performances, nous
avons utilisé à la fois milvus et postgres (pgvecto.rs).

Pourquoi avons-nous choisi Milvus pour cette solution ?

• Open-Source : Milvus est une base de données vectorielle open source, encourageant le développement
et les améliorations pilotés par la communauté.

• Intégration de l’IA : elle exploite l’intégration de la recherche de similarité et des applications d’IA pour
améliorer les fonctionnalités de la base de données vectorielle.

• Gestion de gros volumes : Milvus a la capacité de stocker, d’indexer et de gérer plus d’un milliard de
vecteurs d’intégration générés par des modèles de réseaux neuronaux profonds (DNN) et d’apprentissage
automatique (ML).

• Convivial : il est facile à utiliser, la configuration prenant moins d’une minute. Milvus propose également
des SDK pour différents langages de programmation.

• Vitesse : Il offre des vitesses de récupération ultra-rapides, jusqu’à 10 fois plus rapides que certaines
alternatives.

• Évolutivité et disponibilité : Milvus est hautement évolutif, avec des options d’évolutivité et de mise à
l’échelle selon les besoins.

• Riche en fonctionnalités : il prend en charge différents types de données, le filtrage des attributs, la prise
en charge des fonctions définies par l’utilisateur (UDF), les niveaux de cohérence configurables et le temps
de trajet, ce qui en fait un outil polyvalent pour diverses applications.

Présentation de l’architecture Milvus

6

Cette section fournit des composants et des services de niveau supérieur utilisés dans l’architecture Milvus. *
Couche d’accès – Elle est composée d’un groupe de proxys sans état et sert de couche frontale du système et
de point de terminaison pour les utilisateurs. * Service de coordination – il attribue les tâches aux nœuds de
travail et agit comme le cerveau du système. Il dispose de trois types de coordinateurs : coordonnées racine,
coordonnées de données et coordonnées de requête. * Nœuds de travail : il suit les instructions du service de
coordination et exécute les commandes DML/DDL déclenchées par l’utilisateur. Il dispose de trois types de
nœuds de travail tels que le nœud de requête, le nœud de données et le nœud d’index. * Stockage : il est
responsable de la persistance des données. Il comprend un stockage méta, un courtier de journaux et un
stockage d’objets. Le stockage NetApp tel que ONTAP et StorageGRID fournit un stockage d’objets et un
stockage basé sur des fichiers à Milvus pour les données client et les données de base de données
vectorielles.

Exigences technologiques

Cette section fournit un aperçu des exigences relatives à la solution de base de données
vectorielle NetApp .

Exigences technologiques

Les configurations matérielles et logicielles décrites ci-dessous ont été utilisées pour la majorité des validations
effectuées dans ce document, à l’exception des performances. Ces configurations servent de guide pour vous
aider à configurer votre environnement. Veuillez toutefois noter que les composants spécifiques peuvent varier
en fonction des exigences individuelles des clients.

Configuration matérielle requise

7

Matériel Détails

Paire de baies de stockage NetApp AFF HA * A800 * ONTAP 9.14.1 * 48 x 3,49 To SSD-NVM *
Deux volumes de groupe flexibles : métadonnées et
données. * Le volume NFS de métadonnées dispose
de 12 volumes persistants de 250 Go. * Les données
sont un volume ONTAP NAS S3

6 x FUJITSU PRIMERGY RX2540 M4 * 64 processeurs * Processeur Intel® Xeon® Gold
6142 à 2,60 GHz * Mémoire physique de 256 Go * 1
port réseau 100 GbE

Réseautage 100 GbE

StorageGRID * 1 x SG100, 3xSGF6024 * 3 x 24 x 7,68 To

Configuration logicielle requise

Logiciels Détails

amas de Milvus * GRAPHIQUE - milvus-4.1.11. * Version APP – 2.3.4
* Bundles dépendants tels que bookkeeper,
zookeeper, pulsar, etcd, proxy, querynode, worker

Kubernetes * Cluster K8s à 5 nœuds * 1 nœud maître et 4 nœuds
travailleurs * Version – 1.7.2

Python *3.10.12.

Procédure de déploiement

Cette section décrit la procédure de déploiement de la solution de base de données
vectorielle pour NetApp.

Procédure de déploiement

Dans cette section de déploiement, nous avons utilisé la base de données vectorielle Milvus avec Kubernetes
pour la configuration du laboratoire comme ci-dessous.

8

Le stockage NetApp fournit le stockage au cluster pour conserver les données des clients et les données du
cluster Milvus.

Configuration du stockage NetApp – ONTAP

• Initialisation du système de stockage

• Création d’une machine virtuelle de stockage (SVM)

• Affectation des interfaces réseau logiques

• Configuration et licence NFS, S3

Veuillez suivre les étapes ci-dessous pour NFS (Network File System) :

1. Créez un volume FlexGroup pour NFSv4. Dans notre configuration pour cette validation, nous avons utilisé
48 SSD, 1 SSD dédié au volume racine du contrôleur et 47 SSD répartis pour NFSv4]].Vérifiez que la
politique d’exportation NFS pour le volume FlexGroup dispose d’autorisations de lecture/écriture pour le
réseau de nœuds Kubernetes (K8s). Si ces autorisations ne sont pas en place, accordez des autorisations
de lecture/écriture (rw) pour le réseau de nœuds K8s.

2. Sur tous les nœuds K8s, créez un dossier et montez le volume FlexGroup sur ce dossier via une interface
logique (LIF) sur chaque nœud K8s.

Veuillez suivre les étapes ci-dessous pour NAS S3 (Network Attached Storage Simple Storage Service) :

9

1. Créez un volume FlexGroup pour NFS.

2. Configurez un serveur de magasin d’objets avec HTTP activé et le statut d’administrateur défini sur « up »
à l’aide de la commande « vserver object-store-server create ». Vous avez la possibilité d’activer HTTPS et
de définir un port d’écoute personnalisé.

3. Créez un utilisateur object-store-server à l’aide de la commande « vserver object-store-server user create
-user <username> ».

4. Pour obtenir la clé d’accès et la clé secrète, vous pouvez exécuter la commande suivante : « set diag;
vserver object-store-server user show -user <username> ». Cependant, à l’avenir, ces clés seront fournies
lors du processus de création de l’utilisateur ou pourront être récupérées à l’aide d’appels d’API REST.

5. Créez un groupe object-store-server à l’aide de l’utilisateur créé à l’étape 2 et accordez l’accès. Dans cet
exemple, nous avons fourni « FullAccess ».

