Automatisez avec LE REPOS
ONTAP Select

NetApp
February 03, 2026

This PDF was generated from https://docs.netapp.com/fr-fr/ontap-select-9151/concept_api_rest.html on
February 03, 2026. Always check docs.netapp.com for the latest.

Sommaire

Automatisez avec LE REPOS

Concepts
Base de services Web REST
Comment accéder a I’API de déploiement
Déploiement des versions d’API
Caractéristiques opérationnelles de base
Transaction d’API de demande et de réponse
Traitement asynchrone a 'aide de 'objet de travail
Acceés a l'aide d’'un navigateur
Avant d’accéder a I’API avec un navigateur
Accédez a la page de documentation de déploiement
Comprendre et exécuter un appel d’API
Processus de flux de travail
Avant d’utiliser les workflows API
Workflow 1 : créez un cluster d’évaluation a un seul nceud sur ESXi
Acces avec Python
Avant d’accéder a I'API| a l'aide de Python
Comprendre les scripts Python
Exemples de code Python
Pour créer un cluster
JSON pour permettre la création d’un cluster par script
Script pour ajouter une licence de nceud
Script pour supprimer un cluster
Module de support commun
Script pour redimensionner les noeuds du cluster

© 0O N B WODNDDN -2 2~

B W W WN 22 2 A A A a4 a2 a
O OO 0~ OO ©O 0O NN~ O O O ©

Automatisez avec LE REPOS

Concepts

Base de services Web REST

Representational State Transfer (REST) est un style qui permet de créer des applications
Web distribuées. Lorsqu’il est appliqué a la conception d’'une API de services Web, il
établit un ensemble de technologies et de meilleures pratiques pour I'exposition des
ressources basées sur serveur et la gestion de leurs Etats. Il utilise des protocoles et des
normes courants pour offrir une base flexible pour le déploiement et la gestion des
clusters ONTAP Select.

Contraintes classiques et architectures

REST a été formellement articulé par Roy Fielding dans son doctorat "thése" a 'UC Irvine en 2000. Il définit un
style architectural a travers un ensemble de contraintes, qui ont collectivement amélioré les applications
basées sur le Web et les protocoles sous-jacents. Ces contraintes créent une application de services web
RESTful basée sur une architecture client/serveur utilisant un protocole de communication sans état.

Ressources et représentation d’état

Les ressources sont les composants de base d’'un systéme basé sur le Web. Lors de la création d’'une
application de services Web REST, les premiéres taches de conception incluent :

« Identification des ressources systéme ou serveur chaque systéeme utilise et gére les ressources. Une
ressource peut étre un fichier, une transaction commerciale, un processus ou une entité administrative.
L'une des premieres taches de conception d’'une application basée sur des services Web REST consiste a
identifier les ressources.

- Définition des Etats de ressource et des opérations d’état associées les ressources sont toujours dans I'un
des Etats finis. Les Etats, ainsi que les opérations associées utilisées pour affecter les changements d’état,
doivent étre clairement définis.

Les messages sont échangés entre le client et le serveur pour accéder aux ressources et les modifier selon le
modele CRUD générique (Créer, lire, mettre a jour et Supprimer).

Terminaux URI

Chaque ressource REST doit étre définie et mise a disposition a I'aide d’'un schéma d’adressage bien défini.
Les noeuds finaux ou les ressources sont situées et identifiées utilisent un URI (Uniform Resource identifier).
L'URI fournit un cadre général pour créer un nom unique pour chaque ressource du réseau. L'URL (Uniform
Resource Locator) est un type d’URI utilisé avec les services Web pour identifier et accéder aux ressources.
Les ressources sont généralement exposées dans une structure hiérarchique similaire a un répertoire de
fichiers.

Messages HTTP

Le protocole HTTP (Hypertext Transfer Protocol) est le protocole utilisé par le client et le serveur de services
Web pour échanger des messages de requéte et de réponse sur les ressources. Dans le cadre de la
conception d’'une application de services Web, les verbes HTTP (COMME GET et POST) sont mappées aux
ressources et aux actions de gestion d’état correspondantes.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Le HTTP est sans état. Par conséquent, pour associer un ensemble de requétes et de réponses associées
sous une méme transaction, des informations supplémentaires doivent étre incluses dans les en-tétes HTTP
des flux de données requéte/réponse.

Formatage JSON

Bien que les informations puissent étre structurées et transférées de plusieurs fagons entre un client et un
serveur, 'option la plus populaire (et celle utilisée avec 'API REST de déploiement) est JavaScript Object
notation (JSON). JSON est une norme de I'industrie qui représente les structures de données simples en texte
brut et permet de transférer les informations d’état décrivant les ressources.

Comment accéder a I’API de déploiement

En raison de la flexibilité inhérente des services web REST, 'API de déploiement ONTAP
Select est accessible de plusieurs fagons.

Déployez I'interface utilisateur native de I'utilitaire

La principale fagon dont vous accédez a I'API consiste a utiliser l'interface utilisateur Web de ONTAP Select
Deploy. Le navigateur fait des appels a I'API et reformate les données en fonction de la conception de
l'interface utilisateur. Vous pouvez également accéder a I'API via I'interface de ligne de commande de I'utilitaire
de déploiement.

Page de documentation en ligne sur le déploiement de ONTAP Select

La page de documentation en ligne de ONTAP Select Deploy fournit un point d’accés alternatif lorsque vous
utilisez un navigateur. En plus de fournir un moyen d’exécuter directement des appels API individuels, la page
comprend également une description détaillée de I'API, y compris les paramétres d’entrée et d’autres options
pour chaque appel. Les appels APl sont organisés en plusieurs zones fonctionnelles ou catégories différentes.

Programme personnalisé

Vous pouvez accéder a I'API de déploiement a 'aide de plusieurs langages et outils de programmation
différents. Les options les plus populaires sont Python, Java et Curl. Un programme, un script ou un outil qui
utilise I'’API agit comme un client de services Web REST. L'utilisation d’'un langage de programmation permet
de mieux comprendre I'API et offre une possibilité d’automatiser les déploiements ONTAP Select.

