
Utilizzare architetture personalizzate
BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/it-it/beegfs/custom/architectures-overview.html on
January 27, 2026. Always check docs.netapp.com for the latest.

Sommario

Utilizzare architetture personalizzate . 1

Panoramica e requisiti . 1

Introduzione . 1

Panoramica sull’implementazione . 1

Requisiti . 2

Configurazione iniziale . 2

Installazione e cavo hardware . 2

Impostare i nodi di file e blocchi . 6

Impostare Ansible Control Node . 7

Definire il file system BeeGFS . 8

Panoramica di Ansible Inventory . 8

Pianificare il file system . 9

Definire i nodi di file e blocchi. 10

Definire i servizi BeeGFS. 28

Mappare i servizi BeeGFS ai nodi di file . 33

Implementare il file system BeeGFS . 34

Panoramica di Ansible Playbook . 34

Implementare il cluster BeeGFS ha . 36

Implementare i client BeeGFS . 39

Verificare l’implementazione di BeeGFS . 44

Utilizzare architetture personalizzate

Panoramica e requisiti

Utilizzare qualsiasi sistema storage NetApp e/EF-Series come nodi a blocchi BeeGFS e
server x86 come nodi di file BeeGFS quando si implementano cluster ad alta disponibilità
BeeGFS utilizzando Ansible.

Le definizioni per la terminologia utilizzata in questa sezione "termini e concetti"sono disponibili
nella pagina.

Introduzione

Sebbene "Architetture verificate da NetApp" offrano configurazioni di riferimento predefinite e linee guida sul
dimensionamento, alcuni clienti e partner potrebbero preferire la progettazione di architetture personalizzate
più adatte a specifici requisiti o preferenze hardware. Uno dei principali vantaggi della scelta di BeeGFS su
NetApp è la capacità di implementare cluster ha a disco condiviso BeeGFS utilizzando Ansible, semplificando
la gestione dei cluster e migliorando l’affidabilità con i componenti ha creati da NetApp. L’implementazione di
architetture BeeGFS personalizzate su NetApp viene ancora eseguita utilizzando Ansible, mantenendo un
approccio simile all’appliance su una gamma flessibile di hardware.

In questa sezione vengono descritti i passaggi generali necessari per implementare i file system BeeGFS
sull’hardware NetApp e l’utilizzo di Ansible per configurare i file system BeeGFS. Per informazioni dettagliate
sulle Best practice relative alla progettazione dei file system BeeGFS ed esempi ottimizzati, fare riferimento
alla "Architetture verificate da NetApp" sezione.

Panoramica sull’implementazione

In genere, l’implementazione di un file system BeeGFS richiede i seguenti passaggi:

• Configurazione iniziale:

◦ Installazione/cavo hardware.

◦ Impostare i nodi di file e blocchi.

◦ Impostare un nodo di controllo Ansible.

• Definire il file system BeeGFS come un inventario Ansible.

• Esegui Ansible su file e nodi a blocchi per implementare BeeGFS.

◦ Facoltativamente per configurare i client e montare BeeGFS.

Le sezioni successive tratterà questi passaggi in modo più dettagliato.

Ansible gestisce tutte le attività di provisioning e configurazione del software, tra cui:

• Creazione/mappatura di volumi su nodi a blocchi.

• Formattazione/messa a punto di volumi su nodi di file.

• Installazione/configurazione del software sui nodi di file.

• Stabilire il cluster ha e configurare le risorse BeeGFS e i servizi del file system.

1

https://docs.netapp.com/it-it/beegfs/get-started/beegfs-terms.html
https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-solution-overview.html
https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-solution-overview.html

Requisiti

Il supporto per BeeGFS in Ansible viene rilasciato il "Ansible Galaxy" Insieme di ruoli e moduli che
automatizzano l’implementazione e la gestione end-to-end dei cluster BeeGFS ha.

BeeGFS è dotato di versioni che seguono uno schema di controllo delle versioni di <major>.<minor>.<patch>
e l’insieme mantiene i ruoli per ogni versione supportata di <major>.<minor> di BeeGFS, ad esempio BeeGFS
7.2 o BeeGFS 7.3. Man mano che vengono rilasciati gli aggiornamenti della raccolta, la versione della patch in
ciascun ruolo verrà aggiornata in modo da indicare l’ultima versione di BeeGFS disponibile per tale ramo di
release (esempio: 7.2.8). Ogni versione della raccolta è inoltre testata e supportata con specifiche distribuzioni
e versioni di Linux, attualmente Red Hat per i nodi di file e Red Hat e Ubuntu per i client. L’esecuzione di altre
distribuzioni non è supportata e l’esecuzione di altre versioni (in particolare altre versioni principali) non è
consigliata.

Nodo di controllo Ansible

Questo nodo conterrà l’inventario e i playbook utilizzati per gestire BeeGFS. Richiede:

• Ansible 6.x (ansible-core 2.13)

• Python 3.6 (o versione successiva)

• Pacchetti Python (pip): Ipaddr e netaddr

Si consiglia inoltre di impostare SSH senza password dal nodo di controllo a tutti i nodi di file e client BeeGFS.

Nodi di file BeeGFS

I nodi file devono eseguire Red Hat Enterprise Linux (RHEL) 9.4 e avere accesso al repository HA contenente i
pacchetti richiesti (pacemaker, corosync, fence-agents-all, resource-agents). Ad esempio, è possibile eseguire
il seguente comando per abilitare il repository appropriato su RHEL 9:

subscription-manager repo-override repo=rhel-9-for-x86_64-

highavailability-rpms --add=enabled:1

Nodi client BeeGFS

È disponibile un ruolo Ansible del client BeeGFS per installare il pacchetto client BeeGFS e gestire i mount
BeeGFS. Questo ruolo è stato testato con RHEL 9.4 e Ubuntu 22.04.

Se non si utilizza Ansible per configurare il client BeeGFS e montare BeeGFS, qualsiasi "BeeGFS supporta la
distribuzione e il kernel Linux" può essere utilizzato.

Configurazione iniziale

Installazione e cavo hardware

Procedure necessarie per installare e collegare l’hardware utilizzato per eseguire
BeeGFS su NetApp.

2

https://galaxy.ansible.com/netapp_eseries/beegfs
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels
https://doc.beegfs.io/latest/release_notes.html#supported-linux-distributions-and-kernels

Pianificare l’installazione

Ciascun file system BeeGFS è costituito da un certo numero di nodi di file che eseguono i servizi BeeGFS
utilizzando lo storage back-end fornito da un certo numero di nodi a blocchi. I file node sono configurati in uno
o più cluster ad alta disponibilità per fornire la fault tolerance per i servizi BeeGFS. Ogni nodo a blocchi è già
una coppia ha attiva/attiva. Il numero minimo di nodi di file supportati in ciascun cluster ha è tre e il numero
massimo di nodi di file supportati in ciascun cluster è dieci. I file system BeeGFS possono scalare oltre dieci
nodi implementando più cluster ha indipendenti che lavorano insieme per fornire un singolo namespace del file
system.

In genere, ogni cluster ha viene implementato come una serie di "building block" in cui alcuni nodi di file (server
x86) sono collegati direttamente a un certo numero di nodi a blocchi (in genere sistemi storage e-Series).
Questa configurazione crea un cluster asimmetrico, in cui i servizi BeeGFS possono essere eseguiti solo su
alcuni nodi di file che hanno accesso allo storage a blocchi di back-end utilizzato per le destinazioni BeeGFS. Il
bilanciamento dei nodi file-to-block in ciascun building block e del protocollo di storage in uso per le
connessioni dirette dipende dai requisiti di una particolare installazione.

Un’architettura di cluster ha alternativa utilizza un fabric di storage (noto anche come SAN (Storage Area
Network) tra i nodi di file e blocchi per stabilire un cluster simmetrico. Ciò consente l’esecuzione dei servizi
BeeGFS su qualsiasi nodo di file in un cluster ha specifico. Poiché i cluster generalmente simmetrici non sono
così convenienti a causa dell’hardware SAN aggiuntivo, questa documentazione presuppone l’utilizzo di un
cluster asimmetrico implementato come una serie di uno o più building block.

Assicurarsi che l’architettura del file system desiderata per una particolare implementazione di
BeeGFS sia ben compresa prima di procedere con l’installazione.

Hardware per rack

Quando si pianifica l’installazione, è importante che tutte le apparecchiature di ciascun building block siano
installate in rack adiacenti. La procedura consigliata prevede il racking dei nodi di file immediatamente sopra i
nodi di blocco in ciascun building block. Seguire la documentazione relativa ai modelli di file e. "blocco" nodi
utilizzati durante l’installazione di guide e hardware nel rack.

Esempio di un singolo building block:

3

https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html

Esempio di un’installazione BeeGFS di grandi dimensioni in cui sono presenti più elementi di base in ciascun
cluster ha e più cluster ha nel file system:

4

Nodi di blocco e file via cavo

In genere, le porte HIC dei nodi a blocchi e-Series vengono collegate direttamente alle porte dell’adattatore del
canale host designato (per i protocolli InfiniBand) o dell’adattatore del bus host (per Fibre Channel e altri
protocolli) dei nodi di file. Il modo esatto per stabilire queste connessioni dipenderà dall’architettura del file
system desiderata, ecco un esempio"Basato sull’architettura verificata di seconda generazione di BeeGFS su
NetApp":

Collegare i nodi di file alla rete client

Ogni nodo di file avrà un certo numero di porte InfiniBand o Ethernet designate per il traffico del client
BeeGFS. A seconda dell’architettura, ciascun nodo di file disporrà di una o più connessioni a una rete
client/storage dalle performance elevate, potenzialmente a più switch per la ridondanza e l’aumento della
larghezza di banda. Di seguito viene riportato un esempio di cablaggio del client che utilizza switch di rete
ridondanti, in cui le porte evidenziate in verde scuro e verde chiaro sono collegate a switch separati:

5

../second-gen/beegfs-design-hardware-architecture.html
../second-gen/beegfs-design-hardware-architecture.html

Gestione delle connessioni rete e alimentazione

Stabilire le connessioni di rete necessarie per le reti in-band e out-of-band.

Collegare tutti gli alimentatori assicurandosi che ciascun nodo di file e blocchi sia collegato a più unità di
distribuzione dell’alimentazione per la ridondanza (se disponibile).

