
Soluzione di database vettoriale con
NetApp
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/ai-vdb-solution-
with-netapp.html on February 12, 2026. Always check docs.netapp.com for the latest.

Sommario

Soluzione di database vettoriale con NetApp . 1

Soluzione di database vettoriale con NetApp . 1

Introduzione . 2

Introduzione . 2

Panoramica della soluzione . 2

Panoramica della soluzione . 2

Database vettoriale . 3

Database vettoriale . 3

Requisiti tecnologici . 6

Requisiti tecnologici . 6

Requisiti hardware . 7

Requisiti software. 7

Procedura di distribuzione . 7

Procedura di distribuzione . 7

Verifica della soluzione. 9

Panoramica della soluzione . 9

Configurazione del cluster Milvus con Kubernetes in locale . 10

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità file e oggetto . 17

Protezione del database vettoriale tramite SnapCenter . 24

Ripristino di emergenza tramite NetApp SnapMirror . 35

Validazione delle prestazioni del database vettoriale . 37

Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector . 45

Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector . 45

Casi d’uso del database vettoriale . 45

Casi d’uso del database vettoriale . 45

Conclusione . 48

Conclusione . 48

Appendice A: Values.yaml . 49

Appendice A: Values.yaml . 49

Appendice B: prepare_data_netapp_new.py . 70

Appendice B: prepare_data_netapp_new.py . 70

Appendice C: verify_data_netapp.py . 73

Appendice C: verify_data_netapp.py . 74

Appendice D: docker-compose.yml . 77

Appendice D: docker-compose.yml . 77

Soluzione di database vettoriale con NetApp

Soluzione di database vettoriale con NetApp

Karthikeyan Nagalingam e Rodrigo Nascimento, NetApp

Questo documento fornisce un’analisi approfondita dell’implementazione e della gestione
di database vettoriali, come Milvus e pgvecto, un’estensione open source di PostgreSQL,
utilizzando le soluzioni di storage di NetApp. Descrive dettagliatamente le linee guida
dell’infrastruttura per l’utilizzo di NetApp ONTAP e StorageGRID Object Storage e
convalida l’applicazione del database Milvus in AWS FSx ONTAP. Il documento illustra la
dualità file-oggetto di NetApp e la sua utilità per database vettoriali e applicazioni che
supportano incorporamenti vettoriali. Sottolinea le capacità di SnapCenter, il prodotto di
gestione aziendale di NetApp, nell’offrire funzionalità di backup e ripristino per database
vettoriali, garantendo l’integrità e la disponibilità dei dati. Il documento approfondisce
ulteriormente la soluzione cloud ibrida di NetApp, discutendone il ruolo nella replicazione
e protezione dei dati negli ambienti on-premise e cloud. Include approfondimenti sulla
convalida delle prestazioni dei database vettoriali su NetApp ONTAP e si conclude con
due casi d’uso pratici sull’intelligenza artificiale generativa: RAG con LLM e ChatAI
interno di NetApp. Questo documento costituisce una guida completa per sfruttare al
meglio le soluzioni di storage di NetApp per la gestione dei database vettoriali.

L’architettura di riferimento si concentra sui seguenti punti:

1. "Introduzione"

2. "Panoramica della soluzione"

3. "Database vettoriale"

4. "Requisiti tecnologici"

5. "Procedura di distribuzione"

6. "Panoramica sulla verifica della soluzione"

◦ "Configurazione del cluster Milvus con Kubernetes in locale"

◦ Milvus con Amazon FSx ONTAP per NetApp ONTAP – dualità file e oggetto

◦ "Protezione del database vettoriale tramite NetApp SnapCenter."

◦ "Ripristino di emergenza tramite NetApp SnapMirror"

◦ "Validazione delle prestazioni"

7. "Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector"

8. "Casi d’uso del database vettoriale"

9. "Conclusione"

10. "Appendice A: values.yaml"

11. "Appendice B: prepare_data_netapp_new.py"

12. "Appendice C: verify_data_netapp.py"

1

https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

13. "Appendice D: docker-compose.yml"

Introduzione

Questa sezione fornisce un’introduzione alla soluzione di database vettoriale per NetApp.

Introduzione

I database vettoriali affrontano in modo efficace le sfide progettate per gestire le complessità della ricerca
semantica nei Large Language Models (LLM) e nell’intelligenza artificiale generativa (IA). A differenza dei
tradizionali sistemi di gestione dei dati, i database vettoriali sono in grado di elaborare e ricercare vari tipi di
dati, tra cui immagini, video, testo, audio e altre forme di dati non strutturati, utilizzando il contenuto dei dati
stessi anziché etichette o tag.

I limiti dei sistemi di gestione di database relazionali (RDBMS) sono ben documentati, in particolare le difficoltà
con le rappresentazioni di dati ad alta dimensionalità e i dati non strutturati comuni nelle applicazioni di
intelligenza artificiale. Gli RDBMS spesso richiedono un processo lungo e soggetto a errori per appiattire i dati
in strutture più gestibili, con conseguenti ritardi e inefficienze nelle ricerche. I database vettoriali, tuttavia, sono
progettati per aggirare questi problemi, offrendo una soluzione più efficiente e accurata per la gestione e la
ricerca di dati complessi e ad alta dimensionalità, facilitando così il progresso delle applicazioni di intelligenza
artificiale.

Questo documento costituisce una guida completa per i clienti che attualmente utilizzano o intendono utilizzare
database vettoriali, illustrando dettagliatamente le best practice per l’utilizzo di database vettoriali su
piattaforme quali NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP per NetApp ONTAP e
SnapCenter. I contenuti forniti nel presente documento coprono una vasta gamma di argomenti:

• Linee guida infrastrutturali per database vettoriali, come Milvus, fornite da NetApp Storage tramite NetApp
ONTAP e StorageGRID Object Storage.

• Validazione del database Milvus in AWS FSx ONTAP tramite archivio di file e oggetti.

• Approfondisce la dualità file-oggetto di NetApp, dimostrandone l’utilità per i dati nei database vettoriali e in
altre applicazioni.

• In che modo il prodotto Data Protection Management di NetApp, SnapCenter, offre funzionalità di backup e
ripristino per i dati dei database vettoriali.

• In che modo l’Hybrid Cloud di NetApp offre replicazione e protezione dei dati negli ambienti on-premise e
cloud.

• Fornisce approfondimenti sulla convalida delle prestazioni di database vettoriali come Milvus e pgvector su
NetApp ONTAP.

• Due casi d’uso specifici: Retrieval Augmented Generation (RAG) con Large Language Models (LLM) e
ChatAI del team IT di NetApp , che offrono esempi pratici dei concetti e delle pratiche delineati.

Panoramica della soluzione

Questa sezione fornisce una panoramica della soluzione di database vettoriale NetApp .

Panoramica della soluzione

Questa soluzione mette in mostra i vantaggi e le capacità distintive che NetApp offre per affrontare le sfide che
i clienti dei database vettoriali si trovano ad affrontare. Sfruttando NetApp ONTAP, StorageGRID, le soluzioni
cloud di NetApp e SnapCenter, i clienti possono aggiungere un valore significativo alle loro operazioni

2

aziendali. Questi strumenti non solo risolvono i problemi esistenti, ma migliorano anche l’efficienza e la
produttività, contribuendo così alla crescita aziendale complessiva.

Perché NetApp?

• Le offerte di NetApp, come ONTAP e StorageGRID, consentono la separazione tra storage ed
elaborazione, consentendo un utilizzo ottimale delle risorse in base a requisiti specifici. Questa flessibilità
consente ai clienti di scalare in modo indipendente il proprio storage utilizzando le soluzioni di storage
NetApp .

• Sfruttando i controller di storage di NetApp, i clienti possono fornire in modo efficiente i dati al proprio
database vettoriale utilizzando i protocolli NFS e S3. Questi protocolli facilitano l’archiviazione dei dati dei
clienti e gestiscono l’indice del database vettoriale, eliminando la necessità di più copie dei dati a cui si
accede tramite metodi di file e oggetti.

• NetApp ONTAP fornisce supporto nativo per NAS e storage di oggetti attraverso i principali provider di
servizi cloud come AWS, Azure e Google Cloud. Questa ampia compatibilità garantisce un’integrazione
perfetta, consentendo la mobilità dei dati dei clienti, l’accessibilità globale, il ripristino di emergenza, la
scalabilità dinamica e le prestazioni elevate.

• Grazie alle solide funzionalità di gestione dei dati di NetApp, i clienti possono stare tranquilli sapendo che i
loro dati sono ben protetti da potenziali rischi e minacce. NetApp dà priorità alla sicurezza dei dati, offrendo
ai clienti la tranquillità di sapere che le loro preziose informazioni sono al sicuro e integre.

