
Utilizzare architetture verificate

BeeGFS on NetApp with E-Series Storage
NetApp
January 27, 2026

This PDF was generated from https://docs.netapp.com/it-it/beegfs/second-gen/beegfs-solution-
overview.html on January 27, 2026. Always check docs.netapp.com for the latest.

Sommario

Utilizzare architetture verificate . 1

Panoramica e requisiti . 1

Panoramica della soluzione . 1

Panoramica dell’architettura. 2

Requisiti tecnici . 6

Esaminare la progettazione della soluzione. 9

Panoramica del design. 9

Configurazione dell’hardware . 10

Configurazione del software. 12

Verifica del progetto . 19

Linee guida per il dimensionamento . 25

Tuning delle performance . 26

Building block ad alta capacità. 28

Implementare la soluzione . 29

Panoramica dell’implementazione . 29

Scopri di più sull’inventario Ansible . 30

Esaminare le Best practice . 33

Implementare l’hardware . 36

Implementare il software . 40

Scala oltre cinque elementi di base . 77

Percentuali consigliate di overprovisioning del pool di storage . 78

Building block ad alta capacità. 78

Utilizzare architetture verificate

Panoramica e requisiti

Panoramica della soluzione

La soluzione BeeGFS su NetApp combina il file system parallelo BeeGFS con i sistemi
storage NetApp EF600 per un’infrastruttura affidabile, scalabile e conveniente che tiene il
passo con i carichi di lavoro esigenti.

Programma NVA

La soluzione BeeGFS su NetApp fa parte del programma NetApp Verified Architecture (NVA), che offre ai
clienti configurazioni di riferimento e indicazioni sul dimensionamento per carichi di lavoro e casi di utilizzo
specifici. Le soluzioni NVA sono testate e progettate per ridurre al minimo i rischi di implementazione e
accelerare il time-to-market.

Panoramica del progetto

La soluzione BeeGFS su NetApp è progettata come un’architettura a building block scalabile, configurabile per
una vasta gamma di carichi di lavoro esigenti. Che si tratti di molti file di piccole dimensioni, della gestione di
operazioni sostanziali di file di grandi dimensioni o di un carico di lavoro ibrido, il file system può essere
personalizzato in base a tali esigenze. L’alta disponibilità è integrata nel progetto con l’utilizzo di una struttura
hardware a due livelli che consente il failover indipendente a più livelli hardware e garantisce prestazioni
costanti, anche durante il degrado parziale del sistema. Il file system BeeGFS consente di creare un ambiente
scalabile e ad alte prestazioni in diverse distribuzioni Linux e presenta ai client un unico spazio dei nomi di
storage facilmente accessibile. Per ulteriori informazioni, vedere "panoramica dell’architettura".

Casi di utilizzo

I seguenti casi di utilizzo si applicano alla soluzione BeeGFS su NetApp:

• Sistemi NVIDIA DGX SuperPOD dotati di DGX con GPU A100, H100, H200 e B200.

• Intelligenza artificiale (ai), tra cui apprendimento automatico (ML), apprendimento approfondito (DL),
elaborazione del linguaggio naturale (NLP) su larga scala e comprensione del linguaggio naturale (NLU).
Per ulteriori informazioni, vedere "BeeGFS per l’ai: Fatti e finzione".

• High-performance computing (HPC) che include applicazioni accelerate da MPI (message passing
interface) e altre tecniche di calcolo distribuito. Per ulteriori informazioni, vedere "Perché BeeGFS va oltre
l’HPC".

• Carichi di lavoro delle applicazioni caratterizzati da:

◦ Lettura o scrittura su file di dimensioni superiori a 1 GB

◦ Lettura o scrittura sullo stesso file da parte di più client (10, 100 e 1000)

• Set di dati multi-terabyte o multi-petabyte.

• Ambienti che richiedono un singolo spazio dei nomi dello storage, ottimizzabili per una combinazione di file
di grandi e piccoli dimensioni.

1

https://www.netapp.com/blog/beefs-for-ai-fact-vs-fiction/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/
https://www.netapp.com/blog/beegfs-for-ai-ml-dl/

Benefici

I vantaggi principali dell’utilizzo di BeeGFS su NetApp includono:

• Disponibilità di progetti hardware verificati che forniscono la completa integrazione di componenti hardware
e software per garantire performance e affidabilità prevedibili.

• Implementazione e gestione con Ansible per semplicità e coerenza su larga scala.

• Monitoraggio e osservabilità forniti con e-Series Performance Analyzer e plug-in BeeGFS. Per ulteriori
informazioni, vedere "Presentazione di un framework per il monitoraggio delle soluzioni NetApp e-Series".

• Alta disponibilità con un’architettura a disco condiviso che garantisce la durata e la disponibilità dei dati.

• Supporto per la moderna gestione e orchestrazione dei workload con container e Kubernetes. Per ulteriori
informazioni, vedere "Kubernetes incontra BeeGFS: Una storia di investimenti a prova di futuro".

Panoramica dell’architettura

La soluzione BeeGFS su NetApp include considerazioni di progettazione architetturale
utilizzate per determinare le apparecchiature, il cablaggio e le configurazioni specifiche
richieste per supportare i carichi di lavoro validati.

Architettura a blocchi

Il file system BeeGFS può essere implementato e scalato in diversi modi, a seconda dei requisiti di storage. Ad
esempio, i casi di utilizzo che includono principalmente numerosi file di piccole dimensioni trarranno beneficio
da una maggiore capacità e performance dei metadati, mentre i casi di utilizzo che presentano meno file di
grandi dimensioni potrebbero favorire una maggiore capacità di storage e performance per i contenuti dei file
effettivi. Queste considerazioni multiple hanno un impatto sulle diverse dimensioni dell’implementazione del file
system parallelo, che aggiunge complessità alla progettazione e all’implementazione del file system.

Per affrontare queste sfide, NetApp ha progettato un’architettura standard basata su building block che
consente di scalare ciascuna di queste dimensioni. In genere, gli elementi di base BeeGFS vengono
implementati in uno dei tre profili di configurazione seguenti:

• Un singolo building block di base, che include gestione BeeGFS, metadati e servizi di storage

• Metadati BeeGFS e building block dello storage

• Un building block per lo storage BeeGFS

L’unica modifica hardware tra queste tre opzioni è l’utilizzo di dischi più piccoli per i metadati BeeGFS. In caso
contrario, tutte le modifiche di configurazione vengono applicate tramite software. Inoltre, con Ansible come
motore di implementazione, la configurazione del profilo desiderato per un particolare building block rende
semplici le attività di configurazione.

Per ulteriori dettagli, vedere Progettazione hardware verificata.

Servizi del file system

Il file system BeeGFS include i seguenti servizi principali:

• Servizio di gestione. registra e monitora tutti gli altri servizi.

• Servizio di storage. Memorizza il contenuto del file utente distribuito, noto come file di blocco dei dati.

• Servizio metadati. tiene traccia del layout del file system, della directory, degli attributi dei file e così via.

2

https://www.netapp.com/blog/monitoring-netapp-eseries/
https://www.netapp.com/blog/kubernetes-meet-beegfs/

• Servizio client. consente di attivare il file system per accedere ai dati memorizzati.

La figura seguente mostra i componenti della soluzione BeeGFS e le relazioni utilizzate con i sistemi NetApp
e-Series.

In qualità di file system parallelo, BeeGFS esegue lo striping dei propri file su più nodi server per massimizzare
le performance di lettura/scrittura e la scalabilità. I nodi server lavorano insieme per fornire un singolo file
system che può essere montato e accessibile contemporaneamente da altri nodi server, comunemente noti
come client. Questi client possono visualizzare e utilizzare il file system distribuito in modo simile a un file
system locale come NTFS, XFS o ext4.

I quattro servizi principali vengono eseguiti su un’ampia gamma di distribuzioni Linux supportate e comunicano
tramite qualsiasi rete compatibile con TCP/IP o RDMA, tra cui InfiniBand (IB), Omni-Path (OPA) e RDMA over
Converged Ethernet (RoCE). I servizi server BeeGFS (gestione, storage e metadati) sono daemon dello
spazio utente, mentre il client è un modulo kernel nativo (senza patch). Tutti i componenti possono essere
installati o aggiornati senza riavviare ed è possibile eseguire qualsiasi combinazione di servizi sullo stesso
nodo.

Architettura HA

BeeGFS su NetApp espande le funzionalità dell’edizione Enterprise di BeeGFS creando una soluzione
completamente integrata con l’hardware NetApp che consente un’architettura ha (Shared Disk High
Availability).

Sebbene l’edizione della community BeeGFS possa essere utilizzata gratuitamente, l’edizione
Enterprise richiede l’acquisto di un contratto di abbonamento al supporto professionale da parte
di un partner come NetApp. L’edizione Enterprise consente di utilizzare diverse funzionalità
aggiuntive, tra cui resilienza, applicazione delle quote e pool di storage.

3

La figura seguente confronta le architetture ha shared-nothing e shared-disk.

Per ulteriori informazioni, vedere "Annuncio dell’alta disponibilità per BeeGFS supportato da NetApp".

Nodi verificati

La soluzione BeeGFS on NetApp ha verificato i nodi elencati di seguito.

Nodo Hardware Dettagli

Blocco Sistema storage
NetApp EF600

Un array storage 2U all-NVMe ad alte performance progettato per i carichi di
lavoro esigenti.

File Server Lenovo
ThinkSystem SR665
V3

Un server 2U a due socket con PCIe 5,0, due processori AMD EPYC 9124.
Per ulteriori informazioni su Lenovo SR665 V3, vedere "Il sito Web di
Lenovo".

Server Lenovo
ThinkSystem SR665

Un server 2U a due socket con PCIe 4,0, due processori AMD EPYC 7003.
Per ulteriori informazioni su Lenovo SR665, vedere "Il sito Web di Lenovo".

Progettazione hardware verificata

I building block della soluzione (mostrati nella figura seguente) utilizzano i server dei nodi di file verificati per il
livello di file BeeGFS e due sistemi storage EF600 come livello di blocchi.

4

https://www.netapp.com/blog/high-availability-beegfs/
https://lenovopress.lenovo.com/lp1608-thinksystem-sr665-v3-server
https://lenovopress.lenovo.com/lp1608-thinksystem-sr665-v3-server
https://lenovopress.lenovo.com/lp1269-thinksystem-sr665-server

La soluzione BeeGFS su NetApp viene eseguita in tutti gli elementi di base dell’implementazione. Il primo
building block implementato deve eseguire i servizi di gestione, metadati e storage di BeeGFS (noto come
building block di base). Tutti i building block successivi possono essere configurati con il software per
estendere metadati e servizi di storage o per fornire esclusivamente servizi storage. Questo approccio
modulare consente di scalare il file system in base alle esigenze di un carico di lavoro utilizzando al tempo
stesso le stesse piattaforme hardware sottostanti e il design a building block.

È possibile implementare fino a cinque elementi di base per formare un cluster Linux ha autonomo. Ciò
ottimizza la gestione delle risorse con pacemaker e mantiene una sincronizzazione efficiente con Corosync.
Uno o più cluster ha BeeGFS standalone vengono combinati in modo da creare un file system BeeGFS
accessibile ai client come namespace singolo di storage. Sul lato hardware, un singolo rack 42U può ospitare
fino a cinque building block, insieme a due switch InfiniBand 1U GB per la rete storage/dati. Per una
rappresentazione visiva, vedere la figura riportata di seguito.

Per stabilire il quorum nel cluster di failover sono necessari almeno due building block. Un
cluster a due nodi presenta limitazioni che potrebbero impedire il corretto funzionamento del
failover. È possibile configurare un cluster a due nodi incorporando un terzo dispositivo come
tiebreaker; tuttavia, questa documentazione non lo descrive.

5

Ansible

BeeGFS su NetApp viene fornito e implementato utilizzando l’automazione Ansible, che è ospitata su GitHub e
Ansible Galaxy (la raccolta BeeGFS è disponibile presso "Ansible Galaxy" e. "GitHub e-Series di NetApp").
Sebbene Ansible sia testato principalmente con l’hardware utilizzato per assemblare i blocchi di base BeeGFS,
è possibile configurarlo per l’esecuzione su qualsiasi server basato su x86 utilizzando una distribuzione Linux
supportata.

Per ulteriori informazioni, vedere "Implementazione di BeeGFS con storage e-Series".

Requisiti tecnici

Per implementare la soluzione BeeGFS su NetApp, accertatevi che l’ambiente soddisfi i
requisiti tecnologici descritti nel presente documento.

6

https://galaxy.ansible.com/netapp_eseries/beegfs
https://github.com/netappeseries/beegfs/
https://www.netapp.com/blog/deploying-beegfs-eseries/

Requisiti hardware

Prima di iniziare, assicurarsi che l’hardware soddisfi le seguenti specifiche per una singola progettazione di
building block di seconda generazione della soluzione BeeGFS su NetApp. I componenti esatti per una
particolare implementazione possono variare in base alle esigenze del cliente.

Quantità Componente

hardware

Requisiti

2 Nodi di file BeeGFS Ciascun nodo file deve soddisfare o superare le specifiche dei nodi file
consigliati per raggiungere le prestazioni previste.

Opzioni del nodo file consigliate:

• Lenovo ThinkSystem SR665 V3

◦ Processori: 2x AMD EPYC 9124 16C 3,0 GHz (configurato come
due zone NUMA).

◦ Memoria: 256GB GB (16x 16GB TruDDR5 4800MHz RDIMM-A)

◦ Espansione PCIe: quattro slot PCIe Gen5 x16 (due per zona
NUMA)

◦ Varie:

▪ Due unità in RAID 1 per il sistema operativo (SATA da 1TB 7,2K
TB o superiore)

▪ Porta 1GbE per la gestione del sistema operativo in banda

▪ 1GbE BMC con API Redfish per la gestione fuori banda dei
server

▪ Doppi alimentatori hot swap e ventole ad alte prestazioni

2 Nodi a blocchi E-
Series (array EF600)

Memoria: 256GB GB (128GB GB per controller). Adattatore: 200GB/HDR
a 2 porte (NVMe/IB). Unità: configurate in base ai metadati e alla capacità
di archiviazione desiderati.

8 Adattatori schede
host InfiniBand (per
nodi file).

Gli adattatori della scheda host possono variare in base al modello di server
del nodo file. I consigli per i nodi file verificati includono:

• Lenovo ThinkSystem SR665 V3 Server:

◦ MCX755106AS-HEAT ConnectX-7, NDR200, QSFP112, 2 porte,
PCIe Gen5 x16, adattatore InfiniBand

1 Switch della rete di
storage

Lo switch della rete storage deve essere in grado di raggiungere velocità
InfiniBand da 200GB GB/s. I modelli di interruttori consigliati includono:

• NVIDIA QM9700 Quantum 2 NDR InfiniBand switch

• NVIDIA MQM8700 Quantum HDR InfiniBand switch

Requisiti di cablaggio

Connessioni dirette dai nodi di blocco ai nodi di file.

7

Quantità Codice ricambio Lunghezza

8 MCP1650-H001E30 (cavo in rame passivo NVIDIA, QSFP56, 200GB/s) 1 m

Connessioni dai nodi di file allo switch della rete di archiviazione. Selezionare l’opzione di cavo
appropriata dalla tabella seguente in base allo switch storage InfiniBand. + la lunghezza del cavo consigliata è
di 2m m; tuttavia, può variare a seconda dell’ambiente del cliente.

Modello di switch Tipo di cavo Quantità Codice ricambio

NVIDIA QM9700 Fibra attiva
(inclusi i
ricetrasmettitori
)

2 MMA4Z00-NS (multimodale, IB/ETH, 800GB GB/s 2x400
GB/s a due porte OSFP)

4 MFP7E20-Nxxx (cavo in fibra splitter multimodale da 4
canali a due a 2 canali)

8 MMA1Z00-NS400 (multimodale, IB/ETH, QSFP-112 a una
porta da 400GB GB/s)

Rame passivo 2 MCP7Y40-N002 (cavo splitter in rame passivo NVIDIA, da
InfiniBand 800GB GB/s a 4x 200GB GB/s, da OSFP a 4x
QSFP112)

NVIDIA MQM8700 Fibra attiva 8 MFS1S00-H003E (cavo NVIDIA in fibra attiva, InfiniBand
200GB GB/s, QSFP56 m)

Rame passivo 8 MCP1650-H002E26 (cavo in rame passivo NVIDIA,
InfiniBand 200GB GB/s, QSFP56 m)

Requisiti software e firmware

Per garantire prestazioni e affidabilità prevedibili, le versioni della soluzione BeeGFS on NetApp vengono
testate con versioni specifiche dei componenti software e firmware. Queste versioni sono necessarie per
l’implementazione della soluzione.

Requisiti del nodo del file

Software Versione

Red Hat Enterprise
Linux (RHEL)

Server RHEL 9.4 fisico con elevata disponibilità (2 socket). Nota: i nodi file richiedono
un abbonamento valido a Red Hat Enterprise Linux Server e il componente aggiuntivo
Red Hat Enterprise Linux High Availability.

