
Automatisez avec LE REPOS

ONTAP Select
NetApp
February 09, 2024

This PDF was generated from https://docs.netapp.com/fr-fr/ontap-select-9101/concept_api_rest.html on
February 09, 2024. Always check docs.netapp.com for the latest.

Sommaire
Automatisez avec LE REPOS . 1

Concepts . 1

Accès à l’aide d’un navigateur . 9

Processus de flux de travail . 10

Accès avec Python. 18

Exemples de code Python . 20

Automatisez avec LE REPOS

Concepts

Base de services Web REST

Representational State Transfer (REST) est un style qui permet de créer des applications
Web distribuées. Lorsqu’il est appliqué à la conception d’une API de services Web, il
établit un ensemble de technologies et de meilleures pratiques pour l’exposition des
ressources basées sur serveur et la gestion de leurs États. Il utilise des protocoles et des
normes courants pour offrir une base flexible pour le déploiement et la gestion des
clusters ONTAP Select.

Contraintes classiques et architectures

REST a été formellement articulé par Roy Fielding dans son doctorat "thèse" À UC Irvine en 2000. Il définit un
style architectural à travers un ensemble de contraintes, qui ont collectivement amélioré les applications
basées sur le Web et les protocoles sous-jacents. Ces contraintes créent une application de services web
RESTful basée sur une architecture client/serveur utilisant un protocole de communication sans état.

Ressources et représentation d’état

Les ressources sont les composants de base d’un système basé sur le Web. Lors de la création d’une
application de services Web REST, les premières tâches de conception incluent :

• Identification des ressources système ou serveur
Chaque système utilise et gère les ressources. Une ressource peut être un fichier, une transaction
commerciale, un processus ou une entité administrative. L’une des premières tâches de conception d’une
application basée sur des services Web REST consiste à identifier les ressources.

• Définition des États de ressource et des opérations d’état associées
Les ressources se trouvent toujours dans un des États finis. Les États, ainsi que les opérations associées
utilisées pour affecter les changements d’état, doivent être clairement définis.

Les messages sont échangés entre le client et le serveur pour accéder aux ressources et les modifier selon le
modèle CRUD générique (Créer, lire, mettre à jour et Supprimer).

Terminaux URI

Chaque ressource REST doit être définie et mise à disposition à l’aide d’un schéma d’adressage bien défini.
Les noeuds finaux où les ressources sont situées et identifiées utilisent un URI (Uniform Resource identifier).
L’URI fournit un cadre général pour créer un nom unique pour chaque ressource du réseau. L’URL (Uniform
Resource Locator) est un type d’URI utilisé avec les services Web pour identifier et accéder aux ressources.
Les ressources sont généralement exposées dans une structure hiérarchique similaire à un répertoire de
fichiers.

Messages HTTP

Le protocole HTTP (Hypertext Transfer Protocol) est le protocole utilisé par le client et le serveur de services
Web pour échanger des messages de requête et de réponse sur les ressources. Dans le cadre de la
conception d’une application de services Web, les verbes HTTP (COMME GET et POST) sont mappées aux
ressources et aux actions de gestion d’état correspondantes.

1

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Le HTTP est sans état. Par conséquent, pour associer un ensemble de requêtes et de réponses associées
sous une même transaction, des informations supplémentaires doivent être incluses dans les en-têtes HTTP
des flux de données requête/réponse.

Formatage JSON

Bien que les informations puissent être structurées et transférées de plusieurs façons entre un client et un
serveur, l’option la plus populaire (et celle utilisée avec l’API REST de déploiement) est JavaScript Object
notation (JSON). JSON est une norme de l’industrie qui représente les structures de données simples en texte
brut et permet de transférer les informations d’état décrivant les ressources.

Comment accéder à l’API de déploiement

En raison de la flexibilité inhérente des services web REST, l’API de déploiement ONTAP
Select est accessible de plusieurs façons.

Déployez l’interface utilisateur native de l’utilitaire

La principale façon dont vous accédez à l’API consiste à utiliser l’interface utilisateur Web de ONTAP Select
Deploy. Le navigateur fait des appels à l’API et reformate les données en fonction de la conception de
l’interface utilisateur. Vous pouvez également accéder à l’API via l’interface de ligne de commande de l’utilitaire
de déploiement.

Page de documentation en ligne sur le déploiement de ONTAP Select

La page de documentation en ligne de ONTAP Select Deploy fournit un point d’accès alternatif lorsque vous
utilisez un navigateur. En plus de fournir un moyen d’exécuter directement des appels API individuels, la page
comprend également une description détaillée de l’API, y compris les paramètres d’entrée et d’autres options
pour chaque appel. Les appels API sont organisés en plusieurs zones fonctionnelles ou catégories différentes.

Programme personnalisé

Vous pouvez accéder à l’API de déploiement à l’aide de plusieurs langages et outils de programmation
différents. Les options les plus populaires sont Python, Java et Curl. Un programme, un script ou un outil qui
utilise l’API agit comme un client de services Web REST. L’utilisation d’un langage de programmation permet
de mieux comprendre l’API et offre une possibilité d’automatiser les déploiements ONTAP Select.

Déploiement des versions d’API

Un numéro de version est attribué à l’API REST incluse dans ONTAP Select Deploy. Le
numéro de version de l’API est indépendant du numéro de version de déploiement. Il est
important de connaître la version d’API incluse dans votre version de déploiement et
d’identifier en quoi cela pourrait affecter votre utilisation de l’API.

La version actuelle de l’utilitaire d’administration Deploy inclut la version 3 de l’API REST. Les anciennes
versions de l’utilitaire Deploy comprennent les versions d’API suivantes :

Déploiement 2.8 et versions ultérieures

ONTAP Select Deploy 2.8, ainsi que que que toutes les versions ultérieures incluent la version 3 de l’API
REST.

2

Déployer les versions 2.7.2 et antérieures

ONTAP Select Deploy 2.7.2. Toutes les versions antérieures comprennent la version 2 de l’API REST.

Les versions 2 et 3 de l’API REST ne sont pas compatibles. Si vous effectuez une mise à
niveau vers le déploiement de la version 2.8 ou ultérieure à partir d’une version antérieure
incluant la version 2 de l’API, vous devez mettre à jour tout code existant qui accède
directement à l’API ainsi que tous les scripts à l’aide de l’interface de ligne de commande.

Caractéristiques opérationnelles de base

Alors QUE REST établit un ensemble commun de technologies et de meilleures
pratiques, les détails de chaque API peuvent varier en fonction des choix de conception.
Vous devez connaître les détails et les caractéristiques opérationnelles de l’API de
déploiement ONTAP Select avant d’utiliser l’API.

Hôte de l’hyperviseur ou nœud ONTAP Select

Un hyperviseur host est la plate-forme matérielle principale qui héberge une machine virtuelle ONTAP Select.
Lorsqu’une machine virtuelle ONTAP Select est déployée et active sur un hôte hyperviseur, la machine
virtuelle est considérée comme un ONTAP Select node. Avec la version 3 de l’API REST déployée, les objets
hôte et nœud sont distincts. Cela permet une relation un-à-plusieurs, dans laquelle un ou plusieurs nœuds
ONTAP Select peuvent s’exécuter sur le même hôte hyperviseur.

