Soluzione di database vettoriale con
NetApp

NetApp artificial intelligence solutions

NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/ai-vdb-solution-
with-netapp.html on February 12, 2026. Always check docs.netapp.com for the latest.

Sommario

Soluzione di database vettoriale con NetApp
Soluzione di database vettoriale con NetApp
Introduzione

Introduzione
Panoramica della soluzione
Panoramica della soluzione
Database vettoriale
Database vettoriale
Requisiti tecnologici
Requisiti tecnologici
Requisiti hardware
Requisiti software
Procedura di distribuzione
Procedura di distribuzione
Verifica della soluzione
Panoramica della soluzione

Configurazione del cluster Milvus con Kubernetes in locale
Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualita file e oggetto
Protezione del database vettoriale tramite SnapCenter
Ripristino di emergenza tramite NetApp SnapMirror
Validazione delle prestazioni del database vettoriale

Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector
Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector

Casi d’'uso del database vettoriale
Casi d’'uso del database vettoriale
Conclusione
Conclusione
Appendice A: Values.yaml
Appendice A: Values.yaml
Appendice B: prepare_data_netapp_new.py

Appendice B: prepare_data_netapp_new.py

Appendice C: verify_data_netapp.py
Appendice C: verify_data_netapp.py

Appendice D: docker-compose.yml
Appendice D: docker-compose.yml

O N N N NO OO W W NDNDNDDND - -

NN NN SN SNBE B A DA DDA OWON
NNhWOO®©©OomomaoooaNas~NO©

Soluzione di database vettoriale con NetApp

Soluzione di database vettoriale con NetApp

Karthikeyan Nagalingam e Rodrigo Nascimento, NetApp

Questo documento fornisce un’analisi approfondita dell'implementazione e della gestione
di database vettoriali, come Milvus e pgvecto, un’estensione open source di PostgreSQL,
utilizzando le soluzioni di storage di NetApp. Descrive dettagliatamente le linee guida
dell'infrastruttura per I'utilizzo di NetApp ONTAP e StorageGRID Object Storage e
convalida 'applicazione del database Milvus in AWS FSx ONTAP. Il documento illustra la
dualita file-oggetto di NetApp e la sua utilita per database vettoriali e applicazioni che
supportano incorporamenti vettoriali. Sottolinea le capacita di SnapCenter, il prodotto di
gestione aziendale di NetApp, nell’offrire funzionalita di backup e ripristino per database
vettoriali, garantendo I'integrita e la disponibilita dei dati. Il documento approfondisce
ulteriormente la soluzione cloud ibrida di NetApp, discutendone il ruolo nella replicazione
e protezione dei dati negli ambienti on-premise e cloud. Include approfondimenti sulla
convalida delle prestazioni dei database vettoriali su NetApp ONTAP e si conclude con
due casi d’'uso pratici sull’intelligenza artificiale generativa: RAG con LLM e ChatAl
interno di NetApp. Questo documento costituisce una guida completa per sfruttare al
meglio le soluzioni di storage di NetApp per la gestione dei database vettoriali.

L'architettura di riferimento si concentra sui seguenti punti:

1. "Introduzione"

"Panoramica della soluzione"
"Database vettoriale"
"Requisiti tecnologici”

"Procedura di distribuzione"

© o k&~ w0 Db

"Panoramica sulla verifica della soluzione"
o "Configurazione del cluster Milvus con Kubernetes in locale"
o Milvus con Amazon FSx ONTAP per NetApp ONTAP — dualita file e oggetto
o "Protezione del database vettoriale tramite NetApp SnapCenter."
o "Ripristino di emergenza tramite NetApp SnapMirror"
> "Validazione delle prestazioni"
7. "Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector"
8. "Casi d'uso del database vettoriale"
9. "Conclusione"
10. "Appendice A: values.yaml"
11. "Appendice B: prepare_data_netapp_new.py"
12. "Appendice C: verify _data_netapp.py"

https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

13. "Appendice D: docker-compose.yml|"

Introduzione

Questa sezione fornisce un’introduzione alla soluzione di database vettoriale per NetApp.

Introduzione

| database vettoriali affrontano in modo efficace le sfide progettate per gestire le complessita della ricerca
semantica nei Large Language Models (LLM) e nellintelligenza artificiale generativa (IA). A differenza dei
tradizionali sistemi di gestione dei dati, i database vettoriali sono in grado di elaborare e ricercare vari tipi di
dati, tra cui immagini, video, testo, audio e altre forme di dati non strutturati, utilizzando il contenuto dei dati
stessi anziché etichette o tag.

I limiti dei sistemi di gestione di database relazionali (RDBMS) sono ben documentati, in particolare le difficolta
con le rappresentazioni di dati ad alta dimensionalita e i dati non strutturati comuni nelle applicazioni di
intelligenza artificiale. Gli RDBMS spesso richiedono un processo lungo e soggetto a errori per appiattire i dati
in strutture piu gestibili, con conseguenti ritardi e inefficienze nelle ricerche. | database vettoriali, tuttavia, sono
progettati per aggirare questi problemi, offrendo una soluzione piu efficiente e accurata per la gestione e la
ricerca di dati complessi e ad alta dimensionalita, facilitando cosi il progresso delle applicazioni di intelligenza
artificiale.

Questo documento costituisce una guida completa per i clienti che attualmente utilizzano o intendono utilizzare
database vettoriali, illustrando dettagliatamente le best practice per I'utilizzo di database vettoriali su
piattaforme quali NetApp ONTAP, NetApp StorageGRID, Amazon FSx ONTAP per NetApp ONTAP e
SnapCenter. | contenuti forniti nel presente documento coprono una vasta gamma di argomenti:

« Linee guida infrastrutturali per database vettoriali, come Milvus, fornite da NetApp Storage tramite NetApp
ONTAP e StorageGRID Object Storage.
+ Validazione del database Milvus in AWS FSx ONTAP tramite archivio di file e oggetti.

» Approfondisce la dualita file-oggetto di NetApp, dimostrandone ['utilita per i dati nei database vettoriali e in
altre applicazioni.

* In che modo il prodotto Data Protection Management di NetApp, SnapCenter, offre funzionalita di backup e
ripristino per i dati dei database vettoriali.

* In che modo I'Hybrid Cloud di NetApp offre replicazione e protezione dei dati negli ambienti on-premise e
cloud.

* Fornisce approfondimenti sulla convalida delle prestazioni di database vettoriali come Milvus e pgvector su
NetApp ONTAP.

» Due casi d’'uso specifici: Retrieval Augmented Generation (RAG) con Large Language Models (LLM) e
ChatAl del team IT di NetApp , che offrono esempi pratici dei concetti e delle pratiche delineati.

Panoramica della soluzione

Questa sezione fornisce una panoramica della soluzione di database vettoriale NetApp .

Panoramica della soluzione

Questa soluzione mette in mostra i vantaggi e le capacita distintive che NetApp offre per affrontare le sfide che
i clienti dei database vettoriali si trovano ad affrontare. Sfruttando NetApp ONTAP, StorageGRID, le soluzioni
cloud di NetApp e SnapCenter, i clienti possono aggiungere un valore significativo alle loro operazioni

aziendali. Questi strumenti non solo risolvono i problemi esistenti, ma migliorano anche l'efficienza e la
produttivita, contribuendo cosi alla crescita aziendale complessiva.

Perché NetApp?

* Le offerte di NetApp, come ONTAP e StorageGRID, consentono la separazione tra storage ed
elaborazione, consentendo un utilizzo ottimale delle risorse in base a requisiti specifici. Questa flessibilita
consente ai clienti di scalare in modo indipendente il proprio storage utilizzando le soluzioni di storage
NetApp .

« Sfruttando i controller di storage di NetApp, i clienti possono fornire in modo efficiente i dati al proprio
database vettoriale utilizzando i protocolli NFS e S3. Questi protocolli facilitano I'archiviazione dei dati dei
clienti e gestiscono l'indice del database vettoriale, eliminando la necessita di piu copie dei dati a cui si
accede tramite metodi di file e oggetti.

* NetApp ONTAP fornisce supporto nativo per NAS e storage di oggetti attraverso i principali provider di
servizi cloud come AWS, Azure e Google Cloud. Questa ampia compatibilita garantisce un’integrazione
perfetta, consentendo la mobilita dei dati dei clienti, I'accessibilita globale, il ripristino di emergenza, la
scalabilita dinamica e le prestazioni elevate.

Grazie alle solide funzionalita di gestione dei dati di NetApp, i clienti possono stare tranquilli sapendo che i
loro dati sono ben protetti da potenziali rischi e minacce. NetApp da priorita alla sicurezza dei dati, offrendo
ai clienti la tranquillita di sapere che le loro preziose informazioni sono al sicuro e integre.

Database vettoriale

Questa sezione tratta la definizione e 'uso di un database vettoriale nelle soluzioni di
intelligenza artificiale NetApp .

Database vettoriale

Un database vettoriale € un tipo specializzato di database progettato per gestire, indicizzare e ricercare dati
non strutturati utilizzando incorporamenti di modelli di apprendimento automatico. Invece di organizzare i dati
in un formato tabellare tradizionale, li organizza come vettori ad alta dimensionalita, noti anche come
incorporamenti vettoriali. Questa struttura unica consente al database di gestire dati complessi e
multidimensionali in modo piu efficiente e accurato.

Una delle funzionalita principali di un database vettoriale € I'utilizzo dell’intelligenza artificiale generativa per
eseguire analisi. Cid include ricerche di similarita, in cui il database identifica punti dati simili a un dato input, e
rilevamento di anomalie, in cui pud individuare punti dati che si discostano significativamente dalla norma.

Inoltre, i database vettoriali sono adatti a gestire dati temporali, ovvero dati con timestamp. Questo tipo di dati
fornisce informazioni su "cosa" € successo e quando € successo, in sequenza e in relazione a tutti gli altri
eventi all’interno di un dato sistema IT. Questa capacita di gestire e analizzare dati temporali rende i database
vettoriali particolarmente utili per le applicazioni che richiedono la comprensione degli eventi nel tempo.

Vantaggi del database vettoriale per ML e Al:

* Ricerca ad alta dimensionalita: i database vettoriali eccellono nella gestione e nel recupero di dati ad alta
dimensionalita, spesso generati nelle applicazioni di intelligenza artificiale e apprendimento automatico.

« Scalabilita: possono scalare in modo efficiente per gestire grandi volumi di dati, supportando la crescita e
'espansione dei progetti di intelligenza artificiale e apprendimento automatico.

* Flessibilita: i database vettoriali offrono un elevato grado di flessibilita, consentendo di gestire diversi tipi di
dati e strutture.

* Prestazioni: garantiscono una gestione e un recupero dei dati ad alte prestazioni, fondamentali per la
velocita e I'efficienza delle operazioni di intelligenza artificiale e apprendimento automatico.

* Indicizzazione personalizzabile: i database vettoriali offrono opzioni di indicizzazione personalizzabili,
consentendo un’organizzazione e un recupero dei dati ottimizzati in base a esigenze specifiche.

Database vettoriali e casi d’uso.

Questa sezione fornisce vari database vettoriali e i dettagli sui loro casi d’uso.

Faiss e ScaNN

Si tratta di librerie che rappresentano strumenti essenziali nel campo della ricerca vettoriale. Queste librerie
forniscono funzionalita fondamentali per la gestione e la ricerca nei dati vettoriali, il che le rende risorse
inestimabili in questo settore specializzato della gestione dei dati.

Elasticsearch

E un motore di ricerca e analisi ampiamente utilizzato, che ha recentemente incorporato funzionalita di ricerca
vettoriale. Questa nuova funzionalita ne migliora le funzionalita, consentendo di gestire e ricercare i dati
vettoriali in modo piu efficace.

Pigna

Si tratta di un solido database vettoriale con un set di funzionalita unico. Supporta sia vettori densi che sparsi
nella sua funzionalita di indicizzazione, il che ne aumenta la flessibilita e I'adattabilita. Uno dei suoi punti di
forza principali risiede nella capacita di combinare i metodi di ricerca tradizionali con la ricerca vettoriale densa
basata sull’intelligenza artificiale, creando un approccio di ricerca ibrido che sfrutta il meglio di entrambi i
mondi.

Basato principalmente sul cloud, Pinecone & progettato per applicazioni di apprendimento automatico e si
integra bene con una varieta di piattaforme, tra cui GCP, AWS, Open Al, GPT-3, GPT-3.5, GPT-4, Catgut Plus,
Elasticsearch, Haystack e altre ancora. E importante notare che Pinecone & una piattaforma closed-source ed
e disponibile come offerta Software as a Service (SaaS).

Grazie alle sue capacita avanzate, Pinecone & particolarmente adatto al settore della sicurezza informatica,
dove le sue capacita di ricerca ad alta dimensione e di ricerca ibrida possono essere sfruttate efficacemente
per rilevare e rispondere alle minacce.

Croma

Si tratta di un database vettoriale dotato di una Core-API con quattro funzioni principali, una delle quali include
un archivio di documenti vettoriali in memoria. Utilizza inoltre la libreria Face Transformers per vettorializzare i

documenti, migliorandone la funzionalita e la versatilita. Chroma & progettato per funzionare sia nel cloud che

in locale, offrendo flessibilita in base alle esigenze degli utenti. In particolare, eccelle nelle applicazioni audio, il
che lo rende una scelta eccellente per motori di ricerca basati sull’audio, sistemi di raccomandazione musicale
e altri casi d'uso audio-correlati.

Tessitura

Si tratta di un database vettoriale versatile che consente agli utenti di vettorializzare i propri contenuti
utilizzando moduli integrati o moduli personalizzati, garantendo flessibilita in base a esigenze specifiche. Offre
soluzioni sia completamente gestite che self-hosted, soddisfacendo una varieta di preferenze di distribuzione.

Una delle caratteristiche principali di Weaviate € la sua capacita di memorizzare sia vettori che oggetti,
migliorando le sue capacita di gestione dei dati. E ampiamente utilizzato per una vasta gamma di applicazioni,

tra cui la ricerca semantica e la classificazione dei dati nei sistemi ERP. Nel settore del’e-commerce, alimenta i
motori di ricerca e di raccomandazione. Weaviate viene utilizzato anche per la ricerca di immagini, il
rilevamento di anomalie, 'armonizzazione automatica dei dati e I'analisi delle minacce alla sicurezza
informatica, dimostrando la sua versatilita in piu ambiti.