Kernel Linux 5.14.0-427.42.1.el9_4.x86_64

Firmware HCA Firmware ConnectX-7 HCA FW: 28.45.1200 + PXE: 3.7.0500 + UEFI: 14.38.0016

ConnectX-6 HCA firmware FW: 20.43.2566 + PXE: 3.7.0500 + UEFI: 14.37.0013

Requisiti dei nodi a blocchi EF600

Software Versione

Sistema operativo
SANtricity

11.90R3

NVSRAM N6000-890834-D02.dlp

8

Software Versione

Firmware del disco Più recente disponibile per i modelli di unità in uso. Consultare la "Sito del firmware del
disco E-Series".

Requisiti di implementazione del software

La seguente tabella elenca i requisiti software implementati automaticamente nell’ambito dell’implementazione
di Ansible-Based BeeGFS.

Software Versione

BeeGFS 7.4.6

Corosync 3.1.8-1

Pacemaker 2.1.7-5,2

PCS 0.11.7-2

Agenti di recinzione
(scorfano rosso/apc)

4.10.0-62

Driver
InfiniBand/RDMA

MLNX_OFED_LINUX-23,10-3,2.2,1-LTS

Requisiti dei nodi di controllo Ansible

La soluzione BeeGFS su NetApp viene implementata e gestita da un nodo di controllo Ansible. Per ulteriori
informazioni, consultare "Documentazione Ansible".

I requisiti software elencati nelle tabelle seguenti sono specifici della versione della raccolta NetApp BeeGFS
Ansible elencata di seguito.

Software Versione

Ansible 10.x

Ansible-core >= 2.13.0

Python 3,10

Pacchetti Python aggiuntivi Encryption-43,0.0, netaddr-1,3.0, ipaddr-2.2.0

Raccolta Ansible BeeGFS
NetApp E-Series

3.2.0

Esaminare la progettazione della soluzione

Panoramica del design

Per supportare la soluzione BeeGFS su NetApp, che combina il file system parallelo
BeeGFS con i sistemi storage NetApp EF600, sono necessarie apparecchiature, cablaggi
e configurazioni specifiche.

Scopri di più:

9

https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html

• "Configurazione dell’hardware"

• "Configurazione del software"

• "Verifica del progetto"

• "Linee guida per il dimensionamento"

• "Tuning delle performance"

Architetture derivate con variazioni di design e performance:

• "Building Block ad alta capacità"

Configurazione dell’hardware

La configurazione hardware per BeeGFS su NetApp include nodi di file e cablaggio di
rete.

Configurazione del nodo del file

I file node hanno due socket CPU configurati come zone NUMA separate, che includono l’accesso locale a un
numero uguale di slot PCIe e memoria.

Gli adattatori InfiniBand devono essere inseriti nei riser o negli slot PCI appropriati, in modo da bilanciare il
carico di lavoro sulle corsie PCIe e sui canali di memoria disponibili. Il carico di lavoro viene bilanciato isolando
completamente il lavoro per i singoli servizi BeeGFS in un nodo NUMA specifico. L’obiettivo è quello di
ottenere performance simili da ogni nodo di file come se si trattasse di due server a socket singolo
indipendenti.

La figura seguente mostra la configurazione NUMA del nodo del file.

I processi BeeGFS vengono bloccati in una particolare zona NUMA per garantire che le interfacce utilizzate si
trovino nella stessa zona. Questa configurazione evita la necessità di un accesso remoto sulla connessione tra
socket. La connessione tra socket è talvolta nota come collegamento QPI o GMI2; anche nelle moderne
architetture di processore, può essere un collo di bottiglia quando si utilizza una rete ad alta velocità come
HDR InfiniBand.

10

Configurazione del cablaggio di rete

All’interno di un building block, ogni nodo di file è connesso a due nodi a blocchi utilizzando un totale di quattro
connessioni InfiniBand ridondanti. Inoltre, ciascun nodo di file dispone di quattro connessioni ridondanti alla
rete di storage InfiniBand.

Nella figura seguente, notare che:

• Tutte le porte dei nodi di file delineate in verde vengono utilizzate per la connessione al fabric di storage;
tutte le altre porte dei nodi di file sono le connessioni dirette ai nodi di blocco.

• Due porte InfiniBand in una zona NUMA specifica si collegano ai controller A e B dello stesso nodo a
blocchi.

• Le porte nel nodo NUMA 0 si connettono sempre al primo nodo a blocchi.

• Le porte nel nodo NUMA 1 si connettono al secondo nodo a blocchi.

Quando si utilizzano cavi splitter per collegare lo switch di archiviazione ai nodi file, un cavo
deve diramarsi e connettersi alle porte indicate in verde chiaro. Un altro cavo dovrebbe
diramarsi e collegarsi alle porte delineate in verde scuro. Inoltre, per le reti di storage con switch
ridondanti, le porte indicate in verde chiaro devono essere collegate a uno switch, mentre le
porte in verde scuro devono essere collegate a un altro switch.

La configurazione del cablaggio illustrata nella figura consente a ciascun servizio BeeGFS di:

• Viene eseguito nella stessa zona NUMA indipendentemente dal nodo del file che esegue il servizio
BeeGFS.

• Disporre di percorsi secondari ottimali per la rete di storage front-end e per i nodi a blocchi back-end,
indipendentemente da dove si verifica un guasto.

• Ridurre al minimo gli effetti delle performance se un nodo di file o un controller in un nodo a blocchi
richiede manutenzione.

Cablaggio per sfruttare la larghezza di banda

Per sfruttare l’intera larghezza di banda bidirezionale PCIe, assicurarsi che una porta di ciascun adattatore
InfiniBand si colleghi al fabric di storage e l’altra porta si colleghi a un nodo a blocchi.

La figura seguente mostra il design del cablaggio utilizzato per sfruttare l’intera larghezza di banda
bidirezionale PCIe.

11

Per ogni servizio BeeGFS, utilizzare lo stesso adattatore per connettere la porta preferita utilizzata per il
traffico client con il percorso al controller dei nodi a blocchi che è il principale proprietario di tali volumi di
servizi. Per ulteriori informazioni, vedere "Configurazione del software".

Configurazione del software

La configurazione software per BeeGFS su NetApp include componenti di rete BeeGFS,
nodi a blocchi EF600, nodi di file BeeGFS, gruppi di risorse e servizi BeeGFS.

Configurazione di rete BeeGFS

La configurazione di rete di BeeGFS è costituita dai seguenti componenti.

• IP mobili gli IP mobili sono un tipo di indirizzo IP virtuale che può essere instradato dinamicamente a
qualsiasi server della stessa rete. Più server possono avere lo stesso indirizzo IP mobile, ma possono
essere attivi solo su un server alla volta.

Ciascun servizio del server BeeGFS dispone di un proprio indirizzo IP che può spostarsi tra i nodi di file in

12

base alla posizione di esecuzione del servizio del server BeeGFS. Questa configurazione IP mobile
consente a ciascun servizio di eseguire il failover in modo indipendente sull’altro nodo di file. Il client deve
semplicemente conoscere l’indirizzo IP di un particolare servizio BeeGFS; non deve sapere quale nodo di
file sta eseguendo quel servizio.

• Configurazione multi-homing del server BeeGFS per aumentare la densità della soluzione, ciascun
nodo di file dispone di più interfacce di storage con IP configurati nella stessa subnet IP.

È necessaria un’ulteriore configurazione per garantire che questa configurazione funzioni come previsto
con lo stack di rete Linux, perché per impostazione predefinita, le richieste a un’interfaccia possono essere
risposte su un’interfaccia diversa se i relativi IP si trovano nella stessa subnet. Oltre ad altri inconvenienti,
questo comportamento predefinito rende impossibile stabilire o mantenere correttamente le connessioni
RDMA.

L’implementazione basata su Ansible gestisce il rafforzamento del comportamento del percorso inverso
(RP) e del protocollo di risoluzione degli indirizzi (ARP), oltre a garantire che quando gli IP mobili vengono
avviati e arrestati; i corrispondenti percorsi e le regole IP vengono creati dinamicamente per consentire alla
configurazione di rete multihomed di funzionare correttamente.

• La configurazione multi-rail del client BeeGFS Multi-rail si riferisce alla capacità di un’applicazione di
utilizzare più connessioni di rete indipendenti, o "rails", per aumentare le prestazioni.

BeeGFS implementa il supporto multi-rail per consentire l’utilizzo di più interfacce IB in una singola subnet
IPoIB. Questa funzionalità consente di abilitare funzioni come il bilanciamento dinamico del carico sulle
schede di rete RDMA, ottimizzando l’utilizzo delle risorse di rete. Si integra anche con NVIDIA GPUDirect
Storage (GDS), che offre una maggiore larghezza di banda del sistema e riduce la latenza e l’utilizzo sulla
CPU del client.

Questa documentazione fornisce istruzioni per le configurazioni di singole subnet IPoIB. Sono supportate
configurazioni di subnet IPoIB doppie, ma non offrono gli stessi vantaggi delle configurazioni di subnet
singola.

La figura seguente mostra il bilanciamento del traffico tra più interfacce client BeeGFS.

13

Poiché ogni file in BeeGFS viene in genere sottoposto a striping su più servizi di storage, la configurazione
multi-rail consente al client di ottenere un throughput superiore a quello possibile con una singola porta
InfiniBand. Ad esempio, il seguente esempio di codice mostra una configurazione di striping comune dei file
che consente al client di bilanciare il traffico tra entrambe le interfacce:

+

14

root@beegfs01:/mnt/beegfs# beegfs-ctl --getentryinfo myfile

Entry type: file

EntryID: 11D-624759A9-65

Metadata node: meta_01_tgt_0101 [ID: 101]

Stripe pattern details:

+ Type: RAID0

+ Chunksize: 1M

+ Number of storage targets: desired: 4; actual: 4

+ Storage targets:

 + 101 @ stor_01_tgt_0101 [ID: 101]

 + 102 @ stor_01_tgt_0101 [ID: 101]

 + 201 @ stor_02_tgt_0201 [ID: 201]

 + 202 @ stor_02_tgt_0201 [ID: 201]

Configurazione del nodo a blocchi EF600

I nodi a blocchi sono costituiti da due controller RAID attivi/attivi con accesso condiviso allo stesso set di
dischi. In genere, ciascun controller possiede la metà dei volumi configurati sul sistema, ma può sostituire
l’altro controller in base alle necessità.

Il software multipathing sui nodi di file determina il percorso attivo e ottimizzato per ciascun volume e si sposta
automaticamente sul percorso alternativo in caso di guasto di un cavo, di un adattatore o di un controller.

Il seguente diagramma mostra il layout del controller nei nodi a blocchi EF600.

Per facilitare la soluzione ha con disco condiviso, i volumi vengono mappati su entrambi i nodi di file in modo
che possano assumere il controllo reciproco in base alle necessità. Il seguente diagramma mostra un esempio
di configurazione del servizio BeeGFS e della proprietà del volume preferita per ottenere le massime
prestazioni. L’interfaccia a sinistra di ciascun servizio BeeGFS indica l’interfaccia preferita che i client e gli altri
servizi utilizzano per contattarlo.

15

Nell’esempio precedente, client e servizi server preferiscono comunicare con il servizio di storage 1 utilizzando
l’interfaccia i1b. Il servizio di storage 1 utilizza l’interfaccia i1a come percorso preferito per comunicare con i
suoi volumi (storage_tgt_101, 102) sul controller A del primo nodo a blocchi. Questa configurazione utilizza
l’intera larghezza di banda PCIe bidirezionale disponibile per l’adattatore InfiniBand e ottiene prestazioni
migliori da un adattatore HDR InfiniBand a due porte rispetto a quanto sarebbe altrimenti possibile con PCIe
4.0.

Configurazione del nodo del file BeeGFS

I nodi di file BeeGFS sono configurati in un cluster ad alta disponibilità (ha) per facilitare il failover dei servizi
BeeGFS tra più nodi di file.

La progettazione del cluster ha si basa su due progetti Linux ha ampiamente utilizzati: Corosync per
l’appartenenza al cluster e Pacemaker per la gestione delle risorse del cluster. Per ulteriori informazioni,
vedere "Training Red Hat per add-on ad alta disponibilità".

NetApp ha creato ed esteso diversi agenti di risorse OCF (Open Cluster Framework) per consentire al cluster
di avviare e monitorare in modo intelligente le risorse BeeGFS.

Cluster BeeGFS ha

In genere, quando si avvia un servizio BeeGFS (con o senza ha), è necessario disporre di alcune risorse:

• Indirizzi IP raggiungibili dal servizio, generalmente configurati da Network Manager.

• File system sottostanti utilizzati come destinazione per BeeGFS per l’archiviazione dei dati.

Questi sono in genere definiti in /etc/fstab E montato da Systemd.

16

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_overview-of-high-availability-configuring-and-managing-high-availability-clusters

• Un servizio Systemd responsabile dell’avvio dei processi BeeGFS quando le altre risorse sono pronte.

Senza software aggiuntivo, queste risorse vengono avviate solo su un singolo nodo di file. Pertanto, se il
nodo del file non è in linea, una parte del file system BeeGFS non è accessibile.

Dato che più nodi possono avviare ciascun servizio BeeGFS, Pacemaker deve assicurarsi che ogni servizio e
le risorse dipendenti siano in esecuzione su un solo nodo alla volta. Ad esempio, se due nodi tentano di
avviare lo stesso servizio BeeGFS, esiste il rischio di danneggiamento dei dati se entrambi tentano di scrivere
negli stessi file sulla destinazione sottostante. Per evitare questo scenario, Pacemaker si affida a Corosync per
mantenere in modo affidabile lo stato del cluster complessivo in sincronia tra tutti i nodi e stabilire il quorum.

Se si verifica un errore nel cluster, Pacemaker reagisce e riavvia le risorse BeeGFS su un altro nodo. In alcuni
scenari, Pacemaker potrebbe non essere in grado di comunicare con il nodo guasto originale per confermare
che le risorse sono state interrotte. Per verificare che il nodo sia inattivo prima di riavviare le risorse BeeGFS
altrove, Pacemaker interrompe il nodo difettoso, idealmente rimuovendo l’alimentazione.

Sono disponibili molti agenti di scherma open-source che consentono a Pacemaker di recinzione di un nodo
con un’unità di distribuzione dell’alimentazione (PDU) o utilizzando il server Baseboard Management Controller
(BMC) con API come Redfish.

Quando BeeGFS viene eseguito in un cluster ha, tutti i servizi BeeGFS e le risorse sottostanti vengono gestiti
da Pacemaker in gruppi di risorse. Ogni servizio BeeGFS e le risorse da cui dipende sono configurati in un
gruppo di risorse, che garantisce che le risorse vengano avviate e interrotte nell’ordine corretto e collocate
sullo stesso nodo.

Per ciascun gruppo di risorse BeeGFS, Pacemaker esegue una risorsa di monitoraggio BeeGFS
personalizzata responsabile del rilevamento delle condizioni di guasto e dell’attivazione intelligente dei failover
quando un servizio BeeGFS non è più accessibile su un nodo specifico.

La figura seguente mostra i servizi e le dipendenze BeeGFS controllati da pacemaker.

17

Per avviare più servizi BeeGFS dello stesso tipo sullo stesso nodo, Pacemaker è configurato
per avviare i servizi BeeGFS utilizzando il metodo di configurazione Multi Mode. Per ulteriori
informazioni, consultare "Documentazione BeeGFS su Multi Mode".

Poiché i servizi BeeGFS devono essere in grado di avviarsi su più nodi, il file di configurazione per ciascun
servizio (normalmente situato in /etc/beegfs) Viene memorizzato in uno dei volumi e-Series utilizzati come
destinazione BeeGFS per quel servizio. In questo modo, la configurazione e i dati di un particolare servizio
BeeGFS sono accessibili a tutti i nodi che potrebbero aver bisogno di eseguire il servizio.

18

https://doc.beegfs.io/latest/advanced_topics/multimode.html

tree stor_01_tgt_0101/ -L 2

stor_01_tgt_0101/

├── data
│ ├── benchmark
│ ├── buddymir
│ ├── chunks
│ ├── format.conf
│ ├── lock.pid
│ ├── nodeID
│ ├── nodeNumID
│ ├── originalNodeID
│ ├── targetID
│ └── targetNumID
└── storage_config
 ├── beegfs-storage.conf
 ├── connInterfacesFile.conf
 └── connNetFilterFile.conf

Verifica del progetto

La progettazione di seconda generazione per la soluzione BeeGFS su NetApp è stata
verificata utilizzando tre profili di configurazione a blocchi.

I profili di configurazione includono quanto segue:

• Un singolo building block di base, che include gestione BeeGFS, metadati e servizi di storage.

• Metadati BeeGFS più un building block per lo storage.

• Un building block BeeGFS solo per lo storage.

I building block erano collegati a due switch NVIDIA Quantum InfiniBand (MQM8700). Dieci client BeeGFS
sono stati collegati anche agli switch InfiniBand e utilizzati per eseguire utility di benchmark sintetiche.

La figura seguente mostra la configurazione BeeGFS utilizzata per validare la soluzione BeeGFS su NetApp.

19

Striping del file BeeGFS

Un vantaggio dei file system paralleli è la capacità di eseguire lo striping di singoli file su più destinazioni di
storage, che potrebbero rappresentare volumi sullo stesso sistema di storage sottostante o su sistemi di
storage diversi.