Identifiants d’objets

Un identifiant unique est attribué à chaque instance de ressource ou objet lors de sa création. Ces identifiants
sont globalement uniques dans une instance spécifique du déploiement ONTAP Select. Après l’émission d’un
appel API qui crée une nouvelle instance d’objet, la valeur d’ID associée est renvoyée à l’appelant dans le
location En-tête de la réponse HTTP. Vous pouvez extraire l’identificateur et l’utiliser sur les appels suivants
lorsque vous faites référence à l’instance de ressource.

Le contenu et la structure interne des identificateurs d’objet peuvent changer à tout moment.
Vous ne devez utiliser les identificateurs sur les appels API applicables que si nécessaire
lorsque vous faites référence aux objets associés.

Demander des identifiants

Un identifiant unique est attribué à chaque requête d’API réussie. L’identifiant est renvoyé dans le request-
id En-tête de la réponse HTTP associée. Vous pouvez utiliser un identificateur de demande pour faire
référence collectivement aux activités d’une seule transaction de réponse de requête API spécifique. Par
exemple, vous pouvez récupérer tous les messages d’événement pour une transaction basée sur l’ID de
demande

Appels synchrones et asynchrones

Il existe deux méthodes principales pour qu’un serveur exécute une requête HTTP reçue d’un client :

• Synchrone
Le serveur exécute la demande immédiatement et répond avec un code d’état 200, 201 ou 204.

• Asynchrone
Le serveur accepte la demande et répond avec le code d’état 202. Cela indique que le serveur a accepté

3

la demande du client et a lancé une tâche en arrière-plan pour terminer la demande. Le succès ou l’échec
final n’est pas immédiatement disponible et doit être déterminé par d’autres appels API.

Confirmez la fin d’une tâche en cours d’exécution

Généralement, toute opération qui peut prendre un certain temps est traitée de manière asynchrone à l’aide
d’un
tâche en arrière-plan sur le serveur. Avec l’API REST de Deploy, chaque tâche en arrière-plan est ancrée dans
un
Objet de travail qui suit la tâche et fournit des informations, telles que l’état actuel. Un objet travail,
Avec son identifiant unique, est renvoyé dans la réponse HTTP après la création d’une tâche en arrière-plan.

Vous pouvez interroger l’objet Job directement pour déterminer le succès ou l’échec de l’appel API associé.
Pour plus d’informations, reportez-vous à la section traitement asynchrone à l’aide de l’objet travail.

Outre l’objet travail, vous pouvez déterminer la réussite ou l’échec d’un de plusieurs manières
demande, comprenant :

• Messages d’événement
Vous pouvez récupérer tous les messages d’événement associés à un appel d’API spécifique en utilisant
l’ID de demande renvoyé avec la réponse d’origine. Les messages d’événement contiennent généralement
une indication de réussite ou d’échec et peuvent également être utiles lors du débogage d’une condition
d’erreur.

• État ou état de la ressource
Plusieurs des ressources conservent une valeur d’état ou d’état que vous pouvez interroger pour
déterminer indirectement le succès ou l’échec d’une demande.

Sécurité

L’API de déploiement utilise les technologies de sécurité suivantes :

• Sécurité de la couche de transport
Tout le trafic envoyé sur le réseau entre le serveur de déploiement et le client est chiffré via TLS.
L’utilisation du protocole HTTP sur un canal non crypté n’est pas prise en charge. TLS version 1.2 est pris
en charge.

• Authentification HTTP
L’authentification de base est utilisée pour chaque transaction d’API. Un en-tête HTTP, qui inclut le nom
d’utilisateur et le mot de passe dans une chaîne base64, est ajouté à chaque requête.

Transaction d’API de demande et de réponse

Chaque appel API de déploiement est exécuté sous forme de requête HTTP vers la
machine virtuelle de déploiement, qui génère une réponse associée au client. Cette paire
de requête/réponse est considérée comme une transaction API. Avant d’utiliser l’API de
déploiement, vous devez connaître les variables d’entrée disponibles pour contrôler une
requête et le contenu de la sortie de réponse.

Variables d’entrée contrôlant une requête API

Vous pouvez contrôler le traitement d’un appel API à l’aide de paramètres définis dans la requête HTTP.

4

En-têtes de demande

Vous devez inclure plusieurs en-têtes dans la requête HTTP, notamment :

• type-contenu
Si le corps de la demande inclut JSON, cet en-tête doit être défini sur application/json.

• accepter
Si le corps de réponse inclut JSON, cet en-tête doit être défini sur application/json.

• autorisation
L’authentification de base doit être définie avec le nom d’utilisateur et le mot de passe codés dans une
chaîne base64.

Corps de la demande

Le contenu du corps de la demande varie en fonction de l’appel spécifique. Le corps de requête HTTP
comprend l’un des éléments suivants :

• Objet JSON avec variables d’entrée (par exemple, le nom d’un nouveau cluster)

• Vide

Filtrer les objets

Lors de l’émission d’un appel API utilisant GET, vous pouvez limiter ou filtrer les objets renvoyés en fonction de
n’importe quel attribut. Par exemple, vous pouvez spécifier une valeur exacte à associer :

<field>=<query value>

En plus d’une correspondance exacte, d’autres opérateurs sont disponibles pour renvoyer un ensemble
d’objets sur une plage de valeurs. ONTAP Select prend en charge les opérateurs de filtrage indiqués ci-
dessous.

Opérateur Description

= Égal à

< Inférieur à

> Supérieur à

< ;= Inférieur ou égal à

>= Supérieur ou égal à

Ou

! Différent de

* Un caractère générique gourmand

Vous pouvez également renvoyer un ensemble d’objets en fonction de la définition ou non d’un champ
spécifique à l’aide du mot clé null ou de sa négation (!null) dans le cadre de la requête.

Sélection des champs d’objet

Par défaut, l’émission d’un appel API à l’aide DE GET renvoie uniquement les attributs qui identifient de
manière unique l’objet ou les objets. Cet ensemble minimal de champs sert de clé pour chaque objet et varie

5

en fonction du type d’objet. Vous pouvez sélectionner des propriétés d’objet supplémentaires à l’aide du
paramètre de requête de champs de la manière suivante :

• Champs peu coûteux
Spécifiez fields=* pour récupérer les champs d’objet qui sont conservés dans la mémoire du serveur
local ou nécessitant peu de traitement pour accéder à.

• Champs coûteux
Spécifiez fields=** pour récupérer tous les champs d’objet, y compris ceux nécessitant un traitement
serveur supplémentaire pour accéder.

• Sélection de champ personnalisée
Utiliser fields=FIELDNAME pour spécifier le champ exact souhaité. Lorsque vous demandez plusieurs
champs, les valeurs doivent être séparées par des virgules sans espaces.

Vous devez toujours identifier les champs spécifiques que vous souhaitez. Vous ne devriez
récupérer que l’ensemble de champs bon marché ou coûteux si nécessaire. Cette classification
économique et onéreuse est déterminée par NetApp sur la base de l’analyse interne des
performances. La classification d’un champ donné peut changer à tout moment.

Trier les objets dans le jeu de sortie

Les enregistrements d’une collection de ressources sont renvoyés dans l’ordre par défaut défini par l’objet.
Vous pouvez modifier l’ordre à l’aide du paramètre de requête order_by avec le nom de champ et la direction
de tri comme suit :
order_by=<field name> asc|desc

Par exemple, vous pouvez trier le champ de type par ordre décroissant, suivi d’un ID par ordre croissant :
order_by=type desc, id asc

Lorsque vous ajoutez plusieurs paramètres, vous devez séparer les champs par une virgule.

