
ONTAP

NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/it-it/netapp-automation/solutions/ontap-day01-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

Sommario

ONTAP . 1

Giorno 0/1. 1

Panoramica della soluzione ONTAP Day 0/1. 1

Preparare l’uso della soluzione ONTAP Day 0/1 . 3

Implementare il cluster ONTAP utilizzando la soluzione . 6

Personalizzare la soluzione ONTAP Day 0/1. 27

ONTAP

Giorno 0/1

Panoramica della soluzione ONTAP Day 0/1

È possibile utilizzare la soluzione di automazione ONTAP day 0/1 per distribuire e
configurare un cluster ONTAP tramite Ansible. La soluzione è disponibile presso "Hub di
automazione NetApp Console".

Opzioni flessibili di implementazione ONTAP

A seconda dei tuoi requisiti, puoi utilizzare l’hardware on-premise o simulare ONTAP per implementare e
configurare un cluster ONTAP utilizzando Ansible.

Hardware on-premise

Puoi implementare questa soluzione utilizzando hardware on-premise che esegue ONTAP, come un FAS o un
sistema AFF. Devi utilizzare una macchina virtuale Linux per implementare e configurare il cluster ONTAP
utilizzando Ansible.

Simula ONTAP

Per implementare questa soluzione utilizzando un simulatore ONTAP, è necessario scaricare la versione più
recente di simulate ONTAP dal sito di supporto NetApp. Simulate ONTAP è un simulatore virtuale per il
software ONTAP. Simulate ONTAP viene eseguito in un hypervisor VMware su un sistema Windows, Linux o
Mac. Per gli host Windows e Linux, è necessario utilizzare l’hypervisor VMware Workstation per eseguire
questa soluzione. Se si dispone di un sistema operativo Mac, utilizzare l’hypervisor VMware Fusion.

Design a più strati

Il framework Ansible semplifica lo sviluppo e il riutilizzo dei task logici e dell’esecuzione dell’automazione. Il
framework distingue tra le attività decisionali (livello logico) e le fasi di esecuzione (livello di esecuzione)
nell’automazione. La comprensione del funzionamento di questi livelli consente di personalizzare la
configurazione.

Un "playbook" Ansible esegue una serie di task dall’inizio alla fine. La site.yml guida contiene la
logic.yml guida e la execution.yml guida.

Quando viene eseguita una richiesta, il site.yml playbook viene chiamato per primo il logic.yml playbook,
quindi chiama il execution.yml playbook per eseguire la richiesta di servizio.

Non è necessario utilizzare il livello logico del framework. Il livello logico fornisce opzioni per espandere la
capacità del framework oltre i valori hard-coded per l’esecuzione. Ciò consente di personalizzare le
funzionalità del framework, se necessario.

Livello logico

Il livello logico è costituito dai seguenti elementi:

• `logic.yml`Il manuale

• File di operazioni logiche all’interno della logic-tasks directory

Il livello logico offre la possibilità di prendere decisioni complesse senza la necessità di una significativa

1

https://console.netapp.com/automationHub
https://console.netapp.com/automationHub

integrazione personalizzata (ad esempio, la connessione a ServiceNOW). Il livello logico è configurabile e
fornisce l’ingresso ai microservizi.

È inoltre prevista la capacità di bypassare il livello logico. Se si desidera ignorare il livello logico, non definire la
logic_operation variabile. La invocazione diretta del logic.yml playbook offre la possibilità di effettuare
qualche livello di debug senza esecuzione. È possibile utilizzare un’istruzione "debug" per verificare che il
valore di raw_service_request sia corretto.

Considerazioni importanti:

• Il logic.yml playbook ricerca la logic_operation variabile. Se la variabile è definita nella richiesta,
carica un file di attività dalla logic-tasks directory. Il file di attività deve essere un file .yml. Se non esiste
un file di attività corrispondente e la logic_operation variabile è definita, il livello logico non riesce.

• Il valore predefinito della logic_operation variabile è no-op. Se la variabile non è definita in modo
esplicito, per impostazione predefinita è no-op, che non esegue alcuna operazione.

• Se la raw_service_request variabile è già definita, l’esecuzione procede al livello di esecuzione. Se la
variabile non è definita, il livello logico non riesce.