Impostare i nodi di file e blocchi

Operazioni manuali necessarie per impostare i nodi di file e blocchi prima di eseguire
Ansible.

Nodi di file

Configurare Baseboard Management Controller (BMC)

Un BMC (Baseboard Management Controller), a volte chiamato Service Processor, è il nome generico della
funzionalità di gestione out-of-band integrata in varie piattaforme server che possono fornire accesso remoto
anche se il sistema operativo non è installato o accessibile. I vendor in genere commercializzano questa
funzionalità con un proprio marchio. Ad esempio, su Lenovo SR665, BMC viene definito XCC (Lenovo XClarity
Controller).

Seguire la documentazione del vendor del server per abilitare le licenze necessarie per accedere a questa
funzionalità e assicurarsi che il BMC sia connesso alla rete e configurato in modo appropriato per l’accesso
remoto.

Se si desidera utilizzare Redfish per la scherma basata su BMC, assicurarsi che Redfish sia
attivato e che l’interfaccia BMC sia accessibile dal sistema operativo installato nel nodo file.
Potrebbe essere necessaria una configurazione speciale sullo switch di rete se BMC e il
sistema operativo condividono la stessa interfaccia di rete fisica.

Mettere a punto le impostazioni di sistema

Utilizzando l’interfaccia del programma di configurazione del sistema (BIOS/UEFI), assicurarsi che le
impostazioni siano impostate per massimizzare le prestazioni. Le impostazioni esatte e i valori ottimali variano
in base al modello di server in uso. Vengono fornite indicazioni per "modelli di file node verificati", altrimenti
fare riferimento alla documentazione del fornitore del server e alle procedure consigliate basate sul modello in
uso.

6

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-file-node-tuning.html

Installare un sistema operativo

Installare un sistema operativo supportato in base ai requisiti del nodo file elencati "qui". Fare riferimento a
eventuali passaggi aggiuntivi riportati di seguito in base alla distribuzione Linux.

Red Hat

, vedere "Come registrarsi e sottoscrivere un sistema RHEL" E "Come limitare gli aggiornamenti" .

Abilitare il repository Red Hat contenente i pacchetti richiesti per l’alta disponibilità:

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

Configurare la rete di gestione

Configurare le interfacce di rete necessarie per consentire la gestione in banda del sistema operativo. I
passaggi esatti dipendono dalla distribuzione e dalla versione di Linux in uso.

Assicurarsi che SSH sia attivato e che tutte le interfacce di gestione siano accessibili dal nodo di
controllo Ansible.

Aggiornare il firmware HCA e HBA

Assicurarsi che tutti gli HBA e gli HCA eseguano le versioni del firmware supportate elencate sul "Matrice di
interoperabilità NetApp"e, se necessario, aggiornarle. Ulteriori raccomandazioni per gli adattatori NVIDIA
ConnectX sono disponibili "qui".

Nodi a blocchi

Seguire i passi da a. "Inizia a lavorare con e-Series" per configurare la porta di gestione su ciascun controller
di nodi a blocchi e, facoltativamente, impostare il nome dell’array di storage per ciascun sistema.

Non è necessaria alcuna configurazione aggiuntiva oltre a garantire che tutti i nodi a blocchi
siano accessibili dal nodo di controllo Ansible. La configurazione di sistema rimanente verrà
applicata/mantenuta utilizzando Ansible.

Impostare Ansible Control Node

Impostare un nodo di controllo Ansible per implementare e gestire il file system.

Panoramica

Un nodo di controllo Ansible è una macchina Linux fisica o virtuale utilizzata per gestire il cluster. Deve
soddisfare i seguenti requisiti:

• Soddisfare il "requisiti"ruolo di ha BeeGFS, incluse le versioni installate di Ansible, Python e qualsiasi altro
pacchetto Python.

• Incontra il funzionario "Requisiti dei nodi di controllo Ansible" incluse le versioni del sistema operativo.

• Avere accesso SSH e HTTPS a tutti i nodi di file e blocchi.

7

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements
https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://imt.netapp.com/matrix/
https://imt.netapp.com/matrix/
https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-technology-requirements.html#file-node-requirements
https://docs.netapp.com/us-en/e-series/getting-started/getup-run-concept.html
https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-requirements

La procedura di installazione dettagliata è disponibile "qui".

Definire il file system BeeGFS

Panoramica di Ansible Inventory

L’inventario Ansible è un insieme di file di configurazione che definiscono il cluster
BeeGFS ha desiderato.

Panoramica

Si consiglia di seguire le procedure standard di Ansible per organizzare il "inventario", incluso l’utilizzo di
"sottodirectory/file" invece di memorizzare l’intero inventario in un file.

L’inventario Ansible per un singolo cluster BeeGFS ha è organizzato come segue:

Poiché un singolo file system BeeGFS può comprendere più cluster ha, è possibile che
installazioni di grandi dimensioni dispongano di più inventari Ansible. In genere, non è
consigliabile cercare di definire più cluster ha come un singolo inventario Ansible per evitare
problemi.

Fasi

1. Nel nodo di controllo Ansible creare una directory vuota contenente l’inventario Ansible per il cluster
BeeGFS che si desidera implementare.

8

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-setting-up-an-ansible-control-node.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#organizing-host-and-group-variables

a. Se il file system conterrà più cluster ha, si consiglia di creare prima una directory per il file system,
quindi sottodirectory per l’inventario che rappresenta ciascun cluster ha. Ad esempio:

beegfs_file_system_1/

 beegfs_cluster_1/

 beegfs_cluster_2/

 beegfs_cluster_N/

2. Nella directory contenente l’inventario per il cluster ha che si desidera implementare, creare due directory
group_vars e. host_vars e due file inventory.yml e. playbook.yml.

Nelle sezioni seguenti viene illustrata la definizione del contenuto di ciascuno di questi file.

Pianificare il file system

Pianificare l’implementazione del file system prima di creare l’inventario Ansible.

Panoramica

Prima di implementare il file system, è necessario definire gli indirizzi IP, le porte e le altre configurazioni
richieste da tutti i nodi di file, i nodi di blocco e i servizi BeeGFS in esecuzione nel cluster. Anche se la
configurazione esatta varia in base all’architettura del cluster, questa sezione definisce le Best practice e i
passaggi da seguire che sono generalmente applicabili.

Fasi

1. Se si utilizza un protocollo di storage basato su IP (come iSER, iSCSI, NVMe/IB o NVMe/RoCE) per
connettere i nodi di file ai nodi di blocco, compilare il seguente foglio di lavoro per ciascun building block.
Ogni connessione diretta in un singolo building block deve avere una subnet univoca e non deve esserci
alcuna sovrapposizione con le subnet utilizzate per la connettività client-server.

Nodo del file Porta IB Indirizzo IP Nodo del
blocco

Porta IB IP fisico Virtual IP
(solo per
EF600 con
HDR IB)

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<HOSTNAME
>

<PORT> <IP/SUBNET
>

<IP/SUBNET
>

Se i nodi di file e blocchi di ciascun building block sono collegati direttamente, spesso è
possibile riutilizzare gli stessi IP/schema per più building block.

2. Indipendentemente dall’utilizzo di InfiniBand o RDMA su RoCE (Converged Ethernet) per la rete di storage,
compilare il seguente foglio di lavoro per determinare gli intervalli IP che verranno utilizzati per i servizi
cluster ha, i file service BeeGFS e i client per comunicare:

Scopo Porta InfiniBand Indirizzo IP o intervallo

IP cluster BeeGFS <INTERFACE(s)> <RANGE>

Gestione di BeeGFS <INTERFACE(s)> <IP(s)>

9

Scopo Porta InfiniBand Indirizzo IP o intervallo

Metadati BeeGFS <INTERFACE(s)> <RANGE>

Storage BeeGFS <INTERFACE(s)> <RANGE>

Client BeeGFS <INTERFACE(s)> <RANGE>

a. Se si utilizza una singola subnet IP, è necessario un solo foglio di lavoro, altrimenti compilare un foglio
di lavoro per la seconda subnet.

3. In base a quanto sopra, per ciascun building block del cluster, compilare il seguente foglio di lavoro che
definisce i servizi BeeGFS che verranno eseguiti. Per ogni servizio, specificare i nodi di file
preferiti/secondari, la porta di rete, gli IP mobili, l’assegnazione di zona NUMA (se necessario) e i nodi di
blocco da utilizzare per le destinazioni. Per compilare il foglio di lavoro, fare riferimento alle seguenti linee
guida:

a. Specificare i servizi BeeGFS come uno dei due mgmt.yml, meta_<ID>.yml, o. storage_<ID>.yml
Dove ID rappresenta un numero univoco per tutti i servizi BeeGFS di quel tipo in questo file system.
Questa convenzione semplifica il riferimento a questo foglio di lavoro nelle sezioni successive durante
la creazione di file per configurare ciascun servizio.

b. Le porte per i servizi BeeGFS devono essere univoche solo in un particolare building block. Assicurarsi
che i servizi con lo stesso numero di porta non possano mai essere eseguiti sullo stesso nodo di file
per evitare conflitti di porta.

c. Se necessario, i servizi possono utilizzare volumi da più di un nodo a blocchi e/o pool di storage (e non
tutti i volumi devono essere di proprietà dello stesso controller). Più servizi possono anche condividere
lo stesso nodo a blocchi e/o la stessa configurazione del pool di storage (i singoli volumi verranno
definiti in una sezione successiva).

Servizio

BeeGFS

(nome file)

Nodi di file Porta IP mobili Zona

NUMA

Nodo del

blocco

Pool di

storage

Controller

proprietari

o

<SERVICE
TYPE>_<I
D>.yml

<PREFER
RED FILE
NODE>
<SECOND
ARY FILE
NODE(s)>

<PORT> <INTERFA
CE>:<IP/S
UBNET>
<INTERFA
CE>:<IP/S
UBNET>

<NUMA
NODE/ZO
NE>

<BLOCK
NODE>

<STORAG
E
POOL/VOL
UME
GROUP>

<A OR B>

Per ulteriori informazioni sulle convenzioni standard, sulle Best practice e sui fogli di lavoro di esempio
compilati"best practice", fare riferimento alle "Definire i blocchi di base BeeGFS"sezioni e di BeeGFS
sull’architettura verificata NetApp.

Definire i nodi di file e blocchi

Configurare singoli nodi di file

Specificare la configurazione per i singoli nodi di file utilizzando le variabili host
(host_vars).