6. Créez un bucket NAS en définissant son type sur « nas » et en fournissant le chemin d’accès au volume
NFSv3. Il est également possible d’utiliser un bucket S3 à cette fin.

Configuration du stockage NetApp – StorageGRID

1. Installez le logiciel storageGRID.

2. Créez un locataire et un bucket.

3. Créez un utilisateur avec l’autorisation requise.

Veuillez vérifier plus de détails dans https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Vérification de la solution

Présentation de la solution

Nous avons réalisé une validation complète de la solution axée sur cinq domaines clés,
dont les détails sont décrits ci-dessous. Chaque section examine les défis auxquels sont
confrontés les clients, les solutions fournies par NetApp et les avantages qui en
découlent pour le client.

1. "Configuration du cluster Milvus avec Kubernetes sur site"Les défis des clients sont de pouvoir évoluer de
manière indépendante en matière de stockage et de calcul, de gestion efficace des infrastructures et de
gestion des données. Dans cette section, nous détaillons le processus d’installation d’un cluster Milvus sur
Kubernetes, en utilisant un contrôleur de stockage NetApp pour les données du cluster et les données
client.

2. lien:vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html[Milvus avec Amazon FSx
ONTAP pour NetApp ONTAP – dualité fichier et objet] Dans cette section, pourquoi nous devons déployer
une base de données vectorielle dans le cloud ainsi que les étapes pour déployer une base de données
vectorielle (milvus autonome) dans Amazon FSx ONTAP pour NetApp ONTAP dans des conteneurs
Docker.

3. "Protection de base de données vectorielle à l’aide de NetApp SnapCenter."Dans cette section, nous
examinons comment SnapCenter protège les données de la base de données vectorielle et les données
Milvus résidant dans ONTAP. Pour cet exemple, nous avons utilisé un bucket NAS (milvusdbvol1) dérivé
d’un volume NFS ONTAP (vol1) pour les données client et un volume NFS distinct (vectordbpv) pour les
données de configuration du cluster Milvus.

4. "Reprise après sinistre avec NetApp SnapMirror"Dans cette section, nous discutons de l’importance de la
reprise après sinistre (DR) pour la base de données vectorielle et de la manière dont le produit de reprise

10

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

après sinistre NetApp Snapmirror fournit une solution DR à la base de données vectorielle.

5. "Validation des performances"Dans cette section, nous visons à approfondir la validation des performances
des bases de données vectorielles, telles que Milvus et pgvecto.rs, en nous concentrant sur leurs
caractéristiques de performances de stockage telles que le profil d’E/S et le comportement du contrôleur
de stockage NetApp à la prise en charge des charges de travail RAG et d’inférence au sein du cycle de vie
LLM. Nous évaluerons et identifierons les différenciateurs de performances lorsque ces bases de données
seront combinées avec la solution de stockage ONTAP . Notre analyse sera basée sur des indicateurs de
performance clés, tels que le nombre de requêtes traitées par seconde (QPS).

Configuration du cluster Milvus avec Kubernetes sur site

Cette section décrit la configuration du cluster Milvus pour la solution de base de
données vectorielle pour NetApp.

Configuration du cluster Milvus avec Kubernetes sur site

Les défis des clients sont de pouvoir évoluer indépendamment en termes de stockage et de calcul, de gestion
efficace de l’infrastructure et de gestion des données. Kubernetes et les bases de données vectorielles forment
ensemble une solution puissante et évolutive pour la gestion des opérations de données volumineuses.
Kubernetes optimise les ressources et gère les conteneurs, tandis que les bases de données vectorielles
gèrent efficacement les données de grande dimension et les recherches de similarité. Cette combinaison
permet un traitement rapide de requêtes complexes sur de grands ensembles de données et s’adapte de
manière transparente aux volumes de données croissants, ce qui la rend idéale pour les applications Big Data
et les charges de travail d’IA.

1. Dans cette section, nous détaillons le processus d’installation d’un cluster Milvus sur Kubernetes, en
utilisant un contrôleur de stockage NetApp pour les données du cluster et les données client.

2. Pour installer un cluster Milvus, des volumes persistants (PV) sont nécessaires pour stocker les données
de divers composants du cluster Milvus. Ces composants incluent etcd (trois instances), pulsar-bookie-
journal (trois instances), pulsar-bookie-ledgers (trois instances) et pulsar-zookeeper-data (trois instances).

Dans le cluster Milvus, nous pouvons utiliser Pulsar ou Kafka pour le moteur sous-jacent
prenant en charge le stockage fiable et la publication/l’abonnement des flux de messages
du cluster Milvus. Pour Kafka avec NFS, NetApp a apporté des améliorations à ONTAP
9.12.1 et versions ultérieures. Ces améliorations, ainsi que les modifications apportées à
NFSv4.1 et Linux incluses dans RHEL 8.7 ou 9.1 et versions ultérieures, résolvent le
problème de « renommage inutile » qui peut survenir lors de l’exécution de Kafka sur NFS.
Si vous souhaitez obtenir des informations plus détaillées sur l’exécution de Kafka avec la
solution NetApp NFS, veuillez consulter :"ce lien" .

3. Nous avons créé un seul volume NFS à partir de NetApp ONTAP et établi 12 volumes persistants, chacun
avec 250 Go de stockage. La taille de stockage peut varier en fonction de la taille du cluster ; par exemple,
nous avons un autre cluster où chaque PV dispose de 50 Go. Veuillez vous référer ci-dessous à l’un des
fichiers PV YAML pour plus de détails ; nous avions 12 de ces fichiers au total. Dans chaque fichier, le
storageClassName est défini sur « default », et le stockage et le chemin sont uniques à chaque PV.

11

../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Exécutez la commande « kubectl apply » pour chaque fichier PV YAML pour créer les volumes persistants,
puis vérifiez leur création à l’aide de « kubectl get pv ».

12

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. Pour stocker les données client, Milvus prend en charge les solutions de stockage d’objets telles que
MinIO, Azure Blob et S3. Dans ce guide, nous utilisons S3. Les étapes suivantes s’appliquent à la fois au
magasin d’objets ONTAP S3 et StorageGRID . Nous utilisons Helm pour déployer le cluster Milvus.
Téléchargez le fichier de configuration, values.yaml, à partir de l’emplacement de téléchargement de
Milvus. Veuillez vous référer à l’annexe pour le fichier values.yaml que nous avons utilisé dans ce
document.