In BeeGFS, è possibile configurare lo striping per directory e per file per controllare il numero di destinazioni
utilizzate per ogni file e per controllare la dimensione del blocco (o dimensione del blocco) utilizzata per ogni
stripe di file. Questa configurazione consente al file system di supportare diversi tipi di carichi di lavoro e profili
i/o senza dover riconfigurare o riavviare i servizi. È possibile applicare le impostazioni di stripe utilizzando
beegfs-ctl Tool della riga di comando o con applicazioni che utilizzano l’API di striping. Per ulteriori
informazioni, consultare la documentazione di BeeGFS per "Striping" e. "API di striping".

Per ottenere le migliori prestazioni, i modelli di stripe sono stati regolati durante l’intero test e vengono annotati
i parametri utilizzati per ciascun test.

Test della larghezza di banda IOR: Client multipli

I test della larghezza di banda IOR hanno utilizzato OpenMPI per eseguire lavori paralleli dello strumento IOR
(Synthetic i/o Generator Tool), disponibile presso "HPC GitHub") Su tutti i 10 nodi client a uno o più blocchi di
base BeeGFS. Se non diversamente specificato:

• Tutti i test utilizzavano l’i/o diretto con una dimensione di trasferimento di 1 MiB.

• Lo striping dei file BeeGFS è stato impostato su una dimensione di blocco di 1 MB e su una destinazione
per file.

I seguenti parametri sono stati utilizzati per IOR con il conteggio dei segmenti regolato per mantenere la
dimensione del file aggregato a 5TiB per un building block e 40TiB per tre building block.

mpirun --allow-run-as-root --mca btl tcp -np 48 -map-by node -hostfile

10xnodes ior -b 1024k --posix.odirect -e -t 1024k -s 54613 -z -C -F -E -k

Un building block di base BeeGFS (gestione, metadati e storage)

La figura seguente mostra i risultati del test IOR con un singolo building block di base BeeGFS (gestione,
metadati e storage).

20

https://doc.beegfs.io/latest/advanced_topics/striping.html
https://doc.beegfs.io/latest/reference/striping_api.html
https://github.com/hpc/ior

Metadati BeeGFS + building block dello storage

La figura seguente mostra i risultati del test IOR con un singolo metadata BeeGFS + building block dello
storage.

Building block BeeGFS solo per lo storage

La figura seguente mostra i risultati del test IOR con un singolo building block BeeGFS solo per lo storage.

Tre blocchi di base BeeGFS

La figura seguente mostra i risultati del test IOR con tre blocchi di base BeeGFS.

21

Come previsto, la differenza di performance tra il building block di base e i successivi metadati + building block
di storage è trascurabile. Il confronto tra i metadati e il building block di storage e un building block di solo
storage mostra un leggero aumento delle performance di lettura dovuto ai dischi aggiuntivi utilizzati come
target di storage. Tuttavia, non vi è alcuna differenza significativa nelle prestazioni di scrittura. Per ottenere
performance più elevate, è possibile aggiungere più elementi di base insieme per scalare le performance in
modo lineare.

Test della larghezza di banda IOR: Singolo client

Il test della larghezza di banda IOR ha utilizzato OpenMPI per eseguire più processi IOR utilizzando un singolo
server GPU dalle performance elevate per esplorare le performance ottenibili da un singolo client.

Questo test confronta anche il comportamento di rilettura e le performance di BeeGFS quando il client è
configurato per utilizzare la paging-cache del kernel Linux (tuneFileCacheType = native) rispetto al
valore predefinito buffered impostazione.

La modalità di caching nativa utilizza la paging-cache del kernel Linux sul client, consentendo alle operazioni di
rilettura di provenire dalla memoria locale invece di essere ritrasmesse sulla rete.

Il diagramma seguente mostra i risultati del test IOR con tre blocchi di base BeeGFS e un singolo client.

Lo striping di BeeGFS per questi test è stato impostato su una dimensione del blocco di 1 MB
con otto destinazioni per file.

Sebbene le performance di scrittura e lettura iniziale siano più elevate utilizzando la modalità buffer predefinita,
per i carichi di lavoro che rileggono gli stessi dati più volte, la modalità caching nativa offre un significativo

22

miglioramento delle performance. Questo miglioramento delle performance di rilettura è importante per i carichi
di lavoro come il deep learning che rileggono lo stesso set di dati più volte in diverse epoche.

Test delle performance dei metadati

I test delle prestazioni dei metadati hanno utilizzato lo strumento MDTest (incluso come parte di IOR) per
misurare le prestazioni dei metadati di BeeGFS. I test hanno utilizzato OpenMPI per eseguire lavori paralleli su
tutti e dieci i nodi client.

I seguenti parametri sono stati utilizzati per eseguire il test di benchmark con il numero totale di processi
scalati da 10 a 320 in incrementi di 2x e con una dimensione del file di 4k.

mpirun -h 10xnodes –map-by node np $processes mdtest -e 4k -w 4k -i 3 -I

16 -z 3 -b 8 -u

Le performance dei metadati sono state misurate prima con uno e due metadati + building block di storage per
mostrare come le performance si ridimensionano aggiungendo ulteriori building block.

Un solo metadata BeeGFS + building block di storage

Il seguente diagramma mostra i risultati di MDTest con un solo metadata BeeGFS + blocchi di base dello
storage.

Due metadati BeeGFS + blocchi di base per lo storage

Il seguente diagramma mostra i risultati di MDTest con due metadati BeeGFS + blocchi di base dello storage.

23

Validazione funzionale

Nell’ambito della convalida di questa architettura, NetApp ha eseguito diversi test funzionali, tra cui:

• Errore di una singola porta InfiniBand client disattivando la porta dello switch.

• Errore di una porta InfiniBand di un singolo server disattivando la porta dello switch.

• Attivazione dello spegnimento immediato del server mediante BMC.

• Posizionamento corretto di un nodo in standby e failover del servizio su un altro nodo.

• Posizionamento corretto di un nodo di nuovo online e fallimento dei servizi di back nel nodo originale.

• Spegnere uno degli switch InfiniBand utilizzando la PDU. Tutti i test sono stati eseguiti mentre era in corso
il test di stress con sysSessionChecksEnabled: false Set di parametri sui client BeeGFS. Non sono
stati osservati errori o interruzioni dell’i/O.

Si è verificato un problema noto (vedere "Changelog") Quando le connessioni RDMA
client/server BeeGFS vengono interrompute inaspettatamente, a causa della perdita
dell’interfaccia primaria (come definito nella connInterfacesFile) O un server BeeGFS non
funzionante; l’i/o client attivo può bloccarsi per un massimo di dieci minuti prima della ripresa.
Questo problema non si verifica quando i nodi BeeGFS vengono posizionati correttamente in
standby o non sono in standby per la manutenzione pianificata o se TCP è in uso.

Convalida NVIDIA DGX SuperPOD e BasePOD

NetApp ha validato una soluzione di storage per NVDIA DGX A100 SuperPOD utilizzando un file system
BeeGFS simile costituito da tre blocchi di base con i metadati e il profilo di configurazione dello storage
applicato. Il lavoro di qualificazione ha comportato il test della soluzione descritta da questo NVA con venti
server GPU DGX A100 che eseguono una varietà di storage, machine learning e benchmark di deep learning.
Sulla base della convalida stabilita con DGX A100 SuperPOD di NVIDIA, la soluzione BeeGFS su NetApp è
stata approvata per i sistemi DGX SuperPOD H100, H200 e B200. Questa estensione si basa sul rispetto dei
benchmark e dei requisiti di sistema precedentemente stabiliti, validati con NVIDIA DGX A100.

Per ulteriori informazioni, vedere "NVIDIA DGX SuperPOD con NetApp" e. "NVIDIA DGX BasePOD".

24

https://github.com/netappeseries/beegfs/blob/master/CHANGELOG.md
https://www.netapp.com/pdf.html?item=/media/72718-nva-1167-DESIGN.pdf
https://www.nvidia.com/en-us/data-center/dgx-basepod/

Linee guida per il dimensionamento

La soluzione BeeGFS include consigli per il dimensionamento delle performance e della
capacità basati su test di verifica.

L’obiettivo di un’architettura building-block è creare una soluzione semplice da dimensionare aggiungendo più
building block per soddisfare i requisiti di un particolare sistema BeeGFS. Utilizzando le linee guida riportate di
seguito, è possibile stimare la quantità e i tipi di blocchi di base BeeGFS necessari per soddisfare i requisiti del
proprio ambiente.

Tenere presente che queste stime sono le migliori performance del caso. Le applicazioni di benchmarking
sintetico vengono scritte e utilizzate per ottimizzare l’utilizzo dei file system sottostanti in modi diversi dalle
applicazioni reali.

Dimensionamento delle performance

La seguente tabella fornisce il dimensionamento delle performance consigliato.

Profilo di configurazione 1 MIB letture 1MiB scrive

Metadati + storage 62GiBps 21 GiBps

Solo storage 64 GiBps 21 GiBps

Le stime di dimensionamento della capacità dei metadati si basano sulla "regola generale" secondo cui 500
GB di capacità sono sufficienti per circa 150 milioni di file in BeeGFS. Per ulteriori informazioni, consultare la
documentazione di BeeGFS per "Requisiti di sistema".)

L’utilizzo di funzionalità come gli elenchi di controllo degli accessi e il numero di directory e file per directory
influisce anche sulla velocità di utilizzo dello spazio dei metadati. Le stime della capacità dello storage tengono
conto della capacità utilizzabile del disco insieme all’overhead di RAID 6 e XFS.

Dimensionamento della capacità per metadati + building block dello storage

La seguente tabella fornisce il dimensionamento della capacità consigliato per i metadati e gli elementi di base
dello storage.

Dimensioni del disco

(2+2 RAID 1) gruppi di

volumi di metadati

Capacità dei metadati

(numero di file)

Dimensioni del disco

(8+2 RAID 6) gruppi di

volumi di storage

Capacità dello storage

(contenuto del file)

1,92 TB 1,938,577,200 1,92 TB 51,77 TB

3,84 TB 3,880,388,400 3,84 TB 103,55 TB

7,68 TB 8,125,278,000 7,68 TB 216,74 TB

15,3 TB 17,269,854,000 15,3 TB 460,60 TB

Quando si ridimensionano i metadati e gli elementi di base dello storage, è possibile ridurre i
costi utilizzando unità più piccole per i gruppi di volumi di metadati rispetto ai gruppi di volumi di
storage.

25

https://doc.beegfs.io/latest/system_design/system_requirements.html

Dimensionamento della capacità per gli elementi di base solo per lo storage

La seguente tabella fornisce il dimensionamento della capacità a regola d’uso per gli elementi di base solo per
lo storage.

Dimensioni del disco (10+2 RAID 6) gruppi di

volumi di storage

Capacità dello storage (contenuto del file)

1,92 TB 59,89 TB

3,84 TB 119,80 TB

7,68 TB 251,89 TB

15,3 TB 538,55 TB

L’overhead di performance e capacità dell’inclusione del servizio di gestione nel building block di
base (primo) è minimo, a meno che non sia attivato il blocco globale dei file.

Tuning delle performance

La soluzione BeeGFS include consigli per l’ottimizzazione delle performance basati su
test di verifica.

Sebbene BeeGFS fornisca performance ragionevoli, NetApp ha sviluppato una serie di parametri di tuning
consigliati per massimizzare le performance. Questi parametri tengono conto delle funzionalità dei nodi a
blocchi e-Series sottostanti e di eventuali requisiti speciali necessari per eseguire BeeGFS in un’architettura ha
a disco condiviso.

Ottimizzazione delle performance per i file node

I parametri di tuning disponibili che è possibile configurare includono:

1. Impostazioni di sistema in UEFI/BIOS dei nodi di file. per massimizzare le prestazioni, si consiglia di
configurare le impostazioni di sistema sul modello di server utilizzato come nodi di file. È possibile
configurare le impostazioni di sistema quando si impostano i nodi di file utilizzando il programma di
configurazione del sistema (UEFI/BIOS) o le API Redfish fornite dal controller di gestione della baseboard
(BMC).

Le impostazioni di sistema variano a seconda del modello di server utilizzato come nodo di file. Le
impostazioni devono essere configurate manualmente in base al modello di server in uso. Per informazioni
su come configurare le impostazioni di sistema per i nodi di file Lenovo SR665 V3 convalidati, vedere
"Ottimizzare le impostazioni del sistema del nodo di file per le performance" .

2. Impostazioni predefinite per i parametri di configurazione richiesti. i parametri di configurazione
richiesti influiscono sulla modalità di configurazione dei servizi BeeGFS e sulla modalità di formattazione e
montaggio dei volumi e-Series (dispositivi a blocchi) da parte di Pacemaker. Questi parametri di
configurazione richiesti includono:

◦ Parametri di configurazione del servizio BeeGFS

È possibile ignorare le impostazioni predefinite per i parametri di configurazione in base alle esigenze.
Per i parametri che è possibile regolare per carichi di lavoro specifici o casi di utilizzo, vedere la
"Parametri di configurazione del servizio BeeGFS".

26

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L237

◦ I parametri di montaggio e formattazione del volume sono impostati sui valori predefiniti consigliati e
devono essere regolati solo in caso di utilizzo avanzato. I valori predefiniti sono i seguenti:

▪ Ottimizza la formattazione iniziale del volume in base al tipo di destinazione (ad esempio gestione,
metadati o storage), oltre alla configurazione RAID e alle dimensioni dei segmenti del volume
sottostante.

▪ Regolare il modo in cui pacemaker monta ciascun volume per assicurarsi che le modifiche
vengano immediatamente applicate ai nodi a blocchi e-series. In questo modo si evita la perdita di
dati quando i nodi di file non funzionano con scritture attive in corso.

Per i parametri che è possibile regolare per carichi di lavoro specifici o casi di utilizzo, vedere la
"formattazione dei volumi e parametri di configurazione del montaggio".

3. Impostazioni di sistema nel sistema operativo Linux installato sui nodi dei file. È possibile ignorare le
impostazioni predefinite del sistema operativo Linux quando si crea l’inventario Ansible nel passaggio 4 di
"Creare l’inventario Ansible".

Le impostazioni predefinite sono state utilizzate per validare la soluzione BeeGFS su NetApp, ma è
possibile modificarle per adattarle ai carichi di lavoro o ai casi di utilizzo specifici. Di seguito sono riportati
alcuni esempi delle impostazioni di sistema del sistema operativo Linux che è possibile modificare:

◦ Code i/o su dispositivi a blocchi e-Series.

È possibile configurare le code i/o sui dispositivi a blocchi e-Series utilizzati come destinazioni BeeGFS
per:

▪ Regolare l’algoritmo di scheduling in base al tipo di dispositivo (NVMe, HDD e così via).

▪ Aumentare il numero di richieste in sospeso.

▪ Regolare le dimensioni della richiesta.

▪ Ottimizza il comportamento di Read ahead.

◦ Impostazioni della memoria virtuale.

È possibile regolare le impostazioni della memoria virtuale per ottenere performance di streaming
ottimali e costanti.

◦ Impostazioni della CPU.

È possibile regolare il regolatore di frequenza della CPU e altre configurazioni della CPU per ottenere
le massime prestazioni.

◦ Dimensione richiesta di lettura.

È possibile aumentare la dimensione massima della richiesta di lettura per gli HCA NVIDIA.

Ottimizzazione delle performance per i nodi a blocchi

In base ai profili di configurazione applicati a un particolare building block BeeGFS, i gruppi di volumi
configurati sui nodi a blocchi cambiano leggermente. Ad esempio, con un nodo a blocchi EF600 a 24 dischi:

• Per il singolo building block di base, inclusi i servizi di gestione, metadati e storage BeeGFS:

◦ 1 gruppo di volumi RAID 10 2+2 per la gestione di BeeGFS e i servizi di metadati

◦ 2 gruppi di volumi 8+2 RAID 6 per i servizi di storage BeeGFS

27

https://github.com/NetApp/beegfs/blob/master/roles/beegfs_ha_7_4/defaults/main.yml#L279

• Per i metadati BeeGFS + building block di storage:

◦ 1 gruppo di volumi RAID 10 2+2 per i servizi di metadati BeeGFS

◦ 2 gruppi di volumi 8+2 RAID 6 per i servizi di storage BeeGFS

• Solo per lo storage BeeGFS building block:

◦ 2 gruppi di volumi RAID 6 da 10+2 per i servizi di storage BeeGFS

Poiché BeeGFS ha bisogno di una quantità di spazio di storage significativamente inferiore per
la gestione e i metadati rispetto allo storage, un’opzione è quella di utilizzare dischi più piccoli
per i gruppi di volumi RAID 10. I dischi più piccoli devono essere inseriti negli slot più esterni.
Per ulteriori informazioni, consultare "istruzioni per l’implementazione".

Questi sono tutti configurati dall’implementazione basata su Ansible, insieme a diverse altre impostazioni
generalmente consigliate per ottimizzare performance/comportamento, tra cui:

• Regolare le dimensioni del blocco della cache globale a 32 KiB e regolare il vampate della cache basato
sulla domanda al 80%.

• Disattivazione del bilanciamento del carico automatico (per garantire che le assegnazioni dei volumi dei
controller rimvengano come previsto).

• Abilitare il caching in lettura e disabilitare il caching Read-ahead.

• Abilitare il caching in scrittura con mirroring e richiedere il backup della batteria, in modo che le cache
persistano in caso di guasto di un controller di nodi a blocchi.

• Specifica dell’ordine in cui i dischi vengono assegnati ai gruppi di volumi, bilanciando i/o tra i canali di disco
disponibili.

