Automatiser avec REST
ONTAP Select

NetApp
January 29, 2026

This PDF was generated from https://docs.netapp.com/fr-fr/ontap-select-9171/concept_api_rest.html on
January 29, 2026. Always check docs.netapp.com for the latest.

Sommaire

Automatiser avec REST
Concepts
Base de services Web REST pour le déploiement et la gestion des clusters ONTAP Select
Comment accéder a I’'API ONTAP Select Deploy
Caractéristiques opérationnelles de base de 'API ONTAP Select Deploy
Transaction API de demande et de réponse pour ONTAP Select
Traitement asynchrone a I'aide de I'objet Job pour ONTAP Select
Accés avec un navigateur
Avant d’accéder a ’'APlI ONTAP Select Deploy avec un navigateur
Accéder a la page de documentation ONTAP Select Deploy
Comprendre et exécuter un appel d’API ONTAP Select Deploy
Processus de flux de travail
Avant d’utiliser les workflows de I’API ONTAP Select Deploy
Workflow 1 : Créer un cluster d’évaluation a nceud unique ONTAP Select sur ESXi
Acces avec Python
Avant d’accéder a 'API ONTAP Select Deploy a l'aide de Python
Comprendre les scripts Python pour ONTAP Select Deploy
Exemples de code Python
Script pour créer un cluster ONTAP Select
JSON pour le script permettant de créer un cluster ONTAP Select
Script pour ajouter une licence de nceud ONTAP Select
Script pour supprimer un cluster ONTAP Select
Module Python de support commun pour ONTAP Select
Script pour redimensionner les nceuds du cluster ONTAP Select

© © 0 0o N PBADNDN -2 -~ -

AW W W N 2 A A a a a a A
O o0 b 2~ 0 © © N NN O O o

Automatiser avec REST

Concepts

Base de services Web REST pour le déploiement et la gestion des clusters ONTAP
Select

Le transfert d’état représentatif (REST) est un style de création d’applications web
distribuées. Appliqué a la conception d’'une API de services web, il établit un ensemble
de technologies et de bonnes pratiques pour exposer les ressources serveur et gérer
leurs états. Il utilise les protocoles et normes les plus courants pour fournir une base
flexible au déploiement et a la gestion des clusters ONTAP Select .

Architecture et contraintes classiques

Le concept de REST a été formellement formulé par Roy Fielding dans sa thése de doctorat. "these" a 'UC
Irvine en 2000. il définit un style architectural grace a un ensemble de contraintes qui, collectivement,
améliorent les applications web et les protocoles sous-jacents. Ces contraintes établissent une application de
services web RESTful basée sur une architecture client/serveur utilisant un protocole de communication sans
état.

Ressources et représentation de I’Etat

Les ressources sont les composants de base d’'un systéme web. Lors de la création d’'une application de
services web REST, les premiéres taches de conception incluent :

+ Identification des ressources systeme ou serveur. Chaque systéme utilise et gére des ressources. Une
ressource peut étre un fichier, une transaction métier, un processus ou une entité administrative. L'une des
premieres taches de la conception d’'une application basée sur les services Web REST est d’identifier les
ressources.

+ Définition des états des ressources et des opérations associées. Les ressources sont toujours dans un état
parmi un nombre fini. Ces états, ainsi que les opérations associées utilisées pour modifier les états,
doivent étre clairement définis.

Des messages sont échangés entre le client et le serveur pour accéder et modifier I'état des ressources selon
le modéle générique CRUD (Créer, Lire, Mettre a jour et Supprimer).

Points de terminaison URI

Chaque ressource REST doit étre définie et rendue disponible selon un schéma d’adressage précis. Les
points de terminaison ou les ressources sont localisées et identifiées utilisent un identifiant de ressource
uniforme (URI). Cet URI fournit un cadre général pour créer un nom unique pour chaque ressource du réseau.
L'URL (Uniform Resource Locator) est un type d’'URI utilisé par les services web pour identifier et accéder aux
ressources. Les ressources sont généralement présentées dans une structure hiérarchique similaire a un
répertoire de fichiers.

messages HTTP

Le protocole HTTP (Hypertext Transfer Protocol) est utilisé par le client et le serveur de services Web pour
échanger des messages de requéte et de réponse concernant les ressources. Lors de la conception d’'une
application de services Web, les verbes HTTP (tels que GET et POST) sont associés aux ressources et aux

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

actions de gestion d’état correspondantes.

HTTP est un protocole sans état. Par conséquent, pour associer un ensemble de requétes et de réponses
connexes dans une méme transaction, des informations supplémentaires doivent étre incluses dans les en-
tétes HTTP accompagnant les flux de données de requétes/réponses.

Formatage JSON

Bien que les informations puissent étre structurées et transférées entre un client et un serveur de plusieurs
maniéres, I'option la plus courante (et celle utilisée avec 'API REST Deploy) est JavaScript Object Notation
(JSON). JSON est une norme industrielle pour la représentation de structures de données simples en texte
brut et permet de transférer des informations d’état décrivant les ressources.

Comment accéder a ’API ONTAP Select Deploy

En raison de la flexibilité inhérente aux services Web REST, 'API ONTAP Select Deploy
est accessible de plusieurs manieres différentes.

L’API REST incluse dans ONTAP Select Deploy posséde un numéro de version. Ce numéro est
indépendant de celui de Deploy. L'utilitaire d’administration ONTAP Select 9.17.1 Deploy inclut
la version 3 de I'API REST.

Déployer I'interface utilisateur native de I'utilitaire

L'accés a I'’API se fait principalement via I'interface utilisateur Web ONTAP Select Deploy. Le navigateur
appelle I'API et reformate les données conformément a la conception de I'interface utilisateur. L'acces a I'API
se fait également via I'interface de ligne de commande de I'utilitaire Deploy.