Database vettoriale

Questa sezione tratta la definizione e l’uso di un database vettoriale nelle soluzioni di
intelligenza artificiale NetApp .

Database vettoriale

Un database vettoriale è un tipo specializzato di database progettato per gestire, indicizzare e ricercare dati
non strutturati utilizzando incorporamenti di modelli di apprendimento automatico. Invece di organizzare i dati
in un formato tabellare tradizionale, li organizza come vettori ad alta dimensionalità, noti anche come
incorporamenti vettoriali. Questa struttura unica consente al database di gestire dati complessi e
multidimensionali in modo più efficiente e accurato.

Una delle funzionalità principali di un database vettoriale è l’utilizzo dell’intelligenza artificiale generativa per
eseguire analisi. Ciò include ricerche di similarità, in cui il database identifica punti dati simili a un dato input, e
rilevamento di anomalie, in cui può individuare punti dati che si discostano significativamente dalla norma.

Inoltre, i database vettoriali sono adatti a gestire dati temporali, ovvero dati con timestamp. Questo tipo di dati
fornisce informazioni su "cosa" è successo e quando è successo, in sequenza e in relazione a tutti gli altri
eventi all’interno di un dato sistema IT. Questa capacità di gestire e analizzare dati temporali rende i database
vettoriali particolarmente utili per le applicazioni che richiedono la comprensione degli eventi nel tempo.

Vantaggi del database vettoriale per ML e AI:

• Ricerca ad alta dimensionalità: i database vettoriali eccellono nella gestione e nel recupero di dati ad alta
dimensionalità, spesso generati nelle applicazioni di intelligenza artificiale e apprendimento automatico.

• Scalabilità: possono scalare in modo efficiente per gestire grandi volumi di dati, supportando la crescita e
l’espansione dei progetti di intelligenza artificiale e apprendimento automatico.

• Flessibilità: i database vettoriali offrono un elevato grado di flessibilità, consentendo di gestire diversi tipi di
dati e strutture.

3

• Prestazioni: garantiscono una gestione e un recupero dei dati ad alte prestazioni, fondamentali per la
velocità e l’efficienza delle operazioni di intelligenza artificiale e apprendimento automatico.

• Indicizzazione personalizzabile: i database vettoriali offrono opzioni di indicizzazione personalizzabili,
consentendo un’organizzazione e un recupero dei dati ottimizzati in base a esigenze specifiche.

Database vettoriali e casi d’uso.

Questa sezione fornisce vari database vettoriali e i dettagli sui loro casi d’uso.

Faiss e ScaNN

Si tratta di librerie che rappresentano strumenti essenziali nel campo della ricerca vettoriale. Queste librerie
forniscono funzionalità fondamentali per la gestione e la ricerca nei dati vettoriali, il che le rende risorse
inestimabili in questo settore specializzato della gestione dei dati.

Elasticsearch

È un motore di ricerca e analisi ampiamente utilizzato, che ha recentemente incorporato funzionalità di ricerca
vettoriale. Questa nuova funzionalità ne migliora le funzionalità, consentendo di gestire e ricercare i dati
vettoriali in modo più efficace.

Pigna

Si tratta di un solido database vettoriale con un set di funzionalità unico. Supporta sia vettori densi che sparsi
nella sua funzionalità di indicizzazione, il che ne aumenta la flessibilità e l’adattabilità. Uno dei suoi punti di
forza principali risiede nella capacità di combinare i metodi di ricerca tradizionali con la ricerca vettoriale densa
basata sull’intelligenza artificiale, creando un approccio di ricerca ibrido che sfrutta il meglio di entrambi i
mondi.

Basato principalmente sul cloud, Pinecone è progettato per applicazioni di apprendimento automatico e si
integra bene con una varietà di piattaforme, tra cui GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut Plus,
Elasticsearch, Haystack e altre ancora. È importante notare che Pinecone è una piattaforma closed-source ed
è disponibile come offerta Software as a Service (SaaS).

Grazie alle sue capacità avanzate, Pinecone è particolarmente adatto al settore della sicurezza informatica,
dove le sue capacità di ricerca ad alta dimensione e di ricerca ibrida possono essere sfruttate efficacemente
per rilevare e rispondere alle minacce.

Croma

Si tratta di un database vettoriale dotato di una Core-API con quattro funzioni principali, una delle quali include
un archivio di documenti vettoriali in memoria. Utilizza inoltre la libreria Face Transformers per vettorializzare i
documenti, migliorandone la funzionalità e la versatilità. Chroma è progettato per funzionare sia nel cloud che
in locale, offrendo flessibilità in base alle esigenze degli utenti. In particolare, eccelle nelle applicazioni audio, il
che lo rende una scelta eccellente per motori di ricerca basati sull’audio, sistemi di raccomandazione musicale
e altri casi d’uso audio-correlati.

Tessitura

Si tratta di un database vettoriale versatile che consente agli utenti di vettorializzare i propri contenuti
utilizzando moduli integrati o moduli personalizzati, garantendo flessibilità in base a esigenze specifiche. Offre
soluzioni sia completamente gestite che self-hosted, soddisfacendo una varietà di preferenze di distribuzione.

Una delle caratteristiche principali di Weaviate è la sua capacità di memorizzare sia vettori che oggetti,
migliorando le sue capacità di gestione dei dati. È ampiamente utilizzato per una vasta gamma di applicazioni,

4

tra cui la ricerca semantica e la classificazione dei dati nei sistemi ERP. Nel settore dell’e-commerce, alimenta i
motori di ricerca e di raccomandazione. Weaviate viene utilizzato anche per la ricerca di immagini, il
rilevamento di anomalie, l’armonizzazione automatica dei dati e l’analisi delle minacce alla sicurezza
informatica, dimostrando la sua versatilità in più ambiti.

Redis

Redis è un database vettoriale ad alte prestazioni, noto per la sua rapida archiviazione in memoria, che offre
bassa latenza per le operazioni di lettura-scrittura. Ciò lo rende una scelta eccellente per sistemi di
raccomandazione, motori di ricerca e applicazioni di analisi dei dati che richiedono un rapido accesso ai dati.

Redis supporta varie strutture dati per i vettori, tra cui elenchi, set e set ordinati. Fornisce inoltre operazioni
vettoriali come il calcolo delle distanze tra vettori o la ricerca di intersezioni e unioni. Queste funzionalità sono
particolarmente utili per la ricerca di similarità, il clustering e i sistemi di raccomandazione basati sui contenuti.

In termini di scalabilità e disponibilità, Redis eccelle nella gestione di carichi di lavoro ad alta produttività e offre
la replica dei dati. Si integra bene anche con altri tipi di dati, compresi i database relazionali tradizionali
(RDBMS). Redis include una funzionalità Pubblica/Sottoscrivi (Pub/Sub) per aggiornamenti in tempo reale,
utile per la gestione dei vettori in tempo reale. Inoltre, Redis è leggero e semplice da usare, il che lo rende una
soluzione intuitiva per la gestione dei dati vettoriali.

Milvus

Si tratta di un database vettoriale versatile che offre un’API simile a un archivio di documenti, molto simile a
MongoDB. Si distingue per il supporto di un’ampia varietà di tipi di dati, il che lo rende una scelta popolare nei
settori della scienza dei dati e dell’apprendimento automatico.

Una delle caratteristiche uniche di Milvus è la sua capacità di multi-vettorizzazione, che consente agli utenti di
specificare in fase di esecuzione il tipo di vettore da utilizzare per la ricerca. Inoltre, utilizza Knowwhere, una
libreria che si basa su altre librerie come Faiss, per gestire la comunicazione tra le query e gli algoritmi di
ricerca vettoriale.

Milvus offre inoltre un’integrazione perfetta con i flussi di lavoro di apprendimento automatico, grazie alla
compatibilità con PyTorch e TensorFlow. Ciò lo rende uno strumento eccellente per una vasta gamma di
applicazioni, tra cui e-commerce, analisi di immagini e video, riconoscimento di oggetti, ricerca di similarità di
immagini e recupero di immagini basato sui contenuti. Nell’ambito dell’elaborazione del linguaggio naturale,
Milvus viene utilizzato per il clustering di documenti, la ricerca semantica e i sistemi di risposta alle domande.

Per questa soluzione abbiamo scelto Milvus per la convalida della soluzione. Per le prestazioni, abbiamo
utilizzato sia milvus che postgres(pgvecto.rs).

Perché abbiamo scelto Milvus per questa soluzione?