Redis

Redis € un database vettoriale ad alte prestazioni, noto per la sua rapida archiviazione in memoria, che offre
bassa latenza per le operazioni di lettura-scrittura. Cio lo rende una scelta eccellente per sistemi di
raccomandazione, motori di ricerca e applicazioni di analisi dei dati che richiedono un rapido accesso ai dati.

Redis supporta varie strutture dati per i vettori, tra cui elenchi, set e set ordinati. Fornisce inoltre operazioni
vettoriali come il calcolo delle distanze tra vettori o la ricerca di intersezioni e unioni. Queste funzionalita sono
particolarmente ultili per la ricerca di similarita, il clustering e i sistemi di raccomandazione basati sui contenuti.

In termini di scalabilita e disponibilita, Redis eccelle nella gestione di carichi di lavoro ad alta produttivita e offre
la replica dei dati. Si integra bene anche con altri tipi di dati, compresi i database relazionali tradizionali
(RDBMS). Redis include una funzionalita Pubblica/Sottoscrivi (Pub/Sub) per aggiornamenti in tempo reale,
utile per la gestione dei vettori in tempo reale. Inoltre, Redis & leggero e semplice da usare, il che lo rende una
soluzione intuitiva per la gestione dei dati vettoriali.

Milvus

Si tratta di un database vettoriale versatile che offre un’API simile a un archivio di documenti, molto simile a
MongoDB. Si distingue per il supporto di un’ampia varieta di tipi di dati, il che lo rende una scelta popolare nei
settori della scienza dei dati e dell’apprendimento automatico.

Una delle caratteristiche uniche di Milvus € la sua capacita di multi-vettorizzazione, che consente agli utenti di
specificare in fase di esecuzione il tipo di vettore da utilizzare per la ricerca. Inoltre, utilizza Knowwhere, una
libreria che si basa su altre librerie come Faiss, per gestire la comunicazione tra le query e gli algoritmi di
ricerca vettoriale.

Milvus offre inoltre un’integrazione perfetta con i flussi di lavoro di apprendimento automatico, grazie alla
compatibilita con PyTorch e TensorFlow. Cio lo rende uno strumento eccellente per una vasta gamma di
applicazioni, tra cui e-commerce, analisi di immagini e video, riconoscimento di oggetti, ricerca di similarita di
immagini e recupero di immagini basato sui contenuti. Nel’ambito dell’elaborazione del linguaggio naturale,
Milvus viene utilizzato per il clustering di documenti, la ricerca semantica e i sistemi di risposta alle domande.

Per questa soluzione abbiamo scelto Milvus per la convalida della soluzione. Per le prestazioni, abbiamo
utilizzato sia milvus che postgres(pgvecto.rs).

Perché abbiamo scelto Milvus per questa soluzione?

* Open-source: Milvus € un database vettoriale open-source che incoraggia lo sviluppo e i miglioramenti
guidati dalla comunita.

* Integrazione Al: sfrutta I'integrazione della ricerca di similarita e delle applicazioni Al per migliorare la
funzionalita del database vettoriale.

» Gestione di grandi volumi: Milvus € in grado di archiviare, indicizzare e gestire oltre un miliardo di vettori di
incorporamento generati da modelli di reti neurali profonde (DNN) e apprendimento automatico (ML).

 Facile da usare: & facile da usare e la configurazione richiede meno di un minuto. Milvus offre anche SDK
per diversi linguaggi di programmazione.

* Velocita: offre velocita di recupero incredibilmente elevate, fino a 10 volte superiori rispetto ad alcune
alternative.

» Scalabilita e disponibilita: Milvus & altamente scalabile, con opzioni di scalabilita verticale e orizzontale in

base alle esigenze.

* Ricco di funzionalita: supporta diversi tipi di dati, filtraggio degli attributi, supporto delle funzioni definite
dall'utente (UDF), livelli di coerenza configurabili e tempi di percorrenza, il che lo rende uno strumento

versatile per varie applicazioni.

Panoramica dell’architettura di Milvus

| coatdinator Services

LR]
SOK / resthul AP : Merta Store

Arcans Layer

Priy
Load Balancod
Prooy

Saarch | QueTy 1

Rootcoand Datagoard Cusnrycoond
poL jBCL

Muessage Storago [WAL

Halka '.."’ Paudsmr
S

DML | Produco
Controds

COrsume

| Worker Hodes

L L

Ouary Meddes Data Hodes

Indos Modas
ol
"

Lomsd Wirito Resd Wiile

| Objoct Storage

Data Filos Infox Filas

Dudtalag Statslog Binlog Indx Indiax

T

¥
Matdpp StorageGRID - Oblect storage

All-Flash FAS -
CMNTAP

Questa sezione illustra i componenti e i servizi di livello superiore utilizzati nell’architettura Milvus. * Livello di
accesso: € composto da un gruppo di proxy stateless e funge da livello frontale del sistema e da endpoint per
gli utenti. * Servizio di coordinamento: assegna i compiti ai nodi worker e funge da cervello del sistema. Ha tre
tipi di coordinatore: root coord, data coord e query coord. * Nodi worker: seguono le istruzioni del servizio
coordinatore ed eseguono i comandi DML/DDL attivati dall’'utente. Hanno tre tipi di nodi worker: nodo query,
nodo dati e nodo indice. * Archiviazione: & responsabile della persistenza dei dati. Comprende meta-
archiviazione, log broker e archiviazione di oggetti. Le soluzioni di storage NetApp , come ONTAP e
StorageGRID, forniscono a Milvus storage di oggetti e storage basato su file sia per i dati dei clienti che per i
dati dei database vettoriali.

Requisiti tecnologici

Questa sezione fornisce una panoramica dei requisiti per la soluzione di database
vettoriale NetApp .

Requisiti tecnologici

Le configurazioni hardware e software descritte di seguito sono state utilizzate per la maggior parte delle
convalide eseguite in questo documento, ad eccezione delle prestazioni. Queste configurazioni servono come
linee guida per aiutarti a configurare il tuo ambiente. Tuttavia, si prega di notare che i componenti specifici

possono variare a seconda delle esigenze individuali del cliente.

Requisiti hardware

Hardware

Coppia HA di array di storage NetApp AFF

6 x FUJITSU PRIMERGY RX2540 M4

Networking

StorageGRID

Requisiti software

Software

Ammasso di Milvus

Kubernetes

Pitone

Procedura di distribuzione

Dettagli

*A800 * ONTAP 9.14.1 * 48 x 3,49 TB SSD-NVM *
Due volumi di gruppo flessibili: metadati e dati. * Il
volume NFS dei metadati ha 12 volumi persistenti da
250 GB. * | dati sono un volume ONTAP NAS S3

* 64 CPU * CPU Intel® Xeon® Gold 6142 a 2,60 GHz
* 256 GM di memoria fisica * 1 porta di rete da 100
GbE

100 GbE
*1x8G100, 3xSGF6024 * 3 x 24 x 7,68 TB

Dettagli

* GRAFICO - milvus-4.1.11. * VVersione APP —2.34 *
Bundle dipendenti come bookkeeper, zookeeper,
pulsar, etcd, proxy, querynode, worker

* Cluster K8s a 5 nodi * 1 nodo master e 4 nodi
worker * Versione — 1.7.2

*3.10.12.

In questa sezione viene illustrata la procedura di distribuzione per la soluzione di

database vettoriale per NetApp.

Procedura di distribuzione

In questa sezione di distribuzione, abbiamo utilizzato il database vettoriale Milvus con Kubernetes per la

configurazione del laboratorio come di seguito.

O

j Q Milvus Cluster

o e e e e e e

0

P

Q0

Bucket File StorageGRID | Object storage)

B e e

Storage

R R R R oo

NetApp Storage fornisce lo spazio di archiviazione per il cluster in cui conservare i dati dei clienti e i dati del
cluster Milvus.

Configurazione dello storage NetApp — ONTAP

* Inizializzazione del sistema di archiviazione
* Creazione di una macchina virtuale di archiviazione (SVM)
» Assegnazione delle interfacce di rete logiche

» Configurazione e licenza NFS, S3
Per NFS (Network File System) seguire i passaggi sottostanti:

1. Creare un volume FlexGroup per NFSv4. Nella nostra configurazione per questa convalida, abbiamo
utilizzato 48 SSD, 1 SSD dedicato al volume root del controller e 47 SSD distribuiti per NFSv4. Verificare
che la policy di esportazione NFS per il volume FlexGroup disponga di autorizzazioni di lettura/scrittura per
la rete dei nodi Kubernetes (K8). Se queste autorizzazioni non sono disponibili, concedere autorizzazioni di
lettura/scrittura (rw) per la rete dei nodi K8s.

2. Su tutti i nodi K8s, creare una cartella e montare il volume FlexGroup su questa cartella tramite
un’interfaccia logica (LIF) su ciascun nodo K8s.

Per NAS S3 (Network Attached Storage Simple Storage Service), seguire i passaggi indicati di seguito:

1. Creare un volume FlexGroup per NFS.

2. Impostare un object-store-server con HTTP abilitato e lo stato di amministrazione impostato su "attivo"
utilizzando il comando "vserver object-store-server create". Hai la possibilita di abilitare HTTPS e
impostare una porta di ascolto personalizzata.

3. Creare un utente object-store-server utilizzando il comando "vserver object-store-server user create -user
<username>".

4. Per ottenere la chiave di accesso e la chiave segreta, € possibile eseguire il seguente comando: "set diag;
vserver object-store-server user show -user <nomeutente>". Tuttavia, in futuro, queste chiavi verranno
fornite durante il processo di creazione dell’'utente oppure potranno essere recuperate tramite chiamate
API REST.

5. Creare un gruppo object-store-server utilizzando I'utente creato nel passaggio 2 e concedere I'accesso. In
questo esempio abbiamo fornito "FullAccess".

6. Creare un bucket NAS impostandone il tipo su "nas" e specificando il percorso al volume NFSv3. A questo
scopo & anche possibile utilizzare un bucket S3.

Configurazione dell’archiviazione NetApp — StorageGRID

1. Installare il software storageGRID.
2. Crea un tenant e un bucket.

3. Crea un utente con l'autorizzazione richiesta.

Per maggiori dettagli consultare https://docs.netapp.com/us-en/storagegrid-116/primer/index.htm|

Verifica della soluzione

Panoramica della soluzione

Abbiamo condotto una convalida completa della soluzione incentrata su cinque aree
chiave, i cui dettagli sono descritti di seguito. Ogni sezione approfondisce le sfide
affrontate dai clienti, le soluzioni fornite da NetApp e i conseguenti vantaggi per il cliente.

1. "Configurazione del cluster Milvus con Kubernetes in locale"Le sfide dei clienti per scalare in modo
indipendente su storage e calcolo, gestione efficace dell'infrastruttura e gestione dei dati. In questa
sezione, descriviamo in dettaglio il processo di installazione di un cluster Milvus su Kubernetes, utilizzando
un controller di archiviazione NetApp sia per i dati del cluster che per i dati dei clienti.

2. Milvus con Amazon FSx ONTAP per NetApp ONTAP — dualita file e oggetto In questa sezione,
spiegheremo perché & necessario distribuire un database vettoriale nel cloud e i passaggi per distribuire
un database vettoriale (milvus standalone) in Amazon FSx ONTAP per NetApp ONTAP all’interno di
container Docker.

3. "Protezione del database vettoriale tramite NetApp SnapCenter."In questa sezione approfondiamo il modo
in cui SnapCenter salvaguarda i dati del database vettoriale e i dati Milvus residenti in ONTAP. Per questo
esempio, abbiamo utilizzato un bucket NAS (milvusdbvol1) derivato da un volume NFS ONTAP (vol1) per i
dati dei clienti e un volume NFS separato (vectordbpv) per i dati di configurazione del cluster Milvus.

4. "Ripristino di emergenza tramite NetApp SnapMirror"In questa sezione, discuteremo dell'importanza del
Disaster Recovery (DR) per il database vettoriale e di come il prodotto di Disaster Recovery di NetApp
Snapmirror fornisca una soluzione DR per il database vettoriale.

5. "Validazione delle prestazioni"ln questa sezione, ci proponiamo di approfondire la convalida delle
prestazioni dei database vettoriali, come Milvus e pgvecto.rs, concentrandoci sulle caratteristiche delle

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html
https://docs.netapp.com/it-it/netapp-solutions-ai/vector-db/vector-database-milvus-with-Amazon-FSx ONTAP-for- NetApp- ONTAP.html

prestazioni di storage, come il profilo I/O e il comportamento del controller di storage NetApp a supporto
dei carichi di lavoro RAG e di inferenza all'interno del ciclo di vita LLM. Valuteremo e identificheremo
eventuali fattori differenzianti nelle prestazioni quando questi database saranno combinati con la soluzione
di archiviazione ONTAP . La nostra analisi si basera su indicatori chiave di prestazione, come il numero di
query elaborate al secondo (QPS).

Configurazione del cluster Milvus con Kubernetes in locale

Questa sezione illustra la configurazione del cluster Milvus per la soluzione di database
vettoriale per NetApp.

Configurazione del cluster Milvus con Kubernetes in locale

Le sfide dei clienti per scalare in modo indipendente su storage e calcolo, una gestione efficace
dell'infrastruttura e la gestione dei dati, Kubernetes e i database vettoriali insieme formano una soluzione
potente e scalabile per la gestione di operazioni su grandi quantita di dati. Kubernetes ottimizza le risorse e
gestisce i container, mentre i database vettoriali gestiscono in modo efficiente i dati ad alta dimensionalita e le
ricerche di similarita. Questa combinazione consente I'elaborazione rapida di query complesse su grandi set di
dati e si adatta perfettamente ai crescenti volumi di dati, rendendola ideale per applicazioni big data e carichi di
lavoro di intelligenza artificiale.

1. In questa sezione, descriviamo in dettaglio il processo di installazione di un cluster Milvus su Kubernetes,
utilizzando un controller di archiviazione NetApp sia per i dati del cluster che per i dati dei clienti.

2. Per installare un cluster Milvus, sono necessari volumi persistenti (PV) per archiviare i dati provenienti da
vari componenti del cluster Milvus. Questi componenti includono etcd (tre istanze), pulsar-bookie-journal
(tre istanze), pulsar-bookie-ledgers (tre istanze) e pulsar-zookeeper-data (tre istanze).