Pagination

Lors de l’émission d’un appel API à l’aide DE GET pour accéder à une collection d’objets du même type, tous
les objets correspondants sont renvoyés par défaut. Si nécessaire, vous pouvez limiter le nombre
d’enregistrements renvoyés à l’aide du paramètre de requête max_records avec la demande. Par exemple :
max_records=20

Si nécessaire, vous pouvez combiner ce paramètre avec d’autres paramètres de requête pour affiner le jeu de
résultats. Par exemple, ce qui suit renvoie jusqu’à 10 événements système générés après le temps spécifié :
time⇒ 2019-04-04T15:41:29.140265Z&max_records=10

Vous pouvez émettre plusieurs requêtes à la page via les événements (ou tout type d’objet). Chaque appel
d’API suivant doit utiliser une nouvelle valeur de temps basée sur le dernier événement du dernier jeu de
résultats.

Interpréter une réponse API

Chaque requête d’API génère une réponse au client. Vous pouvez examiner la réponse pour déterminer
s’il a réussi et qu’il récupère des données supplémentaires si nécessaire.

6

Code d’état HTTP

Les codes d’état HTTP utilisés par l’API REST de déploiement sont décrits ci-dessous.

Code Signification Description

200 OK Indique que les appels qui ne créent pas d’objet ont réussi.

201 Créé Un objet est créé avec succès ; l’en-tête de réponse d’emplacement
inclut l’identifiant unique de l’objet.

202 Accepté Une tâche en arrière-plan longue durée a été démarrée pour exécuter
la demande, mais l’opération n’a pas encore été terminée.

400 Demande incorrecte L’entrée de la demande n’est pas reconnue ou est inappropriée.

403 Interdit L’accès est refusé en raison d’une erreur d’autorisation.

404 Introuvable La ressource mentionnée dans la demande n’existe pas.

405 Méthode non
autorisée

Le verbe HTTP de la demande n’est pas pris en charge pour la
ressource.

409 Conflit La tentative de création d’un objet a échoué car celui-ci existe déjà.

500 Erreur interne Une erreur interne générale s’est produite sur le serveur.

501 Non mis en œuvre L’URI est connu mais ne peut pas exécuter la demande.

En-têtes de réponse

Plusieurs en-têtes sont inclus dans la réponse HTTP générée par le serveur de déploiement, notamment :

• id-demande
Un identifiant de demande unique est attribué à chaque demande d’API réussie.

• emplacement
Lorsqu’un objet est créé, l’en-tête d’emplacement inclut l’URL complète vers le nouvel objet, y compris
l’identifiant unique de l’objet.

Corps de réponse

Le contenu de la réponse associée à une requête API diffère selon l’objet, le type de traitement et le succès ou
l’échec de la requête. Le corps de réponse est rendu au format JSON.

• Objet unique
Un objet peut être renvoyé avec un ensemble de champs en fonction de la requête. Par exemple, vous
pouvez utiliser OBTENIR pour extraire les propriétés sélectionnées d’un cluster à l’aide de l’identifiant
unique.

• Objets multiples
Plusieurs objets d’une collection de ressources peuvent être renvoyés. Dans tous les cas, un format
cohérent est utilisé avec num_records indique le nombre d’enregistrements et d’enregistrements
contenant un tableau des instances d’objet. Par exemple, vous pouvez extraire tous les nœuds définis
dans un cluster spécifique.

• Objet travail
Si un appel API est traité de manière asynchrone, un objet travail est renvoyé, qui ancres la tâche
d’arrière-plan. Par exemple, la demande POST utilisée pour déployer un cluster est traitée de manière
asynchrone et renvoie un objet Job.

7

• Objet erreur
Si une erreur se produit, un objet erreur est toujours renvoyé. Par exemple, vous recevrez une erreur lors
de la tentative de création d’un cluster dont le nom existe déjà.

• Vide
Dans certains cas, aucune donnée n’est renvoyée et le corps de réponse est vide. Par exemple, le corps
de réponse est vide après avoir utilisé SUPPRIMER pour supprimer un hôte existant.

Traitement asynchrone à l’aide de l’objet de travail

Certains appels API de déploiement, en particulier ceux qui créent ou modifient une
ressource, peuvent prendre plus de temps que d’autres appels. Le déploiement de
ONTAP Select traite ces requêtes à long terme de manière asynchrone.

Demandes asynchrones décrites à l’aide de l’objet travail

Après avoir effectué un appel API qui s’exécute de manière asynchrone, le code de réponse HTTP 202 indique
que la demande a été validée et acceptée avec succès, mais pas encore terminée. La requête est traitée
comme une tâche d’arrière-plan qui continue à s’exécuter après la réponse HTTP initiale au client. La réponse
inclut l’objet Job qui fixe la requête, y compris son identifiant unique.

Reportez-vous à la page de documentation en ligne de ONTAP Select Deploy pour déterminer
quels appels API fonctionnent de manière asynchrone.

Interroger l’objet travail associé à une demande API

L’objet travail renvoyé dans la réponse HTTP contient plusieurs propriétés. Vous pouvez interroger la propriété
d’état pour déterminer si la demande a bien été effectuée. Un objet travail peut être dans l’un des États
suivants :

• En file d’attente

• Exécution

• Réussite

• Panne

Il existe deux techniques que vous pouvez utiliser lors de l’interrogation d’un objet travail pour détecter un état
de terminal pour la tâche, succès ou échec :

• Demande d’interrogation standard
L’état actuel du travail est immédiatement renvoyé

• Demande d’interrogation longue
L’état du travail est renvoyé uniquement lorsque l’une des situations suivantes se produit :

◦ L’état a changé plus récemment que la valeur date-heure fournie sur la demande d’interrogation

◦ La valeur de temporisation a expiré (1 à 120 secondes)

Interrogation standard et interrogation longue utilisent le même appel API pour interroger un objet travail.
Cependant, une demande d’interrogation longue inclut deux paramètres de requête : poll_timeout et
last_modified.

8

Vous devez toujours utiliser une interrogation longue pour réduire la charge de travail sur la
machine virtuelle de déploiement.

Procédure générale d’émission d’une demande asynchrone

Vous pouvez utiliser la procédure de haut niveau suivante pour effectuer un appel d’API asynchrone :

1. Lancez l’appel d’API asynchrone.

2. Recevoir une réponse HTTP 202 indiquant que la demande a été acceptée avec succès.

3. Extraire l’identifiant de l’objet travail du corps de réponse.

4. Dans une boucle, effectuez les opérations suivantes dans chaque cycle :

a. Obtenir l’état actuel du travail avec une demande de sondage long

b. Si le travail est dans un état autre que terminal (en file d’attente, en cours d’exécution), exécutez de
nouveau la boucle.

5. Arrêter lorsque le travail atteint un état terminal (réussite, échec).

Accès à l’aide d’un navigateur

Avant d’accéder à l’API avec un navigateur

Vous devez connaître plusieurs éléments avant d’utiliser la page de documentation en
ligne de déploiement.

Plan de déploiement

Si vous prévoyez d’émettre des appels d’API dans le cadre de l’exécution de tâches de déploiement ou
d’administration spécifiques, vous devez envisager de créer un plan de déploiement. Ces plans peuvent être
formels ou informels, et contiennent généralement vos buts et les appels API à utiliser. Consultez le document
processus de workflow à l’aide de l’API REST de déploiement pour plus d’informations.