Page de documentation en ligne ONTAP Select Deploy

La page de documentation en ligne ONTAP Select Deploy offre un point d’accés alternatif pour I'utilisation d’'un
navigateur. Outre la possibilité d’exécuter directement des appels d’API individuels, cette page inclut une
description détaillée de I'API, incluant les parameétres d’entrée et d’autres options pour chaque appel. Les
appels d’API sont organisés en plusieurs domaines ou catégories fonctionnels.

Programme personnalisé

Vous pouvez accéder a I'API Deploy a l'aide de différents langages et outils de programmation. Parmi les plus
courants, on trouve Python, Java et cURL. Un programme, un script ou un outil utilisant 'API agit comme un
client de services Web REST. L'utilisation d’'un langage de programmation vous permet de mieux comprendre
I'API et d’automatiser les déploiements ONTAP Select .

Caractéristiques opérationnelles de base de I’API ONTAP Select Deploy

Bien que REST établisse un ensemble commun de technologies et de bonnes pratiques,
les détails de chaque API peuvent varier en fonction des choix de conception. Il est
important de connaitre les détails et les caractéristiques opérationnelles de 'API ONTAP
Select Deploy avant de I'utiliser.

Hote hyperviseur par rapport au noeud ONTAP Select

Un hoéte hyperviseur est la plateforme matérielle principale qui héberge une machine virtuelle ONTAP Select .

Lorsqu’une machine virtuelle ONTAP Select est déployée et active sur un héte hyperviseur, elle est considérée
comme un nceud ONTAP Select. Avec la version 3 de 'API REST Deploy, les objets hote et nceud sont
distincts. Cela permet une relation un-a-plusieurs, ot un ou plusieurs noeuds ONTAP Select peuvent
s’exécuter sur le méme héte hyperviseur.

Identifiants d’objet

Chaque instance ou objet de ressource se voit attribuer un identifiant unique lors de sa création. Ces
identifiants sont uniques au sein d’'une instance spécifique d' ONTAP Select Deploy. Aprés avoir effectué un
appel API qui crée une nouvelle instance d’objet, la valeur d’identifiant associée est renvoyée a I'appelant.
location En-téte de la réponse HTTP. Vous pouvez extraire l'identifiant et I'utiliser lors des appels ultérieurs
pour faire référence a I'instance de ressource.

Le contenu et la structure interne des identifiants d’objet peuvent changer a tout moment. Vous
ne devez utiliser les identifiants que dans les appels d’API applicables, lorsque cela est
nécessaire, pour faire référence aux objets associés.

Identifiants de demande

Chaque requéte API réussie se voit attribuer un identifiant unique. L'identifiant est renvoyé dans le request-
id en-téte de la réponse HTTP associée. Vous pouvez utiliser un identifiant de requéte pour désigner
collectivement les activités d’'une transaction API spécifique. Par exemple, vous pouvez récupérer tous les
messages d’événement d’une transaction en fonction de l'identifiant de requéte.

Appels synchrones et asynchrones

Il existe deux maniéres principales par lesquelles un serveur exécute une requéte HTTP recue d’un client :

» Synchrone Le serveur exécute la demande immédiatement et répond avec un code d’état 200, 201 ou
204.

* Asynchrone : le serveur accepte la requéte et répond avec le code d’état 202. Cela indique que le serveur
a accepté la requéte du client et a lancé une tache en arriére-plan pour la traiter. La réussite ou I'échec
final n'est pas immédiatement disponible et doit étre déterminé par des appels d’API supplémentaires.

Confirmer I'achévement d’une tache de longue durée

En général, toute opération longue est traitée de maniére asynchrone via une tache d’arriere-plan sur le
serveur. Avec I'API REST Deploy, chaque tache d’arriére-plan est ancrée par un objet Job qui la suit et fournit
des informations, telles que son état actuel. Un objet Job, avec son identifiant unique, est renvoyé dans la
réponse HTTP aprés la création d’une tache d’arriere-plan.

Vous pouvez interroger directement I'objet Job pour déterminer la réussite ou I'échec de I'appel d’API associé.
Pour plus d’informations, consultez la section « Traitement asynchrone avec I'objet Job ».

Outre l'utilisation de I'objet Job, il existe d’autres moyens de déterminer le succés ou I'échec d’'une demande,
notamment :

* Messages d’événement : vous pouvez récupérer tous les messages d’événement associés a un appel
d’API spécifique a l'aide de I'ID de requéte renvoyé avec la réponse d’origine. Ces messages contiennent
généralement une indication de réussite ou d’échec et peuvent également étre utiles lors du débogage
d’une condition d’erreur.

« Etat ou statut des ressources Plusieurs ressources conservent une valeur d’état ou de statut que vous
pouvez interroger pour déterminer indirectement la réussite ou I'échec d’'une demande.

Sécurité
L'’API de déploiement utilise les technologies de sécurité suivantes :

« Seécurité de la couche transport : tout le trafic envoyé sur le réseau entre le serveur et le client Deploy est
chiffré via TLS. L'utilisation du protocole HTTP sur un canal non chiffré n’est pas prise en charge. La
version 1.2 de TLS est prise en charge.

 Authentification HTTP : I'authentification de base est utilisée pour chaque transaction API. Un en-téte
HTTP, contenant le nom d’utilisateur et le mot de passe dans une chaine base64, est ajouté a chaque
requéte.

Transaction APl de demande et de réponse pour ONTAP Select

Chaque appel a I'API Deploy est exécuté sous forme de requéte HTTP adressée a la
machine virtuelle Deploy, qui génére une réponse associée au client. Cette paire
requéte/réponse est considérée comme une transaction API. Avant d’utiliser 'API Deploy,
vous devez vous familiariser avec les variables d’entrée disponibles pour contréler une
requéte et le contenu de la réponse.

Variables d’entrée contrélant une requéte API

Vous pouvez contréler la maniére dont un appel API est traité via des paramétres définis dans la requéte
HTTP.

En-tétes de requéte
Vous devez inclure plusieurs en-tétes dans la requéte HTTP, notamment :
« type de contenu Si le corps de la demande inclut JSON, cet en-téte doit étre défini sur application/json.