6. Assurez-vous que la « classe de stockage » est définie sur « par défaut » dans chaque section, y compris
celles du journal, etcd, zookeeper et bookkeeper.

7. Dans la section MinIO, désactivez MinIO.

8. Créez un bucket NAS à partir du stockage d’objets ONTAP ou StorageGRID et incluez-les dans un S3
externe avec les informations d’identification de stockage d’objets.

13

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

9. Avant de créer le cluster Milvus, assurez-vous que le PersistentVolumeClaim (PVC) ne dispose d’aucune
ressource préexistante.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilisez Helm et le fichier de configuration values.yaml pour installer et démarrer le cluster Milvus.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Vérifiez l’état des PersistentVolumeClaims (PVC).

14

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Vérifiez l’état des pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Veuillez vous assurer que l’état des pods est « en cours d’exécution » et fonctionne comme prévu

13. Écriture et lecture de données de test dans le stockage d’objets Milvus et NetApp .

◦ Écrivez des données à l’aide du programme Python « prepare_data_netapp_new.py ».

15

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Lisez les données à l’aide du fichier Python « verify_data_netapp.py ».

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

16

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Sur la base de la validation ci-dessus, l’intégration de Kubernetes avec une base de données
vectorielle, comme démontré par le déploiement d’un cluster Milvus sur Kubernetes à l’aide d’un
contrôleur de stockage NetApp , offre aux clients une solution robuste, évolutive et efficace pour la
gestion des opérations de données à grande échelle. Cette configuration offre aux clients la possibilité
de gérer des données de grande dimension et d’exécuter des requêtes complexes rapidement et
efficacement, ce qui en fait une solution idéale pour les applications Big Data et les charges de travail
d’IA. L’utilisation de volumes persistants (PV) pour divers composants de cluster, ainsi que la création
d’un volume NFS unique à partir de NetApp ONTAP, garantissent une utilisation optimale des

17

ressources et une gestion des données. Le processus de vérification de l’état des
PersistentVolumeClaims (PVC) et des pods, ainsi que le test de l’écriture et de la lecture des données,
offrent aux clients l’assurance d’opérations de données fiables et cohérentes. L’utilisation du stockage
d’objets ONTAP ou StorageGRID pour les données client améliore encore l’accessibilité et la sécurité
des données. Dans l’ensemble, cette configuration offre aux clients une solution de gestion de
données résiliente et performante, capable de s’adapter de manière transparente à leurs besoins
croissants en matière de données.

Milvus avec Amazon FSx ONTAP pour NetApp ONTAP - dualité fichier et objet

Cette section décrit la configuration du cluster milvus avec Amazon FSx ONTAP pour la
solution de base de données vectorielle pour NetApp.

Milvus avec Amazon FSx ONTAP pour NetApp ONTAP – dualité fichier et objet

Dans cette section, pourquoi nous devons déployer une base de données vectorielle dans le cloud ainsi que
les étapes pour déployer une base de données vectorielle (milvus autonome) dans Amazon FSx ONTAP pour
NetApp ONTAP dans des conteneurs Docker.

Le déploiement d’une base de données vectorielle dans le cloud offre plusieurs avantages importants, en
particulier pour les applications qui nécessitent la gestion de données de grande dimension et l’exécution de
recherches de similarité. Tout d’abord, le déploiement basé sur le cloud offre une évolutivité, permettant un
ajustement facile des ressources pour correspondre aux volumes de données et aux charges de requêtes
croissants. Cela garantit que la base de données peut gérer efficacement la demande accrue tout en
maintenant des performances élevées. Deuxièmement, le déploiement dans le cloud offre une haute
disponibilité et une reprise après sinistre, car les données peuvent être répliquées sur différents emplacements
géographiques, minimisant ainsi le risque de perte de données et garantissant un service continu même en
cas d’événements inattendus. Troisièmement, il offre une rentabilité optimale, car vous ne payez que pour les
ressources que vous utilisez et pouvez augmenter ou diminuer votre capacité en fonction de la demande,
évitant ainsi le besoin d’un investissement initial substantiel en matériel. Enfin, le déploiement d’une base de
données vectorielle dans le cloud peut améliorer la collaboration, car les données peuvent être consultées et
partagées de n’importe où, facilitant le travail en équipe et la prise de décision basée sur les données. Veuillez
vérifier l’architecture du milvus autonome avec Amazon FSx ONTAP pour NetApp ONTAP utilisé dans cette
validation.

18

1. Créez une instance Amazon FSx ONTAP pour NetApp ONTAP et notez les détails du VPC, des groupes
de sécurité VPC et du sous-réseau. Ces informations seront nécessaires lors de la création d’une instance
EC2. Vous pouvez trouver plus de détails ici - https://us-east-1.console.aws.amazon.com/fsx/home?
region=us-east-1#file-system-create

2. Créez une instance EC2 en vous assurant que le VPC, les groupes de sécurité et le sous-réseau
correspondent à ceux de l’instance Amazon FSx ONTAP pour NetApp ONTAP .

3. Installez nfs-common à l’aide de la commande « apt-get install nfs-common » et mettez à jour les
informations du package à l’aide de « sudo apt-get update ».

4. Créez un dossier de montage et montez Amazon FSx ONTAP pour NetApp ONTAP dessus.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Installez Docker et Docker Compose à l’aide de « apt-get install ».

6. Configurez un cluster Milvus basé sur le fichier docker-compose.yaml, qui peut être téléchargé à partir du
site Web de Milvus.

19

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. Dans la section « volumes » du fichier docker-compose.yml, mappez le point de montage NetApp NFS au
chemin du conteneur Milvus correspondant, en particulier dans etcd, minio et standalone.Check"Annexe
D : docker-compose.yml" pour plus de détails sur les changements dans yml

8. Vérifiez les dossiers et fichiers montés.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Exécutez « docker-compose up -d » à partir du répertoire contenant le fichier docker-compose.yml.

10. Vérifiez l’état du conteneur Milvus.

20

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. Pour valider la fonctionnalité de lecture et d’écriture de la base de données vectorielle et de ses données
dans Amazon FSx ONTAP pour NetApp ONTAP, nous avons utilisé le SDK Python Milvus et un exemple
de programme de PyMilvus. Installez les packages nécessaires en utilisant « apt-get install python3-
numpy python3-pip » et installez PyMilvus en utilisant « pip3 install pymilvus ».