Panoramica

In questa sezione viene illustrata la compilazione di un host_vars/<FILE_NODE_HOSTNAME>.yml per ogni

10

../second-gen/beegfs-deploy-bestpractice.html
https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-define-inventory.html

nodo di file nel cluster. Questi file devono contenere solo configurazioni univoche per un particolare nodo di
file. Ciò comprende in genere:

• Definizione dell’IP o del nome host che Ansible deve utilizzare per connettersi al nodo.

• Configurazione di interfacce aggiuntive e IP del cluster utilizzati per i servizi cluster ha (Pacemaker e
Corosync) per comunicare con altri nodi di file. Per impostazione predefinita, questi servizi utilizzano la
stessa rete dell’interfaccia di gestione, ma devono essere disponibili interfacce aggiuntive per la
ridondanza. La pratica comune consiste nel definire IP aggiuntivi sulla rete di storage, evitando la
necessità di un cluster aggiuntivo o di una rete di gestione.

◦ Le performance di qualsiasi rete utilizzata per la comunicazione in cluster non sono critiche per le
performance del file system. Con la configurazione predefinita del cluster in genere, almeno una rete a
1Gb GB/s fornirà prestazioni sufficienti per le operazioni del cluster, come la sincronizzazione degli
stati dei nodi e il coordinamento delle modifiche dello stato delle risorse del cluster. Le reti
lente/occupate possono richiedere più tempo del solito per le modifiche dello stato delle risorse e, in
casi estremi, potrebbero causare l’eliminazione dei nodi dal cluster se non riescono a inviare heartbeat
in un intervallo di tempo ragionevole.

• Configurazione delle interfacce utilizzate per la connessione ai nodi a blocchi sul protocollo desiderato (ad
esempio: ISCSI/iSER, NVMe/IB, NVMe/RoCE, FCP, ecc.)

Fasi

Facendo riferimento allo schema di indirizzamento IP definito nella "Pianificare il file system"sezione, per ogni
nodo file nel cluster creare un file host_vars/<FILE_NODE_HOSTNAME>/yml e compilarlo come segue:

1. In alto, specificare l’IP o il nome host che Ansible deve utilizzare per SSH al nodo e gestirlo:

ansible_host: "<MANAGEMENT_IP>"

2. Configurare IP aggiuntivi che possono essere utilizzati per il traffico del cluster:

a. Se il tipo di rete è "InfiniBand (con IPoIB)":

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Se il tipo di rete è "RDMA su Ethernet convergente (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Se il tipo di rete è "Ethernet (solo TCP, senza RDMA)":

11

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

3. Indicare gli IP da utilizzare per il traffico del cluster, con gli IP preferiti elencati più in alto:

beegfs_ha_cluster_node_ips:

- <MANAGEMENT_IP> # Including the management IP is typically but not

required.

- <IP_ADDRESS> # Ex: 100.127.100.1

- <IP_ADDRESS> # Additional IPs as needed.

Gli IPS configurati nella fase due non verranno utilizzati come IP del cluster a meno che non
siano inclusi in beegfs_ha_cluster_node_ips elenco. Ciò consente di configurare
IP/interfacce aggiuntive utilizzando Ansible che possono essere utilizzati per altri scopi, se
necessario.

4. Se il nodo del file deve comunicare per bloccare i nodi su un protocollo basato su IP, gli IP dovranno
essere configurati sull’interfaccia appropriata e tutti i pacchetti richiesti per quel protocollo
installati/configurati.

a. Se in uso "ISCSI":

eseries_iscsi_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

b. Se in uso "Er":

eseries_ib_iser_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

c. Se in uso "NVMe/IB":

12

https://github.com/netappeseries/host/blob/master/roles/iscsi/README.md
https://github.com/netappeseries/host/blob/master/roles/ib_iser/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_ib/README.md

eseries_nvme_ib_interfaces:

- name: <INTERFACE> # Example: ib0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

 configure: true # If the file node is directly connected to the

block node set to true to setup OpenSM.

d. Se in uso "NVMe/RoCE":

eseries_nvme_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

e. Altri protocolli:

i. Se in uso "NVMe/FC", la configurazione di singole interfacce non è richiesta. L’implementazione
del cluster BeeGFS rileverà automaticamente il protocollo e installerà/configurerà i requisiti in base
alle necessità. Se si utilizza un fabric per connettere file e nodi a blocchi, assicurarsi che gli switch
siano correttamente suddivisi in zone seguendo le Best practice di NetApp e del vendor di switch.

ii. L’utilizzo di FCP o SAS non richiede l’installazione o la configurazione di software aggiuntivo. Se si
utilizza FCP, assicurarsi che gli switch siano correttamente zonati "NetApp" e le best practice del
tuo fornitore di switch.

iii. Al momento non si consiglia l’utilizzo di IB SRP. Utilizzare NVMe/IB o iSER a seconda di ciò che i
nodi a blocchi e-Series supportano.

Fare clic su "qui" per un esempio di un file di inventario completo che rappresenta un singolo nodo di file.

Advanced (Avanzate): Passaggio tra le modalità Ethernet e InfiniBand degli adattatori VPI NVIDIA
ConnectX

Gli adattatori NVIDIA ConnectX-Virtual Protocol Interconnect® (VPI) supportano sia InfiniBand che
Ethernet come layer di trasporto. Il passaggio da una modalità all’altra non viene negoziato
automaticamente e deve essere configurato utilizzando <code>mstconfig</code> lo strumento incluso in
<code>mstflint</code>, un pacchetto open source che fa parte di <a
href="https://docs.nvidia.com/networking/display/mftv4270/mft+supported+configurations+and+parameters"
target="_blank">"Strumenti per la firma NVIDIA (MFT)". La modifica della modalità degli adattatori deve
essere eseguita una sola volta. Questa operazione può essere eseguita manualmente o inclusa
nell’inventario Ansible come parte di qualsiasi interfaccia configurata utilizzando la <code>eseries-
[ib|ib_iser|ipoib|nvme_ib|nvme_roce|roce]_interfaces:</code> sezione dell’inventario, per farla
controllare/applicare automaticamente.

Ad esempio, per modificare una corrente di interfaccia in modalità InfiniBand su Ethernet in modo che possa
essere utilizzata per RoCE:

1. Per ogni interfaccia che si desidera configurare, specificare mstconfig come un mapping (o dizionario)
che specifica LINK_TYPE_P<N> dove <N> È determinato dal numero di porta dell’HCA per l’interfaccia. Il
<N> il valore può essere determinato eseguendo grep PCI_SLOT_NAME
/sys/class/net/<INTERFACE_NAME>/device/uevent E aggiungendo 1 all’ultimo numero dal nome
dello slot PCI e convertendo in decimale.

a. Ad esempio PCI_SLOT_NAME=0000:2f:00.2 (2 + 1 → porta HCA 3) → LINK_TYPE_P3: eth:

13

https://github.com/netappeseries/host/blob/master/roles/nvme_roce/README.md
https://github.com/netappeseries/host/blob/master/roles/nvme_fc/README.md
https://docs.netapp.com/us-en/e-series/config-linux/fc-configure-switches-task.html
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22h01.yml

eseries_roce_interfaces:

- name: <INTERFACE>

 address: <IP/SUBNET>

 mstconfig:

 LINK_TYPE_P3: eth

Per ulteriori informazioni, consultare "Documentazione della raccolta di host NetApp e-Series" per il tipo di
interfaccia/protocollo in uso.

Configurare singoli nodi a blocchi

Specificare la configurazione per i singoli nodi di blocco utilizzando le variabili host
(host_vars).

Panoramica

In questa sezione viene illustrata la compilazione di un host_vars/<BLOCK_NODE_HOSTNAME>.yml file per
ciascun nodo del blocco nel cluster. Questi file devono contenere solo una configurazione univoca per un nodo
di blocco specifico. Ciò comprende in genere:

• Il nome del sistema (visualizzato in System Manager).

• L’URL HTTPS per uno dei controller (utilizzato per gestire il sistema utilizzando l’API REST).

• Quali nodi di file del protocollo di storage utilizzano per connettersi a questo nodo a blocchi.

• Configurazione delle porte della scheda di interfaccia host (HIC), ad esempio gli indirizzi IP (se
necessario).

Fasi

Facendo riferimento allo schema di indirizzamento IP definito nella "Pianificare il file system"sezione, per ogni
nodo di blocco nel cluster creare un file host_vars/<BLOCK_NODE_HOSTNAME>/yml e compilarlo come
segue:

1. Nella parte superiore, specificare il nome del sistema e l’URL HTTPS per uno dei controller:

eseries_system_name: <SYSTEM_NAME>

eseries_system_api_url:

https://<MANAGEMENT_HOSTNAME_OR_IP>:8443/devmgr/v2/

2. Selezionare "protocollo" i nodi di file utilizzeranno per connettersi a questo nodo di blocco:

a. Protocolli supportati: auto, iscsi, fc, sas, ib_srp, ib_iser, nvme_ib, nvme_fc, nvme_roce.

eseries_initiator_protocol: <PROTOCOL>

3. A seconda del protocollo in uso, le porte HIC potrebbero richiedere una configurazione aggiuntiva. Se
necessario, definire la configurazione della porta HIC in modo che la voce superiore nella configurazione di

14

https://github.com/netappeseries/host
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables

ciascun controller corrisponda alla porta fisica più a sinistra su ciascun controller e la porta inferiore alla
porta più a destra. Tutte le porte richiedono una configurazione valida anche se non sono attualmente in
uso.

Consultare anche la sezione seguente se si utilizza HDR (200 GB) InfiniBand o 200GB
RoCE con nodi a blocchi EF600.

a. Per iSCSI:

eseries_controller_iscsi_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

Choices: enabled, disabled

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 gateway: # Port IPv4 gateway

 subnet_mask: # Port IPv4 subnet_mask

 mtu: # Port IPv4 mtu

 - (...) # Additional ports as needed.

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_iscsi_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_iscsi_port_config_method: dhcp # General port

configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_iscsi_port_gateway: # General port

IPv4 gateway for both controllers.

eseries_controller_iscsi_port_subnet_mask: # General port

IPv4 subnet mask for both controllers.

eseries_controller_iscsi_port_mtu: 9000 # General port

maximum transfer units (MTU) for both controllers. Any value greater

than 1500 (bytes).

b. Per iSER:

15

eseries_controller_ib_iser_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

c. Per NVMe/IB:

eseries_controller_nvme_ib_port:

 controller_a: # Ordered list of controller A channel address

definition.