• Open-source: Milvus è un database vettoriale open-source che incoraggia lo sviluppo e i miglioramenti
guidati dalla comunità.

• Integrazione AI: sfrutta l’integrazione della ricerca di similarità e delle applicazioni AI per migliorare la
funzionalità del database vettoriale.

• Gestione di grandi volumi: Milvus è in grado di archiviare, indicizzare e gestire oltre un miliardo di vettori di
incorporamento generati da modelli di reti neurali profonde (DNN) e apprendimento automatico (ML).

• Facile da usare: è facile da usare e la configurazione richiede meno di un minuto. Milvus offre anche SDK
per diversi linguaggi di programmazione.

• Velocità: offre velocità di recupero incredibilmente elevate, fino a 10 volte superiori rispetto ad alcune
alternative.

5

• Scalabilità e disponibilità: Milvus è altamente scalabile, con opzioni di scalabilità verticale e orizzontale in
base alle esigenze.

• Ricco di funzionalità: supporta diversi tipi di dati, filtraggio degli attributi, supporto delle funzioni definite
dall’utente (UDF), livelli di coerenza configurabili e tempi di percorrenza, il che lo rende uno strumento
versatile per varie applicazioni.

Panoramica dell’architettura di Milvus

Questa sezione illustra i componenti e i servizi di livello superiore utilizzati nell’architettura Milvus. * Livello di
accesso: è composto da un gruppo di proxy stateless e funge da livello frontale del sistema e da endpoint per
gli utenti. * Servizio di coordinamento: assegna i compiti ai nodi worker e funge da cervello del sistema. Ha tre
tipi di coordinatore: root coord, data coord e query coord. * Nodi worker: seguono le istruzioni del servizio
coordinatore ed eseguono i comandi DML/DDL attivati dall’utente. Hanno tre tipi di nodi worker: nodo query,
nodo dati e nodo indice. * Archiviazione: è responsabile della persistenza dei dati. Comprende meta-
archiviazione, log broker e archiviazione di oggetti. Le soluzioni di storage NetApp , come ONTAP e
StorageGRID, forniscono a Milvus storage di oggetti e storage basato su file sia per i dati dei clienti che per i
dati dei database vettoriali.

Requisiti tecnologici

Questa sezione fornisce una panoramica dei requisiti per la soluzione di database
vettoriale NetApp .

Requisiti tecnologici

Le configurazioni hardware e software descritte di seguito sono state utilizzate per la maggior parte delle
convalide eseguite in questo documento, ad eccezione delle prestazioni. Queste configurazioni servono come
linee guida per aiutarti a configurare il tuo ambiente. Tuttavia, si prega di notare che i componenti specifici

6

possono variare a seconda delle esigenze individuali del cliente.

Requisiti hardware

Hardware Dettagli

Coppia HA di array di storage NetApp AFF * A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Due volumi di gruppo flessibili: metadati e dati. * Il
volume NFS dei metadati ha 12 volumi persistenti da
250 GB. * I dati sono un volume ONTAP NAS S3

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPU * CPU Intel® Xeon® Gold 6142 a 2,60 GHz
* 256 GM di memoria fisica * 1 porta di rete da 100
GbE

Networking 100 GbE

StorageGRID * 1 x SG100, 3xSGF6024 * 3 x 24 x 7,68 TB

Requisiti software

Software Dettagli

Ammasso di Milvus * GRAFICO - milvus-4.1.11. * Versione APP – 2.3.4 *
Bundle dipendenti come bookkeeper, zookeeper,
pulsar, etcd, proxy, querynode, worker

Kubernetes * Cluster K8s a 5 nodi * 1 nodo master e 4 nodi
worker * Versione – 1.7.2

Pitone *3.10.12.

Procedura di distribuzione

In questa sezione viene illustrata la procedura di distribuzione per la soluzione di
database vettoriale per NetApp.

Procedura di distribuzione

In questa sezione di distribuzione, abbiamo utilizzato il database vettoriale Milvus con Kubernetes per la
configurazione del laboratorio come di seguito.

7

NetApp Storage fornisce lo spazio di archiviazione per il cluster in cui conservare i dati dei clienti e i dati del
cluster Milvus.

Configurazione dello storage NetApp – ONTAP

• Inizializzazione del sistema di archiviazione

• Creazione di una macchina virtuale di archiviazione (SVM)

• Assegnazione delle interfacce di rete logiche

• Configurazione e licenza NFS, S3

Per NFS (Network File System) seguire i passaggi sottostanti:

1. Creare un volume FlexGroup per NFSv4. Nella nostra configurazione per questa convalida, abbiamo
utilizzato 48 SSD, 1 SSD dedicato al volume root del controller e 47 SSD distribuiti per NFSv4. Verificare
che la policy di esportazione NFS per il volume FlexGroup disponga di autorizzazioni di lettura/scrittura per
la rete dei nodi Kubernetes (K8). Se queste autorizzazioni non sono disponibili, concedere autorizzazioni di
lettura/scrittura (rw) per la rete dei nodi K8s.

2. Su tutti i nodi K8s, creare una cartella e montare il volume FlexGroup su questa cartella tramite
un’interfaccia logica (LIF) su ciascun nodo K8s.

Per NAS S3 (Network Attached Storage Simple Storage Service), seguire i passaggi indicati di seguito:

8

1. Creare un volume FlexGroup per NFS.

2. Impostare un object-store-server con HTTP abilitato e lo stato di amministrazione impostato su "attivo"
utilizzando il comando "vserver object-store-server create". Hai la possibilità di abilitare HTTPS e
impostare una porta di ascolto personalizzata.

3. Creare un utente object-store-server utilizzando il comando "vserver object-store-server user create -user
<username>".

4. Per ottenere la chiave di accesso e la chiave segreta, è possibile eseguire il seguente comando: "set diag;
vserver object-store-server user show -user <nomeutente>". Tuttavia, in futuro, queste chiavi verranno
fornite durante il processo di creazione dell’utente oppure potranno essere recuperate tramite chiamate
API REST.

5. Creare un gruppo object-store-server utilizzando l’utente creato nel passaggio 2 e concedere l’accesso. In
questo esempio abbiamo fornito "FullAccess".

6. Creare un bucket NAS impostandone il tipo su "nas" e specificando il percorso al volume NFSv3. A questo
scopo è anche possibile utilizzare un bucket S3.

Configurazione dell’archiviazione NetApp – StorageGRID

1. Installare il software storageGRID.

2. Crea un tenant e un bucket.

3. Crea un utente con l’autorizzazione richiesta.

Per maggiori dettagli consultare https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Verifica della soluzione

Panoramica della soluzione

Abbiamo condotto una convalida completa della soluzione incentrata su cinque aree
chiave, i cui dettagli sono descritti di seguito. Ogni sezione approfondisce le sfide
affrontate dai clienti, le soluzioni fornite da NetApp e i conseguenti vantaggi per il cliente.

1. "Configurazione del cluster Milvus con Kubernetes in locale"Le sfide dei clienti per scalare in modo
indipendente su storage e calcolo, gestione efficace dell’infrastruttura e gestione dei dati. In questa
sezione, descriviamo in dettaglio il processo di installazione di un cluster Milvus su Kubernetes, utilizzando
un controller di archiviazione NetApp sia per i dati del cluster che per i dati dei clienti.

2. Milvus con Amazon FSx ONTAP per NetApp ONTAP – dualità file e oggetto In questa sezione,
spiegheremo perché è necessario distribuire un database vettoriale nel cloud e i passaggi per distribuire
un database vettoriale (milvus standalone) in Amazon FSx ONTAP per NetApp ONTAP all’interno di
container Docker.

3. "Protezione del database vettoriale tramite NetApp SnapCenter."In questa sezione approfondiamo il modo
in cui SnapCenter salvaguarda i dati del database vettoriale e i dati Milvus residenti in ONTAP. Per questo
esempio, abbiamo utilizzato un bucket NAS (milvusdbvol1) derivato da un volume NFS ONTAP (vol1) per i
dati dei clienti e un volume NFS separato (vectordbpv) per i dati di configurazione del cluster Milvus.

4. "Ripristino di emergenza tramite NetApp SnapMirror"In questa sezione, discuteremo dell’importanza del
Disaster Recovery (DR) per il database vettoriale e di come il prodotto di Disaster Recovery di NetApp
Snapmirror fornisca una soluzione DR per il database vettoriale.