Déploiement des versions d’API

Un numéro de version est attribué a ’'API REST incluse dans ONTAP Select Deploy. Le
numeéro de version de I’API est indépendant du numéro de version de déploiement. |l est
important de connaitre la version d’API incluse dans votre version de déploiement et
d’identifier en quoi cela pourrait affecter votre utilisation de I'API.

La version actuelle de I'utilitaire d’administration Deploy inclut la version 3 de 'API REST. Les anciennes
versions de l'utilitaire Deploy comprennent les versions d’API suivantes :

Déploiement 2.8 et versions ultérieures

ONTAP Select Deploy 2.8, ainsi que que que toutes les versions ultérieures incluent la version 3 de I'API
REST.

Déployer les versions 2.7.2 et antérieures
ONTAP Select Deploy 2.7.2. Toutes les versions antérieures comprennent la version 2 de 'API REST.

Les versions 2 et 3 de 'API REST ne sont pas compatibles. Si vous effectuez une mise a
@ niveau vers le déploiement de la version 2.8 ou ultérieure a partir d’'une version antérieure

incluant la version 2 de I'’API, vous devez mettre a jour tout code existant qui accede

directement a I’API ainsi que tous les scripts a I'aide de I'interface de ligne de commande.

Caractéristiques opérationnelles de base

Alors QUE REST établit un ensemble commun de technologies et de meilleures
pratiques, les détails de chaque API peuvent varier en fonction des choix de conception.
Vous devez connaitre les détails et les caractéristiques opérationnelles de I'API de
déploiement ONTAP Select avant d’utiliser 'API.

Hote de I’hyperviseur ou nceud ONTAP Select

Un hyperviseur host est la plate-forme matérielle principale qui héberge une machine virtuelle ONTAP Select.
Lorsqu’une machine virtuelle ONTAP Select est déployée et active sur un héte hyperviseur, la machine
virtuelle est considérée comme un ONTAP Select node. Avec la version 3 de 'API REST déployée, les objets
hote et noeud sont distincts. Cela permet une relation un-a-plusieurs, dans laquelle un ou plusieurs nceuds
ONTAP Select peuvent s’exécuter sur le méme héte hyperviseur.

Identifiants d’objets

Un identifiant unique est attribué a chaque instance de ressource ou objet lors de sa création. Ces identifiants
sont globalement uniques dans une instance spécifique du déploiement ONTAP Select. Aprés avoir émis un
appel API qui crée une nouvelle instance d’objet, la valeur d’ID associée est renvoyée a 'appelant dans I
“location’en-téte de la réponse HTTP. Vous pouvez extraire l'identificateur et I'utiliser sur les appels suivants
lorsque vous faites référence a I'instance de ressource.

Le contenu et la structure interne des identificateurs d’objet peuvent changer a tout moment.
Vous ne devez utiliser les identificateurs sur les appels API applicables que si nécessaire
lorsque vous faites référence aux objets associés.

Demander des identifiants

Un identifiant unique est attribué a chaque requéte d’API réussie. L'identificateur est renvoyé dans I' ‘request-
id en-téte de la réponse HTTP associée. Vous pouvez utiliser un identificateur de demande pour faire
référence collectivement aux activités d’une seule transaction de réponse de requéte API spécifique. Par
exemple, vous pouvez récupérer tous les messages d’événement pour une transaction basée sur I'lD de
demande

Appels synchrones et asynchrones

Il existe deux méthodes principales pour qu’un serveur exécute une requéte HTTP recue d’un client :

« Synchrone le serveur exécute la demande immédiatement et répond avec un code d’état 200, 201 ou 204.

» Asynchrone le serveur accepte la demande et répond par un code d’état 202. Cela indique que le serveur
a accepté la demande du client et a lancé une tache en arriére-plan pour terminer la demande. Le succes
ou I'échec final n’est pas immédiatement disponible et doit étre déterminé par d’autres appels API.

Confirmez la fin d’une tiache en cours d’exécution

De maniére générale, toute opération qui peut prendre un certain temps est traitée de maniere asynchrone a
l'aide d’une tache d’arriere-plan sur le serveur. Avec I'API REST de déploiement, chaque tache d’arriere-plan
est ancrée par un objet Job qui suit la tAche et fournit des informations, telles que I'état actuel. Un objet Job, y
compris son identifiant unique, est renvoyé dans la réponse HTTP apreés la création d’'une tache d’arriere-plan.

Vous pouvez interroger I'objet Job directement pour déterminer le succés ou I'échec de I'appel API associé.
Pour plus d’informations, reportez-vous a la section traitement asynchrone a l'aide de I'objet travail.

Outre I'utilisation de I'objet travail, vous pouvez déterminer la réussite ou I'échec d’'une demande, notamment :

* Messages d’événement vous pouvez récupérer tous les messages d’événement associés a un appel API
spécifique a l'aide de I'ID de requéte renvoyé avec la réponse d’origine. Les messages d’événement
contiennent généralement une indication de réussite ou d’échec et peuvent également étre utiles lors du
débogage d’une condition d’erreur.

« Etat ou état de la ressource plusieurs des ressources conservent une valeur d’état ou d’état que vous
pouvez interroger pour déterminer indirectement le succes ou I'échec d’une requéte.

Sécurité
L'’API de déploiement utilise les technologies de sécurité suivantes :
« Seécurité de la couche de transport tout le trafic envoyé sur le réseau entre le serveur de déploiement et le

client est crypté via TLS. L'utilisation du protocole HTTP sur un canal non crypté n’est pas prise en charge.
TLS version 1.2 est pris en charge.

 Authentification HTTP I'authentification de base est utilisée pour chaque transaction d’API. Un en-téte
HTTP, qui inclut le nom d'utilisateur et le mot de passe dans une chaine base64, est ajouté a chaque
requéte.