12. Validez les opérations d’écriture et de lecture de données depuis Amazon FSx ONTAP pour NetApp
ONTAP dans la base de données vectorielle.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

21

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Vérifiez l’opération de lecture à l’aide du script verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

22

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

23

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. Si le client souhaite accéder (lire) aux données NFS testées dans la base de données vectorielle via le
protocole S3 pour les charges de travail d’IA, cela peut être validé à l’aide d’un programme Python simple.
Un exemple de cela pourrait être une recherche de similarité d’images provenant d’une autre application
comme mentionné dans l’image qui se trouve au début de cette section.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

24

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

Cette section montre efficacement comment les clients peuvent déployer et exploiter une configuration
Milvus autonome dans des conteneurs Docker, en utilisant NetApp FSx ONTAP d’Amazon pour le
stockage de données NetApp ONTAP . Cette configuration permet aux clients d’exploiter la puissance des
bases de données vectorielles pour gérer des données de grande dimension et exécuter des requêtes
complexes, le tout dans l’environnement évolutif et efficace des conteneurs Docker. En créant une instance
Amazon FSx ONTAP pour NetApp ONTAP et une instance EC2 correspondante, les clients peuvent
garantir une utilisation optimale des ressources et une gestion des données. La validation réussie des
opérations d’écriture et de lecture de données de FSx ONTAP dans la base de données vectorielle offre
aux clients l’assurance d’opérations de données fiables et cohérentes. De plus, la possibilité de répertorier
(lire) les données des charges de travail d’IA via le protocole S3 offre une meilleure accessibilité aux
données. Ce processus complet offre donc aux clients une solution robuste et efficace pour gérer leurs
opérations de données à grande échelle, en exploitant les capacités d’Amazon FSx ONTAP pour NetApp
ONTAP.

Protection de la base de données vectorielle à l’aide de SnapCenter

Cette section décrit comment assurer la protection des données pour la base de données
vectorielle à l’aide de NetApp SnapCenter.

Protection de base de données vectorielle à l’aide de NetApp SnapCenter.

Par exemple, dans l’industrie de la production cinématographique, les clients possèdent souvent des données
intégrées critiques telles que des fichiers vidéo et audio. La perte de ces données, due à des problèmes tels

25

que des pannes de disque dur, peut avoir un impact significatif sur leurs opérations, mettant potentiellement en
péril des entreprises de plusieurs millions de dollars. Nous avons rencontré des cas où un contenu inestimable
a été perdu, entraînant des perturbations et des pertes financières importantes. Assurer la sécurité et l’intégrité
de ces données essentielles est donc d’une importance primordiale dans ce secteur. Dans cette section, nous
examinons comment SnapCenter protège les données de la base de données vectorielle et les données
Milvus résidant dans ONTAP. Pour cet exemple, nous avons utilisé un bucket NAS (milvusdbvol1) dérivé d’un
volume NFS ONTAP (vol1) pour les données client et un volume NFS distinct (vectordbpv) pour les données
de configuration du cluster Milvus. Veuillez vérifier le"ici" pour le flux de travail de sauvegarde Snapcenter

1. Configurez l’hôte qui sera utilisé pour exécuter les commandes SnapCenter .

2. Installez et configurez le plugin de stockage. À partir de l’hôte ajouté, sélectionnez « Plus d’options ».
Accédez au plugin de stockage téléchargé et sélectionnez-le dans le"Boutique d’automatisation NetApp" .
Installez le plugin et enregistrez la configuration.

26

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Configurer le système de stockage et le volume : ajoutez le système de stockage sous « Système de
stockage » et sélectionnez la SVM (machine virtuelle de stockage). Dans cet exemple, nous avons choisi «
vs_nvidia ».

4. Établissez une ressource pour la base de données vectorielle, en intégrant une politique de sauvegarde et
un nom d’instantané personnalisé.

◦ Activez la sauvegarde du groupe de cohérence avec les valeurs par défaut et activez SnapCenter sans
cohérence du système de fichiers.

◦ Dans la section Empreinte de stockage, sélectionnez les volumes associés aux données client de la
base de données vectorielle et aux données du cluster Milvus. Dans notre exemple, il s’agit de « vol1 »
et « vectordbpv ».

◦ Créez une politique de protection de la base de données vectorielle et protégez les ressources de la
base de données vectorielle à l’aide de la politique.

27

5. Insérez des données dans le bucket NAS S3 à l’aide d’un script Python. Dans notre cas, nous avons
modifié le script de sauvegarde fourni par Milvus, à savoir « prepare_data_netapp.py », et exécuté la
commande « sync » pour vider les données du système d’exploitation.

28

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Vérifiez les données dans le bucket NAS S3. Dans notre exemple, les fichiers avec l’horodatage « 2024-
04-08 21:22 » ont été créés par le script « prepare_data_netapp.py ».

29

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Lancer une sauvegarde à l’aide de l’instantané du groupe de cohérence (CG) à partir de la ressource
« milvusdb »

30

8. Pour tester la fonctionnalité de sauvegarde, nous avons soit ajouté une nouvelle table après le processus
de sauvegarde, soit supprimé certaines données du NFS (bucket NAS S3).

Pour ce test, imaginez un scénario dans lequel quelqu’un a créé une nouvelle collection inutile ou
inappropriée après la sauvegarde. Dans un tel cas, nous devrions rétablir la base de données vectorielle à
son état antérieur à l’ajout de la nouvelle collection. Par exemple, de nouvelles collections telles que
« hello_milvus_netapp_sc_testnew » et « hello_milvus_netapp_sc_testnew2 » ont été insérées.

31

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Exécutez une restauration complète du bucket NAS S3 à partir de l’instantané précédent.

32

10. Utilisez un script Python pour vérifier les données des collections « hello_milvus_netapp_sc_test » et
« hello_milvus_netapp_sc_test2 ».

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

33

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

34

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Vérifiez que la collection inutile ou inappropriée n’est plus présente dans la base de données.

35

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

En conclusion, l’utilisation de SnapCenter de NetApp pour protéger les données de bases de données
vectorielles et les données Milvus résidant dans ONTAP offre des avantages significatifs aux clients, en
particulier dans les secteurs où l’intégrité des données est primordiale, comme la production
cinématographique. La capacité de SnapCenter à créer des sauvegardes cohérentes et à effectuer des
restaurations complètes des données garantit que les données critiques, telles que les fichiers vidéo et audio
intégrés, sont protégées contre les pertes dues à des pannes de disque dur ou à d’autres problèmes. Cela
permet non seulement d’éviter les perturbations opérationnelles, mais également de se prémunir contre des
pertes financières importantes.