5. "Validazione delle prestazioni"In questa sezione, ci proponiamo di approfondire la convalida delle
prestazioni dei database vettoriali, come Milvus e pgvecto.rs, concentrandoci sulle caratteristiche delle

9

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html
https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

prestazioni di storage, come il profilo I/O e il comportamento del controller di storage NetApp a supporto
dei carichi di lavoro RAG e di inferenza all’interno del ciclo di vita LLM. Valuteremo e identificheremo
eventuali fattori differenzianti nelle prestazioni quando questi database saranno combinati con la soluzione
di archiviazione ONTAP . La nostra analisi si baserà su indicatori chiave di prestazione, come il numero di
query elaborate al secondo (QPS).

Configurazione del cluster Milvus con Kubernetes in locale

Questa sezione illustra la configurazione del cluster Milvus per la soluzione di database
vettoriale per NetApp.

Configurazione del cluster Milvus con Kubernetes in locale

Le sfide dei clienti per scalare in modo indipendente su storage e calcolo, una gestione efficace
dell’infrastruttura e la gestione dei dati, Kubernetes e i database vettoriali insieme formano una soluzione
potente e scalabile per la gestione di operazioni su grandi quantità di dati. Kubernetes ottimizza le risorse e
gestisce i container, mentre i database vettoriali gestiscono in modo efficiente i dati ad alta dimensionalità e le
ricerche di similarità. Questa combinazione consente l’elaborazione rapida di query complesse su grandi set di
dati e si adatta perfettamente ai crescenti volumi di dati, rendendola ideale per applicazioni big data e carichi di
lavoro di intelligenza artificiale.

1. In questa sezione, descriviamo in dettaglio il processo di installazione di un cluster Milvus su Kubernetes,
utilizzando un controller di archiviazione NetApp sia per i dati del cluster che per i dati dei clienti.

2. Per installare un cluster Milvus, sono necessari volumi persistenti (PV) per archiviare i dati provenienti da
vari componenti del cluster Milvus. Questi componenti includono etcd (tre istanze), pulsar-bookie-journal
(tre istanze), pulsar-bookie-ledgers (tre istanze) e pulsar-zookeeper-data (tre istanze).

Nel cluster Milvus, possiamo utilizzare sia Pulsar che Kafka come motore sottostante che
supporta l’archiviazione affidabile e la pubblicazione/sottoscrizione dei flussi di messaggi del
cluster Milvus. Per Kafka con NFS, NetApp ha apportato miglioramenti in ONTAP 9.12.1 e
versioni successive, e questi miglioramenti, insieme alle modifiche di NFSv4.1 e Linux
incluse in RHEL 8.7 o 9.1 e versioni successive, risolvono il problema della "rinomina
stupida" che può verificarsi quando si esegue Kafka su NFS. Se sei interessato a
informazioni più approfondite sull’esecuzione di Kafka con la soluzione NetApp NFS,
consulta:"questo collegamento" .

3. Abbiamo creato un singolo volume NFS da NetApp ONTAP e stabilito 12 volumi persistenti, ciascuno con
250 GB di storage. La dimensione dello storage può variare a seconda delle dimensioni del cluster; ad
esempio, abbiamo un altro cluster in cui ogni PV ha 50 GB. Per maggiori dettagli fare riferimento a uno dei
file PV YAML qui sotto; in totale avevamo 12 file di questo tipo. In ogni file, storageClassName è impostato
su "default" e lo storage e il percorso sono univoci per ogni PV.

10

../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Eseguire il comando 'kubectl apply' per ogni file YAML PV per creare i volumi persistenti, quindi verificare
la loro creazione utilizzando 'kubectl get pv'

11

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. Per l’archiviazione dei dati dei clienti, Milvus supporta soluzioni di archiviazione di oggetti come MinIO,
Azure Blob e S3. In questa guida utilizziamo S3. I passaggi seguenti si applicano sia all’archivio oggetti
ONTAP S3 che a StorageGRID . Utilizziamo Helm per distribuire il cluster Milvus. Scarica il file di
configurazione, values.yaml, dalla posizione di download di Milvus. Fare riferimento all’appendice per il file
values.yaml utilizzato in questo documento.

6. Assicurarsi che 'storageClass' sia impostato su 'default' in ogni sezione, comprese quelle per log, etcd,
zookeeper e bookkeeper.

7. Nella sezione MinIO, disabilitare MinIO.

8. Creare un bucket NAS dall’archiviazione di oggetti ONTAP o StorageGRID e includerli in un S3 esterno
con le credenziali dell’archiviazione di oggetti.

12

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

9. Prima di creare il cluster Milvus, assicurarsi che PersistentVolumeClaim (PVC) non disponga di risorse
preesistenti.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilizzare Helm e il file di configurazione values.yaml per installare e avviare il cluster Milvus.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verificare lo stato dei PersistentVolumeClaims (PVC).

13

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Controllare lo stato dei baccelli.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Assicurati che lo stato dei pod sia "in esecuzione" e funzioni come previsto

13. Scrittura e lettura dei dati di prova in Milvus e nell’archiviazione di oggetti NetApp .

◦ Scrivere i dati utilizzando il programma Python "prepare_data_netapp_new.py".

14

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Leggere i dati utilizzando il file Python "verify_data_netapp.py".

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

15

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Sulla base della convalida di cui sopra, l’integrazione di Kubernetes con un database vettoriale, come
dimostrato attraverso l’implementazione di un cluster Milvus su Kubernetes utilizzando un controller di
storage NetApp , offre ai clienti una soluzione solida, scalabile ed efficiente per la gestione di
operazioni sui dati su larga scala. Questa configurazione offre ai clienti la possibilità di gestire dati ad
alta dimensionalità ed eseguire query complesse in modo rapido ed efficiente, rendendola una
soluzione ideale per applicazioni big data e carichi di lavoro di intelligenza artificiale. L’utilizzo di volumi
persistenti (PV) per vari componenti del cluster, insieme alla creazione di un singolo volume NFS da
NetApp ONTAP, garantisce un utilizzo ottimale delle risorse e una gestione dei dati. Il processo di

16

verifica dello stato dei PersistentVolumeClaim (PVC) e dei pod, nonché il test di scrittura e lettura dei
dati, garantiscono ai clienti operazioni sui dati affidabili e coerenti. L’utilizzo dell’archiviazione di oggetti
ONTAP o StorageGRID per i dati dei clienti migliora ulteriormente l’accessibilità e la sicurezza dei dati.
Nel complesso, questa configurazione fornisce ai clienti una soluzione di gestione dei dati resiliente e
ad alte prestazioni, in grado di adattarsi senza problemi alle crescenti esigenze di dati.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità file e oggetto

Questa sezione illustra la configurazione del cluster Milvus con Amazon FSx ONTAP per
la soluzione di database vettoriale per NetApp.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità di file e oggetti

In questa sezione, spiegheremo perché è necessario distribuire un database vettoriale nel cloud e i passaggi
per distribuire un database vettoriale (Milvus standalone) in Amazon FSx ONTAP per NetApp ONTAP
all’interno di container Docker.

L’implementazione di un database vettoriale nel cloud offre diversi vantaggi significativi, in particolare per le
applicazioni che richiedono la gestione di dati ad alta dimensionalità e l’esecuzione di ricerche di similarità. In
primo luogo, l’implementazione basata su cloud offre scalabilità, consentendo di adattare facilmente le risorse
in base ai crescenti volumi di dati e carichi di query. Ciò garantisce che il database possa gestire in modo
efficiente l’aumento della domanda, mantenendo al contempo prestazioni elevate. In secondo luogo,
l’implementazione del cloud garantisce elevata disponibilità e ripristino in caso di emergenza, poiché i dati
possono essere replicati in diverse posizioni geografiche, riducendo al minimo il rischio di perdita di dati e
garantendo un servizio continuo anche in caso di eventi imprevisti. In terzo luogo, garantisce un buon rapporto
qualità-prezzo, poiché si paga solo per le risorse utilizzate e si può aumentare o diminuire la scala in base alla
domanda, evitando così la necessità di ingenti investimenti iniziali in hardware. Infine, l’implementazione di un
database vettoriale nel cloud può migliorare la collaborazione, poiché i dati possono essere consultati e
condivisi da qualsiasi luogo, facilitando il lavoro di squadra e il processo decisionale basato sui dati. Verificare
l’architettura di milvus standalone con Amazon FSx ONTAP per NetApp ONTAP utilizzato in questa convalida.

17

1. Creare un’istanza Amazon FSx ONTAP per NetApp ONTAP e annotare i dettagli della VPC, dei gruppi di
sicurezza VPC e della subnet. Queste informazioni saranno necessarie durante la creazione di un’istanza
EC2. Puoi trovare maggiori dettagli qui - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-
east-1#file-system-create

2. Creare un’istanza EC2, assicurandosi che la VPC, i gruppi di sicurezza e la subnet corrispondano a quelli
dell’istanza Amazon FSx ONTAP per NetApp ONTAP .