Exemples JSON et définitions de paramètres

Chaque appel d’API est décrit sur la page de documentation à l’aide d’un format cohérent. Le contenu inclut
des notes d’implémentation, des paramètres de requête et des codes d’état HTTP. En outre, vous pouvez
afficher les détails du fichier JSON utilisé avec les demandes et les réponses de l’API, comme suit :

• Exemple de valeur
Si vous cliquez sur exemple de valeur sur un appel d’API, une structure JSON type pour l’appel s’affiche.
Vous pouvez modifier l’exemple selon vos besoins et l’utiliser comme saisie pour votre demande.

• Modèle
Si vous cliquez sur Model, une liste complète des paramètres JSON s’affiche, avec une description pour
chaque paramètre.

Attention lors de l’émission d’appels API

Toutes les opérations d’API que vous effectuez à l’aide de la page de documentation de déploiement sont des
opérations en direct. Veillez à ne pas créer, mettre à jour ou supprimer une configuration ou d’autres données
par erreur.

9

Accédez à la page de documentation de déploiement

Vous devez accéder à la page de documentation en ligne ONTAP Select Deploy pour
afficher la documentation de l’API et lancer manuellement un appel d’API.

Avant de commencer

Vous devez disposer des éléments suivants :

• L’adresse IP ou le nom de domaine du ONTAP Select déploient la machine virtuelle

• Nom d’utilisateur et mot de passe pour l’administrateur

Étapes

1. Saisissez l’URL dans votre navigateur et appuyez sur entrée :

https://<ip_address>/api/ui

2. Connectez-vous à l’aide du nom d’utilisateur et du mot de passe administrateur.

Résultat

La page Web déployer la documentation s’affiche avec les appels organisés par catégorie au bas de la page.

Comprendre et exécuter un appel d’API

Les détails de tous les appels API sont documentés et affichés dans un format commun
sur la page Web de documentation en ligne de ONTAP Select Deploy. En comprenant un
seul appel API, vous pouvez accéder aux détails de tous les appels API et les interpréter.

Avant de commencer

Vous devez vous connecter à la page Web de documentation en ligne de ONTAP Select Deploy. Vous devez
disposer de l’identifiant unique attribué à votre cluster ONTAP Select au moment de sa création.

Description de la tâche

Vous pouvez récupérer les informations de configuration décrivant un cluster ONTAP Select à l’aide de son
identifiant unique. Dans cet exemple, tous les champs classés comme peu coûteux sont retournés. Toutefois,
conformément aux bonnes pratiques, vous devez uniquement demander les champs spécifiques nécessaires.

Étapes

1. Sur la page principale, faites défiler vers le bas et cliquez sur Cluster.

2. Cliquez sur GET /cluster/{cluster_ID} pour afficher les détails de l’appel d’API utilisé pour renvoyer des
informations sur un cluster ONTAP Select.

Processus de flux de travail

Avant d’utiliser les workflows API

Vous devez vous préparer à revoir et à utiliser les processus de flux de travail.

10

Comprendre les appels d’API utilisés dans les workflows

La page de documentation en ligne de ONTAP Select comprend les détails de chaque appel d’API REST. Au
lieu de répéter ces détails ici, chaque appel d’API utilisé dans les exemples de flux de travail comprend
uniquement les informations dont vous avez besoin pour localiser l’appel sur la page de documentation. Après
avoir localisé un appel API spécifique, vous pouvez vérifier les détails complets de l’appel, y compris les
paramètres d’entrée, les formats de sortie, les codes d’état HTTP et le type de traitement de la demande.

Les informations suivantes sont incluses pour chaque appel d’API au sein d’un flux de travail afin de localiser
l’appel sur la page de documentation :

• Catégorie
Les appels API sont organisés sur la page de documentation en zones ou catégories liées aux fonctions.
Pour localiser un appel API spécifique, faites défiler la page jusqu’en bas et cliquez sur la catégorie API
applicable.

• Verbe HTTP
Le verbe HTTP identifie l’action effectuée sur une ressource. Chaque appel d’API est exécuté via un seul
verbe HTTP.

• Chemin
Le chemin détermine la ressource spécifique à laquelle l’action s’applique dans le cadre d’un appel. La
chaîne de chemin d’accès est ajoutée à l’URL principale pour former l’URL complète identifiant la
ressource.

Créez une URL pour accéder directement à l’API REST

En plus de la page de documentation ONTAP Select, vous pouvez également accéder à l’API REST de
déploiement directement via un langage de programmation comme Python. Dans ce cas, l’URL principale est
légèrement différente de l’URL utilisée lors de l’accès à la page de documentation en ligne. Lorsque vous
accédez directement à l’API, vous devez ajouter /api au domaine et à la chaîne de port. Par exemple :
http://deploy.mycompany.com/api

Workflow 1 : créez un cluster d’évaluation à un seul nœud sur ESXi

Vous pouvez déployer un cluster ONTAP Select à un seul nœud sur un hôte VMware
ESXi géré par vCenter. Le cluster est créé avec une licence d’évaluation.

Le workflow de création de cluster diffère dans les cas suivants :

• L’hôte ESXi n’est pas géré par vCenter (hôte autonome)

• Plusieurs nœuds ou hôtes sont utilisés dans le cluster

• Le cluster est déployé dans un environnement de production avec une licence achetée

• L’hyperviseur KVM est utilisé à la place de VMware ESXi

◦ Depuis la version ONTAP Select 9.10.1, il n’est plus possible de déployer un nouveau
cluster sur l’hyperviseur KVM.

◦ Depuis ONTAP Select 9.11.1, toutes les fonctionnalités de gestion ne sont plus
disponibles pour les clusters et hôtes KVM existants, à l’exception des fonctions de mise
hors ligne et de suppression.

11

1. Enregistrer les informations d’identification du serveur vCenter

Lors du déploiement sur un hôte ESXi géré par un serveur vCenter, vous devez ajouter un identifiant avant
d’enregistrer l’hôte. L’utilitaire d’administration Deploy peut ensuite utiliser les informations d’identification pour
s’authentifier auprès de vCenter.

Catégorie Verbe HTTP Chemin

Déployez POST /sécurité/informations d’identification

Gondolage

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step01 'https://10.21.191.150/api/security/credentials'

Entrée JSON (étape 01)

{

 "hostname": "vcenter.company-demo.com",

 "type": "vcenter",

 "username": "misteradmin@vsphere.local",

 "password": "mypassword"

}

Type de traitement

Asynchrone

Sortie

• ID d’identification dans l’en-tête de réponse d’emplacement

• Objet travail

2. Enregistrez un hôte d’hyperviseur

Vous devez ajouter un hôte d’hyperviseur où la machine virtuelle contenant le nœud ONTAP Select sera
exécutée.

Catégorie Verbe HTTP Chemin

Cluster POST /hôtes

Gondolage

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step02 'https://10.21.191.150/api/hosts'

Entrée JSON (step02)

12

{

 "hosts": [

 {

 "hypervisor_type": "ESX",

 "management_server": "vcenter.company-demo.com",

 "name": "esx1.company-demo.com"

 }

]

}

Type de traitement

Asynchrone

Sortie

• ID d’hôte dans l’en-tête de réponse d’emplacement

• Objet travail

3. Créez un cluster

Lorsque vous créez un cluster ONTAP Select, la configuration de base du cluster est enregistrée et les noms
de nœuds sont automatiquement générés par le déploiement.