Livello di esecuzione

Il livello di esecuzione è costituito dai seguenti elementi:

• `execution.yml`Il manuale

Il livello di esecuzione effettua le chiamate API per configurare un cluster ONTAP. Il execution.yml playbook
richiede che la raw_service_request variabile sia definita al momento dell’esecuzione.

Supporto per la personalizzazione

È possibile personalizzare questa soluzione in vari modi a seconda delle proprie esigenze.

Le opzioni di personalizzazione includono:

• Modifica dei playbook Ansible

• Aggiunta di ruoli

Personalizza i file Ansible

La tabella seguente descrive i file Ansible personalizzabili contenuti in questa soluzione.

Posizione Descrizione

playbooks/inventory

/hosts

Contiene un singolo file con un elenco di host e gruppi.

playbooks/group_var

s/all/*

Ansible fornisce un modo pratico per applicare le variabili a più host
contemporaneamente. È possibile modificare uno o tutti i file contenuti in questa
cartella, inclusi cfg.yml clusters.yml , defaults.yml, services.yml,
standards.yml e vault.yml.

playbooks/logic-

tasks

Supporta le attività decisionali all’interno di Ansible e mantiene la separazione di
logica ed esecuzione. È possibile aggiungere file a questa cartella che
corrispondono al servizio pertinente.

2

Posizione Descrizione

playbooks/vars/* Valori dinamici utilizzati nei playbook e nei ruoli Ansible per consentire la
personalizzazione, la flessibilità e la riutilizzabilità delle configurazioni. Se
necessario, è possibile modificare uno o tutti i file contenuti in questa cartella.

Personalizzare i ruoli

Puoi anche personalizzare la soluzione aggiungendo o cambiando ruoli Ansible, anche chiamati microservizi.
Per ulteriori informazioni, vedere "Personalizza".

Preparare l’uso della soluzione ONTAP Day 0/1

Prima di implementare la soluzione di automazione, devi preparare l’ambiente ONTAP e
installare e configurare Ansible.

Considerazioni iniziali di pianificazione

È necessario analizzare i requisiti e le considerazioni seguenti prima di utilizzare questa soluzione per
implementare un cluster ONTAP.

Requisiti di base

Per utilizzare questa soluzione è necessario soddisfare i seguenti requisiti di base:

• Devi avere accesso al software ONTAP on-premise o tramite un simulatore ONTAP.

• È necessario sapere come utilizzare il software ONTAP.

• Devi sapere come utilizzare gli strumenti software di automazione Ansible.

Considerazioni sulla pianificazione

Prima di implementare questa soluzione di automazione, è necessario decidere:

• Posizione in cui eseguire il nodo di controllo Ansible.

• Sistema ONTAP (hardware on-premise) o simulatore ONTAP.

• Se è necessario personalizzare o meno.

Preparare il sistema ONTAP

Utilizzando un sistema ONTAP on-premise o simulando ONTAP, devi preparare l’ambiente prima di poter
implementare la soluzione di automazione.

Facoltativamente, installare e configurare simulate ONTAP

Per implementare questa soluzione attraverso un simulatore di ONTAP, è necessario scaricare ed eseguire
simulate ONTAP.

Prima di iniziare

• È necessario scaricare e installare l’hypervisor VMware che si intende utilizzare per eseguire simulate
ONTAP.

◦ Se si dispone di un sistema operativo Windows o Linux, utilizzare VMware Workstation.

◦ Se si dispone di un sistema operativo Mac, utilizzare VMware Fusion.

3

Se si utilizza un sistema operativo Mac OS, è necessario disporre di un processore Intel.

Fasi

Per installare due simulatori ONTAP nell’ambiente locale, attenersi alla procedura seguente:

1. Scaricare simulate ONTAP dal "Sito di supporto NetApp".

Anche se si installano due simulatori ONTAP, è sufficiente scaricare una sola copia del
software.

2. Se non è già in esecuzione, avviare l’applicazione VMware.

3. Individuare il file del simulatore scaricato e fare clic con il pulsante destro del mouse per aprirlo con
l’applicazione VMware.

4. Impostare il nome della prima istanza di ONTAP.

5. Attendere l’avvio del simulatore e seguire le istruzioni per creare un cluster a nodo singolo.

Ripetere la procedura per la seconda istanza di ONTAP.

