
Consignes de codage pour WFA
OnCommand Workflow Automation
NetApp
October 09, 2025

This PDF was generated from https://docs.netapp.com/fr-fr/workflow-automation/workflows/reference-
guidelines-for-variables.html on October 09, 2025. Always check docs.netapp.com for the latest.

Sommaire

Consignes de codage pour WFA . 1

Instructions pour les variables . 1

Variables PowerShell . 1

Variables Perl . 3

Directives pour la mise en retrait . 5

Lignes directrices pour les commentaires . 5

Commentaires de PowerShell . 5

Commentaires Perl . 6

Instructions pour l’enregistrement . 7

La connexion PowerShell. 7

Journalisation Perl . 8

Consignes de gestion des erreurs . 9

Gestion des erreurs PowerShell . 9

Gestion des erreurs Perl . 11

Conventions générales PowerShell et Perl pour WFA. 12

Modules Perl fournis avec Windows . 13

Considérations relatives à l’ajout de modules PowerShell et Perl personnalisés . 13

Applets de commande et fonctions WFA . 14

Modules PowerShell et Perl WFA . 14

Modules PowerShell . 14

Modules Perl . 14

Considérations relatives à la conversion des commandes PowerShell en Perl . 17

Types d’entrée de commande . 17

Déclaration PowerShell . 17

Instructions Perl . 18

Définition de commande . 20

Directives pour les éléments de base WFA . 20

Instructions pour SQL dans WFA. 21

Directives pour les fonctions WFA . 24

Instructions pour les entrées de dictionnaire WFA. 24

Instructions pour les commandes . 25

Instructions pour les flux de travail. 28

Instructions pour la création de scripts de validation pour les types de systèmes distants 33

Instructions pour la création de types de sources de données . 33

Consignes de codage pour WFA

Vous devez connaître OnCommand Workflow Automation les directives de codage, les
conventions de nommage et les recommandations générales relatives à la création
d’éléments de base comme les filtres, les fonctions, les commandes et les workflows.

Instructions pour les variables

Avant de créer une commande ou un type de source de données, vous devez connaître
les instructions relatives aux variables PowerShell et Perl dans OnCommand Workflow
Automation (WFA).

Variables PowerShell

Directives Exemple

Pour les paramètres d’entrée de script :

• Utilisez le cas de Pascal.

• Ne pas utiliser de trait de soulignement.

• N’utilisez pas d’abréviations.

$VolumeName

$AutoDeleteOptions

$Size

Pour les variables internes de script :

• Utiliser l’étui Camel.

• Ne pas utiliser de trait de soulignement.

• N’utilisez pas d’abréviations.

$newVolume

$qtreeName

$time

Pour les fonctions :

• Utilisez le cas de Pascal.

• Ne pas utiliser de trait de soulignement.

• N’utilisez pas d’abréviations.

GetVolumeSize

Les noms de variables ne sont pas sensibles à la
casse. Cependant, pour améliorer la lisibilité, vous ne
devez pas utiliser une majuscule différente pour le
même nom.

$variable est identique à $Variable.

Les noms de variables doivent être en anglais brut et
doivent être liés à la fonctionnalité du script.

Utiliser $name et non $a.

Déclarez explicitement le type de données pour
chaque variable.

taille [int]

1

Directives Exemple

N’utilisez pas de caractères spéciaux (! @ # & % , .)
et espaces.

Aucune

N’utilisez pas de mots clés réservés PowerShell. Aucune

Regroupez les paramètres d’entrée en plaçant les
paramètres obligatoires d’abord suivis des
paramètres facultatifs.

param(

[parameter(Mandatory=$true)]

[string]$Type,

[parameter(Mandatory=$true)]

[string]$Ip,

[parameter(Mandatory=$false)]

[string]$VolumeName

)

Commenter toutes les variables d’entrée à l’aide de
HelpMessage annotation avec un message d’aide
significatif.

[parameter(Mandatory=$false,HelpMe

ssage="LUN to map")]

[string]$LUNName

N’utilisez pas « Filer » comme nom de variable ;
utilisez plutôt « Array ».

Aucune

Utiliser ValidateSet annotation dans les cas où
l’argument obtient des valeurs énumérées. Ceci se
traduit automatiquement par le type de données
Enum pour le paramètre.

[parameter(Mandatory=$false,HelpMe

ssage="Volume state")]

[ValidateSet("online","offline","r

estricted")]

[string]$State

Ajoutez un alias à un paramètre qui se termine par
“_Capacity” pour indiquer que le paramètre est de
type de capacité.

La commande « Create Volume » utilise les alias
comme suit :

[parameter(Mandatory=$false,HelpMe

ssage="Volume increment size in

MB")]

[Alias("AutosizeIncrementSize_Capa

city")]

[int]$AutosizeIncrementSize

2

Directives Exemple

Ajoutez un alias à un paramètre qui se termine par
“_Password” pour indiquer que le paramètre est de
type mot de passe.

param (

 [parameter(Mandatory=$false,

HelpMessage="In order to create an

Active Directory machine account

for the CIFS server or setup CIFS

service for Storage Virtual

Machine, you must supply the

password of a Windows account with

sufficient privileges")]

[Alias("Pwd_Password")]

[string]$ADAdminPassword

)

Variables Perl

Directives Exemple

Pour les paramètres d’entrée de script :

• Utilisez le cas de Pascal.

• Ne pas utiliser de trait de soulignement.

• N’utilisez pas d’abréviations.

$VolumeName

$AutoDeleteOptions

$Size

N’utilisez pas d’abréviations pour les variables
internes de script.

$new_volume

$qtree_name

$time

N’utilisez pas d’abréviations pour les fonctions. get_volume_size

Les noms de variables sont sensibles à la casse.
Pour améliorer la lisibilité, vous ne devez pas utiliser
de majuscules différentes pour le même nom.

$variable n’est pas identique à $Variable.

Les noms de variables doivent être en anglais brut et
doivent être liés à la fonctionnalité du script.

Utiliser $name et non $a.

Regroupez les paramètres d’entrée en plaçant
d’abord les paramètres obligatoires, puis les
paramètres facultatifs.

Aucune

3

Directives Exemple

Dans la fonction GetOptions, déclarez explicitement
le type de données de chaque variable pour les
paramètres d’entrée.

GetOptions(

 "Name=s"=>\$Name,

 "Size=i"=>\$Size

)

N’utilisez pas « Filer » comme nom de variable ;
utilisez plutôt « Array ».