Catégorie Verbe HTTP Chemin

Cluster POST /clusters

Gondolage

Le paramètre de requête node_count doit être défini sur 1 pour un cluster à un seul nœud.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03 'https://10.21.191.150/api/clusters? node_count=1'

Entrée JSON (étape03)

{

 "name": "my_cluster"

}

Type de traitement

Synchrone

Sortie

• ID de cluster dans l’en-tête de réponse d’emplacement

13

4. Configurer le cluster

Vous devez fournir plusieurs attributs dans le cadre de la configuration du cluster.

Catégorie Verbe HTTP Chemin

Cluster CORRECTIF /clusters/{cluster_id}

Gondolage

Vous devez fournir l’ID de cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrée JSON (étape 04)

{

 "dns_info": {

 "domains": ["lab1.company-demo.com"],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.5",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "netmask": "255.255.255.192",

 "ntp_servers": {"10.206.80.183"}

}

Type de traitement

Synchrone

Sortie

Aucune

5. Récupérez le nom du nœud

L’utilitaire d’administration Deploy génère automatiquement les noms et identifiants de nœud lors de la
création d’un cluster. Avant de pouvoir configurer un nœud, vous devez récupérer l’ID attribué.

Catégorie Verbe HTTP Chemin

Cluster OBTENEZ /clusters/{cluster_id}/nœuds

Gondolage

Vous devez fournir l’ID de cluster.

14

curl -iX GET -u admin:<password> -k

'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id,name'

Type de traitement

Synchrone

Sortie

• Le tableau enregistre chaque élément décrivant un seul nœud avec l’ID et le nom uniques

6. Configurer les nœuds

Vous devez fournir la configuration de base du noeud, qui est le premier des trois appels API utilisés pour
configurer un noeud.

Catégorie Verbe HTTP Chemin

Cluster CHEMIN /clusters/{cluster_id}/nodes/{node_id}

Gondolage

Vous devez fournir l’ID de cluster et l’ID de nœud.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrée JSON (étape 06)

Vous devez fournir l’ID d’hôte sur lequel le nœud ONTAP Select sera exécuté.

{

 "host": {

 "id": "HOSTID"

 },

 "instance_type": "small",

 "ip": "10.206.80.101",

 "passthrough_disks": false

}

Type de traitement

Synchrone

Sortie

Aucune

7. Récupérez les réseaux de nœuds

Vous devez identifier les réseaux de gestion et de données utilisés par le nœud dans le cluster à un seul
nœud. Le réseau interne n’est pas utilisé avec un cluster à un seul nœud.

15

Catégorie Verbe HTTP Chemin

Cluster OBTENEZ /clusters/{cluster_id}/nodes/{node_id}/networks

Gondolage

Vous devez fournir l’ID de cluster et l’ID de nœud.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/

clusters/CLUSTERID/nodes/NODEID/networks?fields=id,purpose'

Type de traitement

Synchrone

Sortie

• Tableau de deux enregistrements décrivant chacun un seul réseau pour le nœud, y compris l’ID et le
but uniques

8. Configurez la mise en réseau des nœuds

Vous devez configurer les réseaux de données et de gestion. Le réseau interne n’est pas utilisé avec un
cluster à un seul nœud.

Émettez deux fois l’appel API suivant, une fois pour chaque réseau.

Catégorie Verbe HTTP Chemin

Cluster CORRECTIF /clusters/{cluster_id}/noeuds/{node_id}/réseaux/{network_id}

Gondolage

Vous devez fournir l’ID de cluster, l’ID de nœud et l’ID réseau.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step08 'https://10.21.191.150/api/clusters/

CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrée JSON (étape 08)

Vous devez indiquer le nom du réseau.

{

 "name": "sDOT_Network"

}

Type de traitement

Synchrone

16

Sortie

Aucune

9. Configurez le pool de stockage de nœuds

La dernière étape de la configuration d’un nœud consiste à relier un pool de stockage. Vous pouvez
déterminer les pools de stockage disponibles via le client Web vSphere, ou éventuellement via l’API REST de
déploiement.

Catégorie Verbe HTTP Chemin

Cluster CORRECTIF /clusters/{cluster_id}/noeuds/{node_id}/réseaux/{network_id}

Gondolage

Vous devez fournir l’ID de cluster, l’ID de nœud et l’ID réseau.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrée JSON (par étape 09)

La capacité du pool est de 2 To.

{

 "pool_array": [

 {

 "name": "sDOT-01",

 "capacity": 2147483648000

 }

]

}

Type de traitement

Synchrone

Sortie

Aucune

10. Déployer le cluster

Une fois le cluster et le nœud configurés, vous pouvez déployer le cluster.

Catégorie Verbe HTTP Chemin

Cluster POST /clusters/{cluster_id}/deploy

Gondolage

Vous devez fournir l’ID de cluster.

17

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step10 'https://10.21.191.150/api/clusters/CLUSTERID/deploy'

Entrée JSON (step10)

Vous devez fournir le mot de passe pour le compte d’administrateur ONTAP.

{

 "ontap_credentials": {

 "password": "mypassword"

 }

}

Type de traitement

Asynchrone

Sortie

• Objet travail

Accès avec Python

Avant d’accéder à l’API à l’aide de Python

Vous devez préparer l’environnement avant d’exécuter les exemples de scripts Python.

Avant d’exécuter les scripts Python, assurez-vous que l’environnement est correctement configuré :

• La dernière version applicable de Python2 doit être installée.
Les codes échantillons ont été testés à l’aide de Python2. Ils devraient également être portables à
Python3, mais n’ont pas été testés pour la compatibilité.

• Les requêtes et les bibliothèques urllib3 doivent être installées.
Vous pouvez utiliser pip ou un autre outil de gestion Python, selon les besoins de votre environnement.

• Le poste de travail client sur lequel s’exécutent les scripts doit disposer d’un accès réseau à la machine
virtuelle ONTAP Select Deploy.

En outre, vous devez disposer des informations suivantes :

• Adresse IP de la machine virtuelle déployée

• Nom d’utilisateur et mot de passe d’un compte administrateur de déploiement

Comprendre les scripts Python

Les exemples de scripts Python vous permettent d’effectuer plusieurs tâches différentes.
Vous devez comprendre les scripts avant de les utiliser dans une instance de
déploiement actif.

18

Caractéristiques de conception communes

Les scripts ont été conçus avec les caractéristiques communes suivantes :

• Exécuter à partir de l’interface de ligne de commande sur un ordinateur client
Vous pouvez exécuter les scripts Python à partir de n’importe quelle machine cliente correctement
configurée. Voir avant de commencer pour plus d’informations.

• Acceptez les paramètres d’entrée de l’interface de ligne
Chaque script est contrôlé au niveau de l’interface de ligne de commande via des paramètres d’entrée.

• Lire le fichier d’entrée
Chaque script lit un fichier en entrée en fonction de son objectif. Lors de la création ou de la suppression
d’un cluster, vous devez fournir un fichier de configuration JSON. Lorsque vous ajoutez une licence de
nœud, vous devez fournir un fichier de licence valide.

• Utilisez un module de support commun
Le module de support commun Deploy_Requests.py contient une seule classe. Il est importé et utilisé par
chacun des scripts.

Création d’un cluster

Vous pouvez créer un cluster ONTAP Select à l’aide du script cluster.py. En fonction des paramètres de
l’interface de ligne de commande et du contenu du fichier d’entrée JSON, vous pouvez modifier le script dans
votre environnement de déploiement comme suit :

• Depuis la version ONTAP Select 9.10.1, il n’est plus possible de déployer un nouveau
cluster sur l’hyperviseur KVM.