6. In alternativa, è possibile aggiungere un complemento di dischi completo.

Da ciascun cluster, eseguire i seguenti comandi:

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

Stato del sistema ONTAP

Devi verificare lo stato iniziale del sistema ONTAP, sia on-premise che in esecuzione attraverso un simulatore
ONTAP.

Verificare che siano soddisfatti i seguenti requisiti di sistema ONTAP:

• ONTAP è installato e in esecuzione senza cluster ancora definiti.

• ONTAP viene avviato e visualizza l’indirizzo IP per accedere al cluster.

• La rete è raggiungibile.

• Si dispone delle credenziali di amministratore.

• Viene visualizzato il banner del messaggio del giorno (MOTD) con l’indirizzo di gestione.

Installare il software di automazione richiesto

Questa sezione fornisce informazioni su come installare Ansible e preparare la soluzione di automazione per
l’implementazione.

4

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

Installa Ansible

Ansible può essere installato su sistemi Linux o Windows.

Il metodo di comunicazione predefinito utilizzato da Ansible per comunicare con un cluster ONTAP è SSH.

Fare riferimento a "Introduzione a NetApp e Ansible: Installare Ansible" per installare Ansible.

Ansible deve essere installato sul nodo di controllo del sistema.

Scaricare e preparare la soluzione di automazione

Per scaricare e preparare la soluzione di automazione per la distribuzione, è possibile attenersi alla seguente
procedura.

1. Scarica il "ONTAP - giorno 0/1 controlli dello stato" soluzione di automazione tramite l’interfaccia utente
web della console. La soluzione è confezionata come ONTAP_DAY0_DAY1.zip.

2. Estrarre la cartella zip e copiare i file nella posizione desiderata sul nodo di controllo all’interno
dell’ambiente Ansible.

Configurazione iniziale del framework Ansible

Eseguire la configurazione iniziale del framework Ansible:

1. Passare a playbooks/inventory/group_vars/all.

2. Decrittografare il vault.yml file:

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

Quando viene richiesta la password del vault, immettere la seguente password temporanea:

NetApp123!

"NetApp123!" è una password temporanea per decrittografare il vault.yml file e la
password del vault corrispondente. Dopo il primo utilizzo, è necessario crittografare il file
utilizzando la propria password.

3. Modificare i seguenti file Ansible:

◦ clusters.yml - Modificare i valori in questo file per adattarli all’ambiente.

◦ vault.yml - Dopo aver decrittografato il file, modificare i valori del cluster ONTAP, del nome utente e
della password in base all’ambiente in uso.

◦ cfg.yml - Impostare il percorso del file per log2file e impostare show_request in cfg a True
per visualizzare raw_service_request .

La raw_service_request variabile viene visualizzata nei file di registro e durante l’esecuzione.

Ogni file elencato contiene commenti con istruzioni su come modificarlo in base alle proprie
esigenze.

5

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://console.netapp.com/automationHub

4. Crittografare nuovamente il vault.yml file:

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

Viene richiesto di scegliere una nuova password per il vault al momento della crittografia.

5. Navigare playbooks/inventory/hosts e impostare un interprete Python valido.

6. Implementare il framework_test servizio:

Il seguente comando esegue il na_ontap_info modulo con un gather_subset valore di
cluster_identity_info . In questo modo, la configurazione di base risulta corretta e si verifica la
possibilità di comunicare con il cluster.

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

Eseguire il comando per ciascun cluster.

Se l’operazione ha esito positivo, si dovrebbe visualizzare un output simile al seguente esempio:

PLAY RECAP

**

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

Implementare il cluster ONTAP utilizzando la soluzione

Dopo aver completato la preparazione e il planning, sei pronto a utilizzare la soluzione
ONTAP Day 0/1 per configurare rapidamente un cluster ONTAP utilizzando Ansible.

In qualsiasi momento durante le fasi di questa sezione, è possibile scegliere di testare una richiesta invece di
eseguirla. Per testare una richiesta, modificare il site.yml playbook sulla riga di comando in logic.yml.

La docs/tutorial-requests.txt posizione contiene la versione finale di tutte le richieste
di servizio utilizzate durante questa procedura. In caso di difficoltà nell’esecuzione di una
richiesta di servizio, è possibile copiare la richiesta pertinente dal tutorial-requests.txt
file nella playbooks/inventory/group_vars/all/tutorial-requests.yml posizione
e modificare i valori codificati come richiesto (indirizzo IP, nomi aggregati e così via). A questo
punto, è possibile eseguire correttamente la richiesta.