Aucune

Perl n’inclut pas le ValidateSet annotation des
valeurs énumérées. Utilisez des déclarations
explicites « si » pour les cas où l’argument obtient des
valeurs énumérées.

if

(defined$SpaceGuarantee&&!($SpaceG

uaranteeeq'none'

$SpaceGuaranteeeq’volume'

$SpaceGuaranteeeq’file')) { die’Illegal
SpaceGuarantee argument: \''.$SpaceGuarantee.'\''; }

Toutes les commandes Perl WFA doivent utiliser le
pragma "dit" pour décourager l’utilisation de
constructions dangereuses pour les variables, les
références et les sous-routines.

use strict;

the above is equivalent to

use strictvars;

use strictsubs;

use strictrefs;

Toutes les commandes Perl WFA doivent utiliser les
modules Perl suivants :

• Getopt

Ceci est utilisé pour spécifier les paramètres
d’entrée.

• Util. Wutil

Cette fonction est utilisée pour les fonctions
d’utilitaire fournies pour la journalisation des
commandes, la génération de rapports sur la
progression des commandes, la connexion aux
contrôleurs de matrice, etc.

use Getopt::Long;

use NaServer;

use WFAUtil;

4

Directives pour la mise en retrait

Vous devez connaître les consignes d’indentation lors de l’écriture d’un script PowerShell
ou Perl pour OnCommand Workflow Automation (WFA).

Directives Exemple

Un onglet est égal à quatre espaces vides.

Utilisez les onglets et les accolades pour montrer le
début et la fin d’un bloc.

Script PowerShell

if

($pair.length-ne 2)

{

throw "Got wrong input data"

}

Script Perl

if

(defined $MaxDirectorySize)

{

convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

}

Ajoutez des lignes vides entre des ensembles
d’opérations ou des segments de code. $options=$option.trim();

$pair=$option.split(" ");

Get-WFAlogger -Info -messages

$("split options: "+

$Pair)

Lignes directrices pour les commentaires

Vous devez connaître les instructions relatives aux commentaires PowerShell et Perl
dans les scripts pour OnCommand Workflow Automation (WFA).

Commentaires de PowerShell

5

Directives Exemple

Utilisez le caractère # pour un commentaire sur une
seule ligne. # Single line comment

$options=$option.trim();

Utilisez le caractère # pour un commentaire de fin de
ligne. $options=$option.trim(); # End of

line

comment

Utilisez les caractères <# et #> pour un commentaire
de bloc. <#

This is

a

block comment

#>

$options=$option.trim();

Commentaires Perl

Directives Exemple

Utilisez le caractère # pour un commentaire sur une
seule ligne. # convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

Utilisez le caractère # pour le commentaire de fin de
ligne. my $MaxDirectorySizeBytes =

$MaxDirect

orySiZe * 1024 * 1024; # convert

to Bytes

6

Directives Exemple

Utilisez le caractère # dans chaque ligne avec un #
vide au début et à la fin pour créer une bordure de
commentaire pour les commentaires multilignes.

#

This is a multi-line comment.

Perl 5, unlike

Powershell, does not have direct

support for

multi-line comments. Please use

a '#'in every line

with an empty '#' at the

beginning and end to create

a comment border

#

N’incluez pas de code commenté et mort dans les
commandes WFA. Cependant, à des fins de test,
vous pouvez utiliser le mécanisme POD (Plain Old
Documentation) pour commenter le code.

=begin comment

 # Set deduplication

 if(defined $Deduplication &&

$Deduplication eq "enabled")

 {

 $wfaUtil-

>sendLog("Enabling

Deduplication");

 }

=end comment

=cut

Instructions pour l’enregistrement

Vous devez tenir compte des instructions à suivre pour la connexion lors de l’écriture d’un
script PowerShell ou Perl pour OnCommand Workflow Automation (WFA).

La connexion PowerShell

Directives Exemple

Utilisez l’applet de commande Get-WFALogger pour
la consignation. Get-WFALogger -Info -message

“Creating volume”

7

Directives Exemple

Consigner toutes les actions nécessitant une
interaction avec des packages internes tels que Data
ONTAP, VMware et PowerCLI.tous les messages de
journal sont disponibles dans les journaux d’exécution
dans l’historique d’état d’exécution des flux de travail.

Aucune

Consignez tous les arguments pertinents transmis
aux packages internes.

Aucune

Utilisez les niveaux de journal appropriés lorsque
vous utilisez l’applet de commande Get-WFALogger,
en fonction du contexte d’utilisation. -Info, -Error,
-Waren et -Debug sont les différents niveaux de
journal disponibles. Si un niveau de journal n’est pas
spécifié, le niveau de journal par défaut est Déboguer.

Aucune

Journalisation Perl

Directives Exemple

Utilisez WFAUtil sendLog pour la consignation.
my wfa_util = WFAUtil->new();

eval {

$wfa_util->sendLog('INFO',

"Connecting to the

cluster: $DestinationCluster");

}

Consignez chaque action nécessitant une interaction
avec des éléments externes à la commande, tels que
Data ONTAP, VMware et WFA. Tous les messages de
journal que vous créez à l’aide de la routine WFAUtil
sendLog sont stockés dans la base de données WFA.
Ces messages de journal sont disponibles pour le
workflow et la commande exécutés.

Aucune

Consigner tous les arguments pertinents transmis à la
routine appelée.

Aucune

Utilisez les niveaux de journal appropriés.-Info,
-erreur, -avertir et -Debug sont les différents niveaux
de journal disponibles.

Aucune

8

Directives Exemple

Lors de la connexion au niveau -Info, soyez précis et
concis. Ne spécifiez pas de détails d’implémentation
tels que le nom de classe et le nom de fonction dans
les messages de journal. Décrivez l’étape exacte ou
l’erreur exacte en anglais.

L’extrait de code suivant montre un exemple de bon
message et un message incorrect :

$wfa_util->sendLog('WARN',

"Removing volume:

'.$VolumeName);

Good Message

$wfa_util->sendLog('WARN',

'Invoking volume-

destroy ZAPI: '.$VolumeName);

Bad message

Consignes de gestion des erreurs

Vous devez connaître les consignes relatives à la gestion des erreurs lors de l’écriture
d’un script PowerShell ou Perl pour OnCommand Workflow Automation (WFA).

Gestion des erreurs PowerShell

Directives Exemple

Les paramètres communs ajoutés aux applets de
commande par le runtime PowerShell comprennent
des paramètres de gestion des erreurs tels que
ErrorAction et WarningAction :

• Le paramètre ErrorAction détermine comment
une cmdlet doit réagir à une erreur de non-fin à
partir de la commande.

• Le paramètre WarningAction détermine comment
une cmdlet doit réagir à un avertissement de la
commande.

• Stop, SilentlyCongue, Inquid et continue sont les
valeurs valides pour les paramètres ErrorAction et
WarningAction.

Pour plus d’informations, vous pouvez utiliser le Get-
Help about_CommonParameters Commande
dans l’interface de ligne de commandes PowerShell.