3. Installare nfs-common utilizzando il comando 'apt-get install nfs-common' e aggiornare le informazioni sul
pacchetto utilizzando 'sudo apt-get update'.

4. Crea una cartella di montaggio e montaci Amazon FSx ONTAP per NetApp ONTAP .

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Installa Docker e Docker Compose utilizzando 'apt-get install'.

6. Configurare un cluster Milvus in base al file docker-compose.yaml, scaricabile dal sito web di Milvus.

18

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. Nella sezione 'volumi' del file docker-compose.yml, mappa il punto di montaggio NetApp NFS al percorso
del contenitore Milvus corrispondente, in particolare in etcd, minio e standalone. Controlla"Appendice D:
docker-compose.yml" per i dettagli sulle modifiche in yml

8. Verificare le cartelle e i file montati.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Eseguire 'docker-compose up -d' dalla directory contenente il file docker-compose.yml.

10. Controllare lo stato del contenitore Milvus.

19

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. Per convalidare la funzionalità di lettura e scrittura del database vettoriale e dei suoi dati in Amazon FSx
ONTAP per NetApp ONTAP, abbiamo utilizzato Python Milvus SDK e un programma di esempio di
PyMilvus. Installa i pacchetti necessari usando 'apt-get install python3-numpy python3-pip' e installa
PyMilvus usando 'pip3 install pymilvus'.

12. Convalida le operazioni di scrittura e lettura dei dati da Amazon FSx ONTAP per NetApp ONTAP nel
database vettoriale.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Controllare l’operazione di lettura utilizzando lo script verify_data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

21

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

22

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. Se il cliente desidera accedere (leggere) i dati NFS testati nel database vettoriale tramite il protocollo S3
per i carichi di lavoro di intelligenza artificiale, può convalidarli utilizzando un semplice programma Python.
Un esempio potrebbe essere una ricerca di similarità di immagini provenienti da un’altra applicazione,
come indicato nell’immagine all’inizio di questa sezione.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

Questa sezione illustra in modo efficace come i clienti possono distribuire e gestire una configurazione
Milvus autonoma all’interno di container Docker, utilizzando NetApp FSx ONTAP di Amazon per
l’archiviazione dei dati NetApp ONTAP . Questa configurazione consente ai clienti di sfruttare la potenza
dei database vettoriali per gestire dati ad alta dimensionalità ed eseguire query complesse, il tutto
all’interno dell’ambiente scalabile ed efficiente dei container Docker. Creando un’istanza Amazon FSx
ONTAP per NetApp ONTAP e un’istanza EC2 corrispondente, i clienti possono garantire un utilizzo
ottimale delle risorse e una gestione dei dati. La validazione riuscita delle operazioni di scrittura e lettura
dei dati da FSx ONTAP nel database vettoriale offre ai clienti la garanzia di operazioni sui dati affidabili e
coerenti. Inoltre, la possibilità di elencare (leggere) i dati dai carichi di lavoro di intelligenza artificiale
tramite il protocollo S3 offre una migliore accessibilità ai dati. Questo processo completo, pertanto, fornisce
ai clienti una soluzione solida ed efficiente per la gestione delle loro operazioni sui dati su larga scala,
sfruttando le capacità di FSx ONTAP di Amazon per NetApp ONTAP.

Protezione del database vettoriale tramite SnapCenter

Questa sezione descrive come fornire protezione dei dati per il database vettoriale
utilizzando NetApp SnapCenter.

Protezione del database vettoriale tramite NetApp SnapCenter.

Ad esempio, nel settore della produzione cinematografica, i clienti spesso possiedono dati critici incorporati,
come file video e audio. La perdita di questi dati, dovuta a problemi come guasti al disco rigido, può avere un
impatto significativo sulle loro attività, mettendo potenzialmente a repentaglio iniziative multimilionarie. Ci

24

siamo imbattuti in casi in cui contenuti di inestimabile valore sono andati persi, causando notevoli disagi e
perdite finanziarie. Garantire la sicurezza e l’integrità di questi dati essenziali è quindi di fondamentale
importanza in questo settore. In questa sezione approfondiamo il modo in cui SnapCenter salvaguarda i dati
del database vettoriale e i dati Milvus residenti in ONTAP. Per questo esempio, abbiamo utilizzato un bucket
NAS (milvusdbvol1) derivato da un volume NFS ONTAP (vol1) per i dati dei clienti e un volume NFS separato
(vectordbpv) per i dati di configurazione del cluster Milvus. Si prega di controllare"Qui" per il flusso di lavoro di
backup di SnapCenter

1. Impostare l’host che verrà utilizzato per eseguire i comandi SnapCenter .

2. Installa e configura il plugin di archiviazione. Dall’host aggiunto, seleziona "Altre opzioni". Passare e
selezionare il plug-in di archiviazione scaricato da"Negozio di automazione NetApp" . Installa il plugin e
salva la configurazione.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Impostare il sistema di archiviazione e il volume: aggiungere il sistema di archiviazione in "Sistema di
archiviazione" e selezionare SVM (Storage Virtual Machine). In questo esempio abbiamo scelto
"vs_nvidia".

4. Stabilire una risorsa per il database vettoriale, incorporando una politica di backup e un nome di snapshot
personalizzato.

◦ Abilita il backup del gruppo di coerenza con i valori predefiniti e abilita SnapCenter senza coerenza del
file system.

◦ Nella sezione Impronta di archiviazione, selezionare i volumi associati ai dati dei clienti del database
vettoriale e ai dati del cluster Milvus. Nel nostro esempio, si tratta di "vol1" e "vectordbpv".

◦ Creare una policy per la protezione del database vettoriale e proteggere le risorse del database
vettoriale utilizzando la policy.

26

5. Inserire i dati nel bucket NAS S3 utilizzando uno script Python. Nel nostro caso, abbiamo modificato lo
script di backup fornito da Milvus, ovvero 'prepare_data_netapp.py', ed eseguito il comando 'sync' per
eliminare i dati dal sistema operativo.

27

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verificare i dati nel bucket NAS S3. Nel nostro esempio, i file con timestamp '2024-04-08 21:22' sono stati
creati dallo script 'prepare_data_netapp.py'.

28

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Avvia un backup utilizzando lo snapshot del gruppo di coerenza (CG) dalla risorsa 'milvusdb'

29

8. Per testare la funzionalità di backup, abbiamo aggiunto una nuova tabella dopo il processo di backup
oppure abbiamo rimosso alcuni dati dall’NFS (bucket NAS S3).

Per questo test, immagina uno scenario in cui qualcuno ha creato una nuova raccolta non necessaria o
inappropriata dopo il backup. In tal caso, dovremmo ripristinare il database vettoriale allo stato in cui si
trovava prima dell’aggiunta della nuova raccolta. Ad esempio, sono state inserite nuove raccolte come
'hello_milvus_netapp_sc_testnew' e 'hello_milvus_netapp_sc_testnew2'.

30

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Eseguire un ripristino completo del bucket NAS S3 dallo snapshot precedente.

31

10. Utilizzare uno script Python per verificare i dati dalle raccolte 'hello_milvus_netapp_sc_test' e
'hello_milvus_netapp_sc_test2'.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verificare che la raccolta non necessaria o inappropriata non sia più presente nel database.

34

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

In conclusione, l’utilizzo di SnapCenter di NetApp per salvaguardare i dati del database vettoriale e i dati
Milvus residenti in ONTAP offre notevoli vantaggi ai clienti, in particolare nei settori in cui l’integrità dei dati è
fondamentale, come la produzione cinematografica. La capacità di SnapCenter di creare backup coerenti ed
eseguire ripristini completi dei dati garantisce che i dati critici, come i file video e audio incorporati, siano
protetti da perdite dovute a guasti del disco rigido o altri problemi. Ciò non solo previene interruzioni operative,
ma tutela anche da perdite finanziarie sostanziali.

In questa sezione abbiamo dimostrato come configurare SnapCenter per proteggere i dati residenti in ONTAP,
inclusa la configurazione degli host, l’installazione e la configurazione dei plugin di archiviazione e la creazione
di una risorsa per il database vettoriale con un nome snapshot personalizzato. Abbiamo anche mostrato come
eseguire un backup utilizzando lo snapshot del Consistency Group e verificare i dati nel bucket NAS S3.