Nel cluster Milvus, possiamo utilizzare sia Pulsar che Kafka come motore sottostante che
supporta 'archiviazione affidabile e la pubblicazione/sottoscrizione dei flussi di messaggi del
cluster Milvus. Per Kafka con NFS, NetApp ha apportato miglioramenti in ONTAP 9.12.1 e

@ versioni successive, e questi miglioramenti, insieme alle modifiche di NFSv4.1 e Linux
incluse in RHEL 8.7 0 9.1 e versioni successive, risolvono il problema della "rinomina
stupida" che puo verificarsi quando si esegue Kafka su NFS. Se sei interessato a
informazioni piu approfondite sull’esecuzione di Kafka con la soluzione NetApp NFS,
consulta:"questo collegamento” .

3. Abbiamo creato un singolo volume NFS da NetApp ONTAP e stabilito 12 volumi persistenti, ciascuno con
250 GB di storage. La dimensione dello storage puo variare a seconda delle dimensioni del cluster; ad
esempio, abbiamo un altro cluster in cui ogni PV ha 50 GB. Per maggiori dettagli fare riferimento a uno dei
file PV YAML qui sotto; in totale avevamo 12 file di questo tipo. In ogni file, storageClassName & impostato
su "default" e lo storage e il percorso sono univoci per ogni PV.

10

../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai nfs to default pvl.yaml
apiVersion: vl
kind: PersistentVolume
metadata:
name: karthik-pvl
spec:
capacity:
storage: 250Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: default
local:
path: /vectordbsc/milvus/milvusl
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- node?2
- node3
- node4
- nodeb
- nodeo6
root@node2:~#

4. Eseguire il comando 'kubectl apply' per ogni file YAML PV per creare i volumi persistenti, quindi verificare
la loro creazione utilizzando 'kubectl get pv'

11

root@node2:~# for i in $(seq 1 12); do kubectl apply -f
sai nfs to default pv$Si.yaml; done
persistentvolume/karthik-pvl created
persistentvolume/karthik-pv2 created
persistentvolume/karthik-pv3 created
persistentvolume/karthik-pv4 created
persistentvolume/karthik-pv5 created
persistentvolume/karthik-pv6 created
persistentvolume/karthik-pv7 created
persistentvolume/karthik-pv8 created
persistentvolume/karthik-pv9 created
persistentvolume/karthik-pvl0 created
persistentvolume/karthik-pvll created
persistentvolume/karthik-pvl2 created
root@node?2: ~#

. Per I'archiviazione dei dati dei clienti, Milvus supporta soluzioni di archiviazione di oggetti come MinlO,
Azure Blob e S3. In questa guida utilizziamo S3. | passaggi seguenti si applicano sia all’archivio oggetti
ONTAP S3 che a StorageGRID . Utilizziamo Helm per distribuire il cluster Milvus. Scarica il file di
configurazione, values.yaml, dalla posizione di download di Milvus. Fare riferimento all’appendice per il file
values.yaml utilizzato in questo documento.

. Assicurarsi che 'storageClass' sia impostato su 'default’ in ogni sezione, comprese quelle per log, etcd,
zookeeper e bookkeeper.

. Nella sezione MinlO, disabilitare MinlO.

. Creare un bucket NAS dall'archiviazione di oggetti ONTAP o StorageGRID e includerli in un S3 esterno
con le credenziali dell’archiviazione di oggetti.

FHAHHHEHHH A AR A AR S
External S3
- these configs are only used when “externalS3.enabled’ is true
FHAFH AR H A AR A AR S
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "Zd28p43rgzalU44PX ftT279z9nt4jBSro97;87Bx"
useSSL: false
bucketName: "milvusdbvoll"
rootPath: ""
useIAM: false

" "

cloudProvider: "aws
iamEndpoint: ""
region: ""

useVirtualHost: false

9. Prima di creare il cluster Milvus, assicurarsi che PersistentVolumeClaim (PVC) non disponga di risorse
preesistenti.

root@node2:~# kubectl get pvc
No resources found in default namespace.
root@node2:~#

10. Utilizzare Helm e il file di configurazione values.yaml per installare e avviare il cluster Milvus.

root@node2:~# helm upgrade --install my-release milvus/milvus --set
global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node?2: ~#

11. Verificare lo stato dei PersistentVolumeClaims (PVC).

13

root@node2:~# kubectl get pvc

NAME

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-my-release-etcd-0

karthik-pv8 250G1 RWO default 3s
data-my-release-etcd-1

karthik-pv5 250G1 RWO default 2s
data-my-release-etcd-2

karthik-pv4 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0
karthik-pv10 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1
karthik-pv3 250G1 RWO default 3s
my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2
karthik-pvl 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0
karthik-pv2 250G1i RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1
karthik-pv9 250G1 RWO default 3s
my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2
karthik-pvll 250G1 RWO default 3s
my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0
karthik-pv7 250G1i RWO default 3s

root@node2:~#

12. Controllare lo stato dei baccelli.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

<content removed to save page space>

Assicurati che lo stato dei pod sia "in esecuzione" e funzioni come previsto

13. Scrittura e lettura dei dati di prova in Milvus e nell’archiviazione di oggetti NetApp .

14

o Scrivere i dati utilizzando il programma Python "prepare_data_netapp_new.py".

STATUS

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

Bound

root@node2:~# date;python3 prepare data netapp new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew update2 sc exist in Milvus:
False

=== Drop collection - hello milvus ntapnew update2 sc ===

=== Drop collection - hello milvus ntapnew update2 sc2 ===

=== Create collection "hello milvus ntapnew update2 sc’ ===

=== Start inserting entities ==
Number of entities in hello milvus ntapnew update2 sc: 3000
Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

o Leggere i dati utilizzando il file Python "verify_data_netapp.py".

root@node2:~# python3 verify data netapp.py
=== start connecting to Milvus ===
=== Milvus host: localhost ===

Does collection hello milvus ntapnew updateZ sc exist in Milvus: True

{'auto_id': False, 'description': 'hello milvus ntapnew update2Z sc',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': False}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',
'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello milvus ntapnew update2 sc : 3000

=== Start Creating index IVF FLAT ===
=== Start loading ===
=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':
0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':
0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':
0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with “random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,
0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.8236044¢0,
0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,
0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with “random > 0.5 ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':
0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':
0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':
0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':
0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':
0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello milvus ntapnew updateZ sc2 exist in Milvus:

True

{'auto id': True, 'description': 'hello milvus ntapnew update2 sc2',
'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:
5>, 'is primary': True, 'auto id': True}, {'name': 'random',
'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'wvar',
'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT VECTOR: 101>, 'params': {'dim': 16}}]}

Sulla base della convalida di cui sopra, I'integrazione di Kubernetes con un database vettoriale, come
dimostrato attraverso I'implementazione di un cluster Milvus su Kubernetes utilizzando un controller di
storage NetApp , offre ai clienti una soluzione solida, scalabile ed efficiente per la gestione di
operazioni sui dati su larga scala. Questa configurazione offre ai clienti la possibilita di gestire dati ad
alta dimensionalita ed eseguire query complesse in modo rapido ed efficiente, rendendola una
soluzione ideale per applicazioni big data e carichi di lavoro di intelligenza artificiale. L'utilizzo di volumi
persistenti (PV) per vari componenti del cluster, insieme alla creazione di un singolo volume NFS da
NetApp ONTAP, garantisce un utilizzo ottimale delle risorse e una gestione dei dati. Il processo di

verifica dello stato dei PersistentVolumeClaim (PVC) e dei pod, nonché il test di scrittura e lettura dei
dati, garantiscono ai clienti operazioni sui dati affidabili e coerenti. L'utilizzo dell’archiviazione di oggetti
ONTAP o StorageGRID per i dati dei clienti migliora ulteriormente 'accessibilita e la sicurezza dei dati.
Nel complesso, questa configurazione fornisce ai clienti una soluzione di gestione dei dati resiliente e
ad alte prestazioni, in grado di adattarsi senza problemi alle crescenti esigenze di dati.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualita file e oggetto

Questa sezione illustra la configurazione del cluster Milvus con Amazon FSx ONTAP per
la soluzione di database vettoriale per NetApp.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualita di file e oggetti

In questa sezione, spiegheremo perché & necessario distribuire un database vettoriale nel cloud e i passaggi
per distribuire un database vettoriale (Milvus standalone) in Amazon FSx ONTAP per NetApp ONTAP
all'interno di container Docker.

L'implementazione di un database vettoriale nel cloud offre diversi vantaggi significativi, in particolare per le
applicazioni che richiedono la gestione di dati ad alta dimensionalita e I'esecuzione di ricerche di similarita. In
primo luogo, I'implementazione basata su cloud offre scalabilita, consentendo di adattare facilmente le risorse
in base ai crescenti volumi di dati e carichi di query. Cid garantisce che il database possa gestire in modo
efficiente 'aumento della domanda, mantenendo al contempo prestazioni elevate. In secondo luogo,
'implementazione del cloud garantisce elevata disponibilita e ripristino in caso di emergenza, poiché i dati
possono essere replicati in diverse posizioni geografiche, riducendo al minimo il rischio di perdita di dati e
garantendo un servizio continuo anche in caso di eventi imprevisti. In terzo luogo, garantisce un buon rapporto
qualita-prezzo, poiché si paga solo per le risorse utilizzate e si pud aumentare o diminuire la scala in base alla
domanda, evitando cosi la necessita di ingenti investimenti iniziali in hardware. Infine, 'implementazione di un
database vettoriale nel cloud pud migliorare la collaborazione, poiché i dati possono essere consultati e
condivisi da qualsiasi luogo, facilitando il lavoro di squadra e il processo decisionale basato sui dati. Verificare
I'architettura di milvus standalone con Amazon FSx ONTAP per NetApp ONTAP utilizzato in questa convalida.

17

FS)«’QP

Customer Data and Milvus config data /

Amazon FSXn for
NetApp ONTAP

1. Creare un’istanza Amazon FSx ONTAP per NetApp ONTAP e annotare i dettagli della VPC, dei gruppi di
sicurezza VPC e della subnet. Queste informazioni saranno necessarie durante la creazione di un’istanza
EC2. Puoi trovare maggiori dettagli qui - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-
east-1#file-system-create

2. Creare un’istanza EC2, assicurandosi che la VPC, i gruppi di sicurezza e la subnet corrispondano a quelli
dell’istanza Amazon FSx ONTAP per NetApp ONTAP .

3. Installare nfs-common utilizzando il comando 'apt-get install nfs-common' e aggiornare le informazioni sul
pacchetto utilizzando 'sudo apt-get update'.

4. Crea una cartella di montaggio e montaci Amazon FSx ONTAP per NetApp ONTAP .

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/voll
/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on
172.31.255.228:/voll 973G 126G 848G 13% /home/ubuntu/milvusvectordb
ubuntu@ip-172-31-29-98:~5

5. Installa Docker e Docker Compose utilizzando 'apt-get install'.

6. Configurare un cluster Milvus in base al file docker-compose.yaml, scaricabile dal sito web di Milvus.

18

Subcomponents
Query Coord Data Coord Index Coord Root Coord
uery Node Data Node Index Node Pro
) ity | | | Fiony Al Workloads
Fmmmmmmmmm e mm—————— e ——————
1
O ’ b ——
" 1
Reliable States ' 9
1
' [User requests (image)]
I Object Storage Key-Value-Meta-Store |
. . : !
: [Recommendation system]
i
1
: API calls for Similarity Similar images
L 4 4 T \| embeddings search recommended to user
h. 4 Y A 4 ¥ 3 H
1
1
Bucket File \ : Y
E Milvus cluster
1

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
-0 docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-
io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
<removed some output to save page space>

7. Nella sezione 'volumi' del file docker-compose.yml, mappa il punto di montaggio NetApp NFS al percorso
del contenitore Milvus corrispondente, in particolare in etcd, minio e standalone. Controlla"Appendice D:
docker-compose.yml" per i dettagli sulle modifiche in yml

8. Verificare le cartelle e i file montati.

ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -1ltrh
/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3 access.py
drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes
ubuntu@ip-172-31-29-98:~/milvusvectordb$ 1ls -ltrh
/home/ubuntu/milvusvectordb/volumes/

total O

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
ubuntu@ip-172-31-29-98:~$ 1s

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb
vectordbvoll

ubuntu@ip-172-31-29-98:~$

9. Eseguire 'docker-compose up -d' dalla directory contenente il file docker-compose.yml.

10. Controllare lo stato del contenitore Milvus.

19

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

Name Command State
Ports
milvus-etcd etcd -advertise-client-url ... Up (healthy)
2379/tcp, 2380/tcp
milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp, :::9000->9000/tcp, 0.0.0.0:9001-
>9001/tcp, :::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)
0.0.0.0:19530->19530/tcp, :::19530->19530/tcp, 0.0.0.0:9091-
>9091/tcp, :::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ 1s -ltrh /home/ubuntu/milvusvectordb/volumes/
total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milwvus
ubuntu@ip-172-31-29-98:~$

11. Per convalidare la funzionalita di lettura e scrittura del database vettoriale e dei suoi dati in Amazon FSx
ONTAP per NetApp ONTAP, abbiamo utilizzato Python Milvus SDK e un programma di esempio di
PyMilvus. Installa i pacchetti necessari usando "apt-get install python3-numpy python3-pip' e installa
PyMilvus usando 'pip3 install pymilvus'.