Prima di iniziare

• È necessario che Ansible sia installato.

• È necessario aver scaricato la soluzione ONTAP Day 0/1 ed estratto la cartella nella posizione desiderata

6

sul nodo di controllo Ansible.

• Lo stato del sistema ONTAP deve soddisfare i requisiti e l’utente deve disporre delle credenziali
necessarie.

• È necessario aver completato tutte le attività richieste indicate nella "Preparatevi"sezione .

Negli esempi di questa soluzione vengono utilizzati "Cluster_01" e "Cluster_02" come nomi per i
due cluster. È necessario sostituire questi valori con i nomi dei cluster nel proprio ambiente.

Fase 1: Configurazione iniziale del cluster

A questo punto, è necessario eseguire alcune operazioni iniziali di configurazione del cluster.

Fasi

1. Individuare la playbooks/inventory/group_vars/all/tutorial-requests.yml posizione e
rivedere la cluster_initial richiesta nel file. Apportare le modifiche necessarie al proprio ambiente.

2. Creare un file nella logic-tasks cartella per la richiesta di servizio. Ad esempio, creare un file
denominato cluster_initial.yml.

Copiare le seguenti righe nel nuovo file:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

3. Definire la raw_service_request variabile.

È possibile utilizzare una delle seguenti opzioni per definire la raw_service_request variabile nel
cluster_initial.yml file creato nella logic-tasks cartella:

◦ Opzione 1: Definire manualmente la raw_service_request variabile.

7

Aprire il tutorial-requests.yml file utilizzando un editor e copiare il contenuto dalla riga 11 alla
riga 165. Incollare il contenuto sotto la raw service request variabile nel nuovo
cluster_initial.yml file, come illustrato negli esempi seguenti:

8

Mostra esempio

File di esempio cluster_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

 service: cluster_initial

 operation: create

 std_name: none

 req_details:

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

 ontap_license:

 - hostname: "{{ cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

9

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - hostname: "{{ peer_cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

10

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 ontap_motd:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 message: "New MOTD"

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 message: "New MOTD"

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

11

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ peer_cluster_name }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ peer_cluster_name }}"

◦ Opzione 2: Utilizzare un modello Jinja per definire la richiesta:

È anche possibile utilizzare il seguente formato di modello Jinja per ottenere il
raw_service_request valore.

raw_service_request: "{{ cluster_initial }}"

4. Eseguire la configurazione iniziale del cluster per il primo cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

12

Prima di procedere, verificare che non vi siano errori.

5. Ripetere il comando per il secondo cluster:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

Verificare che non siano presenti errori per il secondo cluster.

Quando scorri verso l’alto verso l’inizio dell’output Ansible dovresti vedere la richiesta inviata al framework,
come mostrato nel seguente esempio:

13

Mostra esempio

TASK [Show the raw_service_request]

**

**

ok: [localhost] => {

 "raw_service_request": {

 "operation": "create",

 "req_details": {

 "ontap_aggr": [

 {

 "disk_count": 24,

 "hostname": "Cluster_01",

 "name": "n01_aggr1",

 "nodes": "Cluster_01-01",

 "raid_type": "raid4"

 }

],

 "ontap_license": [

 {

 "hostname": "Cluster_01",

 "license_codes": [

 "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

14

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

]

 }

],

 "ontap_motd": [

 {

 "hostname": "Cluster_01",

 "message": "New MOTD",

 "vserver": "Cluster_01"

 }

]

 },

 "service": "cluster_initial",

 "std_name": "none"

 }

}

6. Accedere a ciascuna istanza di ONTAP e verificare che la richiesta sia stata eseguita correttamente.

Fase 2: Configurare intercluster LIF

Ora puoi configurare i LIF intercluster LIF aggiungendo le definizioni LIF alla cluster_initial richiesta e
definendo il ontap_interface microservizio.

La definizione del servizio e la richiesta lavorano insieme per determinare l’azione:

• Se si fornisce una richiesta di servizio per un microservizio che non è presente nelle definizioni di servizio,
la richiesta non viene eseguita.