Building block ad alta capacità

Il design della soluzione BeeGFS standard è costruito tenendo in considerazione i carichi
di lavoro dalle performance elevate. I clienti che cercano casi di utilizzo ad alta capacità
devono osservare le variazioni nelle caratteristiche di progettazione e performance qui
delineate.

Configurazione hardware e software

La configurazione hardware e software per l’building block ad alta capacità è standard, ad eccezione del fatto
che i controller EF600 devono essere sostituiti con controller EF300 con un’opzione per il collegamento tra 1 e
7 tray di espansione IOM con 60 unità ciascuno per ciascun array di storage, totale da 2 a 14 vassoi di
espansione per building block.

I clienti che implementano una progettazione di building block ad alta capacità probabilmente utilizzeranno
solo la configurazione di base basata su building block, costituita da servizi di gestione, metadati e storage
BeeGFS per ciascun nodo. Per un’efficienza dei costi, i nodi di storage ad alta capacità devono eseguire il
provisioning dei volumi di metadati sui dischi NVMe nell’enclosure di controller EF300 e fornire i volumi di
storage ai dischi NL-SAS nei vassoi di espansione.

[]

Linee guida per il dimensionamento

Queste linee guida sul dimensionamento presuppongono che gli building block ad alta capacità siano

28

configurati con un gruppo di volumi 2+2 NVMe SSD per i metadati nell’enclosure EF300 di base e 6 gruppi di
volumi 8+2 NL-SAS per tray di espansione IOM per lo storage.

Dimensioni del

disco (HDD con

capacità)

Capacità per BB (1

vassoio)

Capacità per BB (2

tray)

Capacità per BB (3

tray)

Capacità per BB (4

tray)

4 TB 439 TB 878 TB 1317 TB 1756 TB

8 TB 878 TB 1756 TB 2634 TB 3512 TB

10 TB 1097 TB 2195 TB 3292 TB 4390 TB

12 TB 1317 TB 2634 TB 3951 TB 5268 TB

16 TB 1756 TB 3512 TB 5268 TB 7024 TB

18 TB 1975 TB 3951 TB 5927 TB 7902 TB

Implementare la soluzione

Panoramica dell’implementazione

BeeGFS su NetApp può essere implementato su nodi di file e blocchi validati utilizzando
Ansible con il design dei building block BeeGFS di NetApp.

Raccolte e ruoli Ansible

La soluzione BeeGFS su NetApp viene implementata utilizzando Ansible, un noto motore di automazione IT
che automatizza le implementazioni delle applicazioni. Ansible utilizza una serie di file collettivamente noti
come inventario, che modella il file system BeeGFS da implementare.

Ansible consente ad aziende come NetApp di espandere le funzionalità integrate utilizzando le raccolte
disponibili su Ansible Galaxy (vedi "Raccolta NetApp e-Series BeeGFS"). Le raccolte includono moduli che
eseguono funzioni o task specifici (come la creazione di un volume e-Series) e ruoli che possono chiamare più
moduli e altri ruoli. Questo approccio automatizzato riduce il tempo necessario per implementare il file system
BeeGFS e il cluster ha sottostante. Inoltre, semplifica la manutenzione e l’espansione del cluster e del file
system BeeGFS.

Per ulteriori informazioni, vedere "Scopri di più sull’inventario Ansible".

Poiché l’implementazione della soluzione BeeGFS su NetApp richiede numerosi passaggi,
NetApp non supporta l’implementazione manuale della soluzione.

Profili di configurazione per gli elementi di base BeeGFS

Le procedure di implementazione coprono i seguenti profili di configurazione:

• Un building block di base che include servizi di gestione, metadati e storage.

• Un secondo building block che include metadati e servizi di storage.

• Un terzo building block che include solo i servizi di storage.

Questi profili mostrano l’intera gamma di profili di configurazione consigliati per gli elementi di base di NetApp
BeeGFS. Per ogni implementazione, il numero di building block di metadati e storage o di soli servizi di storage

29

https://galaxy.ansible.com/netapp_eseries/santricity

può variare in base ai requisiti di capacità e performance.

Panoramica delle fasi di implementazione

L’implementazione prevede le seguenti attività di alto livello:

Implementazione dell’hardware

1. Assemblare fisicamente ciascun blocco edificio.

2. Hardware per rack e cavi. Per le procedure dettagliate, vedere "Implementare l’hardware".

Implementazione del software

1. "Impostare i nodi di file e blocchi".

◦ Configurare gli IP BMC sui nodi di file

◦ Installare un sistema operativo supportato e configurare la rete di gestione sui nodi di file

◦ Configurare gli IP di gestione sui nodi a blocchi

2. "Impostare un nodo di controllo Ansible".

3. "Ottimizzare le impostazioni di sistema per le prestazioni".

4. "Creare l’inventario Ansible".

5. "Definire l’inventario Ansible per gli elementi di base BeeGFS".

6. "Implementare BeeGFS utilizzando Ansible".

7. "Configurare i client BeeGFS".

Le procedure di implementazione includono diversi esempi in cui il testo deve essere copiato in
un file. Prestare molta attenzione a tutti i commenti in linea contrassegnati dai caratteri "#" o "//"
per qualsiasi cosa che possa o debba essere modificata per una distribuzione specifica. Ad
esempio:

`beegfs_ha_ntp_server_pools: # THIS IS AN EXAMPLE OF A COMMENT!

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"`

Architetture derivate con variazioni nelle raccomandazioni di implementazione:

• "Building Block ad alta capacità"

Scopri di più sull’inventario Ansible

Prima di iniziare un’implementazione, familiarizza con il modo in cui Ansible è configurato
e utilizzato per implementare la soluzione BeeGFS su NetApp.

L’inventario Ansible è una struttura di directory in cui sono elencati i nodi di file e blocchi per il file system
BeeGFS da implementare. Include host, gruppi e variabili che descrivono il file system BeeGFS desiderato.
L’inventario Ansible deve essere memorizzato nel nodo di controllo Ansible, ossia su qualsiasi macchina con
accesso ai nodi di file e blocchi utilizzati per eseguire il playbook Ansible. Gli inventari dei campioni possono
essere scaricati da "NetApp e-Series BeeGFS GitHub" .

30

https://github.com/netappeseries/beegfs/tree/master/getting_started/

Moduli e ruoli Ansible

Per applicare la configurazione descritta dall’inventario Ansible, utilizza i vari moduli e ruoli Ansible forniti nella
raccolta Ansible NetApp e-Series (disponibile dal) che implementano la soluzione end-to- "NetApp e-Series
BeeGFS GitHub"end.

Ogni ruolo nella raccolta NetApp e-Series Ansible è un’implementazione end-to-end completa della soluzione
BeeGFS su NetApp. I ruoli utilizzano le raccolte NetApp e-Series SANtricity, host e BeeGFS che consentono di
configurare il file system BeeGFS con ha (alta disponibilità). È quindi possibile eseguire il provisioning e il
mapping dello storage, assicurandosi che lo storage del cluster sia pronto per l’uso.

Sebbene i ruoli siano corredati da una documentazione approfondita, le procedure di implementazione
descrivono come utilizzare il ruolo per implementare un’architettura verificata di NetApp utilizzando la
progettazione di blocchi di costruzione BeeGFS di seconda generazione.

Anche se le fasi di implementazione tentano di fornire dettagli sufficienti per evitare che
l’esperienza precedente con Ansible sia un prerequisito, si dovrebbe avere una certa familiarità
con Ansible e la terminologia correlata.

Layout dell’inventario per un cluster BeeGFS ha

Definire un cluster BeeGFS ha utilizzando la struttura di inventario Ansible.

Chiunque abbia precedente esperienza di Ansible deve essere consapevole del fatto che il ruolo ha BeeGFS
implementa un metodo personalizzato per scoprire quali variabili (o fatti) si applicano a ciascun host. Questo
design semplifica la strutturazione dell’inventario Ansible per descrivere le risorse che possono essere
eseguite su più server.

Un inventario Ansible generalmente è costituito dai file in host_vars e group_vars, insieme a un
inventory.yml file che assegna gli host a gruppi specifici (e potenzialmente gruppi ad altri gruppi).

Non creare alcun file con il contenuto di questa sottosezione, che è da intendersi solo come
esempio.

Sebbene questa configurazione sia predeterminata in base al profilo di configurazione, è necessario avere una
comprensione generale del modo in cui tutto viene presentato come inventario Ansible, come segue:

31

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4
https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp01:

 netapp02:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

 meta_01: # Group representing a metadata service with ID 01.

 hosts:

 beegfs_01: # This service is preferred on the first file

node.

 beegfs_02: # And can failover to the second file node.

 meta_02: # Group representing a metadata service with ID 02.

 hosts:

 beegfs_02: # This service is preferred on the second file

node.

 beegfs_01: # And can failover to the first file node.

Per ogni servizio, viene creato un file aggiuntivo in group_vars descrizione della configurazione:

32

meta_01 - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: 8015

 connMetaPortUDP: 8015

 tuneBindToNumaZone: 0

floating_ips:

 - i1b: <IP>/<SUBNET_MASK>

 - i2b: <IP>/<SUBNET_MASK>

Type of BeeGFS service the HA resource group will manage.

beegfs_service: metadata # Choices: management, metadata, storage.

What block node should be used to create a volume for this service:

beegfs_targets:

 netapp01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25

 owning_controller: A

Questo layout consente di definire la configurazione del servizio, della rete e dello storage BeeGFS per
ciascuna risorsa in un’unica posizione. Dietro le quinte, il ruolo BeeGFS aggrega la configurazione necessaria
per ogni nodo di file e blocchi in base a questa struttura di inventario.

L’ID del nodo BeeGFS numerico e stringa per ciascun servizio viene configurato
automaticamente in base al nome del gruppo. Pertanto, oltre al requisito generale Ansible per
l’univoci nome di gruppo, i gruppi che rappresentano un servizio BeeGFS devono terminare con
un numero univoco per il tipo di servizio BeeGFS rappresentato dal gruppo. Ad esempio, sono
consentiti meta_01 e stor_01, ma i metadati_01 e meta_01 non lo sono.

Esaminare le Best practice

Seguire le linee guida delle Best practice per l’implementazione della soluzione BeeGFS
su NetApp.

Convenzioni standard

Quando si assembla e crea fisicamente il file di inventario Ansible, attenersi alle seguenti convenzioni standard
(per ulteriori informazioni, vedere "Creare l’inventario Ansible").

• I nomi host dei nodi di file sono numerati in sequenza (h01-HN) con numeri inferiori nella parte superiore
del rack e numeri superiori nella parte inferiore.

Ad esempio, la convenzione di denominazione [location][row][rack]hN è simile a: beegfs_01.

33

• Ciascun nodo a blocchi è composto da due controller di storage, ciascuno con il proprio nome host.

Il nome di un array di storage viene utilizzato per fare riferimento all’intero sistema di storage a blocchi
come parte di un inventario Ansible. I nomi degli array di storage devono essere numerati in sequenza
(a01 - AN) e i nomi host dei singoli controller derivano da tale convenzione di naming.

Ad esempio, un nodo di blocco denominato ictad22a01 in genere può avere nomi host configurati per
ogni controller come e , ma in un inventario Ansible come ictad22a01-a ictad22a01-b netapp_01.

• I nodi di file e blocchi all’interno dello stesso building block condividono lo stesso schema di numerazione e
sono adiacenti l’uno all’altro nel rack con entrambi i nodi di file in cima ed entrambi i nodi di blocco
direttamente sotto di essi.

Ad esempio, nel primo building block, i nodi di file h01 e h02 sono entrambi collegati direttamente ai nodi di
blocco a01 e a02. Dall’alto verso il basso, i nomi host sono h01, h02, a01 e a02.

• I building block vengono installati in ordine sequenziale in base ai nomi host, in modo che i nomi host con
numero inferiore si trovino nella parte superiore del rack e i nomi host con numero superiore nella parte
inferiore.

L’obiettivo è ridurre al minimo la lunghezza del cavo che va verso la parte superiore degli switch rack e
definire una pratica di implementazione standard per semplificare la risoluzione dei problemi. Per i
datacenter in cui ciò non è consentito a causa di problemi relativi alla stabilità del rack, è certamente
consentito l’inverso, popolando il rack dal basso verso l’alto.

Configurazione della rete storage InfiniBand

Metà delle porte InfiniBand su ciascun nodo di file vengono utilizzate per connettersi direttamente ai nodi di
blocco. L’altra metà è collegata agli switch InfiniBand e viene utilizzata per la connettività client-server
BeeGFS. Quando si determinano le dimensioni delle subnet IPoIB utilizzate per client e server BeeGFS, è
necessario considerare la crescita prevista del cluster di calcolo/GPU e del file system BeeGFS. Se si deve
discostarsi dagli intervalli IP consigliati, tenere presente che ogni connessione diretta in un singolo building
block ha una subnet univoca e non esiste alcuna sovrapposizione con le subnet utilizzate per la connettività
client-server.

Connessioni dirette

I nodi di file e blocchi all’interno di ciascun building block utilizzano sempre gli IP nella tabella seguente per le
loro connessioni dirette.

Questo schema di indirizzamento rispetta la seguente regola: Il terzo ottetto è sempre dispari o
pari, a seconda che il nodo del file sia dispari o pari.

Nodo del file Porta IB Indirizzo IP Nodo del

blocco

Porta IB IP fisico IP virtuale

Dispari (h1) i1a 192.168.1.10 Dispari (c1) 2a 192.168.1.100 192.168.1.101

Dispari (h1) i2a 192.168.3.10 Dispari (c1) 2a 192.168.3.100 192.168.3.101

Dispari (h1) i3a 192.168.5.10 Pari (c2) 2a 192.168.5.100 192.168.5.101

Dispari (h1) i4a 192.168.7.10 Pari (c2) 2a 192.168.7.100 192.168.7.101

Pari (h2) i1a 192.168.2.10 Dispari (c1) 2b 192.168.2.100 192.168.2.101

34

Nodo del file Porta IB Indirizzo IP Nodo del

blocco

Porta IB IP fisico IP virtuale

Pari (h2) i2a 192.168.4.10 Dispari (c1) 2b 192.168.4.100 192.168.4.101

Pari (h2) i3a 192.168.6.10 Pari (c2) 2b 192.168.6.100 192.168.6.101

Pari (h2) i4a 192.168.8.10 Pari (c2) 2b 192.168.8.100 192.168.8.101

Schemi di indirizzamento IPoIB client-server BeeGFS

Ogni nodo di file esegue più servizi server BeeGFS (gestione, metadati o storage). Per consentire a ciascun
servizio di eseguire il failover in modo indipendente sull’altro nodo di file, ciascuno è configurato con indirizzi IP
univoci che possono fluttuare tra entrambi i nodi (a volte definiti interfaccia logica o LIF).

Sebbene non sia obbligatorio, questa implementazione presuppone che i seguenti intervalli di subnet IPoIB
siano in uso per queste connessioni e definisce uno schema di indirizzamento standard che applica le seguenti
regole:

• Il secondo ottetto è sempre dispari o pari, a seconda che la porta InfiniBand del nodo del file sia pari o
dispari.

• Gli IP del cluster BeeGFS sono sempre xxx. 127.100.yyy oppure xxx.128.100.yyy.

Oltre all’interfaccia utilizzata per la gestione del sistema operativo in-band, Corosync può
utilizzare interfacce aggiuntive per la sincronizzazione e il battito cardiaco del cluster. In questo
modo, la perdita di una singola interfaccia non riduce l’intero cluster.

• Il servizio BeeGFS Management è sempre attivo xxx.yyy.101.0 oppure xxx.yyy.102.0.

• I servizi di metadati BeeGFS sono sempre attivi xxx.yyy.101.zzz oppure xxx.yyy.102.zzz.

• I servizi di archiviazione BeeGFS sono sempre a xxx.yyy.103.zzz o xxx.yyy.104.zzz.

• Indirizzi compresi nell’intervallo 100.xxx.1.1 attraverso 100.xxx.99.255 sono riservati ai clienti.

Schema di indirizzamento a singola subnet IPoIB

Questa guida alla distribuzione utilizza un unico schema di subnet, dati i vantaggi elencati nella "architettura
del software".

Subnet: 100.127.0.0/16

La seguente tabella fornisce l’intervallo per una singola subnet: 100.127.0.0/16.

Scopo Porta InfiniBand Indirizzo IP o intervallo

IP cluster BeeGFS i1b o i4b 100.127.100.1 - 100.127.100.255

Gestione di BeeGFS i1b 100.127.101.0

i2b 100.127.102.0

Metadati BeeGFS i1b o i3b 100.127.101.1 - 100.127.101.255

i2b o i4b 100.127.102.1 - 100.127.102.255

35

Scopo Porta InfiniBand Indirizzo IP o intervallo

Storage BeeGFS i1b o i3b 100.127.103.1 - 100.127.103.255

i2b o i4b 100.127.104.1 - 100.127.104.255

Client BeeGFS (varia in base al client) 100.127.1.1 - 100.127.99.255

Schema di indirizzamento a due subnet IPoIB

Uno schema di indirizzamento a due subnet non è più consigliato, ma può ancora essere implementato. Fare
riferimento alle tabelle seguenti per uno schema di due subnet consigliato.

Subnet A: 100.127.0.0/16

La seguente tabella fornisce l’intervallo per la subnet A: 100.127.0.0/16.