• Depuis ONTAP Select 9.11.1, toutes les fonctionnalités de gestion ne sont plus disponibles
pour les clusters et hôtes KVM existants, à l’exception des fonctions de mise hors ligne et
de suppression.

• Hyperviseur
Vous pouvez le déployer sur ESXI ou KVM (selon la version de déploiement). Lors du déploiement de
VMware ESXi, l’hyperviseur peut être géré par vCenter ou être un hôte autonome.

• Taille du cluster
Vous pouvez déployer un cluster à un ou plusieurs nœuds.

• Licence d’évaluation ou de production
Vous pouvez déployer un cluster avec une licence d’évaluation ou achetée pour la production.

Les paramètres d’entrée CLI pour le script incluent :

• Nom d’hôte ou adresse IP du serveur de déploiement

• Mot de passe du compte utilisateur admin

• Nom du fichier de configuration JSON

• Indicateur détaillé pour la sortie du message

Ajouter une licence de nœud

Si vous choisissez de déployer un cluster de production, vous devez ajouter une licence pour chaque nœud à
l’aide du script add_license.py. Vous pouvez ajouter la licence avant ou après le déploiement du cluster.

19

Les paramètres d’entrée CLI pour le script incluent :

• Nom d’hôte ou adresse IP du serveur de déploiement

• Mot de passe du compte utilisateur admin

• Nom du fichier de licence

• Nom d’utilisateur ONTAP avec privilèges pour ajouter la licence

• Mot de passe de l’utilisateur ONTAP

Supprime un cluster

Vous pouvez supprimer un cluster ONTAP Select existant à l’aide du script delete_cluster.py.

Les paramètres d’entrée CLI pour le script incluent :

• Nom d’hôte ou adresse IP du serveur de déploiement

• Mot de passe du compte utilisateur admin

• Nom du fichier de configuration JSON

Exemples de code Python

Pour créer un cluster

Vous pouvez utiliser le script suivant pour créer un cluster basé sur les paramètres
définis dans le script et un fichier d’entrée JSON.

#!/usr/bin/env python

##--

#

File: cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import traceback

import argparse

20

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

 """ Add credentials for the vcenter if present in the config """

 log_debug_trace()

 vcenter = config.get('vcenter', None)

 if vcenter and not deploy.resource_exists('/security/credentials',

 'hostname', vcenter

['hostname']):

 log_info("Registering vcenter {} credentials".format(vcenter

['hostname']))

 data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}

 data['type'] = "vcenter"

 deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

 """ Add credentials for standalone hosts if present in the config.

 Does nothing if the host credential already exists on the Deploy.

 """

 log_debug_trace()

 hosts = config.get('hosts', [])

 for host in hosts:

 # The presense of the 'password' will be used only for standalone

hosts.

 # If this host is managed by a vcenter, it should not have a host

'password' in the json.

 if 'password' in host and not deploy.resource_exists

('/security/credentials',

 'hostname',

host['name']):

 log_info("Registering host {} credentials".format(host[

'name']))

 data = {'hostname': host['name'], 'type': 'host',

 'username': host['username'], 'password': host

['password']}

 deploy.post('/security/credentials', data)

21

def register_unkown_hosts(deploy, config):

 ''' Registers all hosts with the deploy server.

 The host details are read from the cluster config json file.

 This method will skip any hosts that are already registered.

 This method will exit the script if no hosts are found in the

config.

 '''

 log_debug_trace()

 data = {"hosts": []}

 if 'hosts' not in config or not config['hosts']:

 log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

 missing_host_cnt = 0

 for host in config['hosts']:

 if not deploy.resource_exists('/hosts', 'name', host['name']):

 missing_host_cnt += 1

 host_config = {"name": host['name'], "hypervisor_type": host

['type']}

 if 'mgmt_server' in host:

 host_config["management_server"] = host['mgmt_server']

 log_info(

 "Registering from vcenter {mgmt_server}".format(**

host))

 if 'password' in host and 'user' in host:

 host_config['credential'] = {

 "password": host['password'], "username": host[

'user']}

 log_info("Registering {type} host {name}".format(**host))

 data["hosts"].append(host_config)

 # only post /hosts if some missing hosts were found

 if missing_host_cnt:

 deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

 ''' POST a new cluster with all needed attribute values.

 Returns the cluster_id of the new config

 '''

 log_debug_trace()

22

 cluster_config = config['cluster']

 cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

 if not cluster_id:

 log_info("Creating cluster config named {name}".format(

**cluster_config))

 # Filter to only the valid attributes, ignores anything else in

the json

 data = {k: cluster_config[k] for k in [

 'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

 num_nodes = len(config['nodes'])

 log_info("Cluster properties: {}".format(data))

 resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),

data)

 cluster_id = resp.headers.get('Location').split('/')[-1]

 return cluster_id

def get_node_ids(deploy, cluster_id):

 ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

 log_debug_trace()

 response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

 node_ids = [node['id'] for node in response.json().get('records')]

 return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

 ''' Set all the needed properties on a node '''

 log_debug_trace()

 log_info("Adding node '{}' properties".format(node_id))

 data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

 'is_storage_efficiency_enabled'] if k in

node}

 # Optional: Set a serial_number

 if 'license' in node:

 data['license'] = {'id': node['license']}

23

 # Assign the host

 host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

 if not host_id:

 log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

 data['host'] = {'id': host_id}

 # Set the correct raid_type

 is_hw_raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw_raid

 data['passthrough_disks'] = not is_hw_raid

 # Optionally set a custom node name

 if 'name' in node:

 data['name'] = node['name']

 log_info("Node properties: {}".format(data))

 deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

 ''' Set the network information for a node '''

 log_debug_trace()

 log_info("Adding node '{}' network properties".format(node_id))

 num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

 for network in node['networks']:

 # single node clusters do not use the 'internal' network

 if num_nodes == 1 and network['purpose'] == 'internal':

 continue

 # Deduce the network id given the purpose for each entry

 network_id = deploy.find_resource(

'/clusters/{}/nodes/{}/networks'.format(cluster_id, node_id),

 'purpose', network['purpose'])

 data = {"name": network['name']}

 if 'vlan' in network and network['vlan']:

 data['vlan_id'] = network['vlan']

 deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

24

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

 ''' Set all the storage information on a node '''

 log_debug_trace()

 log_info("Adding node '{}' storage properties".format(node_id))

 log_info("Node storage: {}".format(node['storage']['pools']))

 data = {'pool_array': node['storage']['pools']} # use all the json

properties

 deploy.post(

 '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

 if 'disks' in node['storage'] and node['storage']['disks']:

 data = {'disks': node['storage']['disks']}

 deploy.post(

 '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

 ''' Construct a cluster config in the deploy server using the input

json data '''

 log_debug_trace()

 cluster_id = add_cluster_attributes(deploy, config)

 node_ids = get_node_ids(deploy, cluster_id)

 node_configs = config['nodes']

 for node_id, node_config in zip(node_ids, node_configs):

 add_node_attributes(deploy, cluster_id, node_id, node_config)

 add_node_networks(deploy, cluster_id, node_id, node_config)

 add_node_storage(deploy, cluster_id, node_id, node_config)

 return cluster_id

def deploy_cluster(deploy, cluster_id, config):

 ''' Deploy the cluster config to create the ONTAP Select VMs. '''

 log_debug_trace()

 log_info("Deploying cluster: {}".format(cluster_id))

 data = {'ontap_credential': {'password': config['cluster'

25

]['ontap_admin_password']}}

 deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

 data, wait_for_job=True)

def log_debug_trace():

 stack = traceback.extract_stack()

 parent_function = stack[-2][2]

 logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging(verbose):

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 if verbose:

 logging.basicConfig(level=logging.DEBUG, format=FORMAT)

 else:

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

 logging.WARNING)

def main(args):

 configure_logging(args.verbose)

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 add_vcenter_credentials(deploy, config)

 add_standalone_host_credentials(deploy, config)

 register_unkown_hosts(deploy, config)

 cluster_id = create_cluster_config(deploy, config)

26

 deploy_cluster(deploy, cluster_id, config)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

 parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

 parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

 parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

 parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

 action='store_true', default=False)

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

JSON pour permettre la création d’un cluster par script

Lors de la création ou la suppression d’un cluster ONTAP Select à l’aide d’exemples de
code Python, vous devez fournir un fichier JSON en tant qu’entrée du script. Vous
pouvez copier et modifier l’exemple JSON approprié en fonction de vos plans de
déploiement.