ErrorAction : l’exemple suivant montre comment gérer
une erreur de non-fin en tant qu’erreur de fin :

New-NcIgroup-Name $IgroupName-

Protocol $Protocol-Type$OSType-

ErrorActionstop

Warningaction

New-VM-Name $VMName-VM $SourceVM-

DataStore$DataStoreName-

VMHost$VMHost-

WarningActionSilentlyContinue

9

Directives Exemple

Utilisez l’instruction générale « try/Catch » si le type
d’exception entrante est inconnu. try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

Utilisez l’instruction « try/Catch » spécifique si le type
d’exception entrante est connu. try

{

"In Try/catch block"

}

catch[System.Net.WebExceptional],

[System.IO.

IOException]

{

"Got exception"

}

Utilisez la déclaration « enfin » pour libérer des
ressources. try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

finally

{

"Release resources"

}

10

Directives Exemple

Utilisez les variables automatiques de PowerShell
pour accéder aux informations relatives aux
exceptions.

try

{

Get-WFALogger -Info -message

$("Creating

Ipspace: " + $Ipspace)

New-NaNetIpspace-Name $Ipspace

}

catch

{

Throw "Failed to create Ipspace.

Message:

" + $_.Exception.Message;

}

Gestion des erreurs Perl

11

Directives Exemple

Perl n’inclut pas la prise en charge du langage natif
pour les blocs Try/Catch. Utilisez des blocs
d’évaluation pour vérifier et gérer les erreurs.
Conserver les blocs d’évaluation aussi petits que
possible.

eval {

$wfa_util->sendLog('INFO',

"Quiescing the relationship :

$DestinationCluster://$Destination

Vserver

/$DestinationVolume"

);

$server->snapmirror_quiesce(

'destination-vserver' =>

$DestinationVserver,

'destination-volume' =>

$DestinationVolume

);

$wfa_util->sendLog('INFO',

'Quiesce operation

started successfully.');

};

$wfa_util->checkEvalFailure(

"Failed to quiesce the SnapMirror

relationship

$DestinationCluster://$Destination

Vserver

/$DestinationVolume",

 $@

);

Conventions générales PowerShell et Perl pour WFA

Vous devez comprendre certaines conventions PowerShell et Perl utilisées dans WFA
pour créer des scripts cohérents avec les scripts existants.

• Utilisez des variables qui permettent de clarifier ce que vous voulez faire le script.

• Écrire un code lisible qui peut être compris sans commentaires.

• Privilégiez les scripts et les commandes aussi simplement que possible.

• Pour les scripts PowerShell :

◦ Utiliser les applets de commande lorsque cela est possible.

◦ Appelez le code .NET lorsqu’aucune applet de commande n’est disponible.

• Pour les scripts Perl :

12

◦ Toujours mettre fin aux instructions "comme" avec des caractères de newline.

En l’absence d’un caractère newline, le numéro de ligne de script est imprimé, ce qui n’est pas utile
pour le débogage des commandes Perl exécutées par WFA.

◦ Dans le module « Getopt », rendre obligatoire les arguments de chaîne à une commande.

Modules Perl fournis avec Windows

Certains modules Perl sont fournis avec la distribution Perl à état actif Windows pour
OnCommand Workflow Automation (WFA). Vous pouvez utiliser ces modules Perl dans
votre code Perl pour écrire des commandes, uniquement si elles sont fournies avec
Windows.

Le tableau suivant répertorie les modules de base de données Perl fournis avec Windows pour WFA.

Module de base de données Description

DBD::mysql Pilote d’interface de base de données perl5 qui vous
permet de vous connecter à la base de données
MySQL.

Essayez::minuscule Réduit les erreurs courantes grâce à des blocs
d’évaluation.

XML::libxml Interface avec libxml2 qui fournit des analyseurs XML
et HTML avec des interfaces DOM, SAX et
XMLReader.

DBD::Cassandra Pilote d’interface de base de données perl5 pour
Cassandra qui utilise le langage de requête CQL3.

Considérations relatives à l’ajout de modules PowerShell et
Perl personnalisés

Vous devez prendre en compte certaines considérations avant d’ajouter des modules
PowerShell et Perl personnalisés à OnCommand Workflow Automation (WFA). Les
modules personnalisés PowerShell et Perl vous permettent d’utiliser des commandes
personnalisées pour créer des flux de travail.

• Au cours de l’exécution des commandes WFA, tous les modules PowerShell personnalisés sont ajoutés au
répertoire d’installation de WFA /Posh/modules sont automatiquement importées.

• Tous les modules Perl personnalisés ajoutés au WFA/perl Le répertoire est inclus dans la bibliothèque
@Inc.

• Les modules PowerShell et Perl personnalisés ne sont pas sauvegardés dans le cadre des opérations de
sauvegarde WFA.

• Les modules PowerShell et Perl personnalisés ne sont pas restaurés lors de l’opération de restauration
WFA.

13

Vous devez sauvegarder manuellement des modules PowerShell et Perl personnalisés afin de les copier vers
une nouvelle installation WFA.

Le nom du dossier dans le répertoire des modules doit être identique à celui du nom du module.

Applets de commande et fonctions WFA

OnCommand Workflow Automation (WFA) propose plusieurs applets de commande
PowerShell, ainsi que des fonctions PowerShell et Perl que vous pouvez utiliser dans vos
commandes WFA.

Vous pouvez afficher toutes les applets de commande PowerShell et fonctions fournies par le serveur WFA à
l’aide des commandes PowerShell suivantes :

• Get-Command -Module WFAWrapper

• Get-Command -Module WFA

Vous pouvez afficher toutes les fonctions Perl fournies par le serveur WFA dans le WFAUtil.pm module. Les
sections d’aide, les applets de commande WFA PowerShell et les méthodes WFA Perl aident à accéder aux
liens du module d’aide WFA (support), qui permettent d’accéder à toutes les fonctions et applets de
commande PowerShell ainsi qu’aux fonctions Perl.

Modules PowerShell et Perl WFA

Pour écrire des scripts pour vos flux de production, vous devez avoir connaissance des
modules PowerShell ou Perl pour OnCommand Workflow Automation (WFA).

Modules PowerShell

Directives Exemple

Utilisez le kit d’outils PS Data ONTAP pour appeler
des API dès que le kit d’outils est disponible.

Le Add VLAN la commande utilise la boîte à outils
comme suit :

Add-NaNetVlan-Interface $Interface-

Vlans$VlanID

S’il n’y a pas d’applets de commande disponibles
dans le kit d’outils Data ONTAP PS, utilisez le
Invoke-SSH Commande permettant d’appeler
l’interface de ligne de commandes sur Data ONTAP.

Invoke-NaSsh-Name $ArrayName-Command

"ifconfig -a"-Credential $Credentials

Modules Perl

Le module NaServer est utilisé dans les commandes WFA. Le module NaServer permet l’invocation des API
Data ONTAP, utilisées dans la gestion active des systèmes Data ONTAP.

14

15

Directives Exemple

Utilisez le module NaServer pour appeler des API dès
que le SDK de gestion NetApp est disponible.