» accepter Si le corps de la réponse doit inclure du JSON, cet en-téte doit &tre défini sur application/json.

» L'authentification de base doit étre définie avec le nom d'utilisateur et le mot de passe codés dans une
chaine base64.

Corps de la requéte

Le contenu du corps de la requéte varie selon 'appel. Le corps de la requéte HTTP se compose de I'un des
éléments suivants :

* Objet JSON avec variables d’entrée (comme le nom d’un nouveau cluster)

* Vide

Filtrer les objets

Lors d’'un appel d’API utilisant GET, vous pouvez limiter ou filtrer les objets renvoyés en fonction de n'importe
quel attribut. Par exemple, vous pouvez spécifier une valeur exacte a laquelle correspondre :

<field>=<query value>

Outre une correspondance exacte, d’autres opérateurs permettent de renvoyer un ensemble d’objets sur une
plage de valeurs. ONTAP Select prend en charge les opérateurs de filtrage présentés ci-dessous.

Opérateur Description

= Egal &

< Moins que

> Plus grand que

& Inférieur ou égal a

>= Supérieur ou égal a
Ou

! Pas égal a

Caractére générique gourmand

Vous pouvez également renvoyer un ensemble d’objets selon qu’'un champ spécifique est défini ou non en
utilisant le mot-clé null ou sa négation (!null) dans le cadre de la requéte.

Sélection des champs d’objet

Par défaut, un appel d’API via GET ne renvoie que les attributs identifiant de maniére unique le ou les objets.
Cet ensemble minimal de champs sert de clé pour chaque objet et varie selon son type. Vous pouvez
sélectionner des propriétés d’objet supplémentaires a I'aide du paramétre de requéte fields, comme suit :

* Champs peu colteux fields=* récupérer les champs d’objet stockés dans la mémoire du serveur local
ou dont l'accés nécessite peu de traitement.

* Champs colteux fields=** pour récupérer tous les champs de I'objet, y compris ceux nécessitant un
traitement serveur supplémentaire pour y accéder.

* Sélection de champ personnalisé Utiliser fields=FIELDNAME pour spécifier le champ exact que vous
souhaitez. Lorsque vous demandez plusieurs champs, les valeurs doivent étre séparées par des virgules
sans espaces.

Il est recommandé de toujours identifier les champs spécifiques souhaités. Ne récupérez les
champs les moins chers ou les plus colteux que lorsque cela est nécessaire. La classification

des champs les moins chers et les plus colteux est déterminée par NetApp sur la base d’'une
analyse interne des performances. La classification d’'un champ donné peut changer a tout
moment.

Trier les objets dans I’ensemble de sortie

Les enregistrements d’une collection de ressources sont renvoyés dans 'ordre par défaut défini par I'objet.
Vous pouvez modifier 'ordre a I'aide du paramétre de requéte order_by, en spécifiant le nom du champ et le
sens de tri comme suit :

order by=<field name> asc|desc

Par exemple, vous pouvez trier le champ « type » par ordre décroissant, puis le champ « id » par ordre
croissant :

order by=type desc, id asc

Lorsque vous incluez plusieurs paramétres, vous devez séparer les champs par une virgule.

Pagination

Lors d’un appel API via GET pour accéder a une collection d’objets de méme type, tous les objets
correspondants sont renvoyés par défaut. Si nécessaire, vous pouvez limiter le nombre d’enregistrements
renvoyés en utilisant le paramétre de requéte max_records. Par exemple:

max records=20

Si nécessaire, vous pouvez combiner ce parameétre avec d’autres parameétres de requéte pour affiner les
résultats. Par exemple, la commande suivante renvoie jusqu’a 10 événements systéme générés aprés I'heure
spécifiée :

time= 2019-04-04T15:41:29.140265Z&max records=10

Vous pouvez émettre plusieurs requétes pour parcourir les événements (ou tout type d’objet). Chaque appel
d’API ultérieur doit utiliser une nouvelle valeur temporelle basée sur le dernier événement du dernier ensemble
de résultats.

Interpréter une réponse API

Chaque requéte API génere une réponse au client. Vous pouvez examiner cette réponse pour déterminer si
elle a aboulti et récupérer des données supplémentaires si nécessaire.

Code d’état HTTP

Les codes d’état HTTP utilisés par 'API REST Deploy sont décrits ci-dessous.

Code Signification Description

200 OK Indique le succes des appels qui ne créent pas de nouvel objet.

201 Créé Un objet est créé avec succes ; I'en-téte de réponse d’emplacement
inclut l'identifiant unique de I'objet.

202 Accepté Une tache d’arriere-plan de longue durée a été démarrée pour
exécuter la demande, mais I'opération n’est pas encore terminée.

400 Mauvaise demande La demande d’entrée n’est pas reconnue ou est inappropriée.

403 Interdit L'accés est refusé en raison d’une erreur d’autorisation.

404 Non trouveé La ressource référencée dans la demande n’existe pas.

405 Méthode non Le verbe HTTP dans la requéte n’est pas pris en charge pour la

autorisée ressource.

409 Conflit Une tentative de création d’un objet a échoué car I'objet existe déja.

500 Erreur interne Une erreur interne générale s’est produite sur le serveur.

501 Non implémenté L'URI est connu mais n’est pas capable d’exécuter la requéte.

En-tétes de réponse
Plusieurs en-tétes sont inclus dans la réponse HTTP générée par le serveur de déploiement, notamment :

 request-id Chaque demande d’API réussie se voit attribuer un identifiant de demande unique.

« emplacement Lorsqu’un objet est crée, I'en-téte d’emplacement inclut TURL compléte du nouvel objet, y
compris l'identifiant d’objet unique.

Corps de la réponse

Le contenu de la réponse associée a une requéte API varie selon I'objet, le type de traitement et la réussite ou
I'échec de la requéte. Le corps de la réponse est affiché au format JSON.