Cluster à un seul nœud sur ESXi

{

 "hosts": [

 {

 "password": "mypassword1",

 "name": "host-1234",

 "type": "ESX",

 "username": "admin"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

27

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway": "10.206.80.1",

 "ip": "10.206.80.115",

 "name": "mycluster",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask": "255.255.254.0"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip": "10.206.80.114",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan": 1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

28

 }

]

}

Cluster à un seul nœud sur ESXi à l’aide de vCenter

{

 "hosts": [

 {

 "name":"host-1234",

 "type":"ESX",

 "mgmt_server":"vcenter-1234"

 }

],

 "cluster": {

 "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135","10.206.80.136"]

 },

 "ontap_image_version":"9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"mycluster",

 "ntp_servers": ["10.206.80.183","10.206.80.142"],

 "ontap_admin_password":"mypassword2",

 "netmask":"255.255.254.0"

 },

 "vcenter": {

 "password":"mypassword2",

 "hostname":"vcenter-1234",

 "username":"selectadmin"

 },

 "nodes": [

 {

 "serial_number": "3200000nn",

 "ip":"10.206.80.114",

 "name":"node-1",

 "networks": [

 {

29

 "name":"ONTAP-Management",

 "purpose":"mgmt",

 "vlan":null

 },

 {

 "name": "ONTAP-External",

 "purpose":"data",

 "vlan":null

 },

 {

 "name": "ONTAP-Internal",

 "purpose":"internal",

 "vlan":null

 }

],

 "host_name": "host-1234",

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk":[],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity":5685190380748

 }

]

 }

 }

]

}

Cluster à un seul nœud sur KVM

• Depuis la version ONTAP Select 9.10.1, il n’est plus possible de déployer un nouveau
cluster sur l’hyperviseur KVM.

• Depuis ONTAP Select 9.11.1, toutes les fonctionnalités de gestion ne sont plus disponibles
pour les clusters et hôtes KVM existants, à l’exception des fonctions de mise hors ligne et
de suppression.

{

 "hosts": [

 {

 "password": "mypassword1",

 "name":"host-1234",

30

 "type":"KVM",

 "username":"root"

 }

],

 "cluster": {

 "dns_info": {

 "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

 "lab3.company-demo.com", "lab4.company-demo.com"

],

 "dns_ips": ["10.206.80.135", "10.206.80.136"]

 },

 "ontap_image_version": "9.7",

 "gateway":"10.206.80.1",

 "ip":"10.206.80.115",

 "name":"CBF4ED97",

 "ntp_servers": ["10.206.80.183", "10.206.80.142"],

 "ontap_admin_password": "mypassword2",

 "netmask":"255.255.254.0"

 },

 "nodes": [

 {

 "serial_number":"3200000nn",

 "ip":"10.206.80.115",

 "name": "node-1",

 "networks": [

 {

 "name": "ontap-external",

 "purpose": "mgmt",

 "vlan":1234

 },

 {

 "name": "ontap-external",

 "purpose": "data",

 "vlan": null

 },

 {

 "name": "ontap-internal",

 "purpose": "internal",

 "vlan": null

 }

],

 "host_name": "host-1234",

31

 "is_storage_efficiency_enabled": false,

 "instance_type": "small",

 "storage": {

 "disk": [],

 "pools": [

 {

 "name": "storage-pool-1",

 "capacity": 4802666790125

 }

]

 }

 }

]

}

Script pour ajouter une licence de nœud

Vous pouvez utiliser le script suivant pour ajouter une licence pour un noeud ONTAP
Select.

#!/usr/bin/env python

##--

#

File: add_license.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import json

from deploy_requests import DeployRequests

32

def post_new_license(deploy, license_filename):

 log_info('Posting a new license: {}'.format(license_filename))

 # Stream the file as multipart/form-data

 deploy.post('/licensing/licenses', data={},

 files={'license_file': open(license_filename, 'rb')})

 # Alternative if the NLF license data is converted to a string.

 # with open(license_filename, 'rb') as f:

 # nlf_data = f.read()

 # r = deploy.post('/licensing/licenses', data={},

 # files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

 log_info('Adding license for serial number: {}'.format(serial_number))

 deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

 ''' If the license is used by an 'online' cluster, a username/password

must be given. '''

 data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

 data = {}

 files = {'license_file': open(license_filename, 'rb')}

 put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

 ''' Read the NLF file to extract the serial number '''

 with open(license_filename) as f:

 data = json.load(f)

33

 statusResp = data.get('statusResp', {})

 serialNumber = statusResp.get('serialNumber')

 if not serialNumber:

 log_and_exit("The license file seems to be missing the

serialNumber")

 return serialNumber

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

 logging.getLogger('deploy').error(msg)

 exit(1)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

 configure_logging()

 serial_number = get_serial_number_from_license(args.license)

 deploy = DeployRequests(args.deploy, args.password)

 # First check if there is already a license resource for this serial-

number

 if deploy.find_resource('/licensing/licenses', 'id', serial_number):

 # If the license already exists in the Deploy server, determine if

its used

 if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

 # In this case, requires ONTAP creds to push the license to

the node

 if args.ontap_username and args.ontap_password:

 put_used_license(deploy, serial_number, args.license,

 args.ontap_username, args.ontap_password)

 else:

 print("ERROR: The serial number for this license is in

34

use. Please provide ONTAP credentials.")

 else:

 # License exists, but its not used

 put_free_license(deploy, serial_number, args.license)

 else:

 # No license exists, so register a new one as an available license

for later use

 post_new_license(deploy, args.license)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

 parser.add_argument('-d', '--deploy', required=True, type=str, help

='Hostname or IP address of ONTAP Select Deploy')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-l', '--license', required=True, type=str, help

='Filename of the NLF license data')

 parser.add_argument('-u', '--ontap_username', type=str,

 help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

 parser.add_argument('-o', '--ontap_password', type=str,

 help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Script pour supprimer un cluster

Vous pouvez utiliser le script CLI suivant pour supprimer un cluster existant.