L’exemple suivant montre comment le module
NaServer est utilisé pour une opération de reprise
SnapMirror :

 eval {

 $wfa_util->sendLog('INFO',

 "Connecting to the

cluster: $DestinationCluster"

);

 my $server

 = $wfa_util-

>connect($DestinationClusterIp,

$DestinationVserver);

 my $sm_info = $server-

>snapmirror_get(

 'destination-vserver' =>

$DestinationVserver,

 'destination-volume' =>

$DestinationVolume

);

 my $sm_state = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'mirror-state'};

 my $sm_status = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'relationship-status'};

 $wfa_util->sendLog('INFO',

 "SnapMirror relationship

is $sm_state ($sm_status)");

 if ($sm_status ne 'quiesced')

{

 $wfa_util->sendLog('INFO',

 'The status needs to

be quiesced to resume transfer.');

 } else {

 my $result = $server-

>snapmirror_resume(

 'destination-vserver'

=> $DestinationVserver,

 'destination-volume'

=> $DestinationVolume

);

 $wfa_util->sendLog('INFO',
16

"Result of resume: $result");

 $wfa_util->sendLog('INFO',

'Resume operation started

successfully.');

 }

}

Directives Exemple

Si une API Data ONTAP n’est pas disponible, appelez
l’interface de ligne de commande Data ONTAP à
l’aide de la méthode utilitaire executeSystemsmake.

ExecuteSystemsmaTM n’est pas pris
en charge et n’est actuellement
disponible que pour Data ONTAP 7-
mode.

Aucune

Considérations relatives à la conversion des commandes
PowerShell en Perl

Vous devez prendre en compte certaines considérations importantes lorsque vous
convertissez des commandes PowerShell en Perl, car PowerShell et Perl possèdent des
fonctionnalités différentes.

Types d’entrée de commande

OnCommand Workflow Automation (WFA) permet aux concepteurs de flux de production d’utiliser des baies et
un hachage comme entrées pour la commande lors de la définition d’une commande. Ces types d’entrée ne
peuvent pas être utilisés lorsque la commande est définie à l’aide de Perl. Si vous voulez qu’une commande
Perl accepte les entrées de tableau et de hachage, vous pouvez définir l’entrée comme une chaîne dans le
concepteur. La définition de la commande peut alors analyser l’entrée, qui est transmise pour créer une
matrice ou un hachage selon les besoins. La description de l’entrée décrit le format dans lequel l’entrée est
attendue.

my @input_as_array = split(',', $InputString); #Parse the input string of

format val1,val2 into an array

my %input_as_hash = split /[;=]/, $InputString; #Parse the input string of

format key1=val1;key2=val2 into a hash.

Déclaration PowerShell

Les exemples suivants montrent comment une entrée de tableau peut être transmise à PowerShell et Perl. Les
exemples décrivent le CronMonth d’entrée, qui spécifie le mois où le travail cron est planifié pour s’exécuter.
Les valeurs valides sont des nombres entiers compris entre -1 et 11. Une valeur de -1 indique que le planning
s’exécute tous les mois. Toute autre valeur indique un mois donné, 0 étant janvier et 11 décembre.

17

[parameter(Mandatory=$false, HelpMessage="Months in which the schedule

executes. This is a comma separated list of values from 0 through 11.

Value -1 means all months.")]

 [ValidateRange(-1, 11)]

 [array]$CronMonths,

Instructions Perl

18

GetOptions(

 "Cluster=s" => \$Cluster,

 "ScheduleName=s" => \$ScheduleName,

 "Type=s" => \$Type,

 "CronMonths=s" => \$CronMonths,

) or die 'Illegal command parameters\n';

sub get_cron_months {

 return get_cron_input_hash('CronMonths', $CronMonths, 'cron-month',

-1,

 11);

}

sub get_cron_input_hash {

 my $input_name = shift;

 my $input_value = shift;

 my $zapi_element = shift;

 my $low = shift;

 my $high = shift;

 my $exclude = shift;

 if (!defined $input_value) {

 return undef;

 }

 my @values = split(',', $input_value);

 foreach my $val (@values) {

 if ($val !~ /^[+-]?\d+$/) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be an integer.\n";

 }

 if ($val < $low || $val > $high) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be from $low to $high.\n";

 }

 if (defined $exclude && $val == $exclude) {

 die

 "Invalid value '$input_value' for $input_name: $val is not

valid.\n";

 }

 }

 # do something

}

19

Définition de commande

Il peut être nécessaire d’étendre une expression à une seule ligne dans PowerShell à l’aide d’un opérateur de
tuyauterie en plusieurs blocs d’instructions en Perl afin d’obtenir la même fonctionnalité. Le tableau suivant
illustre un exemple de l’une des commandes d’attente.

Déclaration PowerShell Instructions Perl

Get the latest job which moves

the specified volume to the

specified

 aggregate.

$job = Get-NcJob -Query $query

where {$_.JobDescription -eq "Split" +
$VolumeCloneName}

Select-Object -First 1 ----
my $result = $server-

>job_get_iter(

 'query' => {'job-type' =>

'VOL_CLONE_SPLIT'},

 'desired-attributes' => {

 'job-type' => '',

 'job-description' => '',

 'job-progress' => '',

 'job-state' => ''

 }

);

my @jobarray;

for my $job (@{ $result-

>{'attributes-list'}})

{

 my $description = $job->{'job-

description'};

 if($description =~

/$VolumeCloneName/)

 {

 push(@jobarray, $job)

 }

}

Directives pour les éléments de base WFA

Vous devez connaître les instructions relatives à l’utilisation des éléments de base de
Workflow Automation.

20

Instructions pour SQL dans WFA

Vous devez connaître les instructions relatives à l’utilisation de SQL dans OnCommand
Workflow Automation (WFA) pour écrire des requêtes SQL pour WFA.

SQL est utilisé dans les emplacements suivants de WFA :

• Requêtes SQL permettant de renseigner les entrées utilisateur pour la sélection

• Requêtes SQL pour la création de filtres permettant de filtrer des objets d’un type d’entrée de dictionnaire
spécifique

• Données statiques dans les tables de la base de données du terrain de jeu

• Type de source de données personnalisé de type SQL où les données doivent être extraites d’une source
de données externe telle qu’une base de données de gestion de configuration personnalisée (CMDB).

• Requêtes SQL pour les scripts de réservation et de vérification

Directives Exemple

Les mots-clés réservés SQL doivent être en
majuscules. SELECT

 vserver.name

FROM

 cm_storage.vserver vserver

Les noms de tables et de colonnes doivent être en
caractères minuscules.

Tableau : agrégat

Colonne : espace_utilisé_mb

Séparez les mots par un caractère de soulignement
(_). Les espaces ne sont pas autorisés.

performances_de_la_baie

Le nom de la table est défini en singulier. Une table
est une collection d’une ou plusieurs entrées.