 - # Port IPv4 address for channel 1

 - (...) # So on and so forth

 controller_b: # Ordered list of controller B channel address

definition.

d. Per NVMe/RoCE:

16

eseries_controller_nvme_roce_port:

 controller_a: # Ordered list of controller A channel

definition.

 - state: # Whether the port should be enabled.

 config_method: # Port configuration method Choices: static,

dhcp

 address: # Port IPv4 address

 subnet_mask: # Port IPv4 subnet_mask

 gateway: # Port IPv4 gateway

 mtu: # Port IPv4 mtu

 speed: # Port IPv4 speed

 controller_b: # Ordered list of controller B channel

definition.

 - (...) # Same as controller A but for controller B

Alternatively the following common port configuration can be

defined for all ports and omitted above:

eseries_controller_nvme_roce_port_state: enabled # Generally

specifies whether a controller port definition should be applied

Choices: enabled, disabled

eseries_controller_nvme_roce_port_config_method: dhcp # General

port configuration method definition for both controllers. Choices:

static, dhcp

eseries_controller_nvme_roce_port_gateway: # General

port IPv4 gateway for both controllers.

eseries_controller_nvme_roce_port_subnet_mask: # General

port IPv4 subnet mask for both controllers.

eseries_controller_nvme_roce_port_mtu: 4200 # General

port maximum transfer units (MTU). Any value greater than 1500

(bytes).

eseries_controller_nvme_roce_port_speed: auto # General

interface speed. Value must be a supported speed or auto for

automatically negotiating the speed with the port.

e. I protocolli FC e SAS non richiedono ulteriori configurazioni. SRP non è consigliato correttamente.

Per ulteriori opzioni di configurazione delle porte HIC e dei protocolli host, inclusa la possibilità di configurare
iSCSI CHAP, fare riferimento a. "documentazione" Incluso nella raccolta SANtricity. Nota durante
l’implementazione di BeeGFS, il pool di storage, la configurazione del volume e altri aspetti del provisioning
dello storage verranno configurati altrove e non devono essere definiti in questo file.

Fare clic su "qui" per un esempio di un file di inventario completo che rappresenta un singolo nodo a blocchi.

Utilizzando HDR (200 GB) InfiniBand o 200GB RoCE con i nodi a blocchi NetApp EF600:

Per utilizzare HDR (200 GB) InfiniBand con EF600, è necessario configurare un secondo IP "virtuale" per
ciascuna porta fisica. Di seguito è riportato un esempio del modo corretto di configurare un EF600 dotato di

17

https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/host_vars/ictad22a01.yml

InfiniBand HDR HIC a doppia porta:

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101 # Port 2a (virtual)

 - 192.168.2.101 # Port 2b (virtual)

 - 192.168.1.100 # Port 2a (physical)

 - 192.168.2.100 # Port 2b (physical)

 controller_b:

 - 192.168.3.101 # Port 2a (virtual)

 - 192.168.4.101 # Port 2b (virtual)

 - 192.168.3.100 # Port 2a (physical)

 - 192.168.4.100 # Port 2b (physical)

Specificare la configurazione del nodo file comune

Specificare la configurazione del nodo file comune utilizzando le variabili di gruppo
(group_vars).

Panoramica

La configurazione che deve essere utilizzata per tutti i nodi di file è definita in
group_vars/ha_cluster.yml. In genere include:

• Dettagli su come connettersi e accedere a ciascun nodo di file.

• Configurazione di rete comune.

• Se sono consentiti riavvii automatici.

• Modalità di configurazione degli stati firewall e selinux.

• Configurazione del cluster, inclusi avvisi e scherma.

• Tuning delle performance.

• Configurazione comune del servizio BeeGFS.

Le opzioni impostate in questo file possono essere definite anche su singoli nodi di file, ad
esempio se sono in uso modelli hardware misti o se si dispone di password diverse per ciascun
nodo. La configurazione sui singoli nodi di file avrà la precedenza sulla configurazione in questo
file.

Fasi

Creare il file group_vars/ha_cluster.yml e compilarlo come segue:

1. Indicare come il nodo Ansible Control deve autenticare con gli host remoti:

ansible_ssh_user: root

ansible_become_password: <PASSWORD>

18

In particolare per gli ambienti di produzione, non memorizzare le password in testo normale.
Utilizzare invece Ansible Vault (vedere "Crittografia del contenuto con Ansible Vault") o il
--ask-become-pass quando si esegue il playbook. Se il ansible_ssh_user è già root,
quindi è possibile omettere il ansible_become_password.

2. Se si configurano IP statici sulle interfacce ethernet o InfiniBand (ad esempio gli IP del cluster) e più
interfacce si trovano nella stessa subnet IP (ad esempio se ib0 utilizza 192.168.1.10/24 e ib1 utilizza
192.168.1.11/24), Per il corretto funzionamento del supporto multi-homed, è necessario configurare
ulteriori tabelle e regole di routing IP. È sufficiente attivare il gancio di configurazione dell’interfaccia di rete
fornito come segue:

eseries_ip_default_hook_templates:

 - 99-multihoming.j2

3. Durante l’implementazione del cluster, a seconda del protocollo di storage potrebbe essere necessario
riavviare i nodi per facilitare il rilevamento dei dispositivi a blocchi remoti (volumi e-Series) o applicare altri
aspetti della configurazione. Per impostazione predefinita, i nodi richiedono prima del riavvio, ma è
possibile consentire il riavvio automatico dei nodi specificando quanto segue:

eseries_common_allow_host_reboot: true

a. Per impostazione predefinita, dopo un riavvio, per garantire che i dispositivi a blocchi e gli altri servizi
siano pronti, Ansible attenderà fino al sistema default.target viene raggiunto prima di continuare
con l’implementazione. In alcuni scenari, quando NVMe/IB è in uso, potrebbe non essere abbastanza
lungo da inizializzare, rilevare e connettersi a dispositivi remoti. Ciò può causare la continuità
prematura dell’implementazione automatica e il malfunzionamento. Per evitare questo problema
quando si utilizza NVMe/IB, definire anche quanto segue:

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

4. Per comunicare con i servizi cluster BeeGFS e ha sono necessarie diverse porte firewall. A meno che non
si desideri configurare il firwewall manualmente (non consigliato), specificare quanto segue per creare le
zone firewall richieste e aprire automaticamente le porte:

beegfs_ha_firewall_configure: True

5. Al momento SELinux non è supportato e si consiglia di impostare lo stato su Disabled (disattivato) per
evitare conflitti (soprattutto quando RDMA è in uso). Impostare quanto segue per assicurarsi che SELinux
sia disattivato:

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

19

https://docs.ansible.com/ansible/latest/vault_guide/index.html

6. Configurare l’autenticazione in modo che i file node siano in grado di comunicare, regolando le
impostazioni predefinite in base alle policy aziendali:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: hacluster # BeeGFS HA cluster

username.

beegfs_ha_cluster_password: hapassword # BeeGFS HA cluster

username's password.

beegfs_ha_cluster_password_sha512_salt: randomSalt # BeeGFS HA cluster

username's password salt.

7. In base alla "Pianificare il file system" sezione specificare l’IP di gestione BeeGFS per questo file system:

beegfs_ha_mgmtd_floating_ip: <IP ADDRESS>

Anche se apparentemente ridondante, beegfs_ha_mgmtd_floating_ip È importante
quando si scala il file system BeeGFS oltre un singolo cluster ha. I cluster ha successivi
vengono implementati senza un servizio di gestione BeeGFS aggiuntivo e puntano al
servizio di gestione fornito dal primo cluster.

8. Attivare gli avvisi e-mail se lo si desidera:

beegfs_ha_enable_alerts: True

E-mail recipient list for notifications when BeeGFS HA resources

change or fail.

beegfs_ha_alert_email_list: ["<EMAIL>"]

This dictionary is used to configure postfix service

(/etc/postfix/main.cf) which is required to set email alerts.

beegfs_ha_alert_conf_ha_group_options:

 # This parameter specifies the local internet domain name. This is

optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com)

 mydomain: <MY_DOMAIN>

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

9. Si consiglia vivamente di abilitare la scherma, altrimenti i servizi possono essere bloccati per l’avvio sui
nodi secondari quando il nodo primario non funziona.

a. Abilitare la scherma a livello globale specificando quanto segue:

20

beegfs_ha_cluster_crm_config_options:

 stonith-enabled: True

i. Nota se necessario, è anche possibile specificare qui tutti i supporti "proprietà del cluster" . La
regolazione di questi non è tipicamente necessaria, poiché il ruolo di BeeGFS ha viene fornito con
un certo numero di ben testati "valori predefiniti".

b. Selezionare e configurare un agente di scherma:

i. OPZIONE 1: Per abilitare la recinzione utilizzando le PDU (Power Distribution Unit) APC:

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: <PDU_USERNAME>

 passwd: <PDU_PASSWORD>

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>

"

ii. OPZIONE 2: Per abilitare la scherma utilizzando le API Redfish fornite da Lenovo XCC (e da altri
BMC):

redfish: &redfish

 username: <BMC_USERNAME>

 password: <BMC_PASSWORD>

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

iii. Per ulteriori informazioni sulla configurazione di altri agenti di scherma, fare riferimento alla
"Documentazione di Red Hat".

10. Il ruolo BeeGFS ha può applicare diversi parametri di tuning per ottimizzare ulteriormente le performance.
Questi includono l’ottimizzazione dell’utilizzo della memoria del kernel e l’i/o dei dispositivi a blocchi, tra gli
altri parametri. Il ruolo viene fornito con una serie ragionevole di "valori predefiniti" in base al test con i nodi
di blocco NetApp E-Series, ma per impostazione predefinita questi non vengono applicati a meno che non
si specifichi:

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_controlling-cluster-behavior-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L54
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L180

beegfs_ha_enable_performance_tuning: True

a. Se necessario, specificare qui eventuali modifiche all’ottimizzazione predefinita delle prestazioni. Per
ulteriori informazioni, consultare la documentazione completa "parametri di ottimizzazione delle
performance" .