Scopo Porta InfiniBand Indirizzo IP o intervallo

IP cluster BeeGFS i1b 100.127.100.1 - 100.127.100.255

Gestione di BeeGFS i1b 100.127.101.0

Metadati BeeGFS i1b o i3b 100.127.101.1 - 100.127.101.255

Storage BeeGFS i1b o i3b 100.127.103.1 - 100.127.103.255

Client BeeGFS (varia in base al client) 100.127.1.1 - 100.127.99.255

Subnet B: 100.128.0.0/16

La seguente tabella fornisce l’intervallo per la subnet B: 100.128.0.0/16.

Scopo Porta InfiniBand Indirizzo IP o intervallo

IP cluster BeeGFS i4b 100.128.100.1 - 100.128.100.255

Gestione di BeeGFS i2b 100.128.102.0

Metadati BeeGFS i2b o i4b 100.128.102.1 - 100.128.102.255

Storage BeeGFS i2b o i4b 100.128.104.1 - 100.128.104.255

Client BeeGFS (varia in base al client) 100.128.1.1 - 100.128.99.255

Non tutti gli IP compresi negli intervalli sopra indicati vengono utilizzati in questa architettura
verificata di NetApp. Dimostrano come gli indirizzi IP possono essere pre-allocati per consentire
una facile espansione del file system utilizzando uno schema di indirizzamento IP coerente. In
questo schema, i nodi di file BeeGFS e gli ID di servizio corrispondono al quarto ottetto di un
intervallo ben noto di IP. Il file system potrebbe certamente scalare oltre 255 nodi o servizi, se
necessario.

Implementare l’hardware

Ciascun building block è costituito da due nodi di file x86 validati collegati direttamente a
due nodi a blocchi utilizzando cavi HDR (200 GB) InfiniBand.

36

Per stabilire il quorum nel cluster di failover sono necessari almeno due building block. Un
cluster a due nodi presenta limitazioni che potrebbero impedire il corretto funzionamento del
failover. È possibile configurare un cluster a due nodi incorporando un terzo dispositivo come
tiebreaker; tuttavia, questa documentazione non lo descrive.

I seguenti passaggi sono identici per ogni building block nel cluster, indipendentemente dal fatto che venga
utilizzato per eseguire sia metadati BeeGFS che servizi di storage o solo servizi di storage, a meno che non
sia diversamente specificato.

Fasi

1. Impostare ciascun nodo di file BeeGFS con quattro host Channel Adapter (HCA) utilizzando i modelli
specificati nella "Requisiti tecnici". Inserire gli HCA negli slot PCIe del nodo file in base alle seguenti
specifiche:

◦ Lenovo ThinkSystem SR665 V3 Server: utilizza gli slot PCIe 1, 2, 4 e 5.

◦ Lenovo ThinkSystem SR665 Server: utilizza gli slot PCIe 2, 3, 5 e 6.

2. Configurare ciascun nodo a blocchi BeeGFS con una scheda HIC (host Interface Card) da 200 GB a
doppia porta e installare l’HIC in ciascuno dei due controller storage.

Rack dei blocchi in modo che i due nodi di file BeeGFS si trovino sopra i nodi di blocco BeeGFS. La figura
seguente mostra la configurazione hardware corretta per il building block BeeGFS utilizzando i server
Lenovo ThinkSystem SR665 V3 come nodi file (vista posteriore).

37

La configurazione dell’alimentatore per i casi di utilizzo in produzione dovrebbe in genere
utilizzare PSU ridondanti.

3. Se necessario, installare i dischi in ciascuno dei nodi a blocchi BeeGFS.

a. Se il building block verrà utilizzato per eseguire i metadati e i servizi di storage BeeGFS e le unità più
piccole verranno utilizzate per i volumi di metadati, verificare che siano popolate negli slot più esterni,
come mostrato nella figura seguente.

b. Per tutte le configurazioni di building block, se un enclosure di dischi non è completamente popolato,
assicurarsi che negli slot 0–11 e 12–23 venga inserito un numero uguale di dischi per ottenere
prestazioni ottimali.

4. Collegare i nodi di blocco e di file utilizzando "1m cavi in rame con collegamento diretto HDR 200GB
InfiniBand", in modo che corrispondano alla topologia mostrata nella figura seguente.

38

I nodi di più building block non sono mai connessi direttamente. Ogni building block deve
essere trattato come un’unità standalone e tutte le comunicazioni tra building block
avvengono tramite switch di rete.

5. Collegare le restanti porte InfiniBand sul file node allo switch InfiniBand della rete di storage tramite lo
specifico switch InfiniBand "2m cavi InfiniBand" storage.

Quando si utilizzano cavi splitter per collegare lo switch di archiviazione ai nodi file, un cavo deve diramarsi
dallo switch e connettersi alle porte indicate in verde chiaro. Un altro cavo splitter deve diramarsi dallo
switch e collegarsi alle porte indicate in verde scuro.

Inoltre, per le reti di storage con switch ridondanti, le porte indicate in verde chiaro devono essere collegate
a uno switch, mentre le porte in verde scuro devono essere collegate a un altro switch.

39

6. Se necessario, assemblare gli elementi di base aggiuntivi seguendo le stesse linee guida per il cablaggio.

Il numero totale di building block implementabili in un singolo rack dipende
dall’alimentazione e dal raffreddamento disponibili in ogni sito.

Implementare il software

Impostare nodi di file e nodi di blocco

Sebbene la maggior parte delle attività di configurazione del software sia automatizzata
utilizzando le raccolte Ansible fornite da NetApp, è necessario configurare il networking
sul BMC (Baseboard Management Controller) di ciascun server e configurare la porta di
gestione su ciascun controller.

Configurare i nodi di file

1. Configurare il networking sul BMC (Baseboard Management Controller) di ciascun server.

Per informazioni su come configurare la rete per i nodi file Lenovo SR665 V3 convalidati, vedere la
"Documentazione di Lenovo ThinkSystem".

Un BMC (Baseboard Management Controller), a volte chiamato Service Processor, è il
nome generico della funzionalità di gestione out-of-band integrata in varie piattaforme server
che possono fornire accesso remoto anche se il sistema operativo non è installato o
accessibile. I vendor in genere commercializzano questa funzionalità con un proprio
marchio. Ad esempio, su Lenovo SR665, il BMC viene definito Lenovo XClarity Controller

(XCC).

2. Configurare le impostazioni di sistema per ottenere le massime prestazioni.

È possibile configurare le impostazioni di sistema utilizzando il setup UEFI (precedentemente noto come
BIOS) o le API Redfish fornite da molti BMC. Le impostazioni di sistema variano in base al modello di
server utilizzato come nodo di file.

Per informazioni su come configurare le impostazioni di sistema per i nodi di file Lenovo SR665 V3
convalidati, vedere "Ottimizzare le impostazioni di sistema per le prestazioni" .

40

https://pubs.lenovo.com/sr665-v3/

3. Installa Red Hat Enterprise Linux (RHEL) 9.4 e configura il nome host e la porta di rete utilizzati per gestire
il sistema operativo, inclusa la connettività SSH dal nodo di controllo Ansible.

Non configurare gli IP su nessuna delle porte InfiniBand in questo momento.

Sebbene non sia strettamente necessario, le sezioni successive presumono che i nomi host
siano numerati in sequenza (ad esempio h1-HN) e si riferiscono alle attività che devono
essere completate su host con numero pari o dispari.

4. Utilizzare Red Hat Subscription Manager per registrare e sottoscrivere il sistema per consentire
l’installazione dei pacchetti richiesti dai repository ufficiali di Red Hat e per limitare gli aggiornamenti alla
versione supportata di Red Hat: subscription-manager release --set=9.4 . Per istruzioni, vedere
"Come registrarsi e sottoscrivere un sistema RHEL" e "Come limitare gli aggiornamenti".

5. Abilitare il repository Red Hat contenente i pacchetti richiesti per l’alta disponibilità.

subscription-manager repo-override --repo=rhel-9-for-x86_64

-highavailability-rpms --add=enabled:1

6. Aggiornare tutto il firmware HCA alla versione consigliata in "Requisiti tecnologici" uso della "Aggiornare il
firmware dell’adattatore del nodo del file"guida.

Impostare i nodi a blocchi

Configurare i nodi a blocchi EF600 configurando la porta di gestione su ciascun controller.

1. Configurare la porta di gestione su ciascun controller EF600.

Per istruzioni sulla configurazione delle porte, consultare la "Centro di documentazione e-Series".

2. Facoltativamente, impostare il nome dell’array di storage per ciascun sistema.

L’impostazione di un nome può semplificare il riferimento a ciascun sistema nelle sezioni successive. Per
istruzioni sull’impostazione del nome della matrice, vedere "Centro di documentazione e-Series" .

Sebbene non sia strettamente necessario, gli argomenti successivi presumono che i nomi degli
array di storage siano numerati in sequenza (ad esempio c1 - CN) e fanno riferimento ai
passaggi da completare sui sistemi con numero pari o dispari.

Ottimizzare le impostazioni del sistema del nodo di file per le performance

Per massimizzare le performance, si consiglia di configurare le impostazioni di sistema
sul modello di server utilizzato come nodi di file.

Le impostazioni di sistema variano a seconda del modello di server utilizzato come nodo di file. In questo
argomento viene descritto come configurare le impostazioni di sistema per i nodi file del server Lenovo
ThinkSystem SR665 validati.

Utilizzare l’interfaccia UEFI per regolare le impostazioni di sistema

Il firmware di sistema del server Lenovo SR665 V3 contiene numerosi parametri di ottimizzazione che possono
essere impostati tramite l’interfaccia UEFI. Questi parametri di tuning possono influire su tutti gli aspetti del

41

https://access.redhat.com/solutions/253273
https://access.redhat.com/solutions/2761031
https://docs.netapp.com/it-it/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/it-it/beegfs/second-gen/..administer/clusters-update-hca-firmware.html
https://docs.netapp.com/us-en/e-series/install-hw-ef600/complete-setup-task.html#step-2-connect-and-configure-the-management-connection
https://docs.netapp.com/us-en/e-series-santricity/sm-interface/setup-wizard-overview.html#first-time-setup

funzionamento del server e sulle prestazioni del server.

In UEFI Setup > System Settings (Configurazione UEFI > Impostazioni di sistema), regolare le seguenti
impostazioni di sistema:

Menu Operating Mode (modalità operativa)

Impostazioni di sistema Cambia in

Modalità operativa Personalizzato

CTDP Manuale

Manuale di cTDP 350

Limite di potenza del pacchetto Manuale

Modalità di efficienza Disattiva

Global-Cstate-Control Disattiva

P-states SOC P0

C-States DF Disattiva

Stato P. Disattiva

Abilitazione spegnimento memoria Disattiva

Nodi NUMA per socket NPS1

Menu Devices and i/O.

Impostazioni di sistema Cambia in

IOMMU Disattiva

Menu di alimentazione

Impostazioni di sistema Cambia in

PCIe Power Brake Disattiva

Menu processori

42

Impostazioni di sistema Cambia in

Controllo C-state globale Disattiva

C-States DF Disattiva

Modalità SMT Disattiva

CPPC Disattiva

Utilizzare l’API Redfish per regolare le impostazioni di sistema

Oltre a utilizzare la configurazione UEFI, è possibile utilizzare l’API Redfish per modificare le impostazioni di
sistema.

curl --request PATCH \

 --url https://<BMC_IP_ADDRESS>/redfish/v1/Systems/1/Bios/Pending \

 --user <BMC_USER>:<BMC- PASSWORD> \

 --header 'Content-Type: application/json' \

 --data '{

"Attributes": {

"OperatingModes_ChooseOperatingMode": "CustomMode",

"Processors_cTDP": "Manual",

"Processors_PackagePowerLimit": "Manual",

"Power_EfficiencyMode": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_SOCP_states": "P0",

"Processors_DFC_States": "Disable",

"Processors_P_State": "Disable",

"Memory_MemoryPowerDownEnable": "Disable",

"DevicesandIOPorts_IOMMU": "Disable",

"Power_PCIePowerBrake": "Disable",

"Processors_GlobalC_stateControl": "Disable",

"Processors_DFC_States": "Disable",

"Processors_SMTMode": "Disable",

"Processors_CPPC": "Disable",

"Memory_NUMANodesperSocket":"NPS1"

}

}

'

Per informazioni dettagliate sullo schema Redfish, vedere "Sito Web DMTF".

Impostare un nodo di controllo Ansible

Per configurare un nodo di controllo Ansible, è necessario designare una macchina

43

https://redfish.dmtf.org/redfish/schema_index

virtuale o fisica con accesso alla rete a tutti i nodi di file e blocchi implementati per la
soluzione BeeGFS su NetApp.

Per un elenco delle versioni dei pacchetti consigliate, consultare la"Requisiti tecnici". I seguenti passaggi sono
stati testati su Ubuntu 22,04. Per i passaggi specifici della distribuzione Linux preferita, vedere
"Documentazione Ansible".

1. Dal nodo di controllo Ansible, installare i seguenti pacchetti Python e Python Virtual Environment.

sudo apt-get install python3 python3-pip python3-setuptools python3.10-

venv

2. Crea un ambiente virtuale Python.

python3 -m venv ~/pyenv

3. Attivare l’ambiente virtuale.

source ~/pyenv/bin/activate

4. Installare i pacchetti Python richiesti nell’ambiente virtuale attivato.

pip install ansible netaddr cryptography passlib

5. Installare la raccolta BeeGFS utilizzando Ansible Galaxy.

ansible-galaxy collection install netapp_eseries.beegfs

6. Verificare che le versioni installate di Ansible, Python e della raccolta BeeGFS corrispondano a "Requisiti
tecnici".

ansible --version

ansible-galaxy collection list netapp_eseries.beegfs

7. Configurare SSH senza password per consentire a Ansible di accedere ai nodi di file BeeGFS remoti dal
nodo di controllo Ansible.

a. Sul nodo di controllo Ansible, se necessario, generare una coppia di chiavi pubbliche.

ssh-keygen

b. Impostare SSH senza password per ciascuno dei nodi di file.

44

beegfs-technology-requirements.html#ansible-control-node-requirements
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

ssh-copy-id <ip_or_hostname>

Non impostare * SSH senza password sui nodi di blocco. Questo non è supportato né richiesto.

Creare l’inventario Ansible

Per definire la configurazione per i nodi di file e blocchi, creare un inventario Ansible che
rappresenti il file system BeeGFS che si desidera implementare. L’inventario include
host, gruppi e variabili che descrivono il file system BeeGFS desiderato.

Fase 1: Definire la configurazione per tutti gli elementi di base

Definire la configurazione che si applica a tutti gli elementi di base, indipendentemente dal profilo di
configurazione che è possibile applicare singolarmente.

Prima di iniziare

• Scegliere uno schema di indirizzi di sottorete per la distribuzione. A causa dei vantaggi elencati nella
"architettura del software", si consiglia di utilizzare uno schema di indirizzamento a subnet singola.

Fasi

1. Nel nodo di controllo Ansible, identificare una directory che si desidera utilizzare per memorizzare i file
dell’inventario Ansible e del playbook.

Se non diversamente specificato, tutti i file e le directory creati in questa fase e nelle fasi successive
vengono creati in relazione a questa directory.

2. Creare le seguenti sottodirectory:

host_vars

group_vars

packages

3. Creare una sottodirectory per le password del cluster e proteggere il file crittografandolo con Ansible Vault
(vedere "Crittografia del contenuto con Ansible Vault"):

a. Creare la sottodirectory group_vars/all.

b. Nella group_vars/all directory , creare un file di password denominato passwords.yml.

c. Compilare il passwords.yml file con i seguenti campi, sostituendo tutti i parametri nome utente e
password in base alla configurazione:

45

https://docs.ansible.com/ansible/latest/user_guide/vault.html

Credentials for storage system's admin password

eseries_password: <PASSWORD>

Credentials for BeeGFS file nodes

ssh_ha_user: <USERNAME>

ssh_ha_become_pass: <PASSWORD>

Credentials for HA cluster

ha_cluster_username: <USERNAME>

ha_cluster_password: <PASSWORD>

ha_cluster_password_sha512_salt: randomSalt

Credentials for fencing agents

OPTION 1: If using APC Power Distribution Units (PDUs) for fencing:

Credentials for APC PDUs.

apc_username: <USERNAME>

apc_password: <PASSWORD>

OPTION 2: If using the Redfish APIs provided by the Lenovo XCC (and

other BMCs) for fencing:

Credentials for XCC/BMC of BeeGFS file nodes

bmc_username: <USERNAME>

bmc_password: <PASSWORD>

d. Eseguire ansible-vault encrypt passwords.yml e impostare una password del vault quando
richiesto.

Fase 2: Definire la configurazione per i singoli nodi di file e blocchi

Definire la configurazione che si applica ai singoli nodi di file e ai singoli nodi building block.

1. Sotto host_vars/, Creare un file per ogni nodo di file BeeGFS denominato <HOSTNAME>.yml Con il
seguente contenuto, prestare particolare attenzione alle note relative al contenuto da compilare per gli IP
del cluster BeeGFS e i nomi host che terminano con numeri dispari e pari.

Inizialmente, i nomi dell’interfaccia del nodo del file corrispondono a quelli elencati qui (ad esempio ib0 o
ibs1f0). Questi nomi personalizzati sono configurati in Fase 4: Definire la configurazione da applicare a tutti
i nodi di file.