Dans cette section, nous avons démontré comment SnapCenter peut être configuré pour protéger les données
résidant dans ONTAP, y compris la configuration des hôtes, l’installation et la configuration des plugins de
stockage et la création d’une ressource pour la base de données vectorielle avec un nom d’instantané
personnalisé. Nous avons également montré comment effectuer une sauvegarde à l’aide de l’instantané du
groupe de cohérence et vérifier les données dans le bucket NAS S3.

De plus, nous avons simulé un scénario dans lequel une collection inutile ou inappropriée a été créée après la
sauvegarde. Dans de tels cas, la capacité de SnapCenter à effectuer une restauration complète à partir d’un
instantané précédent garantit que la base de données vectorielle peut être rétablie à son état avant l’ajout de
la nouvelle collection, préservant ainsi l’intégrité de la base de données. Cette capacité à restaurer des
données à un moment précis est inestimable pour les clients, leur offrant l’assurance que leurs données sont
non seulement sécurisées mais également correctement conservées. Ainsi, le produit SnapCenter de NetApp
offre aux clients une solution robuste et fiable pour la protection et la gestion des données.

Reprise après sinistre avec NetApp SnapMirror

Cette section décrit la reprise après sinistre (DR) avec SnapMirror pour la solution de
base de données vectorielle pour NetApp.

36

Reprise après sinistre avec NetApp SnapMirror

La reprise après sinistre est essentielle pour maintenir l’intégrité et la disponibilité d’une base de données
vectorielle, en particulier compte tenu de son rôle dans la gestion de données de grande dimension et
l’exécution de recherches de similarité complexes. Une stratégie de reprise après sinistre bien planifiée et
mise en œuvre garantit que les données ne sont pas perdues ou compromises en cas d’incidents imprévus,
tels que des pannes matérielles, des catastrophes naturelles ou des cyberattaques. Cela est particulièrement
important pour les applications s’appuyant sur des bases de données vectorielles, où la perte ou la corruption
des données pourrait entraîner des perturbations opérationnelles et des pertes financières importantes. De
plus, un plan de reprise après sinistre robuste garantit également la continuité des activités en minimisant les
temps d’arrêt et en permettant la restauration rapide des services. Ceci est réalisé grâce au produit de
réplication de données NetApp SnapMirrror sur différents emplacements géographiques, à des sauvegardes
régulières et à des mécanismes de basculement. Par conséquent, la reprise après sinistre n’est pas seulement
une mesure de protection, mais un élément essentiel d’une gestion responsable et efficace des bases de
données vectorielles.

SnapMirror de NetApp fournit la réplication des données d’un contrôleur de stockage NetApp ONTAP vers un
autre, principalement utilisé pour la reprise après sinistre (DR) et les solutions hybrides. Dans le contexte
d’une base de données vectorielle, cet outil facilite la transition fluide des données entre les environnements
sur site et cloud. Cette transition est réalisée sans nécessiter de conversion de données ni de refactorisation
d’application, améliorant ainsi l’efficacité et la flexibilité de la gestion des données sur plusieurs plates-formes.

La solution hybride NetApp dans un scénario de base de données vectorielle peut apporter davantage
d’avantages :

1. Évolutivité : la solution cloud hybride de NetApp offre la possibilité de faire évoluer vos ressources en
fonction de vos besoins. Vous pouvez utiliser des ressources sur site pour des charges de travail
régulières et prévisibles et des ressources cloud telles qu’Amazon Amazon FSx ONTAP pour NetApp
ONTAP et Google Cloud NetApp Volume (NetApp Volumes) pour les heures de pointe ou les charges
inattendues.

2. Efficacité des coûts : le modèle de cloud hybride de NetApp vous permet d’optimiser vos coûts en utilisant
des ressources sur site pour les charges de travail régulières et en payant uniquement pour les ressources
cloud lorsque vous en avez besoin. Ce modèle de paiement à l’utilisation peut être très rentable avec une
offre de service NetApp instaclustr. Pour les fournisseurs de services cloud sur site et majeurs, instaclustr
fournit une assistance et des conseils.

37

3. Flexibilité : le cloud hybride de NetApp vous offre la flexibilité de choisir où traiter vos données. Par
exemple, vous pouvez choisir d’effectuer des opérations vectorielles complexes sur site, où vous disposez
d’un matériel plus puissant, et des opérations moins intensives dans le cloud.

4. Continuité des activités : en cas de sinistre, le fait de disposer de vos données dans un cloud hybride
NetApp peut garantir la continuité des activités. Vous pouvez rapidement passer au cloud si vos
ressources sur site sont affectées. Nous pouvons exploiter NetApp SnapMirror pour déplacer les données
du site vers le cloud et vice versa.

5. Innovation : les solutions de cloud hybride de NetApp peuvent également permettre une innovation plus
rapide en fournissant un accès à des services et technologies cloud de pointe. Les innovations NetApp
dans le cloud telles qu’Amazon Amazon FSx ONTAP pour NetApp ONTAP, Azure NetApp Files et Google
Cloud NetApp Volumes sont des produits innovants et des NAS préférés des fournisseurs de services
cloud.

Validation des performances de la base de données vectorielle

Cette section met en évidence la validation des performances qui a été effectuée sur la
base de données vectorielles.

Validation des performances

La validation des performances joue un rôle essentiel dans les bases de données vectorielles et les systèmes
de stockage, servant de facteur clé pour garantir un fonctionnement optimal et une utilisation efficace des
ressources. Les bases de données vectorielles, connues pour gérer des données de grande dimension et
exécuter des recherches de similarité, doivent maintenir des niveaux de performances élevés pour traiter des
requêtes complexes rapidement et avec précision. La validation des performances permet d’identifier les
goulots d’étranglement, d’affiner les configurations et de garantir que le système peut gérer les charges
attendues sans dégradation du service. De même, dans les systèmes de stockage, la validation des
performances est essentielle pour garantir que les données sont stockées et récupérées efficacement, sans
problèmes de latence ni goulots d’étranglement susceptibles d’avoir un impact sur les performances globales
du système. Il permet également de prendre des décisions éclairées sur les mises à niveau ou les
modifications nécessaires à l’infrastructure de stockage. Par conséquent, la validation des performances est
un aspect crucial de la gestion du système, contribuant de manière significative au maintien d’une qualité de
service élevée, de l’efficacité opérationnelle et de la fiabilité globale du système.