• Se si fornisce una richiesta di servizio con uno o più microservizi definiti nelle definizioni di servizio, ma
omessi dalla richiesta, la richiesta non viene eseguita.

Il execution.yml playbook valuta la definizione del servizio analizzando l’elenco dei microservizi nell’ordine
elencato:

• Se nella richiesta è presente una voce con una chiave dizionario corrispondente alla args voce contenuta
nelle definizioni di microservizi, la richiesta viene eseguita.

• Se nella richiesta di servizio non è presente alcuna voce corrispondente, la richiesta viene ignorata senza
errori.

15

Fasi

1. Passare al cluster_initial.yml file creato in precedenza e modificare la richiesta aggiungendo le
seguenti righe alle definizioni della richiesta:

16

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

17

2. Eseguire il comando:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. Effettua l’accesso a ciascuna istanza per verificare se le LIF sono state aggiunte al cluster:

Mostra esempio

Cluster_01::> net int show

 (network interface show)

 Logical Status Network Current

Current Is

Vserver Interface Admin/Oper Address/Mask Node

Port Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

 Cluster_01-01_mgmt up/up 10.0.0.101/24 Cluster_01-01

e0c true

 Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

 cluster_mgmt up/up 10.0.0.110/24 Cluster_01-01

e0c true

5 entries were displayed.

Il risultato mostra che le LIF sono state non aggiunte. Questo perché il ontap_interface microservizio
deve ancora essere definito nel services.yml file.

4. Verificare che le LIF siano state aggiunte alla raw_service_request variabile.

18

Mostra esempio

Il seguente esempio mostra che le LIF sono state aggiunte alla richiesta:

 "ontap_interface": [

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 },

 {

 "address": "10.0.0.126",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

19

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 }

],

5. Definire il ontap_interface microservizio in cluster_initial nel services.yml file.

Copiare le seguenti righe nel file per definire il microservizio:

 - name: ontap_interface

 args: ontap_interface

 role: na/ontap_interface

6. Ora che il ontap_interface microservizio è stato definito nella richiesta e nel services.yml file,
eseguire nuovamente la richiesta:

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. Accedere a ciascuna istanza di ONTAP e verificare che le LIF siano state aggiunte.

Fase 3: In alternativa, configurare più cluster

Se necessario, puoi configurare più cluster nella stessa richiesta. Quando si definisce la richiesta, è necessario
fornire i nomi delle variabili per ciascun cluster.

Fasi

1. Aggiungere una voce per il secondo cluster nel cluster_initial.yml file per configurare entrambi i
cluster nella stessa richiesta.

Nell’esempio seguente viene visualizzato il ontap_aggr campo dopo l’aggiunta della seconda voce.

20

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

2. Applicare le modifiche per tutti gli altri elementi in cluster_initial.

3. Aggiungere il peering dei cluster alla richiesta copiando le seguenti righe nel file:

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ cluster_peer }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ cluster_peer }}"

4. Eseguire la richiesta Ansible:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

Fase 4: Configurazione SVM iniziale

In questa fase della procedura è necessario configurare le SVM nel cluster.

Fasi

1. Aggiornare la svm_initial richiesta nel tutorial-requests.yml file per configurare un peer
relationship SVM e SVM.

È necessario configurare quanto segue:

◦ SVM

21

◦ La relazione peer della SVM

◦ L’interfaccia SVM per ciascuna SVM

2. Aggiornare le definizioni delle variabili nelle definizioni delle svm_initial richieste. È necessario
modificare le seguenti definizioni di variabile:

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

Per aggiornare le definizioni, rimuovere il simbolo * '{}'* dopo req_details per la svm_initial
definizione e aggiungere la definizione corretta.

3. Creare un file nella logic-tasks cartella per la richiesta di servizio. Ad esempio, creare un file
denominato svm_initial.yml.

Copiare le seguenti righe nel file:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

4. Definire la raw_service_request variabile.

È possibile utilizzare una delle seguenti opzioni per definire la raw_service_request variabile
svm_initial nella logic-tasks cartella:

◦ Opzione 1: Definire manualmente la raw_service_request variabile.