Transaction d’API de demande et de réponse

Chaque appel API de déploiement est exécuté sous forme de requéte HTTP vers la
machine virtuelle de déploiement, qui génére une réponse associée au client. Cette paire
de requéte/réponse est considérée comme une transaction API. Avant d’utiliser 'API de
déploiement, vous devez connaitre les variables d’entrée disponibles pour contréler une
requéte et le contenu de la sortie de réponse.

Variables d’entrée contrélant une requéte API

Vous pouvez contréler le traitement d’'un appel API a I'aide de paramétres définis dans la requéte HTTP.

En-tétes de demande

Vous devez inclure plusieurs en-tétes dans la requéte HTTP, notamment :

* Type de contenu si le corps de la demande inclut JSON, cet en-téte doit étre défini sur application/json.
» Accepter si le corps de réponse inclut JSON, cet en-téte doit étre défini sur application/json.

« Autorisation I'authentification de base doit étre définie avec le nom d’utilisateur et le mot de passe codés
dans une chaine base64.

Corps de la demande

Le contenu du corps de la demande varie en fonction de I'appel spécifique. Le corps de requéte HTTP
comprend 'un des éléments suivants :

* Objet JSON avec variables d’entrée (par exemple, le nom d’un nouveau cluster)
* Vide
Filtrer les objets

Lors de I'’émission d’un appel API utilisant GET, vous pouvez limiter ou filtrer les objets renvoyés en fonction de
n’'importe quel attribut. Par exemple, vous pouvez spécifier une valeur exacte a associer :

<field>=<query value>
En plus d’une correspondance exacte, d’autres opérateurs sont disponibles pour renvoyer un ensemble

d’objets sur une plage de valeurs. ONTAP Select prend en charge les opérateurs de filtrage indiqués ci-
dessous.

Opérateur Description

= Egal &

< Inférieur a

> Supérieur a

< ;= Inférieur ou égal a

>= Supérieur ou égal a
Ou

] Différent de

Un caractére générique gourmand

Vous pouvez également renvoyer un ensemble d’objets en fonction de la définition ou non d’'un champ
spécifique a I'aide du mot clé null ou de sa négation (!null) dans le cadre de la requéte.

Sélection des champs d’objet

Par défaut, I'émission d’'un appel API a I'aide DE GET renvoie uniquement les attributs qui identifient de
maniére unique 'objet ou les objets. Cet ensemble minimal de champs sert de clé pour chaque objet et varie
en fonction du type d’objet. Vous pouvez sélectionner des propriétés d’objet supplémentaires a 'aide du
parameétre de requéte de champs de la maniére suivante :

* Les champs bon marché indiquent fields=* de récupérer les champs d’objet qui sont conservés dans la
mémoire du serveur local ou qui nécessitent peu de traitement pour accéder.

* Les champs onéreux spécifient fields=** de récupérer tous les champs d’objet, y compris ceux
nécessitant un traitement serveur supplémentaire pour accéder.

* Sélection de champ personnalisé utilisez fields=FIELDNAME pour spécifier le champ exact que vous
voulez. Lorsque vous demandez plusieurs champs, les valeurs doivent étre séparées par des virgules
sans espaces.

Vous devez toujours identifier les champs spécifiques que vous souhaitez. Vous ne devriez

récupérer que I'ensemble de champs bon marché ou colteux si nécessaire. Cette classification
économique et onéreuse est déterminée par NetApp sur la base de I'analyse interne des
performances. La classification d’'un champ donné peut changer a tout moment.

Trier les objets dans le jeu de sortie

Les enregistrements d’une collection de ressources sont renvoyés dans 'ordre par défaut défini par I'objet.
Vous pouvez modifier 'ordre a I'aide du paramétre de requéte ORDER_by avec le nom de champ et la
direction de tri comme suit :

order by=<field name> asc|desc

Par exemple, vous pouvez trier le champ de type par ordre décroissant suivi de ID par ordre croissant :
order by=type desc, id asc

Lorsque vous ajoutez plusieurs paramétres, vous devez séparer les champs par une virgule.

Pagination

Lors de I'émission d’un appel API a I'aide DE GET pour accéder a une collection d’objets du méme type, tous
les objets correspondants sont renvoyés par défaut. Si nécessaire, vous pouvez limiter le nombre
d’enregistrements renvoyés a 'aide du parameétre de requéte max_records avec la demande. Par exemple :
max records=20

Si nécessaire, vous pouvez combiner ce paramétre avec d’autres paramétres de requéte pour affiner le jeu de
résultats. Par exemple, les éléments suivants renvoient jusqu’a 10 événements systeme générés aprées I'heure
spécifiée :

time= 2019-04-04T15:41:29.140265Z&max _records=10

Vous pouvez émettre plusieurs requétes a la page via les événements (ou tout type d’objet). Chaque appel
d’API suivant doit utiliser une nouvelle valeur de temps basée sur le dernier événement du dernier jeu de
résultats.

Interpréter une réponse API

Chaque requéte d’API génére une réponse au client. Vous pouvez examiner la réponse pour déterminer si elle
a réussi et récupérer des données supplémentaires si nécessaire.

Code d’état HTTP

Les codes d’état HTTP utilisés par ’API REST de déploiement sont décrits ci-dessous.

Code Signification Description
200 OK Indique que les appels qui ne créent pas d’objet ont réussi.
201 Créé Un objet est créé avec succes ; I'en-téte de réponse d’emplacement

inclut l'identifiant unique de I'objet.

202 Accepté Une tache en arriere-plan longue durée a été démarrée pour exécuter
la demande, mais I'opération n’a pas encore été terminée.

400 Demande incorrecte L'entrée de la demande n’est pas reconnue ou est inappropriée.

403 Interdit L’acceés est refusé en raison d’une erreur d’autorisation.

Code Signification Description

404 Introuvable La ressource mentionnée dans la demande n’existe pas.

405 Méthode non Le verbe HTTP de la demande n’est pas pris en charge pour la
autorisée ressource.

409 Conflit La tentative de création d’'un objet a échoué car celui-ci existe déja.

500 Erreur interne Une erreur interne générale s’est produite sur le serveur.

501 Non mis en ceuvre L’URI est connu mais ne peut pas exécuter la demande.

En-tétes de réponse

Plusieurs en-tétes sont inclus dans la réponse HTTP générée par le serveur de déploiement, notamment :

* Request-ID chaque requéte API réussie est affectée a un identifiant de requéte unique.