Dans cette section, nous visons à approfondir la validation des performances des bases de données
vectorielles, telles que Milvus et pgvecto.rs, en nous concentrant sur leurs caractéristiques de performances
de stockage telles que le profil d’E/S et le comportement du contrôleur de stockage NetApp à la prise en
charge des charges de travail RAG et d’inférence au sein du cycle de vie LLM. Nous évaluerons et
identifierons les différenciateurs de performances lorsque ces bases de données seront combinées avec la
solution de stockage ONTAP . Notre analyse sera basée sur des indicateurs de performance clés, tels que le
nombre de requêtes traitées par seconde (QPS).

Veuillez consulter la méthodologie utilisée pour milvus et les progrès ci-dessous.

Détails Milvus (autonome et cluster) Postgres(pgvecto.rs) #

version 2.3.2 0.2.0

Système de fichiers XFS sur les LUN iSCSI

Générateur de charge de travail "VectorDB-Bench"– v0.0.5

38

https://github.com/zilliztech/VectorDBBench

Ensembles de données Ensemble de données LAION * 10
millions d’intégrations * 768
dimensions * Taille de l’ensemble
de données d’environ 300 Go

Contrôleur de stockage AFF 800 * Version – 9.14.1 * 4 x
100GbE – pour milvus et 2x
100GbE pour postgres * iscsi

VectorDB-Bench avec cluster autonome Milvus

nous avons effectué la validation des performances suivante sur le cluster autonome milvus avec vectorDB-
Bench. La connectivité réseau et serveur du cluster autonome milvus est ci-dessous.

Dans cette section, nous partageons nos observations et résultats des tests de la base de données autonome
Milvus. . Nous avons sélectionné DiskANN comme type d’index pour ces tests. . L’ingestion, l’optimisation et la
création d’index pour un ensemble de données d’environ 100 Go ont pris environ 5 heures. Pendant la
majeure partie de cette durée, le serveur Milvus, équipé de 20 cœurs (ce qui équivaut à 40 vcpu lorsque
Hyper-Threading est activé), fonctionnait à sa capacité CPU maximale de 100 %. Nous avons constaté que
DiskANN est particulièrement important pour les grands ensembles de données qui dépassent la taille de la
mémoire système. . Dans la phase de requête, nous avons observé un taux de requêtes par seconde (QPS)
de 10,93 avec un rappel de 0,9987. La latence du 99e percentile pour les requêtes a été mesurée à 708,2
millisecondes.

Du point de vue du stockage, la base de données a émis environ 1 000 opérations/s pendant les phases
d’ingestion, d’optimisation post-insertion et de création d’index. Dans la phase de requête, il a demandé 32
000 opérations/sec.

La section suivante présente les mesures de performances de stockage.

Phase de charge de travail Métrique Valeur

Ingestion de données et
optimisation post-insertion

Op E/S par sec < 1 000

39

Phase de charge de travail Métrique Valeur

Latence < 400 unités d’utilisation

Charge de travail Mix lecture/écriture, principalement
écriture

Taille des E/S 64 Ko

Requête Op E/S par sec Pic à 32 000

Latence < 400 unités d’utilisation

Charge de travail Lecture à 100 % en cache

Taille des E/S Principalement 8 Ko

Le résultat de vectorDB-bench est ci-dessous.

D’après la validation des performances de l’instance autonome Milvus, il est évident que la configuration

40

actuelle est insuffisante pour prendre en charge un ensemble de données de 5 millions de vecteurs avec une
dimensionnalité de 1536. Nous avons déterminé que le stockage possède des ressources adéquates et ne
constitue pas un goulot d’étranglement dans le système.

VectorDB-Bench avec cluster Milvus

Dans cette section, nous discutons du déploiement d’un cluster Milvus dans un environnement Kubernetes.
Cette configuration Kubernetes a été construite sur un déploiement VMware vSphere, qui hébergeait les
nœuds maître et de travail Kubernetes.

Les détails des déploiements VMware vSphere et Kubernetes sont présentés dans les sections suivantes.

41

Dans cette section, nous présentons nos observations et résultats issus des tests de la base de données
Milvus. * Le type d’index utilisé était DiskANN. * Le tableau ci-dessous fournit une comparaison entre les
déploiements autonomes et en cluster lorsque l’on travaille avec 5 millions de vecteurs à une dimensionnalité
de 1536. Nous avons observé que le temps nécessaire à l’ingestion des données et à l’optimisation post-
insertion était plus faible dans le déploiement en cluster. La latence du 99e percentile pour les requêtes a été
réduite de six fois dans le déploiement du cluster par rapport à la configuration autonome. * Bien que le taux
de requêtes par seconde (QPS) soit plus élevé dans le déploiement du cluster, il n’était pas au niveau
souhaité.

Les images ci-dessous fournissent une vue de diverses mesures de stockage, notamment la latence du cluster

42

de stockage et le nombre total d’IOPS (opérations d’entrée/sortie par seconde).

La section suivante présente les principales mesures de performances de stockage.

Phase de charge de travail Métrique Valeur

Ingestion de données et
optimisation post-insertion

Op E/S par sec < 1 000

Latence < 400 unités d’utilisation

Charge de travail Mix lecture/écriture, principalement
écriture

Taille des E/S 64 Ko

Requête Op E/S par sec Pic à 147 000

Latence < 400 unités d’utilisation

Charge de travail Lecture à 100 % en cache

Taille des E/S Principalement 8 Ko

Sur la base de la validation des performances du Milvus autonome et du cluster Milvus, nous présentons les
détails du profil d’E/S de stockage. * Nous avons observé que le profil d’E/S reste cohérent dans les
déploiements autonomes et en cluster. * La différence observée dans les IOPS de pointe peut être attribuée au
plus grand nombre de clients dans le déploiement du cluster.

vectorDB-Bench avec Postgres (pgvecto.rs)

Nous avons effectué les actions suivantes sur PostgreSQL (pgvecto.rs) en utilisant VectorDB-Bench : Les
détails concernant la connectivité réseau et serveur de PostgreSQL (en particulier, pgvecto.rs) sont les
suivants :

43

Dans cette section, nous partageons nos observations et résultats des tests de la base de données
PostgreSQL, en particulier à l’aide de pgvecto.rs. * Nous avons sélectionné HNSW comme type d’index pour
ces tests car au moment des tests, DiskANN n’était pas disponible pour pgvecto.rs. * Au cours de la phase
d’ingestion des données, nous avons chargé l’ensemble de données Cohere, qui se compose de 10 millions
de vecteurs d’une dimensionnalité de 768. Ce processus a pris environ 4,5 heures. * Dans la phase de
requête, nous avons observé un taux de requêtes par seconde (QPS) de 1 068 avec un rappel de 0,6344. La
latence du 99e percentile pour les requêtes a été mesurée à 20 millisecondes. Pendant la majeure partie de
l’exécution, le processeur client fonctionnait à 100 % de sa capacité.