Aprire il tutorial-requests.yml file utilizzando un editor e copiare il contenuto dalla riga 179 alla

22

riga 222. Incollare il contenuto sotto la raw service request variabile nel nuovo
svm_initial.yml file, come illustrato negli esempi seguenti:

23

Mostra esempio

File di esempio svm_initial.yml:

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

 service: svm_initial

 operation: create

 std_name: none

 req_details:

 ontap_vserver:

 - hostname: "{{ cluster_name }}"

 name: "{{ vserver_name }}"

 root_volume_aggregate: n01_aggr1

 - hostname: "{{ peer_cluster_name }}"

 name: "{{ peer_vserver }}"

 root_volume_aggregate: n01_aggr1

 ontap_vserver_peer:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 peer_vserver: "{{ peer_vserver }}"

 applications: snapmirror

 peer_options:

 hostname: "{{ peer_cluster_name }}"

 ontap_interface:

24

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 interface_name: data01

 role: data

 address: 10.0.0.200

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_vserver }}"

 interface_name: data01

 role: data

 address: 10.0.0.201

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

◦ Opzione 2: Utilizzare un modello Jinja per definire la richiesta:

È anche possibile utilizzare il seguente formato di modello Jinja per ottenere il
raw_service_request valore.

raw_service_request: "{{ svm_initial }}"

5. Eseguire la richiesta:

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

6. Accedere a ciascuna istanza di ONTAP e convalidare la configurazione.

7. Aggiungere le interfacce della SVM.

Definire il ontap_interface servizio in svm_initial nel services.yml file ed eseguire nuovamente
la richiesta:

25

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

8. Effettuare l’accesso a ciascuna istanza di ONTAP e verificare che le interfacce della SVM siano state
configurate.

Fase 5: Se si desidera, definire una richiesta di servizio in modo dinamico

Nei passi precedenti, la raw_service_request variabile è codificata. Ciò è utile per l’apprendimento, lo
sviluppo e il test. È inoltre possibile generare dinamicamente una richiesta di servizio.

La sezione seguente fornisce un’opzione per produrre dinamicamente il necessario raw_service_request
se non si desidera integrarlo con sistemi di livello superiore.

• Se la logic_operation variabile non è definita nel comando, il logic.yml file non
importa alcun file dalla logic-tasks cartella. Ciò significa che i raw_service_request
devono essere definiti all’esterno di Ansible e forniti al framework al momento
dell’esecuzione.

• Il nome del file di un’operazione nella logic-tasks cartella deve corrispondere al valore
della logic_operation variabile senza estensione .yml.

• I file di attività nella logic-tasks cartella definiscono dinamicamente un
raw_service_request. l’unico requisito è che un valido raw_service_request sia
definito come l’ultima attività nel file pertinente.

Definizione dinamica di una richiesta di servizio

Esistono diversi modi per applicare un’attività logica per definire dinamicamente una richiesta di servizio. Di
seguito sono elencate alcune di queste opzioni:

• Utilizzo di un file attività Ansible dalla logic-tasks cartella

• Richiamo di un ruolo personalizzato che restituisce dati adatti alla conversione in un ruolo
raw_service_request variabile.

• Richiamo di un altro strumento all’esterno dell’ambiente Ansible per i dati richiesti. Ad esempio, una
chiamata API REST a Active IQ Unified Manager.

I seguenti comandi di esempio definiscono dinamicamente una richiesta di servizio per ogni cluster utilizzando
il tutorial-requests.yml file:

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

26

Fase 6: Distribuire la soluzione ONTAP Day 0/1

In questa fase, dovresti aver già completato quanto segue:

• Revisionato e modificato tutti i file in in playbooks/inventory/group_vars/all base alle proprie
esigenze. Ogni file contiene commenti dettagliati che consentono di apportare le modifiche.

• Aggiunti tutti i file di attività richiesti alla logic-tasks directory.

• Aggiunti tutti i file di dati necessari alla playbook/vars directory.

Utilizzare i seguenti comandi per implementare la soluzione ONTAP Day 0/1 e verificare lo stato di salute della
distribuzione:

In questa fase, il file dovrebbe essere già stato decrittografato e modificato vault.yml e deve
essere crittografato con la nuova password.

• Eseguire il servizio ONTAP Day 0:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Eseguire il servizio ONTAP Day 1:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• Applicare le impostazioni a livello di cluster:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• Eseguire i controlli dello stato di salute:

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

Personalizzare la soluzione ONTAP Day 0/1

Per personalizzare la soluzione ONTAP Day 0/1 in base ai tuoi requisiti, puoi aggiungere
o modificare i ruoli Ansible.