11. Per garantire che gli indirizzi IP mobili (talvolta noti come interfacce logiche) utilizzati per i servizi BeeGFS
possano eseguire il failover tra i nodi di file, tutte le interfacce di rete devono essere denominate in modo
coerente. Per impostazione predefinita, i nomi delle interfacce di rete vengono generati dal kernel, che non
è garantito per generare nomi coerenti, anche su modelli di server identici con adattatori di rete installati
negli stessi slot PCIe. Ciò è utile anche quando si creano inventari prima dell’implementazione
dell’apparecchiatura e si conoscono i nomi delle interfacce generate. Per garantire nomi di dispositivi
coerenti, in base a un diagramma a blocchi del server o. lshw -class network -businfo Output,
specificare il mapping indirizzo PCIe desiderato per l’interfaccia logica come segue:

a. Per le interfacce di rete InfiniBand (IPoIB):

eseries_ipoib_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: i1a

b. Per le interfacce di rete Ethernet:

eseries_ip_udev_rules:

 "<PCIe ADDRESS>": <NAME> # Ex: 0000:01:00.0: e1a

Per evitare conflitti quando le interfacce vengono rinominate (impedendone la
ridenominazione), non utilizzare nomi predefiniti potenziali come eth0, ens9f0, ib0 o
ibs4f0. Una convenzione di denominazione comune prevede l’utilizzo di 'e' o 'i' per
Ethernet o InfiniBand, seguito dal numero dello slot PCIe e da una lettera che indica la
porta. Ad esempio, la seconda porta di un adattatore InfiniBand installato nello slot 3 è:
I3b.

Se si utilizza un modello di nodo di file verificato, fare clic su "qui" Esempio di mapping
indirizzo-porta logica PCIe.

12. Specificare facoltativamente la configurazione da applicare a tutti i servizi BeeGFS nel cluster. È possibile
trovare i valori di configurazione predefiniti "qui"e specificare altrove la configurazione per servizio:

a. Servizio di gestione BeeGFS:

beegfs_ha_beegfs_mgmtd_conf_ha_group_options:

 <OPTION>: <VALUE>

b. Servizi di metadati BeeGFS:

22

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/performance_tuning.md
https://docs.netapp.com/us-en/beegfs/beegfs-deploy-create-inventory.html#step-4-define-configuration-that-should-apply-to-all-file-nodes
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

beegfs_ha_beegfs_meta_conf_ha_group_options:

 <OPTION>: <VALUE>

c. Servizi di storage BeeGFS:

beegfs_ha_beegfs_storage_conf_ha_group_options:

 <OPTION>: <VALUE>

13. A partire da BeeGFS 7.2.7 e 7.3.1 "autenticazione della connessione" deve essere configurato o
disabilitato esplicitamente. Esistono alcuni modi per configurarlo utilizzando la distribuzione basata su
Ansible:

a. Per impostazione predefinita, l’implementazione configura automaticamente l’autenticazione della
connessione e genera un connauthfile Che verranno distribuiti a tutti i nodi di file e utilizzati con i
servizi BeeGFS. Questo file verrà anche posizionato/mantenuto nel nodo di controllo Ansible
all’indirizzo <INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile dove deve essere
mantenuto (in modo sicuro) per il riutilizzo con i client che devono accedere a questo file system.

i. Per generare una nuova chiave, specificare -e "beegfs_ha_conn_auth_force_new=True
Quando si esegue il playbook Ansible. Nota: Questa operazione viene ignorata se si seleziona
beegfs_ha_conn_auth_secret è definito.

ii. Per le opzioni avanzate, fare riferimento all’elenco completo dei valori predefiniti inclusi nella
"Ruolo BeeGFS ha".

b. È possibile utilizzare un segreto personalizzato definendo quanto segue in ha_cluster.yml:

beegfs_ha_conn_auth_secret: <SECRET>

c. L’autenticazione della connessione può essere disattivata completamente (NON consigliata):

beegfs_ha_conn_auth_enabled: false

Fare clic su "qui" per un esempio di un file di inventario completo che rappresenta la configurazione di un nodo
di file comune.

Utilizzo di HDR (200 GB) InfiniBand con i nodi a blocchi NetApp EF600:

Per utilizzare HDR (200 GB) InfiniBand con EF600, il gestore di subnet deve supportare la virtualizzazione. Se
i nodi di file e blocchi sono collegati mediante uno switch, questo deve essere attivato nel gestore di subnet per
il fabric complessivo.

Se i nodi di file e blocchi sono connessi direttamente con InfiniBand, un’istanza di opensm deve essere
configurata su ogni nodo di file per ogni interfaccia connessa direttamente a un nodo di blocco. Per eseguire
questa operazione, specificare configure: true quando "configurazione delle interfacce di storage dei nodi
di file".

Attualmente la versione in arrivo di opensm fornita con le distribuzioni Linux supportate non supporta la

23

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L21
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/ha_cluster.yml

virtualizzazione. È invece necessario installare e configurare la versione di opensm da NVIDIA OpenFabrics
Enterprise Distribution (OFED). Sebbene la distribuzione con Ansible sia ancora supportata, sono necessari
alcuni passaggi aggiuntivi:

1. Utilizzando curl o lo strumento desiderato, scaricare i pacchetti per la versione di opensm elencati nella
"requisiti tecnologici" sezione dal sito web di NVIDIA alla <INVENTORY>/packages/ directory. Ad
esempio:

curl -o packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

curl -o packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

https://linux.mellanox.com/public/repo/mlnx_ofed/23.10-

3.2.2.0/rhel9.4/x86_64/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

2. Sotto group_vars/ha_cluster.yml definire la seguente configurazione:

24

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-technology-requirements.html

OpenSM package and configuration information

eseries_ib_opensm_allow_upgrades: true

eseries_ib_opensm_skip_package_validation: true

eseries_ib_opensm_rhel_packages: []

eseries_ib_opensm_custom_packages:

 install:

 - files:

 add:

 "packages/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 "packages/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm": "/tmp/"

 - packages:

 add:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 uninstall:

 - packages:

 remove:

 - opensm

 - opensm-libs

 files:

 remove:

 - /tmp/opensm-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

 - /tmp/opensm-libs-5.17.2.MLNX20240610.dc7c2998-

0.1.2310322.x86_64.rpm

eseries_ib_opensm_options:

 virt_enabled: "2"

Specificare la configurazione del nodo del blocco comune

Specificare la configurazione del nodo a blocchi comune utilizzando le variabili di gruppo
(group_vars).

Panoramica

La configurazione che deve essere utilizzata per tutti i nodi a blocchi è definita in
group_vars/eseries_storage_systems.yml. In genere include:

• Dettagli su come il nodo di controllo Ansible deve connettersi ai sistemi storage e-Series utilizzati come
nodi a blocchi.

25

• Quali versioni del firmware, DI NVSRAM e del firmware del disco devono essere eseguite dai nodi.

• Configurazione globale, incluse le impostazioni della cache, la configurazione dell’host e le modalità di
provisioning dei volumi.

Le opzioni impostate in questo file possono essere definite anche su singoli nodi a blocchi, ad
esempio se sono in uso modelli hardware misti o se si dispone di password diverse per ciascun
nodo. La configurazione sui singoli nodi a blocchi avrà la precedenza sulla configurazione in
questo file.

Fasi

Creare il file group_vars/eseries_storage_systems.yml e compilarlo come segue:

1. Ansible non utilizza SSH per connettersi ai nodi a blocchi, ma le API REST. Per ottenere questo risultato,
dobbiamo stabilire:

ansible_connection: local

2. Specificare il nome utente e la password per gestire ciascun nodo. Il nome utente può essere omesso (e
l’impostazione predefinita è admin), altrimenti è possibile specificare qualsiasi account con privilegi di
amministratore. Specificare inoltre se i certificati SSL devono essere verificati o ignorati:

eseries_system_username: admin

eseries_system_password: <PASSWORD>

eseries_validate_certs: false

Si sconsiglia di elencare le password in testo non crittografato. Utilizzare Ansible vault o
fornire il eseries_system_password Quando si esegue Ansible con --extra-vars.

3. Facoltativamente, specificare il firmware del controller, NVSRAM e il firmware del disco da installare sui
nodi. Questi dovranno essere scaricati su packages/ Prima di eseguire Ansible. È possibile scaricare il
firmware del controller e-Series e NVSRAM "qui" e firmware del disco "qui":

eseries_firmware_firmware: "packages/<FILENAME>.dlp" # Ex.

"packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/<FILENAME>.dlp" # Ex.

"packages/N6000-880834-D08.dlp"

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

 # Additional firmware versions as needed.

eseries_drive_firmware_upgrade_drives_online: true # Recommended unless

BeeGFS hasn't been deployed yet, as it will disrupt host access if set

to "false".

26

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab/
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Se viene specificata questa configurazione, Ansible aggiorna automaticamente tutto il
firmware, incluso il riavvio dei controller (se necessario) con senza richieste aggiuntive. Si
prevede che ciò non causi interruzioni per BeeGFS/host i/o, ma può causare una
temporanea diminuzione delle performance.

4. Regolare le impostazioni predefinite della configurazione globale del sistema. Le opzioni e i valori elencati
di seguito sono generalmente consigliati per BeeGFS su NetApp, ma possono essere modificati se
necessario:

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required by default.

5. Configurare le impostazioni predefinite per il provisioning di volumi globali. Le opzioni e i valori elencati di
seguito sono generalmente consigliati per BeeGFS su NetApp, ma possono essere modificati se
necessario:

eseries_volume_size_unit: pct # Required by default. This allows volume

capacities to be specified as a percentage, simplifying putting together

the inventory.

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

6. Se necessario, modificare l’ordine in cui Ansible selezionerà le unità per i pool di storage e i gruppi di
volumi tenendo presente le seguenti Best practice:

a. Elencare tutte le unità (potenzialmente più piccole) che devono essere utilizzate per i volumi di
gestione e/o metadati e i volumi di storage durano.

b. Assicurarsi di bilanciare l’ordine di selezione dei dischi tra i canali disponibili in base ai modelli di shelf
di dischi/enclosure di dischi. Ad esempio, con EF600 e senza espansioni, i dischi 0-11 si trovano sul
canale 1 del disco e i dischi 12-23 sul canale del disco. Pertanto, è necessario scegliere una strategia
per bilanciare la selezione del disco disk shelf:drive 99:0, 99:23, 99:1, 99:22, ecc. In caso di più
enclosure, la prima cifra rappresenta l’ID dello shelf del disco.