* Objet unique : un objet unique peut étre renvoyé avec un ensemble de champs en fonction de la requéte.
Par exemple, vous pouvez utiliser GET pour récupérer les propriétés sélectionnées d’un cluster a I'aide de
son identifiant unique.

» Objets multiples : plusieurs objets d’une collection de ressources peuvent étre renvoyés. Dans tous les
cas, un format cohérent est utilisé, avec num records indiquant le nombre d’enregistrements et
d’enregistrements contenant un tableau d’instances d’objets. Par exemple, vous pouvez récupérer tous les
nceuds définis dans un cluster spécifique.

* Objet Job : si un appel d’API est traité de maniére asynchrone, un objet Job est renvoyé€, qui ancre la tache
en arriére-plan. Par exemple, la requéte POST utilisée pour déployer un cluster est traitée de maniéere
asynchrone et renvoie un objet Job.

* Objet d’erreur : si une erreur se produit, un objet d’erreur est toujours renvoyé. Par exemple, vous recevrez
une erreur lorsque vous tenterez de créer un cluster avec un nom qui existe déja.

« Vide : Dans certains cas, aucune donnée n’est renvoyée et le corps de la réponse est vide. Par exemple,
le corps de la réponse est vide aprés l'utilisation de DELETE pour supprimer un héte existant.

Traitement asynchrone a I'aide de I'objet Job pour ONTAP Select

Certains appels d’API Deploy, notamment ceux qui créent ou modifient une ressource,
peuvent prendre plus de temps que d’autres. ONTAP Select Deploy traite ces requétes
de longue durée de maniére asynchrone.

Requétes asynchrones décrites a I’aide de I'objet Job

Aprés un appel d’AP| exécuté de maniére asynchrone, le code de réponse HTTP 202 indique que la requéte a
été validée et acceptée, mais pas encore terminée. La requéte est traitée en tache d’arriere-plan et continue
de s’exécuter apres la réponse HTTP initiale au client. La réponse inclut I'objet Job ancrant la requéte, ainsi
que son identifiant unique.

@ Vous devez vous référer a la page de documentation en ligne ONTAP Select Deploy pour
déterminer quels appels d’API fonctionnent de maniere asynchrone.

Interroger I’objet Job associé a une requéte API

L'objet Job renvoyé dans la réponse HTTP contient plusieurs propriétés. Vous pouvez interroger la propriété
« state » pour déterminer si la requéte a abouti. Un objet Job peut étre dans I'un des états suivants :

 En file d’attente
» Exécution

» Succes

« Echec

Il existe deux techniques que vous pouvez utiliser lors de I'interrogation d’'un objet Job pour détecter un état
terminal pour la tache, soit un succes, soit un échec :

* Demande d’interrogation standard L’état actuel du travail est renvoyé immédiatement

* Demande d’interrogation longue L’état du travail est renvoyé uniquement lorsque I'un des événements
suivants se produit :

o L’état a changé plus récemment que la valeur de date et d’heure fournie dans la demande de sondage
o La valeur du délai d’attente a expiré (1 a 120 secondes)

Les interrogations standard et longue utilisent le méme appel d’API pour interroger un objet Job. Cependant,
une requéte de longue durée comprend deux parameétres de requéte : poll timeout et last modified.

Vous devez toujours utiliser une interrogation longue pour réduire la charge de travail sur la
machine virtuelle Deploy.

Procédure générale pour émettre une requéte asynchrone

Vous pouvez utiliser la procédure de haut niveau suivante pour terminer un appel d’API asynchrone :

1. Emettez I'appel API asynchrone.
2. Recevez une réponse HTTP 202 indiquant 'acceptation réussie de la demande.
3. Extraire I'identifiant de I'objet Job du corps de la réponse.
4. Dans une boucle, effectuez les opérations suivantes a chaque cycle :
a. Obtenez I'état actuel du travail avec une requéte longue durée

b. Sile travail est dans un état non terminal (en file d’attente, en cours d’exécution), exécutez a nouveau
la boucle.

5. Arrétez-vous lorsque le travail atteint un état terminal (succes, échec).

Acceés avec un navigateur

Avant d’accéder a I’API ONTAP Select Deploy avec un navigateur

Il'y a plusieurs choses que vous devez savoir avant d’utiliser la page de documentation
en ligne Deploy.

Plan de déploiement

Si vous prévoyez d’émettre des appels d’API dans le cadre de taches de déploiement ou d’administration
spécifiques, pensez a créer un plan de déploiement. Ce plan peut étre formel ou informel et contient
généralement vos objectifs et les appels d’API a utiliser. Pour plus d’informations, consultez la section
Processus de workflow utilisant ’API REST Déployer.

Exemples JSON et définitions de paramétres

Chaque appel d’API est décrit dans la page de documentation selon un format cohérent. Le contenu comprend
des notes d'implémentation, des paramétres de requéte et des codes d’état HTTP. De plus, vous pouvez
afficher des détails sur le JSON utilisé avec les requétes et réponses d’ APl comme suit :

» Exemple de valeur : si vous cliquez sur « Exemple de valeur » lors d’un appel d’API, une structure JSON
typique s’affiche. Vous pouvez modifier 'exemple selon vos besoins et I'utiliser comme entrée pour votre
requéte.

* Modéle Si vous cliquez sur Modéle, une liste compléte des paramétres JSON s’affiche, avec une

description pour chaque parameétre.

Attention lors de I’émission d’appels API

Toutes les opérations API effectuées via la page de documentation « Déployer » sont des opérations en direct.
Veillez a ne pas créer, mettre a jour ou supprimer par erreur des configurations ou d’autres données.

Accéder a la page de documentation ONTAP Select Deploy

Vous devez accéder a la page de documentation en ligne ONTAP Select Deploy pour
afficher la documentation de I'’API, ainsi que pour émettre manuellement un appel d’API.