« fonction », et non « fonctions »

21

Directives Exemple

Utilisez des alias de table avec des noms significatifs
dans LES requêtes DE SÉLECTION. SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

22

Directives Exemple

Si vous devez faire référence à un paramètre d’entrée
de filtre ou à un paramètre d’entrée utilisateur dans
une requête de filtre ou d’utilisateur, utilisez la syntaxe
comme '${inputVariableName}.vous pouvez
également utiliser la syntaxe pour faire référence à un
paramètre de définition de commande dans les
scripts de réservation et de vérification.

SELECT

 volume.name AS Name,

 aggregate.name as Aggregate,

 volume.size_mb AS 'Total Size

(MB)',

 voulme.used_size_mb AS 'Used

Size (MB)',

 volume.space_guarantee AS

'Space Guarantee'

FROM

 cm_storage.cluster,

 cm_storage.aggregate,

 cm_storage.vserver,

 cm_storage.volume

WHERE

 cluster.id =

vserver.cluster_id

 AND aggregate.id =

volume.aggregate_id

 AND vserver.id =

voulme.vserver_id

 AND vserver.name =

'${VserverName}'

 AND cluster.name =

'${ClusterName}'

ORDER BY

 volume.name ASC

Utilisez des commentaires pour les requêtes
complexes. Certains styles de commentaires pris en
charge dans les requêtes sont les suivants :

• «»--» jusqu’à la fin de la ligne

Un espace est obligatoire après le second tiret
dans ce style de commentaire.

• D’un caractère «»#» jusqu’à la fin de la ligne

• À partir d’un ""/" to the following "/«
séquence

/*

multi-line

comment

*/

--line comment

SELECT

 ip as ip, # comment till end

of this line

 NAME as name

FROM --end of line comment

 storage.array

23

Directives pour les fonctions WFA

Vous pouvez créer des fonctions pour encapsuler une logique couramment utilisée et
plus complexe dans une fonction nommée, puis réutiliser la fonction comme valeurs de
paramètre de commande ou valeurs de paramètres de filtre dans OnCommand Workflow
Automation (WFA).

Directives Exemple

Utilisez Camel case pour un nom de fonction. Calcul VolumeSize

Les noms de variables doivent être en anglais clair et
liés à la fonctionnalité de la fonction.

SplitByDelimiter

N’utilisez pas d’abréviations. CalculateVolumeSize, NOT calciVolSize

Les fonctions sont définies à l’aide de MVFLEX
expression Language (MVEL).

Aucune

La définition de la fonction doit être spécifiée
conformément aux directives officielles du langage de
programmation Java.

Aucune

Instructions pour les entrées de dictionnaire WFA

Vous devez connaître les instructions de création d’entrées de dictionnaire dans
OnCommand Workflow Automation (WFA).

Directives Exemple

Les noms d’entrée du dictionnaire ne doivent contenir
que des caractères alphanumériques et des traits de
soulignement.

Licence_cluster

Switch_23

Les noms d’entrée du dictionnaire doivent
commencer par un caractère en majuscules.
Commencez chaque mot du nom par un caractère en
majuscule et séparez chaque mot par un trait de
soulignement (_).

Volumétrie

Licence_baie

Les noms des attributs d’entrée du dictionnaire ne
doivent pas inclure le nom de l’entrée du dictionnaire.

Aucune

Les attributs et les références d’une entrée de
dictionnaire doivent être en caractères minuscules.

agrégat, size_mb

Séparez les mots par un trait de soulignement. Les
espaces ne sont pas autorisés.

pool_ressources

24

Directives Exemple

Les entrées du dictionnaire ne peuvent pas inclure de
références provenant d’un schéma différent.
Lorsqu’une entrée de dictionnaire nécessite une
référence croisée à un objet dans un autre schéma,
assurez-vous que toutes les clés naturelles de l’objet
auquel il est fait référence sont présentes dans
l’entrée du dictionnaire.

L’entrée du dictionnaire Array_Performance nécessite
toutes les clés naturelles de l’entrée du dictionnaire
Array comme attributs directs.

Utilisez les types de données appropriés pour les
attributs.

Aucune

Utilisez le type de données long pour les attributs
relatifs à la taille ou à l’espace.

Size_mb et Available_size_mb dans Storage.Volume
Dictionary

Utilisez Enum lorsqu’un attribut possède un ensemble
de valeurs fixe.

raid_type dans l’entrée Storage.Volume Dictionary

Définissez « à mettre en cache » comme vrai pour un
attribut ou une référence lorsqu’une source de
données fournit une valeur pour cet attribut ou cette
référence.pour la source de données Active IQ
Unified Manager, ajoutez des attributs de mise en
cache si la source de données peut lui fournir la
valeur.

Aucune

Définissez « peut être nul » comme vrai si la source
de données fournissant la valeur de cet attribut ou de
cette référence peut renvoyer NULL.

Aucune

Fournissez une description pertinente à chaque
attribut et référence.la description s’affiche dans les
détails de la commande lors de la conception d’un
flux de travail.

Aucune

N’utilisez pas « ID » comme nom d’attribut dans les
entrées de dictionnaire. Il est réservé à l’utilisation
interne de WFA.

Aucune

Informations connexes

Références à du matériel d’apprentissage

Instructions pour les commandes

Vous devez connaître les instructions à suivre pour créer des commandes dans
OnCommand Workflow Automation (WFA).

25

https://docs.netapp.com/fr-fr/workflow-automation/workflows/reference-references-to-learning-material.html

Directives Exemple

Utiliser un nom facilement identifiable pour les
commandes.

Create Qtree

Utilisez des espaces pour délimiter les mots et
chaque mot doit commencer par un caractère en
majuscules.

Create Volume

Fournissez une description pour expliquer la
fonctionnalité de la commande, y compris le résultat
attendu des paramètres facultatifs.

Aucune

Par défaut, le délai d’attente des commandes
standard est de 600 secondes. Le délai par défaut est
défini lors de la création de la commande. Modifiez la
valeur par défaut uniquement si la commande peut
prendre plus de temps.

Create Volume commande

Dans le cas d’opérations de longue durée, créez deux
commandes : l’une pour appeler l’opération de longue
durée et l’autre pour signaler périodiquement la
progression de l’opération. La première commande
doit être un Standard Execution le type de
commande et le second doit être Wait for
Condition type de commande.

Create VSM et Wait for VSM commandes

Préfixer le Wait for condition Noms de
commande avec « attendre » pour une identification
facile.

Wait for CM Volume Move

Utilisez un intervalle d’attente approprié pour les
commandes « attendre condition ». La valeur
spécifiée régit l’intervalle d’exécution de la commande
d’interrogation pour vérifier si l’opération longue durée
est terminée.

intervalle d’échantillonnage de 60 s pour le Wait
for VSM commande

Pour le Wait for condition les commandes,
utilisez un délai d’attente approprié en fonction du
temps prévu pour l’opération de longue durée. Le
temps prévu peut être considérablement plus long si
l’opération implique un transfert de données sur un
réseau.