Optimal/recommended order for the EF600 (no expansion):

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99

:6,99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

27

Fare clic su "qui" per un esempio di un file di inventario completo che rappresenta la configurazione di un nodo
a blocchi comune.

Definire i servizi BeeGFS

Definire il servizio di gestione BeeGFS

I servizi BeeGFS vengono configurati utilizzando variabili di gruppo (group_vars).

Panoramica

In questa sezione viene illustrata la definizione del servizio di gestione BeeGFS. Nel cluster ha per un file
system specifico dovrebbe esistere un solo servizio di questo tipo. La configurazione di questo servizio include
la definizione di:

• Il tipo di servizio (gestione).

• Definizione di qualsiasi configurazione applicabile solo a questo servizio BeeGFS.

• Configurazione di uno o più IP mobili (interfacce logiche) in cui è possibile raggiungere questo servizio.

• Specificare dove/come deve essere un volume per memorizzare i dati per questo servizio (la destinazione
di gestione di BeeGFS).

Fasi

Creare un nuovo file group_vars/mgmt.yml e fare riferimento alla "Pianificare il file system" sezione
compilarlo come segue:

1. Indicare che questo file rappresenta la configurazione per un servizio di gestione BeeGFS:

beegfs_service: management

2. Definire qualsiasi configurazione da applicare solo a questo servizio BeeGFS. Questo non è generalmente
richiesto per il servizio di gestione a meno che non sia necessario attivare le quote, tuttavia qualsiasi
parametro di configurazione supportato da beegfs-mgmtd.conf può essere incluso. Nota: I seguenti
parametri vengono configurati automaticamente/altrove e non devono essere specificati qui:
storeMgmtdDirectory, connAuthFile, connDisableAuthentication, connInterfacesFile,
e. connNetFilterFile.

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

 <beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

3. Configurare uno o più IP mobili che altri servizi e client useranno per connettersi a questo servizio (in
questo modo si imposterà automaticamente il BeeGFS connInterfacesFile opzione):

28

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/eseries_storage_systems.yml

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.0/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Facoltativamente, specificare una o più subnet IP consentite che possono essere utilizzate per la
comunicazione in uscita (in questo modo si imposterà automaticamente BeeGFS connNetFilterFile
opzione):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specificare l’obiettivo di gestione di BeeGFS in cui il servizio memorizzerà i dati in base alle seguenti linee
guida:

a. Lo stesso nome del pool di storage o del gruppo di volumi può essere utilizzato per più
servizi/destinazioni BeeGFS, assicurandosi semplicemente di utilizzare lo stesso nome name,
raid_level, criteria_*, e. common_* configurazione per ciascun servizio (i volumi elencati per
ciascun servizio devono essere diversi).

b. Le dimensioni dei volumi devono essere specificate come percentuale del gruppo di pool/volumi di
storage e il totale non deve superare 100 per tutti i servizi/volumi che utilizzano un particolare gruppo di
pool/volumi di storage. Nota quando si utilizzano le unità SSD, si consiglia di lasciare spazio libero nel
gruppo di volumi per massimizzare le prestazioni e la durata dell’unità SSD (fare clic "qui" per ulteriori
dettagli).

c. Fare clic su "qui" per un elenco completo delle opzioni di configurazione disponibili per
eseries_storage_pool_configuration. Notare alcune opzioni, ad esempio state, host,
host_type, workload_name, e. workload_metadata i nomi dei volumi e vengono generati
automaticamente e non devono essere specificati qui.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Fare clic su "qui" Per un esempio di un file di inventario completo che rappresenta un servizio di gestione
BeeGFS.

29

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/mgmt.yml

Definire il servizio di metadati BeeGFS

I servizi BeeGFS vengono configurati utilizzando variabili di gruppo (group_vars).

Panoramica

In questa sezione viene illustrata la definizione del servizio di metadati BeeGFS. Almeno un servizio di questo
tipo dovrebbe esistere nei cluster ha per un particolare file system. La configurazione di questo servizio include
la definizione di:

• Il tipo di servizio (metadati).

• Definizione di qualsiasi configurazione applicabile solo a questo servizio BeeGFS.

• Configurazione di uno o più IP mobili (interfacce logiche) in cui è possibile raggiungere questo servizio.

• Specificare dove/come deve essere un volume per memorizzare i dati per questo servizio (la destinazione
dei metadati BeeGFS).

Fasi

Facendo riferimento alla "Pianificare il file system" sezione, creare un file su group_vars/meta_<ID>.yml
per ogni servizio di metadati nel cluster e compilarli come segue:

1. Indica che questo file rappresenta la configurazione per un servizio di metadati BeeGFS:

beegfs_service: metadata

2. Definire qualsiasi configurazione da applicare solo a questo servizio BeeGFS. È necessario specificare
almeno la porta TCP e UDP desiderata, tuttavia qualsiasi parametro di configurazione supportato da
beegfs-meta.conf può anche essere incluso. Nota: I seguenti parametri vengono configurati
automaticamente/altrove e non devono essere specificati qui: sysMgmtdHost, storeMetaDirectory,
connAuthFile, connDisableAuthentication, connInterfacesFile, e. connNetFilterFile.

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <TCP PORT>

 connMetaPortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configurare uno o più IP mobili che altri servizi e client useranno per connettersi a questo servizio (in
questo modo si imposterà automaticamente il BeeGFS connInterfacesFile opzione):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Facoltativamente, specificare una o più subnet IP consentite che possono essere utilizzate per la

30

comunicazione in uscita (in questo modo si imposterà automaticamente BeeGFS connNetFilterFile
opzione):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

5. Specificare la destinazione dei metadati BeeGFS in cui il servizio memorizzerà i dati in base alle seguenti
linee guida (questa operazione configurerà automaticamente anche storeMetaDirectory opzione):

a. Lo stesso nome del pool di storage o del gruppo di volumi può essere utilizzato per più
servizi/destinazioni BeeGFS, assicurandosi semplicemente di utilizzare lo stesso nome name,
raid_level, criteria_*, e. common_* configurazione per ciascun servizio (i volumi elencati per
ciascun servizio devono essere diversi).

b. Le dimensioni dei volumi devono essere specificate come percentuale del gruppo di pool/volumi di
storage e il totale non deve superare 100 per tutti i servizi/volumi che utilizzano un particolare gruppo di
pool/volumi di storage. Nota quando si utilizzano le unità SSD, si consiglia di lasciare spazio libero nel
gruppo di volumi per massimizzare le prestazioni e la durata dell’unità SSD (fare clic "qui" per ulteriori
dettagli).

c. Fare clic su "qui" per un elenco completo delle opzioni di configurazione disponibili per
eseries_storage_pool_configuration. Notare alcune opzioni, ad esempio state, host,
host_type, workload_name, e. workload_metadata i nomi dei volumi e vengono generati
automaticamente e non devono essere specificati qui.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_m1_m2_m5_m6

 raid_level: <LEVEL> # One of: raid1, raid5, raid6, raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Fare clic su "qui" Per un esempio di un file di inventario completo che rappresenta un servizio di metadati
BeeGFS.

Definire il servizio di storage BeeGFS

I servizi BeeGFS vengono configurati utilizzando variabili di gruppo (group_vars).

Panoramica

In questa sezione viene illustrata la definizione del servizio di storage BeeGFS. Almeno un servizio di questo
tipo dovrebbe esistere nei cluster ha per un particolare file system. La configurazione di questo servizio include

31

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/meta_01.yml

la definizione di:

• Il tipo di servizio (storage).

• Definizione di qualsiasi configurazione applicabile solo a questo servizio BeeGFS.

• Configurazione di uno o più IP mobili (interfacce logiche) in cui è possibile raggiungere questo servizio.

• Specificare dove/come devono essere i volumi per memorizzare i dati per questo servizio (le destinazioni
di storage BeeGFS).

Fasi

Facendo riferimento alla "Pianificare il file system" sezione, creare un file all’indirizzo
group_vars/stor_<ID>.yml per ciascun servizio di archiviazione nel cluster e compilarli come segue:

1. Indicare che questo file rappresenta la configurazione per un servizio di storage BeeGFS:

beegfs_service: storage

2. Definire qualsiasi configurazione da applicare solo a questo servizio BeeGFS. È necessario specificare
almeno la porta TCP e UDP desiderata, tuttavia qualsiasi parametro di configurazione supportato da
beegfs-storage.conf può anche essere incluso. Nota: I seguenti parametri vengono configurati
automaticamente/altrove e non devono essere specificati qui: sysMgmtdHost,
storeStorageDirectory, connAuthFile, connDisableAuthentication,
connInterfacesFile, e. connNetFilterFile.

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <TCP PORT>

 connStoragePortUDP: <UDP PORT>

 tuneBindToNumaZone: <NUMA ZONE> # Recommended if using file nodes with

multiple CPU sockets.

3. Configurare uno o più IP mobili che altri servizi e client useranno per connettersi a questo servizio (in
questo modo si imposterà automaticamente il BeeGFS connInterfacesFile opzione):

floating_ips:

 - <INTERFACE>:<IP/SUBNET> # Primary interface. Ex.

i1b:100.127.101.1/16

 - <INTERFACE>:<IP/SUBNET> # Secondary interface(s) as needed.