Avant de commencer

Vous devez avoir les éléments suivants :

* Adresse IP ou nom de domaine de la machine virtuelle ONTAP Select Deploy

* Nom d’utilisateur et mot de passe pour 'administrateur

Etapes
1. Tapez I'URL dans votre navigateur et appuyez sur Entrée :

https://<ip address>/api/ui

2. Sign in en utilisant le nom d’utilisateur et le mot de passe administrateur.

Résultat

La page Web de documentation de déploiement s’affiche avec les appels organisés par catégorie au bas de la
page.

Comprendre et exécuter un appel d’API ONTAP Select Deploy

Les détails de tous les appels d’API sont documentés et affichés dans un format commun
sur la page de documentation en ligne ONTAP Select Deploy. Comprendre un appel
d’API permet d’accéder aux détails de tous les appels d’API et de les interpréter.

Avant de commencer

Vous devez étre connecté a la page de documentation en ligne ONTAP Select Deploy. L’identifiant unique de
votre cluster ONTAP Select doit avoir été attribué lors de sa création.

A propos de cette tache

Vous pouvez récupérer les informations de configuration décrivant un cluster ONTAP Select grace a son
identifiant unique. Dans cet exemple, tous les champs classés comme peu colteux sont renvoyés. Cependant,
il est recommandé de ne demander que les champs spécifiques nécessaires.

Etapes
1. Sur la page principale, faites défiler vers le bas et cliquez sur Cluster.

2. Cliquez sur GET /clusters/{cluster_id} pour afficher les détails de I'appel d’API utilisé pour renvoyer des
informations sur un cluster ONTAP Select .

Processus de flux de travail

Avant d’utiliser les workflows de ’API ONTAP Select Deploy

Vous devez vous préparer a examiner et a utiliser les processus de flux de travail.

Comprendre les appels API utilisés dans les workflows

La page de documentation en ligne ONTAP Select détaille chaque appel d’API REST. Plutot que de répéter
ces détails ici, chaque appel d’API utilisé dans les exemples de workflows inclut uniquement les informations
nécessaires pour le localiser sur la page de documentation. Aprés avoir localisé un appel d’API spécifique,
vous pouvez consulter ses détails complets, notamment les paramétres d’entrée, les formats de sortie, les
codes d’état HTTP et le type de traitement de la requéte.

Les informations suivantes sont incluses pour chaque appel d’API dans un workflow pour aider a localiser
I'appel sur la page de documentation :

» Catégorie : les appels d’API sont organisés sur la page de documentation en domaines ou catégories
fonctionnelles. Pour localiser un appel d’API spécifique, faites défiler la page jusqu’en bas et cliquez sur la
catégorie d’API correspondante.

* VVerbe HTTP : Le verbe HTTP identifie I'action effectuée sur une ressource. Chaque appel d’API est
exécuté via un seul verbe HTTP.

* Chemin : le chemin détermine la ressource spécifique a laquelle I'action s’applique dans le cadre d’un
appel. La chaine de chemin est ajoutée a 'URL principale pour former 'URL compléte identifiant la
ressource.

Construire une URL pour accéder directement a ’API REST

Outre la page de documentation ONTAP Select , vous pouvez également accéder directement a ’API REST
Deploy via un langage de programmation tel que Python. Dans ce cas, 'URL principale est [égérement
différente de celle utilisée pour accéder a la page de documentation en ligne. Pour accéder directement a
I'API, vous devez ajouter /api a la chaine de domaine et de port. Par exemple:
http://deploy.mycompany.com/api

Workflow 1 : Créer un cluster d’évaluation a noceud unique ONTAP Select sur ESXi

Vous pouvez déployer un cluster ONTAP Select a nceud unique sur un hote VMware
ESXi géré par vCenter. Le cluster est créé avec une licence d’évaluation.

Le flux de travail de création de cluster differe dans les situations suivantes :

* L’'hbte ESXi n’est pas géré par vCenter (héte autonome)
* Plusieurs noeuds ou hétes sont utilisés au sein du cluster
* Le cluster est déployé dans un environnement de production avec une licence achetée

* L’hyperviseur KVM est utilisé a la place de VMware ESXi

1. Enregistrer les informations d’identification du serveur vCenter

Lors d’un déploiement sur un héte ESXi géré par un serveur vCenter, vous devez ajouter des informations
d’identification avant d’enregistrer I'h6te. L'utilitaire d’administration Deploy peut ensuite utiliser ces
informations d’identification pour s’authentifier auprés de vCenter.

10

Catégorie verbe HTTP Chemin

Déployer POSTE /sécurité/informations d’identification
Boucle

curl -i1X POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

Entrée JSON (étape 01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Type de traitement
Asynchrone

Sortir
* ID d’identification dans I'en-téte de réponse de localisation

* Objet de travail

2. Enregistrer un héte hyperviseur

Vous devez ajouter un hote hyperviseur sur lequel la machine virtuelle contenant le noeud ONTAP Select
s’exécutera.

Catégorie verbe HTTP Chemin
Cluster POSTE /hétes

Boucle

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts'’

Entrée JSON (étape 02)

11

"hosts": [
{

"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Type de traitement
Asynchrone

Sortir
+ ID d’héte dans I'en-téte de réponse d’emplacement

* Objet de travail

3. Créer un cluster

Lorsque vous créez un cluster ONTAP Select , la configuration de cluster de base est enregistrée et les noms
de nceuds sont automatiquement générés par Deploy.

Catégorie verbe HTTP Chemin
Cluster POSTE /groupes

Boucle
Le parameétre de requéte node_count doit étre défini sur 1 pour un cluster a nceud unique.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"'

Entrée JSON (étape 03)

"name": "my cluster"

Type de traitement
Synchrone

Sortir
¢ ID de cluster dans I'en-téte de réponse d’emplacement

12

4. Configurer le cluster

Vous devez fournir plusieurs attributs dans le cadre de la configuration du cluster.