12. Convalida le operazioni di scrittura e lettura dei dati da Amazon FSx ONTAP per NetApp ONTAP nel
database vettoriale.

root@ip-172-31-29-98:~/pymilvus/examples# python3
prepare data netapp new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True
=== Drop collection - hello milvus ntapnew sc ===
=== Drop collection - hello milvus ntapnew sc2 ===
=== Create collection "hello milvus ntapnew sc ===
=== Start inserting entities ===

Number of entities in hello milvus ntapnew sc: 9000
root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/
<removed content to save page space >

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log

20

/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-cl117-4fba-8256-96cb7557cd6e
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/b3def25f-c117-4fba-8256-96cb7557cdéc/part.1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/103/4487898457
91411923/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/0/448789845791
411924/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/1/448789845791
411925/x1.meta
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920
/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert log
/448789845791611912/448789845791611913/448789845791611939/100/4487898457
91411920/x1.meta

13. Controllare 'operazione di lettura utilizzando lo script verify _data_netapp.py.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify data netapp.py
=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus ntapnew sc exist in Milvus: True

{'auto id': False, 'description': 'hello milvus ntapnew sc', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': False}, {'name': 'random', 'description':

L}
14

'"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',

21

22

'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, ({'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}
Number of entities in Milvus: hello milvus ntapnew sc : 9000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},
random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':
0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with ‘random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,
0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],
"'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with “random > 0.5° ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':
0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':
0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':
0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},
random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':
0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':
0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello milvus ntapnew sc2 exist in Milvus: True

{'auto id': True, 'description': 'hello milvus ntapnew sc2', 'fields':
[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is primary': True, 'auto id': True}, {'name': 'random', 'description':
'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}], 'enable dynamic field': False}

14. Se il cliente desidera accedere (leggere) i dati NFS testati nel database vettoriale tramite il protocollo S3
per i carichi di lavoro di intelligenza artificiale, puo convalidarli utilizzando un semplice programma Python.
Un esempio potrebbe essere una ricerca di similarita di immagini provenienti da un’altra applicazione,
come indicato nell'immagine all'inizio di questa sezione.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3
/home/ubuntu/milvusvectordb/s3 access.py -i 172.31.255.228 --bucket
milvusnasvol —--access-key PY6UF318996I86NBYNDD --secret-key
hoPctr9aD88clj0SkIYZ2uPal03v1bgKAOc5feKo6F

OBJECTS in the bucket milvusnasvol are

R R i e i b b db b b b b 2 b b db b i dh b b b b b b 2 S b dE b 2b b I i Y

<output content removed to save page space>

bucket/files/insert 1og/448789845791611912/448789845791611913/4487898457
91611920/0/448789845791411917/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/1/448789845791411918/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411913/x1.meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/101/448789845791411914/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611920/102/448789845791411915/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/1c48abbe-
1546-4503-9084-28c629216¢c33/part.1

volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611920/103/448789845791411916/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/0/448789845791411924/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/1/448789845791411925/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912

23

/448789845791611913/448789845791611939/100/448789845791411920/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/101/448789845791411921/x1 .meta
volumes/minio/a-bucket/files/insert 10g/448789845791611912
/448789845791611913/448789845791611939/102/448789845791411922/x1 .meta
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913,/448789845791611939/103/448789845791411923/b3def25f-
cll17-4fba-8256-96cb7557cd6ec/part.1
volumes/minio/a-bucket/files/insert 1og/448789845791611912
/448789845791611913/448789845791611939/103/448789845791411923/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791211880
/448789845791211881,/448789845791411889/100/1/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791211880
/448789845791211881,/448789845791411889,/100/448789845791411912/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/1/x1 .meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611920/100/448789845791411919/x1.meta
volumes/minio/a-bucket/files/stats 10g/448789845791611912
/448789845791611913/448789845791611939/100/1/x1.meta
volumes/minio/a-bucket/files/stats 1og/448789845791611912
/448789845791611913/448789845791611939/100/448789845791411926/x1 .meta

RR IR b b b b b b b b b b b b b I b 4

root@ip-172-31-29-98:~/pymilvus/examples

Questa sezione illustra in modo efficace come i clienti possono distribuire e gestire una configurazione
Milvus autonoma all’interno di container Docker, utilizzando NetApp FSx ONTAP di Amazon per
I'archiviazione dei dati NetApp ONTAP . Questa configurazione consente ai clienti di sfruttare la potenza
dei database vettoriali per gestire dati ad alta dimensionalita ed eseguire query complesse, il tutto
all'interno dell’ambiente scalabile ed efficiente dei container Docker. Creando un’istanza Amazon FSx
ONTAP per NetApp ONTAP e un’istanza EC2 corrispondente, i clienti possono garantire un utilizzo
ottimale delle risorse e una gestione dei dati. La validazione riuscita delle operazioni di scrittura e lettura
dei dati da FSx ONTAP nel database vettoriale offre ai clienti la garanzia di operazioni sui dati affidabili e
coerenti. Inoltre, la possibilita di elencare (leggere) i dati dai carichi di lavoro di intelligenza artificiale
tramite il protocollo S3 offre una migliore accessibilita ai dati. Questo processo completo, pertanto, fornisce
ai clienti una soluzione solida ed efficiente per la gestione delle loro operazioni sui dati su larga scala,
sfruttando le capacita di FSx ONTAP di Amazon per NetApp ONTAP.

Protezione del database vettoriale tramite SnapCenter

Questa sezione descrive come fornire protezione dei dati per il database vettoriale
utilizzando NetApp SnapCenter.
Protezione del database vettoriale tramite NetApp SnapCenter.

Ad esempio, nel settore della produzione cinematografica, i clienti spesso possiedono dati critici incorporati,
come file video e audio. La perdita di questi dati, dovuta a problemi come guasti al disco rigido, pu® avere un
impatto significativo sulle loro attivita, mettendo potenzialmente a repentaglio iniziative multimilionarie. Ci

24

siamo imbattuti in casi in cui contenuti di inestimabile valore sono andati persi, causando notevoli disagi e
perdite finanziarie. Garantire la sicurezza e I'integrita di questi dati essenziali € quindi di fondamentale
importanza in questo settore. In questa sezione approfondiamo il modo in cui ShapCenter salvaguarda i dati
del database vettoriale e i dati Milvus residenti in ONTAP. Per questo esempio, abbiamo utilizzato un bucket

NAS (milvusdbvol1) derivato da un volume NFS ONTAP (vol1) per i dati dei clienti e un volume NFS separato
(vectordbpv) per i dati di configurazione del cluster Milvus. Si prega di controllare"Qui" per il flusso di lavoro di

backup di SnapCenter

1. Impostare I'host che verra utilizzato per eseguire i comandi SnapCenter .

e _ o 10,182.82.137 - shiva snapoenter

W " SnapCenber X +

&= ¥ & © Mot seouwre HHpslocalhostB 146 Hast#

N NetApp SnapCenter®
| Managed Hosts
Host Details
Host Mame nodal
Hame

Host 1P 10.63,150.204

Overall Stats @ Sunning

SrsO0020 55881 sk T Lt
System Stand-alone

Credentials s

Plug-ins SnapCemter Plug-ins package 1.0 for Linux

Slorage Rk

£ More Options : Poct, inssall Path, add Flug-ins..

Submit Cance Rezst

it is recommended to configurs Credential with non-root wuser 3of
from waing the Yoot Credentlsl 1o a non-root Credential snd dai

Total &

2. Installa e configura il plugin di archiviazione. Dall’host aggiunto, seleziona "Altre opzioni". Passare e
selezionare il plug-in di archiviazione scaricato da"Negozio di automazione NetApp" . Installa il plugin e

salva la configurazione.

25

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3.

4.

26

[R
@ Open ®

10.192.83.137 - shiva snapcenter

4 e snapeenter [5) » SC-ANF » Plug v & asrch custom-plugir r

Organze = Hewfolder - m @
 Downlosds # ~ Name =
4 Documents ¥ paz
& Pictures o 1 Maxos
e i mysaL
1 ORASCPM
1 Peagresat
| SnapCenter Plug-in for DPGLUE
I Desinop 1 SnapCenter Phug-in for MongeD8
% Documents 1 storage
& Dowmicads i sveast
D Music
& Pictures
B Videos
ke Local Disk (C)
= snopsenter (el

More Options

8 This PC
2B 30 Objeers

File name: || | [anties

Impostare il sistema di archiviazione e il volume: aggiungere il sistema di archiviazione in "Sistema di
archiviazione" e selezionare SVM (Storage Virtual Machine). In questo esempio abbiamo scelto

" iAiA"

vs_nvidia".

M NetApp Snaplenter®
(AR g

ez Tiziags Tppooe)

.....

Stabilire una risorsa per il database vettoriale, incorporando una politica di backup e un nome di snapshot
personalizzato.

o Abilita il backup del gruppo di coerenza con i valori predefiniti e abilita SnapCenter senza coerenza del
file system.

> Nella sezione Impronta di archiviazione, selezionare i volumi associati ai dati dei clienti del database
vettoriale e ai dati del cluster Milvus. Nel nostro esempio, si tratta di "vol1" e "vectordbpv".

o Creare una policy per la protezione del database vettoriale e proteggere le risorse del database
vettoriale utilizzando la policy.

Modify Storage Storage Resource X

©Qiome Summary
o Storage Footprint Name
Type
o Raspurce Settings
Host seglasaryar] mssglanfiocal
| 4 Summary Mount Points
Credential Name adminuse

Storage Footprint

Storage System Volums LUN/Qtres

Custom Resource Parameters Mo

rrevos

-

5. Inserire i dati nel bucket NAS S3 utilizzando uno script Python. Nel nostro caso, abbiamo modificato lo
script di backup fornito da Milvus, ovvero 'prepare_data_netapp.py', ed eseguito il comando 'sync' per
eliminare i dati dal sistema operativo.

27

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost
Does collection hello milvus netapp sc test exist in Milvus: False

=== Create collection "hello milvus netapp sc test ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc test: 3000
=== Create collection "hello milvus netapp sc test2 ===

Number of entities in hello milvus netapp sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo
'sync executed';" ; done
node?2

sync executed
node3
sync executed
node4
sync executed
nodeb
sync executed
nodeb6
sync executed
root@node2 :~#

6. Verificare i dati nel bucket NAS S3. Nel nostro esempio, i file con timestamp '2024-04-08 21:22' sono stati
creati dallo script 'prepare_data_netapp.py'.

28

root@node2:~# aws s3 1s —--profile ontaps3 s3://milvusdbvoll/
--recursive | grep '2024-04-08"

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/1
2024-04-08 21:18:12 5654

stats 10g/448950615991000809/448950615991000810/448950615991001854/100/4
48950615990800869

2024-04-08 21:18:17 5656

stats 10g/448950615991000809/448950615991000810/448950615991001872/100/1
2024-04-08 21:18:15 5654

stats 1og/448950615991000809/448950615991000810/448950615991001872/100/4
48950615990800876

2024-04-08 21:22:46 5625

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/1
2024-04-08 21:22:45 5623

stats 10g/448950615991003377/448950615991003378/448950615991003385/100/4
48950615990800899

2024-04-08 21:22:49 5656

stats 1og/448950615991003408/448950615991003409/448950615991003416/100/1
2024-04-08 21:22:47 5654

stats 10g/448950615991003408/448950615991003409/448950615991003416/100/4
48950615990800906

2024-04-08 21:22:52 5656

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/1
2024-04-08 21:22:50 5654

stats 10g/448950615991003408/448950615991003409/448950615991003434/100/4
48950615990800913

root@node2:~#

7. Avvia un backup utilizzando lo snapshot del gruppo di coerenza (CG) dalla risorsa 'milvusdb’

29

30

v [snapCenter x +
£+ r O O Notsecure Rigsy flocalhost8146/PluginCreatorinventoryProtect/Protectindex?Resource Type = Storage 20 ResourcefiHost= nul & PlugmMame=Storage# b+ o 2

M NetApp SnapCenter® B ©®- 1 msqanfadministrator SnapCent

Storage ‘ Resource - Details

o | Nartie Detalls for selected resource
] Name
w 20 mibwusdb
Type turage Resour
ﬁ 2a mikusnode2
Haost Name
| 20 vectordb
LI Mount Points
2 volumebackupl
:-l e = Credantisl Name
— Plug-in name
Last backup A ORI2024 2 14 PM (Completed)
A Resource Groups aleserver] mssola cal_Starage_milvusdt
Policy
Storage Footprint
SV Yolume Junction Fath LUN/Gtrae
iby
Custorn Resource Parameters
Koy Value
Total &

Per testare la funzionalita di backup, abbiamo aggiunto una nuova tabella dopo il processo di backup
oppure abbiamo rimosso alcuni dati dal’NFS (bucket NAS S3).

Per questo test, immagina uno scenario in cui qualcuno ha creato una nuova raccolta non necessaria o
inappropriata dopo il backup. In tal caso, dovremmo ripristinare il database vettoriale allo stato in cui si
trovava prima dell’aggiunta della nuova raccolta. Ad esempio, sono state inserite nuove raccolte come
'hello_milvus_netapp_sc_testnew' e 'hello_milvus_netapp_sc_testnew?2'.

root@node2:~# python3 prepare data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===
Does collection hello milvus netapp sc testnew exist in Milvus: False

=== Create collection "hello milvus netapp sc testnew ===

=== Start inserting entities ===
Number of entities in hello milvus netapp sc testnew: 3000
=== Create collection "hello milvus netapp sc testnew2 ===

Number of entities in hello milvus netapp sc testnew2: 6000
root@node2:~#

9. Eseguire un ripristino completo del bucket NAS S3 dallo snapshot precedente.

Job Details

Restore 'scaleserver1.mssglanf.local\Storage\milvusdb’

v ¥ Restore ‘scaleserveri.mssqlanflocal\Starageimilvusdb’

v v scaleserverl.mssqlanf.lacal

v Restore

W » Validate Plugin Parameters

L * Pre Restore Application

W » File or Volume Restore

W * Recover Application

v » Cleaning Storage Resources

W * Clear Catalog on Server

v » Application Clean-Up -

© Task Name: Restore Start Time: 04/08/2024 2:37:21 PM End Time: 04/08/2024 2:37:55 PM

View Logs Close

10. Utilizzare uno script Python per verificare i dati dalle raccolte 'hello_milvus_netapp_sc_test'e
'hello_milvus_netapp_sc_test2'.