Inoltre, abbiamo simulato uno scenario in cui è stata creata una raccolta non necessaria o inappropriata dopo il
backup. In questi casi, la capacità di SnapCenter di eseguire un ripristino completo da uno snapshot
precedente garantisce che il database vettoriale possa essere ripristinato allo stato in cui si trovava prima
dell’aggiunta della nuova raccolta, mantenendo così l’integrità del database. Questa capacità di ripristinare i
dati a un punto specifico nel tempo è di inestimabile valore per i clienti, poiché fornisce loro la garanzia che i
loro dati non solo sono protetti, ma anche correttamente mantenuti. Pertanto, il prodotto SnapCenter di NetApp
offre ai clienti una soluzione solida e affidabile per la protezione e la gestione dei dati.

Ripristino di emergenza tramite NetApp SnapMirror

Questa sezione illustra il DR (disaster recovery) con SnapMirror per la soluzione di
database vettoriale per NetApp.

Ripristino di emergenza tramite NetApp SnapMirror

35

Il ripristino dopo un disastro è fondamentale per mantenere l’integrità e la disponibilità di un database
vettoriale, soprattutto considerando il suo ruolo nella gestione di dati ad alta dimensionalità e nell’esecuzione di
ricerche di similarità complesse. Una strategia di disaster recovery ben pianificata e implementata garantisce
che i dati non vengano persi o compromessi in caso di incidenti imprevisti, come guasti hardware, calamità
naturali o attacchi informatici. Ciò è particolarmente significativo per le applicazioni che si basano su database
vettoriali, in cui la perdita o il danneggiamento dei dati potrebbe causare notevoli interruzioni operative e
perdite finanziarie. Inoltre, un solido piano di disaster recovery garantisce la continuità aziendale riducendo al
minimo i tempi di inattività e consentendo il rapido ripristino dei servizi. Ciò è possibile grazie al prodotto di
replicazione dei dati NetApp SnapMirrror in diverse posizioni geografiche, backup regolari e meccanismi di
failover. Pertanto, il disaster recovery non è solo una misura protettiva, ma una componente fondamentale per
una gestione responsabile ed efficiente dei database vettoriali.

SnapMirror di NetApp consente la replica dei dati da un controller di storage NetApp ONTAP a un altro, ed è
utilizzato principalmente per soluzioni ibride e di disaster recovery (DR). Nel contesto di un database vettoriale,
questo strumento facilita la transizione fluida dei dati tra ambienti on-premise e cloud. Questa transizione viene
realizzata senza richiedere alcuna conversione di dati o refactoring delle applicazioni, migliorando così
l’efficienza e la flessibilità della gestione dei dati su più piattaforme.

La soluzione NetApp Hybrid in uno scenario di database vettoriale può apportare ulteriori vantaggi:

1. Scalabilità: la soluzione cloud ibrida di NetApp offre la possibilità di scalare le risorse in base alle proprie
esigenze. È possibile utilizzare risorse on-premise per carichi di lavoro regolari e prevedibili e risorse cloud
come Amazon FSx ONTAP per NetApp ONTAP e Google Cloud NetApp Volume (NetApp Volumes) per
periodi di punta o carichi imprevisti.

2. Efficienza dei costi: il modello di cloud ibrido di NetApp consente di ottimizzare i costi utilizzando risorse
on-premise per carichi di lavoro regolari e pagando le risorse cloud solo quando ne hai bisogno. Questo
modello di pagamento a consumo può rivelarsi piuttosto conveniente con un’offerta di servizi NetApp
Instaclustr. Instaclustr offre supporto e consulenza ai principali fornitori di servizi cloud e on-premise.

3. Flessibilità: il cloud ibrido di NetApp ti offre la flessibilità di scegliere dove elaborare i tuoi dati. Ad esempio,
potresti scegliere di eseguire operazioni vettoriali complesse in locale, dove hai hardware più potente, e
operazioni meno intensive nel cloud.

4. Continuità aziendale: in caso di disastro, avere i dati in un cloud ibrido NetApp può garantire la continuità
aziendale. Se le tue risorse locali sono interessate, puoi passare rapidamente al cloud. Possiamo sfruttare
NetApp SnapMirror per spostare i dati da locale a cloud e viceversa.

36

5. Innovazione: le soluzioni cloud ibride di NetApp possono anche favorire un’innovazione più rapida,
offrendo accesso a servizi e tecnologie cloud all’avanguardia. Le innovazioni NetApp nel cloud, come
Amazon FSx ONTAP per NetApp ONTAP, Azure NetApp Files e Google Cloud NetApp Volumes, sono
prodotti innovativi e NAS preferiti dai provider di servizi cloud.

Validazione delle prestazioni del database vettoriale

Questa sezione evidenzia la convalida delle prestazioni eseguita sul database vettoriale.

Validazione delle prestazioni

La convalida delle prestazioni svolge un ruolo fondamentale sia nei database vettoriali che nei sistemi di
archiviazione, fungendo da fattore chiave per garantire un funzionamento ottimale e un utilizzo efficiente delle
risorse. I database vettoriali, noti per la gestione di dati ad alta dimensionalità e l’esecuzione di ricerche di
similarità, devono mantenere elevati livelli di prestazioni per elaborare query complesse in modo rapido e
accurato. La convalida delle prestazioni aiuta a identificare i colli di bottiglia, a perfezionare le configurazioni e
a garantire che il sistema possa gestire i carichi previsti senza degradazione del servizio. Allo stesso modo, nei
sistemi di archiviazione, la convalida delle prestazioni è essenziale per garantire che i dati vengano archiviati e
recuperati in modo efficiente, senza problemi di latenza o colli di bottiglia che potrebbero influire sulle
prestazioni complessive del sistema. Aiuta inoltre a prendere decisioni consapevoli sugli aggiornamenti o le
modifiche necessarie all’infrastruttura di storage. Pertanto, la convalida delle prestazioni è un aspetto cruciale
della gestione del sistema, contribuendo in modo significativo al mantenimento di un’elevata qualità del
servizio, dell’efficienza operativa e dell’affidabilità complessiva del sistema.

In questa sezione, ci proponiamo di approfondire la convalida delle prestazioni dei database vettoriali, come
Milvus e pgvecto.rs, concentrandoci sulle caratteristiche delle prestazioni di storage, come il profilo I/O e il
comportamento del controller di storage NetApp a supporto dei carichi di lavoro RAG e di inferenza all’interno
del ciclo di vita LLM. Valuteremo e identificheremo eventuali fattori differenzianti nelle prestazioni quando
questi database saranno combinati con la soluzione di archiviazione ONTAP . La nostra analisi si baserà su
indicatori chiave di prestazione, come il numero di query elaborate al secondo (QPS).

Si prega di controllare la metodologia utilizzata per milvus e i progressi di seguito.

Dettagli Milvus (autonomo e cluster) Postgres(pgvecto.rs) #

versione 2.3.2 0.2.0

File system XFS su LUN iSCSI

Generatore di carico di lavoro "VectorDB-Bench"– v0.0.5

Set di dati Dataset LAION * 10 milioni di
incorporamenti * 768 dimensioni *
dimensione del dataset ~300 GB

Controllore di archiviazione AFF 800 * Versione – 9.14.1 * 4 x
100GbE – per milvus e 2x 100GbE
per postgres * iscsi

VectorDB-Bench con cluster autonomo Milvus

abbiamo eseguito la seguente convalida delle prestazioni sul cluster autonomo Milvus con vectorDB-Bench. Di
seguito è riportata la connettività di rete e server del cluster autonomo Milvus.

37

https://github.com/zilliztech/VectorDBBench

In questa sezione condividiamo le nostre osservazioni e i risultati ottenuti testando il database autonomo
Milvus. . Abbiamo selezionato DiskANN come tipo di indice per questi test. . L’acquisizione, l’ottimizzazione e
la creazione di indici per un set di dati di circa 100 GB hanno richiesto circa 5 ore. Per la maggior parte di
questa durata, il server Milvus, dotato di 20 core (che equivalgono a 40 vCPU quando Hyper-Threading è
abilitato), ha funzionato alla massima capacità della CPU, pari al 100%. Abbiamo scoperto che DiskANN è
particolarmente importante per i set di dati di grandi dimensioni che superano le dimensioni della memoria di
sistema. . Nella fase di query, abbiamo osservato un tasso di query al secondo (QPS) pari a 10,93 con un
richiamo pari a 0,9987. La latenza del 99° percentile per le query è stata misurata a 708,2 millisecondi.

Dal punto di vista dell’archiviazione, il database ha eseguito circa 1.000 operazioni al secondo durante le fasi
di acquisizione, ottimizzazione post-inserimento e creazione dell’indice. Nella fase di query, sono state
richieste 32.000 operazioni al secondo.