Catégorie verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}

Boucle
Vous devez fournir I'lD du cluster.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Entrée JSON (étape 04)

"dns_info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
}o

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"netmask": "255.255.255.192",

"ntp servers": {"10.206.80.183"}

Type de traitement
Synchrone

Sortir
Aucune
5. Récupérer le nom du nceud

L utilitaire d’administration Deploy génére automatiquement les identifiants et les noms des nceuds lors de la
création d’'un cluster. Avant de configurer un noceud, vous devez récupérer l'identifiant attribué.

Catégorie verbe HTTP Chemin
Cluster OBTENIR [clusters/{cluster_id}/nodes

Boucle
Vous devez fournir I'ID du cluster.

13

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Type de traitement
Synchrone

Sortir
* Les enregistrements de tableau décrivent chacun un nceud unique avec I'ID et le nom uniques

6. Configurer les nceuds

Vous devez fournir la configuration de base du nceud, qui est le premier des trois appels d’API utilisés pour
configurer un nceud.

Catégorie verbe HTTP Chemin
Cluster CHEMIN [clusters/{cluster_id}/nodes/{node_id}

Boucle
Vous devez fournir I'ID du cluster et I'lD du noesud.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Entrée JSON (étape 06)
Vous devez fournir I'ID d’héte sur lequel le nceud ONTAP Select s’exécutera.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

Type de traitement
Synchrone

Sortir
Aucune

7. Récupérer les réseaux de nceuds

Vous devez identifier les réseaux de données et de gestion utilisés par le nceud du cluster a nceud unique. Le
réseau interne n’est pas utilisé avec un cluster a nceud unique.

14

Catégorie verbe HTTP Chemin
Cluster OBTENIR [clusters/{cluster_id}/nodes/{node_id}/networks

Boucle
Vous devez fournir I'lD du cluster et I'lD du nosud.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose'

Type de traitement
Synchrone

Sortir

» Tableau de deux enregistrements décrivant chacun un réseau unique pour le nceud, y compris I'lD
unique et I'objectif

8. Configurer la mise en réseau des nceuds

Vous devez configurer les réseaux de données et de gestion. Le réseau interne n’est pas utilisé avec un
cluster a nceud unique.

(D Emettez I'appel API suivant deux fois, une fois pour chaque réseau.

Catégorie verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}/nodes/{node_id}/networks/{network id}

Boucle
Vous devez fournir I'ID du cluster, I'ID du nceud et I'ID du réseau.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Entrée JSON (étape 08)
Vous devez fournir le nom du réseau.

"name": "sDOT Network"

Type de traitement
Synchrone

15

Sortir
Aucune
9. Configurer le pool de stockage de nceuds

La derniére étape de la configuration d’'un nceud consiste a y associer un pool de stockage. Vous pouvez
déterminer les pools de stockage disponibles via le client web vSphere ou, en option, via ’'API REST Deploy.

Catégorie verbe HTTP Chemin
Cluster CORRECTIF /clusters/{cluster_id}/nodes/{node_id}/networks/{network_id}

Boucle
Vous devez fournir I'lD du cluster, I'ID du nceud et I'ID du réseau.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Entrée JSON (étape 09)
La capacité du pool est de 2 To.

"pool array": [
{
"name": "sDOT-01",
"capacity": 2147483648000

Type de traitement
Synchrone

Sortir
Aucune

10. Déployer le cluster

Une fois le cluster et le noeud configurés, vous pouvez déployer le cluster.

Catégorie verbe HTTP Chemin
Cluster POSTE [clusters/{cluster_id}/deploy

Boucle
Vous devez fournir I'ID du cluster.

16

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Entrée JSON (étape 10)
Vous devez fournir le mot de passe du compte administrateur ONTAP .

"ontap credentials": {

"password": "mypassword"

Type de traitement
Asynchrone

Sortir
* Objet de travail

Informations connexes

"Déployer une instance d’évaluation de 90 jours d’'un cluster ONTAP Select"

Accés avec Python

Avant d’accéder a ’API ONTAP Select Deploy a I’aide de Python
Vous devez préparer I'environnement avant d’exécuter les exemples de scripts Python.
Avant d’exécuter les scripts Python, vous devez vous assurer que I'environnement est correctement configuré :

« La derniere version applicable de Python 2 doit étre installée. Les exemples de code ont été testés avec
Python 2. lls devraient également étre portables vers Python 3, mais leur compatibilité n’a pas été testée.

* Les bibliothéques Requests et urllib3 doivent étre installées. Vous pouvez utiliser pip ou un autre outil de
gestion Python adapté a votre environnement.

* Le poste de travail client sur lequel les scripts s’exécutent doit avoir accés au réseau a la machine virtuelle
ONTAP Select Deploy.

De plus, vous devez disposer des informations suivantes :

* Adresse IP de la machine virtuelle Deploy

* Nom d'utilisateur et mot de passe d’'un compte administrateur de déploiement
Comprendre les scripts Python pour ONTAP Select Deploy

Les exemples de scripts Python vous permettent d’effectuer plusieurs taches différentes.
Il est important de bien comprendre ces scripts avant de les utiliser dans une instance
Deploy en direct.

17

https://docs.netapp.com/fr-fr/ontap-select-9171/deploy-evaluation-ontap-select-ovf-template.html

Caractéristiques de conception communes

Les scripts ont été congus avec les caractéristiques communes suivantes :

» Exécuter depuis I'interface de ligne de commande sur un ordinateur client. Vous pouvez exécuter les
scripts Python depuis n'importe quel ordinateur client correctement configuré. Consultez Avant de
commencer pour plus d’informations.

» Accepter les parameétres d’entrée CLI Chaque script est contrdlé au niveau de la CLI via des parameétres
d’entrée.

« Lire le fichier d’entrée Chaque script lit un fichier d’entrée en fonction de son objectif. Lors de la création ou
de la suppression d'un cluster, vous devez fournir un fichier de configuration JSON. Lors de I'ajout d’une
licence de nceud, vous devez fournir un fichier de licence valide.