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello milvus netapp sc test exist in Milvus: True
{'auto id': False, 'description': 'hello milvus netapp sc test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

'is primary': True, 'auto id': False}, {'name': 'random', 'description':

'', '"type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': "'
'type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:

101>, 'params': {'dim': 8}}1]}
Number of entities in Milvus: hello milvus netapp sc _test : 3000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':
0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':
0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':
0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with “random > 0.5 ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

32

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],
'pk': 0}
search latency = 0.2257s

=== Start hybrid searching with "random > 0.5° ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},
random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':
0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':
0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':
0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':
0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':
0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello milvus netapp sc test2 exist in Milvus: True
{'auto_id': True, 'description': 'hello milvus netapp sc test2', '
fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,
'is primary': True, 'auto id': True}, {'name': 'random', 'description':
v 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '"',
'"type': <DataType.VARCHAR: 21>, 'params': {'max length': 65535}}, {'
name': 'embeddings', 'description': '', 'type': <DataType.FLOAT VECTOR:
101>, 'params': {'dim': 8}}1}

Number of entities in Milvus: hello milvus netapp sc test2 : 6000

=== Start Creating index IVF FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {
'"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {
"random': 0.5326684390871348}, random field: 0.5326684390871348
hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {
"random': 0.7864676926688837}, random field: 0.7864676926688837
hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {
'random': 0.2209597460821181}, random field: 0.2209597460821181
hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

33

'random': 0.2209597460821181}, random
hit: id: 448950615990640004, distance:
"random': 0.7765521996186631}, random

search latency = 0.2381s

Start querying with
query result:
-{'embeddings': [0.15983285,
0.50356466, 0.8750043,
0.7820620141382767}
0.3106s

'random':

search latency =

Start hybrid searching with

hit:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:
'random' :
hit: id:

'random':

0.5326684390871348}, random

0.5326684390871348}, random

0.7864676926688837}, random
448950615990640004,
0.7765521996186631}, random
0.7765521996186631}, random
448950615990640402,
0.9742541034109935},

0.4906s

random
search latency =
root@node2 :~#

‘random > 0.5°

0.72214717,
0.316556, 0.7871702],

‘random > 0.5°

id: 448950615990642008, distance:

448950615990645009, distance:

448950615990640618, distance:

distance:

448950615990643005, distance:

distance:

field: 0.2209597460821181
0.11571306735277176, entity:
field: 0.7765521996186631

0.7414838,
'pk':

0.44471496,

0.07805602252483368, entity:
field: 0.5326684390871348
0.07805602252483368, entity:
field: 0.5326684390871348
0.13562293350696564, entity:
field: 0.7864676926688837
0.11571306735277176, entity:
field: 0.7765521996186631
0.11571306735277176, entity:
field: 0.7765521996186631
0.13665105402469635, entity:
field: 0.9742541034109935

11. Verificare che la raccolta non necessaria o inappropriata non sia piu presente nel database.

34

448950615990639798,

root@node2:~# python3 verify data netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost

Does collection hello milvus netapp sc testnew exist in Milvus: False
Traceback (most recent call last):
File "/root/verify data netapp.py", line 37, in <module>
recover collection = Collection(recover collection name)
File "/usr/local/lib/python3.10/dist-
packages/pymilvus/orm/collection.py"”, line 137, in init
raise SchemaNotReadyException (
pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:
(code=1, message=Collection 'hello milvus netapp sc testnew' not exist,
or you can pass in schema to create one.)>
root@node?2 : ~4

In conclusione, I'utilizzo di SnapCenter di NetApp per salvaguardare i dati del database vettoriale e i dati
Milvus residenti in ONTAP offre notevoli vantaggi ai clienti, in particolare nei settori in cui I'integrita dei dati &
fondamentale, come la produzione cinematografica. La capacita di SnapCenter di creare backup coerenti ed
eseguire ripristini completi dei dati garantisce che i dati critici, come i file video e audio incorporati, siano
protetti da perdite dovute a guasti del disco rigido o altri problemi. Cid non solo previene interruzioni operative,
ma tutela anche da perdite finanziarie sostanziali.

In questa sezione abbiamo dimostrato come configurare SnapCenter per proteggere i dati residenti in ONTAP,
inclusa la configurazione degli host, l'installazione e la configurazione dei plugin di archiviazione e la creazione
di una risorsa per il database vettoriale con un nome snapshot personalizzato. Abbiamo anche mostrato come
eseguire un backup utilizzando lo snapshot del Consistency Group e verificare i dati nel bucket NAS S3.

Inoltre, abbiamo simulato uno scenario in cui & stata creata una raccolta non necessaria o inappropriata dopo il
backup. In questi casi, la capacita di SnapCenter di eseguire un ripristino completo da uno snapshot
precedente garantisce che il database vettoriale possa essere ripristinato allo stato in cui si trovava prima
dell’aggiunta della nuova raccolta, mantenendo cosi I'integrita del database. Questa capacita di ripristinare i
dati a un punto specifico nel tempo & di inestimabile valore per i clienti, poiché fornisce loro la garanzia che i
loro dati non solo sono protetti, ma anche correttamente mantenuti. Pertanto, il prodotto SnapCenter di NetApp
offre ai clienti una soluzione solida e affidabile per la protezione e la gestione dei dati.

Ripristino di emergenza tramite NetApp SnapMirror

Questa sezione illustra il DR (disaster recovery) con SnapMirror per la soluzione di
database vettoriale per NetApp.

Ripristino di emergenza tramite NetApp SnapMirror

35

Milvus Cluster

Milvus Cluster

Subcompanants Subcomponants
ety Coodd Dt Caard i Coond Rool Coard Ty Coodd Bata Coafd et G oot Coard
| Crusry Hode | Dota Hode Index Hode | Praxy | Grumry Hode | Pata tede Index Node Praxy
Reilable Stotos Ralioble Stoles
Dbjecs Jooroge | - Koy~ Yok~ Wiabo~Fhoe e Chteci droge by -V Lieta- Sose
F T T f e e Y T Ty
Y v VeryVyvg? ¥
| Buckat Fila
Yy v —
Buckat .
Cloud i
= = :
ONTAP m‘ Service
Providers

MetApp SnapMirror i eemmm g :
/ Data Mover :r Foity m !

Il ripristino dopo un disastro &€ fondamentale per mantenere l'integrita e la disponibilita di un database
vettoriale, soprattutto considerando il suo ruolo nella gestione di dati ad alta dimensionalita e nellesecuzione di
ricerche di similarita complesse. Una strategia di disaster recovery ben pianificata e implementata garantisce
che i dati non vengano persi o compromessi in caso di incidenti imprevisti, come guasti hardware, calamita
naturali o attacchi informatici. Cid € particolarmente significativo per le applicazioni che si basano su database
vettoriali, in cui la perdita o il danneggiamento dei dati potrebbe causare notevoli interruzioni operative e
perdite finanziarie. Inoltre, un solido piano di disaster recovery garantisce la continuita aziendale riducendo al
minimo i tempi di inattivita e consentendo il rapido ripristino dei servizi. Cio € possibile grazie al prodotto di
replicazione dei dati NetApp SnapMirrror in diverse posizioni geografiche, backup regolari e meccanismi di
failover. Pertanto, il disaster recovery non € solo una misura protettiva, ma una componente fondamentale per
una gestione responsabile ed efficiente dei database vettoriali.

SnapMirror di NetApp consente la replica dei dati da un controller di storage NetApp ONTAP a un altro, ed
utilizzato principalmente per soluzioni ibride e di disaster recovery (DR). Nel contesto di un database vettoriale,
questo strumento facilita la transizione fluida dei dati tra ambienti on-premise e cloud. Questa transizione viene
realizzata senza richiedere alcuna conversione di dati o refactoring delle applicazioni, migliorando cosi
I'efficienza e la flessibilita della gestione dei dati su piu piattaforme.

La soluzione NetApp Hybrid in uno scenario di database vettoriale pud apportare ulteriori vantaggi:

1. Scalabilita: la soluzione cloud ibrida di NetApp offre la possibilita di scalare le risorse in base alle proprie
esigenze. E possibile utilizzare risorse on-premise per carichi di lavoro regolari e prevedibili e risorse cloud
come Amazon FSx ONTAP per NetApp ONTAP e Google Cloud NetApp Volume (NetApp Volumes) per
periodi di punta o carichi imprevisti.

2. Efficienza dei costi: il modello di cloud ibrido di NetApp consente di ottimizzare i costi utilizzando risorse
on-premise per carichi di lavoro regolari e pagando le risorse cloud solo quando ne hai bisogno. Questo
modello di pagamento a consumo puo rivelarsi piuttosto conveniente con un’offerta di servizi NetApp
Instaclustr. Instaclustr offre supporto e consulenza ai principali fornitori di servizi cloud e on-premise.

3. Flessibilita: il cloud ibrido di NetApp ti offre la flessibilita di scegliere dove elaborare i tuoi dati. Ad esempio,
potresti scegliere di eseguire operazioni vettoriali complesse in locale, dove hai hardware piu potente, e
operazioni meno intensive nel cloud.

4. Continuita aziendale: in caso di disastro, avere i dati in un cloud ibrido NetApp puo garantire la continuita
aziendale. Se le tue risorse locali sono interessate, puoi passare rapidamente al cloud. Possiamo sfruttare
NetApp SnapMirror per spostare i dati da locale a cloud e viceversa.

36

5. Innovazione: le soluzioni cloud ibride di NetApp possono anche favorire un’innovazione piu rapida,
offrendo accesso a servizi e tecnologie cloud all’avanguardia. Le innovazioni NetApp nel cloud, come
Amazon FSx ONTAP per NetApp ONTAP, Azure NetApp Files e Google Cloud NetApp Volumes, sono
prodotti innovativi e NAS preferiti dai provider di servizi cloud.

Validazione delle prestazioni del database vettoriale

Questa sezione evidenzia la convalida delle prestazioni eseguita sul database vettoriale.

Validazione delle prestazioni

La convalida delle prestazioni svolge un ruolo fondamentale sia nei database vettoriali che nei sistemi di
archiviazione, fungendo da fattore chiave per garantire un funzionamento ottimale e un utilizzo efficiente delle
risorse. | database vettoriali, noti per la gestione di dati ad alta dimensionalita e I'esecuzione di ricerche di
similarita, devono mantenere elevati livelli di prestazioni per elaborare query complesse in modo rapido e
accurato. La convalida delle prestazioni aiuta a identificare i colli di bottiglia, a perfezionare le configurazioni e
a garantire che il sistema possa gestire i carichi previsti senza degradazione del servizio. Allo stesso modo, nei
sistemi di archiviazione, la convalida delle prestazioni € essenziale per garantire che i dati vengano archiviati e
recuperati in modo efficiente, senza problemi di latenza o colli di bottiglia che potrebbero influire sulle
prestazioni complessive del sistema. Aiuta inoltre a prendere decisioni consapevoli sugli aggiornamenti o le
modifiche necessarie all'infrastruttura di storage. Pertanto, la convalida delle prestazioni & un aspetto cruciale
della gestione del sistema, contribuendo in modo significativo al mantenimento di un’elevata qualita del
servizio, dell’efficienza operativa e dell'affidabilita complessiva del sistema.

In questa sezione, ci proponiamo di approfondire la convalida delle prestazioni dei database vettoriali, come
Milvus e pgvecto.rs, concentrandoci sulle caratteristiche delle prestazioni di storage, come il profilo 1/0 e il
comportamento del controller di storage NetApp a supporto dei carichi di lavoro RAG e di inferenza all'interno
del ciclo di vita LLM. Valuteremo e identificheremo eventuali fattori differenzianti nelle prestazioni quando
questi database saranno combinati con la soluzione di archiviazione ONTAP . La nostra analisi si basera su
indicatori chiave di prestazione, come il numero di query elaborate al secondo (QPS).

Si prega di controllare la metodologia utilizzata per milvus e i progressi di seguito.

Dettagli Milvus (autonomo e cluster) Postgres(pgvecto.rs) #
versione 2.3.2 0.2.0

File system XFS su LUN iSCSI

Generatore di carico di lavoro "VectorDB-Bench"- v0.0.5

Set di dati Dataset LAION * 10 milioni di

incorporamenti * 768 dimensioni *
dimensione del dataset ~300 GB

Controllore di archiviazione AFF 800 * Versione —9.14.1 *4 x
100GbE — per milvus e 2x 100GbE
per postgres * iscsi

VectorDB-Bench con cluster autonomo Milvus

abbiamo eseguito la seguente convalida delle prestazioni sul cluster autonomo Milvus con vectorDB-Bench. Di
seguito € riportata la connettivita di rete e server del cluster autonomo Milvus.

37

https://github.com/zilliztech/VectorDBBench

Management network

...

wle-A800-A-01
I I ; milvus-standalone | I I | I I |

wle-A800-A-02
”””l milvus-minio

milvus-etcd ! l

iSCSI 100Gbps network docker

In questa sezione condividiamo le nostre osservazioni e i risultati ottenuti testando il database autonomo
Milvus. . Abbiamo selezionato DiskANN come tipo di indice per questi test. . L'acquisizione, 'ottimizzazione e
la creazione di indici per un set di dati di circa 100 GB hanno richiesto circa 5 ore. Per la maggior parte di
questa durata, il server Milvus, dotato di 20 core (che equivalgono a 40 vCPU quando Hyper-Threading €
abilitato), ha funzionato alla massima capacita della CPU, pari al 100%. Abbiamo scoperto che DiskANN &
particolarmente importante per i set di dati di grandi dimensioni che superano le dimensioni della memoria di
sistema. . Nella fase di query, abbiamo osservato un tasso di query al secondo (QPS) pari a 10,93 con un
richiamo pari a 0,9987. La latenza del 99° percentile per le query € stata misurata a 708,2 millisecondi.

Dal punto di vista dell’archiviazione, il database ha eseguito circa 1.000 operazioni al secondo durante le fasi
di acquisizione, ottimizzazione post-inserimento e creazione dell’indice. Nella fase di query, sono state
richieste 32.000 operazioni al secondo.

Nella sezione seguente vengono presentate le metriche delle prestazioni di archiviazione.

Fase di carico di lavoro Metrico Valore
Inserimento dei dati e IOPS <1.000
ottimizzazione post-inserimento
Latenza <400 usecs
Carico di lavoro Mix di lettura/scrittura, per lo piu
scrive
dimensione 10 64 KB
Domanda IOPS Picco a 32.000
Latenza <400 usecs
Carico di lavoro Lettura cache al 100%
dimensione 10 Principalmente 8 KB

Di seguito € riportato il risultato di vectorDB-bench.

38

.<~. VDB
z' Benchmark

Vector Database Benchmark

Filtering Search Performance Test (5M Dataset, 1536 Dim, Filter 1%) A

Qps (more is better)

Milvus 1093

Recall (more is better)

Vi L5 09987

Load_duration (less is better)

M a5 15,3605

Serial_latency_p99 (less is better)

i L5 708.2ms

Dalla convalida delle prestazioni dell'istanza Milvus autonoma, € evidente che la configurazione attuale non &
sufficiente a supportare un set di dati di 5 milioni di vettori con una dimensionalita di 1536. Abbiamo stabilito
che lo storage dispone di risorse adeguate e non costituisce un collo di bottiglia nel sistema.

VectorDB-Bench con cluster Milvus

In questa sezione, discuteremo I'implementazione di un cluster Milvus all’interno di un ambiente Kubernetes.
Questa configurazione di Kubernetes € stata realizzata su una distribuzione VMware vSphere, che ospitava i
nodi master e worker di Kubernetes.

| dettagli delle distribuzioni VMware vSphere e Kubernetes sono presentati nelle sezioni seguenti.