Nella sezione seguente vengono presentate le metriche delle prestazioni di archiviazione.

Fase di carico di lavoro Metrico Valore

Inserimento dei dati e
ottimizzazione post-inserimento

IOPS < 1.000

Latenza < 400 usecs

Carico di lavoro Mix di lettura/scrittura, per lo più
scrive

dimensione IO 64 KB

Domanda IOPS Picco a 32.000

Latenza < 400 usecs

Carico di lavoro Lettura cache al 100%

dimensione IO Principalmente 8 KB

Di seguito è riportato il risultato di vectorDB-bench.

38

Dalla convalida delle prestazioni dell’istanza Milvus autonoma, è evidente che la configurazione attuale non è
sufficiente a supportare un set di dati di 5 milioni di vettori con una dimensionalità di 1536. Abbiamo stabilito
che lo storage dispone di risorse adeguate e non costituisce un collo di bottiglia nel sistema.

VectorDB-Bench con cluster Milvus

In questa sezione, discuteremo l’implementazione di un cluster Milvus all’interno di un ambiente Kubernetes.
Questa configurazione di Kubernetes è stata realizzata su una distribuzione VMware vSphere, che ospitava i
nodi master e worker di Kubernetes.

I dettagli delle distribuzioni VMware vSphere e Kubernetes sono presentati nelle sezioni seguenti.

39

40

In questa sezione presentiamo le nostre osservazioni e i risultati ottenuti testando il database Milvus. * Il tipo di
indice utilizzato era DiskANN. * La tabella seguente fornisce un confronto tra le distribuzioni standalone e
cluster quando si lavora con 5 milioni di vettori con una dimensionalità di 1536. Abbiamo osservato che il
tempo impiegato per l’acquisizione dei dati e l’ottimizzazione post-inserimento era inferiore nella distribuzione
del cluster. La latenza del 99° percentile per le query è stata ridotta di sei volte nella distribuzione del cluster
rispetto alla configurazione autonoma. * Sebbene la frequenza delle query al secondo (QPS) fosse più elevata
nella distribuzione del cluster, non era al livello desiderato.

Le immagini sottostanti forniscono una panoramica di varie metriche di archiviazione, tra cui la latenza del
cluster di archiviazione e gli IOPS totali (operazioni di input/output al secondo).

41

Nella sezione seguente vengono presentate le principali metriche relative alle prestazioni di archiviazione.

Fase di carico di lavoro Metrico Valore

Inserimento dei dati e
ottimizzazione post-inserimento

IOPS < 1.000

Latenza < 400 usecs

Carico di lavoro Mix di lettura/scrittura, per lo più
scrive

dimensione IO 64 KB

Domanda IOPS Picco a 147.000

Latenza < 400 usecs

Carico di lavoro Lettura cache al 100%

dimensione IO Principalmente 8 KB

Sulla base della convalida delle prestazioni sia del Milvus autonomo che del cluster Milvus, presentiamo i
dettagli del profilo I/O di archiviazione. * Abbiamo osservato che il profilo I/O rimane coerente sia nelle
distribuzioni autonome che in quelle cluster. * La differenza osservata nei picchi di IOPS può essere attribuita
al numero maggiore di client nella distribuzione del cluster.

vectorDB-Bench con Postgres (pgvecto.rs)

Abbiamo eseguito le seguenti azioni su PostgreSQL (pgvecto.rs) utilizzando VectorDB-Bench: i dettagli
riguardanti la connettività di rete e del server di PostgreSQL (in particolare, pgvecto.rs) sono i seguenti:

42

In questa sezione condividiamo le nostre osservazioni e i risultati ottenuti testando il database PostgreSQL, in
particolare utilizzando pgvecto.rs. * Abbiamo selezionato HNSW come tipo di indice per questi test perché al
momento del test, DiskANN non era disponibile per pgvecto.rs. * Durante la fase di acquisizione dei dati,
abbiamo caricato il dataset Cohere, composto da 10 milioni di vettori con una dimensionalità di 768. Questo
processo ha richiesto circa 4,5 ore. * Nella fase di query, abbiamo osservato un tasso di query al secondo
(QPS) di 1.068 con un richiamo di 0,6344. La latenza del 99° percentile per le query è stata misurata a 20
millisecondi. Per la maggior parte del tempo di esecuzione, la CPU del client ha funzionato al 100% della sua
capacità.

Le immagini sottostanti forniscono una panoramica di varie metriche di archiviazione, tra cui la latenza totale
del cluster di archiviazione IOPS (operazioni di input/output al secondo).

 The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["Figura che mostra il dialogo di

input/output o che rappresenta il contenuto scritto"]

Confronto delle prestazioni tra Milvus e Postgres su Vector DB Bench

43

Sulla base della nostra convalida delle prestazioni di Milvus e PostgreSQL utilizzando VectorDBBench,
abbiamo osservato quanto segue:

• Tipo di indice: HNSW

• Dataset: Cohere con 10 milioni di vettori a 768 dimensioni

Abbiamo scoperto che pgvecto.rs ha raggiunto un tasso di query al secondo (QPS) di 1.068 con un richiamo di
0,6344, mentre Milvus ha raggiunto un tasso di QPS di 106 con un richiamo di 0,9842.

Se l’elevata precisione nelle tue query è una priorità, Milvus supera pgvecto.rs in quanto recupera una
percentuale maggiore di elementi pertinenti per query. Tuttavia, se il numero di query al secondo è un fattore
più cruciale, pgvecto.rs supera Milvus. È importante notare, tuttavia, che la qualità dei dati recuperati tramite
pgvecto.rs è inferiore, con circa il 37% dei risultati di ricerca costituiti da elementi irrilevanti.

Osservazione basata sulle nostre convalide delle prestazioni:

Sulla base delle nostre convalide delle prestazioni, abbiamo fatto le seguenti osservazioni:

In Milvus, il profilo I/O assomiglia molto a un carico di lavoro OLTP, come quello visto con Oracle SLOB. Il

44

benchmark è composto da tre fasi: acquisizione dei dati, post-ottimizzazione e query. Le fasi iniziali sono
caratterizzate principalmente da operazioni di scrittura da 64 KB, mentre la fase di query prevede
prevalentemente letture da 8 KB. Ci aspettiamo che ONTAP gestisca in modo efficiente il carico I/O Milvus.

Il profilo I/O di PostgreSQL non presenta un carico di lavoro di archiviazione impegnativo. Considerata
l’implementazione in memoria attualmente in corso, non abbiamo osservato alcun I/O su disco durante la fase
di query.

DiskANN emerge come una tecnologia cruciale per la differenziazione dello storage. Consente di
ridimensionare in modo efficiente la ricerca nel database vettoriale oltre i limiti della memoria di sistema.
Tuttavia, è improbabile che si possa stabilire una differenziazione delle prestazioni di archiviazione con indici
DB vettoriali in memoria come HNSW.

Vale anche la pena notare che l’archiviazione non gioca un ruolo critico durante la fase di query quando il tipo
di indice è HSNW, che è la fase operativa più importante per i database vettoriali che supportano le
applicazioni RAG. Ciò implica che le prestazioni di archiviazione non hanno un impatto significativo sulle
prestazioni complessive di queste applicazioni.

Database vettoriale con Instaclustr utilizzando PostgreSQL:
pgvector

Questa sezione illustra le specifiche di come il prodotto instaclustr si integra con
postgreSQL sulla funzionalità pgvector nella soluzione di database vettoriale per NetApp.

Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector

In questa sezione approfondiamo i dettagli di come il prodotto instaclustr si integra con postgreSQL sulla
funzionalità pgvector. Abbiamo un esempio di "Come migliorare l’accuratezza e le prestazioni del tuo LLM con
PGVector e PostgreSQL: introduzione agli incorporamenti e al ruolo di PGVector". Si prega di controllare
il"blog" per ottenere maggiori informazioni.

Casi d’uso del database vettoriale

Questa sezione fornisce una panoramica dei casi d’uso per la soluzione di database
vettoriale NetApp .

Casi d’uso del database vettoriale

In questa sezione, discuteremo di due casi d’uso quali Retrieval Augmented Generation con modelli linguistici
di grandi dimensioni e NetApp IT chatbot.