« Utiliser un module de support commun. Le module de support commun deploy_requests.py contient une
seule classe. Il est importé et utilisé par chacun des scripts.

Créer un cluster

Vous pouvez créer un cluster ONTAP Select a I'aide du script cluster.py. En fonction des paramétres de
l'interface de ligne de commande et du contenu du fichier d’entrée JSON, vous pouvez adapter le script a votre
environnement de déploiement comme suit :

* Hyperviseur : vous pouvez déployer sur ESXI ou KVM (selon la version de Deploy). Lors d’'un déploiement
sur ESXi, I'hyperviseur peut étre géré par vCenter ou étre un héte autonome.

* Taille du cluster Vous pouvez déployer un cluster a noeud unique ou a nceuds multiples.

« Licence d’évaluation ou de production Vous pouvez déployer un cluster avec une licence d’évaluation ou
achetée pour la production.

Les parameétres d’entrée CLI pour le script incluent :

* Nom d’héte ou adresse IP du serveur de déploiement
* Mot de passe pour le compte utilisateur administrateur
* Nom du fichier de configuration JSON

* Indicateur détaillé pour la sortie du message

Ajouter une licence de noeud

Si vous choisissez de déployer un cluster de production, vous devez ajouter une licence pour chaque nceud a
I'aide du script add_license.py. Vous pouvez ajouter la licence avant ou aprés le déploiement du cluster.

Les parametres d’entrée CLI pour le script incluent :

* Nom d’héte ou adresse IP du serveur de déploiement

* Mot de passe pour le compte utilisateur administrateur

* Nom du fichier de licence

* Nom d’utilisateur ONTAP avec privileges pour ajouter la licence

* Mot de passe pour l'utilisateur ONTAP

18

Supprimer un cluster
Vous pouvez supprimer un cluster ONTAP Select existant a I'aide du script delete_cluster.py.
Les parameétres d’entrée CLI pour le script incluent :

* Nom d’héte ou adresse IP du serveur de déploiement
* Mot de passe pour le compte utilisateur administrateur

* Nom du fichier de configuration JSON

Exemples de code Python

Script pour créer un cluster ONTAP Select

Vous pouvez utiliser le script suivant pour créer un cluster basé sur des parameétres
définis dans le script et un fichier d’entrée JSON.

#!/usr/bin/env python

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """

19

log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]
'hostname']) :

log _info ("Registering vcenter {} credentials".format (vcenter]|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwwn

log_debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource_exists(
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host][
'password']}
deploy.post('/security/credentials', data)

def register unkown hosts (deploy, config):
LI |

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_gxists('/hosts', 'name', host['name']) :
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster_ attributes(deploy, config):
''' POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

LI |

log _debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["'name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (

**cluster config))

Filter to only the valid attributes, ignores anything else in

21

22

the json
data = {k: cluster configlk] for k in |

'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node count={}'.format (num nodes),
data)
cluster id = resp.headers.get ('Location') .split('/") [-1]
return cluster id
def get node_ ids(deploy, cluster id):
'"'" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'''
log _debug trace ()

response deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids [node['id'] for node in response.json().get('records')]

return node ids

def add node_attributes(deploy, cluster id, node id, node):
''' Set all the needed properties on a node '''
log_debug_ trace ()

log_info ("Adding node '({}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:

log_and exit("Host names must match in the 'hosts' array, and the

nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type

is hw raid = not node['storage'].get('disks') # The presence of a

list of disks indicates sw raid
data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format(data))
deploy.patch('/clusters/{}/nodes/{}'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node_ id, node):

LI |

Set the network information for a node '''
log _debug trace ()

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:
single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':

continue

Deduce the network id given the purpose for each entry

network id = deploy.find resource('/clusters/{}/nodes/{}/networks

'.format (cluster id, node id),

'purpose', network|['purpose'l])

data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.£format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''

log_debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))
log_info ("Node storage: {}".format (node['storage']['pools']))

23

data = {'pool array': node['storage']['pools']} # use all the json
properties
deploy.post (
'/clusters/{}/nodes/{}/storage/pools’'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,
node id), data)

def create cluster config(deploy, config):

'''" Construct a cluster config in the deploy server using the input
json data '''

log _debug trace()

cluster id = add cluster attributes(deploy, config)

node ids = get node_ ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_ attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_storage (deploy, cluster id, node id, node config)

return cluster id

def deploy cluster (deploy, cluster id, config):
''"'" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug_ trace ()
log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']|
'ontap admin password']}}
deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format
(cluster id),
data, wait for job=True)

def log _debug trace():
stack = traceback.extract_stack()
parent function = stack[-2] [2]

24

logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging (verbose) :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1ogging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)

def main (args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)
add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)
cluster id = create cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)
def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')
parser.add argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')
parser.add argument('-p', '--password', help='Admin password of Deploy

server')
parser.add_argument('-c', '--config file', help='Filename of the
cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON pour le script permettant de créer un cluster ONTAP Select

Lors de la création ou de la suppression d’un cluster ONTAP Select a I'aide des
exemples de code Python, vous devez fournir un fichier JSON en entrée du script. Vous
pouvez copier et modifier 'exemple JSON approprié en fonction de vos plans de
déploiement.

Cluster a noeud unique sur ESXi

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

L)

ip": "10.206.80.115",

"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

26

"netmask": "255.255.254.0"
}o

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian": 1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

I
"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk": [1,
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Cluster a nceud unique sur ESXi utilisant vCenter

"hosts": [

false,

27

28

"name" :"host-1234",
"type" . "ESX" ,
"mgmt server":"vcenter-1234"

1,

"cluster": {

"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-

demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username" :"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

by

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

Cluster a noeud unique sur KVM

"hosts": [

{
"password": "mypasswordl",
"name" :"host-1234",
n type" : "KVM" 0

"username" :"root"

1,

"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

30

"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

b

"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlian":1234
by
{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

Script pour ajouter une licence de nceud ONTAP Select

Vous pouvez utiliser le script suivant pour ajouter une licence pour un nceud ONTAP
Select .