4. Facoltativamente, specificare una o più subnet IP consentite che possono essere utilizzate per la
comunicazione in uscita (in questo modo si imposterà automaticamente BeeGFS connNetFilterFile
opzione):

filter_ip_ranges:

 - <SUBNET>/<MASK> # Ex. 192.168.10.0/24

32

5. Specificare le destinazioni di storage BeeGFS in cui il servizio memorizzerà i dati in base alle seguenti
linee guida (questa operazione configurerà automaticamente anche storeStorageDirectory opzione):

a. Lo stesso nome del pool di storage o del gruppo di volumi può essere utilizzato per più
servizi/destinazioni BeeGFS, assicurandosi semplicemente di utilizzare lo stesso nome name,
raid_level, criteria_*, e. common_* configurazione per ciascun servizio (i volumi elencati per
ciascun servizio devono essere diversi).

b. Le dimensioni dei volumi devono essere specificate come percentuale del gruppo di pool/volumi di
storage e il totale non deve superare 100 per tutti i servizi/volumi che utilizzano un particolare gruppo di
pool/volumi di storage. Nota quando si utilizzano le unità SSD, si consiglia di lasciare spazio libero nel
gruppo di volumi per massimizzare le prestazioni e la durata dell’unità SSD (fare clic "qui" per ulteriori
dettagli).

c. Fare clic su "qui" per un elenco completo delle opzioni di configurazione disponibili per
eseries_storage_pool_configuration. Notare alcune opzioni, ad esempio state, host,
host_type, workload_name, e. workload_metadata i nomi dei volumi e vengono generati
automaticamente e non devono essere specificati qui.

beegfs_targets:

 <BLOCK_NODE>: # The name of the block node as found in the Ansible

inventory. Ex: netapp_01

 eseries_storage_pool_configuration:

 - name: <NAME> # Ex: beegfs_s1_s2

 raid_level: <LEVEL> # One of: raid1, raid5, raid6,

raidDiskPool

 criteria_drive_count: <DRIVE COUNT> # Ex. 4

 common_volume_configuration:

 segment_size_kb: <SEGMENT SIZE> # Ex. 128

 volumes:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

 # Multiple storage targets are supported / typical:

 - size: <PERCENT> # Percent of the pool or volume group to

allocate to this volume. Ex. 1

 owning_controller: <CONTROLLER> # One of: A, B

Fare clic su "qui" Esempio di un file di inventario completo che rappresenta un servizio di storage BeeGFS.

Mappare i servizi BeeGFS ai nodi di file

Specificare quali nodi di file possono eseguire ciascun servizio BeeGFS utilizzando
inventory.yml file.

Panoramica

In questa sezione viene illustrato come creare inventory.yml file. Ciò include l’elenco di tutti i nodi a blocchi
e la specifica dei nodi di file che possono eseguire ciascun servizio BeeGFS.

33

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-deploy-recommended-volume-percentages.html
https://github.com/netappeseries/santricity/tree/release-1.3.1/roles/nar_santricity_host#role-variables
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/group_vars/stor_01.yml

Fasi

Creare il file inventory.yml e compilarlo come segue:

1. Dall’inizio del file, creare la struttura di inventario Ansible standard:

BeeGFS HA (High_Availability) cluster inventory.

all:

 children:

2. Creare un gruppo contenente tutti i nodi a blocchi che partecipano a questo cluster ha:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 <BLOCK NODE HOSTNAME>:

 <BLOCK NODE HOSTNAME>:

 # Additional block nodes as needed.

3. Creare un gruppo che conterrà tutti i servizi BeeGFS nel cluster e i nodi di file che li eseguiranno:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

4. Per ogni servizio BeeGFS nel cluster, definire il nodo/i file preferito/i e secondario/i che deve eseguire tale
servizio:

 <SERVICE>: # Ex. "mgmt", "meta_01", or "stor_01".

 hosts:

 <FILE NODE HOSTNAME>:

 <FILE NODE HOSTNAME>:

 # Additional file nodes as needed.

Fare clic su "qui" per un esempio di file di inventario completo.

Implementare il file system BeeGFS

Panoramica di Ansible Playbook

Implementazione e gestione di cluster BeeGFS ha con Ansible.

34

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/inventory.yml

Panoramica

Nelle sezioni precedenti sono illustrate le fasi necessarie per creare un inventario Ansible che rappresenti un
cluster BeeGFS ha. Questa sezione presenta l’automazione Ansible sviluppata da NetApp per implementare e
gestire il cluster.

Ansible: Concetti chiave

Prima di procedere, è utile acquisire familiarità con alcuni concetti chiave di Ansible:

• Le attività da eseguire su un inventario Ansible sono definite in ciò che è noto come playbook.

◦ La maggior parte delle attività di Ansible è progettata per essere idempotent, il che significa che
possono essere eseguite più volte per verificare che la configurazione/stato desiderato sia ancora
applicato senza interrompere le operazioni o eseguire aggiornamenti non necessari.

• La più piccola unità di esecuzione di Ansible è un modulo *.

◦ I playbook tipici utilizzano più moduli.

▪ Esempi: Scaricare un pacchetto, aggiornare un file di configurazione, avviare/abilitare un servizio.

◦ NetApp distribuisce i moduli per automatizzare i sistemi NetApp e-Series.

• L’automazione complessa è meglio integrata come ruolo.

◦ Essenzialmente un formato standard per la distribuzione di un playbook riutilizzabile.

◦ NetApp distribuisce i ruoli per host Linux e file system BeeGFS.

Ruolo BeeGFS ha per Ansible: Concetti chiave

Tutta l’automazione necessaria per implementare e gestire ogni versione di BeeGFS su NetApp viene fornita
come ruolo Ansible e distribuita come parte di "NetApp e-Series Ansible Collection per BeeGFS":

• Questo ruolo può essere considerato tra un installer e un moderno motore di implementazione/gestione

per BeeGFS.

◦ Applica l’infrastruttura moderna come pratiche di codice e filosofie per semplificare la gestione
dell’infrastruttura di storage su qualsiasi scala.

◦ Simile a come il "Kubespray" progetto consente agli utenti di implementare/mantenere un’intera
distribuzione Kubernetes per un’infrastruttura di calcolo scale-out.

• Questo ruolo è il formato * software-defined* utilizzato da NetApp per il packaging, la distribuzione e la
manutenzione di BeeGFS su soluzioni NetApp.

◦ Cerca di creare un’esperienza simile a quella di un’appliance senza dover distribuire un’intera
distribuzione Linux o un’immagine di grandi dimensioni.

◦ Include agenti di risorse cluster compatibili con Open Cluster Framework (OCF) creati da NetApp per
destinazioni BeeGFS personalizzate, indirizzi IP e monitoraggio che forniscono un’integrazione
intelligente di Pacemaker/BeeGFS.

• Questo ruolo non è semplicemente "automazione" dell’implementazione ed è destinato a gestire l’intero
ciclo di vita del file system, tra cui:

◦ Applicazione di modifiche e aggiornamenti della configurazione per servizio o a livello di cluster.

◦ Automazione della riparazione e del ripristino del cluster dopo la risoluzione dei problemi hardware.

◦ Semplificazione dell’ottimizzazione delle performance con valori predefiniti impostati in base a test
approfonditi con volumi BeeGFS e NetApp.

35

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/kubernetes-sigs/kubespray

◦ Verifica e correzione della deriva della configurazione.

NetApp offre anche un ruolo Ansible per "Client BeeGFS", Che può essere utilizzato facoltativamente per
installare BeeGFS e montare file system su nodi di calcolo/GPU/login.

Implementare il cluster BeeGFS ha

Specificare le attività da eseguire per implementare il cluster BeeGFS ha utilizzando un
manuale.

Panoramica

Questa sezione descrive come assemblare il manuale standard utilizzato per implementare/gestire BeeGFS su
NetApp.

Fasi

Creare il manuale Ansible Playbook

Creare il file playbook.yml e compilarlo come segue:

1. Per prima cosa, definire una serie di attività (comunemente denominate a. "gioca") Che dovrebbe essere
eseguito solo sui nodi a blocchi NetApp e-Series. Viene utilizzata un’attività di pausa per richiedere
conferma prima di eseguire l’installazione (per evitare l’esecuzione accidentale di un playbook), quindi
importare nar_santricity_management ruolo. Questo ruolo gestisce l’applicazione di qualsiasi
configurazione generale del sistema definita in group_vars/eseries_storage_systems.yml o
individuale host_vars/<BLOCK NODE>.yml file.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

2. Definire il gioco che verrà eseguito su tutti i nodi di file e blocchi:

36

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html#playbook-syntax

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

3. All’interno di questo gioco è possibile definire facoltativamente un set di "pre-task" che devono essere
eseguiti prima di implementare il cluster ha. Questo può essere utile per verificare/installare qualsiasi
prerequisito come Python. Possiamo anche effettuare controlli prima del volo, ad esempio verificando che i
tag Ansible forniti siano supportati:

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

37

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

4. Infine, questo gioco importa il ruolo BeeGFS ha per la versione di BeeGFS che si desidera implementare:

 tasks:

 - name: Verify the BeeGFS HA cluster is properly deployed.

 import_role:

 name: beegfs_ha_7_4 # Alternatively specify: beegfs_ha_7_3.

Viene mantenuto un ruolo BeeGFS ha per ciascuna versione principale.minore supportata di
BeeGFS. Questo consente agli utenti di scegliere quando aggiornare le versioni
principali/secondarie. Attualmente (beegfs_7_3(`beegfs_7_2`sono supportati BeeGFS
7,3.x) o BeeGFS 7,2.x). Per impostazione predefinita, entrambi i ruoli implementeranno la
versione più recente delle patch BeeGFS al momento del rilascio, anche se gli utenti
possono scegliere di eseguire l’override e distribuire la patch più recente, se lo desiderano.
Per "guida all’upgrade"ulteriori dettagli, fare riferimento alle informazioni più recenti.

5. Facoltativo: Se si desidera definire attività aggiuntive, tenere presente se le attività devono essere
indirizzate a. all Host (inclusi i sistemi storage e-Series) o solo i nodi di file. Se necessario, definire un
nuovo gioco specifico per i nodi di file utilizzando - hosts: ha_cluster.

Fare clic su "qui" per un esempio di un file di playbook completo.

Installare NetApp Ansible Collections

L’insieme BeeGFS per Ansible e tutte le dipendenze vengono mantenute su "Ansible Galaxy". Sul nodo di
controllo Ansible eseguire il seguente comando per installare la versione più recente:

ansible-galaxy collection install netapp_eseries.beegfs

Sebbene non sia generalmente consigliato, è anche possibile installare una versione specifica della raccolta:

38

https://github.com/NetApp/beegfs/blob/master/docs/beegfs_ha/upgrade.md
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/playbook.yml
https://galaxy.ansible.com/netapp_eseries/beegfs

ansible-galaxy collection install netapp_eseries.beegfs:

==<MAJOR>.<MINOR>.<PATCH>

Eseguire il Playbook

Dalla directory del nodo di controllo Ansible contenente inventory.yml e. playbook.yml eseguire il
playbook come segue:

ansible-playbook -i inventory.yml playbook.yml

In base alle dimensioni del cluster, l’implementazione iniziale può richiedere oltre 20 minuti. Se
l’implementazione non riesce per qualsiasi motivo, correggere eventuali problemi (ad esempio, cablaggio
errato, nodo non avviato, ecc.) e riavviare il playbook Ansible.