« Emplacement lors de la création d’un objet, I'en-téte d’emplacement inclut 'TURL compléte du nouvel objet,
y compris l'identificateur d’objet unique.

Corps de réponse

Le contenu de la réponse associée a une requéte API differe selon 'objet, le type de traitement et le succés ou
I'échec de la requéte. Le corps de réponse est rendu au format JSON.

* Objet unique un seul objet peut étre renvoyé avec un ensemble de champs en fonction de la requéte. Par
exemple, vous pouvez utiliser OBTENIR pour extraire les propriétés sélectionnées d’un cluster a l'aide de
l'identifiant unique.

* Plusieurs objets plusieurs objets d’une collection de ressources peuvent étre renvoyés. Dans tous les cas,
un format cohérent est utilisé, num records indiquant le nombre d’enregistrements et d’enregistrements
contenant un tableau des instances d’objet. Par exemple, vous pouvez extraire tous les nceuds définis
dans un cluster spécifique.

» Objet travail si un appel API est traité de facon asynchrone, un objet travail est renvoyé, qui ancres la
tache d’arriere-plan. Par exemple, la demande POST utilisée pour déployer un cluster est traitée de
maniére asynchrone et renvoie un objet Job.

* Objet erreur si une erreur se produit, un objet erreur est toujours renvoyé. Par exemple, vous recevrez une
erreur lors de la tentative de création d’'un cluster dont le nom existe déja.

* Vide dans certains cas, aucune donnée n’est renvoyée et le corps de réponse est vide. Par exemple, le
corps de réponse est vide apres avoir utilisé SUPPRIMER pour supprimer un hote existant.

Traitement asynchrone a I'aide de I’objet de travail

Certains appels API de déploiement, en particulier ceux qui créent ou modifient une
ressource, peuvent prendre plus de temps que d’autres appels. Le déploiement de
ONTAP Select traite ces requétes a long terme de maniére asynchrone.

Demandes asynchrones décrites a I'aide de I’objet travail

Apres avoir effectué un appel API qui s’exécute de maniere asynchrone, le code de réponse HTTP 202 indique
que la demande a été validée et acceptée avec succes, mais pas encore terminée. La requéte est traitée
comme une tache d’arriere-plan qui continue a s’exécuter apres la réponse HTTP initiale au client. La réponse
inclut 'objet Job qui fixe la requéte, y compris son identifiant unique.

@ Reportez-vous a la page de documentation en ligne de ONTAP Select Deploy pour déterminer
quels appels API fonctionnent de maniere asynchrone.

Interroger I'objet travail associé a une demande API

L'objet travail renvoyé dans la réponse HTTP contient plusieurs propriétés. Vous pouvez interroger la propriété
d’état pour déterminer si la demande a bien été effectuée. Un objet travail peut étre dans I'un des Etats
suivants :

* En file d’attente

» Exécution

* Réussite

* Panne
Il existe deux techniques que vous pouvez utiliser lors de l'interrogation d’'un objet travail pour détecter un état
de terminal pour la tache, succés ou échec :

* Demande d’interrogation standard I'état actuel du travail est renvoyé immédiatement

» Demande d’interrogation longue I'état du travail n’est renvoyé que lorsque I'un des événements suivants
se produit :

o 'état a changé plus récemment que la valeur date-heure fournie sur la demande d’interrogation
o La valeur de temporisation a expiré (1 a 120 secondes)
Interrogation standard et interrogation longue utilisent le méme appel API pour interroger un objet travail.

Cependant, une requéte d’interrogation longue inclut deux parameétres de requéte : poll timeout et
last modified.

Vous devez toujours utiliser une interrogation longue pour réduire la charge de travail sur la
machine virtuelle de déploiement.

Procédure générale d’émission d’une demande asynchrone

Vous pouvez utiliser la procédure de haut niveau suivante pour effectuer un appel d’API asynchrone :

1. Lancez I'appel d’API asynchrone.
2. Recevoir une réponse HTTP 202 indiquant que la demande a été acceptée avec succes.
3. Extraire I'identifiant de I'objet travail du corps de réponse.
4. Dans une boucle, effectuez les opérations suivantes dans chaque cycle :
a. Obtenir I'état actuel du travail avec une demande de sondage long

b. Sile travail est dans un état autre que terminal (en file d’attente, en cours d’exécution), exécutez de
nouveau la boucle.

5. Arréter lorsque le travail atteint un état terminal (réussite, échec).

Acceés a I'aide d’un navigateur

Avant d’accéder a I’APIl avec un navigateur

Vous devez connaitre plusieurs éléments avant d’utiliser la page de documentation en
ligne de déploiement.

Plan de déploiement

Si vous prévoyez d’émettre des appels d’API dans le cadre de I'exécution de taches de déploiement ou
d’administration spécifiques, vous devez envisager de créer un plan de déploiement. Ces plans peuvent étre
formels ou informels, et contiennent généralement vos buts et les appels API a utiliser. Consultez le document
processus de workflow a 'aide de 'API REST de déploiement pour plus d’informations.

Exemples JSON et définitions de paramétres

Chaque appel d’API est décrit sur la page de documentation a 'aide d’'un format cohérent. Le contenu inclut
des notes d’'implémentation, des paramétres de requéte et des codes d’état HTTP. En outre, vous pouvez
afficher les détails du fichier JSON utilisé avec les demandes et les réponses de 'APIl, comme suit :

» Exemple de valeur si vous cliquez sur example Value lors d’un appel API, une structure JSON type pour
'appel s’affiche. Vous pouvez modifier 'exemple selon vos besoins et 'utiliser comme saisie pour votre
demande.

* Modeéle si vous cliquez sur Model, une liste compléte des paramétres JSON s’affiche, avec une description
pour chaque paramétre.