Un transfert de ligne de base VSM peut prendre
plusieurs jours. Par conséquent, le délai spécifié est
de 6 jours.

Représentation de chaîne

La représentation de chaîne d’une commande affiche les détails d’une commande dans une conception de flux
de travail lors de la planification et de l’exécution. Seuls les paramètres de commande peuvent être utilisés
dans la représentation de chaîne d’une commande.

26

Directives Exemple

Évitez d’utiliser des attributs qui n’ont aucune valeur.
Un attribut sans valeur s’affiche sous la forme NA.

Volname 10.68.66.212[NA]aggr1/testVol7

Séparez les différentes entrées de la représentation
de chaîne à l’aide des délimiteurs suivants : [] , / :

ArrayName[ArrayIp]

Fournir des étiquettes significatives à chaque valeur
dans la représentation de chaîne.

Volume name=VolumeName

Langage de définition de commande

Les commandes peuvent être écrites à l’aide des langages de script pris en charge suivants :

• PowerShell

• Perl

Définition du paramètre de commande

Les paramètres de la commande sont décrits par Nom, Description, Type, une valeur par défaut pour le
paramètre et si le paramètre est obligatoire. Le type de paramètre peut être String, Boolean, Integer, long,
Double, Enum, DateTime, Capacity, Array, Hashtable, Mot de passe ou XmlDocument. Bien que les valeurs de
la plupart des types soient intuitives, les valeurs de Array et Hashtable doivent être dans un format particulier,
comme décrit dans le tableau suivant :

Directives Exemple

Assurez-vous que la valeur d’un type d’entrée
Tableau est une liste de valeurs séparées par des
virgules.

[parameter(Mandatory=$false,

HelpMessage="Months in which the

schedule executes.")]

[array]$CronMonths

L’entrée est passée comme suit : 0,3,6,9

Assurez-vous que la valeur d’un type d’entrée
Hashtable est une liste de paires clé=valeur, séparées
par un point-virgule.

[parameter(Mandatory=$false,

HelpMessage="Volume names and size

(in MB)")]

[hashtable]$VolumeNamesAndSize

L’entrée est transmise comme suit :
Volume1=100;Volume2=250;Volume3=50

27

Instructions pour les flux de travail

Vous devez connaître les instructions de création ou de modification d’un workflow
prédéfini pour OnCommand Workflow Automation (WFA).

Directives générales

Directives Exemple

Nommez le flux de travail de sorte qu’il reflète
l’opération exécutée par l’opérateur de stockage.

Create a CIFS Share

Pour les noms de flux de travail, mettez en majuscule
la lettre initiale du premier mot et chaque mot qui est
un objet. Lettres de majuscule pour les abréviations et
les acronymes.

Volumétrie

Qtree

Créez un partage CIFS en qtree Data ONTAP

Pour les descriptions de flux de travail, incluez toutes
les étapes importantes du flux de travail, y compris
les prérequis, le résultat du flux de travail ou les
aspects conditionnels de l’exécution.

Voir la description de l’exemple de flux de travail
Create VMware NFS Datastore on

Clustered Data ONTAP Storage, qui inclut les
prérequis.

Définissez « prêt pour la production » sur true
uniquement lorsque le flux de travail est prêt pour la
production et peut être affiché sur la page portail.

Aucune

Par défaut, définissez « considérer les éléments
réservés » sur vrai. Lors de l’aperçu d’un flot de
travaux pour exécution, WFA Planner prend en
compte tous les objets réservés avec les objets
existants dans la base de données de cache. Les
effets d’autres flux de travail planifiés ou de flux de
travail s’exécutant en parallèle sont pris en compte
lors de la planification d’un flux de travail spécifique si
cette option est définie sur true.

• Scénario 1

Le flux de travail 1 crée un volume et est
programmé pour l’exécuter une semaine plus
tard. Il crée des qtrees ou des LUN dans des
volumes recherchés. Si le workflow 2 est exécuté
en une journée environ, vous devez désactiver «
considérer les éléments réservés » pour le
workflow 2 afin d’éviter qu’il ne considère le
volume à créer en une semaine.

• Scénario 2

Le flux de travail 1 utilise le Create Volume
commande. Si un flux de travail planifié 2
consomme 100 Go d’un agrégat, celui-ci doit
prendre en compte les exigences du flux de
travail 2 lors de la planification.

28

Directives Exemple

Par défaut, « Activer la validation de l’existence
d’élément » est défini sur true.

• Scénario 1

Si vous créez un flux de travail qui supprime
d’abord un volume par son nom à l’aide de la
commande Remove Volume ce n’est que si le
volume existe et que le recrée à l’aide d’une autre
commande telle que Create Volume ou Clone
Volume, le flux de travail ne doit alors pas utiliser
cet indicateur. L’effet de la suppression du volume
ne sera pas disponible pour le Create volume
entraînant l’échec du workflow.

• Scénario 2

Le Create Volume la commande est utilisée
dans un workflow portant un nom spécifique «
vol198 ».

Si cette option est définie sur true, WFA Planner
vérifie lors de la planification pour vérifier si un
volume dont ce nom existe dans la baie donnée.
Si le volume existe, le flux de travail échoue
pendant la planification.

Lorsque la même commande est sélectionnée
plusieurs fois dans un flux de travail, indiquez les
noms d’affichage appropriés pour les instances de
commande.

L’exemple de workflow « Créer, mapper et protéger
des LUN avec SnapVault » utilise le Create Volume
commande deux fois. Toutefois, il utilise les noms
d’affichage comme Create Primary Volume et
Create Secondary Volume adapté au volume
primaire et au volume de destination en miroir.

Entrées utilisateur

Directives Exemple

Noms :

• Commencez le nom par le caractère «»$».

• Utilisez une lettre majuscule au début de chaque
mot.

• Utilisez des lettres majuscules pour tous les
termes et abréviations.

• Ne pas utiliser de trait de soulignement.

$Array

$VolumeName

29

Directives Exemple

Noms d’affichage :

• Utilisez une lettre majuscule au début de chaque
mot.

• Séparez les mots par des espaces.

• Si les entrées ont des unités spécifiques,
spécifiez l’unité entre crochets dans le nom
d’affichage directement.

Volume Name

Volume Size (MB)

Descriptions :

• Fournissez une description pertinente pour
chaque entrée utilisateur.

• Fournissez des exemples lorsque cela est
nécessaire.

Vous devez le faire particulièrement lorsque la
saisie utilisateur doit avoir un format spécifique.

Les descriptions des entrées utilisateur sont affichées
sous forme d’info-bulles pour les entrées utilisateur
lors de l’exécution du workflow.

Initiateurs à ajouter à un « iGroup ». Par exemple,
IQN ou WWPN de l’initiateur.

Type : sélectionnez Enum comme type si vous
souhaitez limiter l’entrée à un ensemble spécifique de
valeurs.