27

I ruoli rappresentano i microservizi all’interno del framework Ansible. Ogni microservizio esegue un’operazione.
Ad esempio, ONTAP Day 0 è un servizio che contiene più microservizi.

Aggiungi ruoli Ansible

Puoi aggiungere ruoli Ansible per personalizzare la soluzione per il tuo ambiente. I ruoli richiesti sono definiti
dalle definizioni dei servizi all’interno del framework Ansible.

Un ruolo deve soddisfare i seguenti requisiti per essere utilizzato come microservizio:

• Accettare un elenco di argomenti nella args variabile.

• Utilizza la struttura Ansible "Block, rescue, Always" con determinati requisiti per ogni blocco.

• Utilizza un singolo modulo Ansible e definisci un singolo task all’interno del blocco.

• Implementare tutti i parametri del modulo disponibili in base ai requisiti descritti in questa sezione.

Struttura di microservizio richiesta

Ogni ruolo deve supportare le seguenti variabili:

• mode: Se la modalità è impostata sul test ruolo tenta di importare il test.yml che mostra cosa fa il ruolo
senza eseguirlo.

Non è sempre possibile implementare questo processo a causa di alcune interdipendenze.

• status: Lo stato generale dell’esecuzione del playbook. Se il valore non è impostato success sul ruolo
non viene eseguito.

• args : Elenco di dizionari specifici per ruolo con chiavi che corrispondono ai nomi dei parametri del ruolo.

• global_log_messages: Raccoglie i messaggi di registro durante l’esecuzione del playbook. Ogni volta
che viene eseguito il ruolo viene generata una voce.

• log_name: Il nome utilizzato per fare riferimento al ruolo all’interno delle global_log_messages voci.

• task_descr: Una breve descrizione delle funzioni del ruolo.

• service_start_time: La data e l’ora utilizzate per tenere traccia dell’ora di esecuzione di ciascun ruolo.

• playbook_status: Lo stato del playbook Ansible.

• role_result: La variabile che contiene l’output del ruolo ed è inclusa in ogni messaggio all’interno delle
global_log_messages voci.

Esempio di struttura dei ruoli

Nell’esempio seguente viene fornita la struttura di base di un ruolo che implementa un microservizio. È
necessario modificare le variabili in questo esempio per la propria configurazione.

28

Mostra esempio

Struttura dei ruoli di base:

- name: Set some role attributes

 set_fact:

 log_name: "<LOG_NAME>"

 task_descr: "<TASK_DESCRIPTION>"

- name: "{{ log_name }}"

 block:

 - set_fact:

 service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

 - name: "Provision the new user"

 <MODULE_NAME>:

#---

 # COMMON ATTRIBUTES

#---

 hostname: "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

 username: "{{

clusters[loop_arg['hostname']]['username'] }}"

 password: "{{

clusters[loop_arg['hostname']]['password'] }}"

 cert_filepath: "{{ loop_arg['cert_filepath']

| default(omit) }}"

 feature_flags: "{{ loop_arg['feature_flags']

| default(omit) }}"

 http_port: "{{ loop_arg['http_port']

| default(omit) }}"

 https: "{{ loop_arg['https']

| default('true') }}"

 ontapi: "{{ loop_arg['ontapi']

| default(omit) }}"

 key_filepath: "{{ loop_arg['key_filepath']

| default(omit) }}"

 use_rest: "{{ loop_arg['use_rest']

| default(omit) }}"

 validate_certs: "{{ loop_arg['validate_certs']

| default('false') }}"

29

 <MODULE_SPECIFIC_PARAMETERS>

#---

 # REQUIRED ATTRIBUTES

#---

 required_parameter: "{{ loop_arg['required_parameter']

}}"

#---

 # ATTRIBUTES w/ DEFAULTS

#---

 defaulted_parameter: "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

#---

 # OPTIONAL ATTRIBUTES

#---

 optional_parameter: "{{ loop_arg['optional_parameter']

| default(omit) }}"

 loop: "{{ args }}"

 loop_control:

 loop_var: loop_arg

 register: role_result

 rescue:

 - name: Set role status to FAIL

 set_fact:

 playbook_status: "failed"

 always:

 - name: add log msg

 vars:

 role_log:

 role: "{{ log_name }}"

 timestamp:

 start_time: "{{service_start_time}}"

 end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

 service_status: "{{ playbook_status }}"

 result: "{{role_result}}"

 set_fact:

 global_log_msgs: "{{ global_log_msgs + [role_log] }}"

30

Variabili utilizzate nel ruolo di esempio:

• <NAME>: Un valore sostituibile che deve essere fornito per ogni microservizio.