46

ansible_host: “<MANAGEMENT_IP>”

eseries_ipoib_interfaces: # Used to configure BeeGFS cluster IP

addresses.

 - name: i1b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

 - name: i4b

 address: 100.127.100. <NUMBER_FROM_HOSTNAME>/16

beegfs_ha_cluster_node_ips:

 - <MANAGEMENT_IP>

 - <i1b_BEEGFS_CLUSTER_IP>

 - <i4b_BEEGFS_CLUSTER_IP>

NVMe over InfiniBand storage communication protocol information

For odd numbered file nodes (i.e., h01, h03, ..):

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.1.10/24

 configure: true

 - name: i2a

 address: 192.168.3.10/24

 configure: true

 - name: i3a

 address: 192.168.5.10/24

 configure: true

 - name: i4a

 address: 192.168.7.10/24

 configure: true

For even numbered file nodes (i.e., h02, h04, ..):

NVMe over InfiniBand storage communication protocol information

eseries_nvme_ib_interfaces:

 - name: i1a

 address: 192.168.2.10/24

 configure: true

 - name: i2a

 address: 192.168.4.10/24

 configure: true

 - name: i3a

 address: 192.168.6.10/24

 configure: true

 - name: i4a

 address: 192.168.8.10/24

 configure: true

47

Se il cluster BeeGFS è già stato implementato, è necessario arrestare il cluster prima di
aggiungere o modificare gli indirizzi IP configurati staticamente, inclusi gli IP del cluster e gli
IP utilizzati per NVMe/IB. Ciò è necessario per garantire che queste modifiche abbiano
effetto corretto e non interrompano le operazioni del cluster.

2. Sotto host_vars/, Creare un file per ogni nodo del blocco BeeGFS denominato <HOSTNAME>.yml e
compilarlo con il seguente contenuto.

Prestare particolare attenzione alle note relative ai contenuti da inserire nei nomi degli array di storage che
terminano con numeri pari o dispari.

Per ogni nodo del blocco, creare un file e specificare <MANAGEMENT_IP> Per uno dei due controller (di
solito A).

eseries_system_name: <STORAGE_ARRAY_NAME>

eseries_system_api_url: https://<MANAGEMENT_IP>:8443/devmgr/v2/

eseries_initiator_protocol: nvme_ib

For odd numbered block nodes (i.e., a01, a03, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.1.101

 - 192.168.2.101

 - 192.168.1.100

 - 192.168.2.100

 controller_b:

 - 192.168.3.101

 - 192.168.4.101

 - 192.168.3.100

 - 192.168.4.100

For even numbered block nodes (i.e., a02, a04, ..):

eseries_controller_nvme_ib_port:

 controller_a:

 - 192.168.5.101

 - 192.168.6.101

 - 192.168.5.100

 - 192.168.6.100

 controller_b:

 - 192.168.7.101

 - 192.168.8.101

 - 192.168.7.100

 - 192.168.8.100

Fase 3: Definire la configurazione da applicare a tutti i nodi di file e blocchi

È possibile definire la configurazione comune a un gruppo di host in group_vars in un nome di file che
corrisponde al gruppo. In questo modo si evita di ripetere una configurazione condivisa in più posizioni.

48

A proposito di questa attività

Gli host possono trovarsi in più di un gruppo e, in fase di esecuzione, Ansible sceglie le variabili da applicare a
un determinato host in base alle regole di precedenza delle variabili. Per ulteriori informazioni su queste
regole, consultare la documentazione Ansible per "Utilizzo delle variabili".)

Le assegnazioni host-to-group sono definite nel file di inventario Ansible effettivo, creato verso la fine di questa
procedura.

Fase

In Ansible, qualsiasi configurazione che si desidera applicare a tutti gli host può essere definita in un gruppo
chiamato All. Creare il file group_vars/all.yml con i seguenti contenuti:

ansible_python_interpreter: /usr/bin/python3

beegfs_ha_ntp_server_pools: # Modify the NTP server addressess if

desired.

 - "pool 0.pool.ntp.org iburst maxsources 3"

 - "pool 1.pool.ntp.org iburst maxsources 3"

Fase 4: Definire la configurazione da applicare a tutti i nodi di file

La configurazione condivisa per i nodi di file viene definita in un gruppo chiamato ha_cluster. La procedura
descritta in questa sezione illustra la configurazione da includere in group_vars/ha_cluster.yml file.

Fasi

1. Nella parte superiore del file, definire le impostazioni predefinite, inclusa la password da utilizzare come
sudo utente sui nodi del file.

ha_cluster Ansible group inventory file.

Place all default/common variables for BeeGFS HA cluster resources

below.

Cluster node defaults

ansible_ssh_user: {{ ssh_ha_user }}

ansible_become_password: {{ ssh_ha_become_pass }}

eseries_ipoib_default_hook_templates:

 - 99-multihoming.j2 # This is required for single subnet

deployments, where static IPs containing multiple IB ports are in the

same IPoIB subnet. i.e: cluster IPs, multirail, single subnet, etc.

If the following options are specified, then Ansible will

automatically reboot nodes when necessary for changes to take effect:

eseries_common_allow_host_reboot: true

eseries_common_reboot_test_command: "! systemctl status

eseries_nvme_ib.service || systemctl --state=exited | grep

eseries_nvme_ib.service"

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

49

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

Se il ansible_ssh_user è già, è root possibile omettere ansible_become_password
e specificare l' `--ask-become-pass`opzione quando si esegue il playbook.

2. Facoltativamente, configurare un nome per il cluster ad alta disponibilità (ha) e specificare un utente per la
comunicazione intra-cluster.

Se si sta modificando lo schema di indirizzamento IP privato, è necessario aggiornare anche il valore
predefinito beegfs_ha_mgmtd_floating_ip. Questo valore deve corrispondere a quello configurato in
seguito per il gruppo di risorse BeeGFS Management.

Specificare una o più e-mail che devono ricevere avvisi per gli eventi del cluster utilizzando
beegfs_ha_alert_email_list.

50

Cluster information

beegfs_ha_firewall_configure: True

eseries_beegfs_ha_disable_selinux: True

eseries_selinux_state: disabled

The following variables should be adjusted depending on the desired

configuration:

beegfs_ha_cluster_name: hacluster # BeeGFS HA cluster

name.

beegfs_ha_cluster_username: "{{ ha_cluster_username }}" # Parameter for

BeeGFS HA cluster username in the passwords file.

beegfs_ha_cluster_password: "{{ ha_cluster_password }}" # Parameter for

BeeGFS HA cluster username's password in the passwords file.

beegfs_ha_cluster_password_sha512_salt: "{{

ha_cluster_password_sha512_salt }}" # Parameter for BeeGFS HA cluster

username's password salt in the passwords file.

beegfs_ha_mgmtd_floating_ip: 100.127.101.0 # BeeGFS management

service IP address.

Email Alerts Configuration

beegfs_ha_enable_alerts: True

beegfs_ha_alert_email_list: ["email@example.com"] # E-mail recipient

list for notifications when BeeGFS HA resources change or fail. Often a

distribution list for the team responsible for managing the cluster.

beegfs_ha_alert_conf_ha_group_options:

 mydomain: “example.com”

The mydomain parameter specifies the local internet domain name. This

is optional when the cluster nodes have fully qualified hostnames (i.e.

host.example.com).

Adjusting the following parameters is optional:

beegfs_ha_alert_timestamp_format: "%Y-%m-%d %H:%M:%S.%N" #%H:%M:%S.%N

beegfs_ha_alert_verbosity: 3

1) high-level node activity

3) high-level node activity + fencing action information + resources

(filter on X-monitor)

5) high-level node activity + fencing action information + resources

Anche se apparentemente ridondante, beegfs_ha_mgmtd_floating_ip È importante
quando si scala il file system BeeGFS oltre un singolo cluster ha. I cluster ha successivi
vengono implementati senza un servizio di gestione BeeGFS aggiuntivo e puntano al
servizio di gestione fornito dal primo cluster.

3. Configurare un agente di scherma. (Per ulteriori informazioni, vedere "Configurare la scherma in un cluster
Red Hat High Availability".) Il seguente output mostra esempi di configurazione di agenti di scherma
comuni. Scegliere una di queste opzioni.

Per questa fase, tenere presente che:

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

◦ Per impostazione predefinita, la funzione di scherma è attivata, ma è necessario configurare un Agent

di scherma.

◦ Il <HOSTNAME> specificato in pcmk_host_map oppure pcmk_host_list Deve corrispondere al
nome host nell’inventario Ansible.

◦ L’esecuzione del cluster BeeGFS senza scherma non è supportata, in particolare in produzione. In
questo modo si garantisce in gran parte che quando i servizi BeeGFS, incluse eventuali dipendenze di
risorse come i dispositivi a blocchi, si verifichi un failover a causa di un problema, non vi sia alcun
rischio di accesso simultaneo da parte di più nodi che si traducono in un danneggiamento del file
system o in altri comportamenti indesiderati o imprevisti. Se la scherma deve essere disattivata, fare
riferimento alle note generali nella guida introduttiva e nel set del ruolo BeeGFS ha
beegfs_ha_cluster_crm_config_options["stonith-enabled"] a false in
ha_cluster.yml.

◦ Sono disponibili più dispositivi di scherma a livello di nodo e il ruolo BeeGFS ha può configurare
qualsiasi agente di scherma disponibile nel repository dei pacchetti Red Hat ha. Se possibile, utilizzare
un agente di scherma che lavori attraverso l’UPS (Uninterruptible Power Supply) o l’unità di
distribuzione dell’alimentazione rack (rPDU), Perché alcuni agenti di scherma, come il BMC
(Baseboard Management Controller) o altri dispositivi di illuminazione integrati nel server, potrebbero
non rispondere alla richiesta di fence in determinati scenari di errore.

52

Fencing configuration:

OPTION 1: To enable fencing using APC Power Distribution Units

(PDUs):

beegfs_ha_fencing_agents:

 fence_apc:

 - ipaddr: <PDU_IP_ADDRESS>

 login: "{{ apc_username }}" # Parameter for APC PDU username in

the passwords file.

 passwd: "{{ apc_password }}" # Parameter for APC PDU password in

the passwords file.

 pcmk_host_map:

"<HOSTNAME>:<PDU_PORT>,<PDU_PORT>;<HOSTNAME>:<PDU_PORT>,<PDU_PORT>"

OPTION 2: To enable fencing using the Redfish APIs provided by the

Lenovo XCC (and other BMCs):

redfish: &redfish

 username: "{{ bmc_username }}" # Parameter for XCC/BMC username in

the passwords file.

 password: "{{ bmc_password }}" # Parameter for XCC/BMC password in

the passwords file.

 ssl_insecure: 1 # If a valid SSL certificate is not available

specify “1”.

beegfs_ha_fencing_agents:

 fence_redfish:

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

 - pcmk_host_list: <HOSTNAME>

 ip: <BMC_IP>

 <<: *redfish

For details on configuring other fencing agents see

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_avai

lability_clusters/assembly_configuring-fencing-configuring-and-

managing-high-availability-clusters.

4. Abilitare l’ottimizzazione delle performance consigliata nel sistema operativo Linux.

Mentre molti utenti trovano che le impostazioni predefinite per i parametri delle performance funzionino
generalmente bene, è possibile modificare le impostazioni predefinite per un particolare carico di lavoro. Di
conseguenza, questi consigli sono inclusi nel ruolo BeeGFS, ma non sono abilitati per impostazione
predefinita per garantire che gli utenti siano a conoscenza della messa a punto applicata al file system.

Per attivare l’ottimizzazione delle performance, specificare:

53

Performance Configuration:

beegfs_ha_enable_performance_tuning: True

5. (Facoltativo) è possibile regolare i parametri di ottimizzazione delle performance nel sistema operativo
Linux in base alle esigenze.

Per un elenco completo dei parametri di ottimizzazione disponibili che è possibile regolare, vedere la
sezione Impostazioni predefinite prestazioni del ruolo BeeGFS ha in "Sito e-Series BeeGFS GitHub". I
valori predefiniti possono essere sovrascritti per tutti i nodi nel cluster in questo file o per il host_vars file
di un singolo nodo.

6. Per consentire la connettività 200GB/HDR completa tra nodi di blocco e file, utilizzare il pacchetto Open
Subnet Manager (opensm) di NVIDIA Open Fabrics Enterprise Distribution (MLNX_OFED). La versione
MLNX_OFED in elenco "requisiti dei nodi file" viene fornita con i pacchetti opensm consigliati. Sebbene
l’implementazione tramite Ansible sia supportata, è necessario prima installare il driver MLNX_OFED su
tutti i nodi di file.

a. Compilare i seguenti parametri in group_vars/ha_cluster.yml (regolare i pacchetti in base alle
esigenze):

OpenSM package and configuration information

eseries_ib_opensm_options:

 virt_enabled: "2"

 virt_max_ports_in_process: "0"

7. Configurare udev Regola per garantire la mappatura coerente degli identificatori di porta logici InfiniBand
ai dispositivi PCIe sottostanti.

Il udev La regola deve essere univoca per la topologia PCIe di ciascuna piattaforma server utilizzata come
nodo di file BeeGFS.

Utilizzare i seguenti valori per i nodi di file verificati:

54

https://github.com/netappeseries/beegfs/tree/master/roles/beegfs_ha_7_4/defaults/main.yml

Ensure Consistent Logical IB Port Numbering

OPTION 1: Lenovo SR665 V3 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:01:00.0": i1a

 "0000:01:00.1": i1b

 "0000:41:00.0": i2a

 "0000:41:00.1": i2b

 "0000:81:00.0": i3a

 "0000:81:00.1": i3b

 "0000:a1:00.0": i4a

 "0000:a1:00.1": i4b

OPTION 2: Lenovo SR665 PCIe address-to-logical IB port mapping:

eseries_ipoib_udev_rules:

 "0000:41:00.0": i1a

 "0000:41:00.1": i1b

 "0000:01:00.0": i2a

 "0000:01:00.1": i2b

 "0000:a1:00.0": i3a

 "0000:a1:00.1": i3b

 "0000:81:00.0": i4a

 "0000:81:00.1": i4b

8. (Facoltativo) aggiornare l’algoritmo di selezione dei metadati.

beegfs_ha_beegfs_meta_conf_ha_group_options:

 tuneTargetChooser: randomrobin

Durante i test di verifica, randomrobin In genere, è stato utilizzato per garantire che i file di
test fossero distribuiti in modo uniforme tra tutti gli obiettivi di storage BeeGFS durante il
benchmarking delle performance (per ulteriori informazioni sul benchmarking, visitare il sito
BeeGFS per "Benchmarking di un sistema BeeGFS"). Con un utilizzo reale, questo
potrebbe causare il riempimento più rapido dei target con un numero inferiore rispetto ai
target con un numero superiore. Omettere randomrobin e utilizzando solo il valore
predefinito randomized è stato dimostrato che il valore offre buone performance pur
continuando a utilizzare tutti gli obiettivi disponibili.

Fase 5: Definire la configurazione per il nodo a blocchi comune

La configurazione condivisa per i nodi a blocchi viene definita in un gruppo chiamato
eseries_storage_systems. La procedura descritta in questa sezione illustra la configurazione da includere
in group_vars/ eseries_storage_systems.yml file.

Fasi

1. Impostare la connessione Ansible su locale, fornire la password di sistema e specificare se i certificati SSL

55

https://doc.beegfs.io/latest/advanced_topics/benchmark.html

devono essere verificati. (In genere, Ansible utilizza SSH per connettersi agli host gestiti, ma nel caso dei
sistemi storage NetApp e-Series utilizzati come nodi a blocchi, i moduli utilizzano l’API REST per la
comunicazione). Nella parte superiore del file, aggiungere quanto segue:

eseries_storage_systems Ansible group inventory file.

Place all default/common variables for NetApp E-Series Storage Systems

here:

ansible_connection: local

eseries_system_password: {{ eseries_password }} # Parameter for E-Series

storage array password in the passwords file.

eseries_validate_certs: false

2. Per garantire prestazioni ottimali, installare le versioni elencate per i nodi a blocchi in "Requisiti tecnici".

Scaricare i file corrispondenti da "Sito di supporto NetApp". È possibile aggiornarli manualmente o
includerli in packages/ Directory del nodo di controllo Ansible, quindi popolare i seguenti parametri in
eseries_storage_systems.yml Per eseguire l’aggiornamento utilizzando Ansible:

Firmware, NVSRAM, and Drive Firmware (modify the filenames as needed):

eseries_firmware_firmware: "packages/RCB_11.80GA_6000_64cc0ee3.dlp"

eseries_firmware_nvsram: "packages/N6000-880834-D08.dlp"

3. Scaricare e installare il firmware dell’unità più recente disponibile per le unità installate nei nodi di blocco
dal "Sito di supporto NetApp". È possibile aggiornarli manualmente o includerli nella packages/ directory
del nodo di controllo Ansible, quindi popolare i seguenti parametri nel eseries_storage_systems.yml
per l’aggiornamento utilizzando Ansible:

eseries_drive_firmware_firmware_list:

 - "packages/<FILENAME>.dlp"

eseries_drive_firmware_upgrade_drives_online: true

Impostazione eseries_drive_firmware_upgrade_drives_online a. false
Accelera l’aggiornamento, ma non deve essere eseguito fino a quando non viene
implementato BeeGFS. Questo perché questa impostazione richiede l’interruzione di tutti i/o
sui dischi prima dell’aggiornamento per evitare errori dell’applicazione. Sebbene
l’esecuzione di un aggiornamento online del firmware del disco prima della configurazione
dei volumi sia ancora rapida, si consiglia di impostare sempre questo valore su true per
evitare problemi in un secondo momento.