39

Management network

vm-kube-master-01 vm-kube-master-02 vm-kube-master-03

| [

wle-A800-A-02

vm-kube-worker-14 vm-kube-worker-17

vm-kube-worker-15 vm-kube-worker-18

vm-kube-worker-16 vm-kube-worker-19

VMware vSphere

iSCSI 100Gbps network

A

|

|

i i |
Q000 |

- g~ -~ indexnode-0 indexnode-1 indexnode-2 indexnode-3 E |
- — '
|
|

my-release-etod my-release-minio my-release-milvus-indexnode

- - T T T e e e e e e e e e s ssss s ——ses 1 |
|

|

|

|

|

|

|

|

|

| - & : :
: my-release-pulsar-bookie my-release-pulsar-broker ; ® ® ® @ @ i
| Ry s querynode-0 querynode-1 querynode-2 querynode-3 querynode-d;
' 00000
| my-release-pulsar-proxy — my-release-pulsar-recovery : E
|

|

|

|

|

|

|

|

|

|

|

|

. querynode-5 querynode-6 querynode-7 querynode-8 querynode-S | |
f '-.'; "-‘-n‘l v
. __ ‘ |
|

|

|

|

my-release-pulsar-zookeeper my-release-milvus-querynode

kube-worker-14 kube-worker-15 kube-worker-16 kube-worker-17 kube-worker-18 kube-worker-19

| |
0-0-0

kube-master-01 kube-master-02 kube-master-03

In questa sezione presentiamo le nostre osservazioni e i risultati ottenuti testando il database Milvus. * Il tipo di
indice utilizzato era DiskANN. * La tabella seguente fornisce un confronto tra le distribuzioni standalone e
cluster quando si lavora con 5 milioni di vettori con una dimensionalita di 1536. Abbiamo osservato che il
tempo impiegato per I'acquisizione dei dati e I'ottimizzazione post-inserimento era inferiore nella distribuzione
del cluster. La latenza del 99° percentile per le query & stata ridotta di sei volte nella distribuzione del cluster
rispetto alla configurazione autonoma. * Sebbene la frequenza delle query al secondo (QPS) fosse piu elevata
nella distribuzione del cluster, non era al livello desiderato.

Metric | Milvus Standalone _| Milvus Cluster

QPS @ Recall 10.93 @ 0.9987 18.42 @ 0.9952 +40%
p99 Latency (less is better) 708.2 ms 117.6 ms -83%
Load Duration time (less is better) 18,360 secs 12,730 secs -30%

Le immagini sottostanti forniscono una panoramica di varie metriche di archiviazione, tra cui la latenza del
cluster di archiviazione e gli IOPS totali (operazioni di input/output al secondo).

41

Summary

Cluster Latency

Ops
17:30 18:00 18:30 19:00

== average == min == max

N

20:30 AR

Total OPS

100K ops
75K ops
50K ops

25K ops

\
]
Olops /UIL_
17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

== wle-a800-a-01 == wle-a800-a-02

Nella sezione seguente vengono presentate le principali metriche relative alle prestazioni di archiviazione.

Fase di carico di lavoro

Inserimento dei dati e
ottimizzazione post-inserimento

Domanda

Metrico

IOPS

Latenza

Carico di lavoro

dimensione 10
IOPS

Latenza

Carico di lavoro

dimensione IO

Valore

<1.000

< 400 usecs

Mix di lettura/scrittura, per lo piu
scrive

64 KB

Picco a 147.000
<400 usecs

Lettura cache al 100%

Principalmente 8 KB

Sulla base della convalida delle prestazioni sia del Milvus autonomo che del cluster Milvus, presentiamo i
dettagli del profilo I/0 di archiviazione. * Abbiamo osservato che il profilo I/O rimane coerente sia nelle
distribuzioni autonome che in quelle cluster. * La differenza osservata nei picchi di IOPS pud essere attribuita
al numero maggiore di client nella distribuzione del cluster.

vectorDB-Bench con Postgres (pgvecto.rs)

Abbiamo eseguito le seguenti azioni su PostgreSQL (pgvecto.rs) utilizzando VectorDB-Bench: i dettagli
riguardanti la connettivita di rete e del server di PostgreSQL (in particolare, pgvecto.rs) sono i seguenti:

42

Management network

wle-A800-A-01 ‘
— [T

wle-A800-A-02 —

Postgres

docker

In questa sezione condividiamo le nostre osservazioni e i risultati ottenuti testando il database PostgreSQL, in
particolare utilizzando pgvecto.rs. * Abbiamo selezionato HNSW come tipo di indice per questi test perché al
momento del test, DiskANN non era disponibile per pgvecto.rs. * Durante la fase di acquisizione dei dati,
abbiamo caricato il dataset Cohere, composto da 10 milioni di vettori con una dimensionalita di 768. Questo
processo ha richiesto circa 4,5 ore. * Nella fase di query, abbiamo osservato un tasso di query al secondo
(QPS) di 1.068 con un richiamo di 0,6344. La latenza del 99° percentile per le query & stata misurata a 20
millisecondi. Per la maggior parte del tempo di esecuzione, la CPU del client ha funzionato al 100% della sua
capacita.

Le immagini sottostanti forniscono una panoramica di varie metriche di archiviazione, tra cui la latenza totale
del cluster di archiviazione IOPS (operazioni di input/output al secondo).

« Summary

Cluster Latency Total OPS

The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["Figura che mostra il dialogo di
input/output o che rappresenta i1l contenuto scritto"]

Confronto delle prestazioni tra Milvus e Postgres su Vector DB Bench

43

.%<~-. DB
',),,7' Benchmark

Vector Database Benchmark

Note that all testing was completed in July 2023, except for the times already noted.

Search Performance Test (10M Dataset, 768 Dim) A

Qps (more is better)

Pgvectors-20c_250g 001 |, :.0c5
Milvus-20c_250g 002 [106

Recall (more is better)

Mitvus-20c_250g_002 |, 0.9842
Pgvectors-20c_250g 001 | 0. 344

Serial_latency_p99 (less is better)

Mitvus-20c_250g 002 | 15.8ms
PgVectors-20c_250g 001 |, 20ms

Sulla base della nostra convalida delle prestazioni di Milvus e PostgreSQL utilizzando VectorDBBench,
abbiamo osservato quanto segue:

* Tipo di indice: HNSW

e Dataset: Cohere con 10 milioni di vettori a 768 dimensioni

Abbiamo scoperto che pgvecto.rs ha raggiunto un tasso di query al secondo (QPS) di 1.068 con un richiamo di
0,6344, mentre Milvus ha raggiunto un tasso di QPS di 106 con un richiamo di 0,9842.

Se I'elevata precisione nelle tue query € una priorita, Milvus supera pgvecto.rs in quanto recupera una
percentuale maggiore di elementi pertinenti per query. Tuttavia, se il numero di query al secondo € un fattore

pil cruciale, pgvecto.rs supera Milvus. E importante notare, tuttavia, che la qualita dei dati recuperati tramite
pgvecto.rs & inferiore, con circa il 37% dei risultati di ricerca costituiti da elementi irrilevanti.

Osservazione basata sulle nostre convalide delle prestazioni:

Sulla base delle nostre convalide delle prestazioni, abbiamo fatto le seguenti osservazioni:

In Milvus, il profilo I/0O assomiglia molto a un carico di lavoro OLTP, come quello visto con Oracle SLOB. i

44

benchmark & composto da tre fasi: acquisizione dei dati, post-ottimizzazione e query. Le fasi iniziali sono
caratterizzate principalmente da operazioni di scrittura da 64 KB, mentre la fase di query prevede
prevalentemente letture da 8 KB. Ci aspettiamo che ONTAP gestisca in modo efficiente il carico 1/0 Milvus.

Il profilo 1/0 di PostgreSQL non presenta un carico di lavoro di archiviazione impegnativo. Considerata
limplementazione in memoria attualmente in corso, non abbiamo osservato alcun 1/O su disco durante la fase
di query.

DiskANN emerge come una tecnologia cruciale per la differenziazione dello storage. Consente di
ridimensionare in modo efficiente la ricerca nel database vettoriale oltre i limiti della memoria di sistema.
Tuttavia, & improbabile che si possa stabilire una differenziazione delle prestazioni di archiviazione con indici
DB vettoriali in memoria come HNSW.

Vale anche la pena notare che 'archiviazione non gioca un ruolo critico durante la fase di query quando il tipo
di indice € HSNW, che ¢ la fase operativa piu importante per i database vettoriali che supportano le
applicazioni RAG. Cio implica che le prestazioni di archiviazione non hanno un impatto significativo sulle
prestazioni complessive di queste applicazioni.

Database vettoriale con Instaclustr utilizzando PostgreSQL.:
pgvector

Questa sezione illustra le specifiche di come il prodotto instaclustr si integra con
postgreSQL sulla funzionalita pgvector nella soluzione di database vettoriale per NetApp.

Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector

In questa sezione approfondiamo i dettagli di come il prodotto instaclustr si integra con postgreSQL sulla
funzionalita pgvector. Abbiamo un esempio di "Come migliorare I'accuratezza e le prestazioni del tuo LLM con
PGVector e PostgreSQL: introduzione agli incorporamenti e al ruolo di PGVector". Si prega di controllare
iI"blog" per ottenere maggiori informazioni.

Casi d’uso del database vettoriale

Questa sezione fornisce una panoramica dei casi d’'uso per la soluzione di database
vettoriale NetApp .

Casi d’uso del database vettoriale

In questa sezione, discuteremo di due casi d’'uso quali Retrieval Augmented Generation con modelli linguistici
di grandi dimensioni e NetApp IT chatbot.

Generazione aumentata del recupero (RAG) con modelli linguistici di grandi dimensioni (LLM)

45

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval-augmented generation, or RAG, is a technique for enhancing the
accuracy and reliability of Large Language Models, or LLMs, by augmenting
prompts with facts fetched from external sources. In a traditional RAG
deployment, vector embeddings are generated from an existing dataset and
then stored in a vector database, often referred to as a knowledgebase.
Whenever a user submits a prompt to the LLM, a vector embedding
representation of the prompt is generated, and the vector database is
searched using that embedding as the search query. This search operation
returns similar vectors from the knowledgebase, which are then fed to the
LIM as context alongside the original user prompt. In this way, an LLM can
be augmented with additional information that was not part of its original
training dataset.

NVIDIA Enterprise RAG LLM Operator € uno strumento utile per implementare RAG in azienda. Questo
operatore puo essere utilizzato per distribuire una pipeline RAG completa. La pipeline RAG puo essere
personalizzata per utilizzare Milvus o pgvecto come database vettoriale per I'archiviazione degli
incorporamenti della knowledge base. Per i dettagli, fare riferimento alla documentazione.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA
Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog
post for more information and to see a demo. Figure 1 provides an overview
of this architecture.

Figura 1) Enterprise RAG basato su NVIDIA NeMo Microservices e NetApp
Existing data sources
S
. StorageGRID =
L) MDA NeMo Microsarvicas
DNTAP

Kb naiog
O Amazon F3s for NolApp DNTAP

Any Kubarpolod - clawd oF an-gramiies

Watapp Intelligent Data Storage

Al-fegh appllances; nalive clowd arvicos

Enterprise data protection and govemanos

fram NetApp

On-prem and/or eloud Datacenter

dws

o=

On-prem andfor cloud

Caso d’uso del chatbot IT NetApp

Il chatbot di NetApp rappresenta un ulteriore caso d’uso in tempo reale per il database vettoriale. In questo
caso, NetApp Private OpenAl Sandbox fornisce una piattaforma efficace, sicura ed efficiente per la gestione
delle query degli utenti interni di NetApp. Integrando rigorosi protocolli di sicurezza, efficienti sistemi di gestione
dei dati e sofisticate capacita di elaborazione dell’intelligenza artificiale, garantisce risposte precise e di alta
qualita agli utenti in base ai loro ruoli e responsabilita nell’organizzazione tramite autenticazione SSO. Questa
architettura mette in luce il potenziale dell’'unione di tecnologie avanzate per creare sistemi intelligenti e

46

incentrati sull’'utente.

G Q
User Azure OpenAl
Base Model
VPN 550
ade
Filtering
File Upload
.- .
= e Client-side File
T E . .@. @ “
T 4 ¥ Weaviate
Proxy - Server Web-App React Engine 53 Storage Vector DB
Mg .
1AM | E =] File Meta Data z
[r' _____
h [E i
4 V| | | J E
) Mongo DB
o
Redis d MariaDB @
s E
Chat History Rabbitmq Ingestion Azure OpenAl
Embedding Model

Il caso d’uso puo essere suddiviso in quattro sezioni principali.

Autenticazione e verifica dell’'utente:

* Le query degli utenti vengono prima sottoposte al processo NetApp Single Sign-On (SSO) per confermare
lidentita dell’'utente.

* Dopo l'autenticazione avvenuta con successo, il sistema controlla la connessione VPN per garantire una
trasmissione sicura dei dati.

Trasmissione ed elaborazione dei dati:

» Una volta convalidata la VPN, i dati vengono inviati a MariaDB tramite le applicazioni web NetAlChat o
NetAlCreate. MariaDB € un sistema di database veloce ed efficiente utilizzato per gestire e archiviare i dati
degli utenti.

» MariaDB invia quindi le informazioni all'istanza NetApp Azure, che collega i dati dell’'utente all’'unita di
elaborazione Al.

Interazione con OpenAl e filtraggio dei contenuti:

 L'istanza di Azure invia le domande dell’utente a un sistema di filtraggio dei contenuti. Questo sistema
pulisce la query e la prepara per I'elaborazione.

 L’input ripulito viene quindi inviato al modello base di Azure OpenAl, che genera una risposta in base
all'input.

Generazione e moderazione delle risposte:

* Larisposta del modello base viene prima verificata per garantire che sia accurata e soddisfi gli standard di
contenuto.

» Dopo aver superato il controllo, la risposta viene inviata all’'utente. Questo processo garantisce che l'utente

47

riceva una risposta chiara, accurata e appropriata alla sua domanda.

Conclusione

Questa sezione conclude la soluzione del database vettoriale per NetApp.

Conclusione

In conclusione, questo documento fornisce una panoramica completa sull'implementazione e la gestione di
database vettoriali, come Milvus e pgvector, sulle soluzioni di storage NetApp . Abbiamo discusso le linee
guida dellinfrastruttura per sfruttare I'archiviazione di oggetti NetApp ONTAP e StorageGRID e convalidato il
database Milvus in AWS FSx ONTAP tramite I'archiviazione di file e oggetti.

Abbiamo esplorato la dualita file-oggetto di NetApp, dimostrandone I'utilita non solo per i dati nei database
vettoriali, ma anche per altre applicazioni. Abbiamo anche evidenziato come SnapCenter, il prodotto di
gestione aziendale di NetApp, offra funzionalita di backup, ripristino e clonazione per i dati dei database
vettoriali, garantendone l'integrita e la disponibilita.