Les images ci-dessous fournissent une vue de diverses mesures de stockage, notamment la latence du cluster
de stockage et le nombre total d’IOPS (opérations d’entrée/sortie par seconde).

 The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["Figure montrant une boîte de

dialogue d'entrée/sortie ou représentant un contenu écrit"]

Comparaison des performances entre Milvus et Postgres sur Vector DB Bench

44

Sur la base de notre validation des performances de Milvus et PostgreSQL à l’aide de VectorDBBench, nous
avons observé ce qui suit :

• Type d’indice : HNSW

• Ensemble de données : Cohere avec 10 millions de vecteurs à 768 dimensions

Nous avons constaté que pgvecto.rs atteignait un taux de requêtes par seconde (QPS) de 1 068 avec un
rappel de 0,6344, tandis que Milvus atteignait un taux de QPS de 106 avec un rappel de 0,9842.

Si la haute précision dans vos requêtes est une priorité, Milvus surpasse pgvecto.rs car il récupère une
proportion plus élevée d’éléments pertinents par requête. Cependant, si le nombre de requêtes par seconde
est un facteur plus crucial, pgvecto.rs dépasse Milvus. Il est important de noter, cependant, que la qualité des
données récupérées via pgvecto.rs est inférieure, avec environ 37 % des résultats de recherche étant des
éléments non pertinents.

Observation basée sur nos validations de performance :

Sur la base de nos validations de performances, nous avons fait les observations suivantes :

45

Dans Milvus, le profil d’E/S ressemble beaucoup à une charge de travail OLTP, telle que celle observée avec
Oracle SLOB. Le benchmark se compose de trois phases : l’ingestion des données, la post-optimisation et la
requête. Les étapes initiales sont principalement caractérisées par des opérations d’écriture de 64 Ko, tandis
que la phase de requête implique principalement des lectures de 8 Ko. Nous nous attendons à ce ONTAP gère
efficacement la charge d’E/S Milvus.

Le profil d’E/S PostgreSQL ne présente pas de charge de travail de stockage difficile. Étant donné
l’implémentation en mémoire actuellement en cours, nous n’avons observé aucune E/S disque pendant la
phase de requête.

DiskANN apparaît comme une technologie cruciale pour la différenciation du stockage. Il permet une mise à
l’échelle efficace de la recherche de base de données vectorielle au-delà de la limite de la mémoire système.
Cependant, il est peu probable d’établir une différenciation des performances de stockage avec des indices de
base de données vectoriels en mémoire tels que HNSW.

Il convient également de noter que le stockage ne joue pas un rôle critique pendant la phase de requête
lorsque le type d’index est HSNW, qui est la phase de fonctionnement la plus importante pour les bases de
données vectorielles prenant en charge les applications RAG. L’implication ici est que les performances de
stockage n’ont pas d’impact significatif sur les performances globales de ces applications.

Base de données vectorielle avec Instaclustr utilisant
PostgreSQL : pgvector

Cette section décrit les spécificités de la manière dont le produit instaclustr s’intègre à la
fonctionnalité postgreSQL sur pgvector dans la solution de base de données vectorielle
pour NetApp.

Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector

Dans cette section, nous examinons en détail la manière dont le produit instaclustr s’intègre à la fonctionnalité
postgreSQL sur pgvector. Nous avons un exemple de « Comment améliorer la précision et les performances
de votre LLM avec PGVector et PostgreSQL : Introduction aux intégrations et au rôle de PGVector ». Veuillez
vérifier le"blog" pour obtenir plus d’informations.

Cas d’utilisation de bases de données vectorielles

Cette section fournit un aperçu des cas d’utilisation de la solution de base de données
vectorielle NetApp .

Cas d’utilisation de bases de données vectorielles

Dans cette section, nous discutons de deux cas d’utilisation tels que la récupération augmentée avec de
grands modèles de langage et le chatbot informatique NetApp .

Génération augmentée de récupération (RAG) avec de grands modèles de langage (LLM)

46

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

L’opérateur NVIDIA Enterprise RAG LLM est un outil utile pour la mise en œuvre de RAG dans l’entreprise.
Cet opérateur peut être utilisé pour déployer un pipeline RAG complet. Le pipeline RAG peut être personnalisé
pour utiliser Milvus ou pgvecto comme base de données vectorielle pour stocker les intégrations de la base de
connaissances. Reportez-vous à la documentation pour plus de détails.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figure 1) Enterprise RAG optimisé par NVIDIA NeMo Microservices et NetApp

Cas d’utilisation du chatbot informatique NetApp

Le chatbot de NetApp sert d’autre cas d’utilisation en temps réel pour la base de données vectorielle. Dans ce
cas, NetApp Private OpenAI Sandbox fournit une plate-forme efficace, sécurisée et efficiente pour gérer les
requêtes des utilisateurs internes de NetApp. En intégrant des protocoles de sécurité rigoureux, des systèmes
de gestion de données efficaces et des capacités de traitement d’IA sophistiquées, il garantit des réponses
précises et de haute qualité aux utilisateurs en fonction de leurs rôles et responsabilités au sein de
l’organisation via l’authentification SSO. Cette architecture met en évidence le potentiel de fusion de

47

technologies avancées pour créer des systèmes intelligents axés sur l’utilisateur.

Le cas d’utilisation peut être divisé en quatre sections principales.

Authentification et vérification de l’utilisateur :

• Les requêtes des utilisateurs passent d’abord par le processus NetApp Single Sign-On (SSO) pour
confirmer l’identité de l’utilisateur.

• Après une authentification réussie, le système vérifie la connexion VPN pour garantir une transmission de
données sécurisée.

Transmission et traitement des données :

• Une fois le VPN validé, les données sont envoyées à MariaDB via les applications Web NetAIChat ou
NetAICreate. MariaDB est un système de base de données rapide et efficace utilisé pour gérer et stocker
les données des utilisateurs.

• MariaDB envoie ensuite les informations à l’instance NetApp Azure, qui connecte les données utilisateur à
l’unité de traitement de l’IA.