4. Per ottimizzare le performance, apportare le seguenti modifiche alla configurazione globale:

56

https://mysupport.netapp.com/site/products/all/details/eseries-santricityos/downloads-tab
https://mysupport.netapp.com/site/downloads/firmware/e-series-disk-firmware

Global Configuration Defaults

eseries_system_cache_block_size: 32768

eseries_system_cache_flush_threshold: 80

eseries_system_default_host_type: linux dm-mp

eseries_system_autoload_balance: disabled

eseries_system_host_connectivity_reporting: disabled

eseries_system_controller_shelf_id: 99 # Required.

5. Per garantire un provisioning e un comportamento ottimali dei volumi, specificare i seguenti parametri:

Storage Provisioning Defaults

eseries_volume_size_unit: pct

eseries_volume_read_cache_enable: true

eseries_volume_read_ahead_enable: false

eseries_volume_write_cache_enable: true

eseries_volume_write_cache_mirror_enable: true

eseries_volume_cache_without_batteries: false

eseries_storage_pool_usable_drives:

"99:0,99:23,99:1,99:22,99:2,99:21,99:3,99:20,99:4,99:19,99:5,99:18,99:6,

99:17,99:7,99:16,99:8,99:15,99:9,99:14,99:10,99:13,99:11,99:12"

Il valore specificato per eseries_storage_pool_usable_drives È specifico per i nodi
a blocchi NetApp EF600 e controlla l’ordine in cui i dischi vengono assegnati a nuovi gruppi
di volumi. Questo ordine garantisce che l’i/o per ciascun gruppo sia distribuito
uniformemente tra i canali di dischi back-end.

Definire l’inventario Ansible per gli elementi di base BeeGFS

Dopo aver definito la struttura generale di inventario Ansible, definire la configurazione
per ciascun building block nel file system BeeGFS.

Queste istruzioni di implementazione mostrano come implementare un file system costituito da un building
block di base che include servizi di gestione, metadati e storage, un secondo building block con metadati e
servizi di storage e un terzo building block di solo storage.

Questi passaggi hanno lo scopo di mostrare l’intera gamma di profili di configurazione tipici che è possibile
utilizzare per configurare gli elementi di base di NetApp BeeGFS in modo da soddisfare i requisiti del file
system generale BeeGFS.

In questa e nelle sezioni successive, modificare in base alle necessità per creare l’inventario
che rappresenta il file system BeeGFS che si desidera implementare. In particolare, utilizzare i
nomi host Ansible che rappresentano ciascun nodo di file o blocco e lo schema di
indirizzamento IP desiderato per la rete di storage per garantire che possa scalare in base al
numero di nodi di file e client BeeGFS.

57

Fase 1: Creare il file di inventario Ansible

Fasi

1. Creare un nuovo inventory.yml quindi inserire i seguenti parametri, sostituendo gli host in
eseries_storage_systems in base alle necessità per rappresentare i nodi a blocchi
nell’implementazione. I nomi devono corrispondere al nome utilizzato per host_vars/<FILENAME>.yml.

BeeGFS HA (High Availability) cluster inventory.

all:

 children:

 # Ansible group representing all block nodes:

 eseries_storage_systems:

 hosts:

 netapp_01:

 netapp_02:

 netapp_03:

 netapp_04:

 netapp_05:

 netapp_06:

 # Ansible group representing all file nodes:

 ha_cluster:

 children:

Nelle sezioni successive, verranno creati ulteriori gruppi Ansible in ha_cluster Che rappresentano i
servizi BeeGFS che si desidera eseguire nel cluster.

Fase 2: Configurare l’inventario per un building block di gestione, metadati e storage

Il primo building block nel cluster o nel building block di base deve includere il servizio di gestione BeeGFS
insieme ai metadati e ai servizi di storage:

Fasi

1. Poll inventory.yml, compilare i seguenti parametri in ha_cluster: children:

 # beegfs_01/beegfs_02 HA Pair (mgmt/meta/storage building block):

 mgmt:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_01:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_01:

 hosts:

 beegfs_01:

58

 beegfs_02:

 meta_02:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_02:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_03:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_03:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_04:

 hosts:

 beegfs_01:

 beegfs_02:

 stor_04:

 hosts:

 beegfs_01:

 beegfs_02:

 meta_05:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_05:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_06:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_06:

 hosts:

 beegfs_02:

 beegfs_01:

 meta_07:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_07:

59

 hosts:

 beegfs_02:

 beegfs_01:

 meta_08:

 hosts:

 beegfs_02:

 beegfs_01:

 stor_08:

 hosts:

 beegfs_02:

 beegfs_01:

2. Creare il file group_vars/mgmt.yml e includere quanto segue:

mgmt - BeeGFS HA Management Resource Group

OPTIONAL: Override default BeeGFS management configuration:

beegfs_ha_beegfs_mgmtd_conf_resource_group_options:

<beegfs-mgmt.conf:key>:<beegfs-mgmt.conf:value>

floating_ips:

 - i1b: 100.127.101.0/16

 - i2b: 100.127.102.0/16

beegfs_service: management

beegfs_targets:

 netapp_01:

 eseries_storage_pool_configuration:

 - name: beegfs_m1_m2_m5_m6

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 1

 owning_controller: A

3. Sotto group_vars/, creare i file per i gruppi di risorse meta_01 attraverso meta_08 utilizzando il
seguente modello, inserire i valori segnaposto per ogni servizio che fa riferimento alla tabella seguente:

60

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET> # Example: i1b:192.168.120.1/16

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.25 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Le dimensioni del volume vengono specificate come percentuale del pool di storage
complessivo (definito anche gruppo di volumi). NetApp consiglia vivamente di lasciare una
certa capacità libera in ogni pool per consentire lo spazio necessario per l’overprovisioning
SSD (per ulteriori informazioni, vedere "Introduzione all’array NetApp EF600"). Il pool di
storage, beegfs_m1_m2_m5_m6, alloca inoltre l'1% della capacità del pool per il servizio di
gestione. Pertanto, per i volumi di metadati nel pool di storage, beegfs_m1_m2_m5_m6, Se
si utilizzano dischi da 1,92 TB o 3,84 TB, impostare questo valore su 21.25; Per dischi da
7,65 TB, impostare questo valore su 22.25; E per i dischi da 15,3 TB, impostare questo
valore su 23.75.

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

meta_01.yml 8015 i1b:100.127.1
01.1/16
i2b:100.127.1
02.1/16

0 netapp_01 beegfs_m1_
m2_m5_m6

R

meta_02.yml 8025 i2b:100.127.1
02.2/16
i1b:100.127.1
01.2/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_03.yml 8035 i3b:100.127.1
01.3/16
i4b:100.127.1
02.3/16

1 netapp_02 beegfs_m3_
m4_m7_m8

R

61

https://www.netapp.com/pdf.html?item=/media/17009-tr4800pdf.pdf

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

meta_04.yml 8045 i4b:100.127.1
02.4/16
i3b:100.127.1
01.4/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

meta_05.yml 8055 i1b:100.127.1
01.5/16
i2b:100.127.1
02.5/16

0 netapp_01 beegfs_m1_
m2_m5_m6

R

meta_06.yml 8065 i2b:100.127.1
02.6/16
i1b:100.127.1
01.6/16

0 netapp_01 beegfs_m1_
m2_m5_m6

B

meta_07.yml 8075 i3b:100.127.1
01.7/16
i4b:100.127.1
02.7/16

1 netapp_02 beegfs_m3_
m4_m7_m8

R

meta_08.yml 8085 i4b:100.127.1
02.8/16
i3b:100.127.1
01.8/16

1 netapp_02 beegfs_m3_
m4_m7_m8

B

4. Sotto group_vars/, creare i file per i gruppi di risorse stor_01 attraverso stor_08 utilizzando il
seguente modello, inserire i valori segnaposto per ciascun servizio che fa riferimento all’esempio:

62

stor_0X - BeeGFS HA Storage Resource

Groupbeegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below! owning_controller:

<OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

Per le dimensioni corrette da utilizzare, vedere "Percentuali consigliate di overprovisioning
del pool di storage".

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

stor_01.yml 8013 i1b:100.127.1
03.1/16
i2b:100.127.1
04.1/16

0 netapp_01 beegfs_s1_s2 R

stor_02.yml 8023 i2b:100.127.1
04.2/16
i1b:100.127.1
03.2/16

0 netapp_01 beegfs_s1_s2 B

stor_03.yml 8033 i3b:100.127.1
03.3/16
i4b:100.127.1
04.3/16

1 netapp_02 beegfs_s3_s4 R

stor_04.yml 8043 i4b:100.127.1
04.4/16
i3b:100.127.1
03.4/16

1 netapp_02 beegfs_s3_s4 B

63

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

stor_05.yml 8053 i1b:100.127.1
03.5/16
i2b:100.127.1
04.5/16

0 netapp_01 beegfs_s5_s6 R

stor_06.yml 8063 i2b:100.127.1
04.6/16
i1b:100.127.1
03.6/16

0 netapp_01 beegfs_s5_s6 B

stor_07.yml 8073 i3b:100.127.1
03.7/16
i4b:100.127.1
04.7/16

1 netapp_02 beegfs_s7_s8 R

stor_08.yml 8083 i4b:100.127.1
04.8/16
i3b:100.127.1
03.8/16

1 netapp_02 beegfs_s7_s8 B

Fase 3: Configurare l’inventario per un building block di metadati + storage

Questi passaggi descrivono come configurare un inventario Ansible per un building block di storage + metadati
BeeGFS.

Fasi

1. Poll inventory.yml, inserire i seguenti parametri nella configurazione esistente:

 meta_09:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_09:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_10:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_10:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_11:

 hosts:

 beegfs_03:

64

 beegfs_04:

 stor_11:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_12:

 hosts:

 beegfs_03:

 beegfs_04:

 stor_12:

 hosts:

 beegfs_03:

 beegfs_04:

 meta_13:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_13:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_14:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_14:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_15:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_15:

 hosts:

 beegfs_04:

 beegfs_03:

 meta_16:

 hosts:

 beegfs_04:

 beegfs_03:

 stor_16:

 hosts:

 beegfs_04:

 beegfs_03:

65

2. Sotto group_vars/, creare i file per i gruppi di risorse meta_09 attraverso meta_16 utilizzando il
seguente modello, inserire i valori segnaposto per ciascun servizio che fa riferimento all’esempio:

meta_0X - BeeGFS HA Metadata Resource Group

beegfs_ha_beegfs_meta_conf_resource_group_options:

 connMetaPortTCP: <PORT>

 connMetaPortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: metadata

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid1

 criteria_drive_count: 4

 common_volume_configuration:

 segment_size_kb: 128

 volumes:

 - size: 21.5 # SEE NOTE BELOW!

 owning_controller: <OWNING CONTROLLER>

Per le dimensioni corrette da utilizzare, vedere "Percentuali consigliate di overprovisioning
del pool di storage".

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

meta_09.yml 8015 i1b:100.127.1
01.9/16
i2b:100.127.1
02.9/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

R

meta_10.yml 8025 i2b:100.127.1
02.10/16
i1b:100.127.1
01.10/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_11.yml 8035 i3b:100.127.1
01.11/16
i4b:100.127.1
02.11/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

R

meta_12.yml 8045 i4b:100.127.1
02.12/16
i3b:100.127.1
01.12/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

66

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

meta_13.yml 8055 i1b:100.127.1
01.13/16
i2b:100.127.1
02.13/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

R

meta_14.yml 8065 i2b:100.127.1
02.14/16
i1b:100.127.1
01.14/16

0 netapp_03 beegfs_m9_
m10_m13_m
14

B

meta_15.yml 8075 i3b:100.127.1
01.15/16
i4b:100.127.1
02.15/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

R

meta_16.yml 8085 i4b:100.127.1
02.16/16
i3b:100.127.1
01.16/16

1 netapp_04 beegfs_m11_
m12_m15_m
16

B

3. Sotto group_vars/, creare file per gruppi di risorse stor_09 attraverso stor_16 utilizzando il seguente
modello, inserire i valori segnaposto per ciascun servizio che fa riferimento all’esempio:

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 10

 common_volume_configuration:

 segment_size_kb: 512 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50 owning_controller: <OWNING

CONTROLLER>

67

Per la dimensione corretta da utilizzare, vedere "Percentuali consigliate di overprovisioning
del pool di storage" ..

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

stor_09.yml 8013 i1b:100.127.1
03.9/16
i2b:100.127.1
04.9/16

0 netapp_03 beegfs_s9_s1
0

R

stor_10.yml 8023 i2b:100.127.1
04.10/16
i1b:100.127.1
03.10/16

0 netapp_03 beegfs_s9_s1
0

B

stor_11.yml 8033 i3b:100.127.1
03.11/16
i4b:100.127.1
04.11/16

1 netapp_04 beegfs_s11_s
12

R

stor_12.yml 8043 i4b:100.127.1
04.12/16
i3b:100.127.1
03.12/16

1 netapp_04 beegfs_s11_s
12

B

stor_13.yml 8053 i1b:100.127.1
03.13/16
i2b:100.127.1
04.13/16

0 netapp_03 beegfs_s13_s
14

R

stor_14.yml 8063 i2b:100.127.1
04.14/16
i1b:100.127.1
03.14/16

0 netapp_03 beegfs_s13_s
14

B

stor_15.yml 8073 i3b:100.127.1
03.15/16
i4b:100.127.1
04.15/16

1 netapp_04 beegfs_s15_s
16

R

stor_16.yml 8083 i4b:100.127.1
04.16/16
i3b:100.127.1
03.16/16

1 netapp_04 beegfs_s15_s
16

B

Fase 4: Configurare l’inventario per un building block di solo storage

Questi passaggi descrivono come configurare un inventario Ansible per un building block BeeGFS solo
storage. La differenza principale tra l’impostazione della configurazione per un metadata + storage rispetto a
un building block solo storage è l’omissione di tutti i gruppi di risorse di metadati e la modifica
criteria_drive_count da 10 a 12 per ogni pool di storage.

Fasi

1. Poll inventory.yml, inserire i seguenti parametri nella configurazione esistente:

68

 # beegfs_05/beegfs_06 HA Pair (storage only building block):

 stor_17:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_18:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_19:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_20:

 hosts:

 beegfs_05:

 beegfs_06:

 stor_21:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_22:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_23:

 hosts:

 beegfs_06:

 beegfs_05:

 stor_24:

 hosts:

 beegfs_06:

 beegfs_05:

2. Sotto group_vars/, creare i file per i gruppi di risorse stor_17 attraverso stor_24 utilizzando il
seguente modello, inserire i valori segnaposto per ciascun servizio che fa riferimento all’esempio:

69

stor_0X - BeeGFS HA Storage Resource Group

beegfs_ha_beegfs_storage_conf_resource_group_options:

 connStoragePortTCP: <PORT>

 connStoragePortUDP: <PORT>

 tuneBindToNumaZone: <NUMA ZONE>

floating_ips:

 - <PREFERRED PORT:IP/SUBNET>

 - <SECONDARY PORT:IP/SUBNET>

beegfs_service: storage

beegfs_targets:

 <BLOCK NODE>:

 eseries_storage_pool_configuration:

 - name: <STORAGE POOL>

 raid_level: raid6

 criteria_drive_count: 12

 common_volume_configuration:

 segment_size_kb: 512

 volumes:

 - size: 21.50 # See note below!

 owning_controller: <OWNING CONTROLLER>

 - size: 21.50

 owning_controller: <OWNING CONTROLLER>

Per la dimensione corretta da utilizzare, vedere "Percentuali consigliate di overprovisioning
del pool di storage" .

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

stor_17.yml 8013 i1b:100.127.1
03.17/16
i2b:100.127.1
04.17/16

0 netapp_05 beegfs_s17_s
18

R

stor_18.yml 8023 i2b:100.127.1
04.18/16
i1b:100.127.1
03.18/16

0 netapp_05 beegfs_s17_s
18

B

stor_19.yml 8033 i3b:100.127.1
03.19/16
i4b:100.127.1
04.19/16

1 netapp_06 beegfs_s19_s
20

R

stor_20.yml 8043 i4b:100.127.1
04.20/16
i3b:100.127.1
03.20/16

1 netapp_06 beegfs_s19_s
20

B

70

Nome del file Porta IP mobili Zona NUMA Nodo del

blocco

Pool di

storage

Controller

proprietario

stor_21.yml 8053 i1b:100.127.1
03.21/16
i2b:100.127.1
04.21/16

0 netapp_05 beegfs_s21_s
22

R

stor_22.yml 8063 i2b:100.127.1
04.22/16
i1b:100.127.1
03.22/16

0 netapp_05 beegfs_s21_s
22

B

stor_23.yml 8073 i3b:100.127.1
03.23/16
i4b:100.127.1
04.23/16

1 netapp_06 beegfs_s23_s
24

R

stor_24.yml 8083 i4b:100.127.1
04.24/16
i3b:100.127.1
03.24/16

1 netapp_06 beegfs_s23_s
24

B

Implementare BeeGFS

L’implementazione e la gestione della configurazione implica l’esecuzione di uno o più
playbook contenenti le attività che Ansible deve eseguire e portare il sistema nello stato
desiderato.