• <LOG_NAME>: Il nome breve del ruolo utilizzato per la registrazione. Ad esempio, ONTAP_VOLUME.

• <TASK_DESCRIPTION>: Una breve descrizione delle funzioni del microservizio.

• <MODULE_NAME>: Il nome del modulo Ansible per l’attività.

Il playbook di livello superiore execute.yml specifica la netapp.ontap raccolta. Se il
modulo fa parte dell' `netapp.ontap`insieme, non è necessario specificare completamente il
nome del modulo.

• <MODULE_SPECIFIC_PARAMETERS>: Parametri del modulo Ansible specifici del modulo utilizzato per
implementare il microservizio. Nell’elenco seguente vengono descritti i tipi di parametri e le relative
modalità di raggruppamento.

◦ Parametri richiesti: Tutti i parametri richiesti sono specificati senza alcun valore predefinito.

◦ Parametri che hanno un valore predefinito specifico per il microservizio (non uguale a un valore
predefinito specificato nella documentazione del modulo).

◦ Tutti i parametri rimanenti utilizzano default(omit) come valore predefinito.

Utilizzo di dizionari multilivello come parametri del modulo

Alcuni moduli Ansible forniti da NetApp utilizzano dizionari multi-livello per i parametri dei moduli (ad esempio
gruppi di policy QoS fissi e adattivi).

L’uso default(omit) da solo non funziona quando si utilizzano questi dizionari, specialmente quando ne
esistono più di uno e si escludono a vicenda.

Se è necessario utilizzare dizionari multilivello come parametri del modulo, è necessario suddividere la
funzionalità in più microservizi (ruoli) in modo che ciascuno di essi possa fornire almeno un valore del
dizionario di secondo livello per il dizionario pertinente.

Gli esempi seguenti mostrano gruppi di criteri QoS fissi e adattivi suddivisi in due microservizi.

Il primo microservizio contiene valori di gruppo di criteri QoS fissi:

31

fixed_qos_options:

 capacity_shared: "{{

loop_arg['fixed_qos_options']['capacity_shared'] | default(omit)

}}"

 max_throughput_iops: "{{

loop_arg['fixed_qos_options']['max_throughput_iops'] | default(omit)

}}"

 min_throughput_iops: "{{

loop_arg['fixed_qos_options']['min_throughput_iops'] | default(omit)

}}"

 max_throughput_mbps: "{{

loop_arg['fixed_qos_options']['max_throughput_mbps'] | default(omit)

}}"

 min_throughput_mbps: "{{

loop_arg['fixed_qos_options']['min_throughput_mbps'] | default(omit)

}}"

Il secondo microservizio contiene i valori dei gruppi di criteri QoS adattivi:

adaptive_qos_options:

 absolute_min_iops: "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

 expected_iops: "{{

loop_arg['adaptive_qos_options']['expected_iops'] | default(omit) }}"

 peak_iops: "{{

loop_arg['adaptive_qos_options']['peak_iops'] | default(omit) }}"

32

Informazioni sul copyright

Copyright © 2025 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e
dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM’È" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL’ATTIVITÀ AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L’UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA L’EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l’utilizzo dei
prodotti o materiali descritti nel presente documento, con l’eccezione di quanto concordato espressamente e
per iscritto da NetApp. L’utilizzo o l’acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di
NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l’utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l’utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

33

http://www.netapp.com/TM

	ONTAP : NetApp Automation
	Sommario
	ONTAP
	Giorno 0/1
	Panoramica della soluzione ONTAP Day 0/1
	Preparare l’uso della soluzione ONTAP Day 0/1
	Implementare il cluster ONTAP utilizzando la soluzione
	Personalizzare la soluzione ONTAP Day 0/1