Protocole : « iscsi », « fcp », « mixed »

Type : sélectionnez Query comme type lorsque
l’utilisateur peut sélectionner parmi les valeurs
disponibles dans le cache WFA.

$Array : type DE REQUÊTE avec requête comme suit
:

SELECT

 ip, name

FROM

 storage.array

Type : permet de marquer l’entrée utilisateur comme
verrouillée lorsque l’entrée utilisateur doit être limitée
aux valeurs obtenues à partir d’une requête ou
uniquement aux types d’Enum pris en charge.

$Array: Locked Query type: Seules les matrices du
cache peuvent être sélectionnées.$Protocol: Locked
Enum type avec des valeurs valides iSCSI, fcp, mixte.
Aucune autre valeur que la valeur valide n’est prise
en charge.

Type : Query TypeAjoutez des colonnes
supplémentaires en tant que valeurs de retour dans la
requête lorsqu’il aide l’opérateur de stockage à faire
le bon choix d’entrée utilisateur.

$aggrate : indiquez le nom, la taille totale, la taille
disponible pour que l’opérateur connaisse les attributs
avant de sélectionner l’agrégat.

30

Directives Exemple

Type : la requête TypeSQL pour les entrées utilisateur
peut faire référence à toute autre entrée utilisateur qui
la précède. Il peut être utilisé pour limiter les résultats
d’une requête basée sur d’autres entrées utilisateur
telles que les unités vFiler d’une baie, les volumes
d’un agrégat ou les LUN d’un SVM (Storage Virtual
machine).

Dans l’exemple de flux de travail Create a
Clustered Data ONTAP Volume, La requête de
VserverName est la suivante :

SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

La requête fait référence à ${clustername}, où
$clustername est le nom de l’entrée utilisateur
précédant l’entrée utilisateur $VserverName.

Type : utilisez le type booléen avec des valeurs
comme « vrai, faux » pour les entrées utilisateur qui
sont de nature booléenne. Cela permet d’écrire des
expressions internes dans la conception du flux de
travail à l’aide de l’entrée utilisateur directement. Par
exemple, $UserInputName plutôt que
$UserInputName == ''Oui'.

$CreateCIFSShare: Type booléen avec des valeurs
valides comme « vrai » ou « faux »

Type:pour le type de chaîne et de nombre, utilisez
des expressions régulières dans la colonne valeurs
pour valider la valeur avec des formats spécifiques.

Utilisez des expressions régulières pour les entrées
d’adresse IP et de masque réseau.

L’entrée utilisateur spécifique à un emplacement peut
être exprimée comme « »[A-Z][A-Z]\-0[1-9]». Cette
entrée utilisateur accepte des valeurs telles que « US-
01 », « NB-02 », mais pas « nb-00 ».

Type : pour le type de nombre, une validation basée
sur une plage peut être spécifiée dans la colonne
valeurs.

Pour le nombre de LUN à créer, l’entrée de la colonne
valeurs est 1-20.

Groupe : regroupe les entrées utilisateur associées
dans les compartiments appropriés et nommez le
groupe.

« Détails de stockage » pour toutes les entrées
utilisateur liées au stockage. "`détails du magasins'"
pour toutes les entrées utilisateur relatives à VMware.

31

Directives Exemple

Obligatoire : si la valeur d’une entrée utilisateur est
nécessaire pour que le flux de travail s’exécute,
marquez l’entrée utilisateur comme obligatoire. Cela
permet de s’assurer que l’écran de saisie de
l’utilisateur accepte cette entrée de la part de
l’utilisateur.

« »$VolumeName » dans le workflow « Create NFS
Volume ».

Valeur par défaut : si une entrée utilisateur a une
valeur par défaut qui peut fonctionner pour la plupart
des exécutions de flux de travail, fournissez les
valeurs. Cela permet à l’utilisateur de fournir moins
d’entrées lors de l’exécution, si la valeur par défaut
sert le but.

Aucune

Constantes, variables et renvoie les paramètres

Directives Exemple

Constantes : définissez des constantes lors de
l’utilisation d’une valeur commune pour la définition
de paramètres sur plusieurs commandes.

AGGREGATE_OVERENGAGEMENT_THRESHOLD

dans l' Create, map, and protect LUNs with
SnapVault sample workflow.

Constantes:noms

• Utilisez une lettre majuscule au début de chaque
mot.

• Utilisez des lettres majuscules pour tous les
termes et abréviations.

• Ne pas utiliser de trait de soulignement.

• Utilisez des lettres majuscules pour toutes les
lettres de noms constants.

AGGREGATE_USED_SPACE_THRESHOLD

ActualVolumeSizeInMB

Variables : fournissez un nom à un objet défini dans
l’une des zones de paramètres de commande. Les
variables sont générées automatiquement et peuvent
être modifiées.

Aucune

Variables : les noms utilisent des caractères
minuscules pour les noms de variables.

volume1

partage cifs

32

Paramètres de retour : utilisez les paramètres de
retour lorsque la planification et l’exécution du flux de
travail doivent renvoyer certaines valeurs calculées
ou sélectionnées pendant la planification. Les valeurs
sont disponibles en mode aperçu lorsque le flux de
travail est exécuté à partir d’un service Web
également.

Agrégat : si l’agrégat est sélectionné à l’aide de la
logique de sélection des ressources, alors l’agrégat
sélectionné réel peut être défini comme paramètre de
retour.

Instructions pour la création de scripts de validation pour les types de systèmes
distants

Vous devez connaître les instructions permettant de créer des scripts de validation
utilisés pour tester les types de systèmes distants que vous définissez dans
OnCommand Workflow Automation (WFA).

• Le script Perl que vous créez doit être similaire à l’exemple de script fourni dans la fenêtre script de
validation.

• Le résultat de votre script de validation doit être similaire à celui de l’exemple de script.

Exemple de script de validation

Check connectivity.

Return 1 on success.

Return 0 on failure and set $message

sub checkCredentials {

my ($host, $user, $passwd, $protocol, $port, $timeout) = @_;

#

Please add the code to check connectivity to $host using $protocol here.

#

return 1;

}

Instructions pour la création de types de sources de données

Vous devez connaître les consignes de création de types de sources de données
utilisées pour définir des sources de données personnalisées pour OnCommand
Workflow Automation (WFA).

Vous pouvez définir un type de source de données à l’aide de l’une des méthodes suivantes :

• SQL : vous pouvez utiliser les instructions de WFA SQL pour définir des requêtes de sélection à partir de
sources de données basées sur une base de données externe.

• SCRIPT : vous pouvez écrire un script PowerShell qui fournit les données d’un schéma spécifique
d’entrées de dictionnaire.

Les instructions de création de types de sources de données sont les suivantes :

33

• Vous devez utiliser le langage PowerShell pour créer un script.