Interaction avec OpenAI et filtrage de contenu :

• L’instance Azure envoie les questions de l’utilisateur à un système de filtrage de contenu. Ce système
nettoie la requête et la prépare pour le traitement.

• L’entrée nettoyée est ensuite envoyée au modèle de base Azure OpenAI, qui génère une réponse basée
sur l’entrée.

Génération et modération des réponses :

• La réponse du modèle de base est d’abord vérifiée pour garantir qu’elle est exacte et qu’elle répond aux
normes de contenu.

• Après avoir passé le contrôle, la réponse est renvoyée à l’utilisateur. Ce processus garantit que l’utilisateur

48

reçoit une réponse claire, précise et appropriée à sa requête.

Conclusion

Cette section conclut la solution de base de données vectorielle pour NetApp.

Conclusion

En conclusion, ce document fournit un aperçu complet du déploiement et de la gestion des bases de données
vectorielles, telles que Milvus et pgvector, sur les solutions de stockage NetApp . Nous avons discuté des
directives d’infrastructure pour exploiter le stockage d’objets NetApp ONTAP et StorageGRID et validé la base
de données Milvus dans AWS FSx ONTAP via le magasin de fichiers et d’objets.

Nous avons exploré la dualité fichier-objet de NetApp, démontrant son utilité non seulement pour les données
des bases de données vectorielles, mais également pour d’autres applications. Nous avons également
souligné comment SnapCenter, le produit de gestion d’entreprise de NetApp, offre des fonctionnalités de
sauvegarde, de restauration et de clonage pour les données de bases de données vectorielles, garantissant
ainsi l’intégrité et la disponibilité des données.

Le document examine également comment la solution Hybrid Cloud de NetApp offre une réplication et une
protection des données dans les environnements sur site et cloud, offrant une expérience de gestion des
données transparente et sécurisée. Nous avons fourni des informations sur la validation des performances des
bases de données vectorielles telles que Milvus et pgvecto sur NetApp ONTAP, offrant des informations
précieuses sur leur efficacité et leur évolutivité.

Enfin, nous avons discuté de deux cas d’utilisation d’IA générative : RAG avec LLM et ChatAI interne de
NetApp. Ces exemples pratiques soulignent les applications et les avantages concrets des concepts et des
pratiques décrits dans ce document. Dans l’ensemble, ce document sert de guide complet pour quiconque
souhaite tirer parti des puissantes solutions de stockage de NetApp pour la gestion des bases de données
vectorielles.

Remerciements

L’auteur souhaite remercier sincèrement les contributeurs ci-dessous, ainsi que les autres personnes qui ont
fourni leurs commentaires et leurs commentaires pour rendre ce document utile aux clients et aux NetApp .

1. Sathish Thyagarajan, ingénieur marketing technique, ONTAP AI & Analytics, NetApp

2. Mike Oglesby, ingénieur marketing technique, NetApp

3. AJ Mahajan, directeur principal, NetApp

4. Joe Scott, responsable de l’ingénierie des performances des charges de travail, NetApp

5. Puneet Dhawan, directeur principal, gestion des produits FSX, NetApp

6. Yuval Kalderon, chef de produit senior, équipe produit FSx, NetApp

Où trouver des informations supplémentaires

Pour en savoir plus sur les informations décrites dans ce document, consultez les documents et/ou sites Web
suivants :

• Documentation Milvus - https://milvus.io/docs/overview.md

• Documentation autonome Milvus - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

49

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• Documentation produit NetApphttps://www.netapp.com/support-and-training/documentation/[]

• instaclustr -"documentation d’installclustr"

Historique des versions

Version Date Historique des versions du
document

Version 1.0 Avril 2024 Version initiale

Annexe A : Values.yaml

Cette section fournit un exemple de code YAML pour les valeurs utilisées dans la solution
de base de données vectorielle NetApp .

Annexe A : Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

50

https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Individual components can be set to a different tolerations

tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

51

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

52

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

53

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

54

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

55

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

56

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

57

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

58

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

59

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

60

minio:

 enabled: false

 name: minio

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

61

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

62

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

 timeoutSeconds: 10

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

63

 anti_affinity: false

enableAntiAffinity: no

 components:

 zookeeper: true

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

64

 zookeeper:

 volumes:

 persistence: true

 data:

 name: data

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

65

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

66

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

67

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

68

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

69

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

70

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

 username: ""

 password: ""

root@node2:~#

Annexe B : prepare_data_netapp_new.py

Cette section fournit un exemple de script Python utilisé pour préparer les données de la
base de données vectorielle.

Annexe B : prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

71

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

72

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

73

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

74

Annexe C : verify_data_netapp.py

Cette section contient un exemple de script Python qui peut être utilisé pour valider la
base de données vectorielle dans la solution de base de données vectorielle NetApp .

Annexe C : verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

75

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

76

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

77

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Annexe D : docker-compose.yml

Cette section comprend un exemple de code YAML pour la solution de base de données
vectorielle pour NetApp.

Annexe D : docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

78

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

79

Informations sur le copyright

Copyright © 2026 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

80

http://www.netapp.com/TM

	Solution de base de données vectorielle avec NetApp : NetApp artificial intelligence solutions
	Sommaire
	Solution de base de données vectorielle avec NetApp
	Solution de base de données vectorielle avec NetApp
	Introduction
	Introduction

	Présentation de la solution
	Présentation de la solution

	Base de données vectorielles
	Base de données vectorielles

	Exigences technologiques
	Exigences technologiques
	Configuration matérielle requise
	Configuration logicielle requise

	Procédure de déploiement
	Procédure de déploiement

	Vérification de la solution
	Présentation de la solution
	Configuration du cluster Milvus avec Kubernetes sur site
	Milvus avec Amazon FSx ONTAP pour NetApp ONTAP - dualité fichier et objet
	Protection de la base de données vectorielle à l’aide de SnapCenter
	Reprise après sinistre avec NetApp SnapMirror
	Validation des performances de la base de données vectorielle

	Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector
	Base de données vectorielle avec Instaclustr utilisant PostgreSQL : pgvector

	Cas d’utilisation de bases de données vectorielles
	Cas d’utilisation de bases de données vectorielles

	Conclusion
	Conclusion

	Annexe A : Values.yaml
	Annexe A : Values.yaml

	Annexe B : prepare_data_netapp_new.py
	Annexe B : prepare_data_netapp_new.py

	Annexe C : verify_data_netapp.py
	Annexe C : verify_data_netapp.py

	Annexe D : docker-compose.yml
	Annexe D : docker-compose.yml