Il documento approfondisce anche il modo in cui la soluzione Hybrid Cloud di NetApp offre replicazione e
protezione dei dati in ambienti on-premise e cloud, garantendo un’esperienza di gestione dei dati fluida e
sicura. Abbiamo fornito approfondimenti sulla convalida delle prestazioni di database vettoriali come Milvus e
pgvecto su NetApp ONTAP, offrendo informazioni preziose sulla loro efficienza e scalabilita.

Infine, abbiamo discusso due casi d’uso dell'intelligenza artificiale generativa: RAG con LLM e ChatAl interna
di NetApp. Questi esempi pratici sottolineano le applicazioni e i vantaggi concreti dei concetti e delle pratiche
delineati nel presente documento. Nel complesso, questo documento costituisce una guida completa per
chiunque voglia sfruttare le potenti soluzioni di storage di NetApp per la gestione di database vettoriali.

Ringraziamenti

L'autore desidera ringraziare sentitamente i collaboratori indicati di seguito, coloro che hanno fornito feedback
e commenti per rendere questo documento utile ai clienti NetApp e ai settori NetApp .
1. Sathish Thyagarajan, Ingegnere tecnico di marketing, ONTAP Al e analisi, NetApp
Mike Oglesby, ingegnere tecnico di marketing, NetApp
AJ Mahajan, Direttore Senior, NetApp
Joe Scott, Responsabile, Ingegneria delle prestazioni del carico di lavoro, NetApp

Puneet Dhawan, Direttore senior, Gestione prodotti Fsx, NetApp

© o ~ w0 BN

Yuval Kalderon, Senior Product Manager, FSx Product Team, NetApp

Dove trovare ulteriori informazioni

Per saperne di piu sulle informazioni descritte nel presente documento, consultare i seguenti documenti e/o siti
web:

* Documentazione Milvus - https://milvus.io/docs/overview.md

* Documentazione autonoma di Milvus - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

» Documentazione del prodotto NetApphttps://www.netapp.com/support-and-training/documentation/[]

« instaclustr -"documentazione di instalclustr”

48

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Cronologia delle versioni

Versione Data Cronologia delle versioni del
documento
Versione 1.0 Aprile 2024 Versione iniziale

Appendice A: Values.yaml

Questa sezione fornisce un codice YAML di esempio per i valori utilizzati nella soluzione

del database vettoriale NetApp .

Appendice A: Values.yaml

root@node2:~# cat values.yaml
Enable or disable Milvus Cluster mode
cluster:

enabled: true

image:
all:
repository: milvusdb/milvus
tag: v2.3.4
pullPolicy: IfNotPresent
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-
image-private-registry/
##
pullSecrets:
- myRegistryKeySecretName
tools:
repository: milvusdb/milvus-config-tool
tag: v0.1.2
pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector
nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations
tolerations: []

Global affinity

49

50

If set, this will apply to all milvus components
Individual components can be set to a different affinity
affinity: {}

Global labels and annotations
If set, this will apply to all milvus components
labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

H H= H= H H*

Note: this config will be the top priority which will override the
config

in the image and helm chart.

extraConfigFiles:
user.yaml: |+

For example enable rest http for milvus proxy
Proxy:
http:
enabled: true
Enable tlsMode and set the tls cert and key
tls:
serverPemPath: /etc/milvus/certs/tls.crt
serverKeyPath: /etc/milvus/certs/tls.key
common :
security:
tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster
(LoadBalancer service).
or access it from within the cluster (ClusterIP service). Set the
service type and the port to serve it.
ref: http://kubernetes.io/docs/user-guide/services/
##
service:
type: ClusterIP
port: 19530
portName: milvus
nodePort: ""
annotations: {}
labels: {}

List of IP addresses at which the Milvus service is available
Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

##
externallIPs: []
- externallpl

LoadBalancerSourcesRange is a list of allowed CIDR values, which are
combined with ServicePort to

set allowed inbound rules on the security group assigned to the master
load balancer

loadBalancerSourceRanges:

- 0.0.0.0/0

Optionally assign a known public LB IP

loadBalancerIP: 1.2.3.4

ingress:
enabled: false
annotations:
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/backend-protocol: GRPC
nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]"'
nginx.ingress. kubernetes.io/proxy-body-size: 4m
nginx.ingress.kubernetes.io/ssl-redirect: "true"
labels: {}
rules:
- host: "milvus-example.local"
path: "/"
pathType: "Prefix"
- host: "milvus-example2.local"
path: "/otherpath"
pathType: "Prefix"
tls: []
- secretName: chart-example-tls
hosts:
- milvus-example.local

serviceAccount:
create: false
name:
annotations:
labels:

metrics:
enabled: true

serviceMonitor:
Set this to “true’ to create ServiceMonitor for Prometheus operator

enabled: false

interval: "30s"

scrapeTimeout: "10s"

Additional labels that can be used so ServiceMonitor will be
discovered by Prometheus

additionallabels: {}

livenessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 30
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 90
periodSeconds: 10
timeoutSeconds: 5

successThreshold: 1
failureThreshold: 5
log:

level: "info"

file:
maxSize: 300 # MB
maxAge: 10 # day
maxBackups: 20

format: "text" # text/Jjson

persistence:
mountPath: "/milvus/logs"

If true, create/use a Persistent Volume Claim
If false, use emptyDir
##
enabled: false
annotations:

helm.sh/resource-policy: keep
persistentVolumeClaim:

existingClaim: ""

Milvus Logs Persistent Volume Storage Class

If defined, storageClassName: <storageClass>

If set to "-", storageClassName: "", which disables dynamic

provisioning

If undefined (the default) or set to null, no storageClassName

spec is
#4 set, choosing the default provisioner.
ReadWriteMany access mode required for milvus cluster.
#H
storageClass: default
accessModes: ReadWriteMany
size: 10Gi
subPath: ""

Heaptrack traces all memory allocations and annotates these events with
stack traces.
See more: https://github.com/KDE/heaptrack
Enable heaptrack in production is not recommended.
heaptrack:
image:

repository: milvusdb/heaptrack

tag: v0.1.0

pullPolicy: IfNotPresent

standalone:

replicas: 1 # Run standalone mode with replication disabled
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:

enabled: false
disk:

enabled: true

size:

enabled: false # Enable local storage size limit

profiling:

enabled: false # Enable live profiling

Default message queue for milvus standalone
Supported value: rocksmg, natsmg, pulsar and kafka
messageQueue: rocksmg
persistence:
mountPath: "/var/lib/milvus"
If true, alertmanager will create/use a Persistent Volume Claim
If false, use emptyDir
#4

53

54

enabled: true
annotations:
helm.sh/resource-policy: keep
persistentVolumeClaim:
existingClaim: ""
Milvus Persistent Volume Storage Class
If defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic
provisioning
If undefined (the default) or set to null, no storageClassName

spec is
#4 set, choosing the default provisioner.
##
storageClass:

accessModes: ReadWriteOnce
size: 50Gi
subPath: ""

pProxy:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
http:
enabled: true # whether to enable http rest server
debugMode:
enabled: false
Mount a TLS secret into proxy pod
tls:
enabled: false
when enabling proxy.tls, all items below should be uncommented and the
key and crt values should be populated.
enabled: true
secretName: milvus-tls
expecting base64 encoded values here: i.e. $(cat tls.crt | base6d -w 0)
and $(cat tls.key | base64 -w 0)
key: LSOtLS1CRUdAJTiBQU--REDUCT

H H= FH H = H H= FH

crt: LSOtLS1ICRUAJTiBDR--REDUCT
volumes:
— secret:
secretName: milvus-tls
name: milvus-tls
volumeMounts:
- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Root Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

service:
port: 53100
annotations: {}
labels: {}
clusterIP:

queryCoordinator:

enabled: true
You can set the number of replicas greater than 1, only if enable

active standby

replicas: 1 # Run Query Coordinator mode with replication disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:

55

enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas
for query coordinator

service:
port: 19531
annotations: {}
labels: {}
clusterIP: ""

queryNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinitys: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
disk:
enabled: true # Enable querynode load disk index, and search on disk
index
size:
enabled: false # Enable local storage size limit
profiling:
enabled: false # Enable live profiling

indexCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Index Coordinator mode with replication disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extraEnv: []

heaptrack:

enabled: false

56

profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

service:
port: 31000
annotations: {}
labels: {}
clusterIP: ""
indexNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
Set local storage size in resources
limits:
ephemeral-storage: 100Gi
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling
disk:
enabled: true # Enable index node build disk vector index
size:
enabled: false # Enable local storage size limit

dataCoordinator:

enabled: true

You can set the number of replicas greater than 1, only if enable
active standby

replicas: 1 # Run Data Coordinator mode with replication
disabled

resources: {}

nodeSelector: {}

affinity: {}

tolerations: []

extrakEnv: []

heaptrack:

57

enabled: false
profiling:
enabled: false # Enable live profiling
activeStandby:
enabled: false # Enable active-standby when you set multiple replicas
for data coordinator

service:
port: 13333
annotations: {}
labels: {}
clusterIP: ""

dataNode:
enabled: true
You can set the number of replicas to -1 to remove the replicas field
in case you want to use HPA
replicas: 1
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extraEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling

mixCoordinator contains all coord
If you want to use mixcoord, enable this and disable all of other
coords
mixCoordinator:
enabled: false
You can set the number of replicas greater than 1, only if enable
active standby
replicas: 1 # Run Mixture Coordinator mode with replication
disabled
resources: {}
nodeSelector: {}
affinity: {}
tolerations: []
extrakEnv: []
heaptrack:
enabled: false
profiling:
enabled: false # Enable live profiling

58

activeStandby:
enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

service:
annotations: {}
labels: {}
clusterIP: ""

attu:

enabled: false

name: attu

image:
repository: zilliz/attu
tag: v2.2.8
pullPolicy: IfNotPresent

service:

annotations: {}

labels: {}
type: ClusterIP
port: 3000

loadBalancerIP: ""
resources: {}
podLabels: {}
ingress:
enabled: false
annotations: {}
Annotation example: set nginx ingress type
kubernetes.io/ingress.class: nginx
labels: {}
hosts:
- milvus-attu.local

tls: []

- secretName: chart-attu-tls
hosts:

- milvus-attu.local

Configuration values for the minio dependency
ref: https://github.com/minio/charts/blob/master/README .md
#H

minio:
enabled: false
name: minio
mode: distributed

60

image:
tag: "RELEASE.2023-03-20T20-16-182z"
pullPolicy: IfNotPresent
accessKey: minioadmin
secretKey: minioadmin
existingSecret: ""
bucketName: "milvus-bucket"
rootPath: file
useIAM: false
iamEndpoint: ""
region: ""
useVirtualHost: false
podDisruptionBudget:
enabled: false
resources:
requests:

memory: 2Gi

gcsgateway:
enabled: false
replicas: 1
gcsKeyJson: "/etc/credentials/gcs key.json"
projectId: ""

service:
type: ClusterIP
port: 9000

persistence:
enabled: true
existingClaim: ""
storageClass:
accessMode: ReadWriteOnce
size: 500Gi

livenessProbe:
enabled: true
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5

readinessProbe:
enabled: true
initialDelaySeconds: 5

Configuration values for the etcd dependency

periodSeconds: 5
timeoutSeconds: 1
successThreshold: 1
failureThreshold: 5

startupProbe:
enabled: true
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 60

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

et

cd:
enabled: true
name: etcd
replicaCount: 3
pdb:
create: false
image:
repository: "milvusdb/etcd"
tag: "3.5.5-r2"
pullPolicy: IfNotPresent

service:
type: ClusterIP
port: 2379
peerPort: 2380

auth:
rbac:
enabled: false

persistence:
enabled: true
storageClass: default
accessMode: ReadWriteOnce
size: 10Gi

Change default timeout periods to mitigate
livenessProbe:
enabled: true

zoobie probe process

61

timeoutSeconds: 10

readinessProbe:
enabled: true
periodSeconds: 20
timeoutSeconds: 10

Enable auto compaction

compaction by every 1000 revision
##

autoCompactionMode: revision
autoCompactionRetention: "1000"

Increase default quota to 4G

#H

extraknvVars:

- name: ETCD QUOTA BACKEND BYTES
value: "4294967296"

- name: ETCD HEARTBEAT INTERVAL
value: "500"

- name: ETCD ELECTION TIMEOUT
value: "2500"

Configuration values for the pulsar dependency
ref: https://github.com/apache/pulsar-helm-chart
##

pulsar:
enabled: true

name: pulsar

fullnameOverride: ""
persistence: true

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes,

message in pulsar.
rbac:
enabled: false
psp: false

limit to namespace: true

affinity:
anti affinity: false

enableAntiAffinity: no

62

Maximum size of each

components:
zookeeper: true
bookkeeper: true
bookkeeper - autorecovery
autorecovery: true
broker: true
functions: false
proxy: true
toolset: false
pulsar manager: false

monitoring:
prometheus: false
grafana: false
node exporter: false

alert manager: false

images:

broker:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

autorecovery:
repository: apachepulsar/pulsar
tag: 2.8.2
pullPolicy: IfNotPresent

zookeeper:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

bookie:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pProxy:
repository: apachepulsar/pulsar
pullPolicy: IfNotPresent
tag: 2.8.2

pulsar manager:
repository: apachepulsar/pulsar-manager
pullPolicy: IfNotPresent
tag: v0.1.0

zookeeper:
volumes:
persistence: true

data:
name: data
size: 20Gi #SSD Required
storageClassName: default
resources:
requests:
memory: 1024Mi
cpu: 0.3
configData:
PULSAR MEM: >
-Xms1024m
-Xmx1024m
PULSAR GC: >
-Dcom. sun.management . jmxremote
-Djute.maxbuffer=10485760
-XX:+ParallelRefProcEnabled
-XX:4UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:+DisableExplicitGC
-XX:+PerfDisableSharedMem
-Dzookeeper.forceSync=no
pdb:
usePolicy: false

bookkeeper:
replicaCount: 3
volumes:
persistence: true
journal:
name: journal
size: 100Gi
storageClassName: default
ledgers:
name: ledgers
size: 200Gi
storageClassName: default
resources:
requests:
memory: 2048Mi
cpu: 1
configData:
PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m
PULSAR GC: >