Attention lors de I’émission d’appels API
Toutes les opérations d’API que vous effectuez a I'aide de la page de documentation de déploiement sont des

opérations en direct. Veillez a ne pas créer, mettre a jour ou supprimer une configuration ou d’autres données
par erreur.

Accédez a la page de documentation de déploiement

Vous devez accéder a la page de documentation en ligne ONTAP Select Deploy pour
afficher la documentation de I'’API et lancer manuellement un appel d’API.

Avant de commencer

Vous devez disposer des éléments suivants :

* L'adresse IP ou le nom de domaine du ONTAP Select déploient la machine virtuelle

* Nom d'utilisateur et mot de passe pour 'administrateur

Etapes
1. Saisissez 'URL dans votre navigateur et appuyez sur entrée :

https://<ip address>/api/ui
2. Connectez-vous a l'aide du nom d'utilisateur et du mot de passe administrateur.

Résultat
La page Web déployer la documentation s’affiche avec les appels organisés par catégorie au bas de la page.

Comprendre et exécuter un appel d’API

Les détails de tous les appels APl sont documentés et affichés dans un format commun
sur la page Web de documentation en ligne de ONTAP Select Deploy. En comprenant un
seul appel API, vous pouvez accéder aux détails de tous les appels API et les interpréter.

Avant de commencer

Vous devez vous connecter a la page Web de documentation en ligne de ONTAP Select Deploy. Vous devez
disposer de l'identifiant unique attribué a votre cluster ONTAP Select au moment de sa création.

Description de la tache

Vous pouvez récupérer les informations de configuration décrivant un cluster ONTAP Select a I'aide de son
identifiant unique. Dans cet exemple, tous les champs classés comme peu colteux sont retournés. Toutefois,
conformément aux bonnes pratiques, vous devez uniquement demander les champs spécifiques nécessaires.

Etapes
1. Sur la page principale, faites défiler vers le bas et cliquez sur Cluster.

2. Cliquez sur GET /cluster/{cluster_ID} pour afficher les détails de I'appel d’API utilisé pour renvoyer des
informations sur un cluster ONTAP Select.

Processus de flux de travail

Avant d’utiliser les workflows API

Vous devez vous préparer a revoir et a utiliser les processus de flux de travail.

Comprendre les appels d’API utilisés dans les workflows

La page de documentation en ligne de ONTAP Select comprend les détails de chaque appel d’API REST. Au
lieu de répéter ces détails ici, chaque appel d’API utilisé dans les exemples de flux de travail comprend
uniguement les informations dont vous avez besoin pour localiser I'appel sur la page de documentation. Aprés
avoir localisé un appel API spécifique, vous pouvez vérifier les détails complets de I'appel, y compris les
parametres d’entrée, les formats de sortie, les codes d’état HTTP et le type de traitement de la demande.

Les informations suivantes sont incluses pour chaque appel d’API au sein d’un flux de travail afin de localiser
I'appel sur la page de documentation :

» Catégorie les appels API sont organisés sur la page de documentation en zones ou catégories liées aux
fonctions. Pour localiser un appel API spécifique, faites défiler la page jusqu’en bas et cliquez sur la
catégorie APl applicable.

* Verbe HTTP le verbe HTTP identifie I'action effectuée sur une ressource. Chaque appel d’API est exécuté
via un seul verbe HTTP.

» Chemin le chemin détermine la ressource spécifique a laquelle I'action s’applique dans le cadre d’un
appel. La chaine de chemin d’acces est ajoutée a 'URL principale pour former 'URL compléte identifiant la
ressource.

Créez une URL pour accéder directement a ’API REST

En plus de la page de documentation ONTAP Select, vous pouvez également accéder a 'API REST de
déploiement directement via un langage de programmation comme Python. Dans ce cas, 'URL principale est
légerement différente de 'URL utilisée lors de I'acces a la page de documentation en ligne. Lorsque vous

10

accédez directement a 'API, vous devez ajouter /api au domaine et a la chaine de port. Par exemple :
http://deploy.mycompany.com/api

Workflow 1 : créez un cluster d’évaluation a un seul nceud sur ESXi

Vous pouvez déployer un cluster ONTAP Select a un seul nceud sur un héte VMware
ESXi géré par vCenter. Le cluster est créé avec une licence d’évaluation.

Le workflow de création de cluster différe dans les cas suivants :

* L'hbte ESXi n’est pas géré par vCenter (héte autonome)
* Plusieurs nceuds ou hétes sont utilisés dans le cluster
* Le cluster est déployé dans un environnement de production avec une licence achetée

* L'hyperviseur KVM est utilisé a la place de VMware ESXi

1. Enregistrer les informations d’identification du serveur vCenter

Lors du déploiement sur un héte ESXi géré par un serveur vCenter, vous devez ajouter un identifiant avant
d’enregistrer 'héte. L'utilitaire d’administration Deploy peut ensuite utiliser les informations d’identification pour
s’authentifier auprés de vCenter.

Catégorie Verbe HTTP Chemin

Déployez POST /sécurité/informations d’identification

Gondolage

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials'

Entrée JSON (étape 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Type de traitement
Asynchrone

Sortie
+ ID d’identification dans I'en-téte de réponse d’emplacement

* Objet travail

11

2. Enregistrer un héte hyperviseur

Vous devez ajouter un hote d’hyperviseur ou la machine virtuelle contenant le nceud ONTAP Select sera
exécutée.

Catégorie Verbe HTTP Chemin
Cluster POST /hétes

Gondolage

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts’

Entrée JSON (step02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"
}
]
}
Type de traitement
Asynchrone

Sortie
 ID d’héte dans I'en-téte de réponse d’emplacement

* Objet travail

3. Création d’un cluster

Lorsque vous créez un cluster ONTAP Select, la configuration de base du cluster est enregistrée et les noms
de nceuds sont automatiquement générés par le déploiement.