#!/usr/bin/env python

##--

#

File: delete_cluster.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

35

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

 return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

 # Test that the cluster is online, otherwise do nothing

 response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

 cluster_data = response.json()['record']

 if cluster_data['state'] == 'powered_on':

 log_info("Found the cluster to be online, modifying it to be

powered_off.")

 deploy.patch('/clusters/{}'.format(cluster_id), {'availability':

'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

 log_info("Deleting the cluster({}).".format(cluster_id))

 deploy.delete('/clusters/{}'.format(cluster_id), True)

 pass

def log_info(msg):

 logging.getLogger('deploy').info(msg)

def configure_logging():

 FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

 logging.basicConfig(level=logging.INFO, format=FORMAT)

 logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

36

def main(args):

 configure_logging()

 deploy = DeployRequests(args.deploy, args.password)

 with open(args.config_file) as json_data:

 config = json.load(json_data)

 cluster_id = find_cluster(deploy, config['cluster']['name'])

 log_info("Found the cluster {} with id: {}.".format(config

['cluster']['name'], cluster_id))

 offline_cluster(deploy, cluster_id)

 delete_cluster(deploy, cluster_id)

def parseArgs():

 parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

 parser.add_argument('-d', '--deploy', required=True, type=str, help

='Hostname or IP address of Deploy server')

 parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

 parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

 return parser.parse_args()

if __name__ == '__main__':

 args = parseArgs()

 main(args)

Module de support commun

Tous les scripts Python utilisent une classe Python commune dans un seul module.

#!/usr/bin/env python

##--

#

File: deploy_requests.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

37

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

 '''

 Wrapper class for requests that simplifies the ONTAP Select Deploy

 path creation and header manipulations for simpler code.

 '''

 def __init__(self, ip, admin_password):

 self.base_url = 'https://{}/api'.format(ip)

 self.auth = ('admin', admin_password)

 self.headers = {'Accept': 'application/json'}

 self.logger = logging.getLogger('deploy')

 def post(self, path, data, files=None, wait_for_job=False):

 if files:

 self.logger.debug('POST FILES:')

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 files=files)

 else:

 self.logger.debug('POST DATA: %s', data)

 response = requests.post(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

38

 self.wait_for_job(response.json())

 return response

 def patch(self, path, data, wait_for_job=False):

 self.logger.debug('PATCH DATA: %s', data)

 response = requests.patch(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def put(self, path, data, files=None, wait_for_job=False):

 if files:

 print('PUT FILES: {}'.format(data))

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 data=data,

 files=files)

 else:

 self.logger.debug('PUT DATA:')

 response = requests.put(self.base_url + path,

 auth=self.auth, verify=False,

 json=data,

 headers=self.headers)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def get(self, path):

 """ Get a resource object from the specified path """

 response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

39

 return response

 def delete(self, path, wait_for_job=False):

 """ Delete's a resource from the specified path """

 response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

 self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

 self.exit_on_errors(response)

 if wait_for_job and response.status_code == 202:

 self.wait_for_job(response.json())

 return response

 def find_resource(self, path, name, value):

 ''' Returns the 'id' of the resource if it exists, otherwise None

'''

 resource = None

 response = self.get('{path}?{field}={value}'.format(

 path=path, field=name, value=value))

 if response.status_code == 200 and response.json().get

('num_records') >= 1:

 resource = response.json().get('records')[0].get('id')

 return resource

 def get_num_records(self, path, query=None):

 ''' Returns the number of records found in a container, or None on

error '''

 resource = None

 query_opt = '?{}'.format(query) if query else ''

 response = self.get('{path}{query}'.format(path=path, query

=query_opt))

 if response.status_code == 200 :

 return response.json().get('num_records')

 return None

 def resource_exists(self, path, name, value):

 return self.find_resource(path, name, value) is not None

 def wait_for_job(self, response, poll_timeout=120):

 last_modified = response['job']['last_modified']

 job_id = response['job']['id']

 self.logger.info('Event: ' + response['job']['message'])

 while True:

40

 response = self.get('/jobs/{}?fields=state,message&'

 'poll_timeout={}&last_modified=>={}'

.format(

 job_id, poll_timeout, last_modified))

 job_body = response.json().get('record', {})

 # Show interesting message updates

 message = job_body.get('message', '')

 self.logger.info('Event: ' + message)

 # Refresh the last modified time for the poll loop

 last_modified = job_body.get('last_modified')

 # Look for the final states

 state = job_body.get('state', 'unknown')

 if state in ['success', 'failure']:

 if state == 'failure':

 self.logger.error('FAILED background job.\nJOB: %s',

job_body)

 exit(1) # End the script if a failure occurs

 break

 def exit_on_errors(self, response):

 if response.status_code >= 400:

 self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',

 response.request.url,

 self.filter_headers(response),

 response.text)

 response.raise_for_status() # Displays the response error, and

exits the script

 @staticmethod

 def filter_headers(response):

 ''' Returns a filtered set of the response headers '''

 return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

Script pour redimensionner les nœuds du cluster

Vous pouvez utiliser le script suivant pour redimensionner les nœuds d’un cluster ONTAP
Select.

#!/usr/bin/env python

41

##--

#

File: resize_nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

#

##--

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

 """ Parses the arguments provided on the command line when executing

this

 script and returns the resulting namespace. If all required

arguments

 are not provided, an error message indicating the mismatch is

printed and

 the script will exit.

 """

 parser = argparse.ArgumentParser(description=(

 'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

 ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

 ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

 ' node). This script will take in the cluster details and then

perform'

 ' the operation and wait for it to complete.'

))

42

 parser.add_argument('--deploy', required=True, help=(

 'Hostname or IP of the ONTAP Select Deploy VM.'

))

 parser.add_argument('--deploy-password', required=True, help=(

 'The password for the ONTAP Select Deploy admin user.'

))

 parser.add_argument('--cluster', required=True, help=(

 'Hostname or IP of the cluster management interface.'

))

 parser.add_argument('--instance-type', required=True, help=(

 'The desired instance size of the nodes after the operation is

complete.'

))

 parser.add_argument('--ontap-password', required=True, help=(

 'The password for the ONTAP administrative user account.'

))

 parser.add_argument('--ontap-username', default='admin', help=(

 'The username for the ONTAP administrative user account. Default:

admin.'

))

 parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

 'A space separated list of node names for which the resize

operation'

 ' should be performed. The default is to apply the resize to all

nodes in'

 ' the cluster. If a list of nodes is provided, it must be provided

in HA'

 ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'

 ' resized in the same operation.'

))

 return parser.parse_args()

def _get_cluster(deploy, parsed_args):

 """ Locate the cluster using the arguments provided """

 cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

 if not cluster_id:

 return None

 return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json

()['record']

def _get_request_body(parsed_args, cluster):

43

 """ Build the request body """

 changes = {'admin_password': parsed_args.ontap_password}

 # if provided, use the list of nodes given, else use all the nodes in

the cluster

 nodes = [node for node in cluster['nodes']]

 if parsed_args.nodes:

 nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

 changes['nodes'] = [

 {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

 return changes

def main():

 """ Set up the resize operation by gathering the necessary data and

then send

 the request to the ONTAP Select Deploy server.

 """

 logging.basicConfig(

 format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

 logging.getLogger('requests.packages.urllib3').setLevel(logging

.WARNING)

 parsed_args = _parse_args()

 deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

 cluster = _get_cluster(deploy, parsed_args)

 if not cluster:

 deploy.logger.error(

 'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

 return 1

 changes = _get_request_body(parsed_args, cluster)

 deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

44

 sys.exit(main())

45

Informations sur le copyright

Copyright © 2024 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

46

http://www.netapp.com/TM

	Automatisez avec LE REPOS : ONTAP Select
	Sommaire
	Automatisez avec LE REPOS
	Concepts
	Accès à l’aide d’un navigateur
	Processus de flux de travail
	Accès avec Python
	Exemples de code Python