• Le script PowerShell doit fournir la sortie de chaque entrée de dictionnaire dans son répertoire de travail
courant.

• Les fichiers de données doivent être nommés dictionary_entry.csv, où le nom de l’entrée du
dictionnaire doit être en caractères minuscules.

Le type de source de données prédéfini qui collecte les informations de Performance Advisor utilise un
type de source de données BASÉ SUR DES SCRIPTS. Les fichiers de sortie sont nommés
array_performance.csv et aggregate_performance.csv.

• Le .csv le fichier doit inclure le contenu dans l’ordre exact des attributs d’entrée du dictionnaire.

Une entrée de dictionnaire inclut des attributs dans l’ordre suivant : Array_ip, date, jour, heure, cpu_Busy,
total_ops_per_sec, débit_disque_par_sec

Le script PowerShell ajoute des données au .csv fichier dans le même ordre.

$values = get-Array-CounterValueString ([REF]$data)

Add-Content $arrayFile ([byte[]][char[]] "\N

t$arrayIP't$date't$day't$hour't$values'n")

• Vous devez utiliser le codage pour vous assurer que les données issues du script sont correctement
chargées dans le cache WFA.

• Vous devez utiliser \N lors de la saisie d’une valeur nulle dans .csv fichier.

34

Informations sur le copyright

Copyright © 2025 NetApp, Inc. Tous droits réservés. Imprimé aux États-Unis. Aucune partie de ce document
protégé par copyright ne peut être reproduite sous quelque forme que ce soit ou selon quelque méthode que
ce soit (graphique, électronique ou mécanique, notamment par photocopie, enregistrement ou stockage dans
un système de récupération électronique) sans l’autorisation écrite préalable du détenteur du droit de
copyright.

Les logiciels dérivés des éléments NetApp protégés par copyright sont soumis à la licence et à l’avis de non-
responsabilité suivants :

CE LOGICIEL EST FOURNI PAR NETAPP « EN L’ÉTAT » ET SANS GARANTIES EXPRESSES OU
TACITES, Y COMPRIS LES GARANTIES TACITES DE QUALITÉ MARCHANDE ET D’ADÉQUATION À UN
USAGE PARTICULIER, QUI SONT EXCLUES PAR LES PRÉSENTES. EN AUCUN CAS NETAPP NE SERA
TENU POUR RESPONSABLE DE DOMMAGES DIRECTS, INDIRECTS, ACCESSOIRES, PARTICULIERS
OU EXEMPLAIRES (Y COMPRIS L’ACHAT DE BIENS ET DE SERVICES DE SUBSTITUTION, LA PERTE
DE JOUISSANCE, DE DONNÉES OU DE PROFITS, OU L’INTERRUPTION D’ACTIVITÉ), QUELLES QU’EN
SOIENT LA CAUSE ET LA DOCTRINE DE RESPONSABILITÉ, QU’IL S’AGISSE DE RESPONSABILITÉ
CONTRACTUELLE, STRICTE OU DÉLICTUELLE (Y COMPRIS LA NÉGLIGENCE OU AUTRE) DÉCOULANT
DE L’UTILISATION DE CE LOGICIEL, MÊME SI LA SOCIÉTÉ A ÉTÉ INFORMÉE DE LA POSSIBILITÉ DE
TELS DOMMAGES.

NetApp se réserve le droit de modifier les produits décrits dans le présent document à tout moment et sans
préavis. NetApp décline toute responsabilité découlant de l’utilisation des produits décrits dans le présent
document, sauf accord explicite écrit de NetApp. L’utilisation ou l’achat de ce produit ne concède pas de
licence dans le cadre de droits de brevet, de droits de marque commerciale ou de tout autre droit de propriété
intellectuelle de NetApp.

Le produit décrit dans ce manuel peut être protégé par un ou plusieurs brevets américains, étrangers ou par
une demande en attente.

LÉGENDE DE RESTRICTION DES DROITS : L’utilisation, la duplication ou la divulgation par le gouvernement
sont sujettes aux restrictions énoncées dans le sous-paragraphe (b)(3) de la clause Rights in Technical Data-
Noncommercial Items du DFARS 252.227-7013 (février 2014) et du FAR 52.227-19 (décembre 2007).

Les données contenues dans les présentes se rapportent à un produit et/ou service commercial (tel que défini
par la clause FAR 2.101). Il s’agit de données propriétaires de NetApp, Inc. Toutes les données techniques et
tous les logiciels fournis par NetApp en vertu du présent Accord sont à caractère commercial et ont été
exclusivement développés à l’aide de fonds privés. Le gouvernement des États-Unis dispose d’une licence
limitée irrévocable, non exclusive, non cessible, non transférable et mondiale. Cette licence lui permet d’utiliser
uniquement les données relatives au contrat du gouvernement des États-Unis d’après lequel les données lui
ont été fournies ou celles qui sont nécessaires à son exécution. Sauf dispositions contraires énoncées dans
les présentes, l’utilisation, la divulgation, la reproduction, la modification, l’exécution, l’affichage des données
sont interdits sans avoir obtenu le consentement écrit préalable de NetApp, Inc. Les droits de licences du
Département de la Défense du gouvernement des États-Unis se limitent aux droits identifiés par la clause
252.227-7015(b) du DFARS (février 2014).

Informations sur les marques commerciales

NETAPP, le logo NETAPP et les marques citées sur le site http://www.netapp.com/TM sont des marques
déposées ou des marques commerciales de NetApp, Inc. Les autres noms de marques et de produits sont des
marques commerciales de leurs propriétaires respectifs.

35

http://www.netapp.com/TM

	Consignes de codage pour WFA : OnCommand Workflow Automation
	Sommaire
	Consignes de codage pour WFA
	Instructions pour les variables
	Variables PowerShell
	Variables Perl

	Directives pour la mise en retrait
	Lignes directrices pour les commentaires
	Commentaires de PowerShell
	Commentaires Perl

	Instructions pour l’enregistrement
	La connexion PowerShell
	Journalisation Perl

	Consignes de gestion des erreurs
	Gestion des erreurs PowerShell
	Gestion des erreurs Perl

	Conventions générales PowerShell et Perl pour WFA
	Modules Perl fournis avec Windows

	Considérations relatives à l’ajout de modules PowerShell et Perl personnalisés
	Applets de commande et fonctions WFA
	Modules PowerShell et Perl WFA
	Modules PowerShell
	Modules Perl

	Considérations relatives à la conversion des commandes PowerShell en Perl
	Types d’entrée de commande
	Déclaration PowerShell
	Instructions Perl
	Définition de commande

	Directives pour les éléments de base WFA
	Instructions pour SQL dans WFA
	Directives pour les fonctions WFA
	Instructions pour les entrées de dictionnaire WFA
	Instructions pour les commandes
	Instructions pour les flux de travail
	Instructions pour la création de scripts de validation pour les types de systèmes distants
	Instructions pour la création de types de sources de données