#!/usr/bin/env python

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

import argparse

import logging

import json

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

31

def put license(deploy, serial number, data, files):

log_info ('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put_license (deploy, serial number, data, files)

def get serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log_and exit("The license file seems to be missing the

serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getlLogger ('deploy') .error (msg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put _free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post_new_license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')

33

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Script pour supprimer un cluster ONTAP Select

Vous pouvez utiliser le script CLI suivant pour supprimer un cluster existant.

34

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name) :
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch('/clusters/{}'.format(cluster_id), {'availability':
'powered off'}, True)

def delete_cluster (deploy, cluster id):

log_info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging () :
FORMAT = '$ (asctime)-15s:% (levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]
'cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

35

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()
if name == ' main ':
args = parseArgs ()
main (args)

odule Python de support commun pour ONTAP Select

Tous les scripts Python utilisent une classe Python commune dans un seul module.

36

#!/usr/bin/env python

S+

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R e e

import json
import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy

path creation and header manipulations for simpler code.

LI |

def init_ (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/json'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

37

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug ('PUT DATA:')
response = requests.put(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """

response = requests.delete(self.base url + path, auth=self.auth,

verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())

return response

def find resource(self, path, name, value):

38

'num_rec

def

error ''

=query o

def

def

.format (

'''" Returns the 'id' of the resource if it exists, otherwise None

resource = None
self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

response

if response.status_code == 200 and response.json () .get (
ords') >= 1:
resource = response.json().get('records') [0].get('id

return resource

get num records(self, path, query=None) :

'''" Returns the number of records found in a container,

resource = None

query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, qu
pt))

if response.status code == 200

return response.json() .get('num records')
return None

resource _exists(self, path, name, value):
return self.find resource (path, name, value) is not None

wait for job(self, response, poll timeout=120) :

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

")

or None on

ery

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
job id, poll timeout, last modified))
job body = response.json().get('record', {})

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')

39

if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB: %s',
job body)
exit(1l) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %s\nHEADERS: %s
\nRESPONSE BODY: %s',

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

Script pour redimensionner les nceuds du cluster ONTAP Select

Vous pouvez utiliser le script suivant pour redimensionner les nceuds dans un cluster
ONTAP Select .

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S oS S S S S S S S S S S $E o

40

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse_args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'

))

2

41

parser.add argqument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:

admin. '
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all

nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None
return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body (parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args

.nodes]
changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for

node in nodes]

return changes

42

def main () :
""" Set up the resize operation by gathering the necessary data
then send
the request to the ONTAP Select Deploy server.

mwan

logging.basicConfig(
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3') .setLevel (logging
.WARNING)

parsed args = _parse_args ()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster(deploy, parsed args)
if not cluster:
deploy.logger.error (
'"Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

and

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

43

Informations sur le copyright

Copyright © 2026 NetApp, Inc. Tous droits réservés. Imprimé aux Etats-Unis. Aucune partie de ce document
protégé par copyright ne peut étre reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un systéme de récupération électronique) sans I'autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis a la licence et a I'avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN LETAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITE MARCHANDE ET D’ADEQUATION A UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRESENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS LACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNEES OU DE PROFITS, OU L'INTERRUPTION D’ACTIVITE), QUELLES QU'EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITE, QU’IL S’AGISSE DE RESPONSABILITE
CONTRACTUELLE, STRICTE OU DELICTUELLE (Y COMPRIS LA NEGLIGENCE OU AUTRE) DECOULANT
DE L'UTILISATION DE CE LOGICIEL, MEME SI LA SOCIETE A ETE INFORMEE DE LA POSSIBILITE DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document a tout moment et sans
préavis. NetApp décline toute responsabilité découlant de I'utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L'utilisation ou I'achat de ce produit ne concéde pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut étre protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LEGENDE DE RESTRICTION DES DROITS : L'utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent a un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont a caractére commercial et ont été
exclusivement développés a I'aide de fonds privés. Le gouvernement des Etats-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des Etats-Unis d’aprés lequel les données lui
ont été fournies ou celles qui sont nécessaires a son exécution. Sauf dispositions contraires énoncées dans
les présentes, I'utilisation, la divulgation, la reproduction, la modification, 'exécution, I'affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des Etats-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales
NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques

déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

44

http://www.netapp.com/TM

	Automatiser avec REST : ONTAP Select
	Sommaire
	Automatiser avec REST
	Concepts
	Base de services Web REST pour le déploiement et la gestion des clusters ONTAP Select
	Comment accéder à l’API ONTAP Select Deploy
	Caractéristiques opérationnelles de base de l’API ONTAP Select Deploy
	Transaction API de demande et de réponse pour ONTAP Select
	Traitement asynchrone à l’aide de l’objet Job pour ONTAP Select

	Accès avec un navigateur
	Avant d’accéder à l’API ONTAP Select Deploy avec un navigateur
	Accéder à la page de documentation ONTAP Select Deploy
	Comprendre et exécuter un appel d’API ONTAP Select Deploy

	Processus de flux de travail
	Avant d’utiliser les workflows de l’API ONTAP Select Deploy
	Workflow 1 : Créer un cluster d’évaluation à nœud unique ONTAP Select sur ESXi

	Accès avec Python
	Avant d’accéder à l’API ONTAP Select Deploy à l’aide de Python
	Comprendre les scripts Python pour ONTAP Select Deploy

	Exemples de code Python
	Script pour créer un cluster ONTAP Select
	JSON pour le script permettant de créer un cluster ONTAP Select
	Script pour ajouter une licence de nœud ONTAP Select
	Script pour supprimer un cluster ONTAP Select
	Module Python de support commun pour ONTAP Select
	Script pour redimensionner les nœuds du cluster ONTAP Select