Anche se tutte le attività possono essere incluse in un singolo playbook, per i sistemi complessi, ciò diventa
rapidamente poco pratico da gestire. Ansible consente di creare e distribuire i ruoli come metodo per il
packaging di playbook riutilizzabili e contenuti correlati (ad esempio: Variabili predefinite, attività e gestori). Per
ulteriori informazioni, consultare la documentazione Ansible per "Ruoli".

I ruoli vengono spesso distribuiti come parte di un insieme Ansible contenente ruoli e moduli correlati.
Pertanto, questi playbook importano principalmente solo diversi ruoli distribuiti nelle varie raccolte NetApp e-
Series Ansible.

Attualmente, per implementare BeeGFS sono necessari almeno due building block (quattro nodi
di file), a meno che un dispositivo di quorum separato non sia configurato come un interruttore a
più livelli per mitigare eventuali problemi quando si stabilisce il quorum con un cluster a due
nodi.

Fasi

1. Creare un nuovo playbook.yml archiviare e includere quanto segue:

BeeGFS HA (High Availability) cluster playbook.

- hosts: eseries_storage_systems

 gather_facts: false

 collections:

 - netapp_eseries.santricity

 tasks:

71

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

 - name: Configure NetApp E-Series block nodes.

 import_role:

 name: nar_santricity_management

- hosts: all

 any_errors_fatal: true

 gather_facts: false

 collections:

 - netapp_eseries.beegfs

 pre_tasks:

 - name: Ensure a supported version of Python is available on all

file nodes.

 block:

 - name: Check if python is installed.

 failed_when: false

 changed_when: false

 raw: python --version

 register: python_version

 - name: Check if python3 is installed.

 raw: python3 --version

 failed_when: false

 changed_when: false

 register: python3_version

 when: 'python_version["rc"] != 0 or (python_version["stdout"]

| regex_replace("Python ", "")) is not version("3.0", ">=")'

 - name: Install python3 if needed.

 raw: |

 id=$(grep "^ID=" /etc/*release* | cut -d= -f 2 | tr -d '"')

 case $id in

 ubuntu) sudo apt install python3 ;;

 rhel|centos) sudo yum -y install python3 ;;

 sles) sudo zypper install python3 ;;

 esac

 args:

 executable: /bin/bash

 register: python3_install

 when: python_version['rc'] != 0 and python3_version['rc'] != 0

 become: true

 - name: Create a symbolic link to python from python3.

 raw: ln -s /usr/bin/python3 /usr/bin/python

 become: true

 when: python_version['rc'] != 0

 when: inventory_hostname not in

groups[beegfs_ha_ansible_storage_group]

 - name: Verify any provided tags are supported.

 fail:

 msg: "{{ item }} tag is not a supported BeeGFS HA tag. Rerun

72

your playbook command with --list-tags to see all valid playbook tags."

 when: 'item not in ["all", "storage", "beegfs_ha",

"beegfs_ha_package", "beegfs_ha_configure",

"beegfs_ha_configure_resource", "beegfs_ha_performance_tuning",

"beegfs_ha_backup", "beegfs_ha_client"]'

 loop: "{{ ansible_run_tags }}"

 tasks:

 - name: Verify before proceeding.

 pause:

 prompt: "Are you ready to proceed with running the BeeGFS HA

role? Depending on the size of the deployment and network performance

between the Ansible control node and BeeGFS file and block nodes this

can take awhile (10+ minutes) to complete."

 - name: Verify the BeeGFS HA cluster is properly deployed.

 ansible.builtin.import_role:

 name: netapp_eseries.beegfs.beegfs_ha_7_4

Questo playbook ne fa parte pre_tasks Verificare che Python 3 sia installato sui nodi di file
e che i tag Ansible forniti siano supportati.

2. Utilizzare ansible-playbook Controlla con i file di inventario e playbook quando sei pronto per
implementare BeeGFS.

L’implementazione verrà eseguita completamente pre_tasks, Quindi richiedere la conferma dell’utente
prima di procedere con l’effettiva implementazione di BeeGFS.

Eseguire il seguente comando, regolando il numero di forche secondo necessità (vedere la nota
seguente):

ansible-playbook -i inventory.yml playbook.yml --forks 20

In particolare per implementazioni di dimensioni maggiori, forks si consiglia di ignorare il
numero predefinito di forcelle (5) utilizzando il parametro per aumentare il numero di host
configurati in parallelo da Ansible. Per ulteriori informazioni, vedere "Controllo
dell’esecuzione del playbook". L’impostazione del valore massimo dipende dalla potenza di
elaborazione disponibile sul nodo di controllo Ansible. L’esempio precedente di 20 è stato
eseguito su un nodo di controllo virtuale Ansible con 4 CPU (Intel® Xeon® Gold 6146 CPU
@ 3,20 GHz).

A seconda delle dimensioni dell’implementazione e delle prestazioni di rete tra il nodo di controllo Ansible e
i nodi di blocco e file BeeGFS, il tempo di implementazione potrebbe variare.

Configurare i client BeeGFS

È necessario installare e configurare il client BeeGFS su tutti gli host che necessitano
dell’accesso al file system BeeGFS, come i nodi di calcolo o GPU. Per questa attività, è
possibile utilizzare Ansible e l’insieme BeeGFS.

73

https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_strategies.html

Fasi

1. Se necessario, impostare SSH senza password dal nodo di controllo Ansible a ciascuno degli host che si
desidera configurare come client BeeGFS:

ssh-copy-id <user>@<HOSTNAME_OR_IP>

2. Sotto host_vars/, Creare un file per ogni client BeeGFS denominato <HOSTNAME>.yml con il seguente
contenuto, inserendo il testo segnaposto con le informazioni corrette per il tuo ambiente:

BeeGFS Client

ansible_host: <MANAGEMENT_IP>

OPTIONAL: If you want to use the NetApp E-Series Host Collection’s

IPoIB role to configure InfiniBand interfaces for clients to connect to

BeeGFS file systems:

eseries_ipoib_interfaces:

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK> # Example: 100.127.1.1/16

 - name: <INTERFACE>

 address: <IP>/<SUBNET_MASK>

Se si implementa con uno schema di indirizzamento a due subnet, è necessario configurare
due interfacce InfiniBand su ogni client, una in ciascuna delle due subnet IPoIB di storage.
Se si utilizzano le sottoreti di esempio e gli intervalli consigliati per ogni servizio BeeGFS qui
elencato, i client devono avere un’interfaccia configurata nell’intervallo 100.127.1.0 da a e
l’altra in fino a 100.127.99.255 100.128.1.0 100.128.99.255.

3. Creare un nuovo file client_inventory.yml, quindi inserire i seguenti parametri nella parte superiore:

BeeGFS client inventory.

all:

 vars:

 ansible_ssh_user: <USER> # This is the user Ansible should use to

connect to each client.

 ansible_become_password: <PASSWORD> # This is the password Ansible

will use for privilege escalation, and requires the ansible_ssh_user be

root, or have sudo privileges.

The defaults set by the BeeGFS HA role are based on the testing

performed as part of this NetApp Verified Architecture and differ from

the typical BeeGFS client defaults.

Non memorizzare le password in testo normale. Utilizzare invece Ansible Vault (vedere la
documentazione Ansible per "Crittografia del contenuto con Ansible Vault") o utilizzare
--ask-become-pass quando si esegue il playbook.

4. In client_inventory.yml File, elenca tutti gli host che devono essere configurati come client BeeGFS

74

https://docs.ansible.com/ansible/latest/user_guide/vault.html

in beegfs_clients E specificare eventuali configurazioni aggiuntive richieste per creare il modulo del
kernel del client BeeGFS.

 children:

 # Ansible group representing all BeeGFS clients:

 beegfs_clients:

 hosts:

 beegfs_01:

 beegfs_02:

 beegfs_03:

 beegfs_04:

 beegfs_05:

 beegfs_06:

 beegfs_07:

 beegfs_08:

 beegfs_09:

 beegfs_10:

 vars:

 # OPTION 1: If you’re using the NVIDIA OFED drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 beegfs_client_ofed_enable: True

 beegfs_client_ofed_include_path:

"/usr/src/ofa_kernel/default/include"

 # OPTION 2: If you’re using inbox IB/RDMA drivers and they are

already installed:

 eseries_ib_skip: True # Skip installing inbox drivers when using

the IPoIB role.

 # OPTION 3: If you want to use inbox IB/RDMA drivers and need

them installed/configured.

 eseries_ib_skip: False # Default value.

 beegfs_client_ofed_enable: False # Default value.

Quando si utilizzano i driver NVIDIA OFED, assicurarsi che
beegfs_client_ofed_include_path punti al corretto "header include path" per
l’installazione Linux. Per ulteriori informazioni, vedere la documentazione di BeeGFS per
"Supporto RDMA".

5. In client_inventory.yml Elencare i file system BeeGFS che si desidera montare nella parte inferiore
di qualsiasi file definito in precedenza vars.

75

https://doc.beegfs.io/latest/advanced_topics/rdma_support.html

 beegfs_client_mounts:

 - sysMgmtdHost: 100.127.101.0 # Primary IP of the BeeGFS

management service.

 mount_point: /mnt/beegfs # Path to mount BeeGFS on the

client.

 connInterfaces:

 - <INTERFACE> # Example: ibs4f1

 - <INTERFACE>

 beegfs_client_config:

 # Maximum number of simultaneous connections to the same

node.

 connMaxInternodeNum: 128 # BeeGFS Client Default: 12

 # Allocates the number of buffers for transferring IO.

 connRDMABufNum: 36 # BeeGFS Client Default: 70

 # Size of each allocated RDMA buffer

 connRDMABufSize: 65536 # BeeGFS Client Default: 8192

 # Required when using the BeeGFS client with the shared-

disk HA solution.

 # This does require BeeGFS targets be mounted in the

default “sync” mode.

 # See the documentation included with the BeeGFS client

role for full details.

 sysSessionChecksEnabled: false

Il beegfs_client_config rappresenta le impostazioni testate. Consultare la
documentazione fornita con netapp_eseries.beegfs di raccolta beegfs_client ruolo
per una panoramica completa di tutte le opzioni. Sono inclusi i dettagli sul montaggio di più
file system BeeGFS o sul montaggio dello stesso file system BeeGFS più volte.

6. Creare un nuovo client_playbook.yml e compilare i seguenti parametri:

76

BeeGFS client playbook.

- hosts: beegfs_clients

 any_errors_fatal: true

 gather_facts: true

 collections:

 - netapp_eseries.beegfs

 - netapp_eseries.host

 tasks:

 - name: Ensure IPoIB is configured

 import_role:

 name: ipoib

 - name: Verify the BeeGFS clients are configured.

 import_role:

 name: beegfs_client

Omettere l’importazione di netapp_eseries.host raccolta e. ipoib Ruolo se sono già
stati installati i driver IB/RDMA richiesti e gli IP configurati sulle interfacce IPoIB appropriate.

7. Per installare e creare il client e montare BeeGFS, eseguire il seguente comando:

ansible-playbook -i client_inventory.yml client_playbook.yml

8. Prima di mettere in produzione il file system BeeGFS, si consiglia di eseguire l’accesso a qualsiasi client
beegfs-fsck --checkfs per garantire che tutti i nodi siano raggiungibili e che non vi siano problemi
segnalati.

Scala oltre cinque elementi di base

È possibile configurare Pacemaker e Corosync per scalare oltre cinque blocchi costitutivi
(10 nodi di file). Tuttavia, i cluster più grandi presentano alcuni inconvenienti e, alla fine,
Pacemaker e Corosync impongono un massimo di 32 nodi.

NetApp ha testato solo i cluster BeeGFS ha per un massimo di 10 nodi; la scalabilità dei singoli cluster oltre
questo limite non è consigliata o supportata. Tuttavia, i file system BeeGFS devono ancora scalare ben oltre
10 nodi, e NetApp lo ha considerato nella soluzione BeeGFS su NetApp.

Implementando più cluster ha contenenti un sottoinsieme dei blocchi costitutivi in ciascun file system, è
possibile scalare il file system BeeGFS globale indipendentemente da qualsiasi limite consigliato o limite
massimo sui meccanismi di clustering ha sottostanti. In questo scenario, procedere come segue:

• Creare un nuovo inventario Ansible che rappresenti i cluster ha aggiuntivi, quindi omettere la
configurazione di un altro servizio di gestione. Puntare invece il beegfs_ha_mgmtd_floating_ip
variabile in ogni cluster aggiuntivo ha_cluster.yml All’IP per il primo servizio di gestione BeeGFS.

• Quando si aggiungono cluster ha aggiuntivi allo stesso file system, assicurarsi di quanto segue:

◦ Gli ID del nodo BeeGFS sono univoci.

77

◦ I nomi dei file corrispondenti a ciascun servizio in group_vars è unico in tutti i cluster.

◦ Gli indirizzi IP del client e del server BeeGFS sono univoci in tutti i cluster.

◦ Il primo cluster ha contenente il servizio di gestione BeeGFS è in esecuzione prima di tentare di
implementare o aggiornare altri cluster.

• Gestire gli inventari per ciascun cluster ha separatamente nel proprio albero di directory.

Il tentativo di combinare i file di inventario per più cluster in un unico albero di directory potrebbe causare
problemi con il modo in cui il ruolo BeeGFS ha aggrega la configurazione applicata a un determinato
cluster.

Non è necessario che ogni cluster ha si adatti a cinque building block prima di crearne uno
nuovo. In molti casi, l’utilizzo di un numero inferiore di building block per cluster è più semplice
da gestire. Un approccio consiste nel configurare gli elementi di base in ogni singolo rack come
cluster ha.

Percentuali consigliate di overprovisioning del pool di storage

Se si seguono le configurazioni standard dei quattro volumi per pool di storage per gli
elementi di base di seconda generazione, fare riferimento alla tabella seguente.

Questa tabella fornisce le percentuali consigliate da utilizzare come dimensione del volume in
eseries_storage_pool_configuration Per ogni destinazione di storage o metadati BeeGFS:

Dimensioni del disco Dimensione

1,92 TB 18

3,84 TB 21.5

7,68 TB 22.5

15,3 TB 24

Le indicazioni riportate sopra non si applicano al pool di storage contenente il servizio di
gestione, che dovrebbe ridurre le dimensioni di cui sopra di .25% per allocare l'1% del pool di
storage per i dati di gestione.

Per capire come sono stati determinati questi valori, vedere "TR-4800: Appendice A: Comprensione della
durata e dell’overprovisioning degli SSD".

Building block ad alta capacità

La guida all’implementazione della soluzione BeeGFS standard delinea procedure e
raccomandazioni per i requisiti di workload ad alte performance. I clienti che desiderano
soddisfare requisiti di capacità elevata devono osservare le variazioni
nell’implementazione e i consigli descritti di seguito.

78

https://www.netapp.com/media/17009-tr4800.pdf
https://www.netapp.com/media/17009-tr4800.pdf

Controller

Per gli building block ad alta capacità, i controller EF600 devono essere sostituiti con controller EF300,
ciascuno con un HIC Cascade installato per l’espansione SAS. Ogni nodo a blocchi avrà un numero minimo di
SSD NVMe popolati nell’enclosure dell’array per lo storage dei metadati BeeGFS e saranno collegati agli shelf
di espansione popolati con HDD NL-SAS per i volumi di storage BeeGFS.

La configurazione da nodo file a nodo di blocco rimane la stessa.

Posizionamento del disco

Per lo storage dei metadati BeeGFS sono richiesti almeno 4 SSD NVMe in ciascun nodo a blocchi. Questi
dischi devono essere posizionati negli slot più esterni dell’enclosure.

Vassoi di espansione

Il building block ad alta capacità può essere dimensionato con 1-7, 60 tray di espansione per unità per array di
storage.

79

Per istruzioni su come collegare ciascun vassoio di espansione, "Fare riferimento al cablaggio EF300 per gli
shelf di dischi".

80

https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^
https://docs.netapp.com/us-en/e-series/install-hw-cabling/driveshelf-cable-task.html#cabling-ef300^

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e
dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM’È" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL’ATTIVITÀ AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L’UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA L’EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l’utilizzo dei
prodotti o materiali descritti nel presente documento, con l’eccezione di quanto concordato espressamente e
per iscritto da NetApp. L’utilizzo o l’acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di
NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l’utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l’utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

81

http://www.netapp.com/TM

	Utilizzare architetture verificate : BeeGFS on NetApp with E-Series Storage
	Sommario
	Utilizzare architetture verificate
	Panoramica e requisiti
	Panoramica della soluzione
	Panoramica dell’architettura
	Requisiti tecnici

	Esaminare la progettazione della soluzione
	Panoramica del design
	Configurazione dell’hardware
	Configurazione del software
	Verifica del progetto
	Linee guida per il dimensionamento
	Tuning delle performance
	Building block ad alta capacità

	Implementare la soluzione
	Panoramica dell’implementazione
	Scopri di più sull’inventario Ansible
	Esaminare le Best practice
	Implementare l’hardware
	Implementare il software
	Scala oltre cinque elementi di base
	Percentuali consigliate di overprovisioning del pool di storage
	Building block ad alta capacità