Catégorie Verbe HTTP Chemin
Cluster POST [clusters

Gondolage
Le paramétre de requéte node_count doit étre défini sur 1 pour un cluster a un seul nceud.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

12

Entrée JSON (étape03)

"name": "my cluster

Type de traitement
Synchrone

Sortie
* ID de cluster dans I'en-téte de réponse d’emplacement
4. Configurer le cluster

Vous devez fournir plusieurs attributs dans le cadre de la configuration du cluster.

Catégorie Verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}

Gondolage
Vous devez fournir I'lD de cluster.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrée JSON (étape 04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]

I

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Type de traitement
Synchrone

Sortie
Aucune

13

5. Récupére le nom du nceud

L'utilitaire d’administration Deploy génére automatiquement les noms et identifiants de nceud lors de la
création d’'un cluster. Avant de pouvoir configurer un noeud, vous devez récupérer I'ID attribué.

Catégorie Verbe HTTP Chemin
Cluster OBTENEZ [clusters/{cluster_id}/nceuds

Gondolage
Vous devez fournir I'lD de cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Type de traitement
Synchrone

Sortie
* Le tableau enregistre chaque élément décrivant un seul noeud avec I'ID et le nom uniques

6. Configurez les nceuds

Vous devez fournir la configuration de base du noeud, qui est le premier des trois appels API utilisés pour
configurer un noeud.

Catégorie Verbe HTTP Chemin
Cluster CHEMIN [clusters/{cluster_id}/nodes/{node_id}

Gondolage
Vous devez fournir I'ID de cluster et I'ID de nosud.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrée JSON (étape 06)
Vous devez fournir I'ID d’héte sur lequel le nceud ONTAP Select sera exécuté.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

14

Type de traitement
Synchrone

Sortie
Aucune
7. Récupérer les réseaux de nceuds

Vous devez identifier les réseaux de gestion et de données utilisés par le nceud dans le cluster a un seul
nceud. Le réseau interne n’est pas utilisé avec un cluster a un seul nceud.

Catégorie Verbe HTTP Chemin
Cluster OBTENEZ [clusters/{cluster_id}/nodes/{node_id}/networks

Gondolage
Vous devez fournir I'ID de cluster et I'lD de nosud.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=1id, purpose’

Type de traitement
Synchrone

Sortie

» Tableau de deux enregistrements décrivant chacun un seul réseau pour le nceud, y compris I'ID et le
but uniques

8. Configurer la mise en réseau des nceuds

Vous devez configurer les réseaux de données et de gestion. Le réseau interne n’est pas utilisé avec un
cluster a un seul nceud.

@ Emettez deux fois I'appel API suivant, une fois pour chaque réseau.

Catégorie Verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}/noeuds/{node_id}/réseaux/{network id}

Gondolage
Vous devez fournir I'ID de cluster, I'ID de nosud et I'ID réseau.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrée JSON (étape 08)
Vous devez indiquer le nom du réseau.

"name": "sDOT Network"

Type de traitement
Synchrone

Sortie
Aucune

9. Configurez le pool de stockage de nceuds

La derniére étape de la configuration d’un nceud consiste a relier un pool de stockage. Vous pouvez
déterminer les pools de stockage disponibles via le client Web vSphere, ou éventuellement via 'API REST de
déploiement.

Catégorie Verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}/noeuds/{node_id}/réseaux/{network_id}

Gondolage
Vous devez fournir I'ID de cluster, I'ID de nceud et I'|D réseau.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrée JSON (par étape 09)
La capacité du pool est de 2 To.

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Type de traitement
Synchrone

16

Sortie
Aucune

10. Déployer le cluster

Une fois le cluster et le nceud configurés, vous pouvez déployer le cluster.

Catégorie Verbe HTTP Chemin
Cluster POST [clusters/{cluster_id}/deploy

Gondolage
Vous devez fournir I'lD de cluster.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrée JSON (step10)
Vous devez fournir le mot de passe pour le compte d’administrateur ONTAP.

"ontap credentials": {
"password": "mypassword"

Type de traitement
Asynchrone

Sortie
 Objet travail

Acces avec Python

Avant d’accéder a I’API a I’aide de Python
Vous devez préparer I'environnement avant d’exécuter les exemples de scripts Python.
Avant d’exécuter les scripts Python, assurez-vous que I'environnement est correctement configuré :

» La derniere version applicable de Python2 doit étre installée. Les codes échantillons ont été testés a l'aide
de Python2. lls devraient également étre portables a Python3, mais n’ont pas été testés pour la
compatibilité.

* Les requétes et les bibliotheques urllib3 doivent étre installées. Vous pouvez utiliser pip ou un autre outil
de gestion Python, selon les besoins de votre environnement.

» Le poste de travail client sur lequel s’exécutent les scripts doit disposer d’'un acces réseau a la machine
virtuelle ONTAP Select Deploy.

17

En outre, vous devez disposer des informations suivantes :

« Adresse IP de la machine virtuelle déployée

* Nom d'utilisateur et mot de passe d’un compte administrateur de déploiement

Comprendre les scripts Python

Les exemples de scripts Python vous permettent d’effectuer plusieurs taches différentes.
Vous devez comprendre les scripts avant de les utiliser dans une instance de
déploiement actif.

Caractéristiques de conception communes

Les scripts ont été congus avec les caractéristiques communes suivantes :

» Exécution a partir de I'interface de ligne de commande sur une machine cliente vous pouvez exécuter les
scripts Python a partir de n’importe quelle machine cliente correctement configurée. Voir avant de
commencer pour plus d’informations.

* Accepter les parameétres d’entrée CLI chaque script est contrélé au niveau de l'interface de ligne de
commande par le biais de parameétres d’entrée.

« Lire le fichier d’entrée chaque script lit un fichier d’entrée en fonction de son objectif. Lors de la création ou
de la suppression d’'un cluster, vous devez fournir un fichier de configuration JSON. Lorsque vous ajoutez
une licence de nosud, vous devez fournir un fichier de licence valide.

« Utilisez un module de support commun le module de support commun Deploy Requests.py contient une
seule classe. Il est importé et utilisé par chacun des scripts.