Quando "configurazione di un nodo di file comune"si specifica , se si sceglie l’opzione predefinita per far sì che
Ansible gestisca automaticamente l’autenticazione basata sulla connessione, connAuthFile è ora possibile
trovare un usato come segreto condiviso all’indirizzo
<playbook_dir>/files/beegfs/<sysMgmtdHost>_connAuthFile (per impostazione predefinita). Tutti
i client che hanno bisogno di accedere al file system dovranno utilizzare questo segreto condiviso. Questo
viene gestito automaticamente se i client vengono configurati con "Ruolo del client BeeGFS".

Implementare i client BeeGFS

In alternativa, è possibile utilizzare Ansible per configurare i client BeeGFS e montare il
file system.

Panoramica

L’accesso ai file system BeeGFS richiede l’installazione e la configurazione del client BeeGFS su ciascun nodo
che deve montare il file system. In questa sezione viene descritto come eseguire queste attività utilizzando la
disponibile "Ruolo Ansible".

Fasi

Creare il file di inventario del client

1. Se necessario, impostare SSH senza password dal nodo di controllo Ansible a ciascuno degli host che si
desidera configurare come client BeeGFS:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Sotto host_vars/, Creare un file per ogni client BeeGFS denominato <HOSTNAME>.yml con il seguente
contenuto, inserendo il testo segnaposto con le informazioni corrette per il tuo ambiente:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

39

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client

3. Se si desidera utilizzare i ruoli di NetApp e-Series host Collection per configurare le interfacce InfiniBand o
Ethernet per consentire ai client di connettersi ai nodi di file BeeGFS, è possibile includere uno dei
seguenti elementi:

a. Se il tipo di rete è "InfiniBand (con IPoIB)":

eseries_ipoib_interfaces:

- name: <INTERFACE> # Example: ib0 or i1b

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

b. Se il tipo di rete è "RDMA su Ethernet convergente (RoCE)":

eseries_roce_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

c. Se il tipo di rete è "Ethernet (solo TCP, senza RDMA)":

eseries_ip_interfaces:

- name: <INTERFACE> # Example: eth0.

 address: <IP/SUBNET> # Example: 100.127.100.1/16

- name: <INTERFACE> # Additional interfaces as needed.

 address: <IP/SUBNET>

4. Creare un nuovo file client_inventory.yml E specificare l’utente che Ansible deve utilizzare per
connettersi a ciascun client e la password che Ansible deve utilizzare per l’escalation dei privilegi (ciò
richiede ansible_ssh_user essere root o avere privilegi sudo):

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER>

 ansible_become_password: <PASSWORD>

Non memorizzare le password in testo normale. Utilizzare invece il vault Ansible (vedere la
"Documentazione Ansible" Per crittografare il contenuto con Ansible Vault) o utilizzare
--ask-become-pass quando si esegue il playbook.

5. In client_inventory.yml File, elenca tutti gli host che devono essere configurati come client BeeGFS
in beegfs_clients Fare riferimento ai commenti inline e rimuovere eventuali commenti aggiuntivi

40

https://github.com/netappeseries/host/tree/release-1.2.0/roles/ipoib
https://github.com/netappeseries/host/tree/release-1.2.0/roles/roce
https://github.com/netappeseries/host/tree/release-1.2.0/roles/ip
https://docs.ansible.com/ansible/latest/user_guide/vault.html

necessari per creare il modulo del kernel del client BeeGFS sul sistema:

children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 <CLIENT HOSTNAME>:

 # Additional clients as needed.

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 #beegfs_client_ofed_enable: True

 #beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 #eseries_ib_skip: True # Skip installing inbox drivers when

using the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 #eseries_ib_skip: False # Default value.

 #beegfs_client_ofed_enable: False # Default value.

Quando si utilizzano i driver NVIDIA OFED, assicurarsi che
beegfs_client_ofed_include_PATH punti al corretto "header include PATH" per l’installazione
Linux. Per ulteriori informazioni, vedere la documentazione di BeeGFS per "Supporto
RDMA".

6. In client_inventory.yml Elencare i file system BeeGFS che si desidera montare sotto qualsiasi file
definito in precedenza vars:

41

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html
https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: <IP ADDRESS> # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

 # Specify additional file system mounts for this or other file

systems.

7. A partire da BeeGFS 7.2.7 e 7.3.1 "autenticazione della connessione" deve essere configurato o
esplicitamente disattivato. A seconda di come si sceglie di configurare l’autenticazione basata sulla
connessione quando si specifica "configurazione di un nodo di file comune", potrebbe essere necessario
regolare la configurazione del client:

a. Per impostazione predefinita, l’implementazione del cluster ha configurerà automaticamente
l’autenticazione della connessione e genererà un connauthfile Che verranno posizionati/mantenuti
sul nodo di controllo Ansible in <INVENTORY>/files/beegfs/<sysMgmtdHost>_connAuthFile.
Per impostazione predefinita, il ruolo del client BeeGFS è impostato per leggere/distribuire questo file
ai client definiti in `client_inventory.yml`e non sono necessarie ulteriori azioni.

i. Per le opzioni avanzate, fare riferimento all’elenco completo dei valori predefiniti inclusi in "Ruolo
del client BeeGFS".

b. Se si sceglie di specificare un segreto personalizzato con beegfs_ha_conn_auth_secret
specificarlo in client_inventory.yml anche file:

beegfs_ha_conn_auth_secret: <SECRET>

c. Se si sceglie di disattivare completamente l’autenticazione basata sulla connessione con
beegfs_ha_conn_auth_enabled, specificare che in client_inventory.yml anche file:

42

https://doc.beegfs.io/latest/advanced_topics/authentication.html
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32
https://github.com/netappeseries/beegfs/blob/release-3.1.0/roles/beegfs_client/defaults/main.yml#L32

beegfs_ha_conn_auth_enabled: false

Per un elenco completo dei parametri supportati e ulteriori dettagli, fare riferimento a. "Documentazione
completa del client BeeGFS". Per un esempio completo di un inventario client, fare clic su "qui".

Creare il file Playbook del client BeeGFS

1. Creare un nuovo file client_playbook.yml

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

2. Facoltativo: Se si desidera utilizzare i ruoli di NetApp e-Series host Collection per configurare le interfacce
per la connessione dei client ai file system BeeGFS, importare il ruolo corrispondente al tipo di interfaccia
che si sta configurando:

a. Se si utilizza InfiniBand (IPoIB):

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

b. Se si utilizza RDMA su Ethernet convergente (RoCE):

 - name: Ensure IPoIB is configured

 import_role:

 name: roce

c. Se si utilizza Ethernet (solo TCP, senza RDMA):

 - name: Ensure IPoIB is configured

 import_role:

 name: ip

3. Infine, importare il ruolo del client BeeGFS per installare il software client e configurare i supporti del file
system:

43

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_client
https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_inventory.yml

 # REQUIRED: Install the BeeGFS client and mount the BeeGFS file

system.

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Per un esempio completo di un playbook client, fai clic "qui".

Eseguire il manuale BeeGFS Client Playbook

Per installare/creare il client e montare BeeGFS, eseguire il seguente comando:

ansible-playbook -i client_inventory.yml client_playbook.yml

Verificare l’implementazione di BeeGFS

Verificare l’implementazione del file system prima di mettere il sistema in produzione.

Panoramica

Prima di mettere il file system BeeGFS in produzione, eseguire alcuni controlli di verifica.

Fasi

1. Accedere a qualsiasi client ed eseguire quanto segue per assicurarsi che tutti i nodi previsti siano
presenti/raggiungibili e che non siano segnalate incoerenze o altri problemi:

beegfs-fsck --checkfs

2. Arrestare l’intero cluster, quindi riavviarlo. Da qualsiasi nodo di file eseguire quanto segue:

pcs cluster stop --all # Stop the cluster on all file nodes.

pcs cluster start --all # Start the cluster on all file nodes.

pcs status # Verify all nodes and services are started and no failures

are reported (the command may need to be reran a few times to allow time

for all services to start).

3. Mettere ciascun nodo in standby e verificare che i servizi BeeGFS siano in grado di eseguire il failover su
nodi secondari. Per eseguire questa operazione, accedere a uno dei nodi di file ed eseguire quanto segue:

44

https://github.com/netappeseries/beegfs/blob/master/getting_started/beegfs_on_netapp/gen2/client_playbook.yml

pcs status # Verify the cluster is healthy at the start.

pcs node standby <FILE NODE HOSTNAME> # Place the node under test in

standby.

pcs status # Verify services are started on a secondary node and no

failures are reported.

pcs node unstandby <FILE NODE HOSTNAME> # Take the node under test out

of standby.

pcs status # Verify the file node is back online and no failures are

reported.

pcs resource relocate run # Move all services back to their preferred

nodes.

pcs status # Verify services have moved back to the preferred node.

4. Utilizza strumenti di benchmarking delle performance come IOR e MDTest per verificare che le
performance del file system soddisfino le aspettative. Esempi di test e parametri comuni utilizzati con
BeeGFS si trovano nella "Verifica del progetto"sezione di BeeGFS su architettura verificata NetApp.

È necessario eseguire test aggiuntivi in base ai criteri di accettazione definiti per un sito/installazione
particolare.

45

https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-design-solution-verification.html

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e
dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM’È" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL’ATTIVITÀ AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L’UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA L’EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l’utilizzo dei
prodotti o materiali descritti nel presente documento, con l’eccezione di quanto concordato espressamente e
per iscritto da NetApp. L’utilizzo o l’acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di
NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l’utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l’utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

46

http://www.netapp.com/TM

	Utilizzare architetture personalizzate : BeeGFS on NetApp with E-Series Storage
	Sommario
	Utilizzare architetture personalizzate
	Panoramica e requisiti
	Introduzione
	Panoramica sull’implementazione
	Requisiti

	Configurazione iniziale
	Installazione e cavo hardware
	Impostare i nodi di file e blocchi
	Impostare Ansible Control Node

	Definire il file system BeeGFS
	Panoramica di Ansible Inventory
	Pianificare il file system
	Definire i nodi di file e blocchi
	Definire i servizi BeeGFS
	Mappare i servizi BeeGFS ai nodi di file

	Implementare il file system BeeGFS
	Panoramica di Ansible Playbook
	Implementare il cluster BeeGFS ha
	Implementare i client BeeGFS
	Verificare l’implementazione di BeeGFS