Generazione aumentata del recupero (RAG) con modelli linguistici di grandi dimensioni (LLM)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

NVIDIA Enterprise RAG LLM Operator è uno strumento utile per implementare RAG in azienda. Questo
operatore può essere utilizzato per distribuire una pipeline RAG completa. La pipeline RAG può essere
personalizzata per utilizzare Milvus o pgvecto come database vettoriale per l’archiviazione degli
incorporamenti della knowledge base. Per i dettagli, fare riferimento alla documentazione.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figura 1) Enterprise RAG basato su NVIDIA NeMo Microservices e NetApp

Caso d’uso del chatbot IT NetApp

Il chatbot di NetApp rappresenta un ulteriore caso d’uso in tempo reale per il database vettoriale. In questo
caso, NetApp Private OpenAI Sandbox fornisce una piattaforma efficace, sicura ed efficiente per la gestione
delle query degli utenti interni di NetApp. Integrando rigorosi protocolli di sicurezza, efficienti sistemi di gestione
dei dati e sofisticate capacità di elaborazione dell’intelligenza artificiale, garantisce risposte precise e di alta
qualità agli utenti in base ai loro ruoli e responsabilità nell’organizzazione tramite autenticazione SSO. Questa
architettura mette in luce il potenziale dell’unione di tecnologie avanzate per creare sistemi intelligenti e

46

incentrati sull’utente.

Il caso d’uso può essere suddiviso in quattro sezioni principali.

Autenticazione e verifica dell’utente:

• Le query degli utenti vengono prima sottoposte al processo NetApp Single Sign-On (SSO) per confermare
l’identità dell’utente.

• Dopo l’autenticazione avvenuta con successo, il sistema controlla la connessione VPN per garantire una
trasmissione sicura dei dati.

Trasmissione ed elaborazione dei dati:

• Una volta convalidata la VPN, i dati vengono inviati a MariaDB tramite le applicazioni web NetAIChat o
NetAICreate. MariaDB è un sistema di database veloce ed efficiente utilizzato per gestire e archiviare i dati
degli utenti.

• MariaDB invia quindi le informazioni all’istanza NetApp Azure, che collega i dati dell’utente all’unità di
elaborazione AI.

Interazione con OpenAI e filtraggio dei contenuti:

• L’istanza di Azure invia le domande dell’utente a un sistema di filtraggio dei contenuti. Questo sistema
pulisce la query e la prepara per l’elaborazione.

• L’input ripulito viene quindi inviato al modello base di Azure OpenAI, che genera una risposta in base
all’input.

Generazione e moderazione delle risposte:

• La risposta del modello base viene prima verificata per garantire che sia accurata e soddisfi gli standard di
contenuto.

• Dopo aver superato il controllo, la risposta viene inviata all’utente. Questo processo garantisce che l’utente

47

riceva una risposta chiara, accurata e appropriata alla sua domanda.

Conclusione

Questa sezione conclude la soluzione del database vettoriale per NetApp.

Conclusione

In conclusione, questo documento fornisce una panoramica completa sull’implementazione e la gestione di
database vettoriali, come Milvus e pgvector, sulle soluzioni di storage NetApp . Abbiamo discusso le linee
guida dell’infrastruttura per sfruttare l’archiviazione di oggetti NetApp ONTAP e StorageGRID e convalidato il
database Milvus in AWS FSx ONTAP tramite l’archiviazione di file e oggetti.

Abbiamo esplorato la dualità file-oggetto di NetApp, dimostrandone l’utilità non solo per i dati nei database
vettoriali, ma anche per altre applicazioni. Abbiamo anche evidenziato come SnapCenter, il prodotto di
gestione aziendale di NetApp, offra funzionalità di backup, ripristino e clonazione per i dati dei database
vettoriali, garantendone l’integrità e la disponibilità.

Il documento approfondisce anche il modo in cui la soluzione Hybrid Cloud di NetApp offre replicazione e
protezione dei dati in ambienti on-premise e cloud, garantendo un’esperienza di gestione dei dati fluida e
sicura. Abbiamo fornito approfondimenti sulla convalida delle prestazioni di database vettoriali come Milvus e
pgvecto su NetApp ONTAP, offrendo informazioni preziose sulla loro efficienza e scalabilità.

Infine, abbiamo discusso due casi d’uso dell’intelligenza artificiale generativa: RAG con LLM e ChatAI interna
di NetApp. Questi esempi pratici sottolineano le applicazioni e i vantaggi concreti dei concetti e delle pratiche
delineati nel presente documento. Nel complesso, questo documento costituisce una guida completa per
chiunque voglia sfruttare le potenti soluzioni di storage di NetApp per la gestione di database vettoriali.

Ringraziamenti

L’autore desidera ringraziare sentitamente i collaboratori indicati di seguito, coloro che hanno fornito feedback
e commenti per rendere questo documento utile ai clienti NetApp e ai settori NetApp .

1. Sathish Thyagarajan, Ingegnere tecnico di marketing, ONTAP AI e analisi, NetApp

2. Mike Oglesby, ingegnere tecnico di marketing, NetApp

3. AJ Mahajan, Direttore Senior, NetApp

4. Joe Scott, Responsabile, Ingegneria delle prestazioni del carico di lavoro, NetApp

5. Puneet Dhawan, Direttore senior, Gestione prodotti Fsx, NetApp

6. Yuval Kalderon, Senior Product Manager, FSx Product Team, NetApp

Dove trovare ulteriori informazioni

Per saperne di più sulle informazioni descritte nel presente documento, consultare i seguenti documenti e/o siti
web:

• Documentazione Milvus - https://milvus.io/docs/overview.md

• Documentazione autonoma di Milvus - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• Documentazione del prodotto NetApphttps://www.netapp.com/support-and-training/documentation/[]

• instaclustr -"documentazione di instalclustr"

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Cronologia delle versioni

Versione Data Cronologia delle versioni del
documento

Versione 1.0 Aprile 2024 Versione iniziale

Appendice A: Values.yaml

Questa sezione fornisce un codice YAML di esempio per i valori utilizzati nella soluzione
del database vettoriale NetApp .

Appendice A: Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations

tolerations: []

Global affinity

49

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

50

 ##

 externalIPs: []

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

51

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

52

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

53

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

54

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

55

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

56

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

57

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

58

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

minio:

 enabled: false

 name: minio

 mode: distributed

59

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

60

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

61

 timeoutSeconds: 10

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

 anti_affinity: false

enableAntiAffinity: no

62

 components:

 zookeeper: true

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

 zookeeper:

 volumes:

 persistence: true

63

 data:

 name: data

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

64

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

65

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

66

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

67

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

68

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

69

 mechanisms: PLAIN

 username: ""

 password: ""

root@node2:~#

Appendice B: prepare_data_netapp_new.py

Questa sezione fornisce un esempio di script Python utilizzato per preparare i dati per il
database vettoriale.

Appendice B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

70

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

71

+-+------------+------------+------------------

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

72

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

Appendice C: verify_data_netapp.py

Questa sezione contiene uno script Python di esempio che può essere utilizzato per
convalidare il database vettoriale nella soluzione di database vettoriale NetApp .

73

Appendice C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

74

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

75

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

76

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Appendice D: docker-compose.yml

Questa sezione include un codice YAML di esempio per la soluzione di database
vettoriale per NetApp.

Appendice D: docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

77

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

78

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e
dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM’È" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL’ATTIVITÀ AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L’UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA L’EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l’utilizzo dei
prodotti o materiali descritti nel presente documento, con l’eccezione di quanto concordato espressamente e
per iscritto da NetApp. L’utilizzo o l’acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di
NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l’utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l’utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

79

http://www.netapp.com/TM

	Soluzione di database vettoriale con NetApp : NetApp artificial intelligence solutions
	Sommario
	Soluzione di database vettoriale con NetApp
	Soluzione di database vettoriale con NetApp
	Introduzione
	Introduzione

	Panoramica della soluzione
	Panoramica della soluzione

	Database vettoriale
	Database vettoriale

	Requisiti tecnologici
	Requisiti tecnologici
	Requisiti hardware
	Requisiti software

	Procedura di distribuzione
	Procedura di distribuzione

	Verifica della soluzione
	Panoramica della soluzione
	Configurazione del cluster Milvus con Kubernetes in locale
	Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità file e oggetto
	Protezione del database vettoriale tramite SnapCenter
	Ripristino di emergenza tramite NetApp SnapMirror
	Validazione delle prestazioni del database vettoriale

	Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector
	Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector

	Casi d’uso del database vettoriale
	Casi d’uso del database vettoriale

	Conclusione
	Conclusione

	Appendice A: Values.yaml
	Appendice A: Values.yaml

	Appendice B: prepare_data_netapp_new.py
	Appendice B: prepare_data_netapp_new.py

	Appendice C: verify_data_netapp.py
	Appendice C: verify_data_netapp.py

	Appendice D: docker-compose.yml
	Appendice D: docker-compose.yml