Création d’un cluster

Vous pouvez créer un cluster ONTAP Select a I'aide du script cluster.py. En fonction des parameétres de
l'interface de ligne de commande et du contenu du fichier d’entrée JSON, vous pouvez modifier le script dans
votre environnement de déploiement comme suit :

* Hyperviseur que vous pouvez déployer sur ESXI ou KVM (selon la version de déploiement). Lors du
déploiement de VMware ESXi, I'’hyperviseur peut étre géré par vCenter ou étre un hote autonome.

* Taille du cluster vous pouvez déployer un cluster a un ou plusieurs nceuds.

« Evaluation ou licence de production vous pouvez déployer un cluster avec une licence d’évaluation ou
achetée pour la production.

Les parametres d’entrée CLI pour le script incluent :

* Nom d’héte ou adresse IP du serveur de déploiement
* Mot de passe du compte utilisateur admin
* Nom du fichier de configuration JSON

* Indicateur détaillé pour la sortie du message

Ajouter une licence de noeud

Si vous choisissez de déployer un cluster de production, vous devez ajouter une licence pour chaque nceud a
I'aide du script add_license.py. Vous pouvez ajouter la licence avant ou aprés le déploiement du cluster.

18

Les

parametres d’entrée CLI pour le script incluent :

Nom d’héte ou adresse IP du serveur de déploiement

Mot de passe du compte utilisateur admin

Nom du fichier de licence

Nom d’utilisateur ONTAP avec privileges pour ajouter la licence
Mot de passe de I'utilisateur ONTAP

Supprime un cluster

Vous pouvez supprimer un cluster ONTAP Select existant a I'aide du script delete_cluster.py.

Les

paramétres d’entrée CLI pour le script incluent :

Nom d’héte ou adresse IP du serveur de déploiement
Mot de passe du compte utilisateur admin

Nom du fichier de configuration JSON

Exemples de code Python

Pour créer un cluster

Vous pouvez utiliser le script suivant pour créer un cluster basé sur les parametres
définis dans le script et un fichier d’entrée JSON.

#

!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

19

20

import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials (deploy, confiqg) :
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]
'hostname']) :
log _info ("Registering vcenter {} credentials".format (vcenter]|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log_debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password']}
deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):
''' Registers all hosts with the deploy server.

The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

LI |

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:

if not deploy.resource_exists('/hosts', 'name', host['name']) :
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log _info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

"password": host['password'], "username": host['user

log_info ("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:

deploy.post('/hosts', data, wait for job=True)

def add_cluster_attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log_debug trace ()

21

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?nodeicount:{}'.format(num_nodes),
data)
cluster id = resp.headers.get('Location').split('/"') [-1]
return cluster id
def get node ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'"''
log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format(cluster id))
node ids = [node['id'] for node in response.json().get('records')]

return node ids

def add node_attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log_debug trace ()
log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

22

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type

is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format(data))
deploy.patch('/clusters/{}/nodes/{}"'.format(cluster id, node id),
data)

def add node_ networks (deploy, cluster id, node id, node):
''"" Set the network information for a node '''

log _debug trace ()
log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node_ id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format (

23

cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):

''' Set all the storage information on a node
log _debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log _info ("Node storage: {}".format(node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the Jjson
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,
node id), data)

def create_cluster_ config(deploy, config):

""" Construct a cluster config in the deploy server using the input
json data '''

log_debug trace ()

cluster id = add cluster attributes(deploy, config)

node ids = get node ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug trace ()

log _info ("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster']|

24

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def log _debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
def 1og_info(msg):
logging.getlLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getLogger ('deploy') .error (msg)
exit (1)
def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)
def main (args):

data, wait for job=True)

configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create_ cluster config(deploy, config)

25

deploy cluster (deploy, cluster id, config)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')

parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == "' main ':
args = parseArgs ()
main (args)

JSON pour permettre la création d’un cluster par script

Lors de la création ou la suppression d’un cluster ONTAP Select a 'aide d’exemples de
code Python, vous devez fournir un fichier JSON en tant qu’entrée du script. Vous
pouvez copier et modifier 'exemple JSON approprié en fonction de vos plans de
déploiement.

Cluster a un seul nceud sur ESXi

26

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"
I

by

"dns ips": ["10.206.80.135", "10.206.80.136"]

I
"ontap image version": "9.7",
"gateway": "10.206.80.1",

ip": "10.206.80.115",
"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian": 1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I
"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

27

Cluster a un seul nceud sur ESXi a I’aide de vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
1,
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password" :"mypassword2",
"hostname":"vcenter-1234",
"username":"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" : "node-1",
"networks": [

{

28

"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",

"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk":[1,

"pools": [

{
"name": "storage-pool-1",

"capacity":5685190380748

Cluster a un seul nceud sur KVM

"hosts": [

{

1,

"password": "mypasswordl",
"name" :"host-1234",
n type" : "KVM" 0

"username" :"root"

"cluster": {

30

"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" : "CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlian":1234

by

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",

"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [

{

"name": "storage-pool-1",
"capacity": 4802666790125

Script pour ajouter une licence de nceud

Vous pouvez utiliser le script suivant pour ajouter une licence pour un noeud ONTAP
Select.

#!/usr/bin/env python

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

import argparse

import logging

import json

from deploy requests import DeployRequests

def post new license (deploy, license filename) :

log_info('Posting a new license: {}'.format(license filename))

Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

31

files={'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put_used license (deploy, serial number, license filename,
ontap username, ontap password) :
'"'"' If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get_serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log and exit("The license file seems to be missing the

serialNumber")

32

return serialNumber

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .
setLevel (logging.WARNING)

def main(args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put_free license(deploy, serial number, args.license)
else:

No license exists, so register a new one as an available license

33

for later use

post_new_license(deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')

return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Script pour supprimer un cluster

Vous pouvez utiliser le script CLI suivant pour supprimer un cluster existant.

34

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of

any kind, including but not limited for warranties of merchantability

#

#

#

#

#

#

or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and

testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

that the software application product is distributed pursuant to terms
#

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def

def

find cluster (deploy, cluster name) :
return deploy.find resource('/clusters', 'name', cluster name)

offline cluster (deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state’'.format(cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be

powered off.")

deploy.patch('/clusters/{}'.format(cluster id), {'availability':

'powered off'}, True)

def

def

def

delete cluster (deploy, cluster id):

log _info("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

log_info (msg) :

logging.getLogger ('deploy') .info (msg)

configure logging () :

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .

setlLevel (logging.WARNING)

def

main (args) :
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

35

cluster id = find cluster (deploy, config['cluster']['name'])

log _info ("Found the cluster {} with id: {}.".format (config]
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs () :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

if name == ' main ':

args = parseArgs ()
main (args)

Module de support commun

Tous les scripts Python utilisent une classe Python commune dans un seul module.

#!/usr/bin/env python

S+

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,

provided that the above copyright notice appears in all copies and

R T T T T

that the software application product is distributed pursuant to terms

36

no less restrictive than those set forth herein.

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

LI |

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: $s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def patch(self, path, data, wait for job=False):
self.logger.debug('PATCH DATA: %s', data)
response = requests.patch(self.base url + path,

37

auth=self.auth, verify=False,
json=data,
headers=self.headers)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format(data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:')
response = requests.put(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """

response = requests.delete(self.base url + path, auth=self.auth,

verify=False)

38

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:

self.wait_for job (response.json())

return response

def find resource(self, path, name, value):
''"'" Returns the 'id' of the resource if it exists, otherwise None

resource = None
response = self.get('{path}?{field}={value}'.format (

path=path, field=name, value=value))

if response.status_code == 200 and response.json () .get (
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

LI |

error

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query_opt))

if response.status code == 200

return response.json() .get('num records')

return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response

.format (

job body

= self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"

job id, poll timeout, last modified))

= response.json() .get('record', {})

39

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit(1l) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers[key] for key in ['Location',
'request-id'] if key in response.headers}

Script pour redimensionner les nceuds du cluster

Vous pouvez utiliser le script suivant pour redimensionner les noeuds d’un cluster ONTAP
Select.

#!/usr/bin/env python

e s e s S e S S e S S S S S S S S e S S S S S S S O S S oSS oo o= =
#

File: resize nodes.py

#

(C) Copyright 2019 NetApp, Inc.

#

This sample code is provided AS IS, with no support or warranties of

40

any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S oS S S S S S S % o

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse_args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(

41

'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'

))

parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'

))

parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:

admin.'

))

parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize

operation'
' should be performed. The default is to apply the resize to all

nodes in'
' the cluster. If a list of nodes is provided, it must be provided

in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args

.cluster)
if not cluster id:

return None
return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']
def get request body (parsed args, cluster):
""" Build the request body """
changes = {'admin password': parsed args.ontap password}

if provided, use the list of nodes given, else use all the nodes in

the cluster
nodes = [node for node in cluster['nodes']]

42

if parsed args.nodes:

nodes = [node for node in nodes if node['name'] in parsed args

.nodes]

changes['nodes'] = [

{'instance type': parsed args.instance type, 'id': node['id'

node in nodes]

return changes

def main() :
mwn

then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig (
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3'") .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

]} for

Set up the resize operation by gathering the necessary data and

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == "' main ':

sys.exit (main())

43

Informations sur le copyright

Copyright © 2026 NetApp, Inc. Tous droits réservés. Imprimé aux Etats-Unis. Aucune partie de ce document
protégé par copyright ne peut étre reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un systéme de récupération électronique) sans I'autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis a la licence et a I'avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN LETAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITE MARCHANDE ET D’ADEQUATION A UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRESENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS LACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNEES OU DE PROFITS, OU L'INTERRUPTION D’ACTIVITE), QUELLES QU'EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITE, QU’IL S’AGISSE DE RESPONSABILITE
CONTRACTUELLE, STRICTE OU DELICTUELLE (Y COMPRIS LA NEGLIGENCE OU AUTRE) DECOULANT
DE L'UTILISATION DE CE LOGICIEL, MEME SI LA SOCIETE A ETE INFORMEE DE LA POSSIBILITE DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document a tout moment et sans
préavis. NetApp décline toute responsabilité découlant de I'utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L'utilisation ou I'achat de ce produit ne concéde pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut étre protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LEGENDE DE RESTRICTION DES DROITS : L'utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent a un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont a caractére commercial et ont été
exclusivement développés a I'aide de fonds privés. Le gouvernement des Etats-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des Etats-Unis d’aprés lequel les données lui
ont été fournies ou celles qui sont nécessaires a son exécution. Sauf dispositions contraires énoncées dans
les présentes, I'utilisation, la divulgation, la reproduction, la modification, 'exécution, I'affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des Etats-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales
NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques

déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

44

http://www.netapp.com/TM

	Automatisez avec LE REPOS : ONTAP Select
	Sommaire
	Automatisez avec LE REPOS
	Concepts
	Base de services Web REST
	Comment accéder à l’API de déploiement
	Déploiement des versions d’API
	Caractéristiques opérationnelles de base
	Transaction d’API de demande et de réponse
	Traitement asynchrone à l’aide de l’objet de travail

	Accès à l’aide d’un navigateur
	Avant d’accéder à l’API avec un navigateur
	Accédez à la page de documentation de déploiement
	Comprendre et exécuter un appel d’API

	Processus de flux de travail
	Avant d’utiliser les workflows API
	Workflow 1 : créez un cluster d’évaluation à un seul nœud sur ESXi

	Accès avec Python
	Avant d’accéder à l’API à l’aide de Python
	Comprendre les scripts Python

	Exemples de code Python
	Pour créer un cluster
	JSON pour permettre la création d’un cluster par script
	Script pour ajouter une licence de nœud
	Script pour supprimer un cluster
	Module de support commun
	Script pour redimensionner les nœuds du cluster