64

-Dio.netty.leakDetectionlLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:+UseG1lGC -XX:MaxGCPauseMillis=10
-XX:+ParallelRefProcEnabled
-XX:+UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+ExitOnOutOfMemoryError
-XX:+PerfDisableSharedMem
-XX:+PrintGCDetails

nettyMaxFrameSizeBytes: "104867840"

pdb:
usePolicy: false

broker:
component: broker
podMonitor:
enabled: false
replicaCount: 1
resources:
requests:
memory: 4096Mi
cpu: 1.5
configData:
PULSAR MEM: >
-Xms4096m
-Xmx4096m
-XX:MaxDirectMemorySize=8192m
PULSAR GC: >
-Dio.netty.leakDetectionLevel=disabled
-Dio.netty.recycler.linkCapacity=1024
-XX:+ParallelRefProcEnabled
-XX:+UnlockExperimentalVMOptions
-XX:+DoEscapeAnalysis
-XX:ParallelGCThreads=32
-XX:ConcGCThreads=32
-XX:G1lNewSizePercent=50
-XX:+DisableExplicitGC
-XX:-ResizePLAB
-XX:+ExitOnOutOfMemoryError
maxMessageSize: "104857600"
defaultRetentionTimeInMinutes: "10080"

defaultRetentionSizeInMB: "-1"
backlogQuotaDefaultLimitGB: "8"
ttlDurationDefaultInSeconds: "259200"

subscriptionExpirationTimeMinutes: "3"
backlogQuotaDefaultRetentionPolicy: producer exception
pdb:

usePolicy: false

autorecovery:

resources:

requests:
memory: 512Mi

cpu: 1

Proxy:
replicaCount: 1
podMonitor:
enabled: false
resources:
requests:
memory: 2048Mi
cpu: 1
service:
type: ClusterIP
ports:
pulsar: 6650
configData:
PULSAR MEM: >
-Xms2048m -Xmx2048m
PULSAR GC: >
-XX:MaxDirectMemorySize=2048m
httpNumThreads: "100"
pdb:
usePolicy: false

pulsar manager:
service:
type: ClusterIP

pulsar metadata:
component: pulsar-init
image:
the image used for running “pulsar-cluster-initialize” job
repository: apachepulsar/pulsar
tag: 2.8.2

Configuration values for the kafka dependency
ref: https://artifacthub.io/packages/helm/bitnami/kafka
##

kafka:
enabled: false
name: kafka
replicaCount: 3
image:
repository: bitnami/kafka
tag: 3.1.0-debian-10-r52
Increase graceful termination for kafka graceful shutdown
terminationGracePeriodSeconds: "90"
pdb:
create: false

Enable startup probe to prevent pod restart during recovering
startupProbe:
enabled: true

Kafka Java Heap size

heapOpts: "-Xmx4096m -Xms4096m"

maxMessageBytes: 10485760

defaultReplicationFactor: 3

offsetsTopicReplicationFactor: 3

Only enable time based log retention

logRetentionHours: 168

logRetentionBytes: -1

extraknvVars:

- name: KAFKA CFG MAX PARTITION FETCH BYTES
value: "5242880"

- name: KAFKA CFG_MAX REQUEST SIZE
value: "5242880"

- name: KAFKA CFG_REPLICA FETCH MAX BYTES
value: "10485760"

- name: KAFKA CFG_FETCH MESSAGE MAX BYTES
value: "5242880"

- name: KAFKA CFG LOG ROLL HOURS

value: "24"

persistence:
enabled: true
storageClass:
accessMode: ReadWriteOnce
size: 300Gi

68

metrics:
Prometheus Kafka exporter: exposes complimentary metrics to JMX
exporter
kafka:
enabled: false
image:
repository: bitnami/kafka-exporter
tag: 1.4.2-debian-10-rl182

Prometheus JMX exporter: exposes the majority of Kafkas metrics
jmx:
enabled: false
image:
repository: bitnami/jmx-exporter
tag: 0.16.1-debian-10-r245

To enable serviceMonitor, you must enable either kafka exporter or
jmx exporter.
And you can enable them both
serviceMonitor:
enabled: false

service:
type: ClusterIP
ports:
client: 9092

zookeeper:
enabled: true

replicaCount: 3

FHAFHHEHHH AR
External S3
- these configs are only used when “externalS3.enabled’ is true
FHA#H A
externalS3:
enabled: true
host: "192.168.150.167"
port: "80"
accessKey: "24G4C1316APP2BIPDESS"
secretKey: "7Zd28p43rgzaU44PX ftT279z9nt4jBSro97;87Bx"
useSSL: false
bucketName: "milvusdbvoll"
rootPath: ""
useIAM: false

cloudProvider: "aws"

iamEndpoint: ""
region: ""

useVirtualHost: false

FHAFH A A AR
GCS Gateway
- these configs are only used when "minio.gcsgateway.enabled™ is true
FHAFH A AR
externalGces:
bucketName: ""

FHAFH S HHH AR
External etcd
- these configs are only used when “externalEtcd.enabled’ is true
FHAFH A H A
externalEtcd:

enabled: false

the endpoints of the external etcd

#4

endpoints:

- localhost:2379

FHA#HHEHHH AR H AR HS
External pulsar
- these configs are only used when “externalPulsar.enabled’ is true
FHAFHHEHHH AR H AR
externalPulsar:

enabled: false

host: localhost

port: 6650

maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each
message in pulsar.

tenant: public

namespace: default

authPlugin: ""

authParams: ""

FHA#H A H A
External kafka
- these configs are only used when “externalKafka.enabled® is true
FHAFH A H AR
externalKafka:
enabled: false
brokerList: localhost:9092
securityProtocol: SASL SSL
sasl:

69

mechanisms: PLAIN
username: ""
password: ""

root@node2:~#

Appendice B: prepare_data_netapp_new.py

Questa sezione fornisce un esempio di script Python utilizzato per preparare i dati per il
database vettoriale.

Appendice B: prepare_data_netapp_new.py

root@node2:~# cat prepare data netapp new.py

hello milvus.py demonstrates the basic operations of PyMilvus, a Python
SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

S oS S S o S o

import time

import os

import numpy as np
from pymilvus import (

connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

#num entities, dim 3000, 8
num entities, dim = 3000, 16

FHAFH A H AR AR H AR H SRR
FHHEHHHH

1. connect to Milvus

Add a new connection alias "default® for Milvus server in
"localhost:19530°

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as "localhost:19530°, you can omit
all

70

parameters and call the method as: “connections.connect () .

#

Note: the ‘using’ parameter of the following methods is default to
"default".

print (fmt.format ("start connecting to Milwvus"))

host = os.environ.get ('MILVUS HOST')
if host == None:

host = "localhost"
print (fmt. format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")
connections.connect ("default", host=host, port="27017")

has = utility.has_collection("hello milvus ntapnew update2 sc")
print (f"Does collection hello milvus ntapnew update2 sc exist in Milvus:
{has}")

fdrop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc"))
utility.drop collection("hello milvus ntapnew update2 sc'")

#drop the collection

print (fmt.format (f"Drop collection - hello milvus ntapnew update2 sc2"))
utility.drop collection("hello milvus ntapnew update2 sc2")

FH A A R A R R R
#HHHHHEH

2. create collection

We're going to create a collection with 3 fields.

it et ==== o= e

| | field name | field type | other attributes | field description

=
+

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|
+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

‘ 1 ‘ "pk" | Int64 ‘ is_primary:True | "primary field"

| auto id=False |

H — H= —

=
N
=
o))
=)
0.
O
B—
O
O
o
O
}_l
D

"a double field"

|3|"embeddings" | FloatVector]| dim=8 "float vector with dim
8" |

72

fields = [
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=False),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema = CollectionSchema (fields, "hello milvus ntapnew update2 sc")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc "))
hello milvus ntapnew update2 sc = Collection
"hello milvus ntapnew update2 sc", schema, consistency level="Strong")

st s ExaEEEE R A ERE SRR EEA SRR ER R R AR RS AR LRSS E
#HAHHH

3. insert data

We are going to insert 3000 rows of data into

"hello milvus ntapnew update2 sc®

Data to be inserted must be organized in fields.

#

The insert () method returns:

- either automatically generated primary keys by Milvus if auto id=True
in the schema;

- or the existing primary key field from the entities if auto id=False
in the schema.

print (fmt.format ("Start inserting entities"))
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id’ 1is set to False
[i for 1 in range (num entities)],
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result = hello milvus ntapnew update2 sc.insert(entities)

hello milvus ntapnew update2 sc.flush()

print (f"Number of entities in hello milvus ntapnew update2 sc:

{hello milvus ntapnew update2 sc.num entities}") # check the num entites

create another collection

fields2 = |
FieldSchema (name="pk", dtype=DataType.INT64, is primary=True, auto id
=True),
FieldSchema (name="random", dtype=DataType.DOUBLE),
FieldSchema (name="var", dtype=DataType.VARCHAR, max length=65535),
FieldSchema (name="embeddings", dtype=DataType.FLOAT VECTOR, dim=dim)

schema? = CollectionSchema (fields2, "hello milvus ntapnew update2 sc2")

print (fmt.format ("Create collection "hello milvus ntapnew update2 sc2'"))
hello milvus ntapnew update2 sc2 = Collection
"hello milvus ntapnew update2 sc2", schema2, consistency level="Strong")

entities2 = [
rng.random(num entities).tolist(), # field random, only supports list
[str(i) for i in range(num entities)],
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

insert result2 = hello milvus ntapnew update2 sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()
insert result2 = hello milvus ntapnew updateZ sc2.insert(entities2)
hello milvus ntapnew update2 sc2.flush()

index params = {"index type": "IVF FLAT", "params": {"nlist": 128},
"metric type": "L2"}

hello milvus ntapnew update2 sc.create index ("embeddings", index params)
#

hello milvus ntapnew updateZ sc2.create index(field name="var", index name=

"scalar index")

index params2 = {"index type": "Trie"}

hello milvus ntapnew update2 sc2.create index("var", index params2)

print (f"Number of entities in hello milvus ntapnew updateZ sc2:

{hello milvus ntapnew update2 sc2.num entities}") # check the num entites

root@node2:~#

Appendice C: verify _data_netapp.py

Questa sezione contiene uno script Python di esempio che pud essere utilizzato per
convalidare il database vettoriale nella soluzione di database vettoriale NetApp .

73

Appendice C: verify_data_netapp.py

root@node2:~# cat verify data netapp.py
import time
import os
import numpy as np
from pymilvus import (
connections,

utility,
FieldSchema, CollectionSchema, DataType,
Collection,

)

fmt = "\n=== {:30} ===\n"

search latency fmt = "search latency = {:.4f}s"

num entities, dim = 3000, 16
rng = np.random.default rng(seed=19530)
entities = [
provide the pk field because "auto id 1is set to False
[i for 1 in range(num entities)],
rng.random(num entities).tolist(), # field random, only supports list
rng.random((num entities, dim)), # field embeddings, supports
numpy.ndarray and list

]

FHHHhd A R R R S A
#HH#HHH
1. get recovered collection hello milvus ntapnew update2 sc
print (fmt.format ("start connecting to Milvus"))
host = os.environ.get ('MILVUS HOST')
if host == None:
host = "localhost"
print (fmt.format (f"Milvus host: {host}"))
#connections.connect ("default", host=host, port="19530")

connections.connect ("default", host=host, port="27017")

recover collections = ["hello milvus ntapnew update2 sc",
"hello milvus ntapnew update2 sc2"]

for recover collection name in recover collections:

has = utility.has_collection(recover collection name)

print (f"Does collection {recover collection name} exist in Milvus:
{has}")

recover collection = Collection(recover collection name)

print (recover collection.schema)

recover collection.flush()

74

print (f"Number of entities in Milvus: {recover collection name}
{recover collection.num entities}") # check the num entites

FHAH A A A S
FH##4H

4. create index

We are going to create an IVF FLAT index for
hello milvus ntapnew update2 sc collection.

create index () can only be applied to "FloatVector and
"BinaryVector fields.

print (fmt.format ("Start Creating index IVF FLAT"))

index = {
"index type": "IVF_FLAT",
"metric type": "L2",

"params": {"nlist": 128},
recover collection.create index ("embeddings", index)

FHAFH S H AR A AR
FH#HH#H
5. search, query, and hybrid search
After data were inserted into Milvus and indexed, you can perform:
- search based on vector similarity

#

#

- query based on scalar filtering(boolean, int, etc.)

- hybrid search based on vector similarity and scalar filtering.
#

Before conducting a search or a query, you need to load the data in
"hello milvus ™ into memory.

print (fmt.format ("Start loading"))

recover collection.load()

search based on vector similarity
print (fmt. format ("Start searching based on vector similarity"))
vectors to search = entities[-1][-2:]

search params = ({
"metric type": "L2",
"params": {"nprobe": 10},

75

76

start time = time.time ()

result = recover collection.search(vectors to search, "embeddings",
search params, limit=3, output fields=["random"])
end time = time.time ()

for hits in result:
for hit in hits:
print (f"hit: {hit}, random field: {hit.entity.get('random')}")
print (search latency fmt.format (end time - start time))

query based on scalar filtering(boolean, int, etc.)
print (fmt.format ("Start querying with “random > 0.5 "))

start time = time.time ()

result = recover collection.query(expr="random > 0.5", output fields=
["random", "embeddings"])

end time = time.time ()

print (f"query result:\n-{result[0]}")
print (search latency fmt.format(end time - start time))

hybrid search
print (fmt.format ("Start hybrid searching with "random > 0.5 "))

start time = time.time ()
result = recover collection.search(vectors to search, "embeddings",
search params, 1limit=3, expr="random > 0.5", output fields=["random"])

end time = time.time ()

for hits in result:
for hit in hits:
print(f"hit: {hit}, random field: {(hit.entity.get('random')}")
print (search latency fmt.format(end time - start time))

igdisdss st adi sttt RadEadti
#HFAH

7. drop collection

Finally, drop the hello milvus, hello milvus ntapnew update2 sc
collection

#print (fmt.format (f"Drop collection {recover collection name}"))

#utility.drop collection (recover collection name)

root@node2:~#

Appendice D: docker-compose.yml

Questa sezione include un codice YAML di esempio per la soluzione di database
vettoriale per NetApp.

Appendice D: docker-compose.yml

version: '3.5'"

services:
etcd:
container name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD AUTO COMPACTION MODE=revision
= ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD QUOTA BACKEND BYTES=4294967296
- ETCD SNAPSHOT COUNT=50000
volumes:
- /home/ubuntu/milvusvectordb/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen
-client-urls http://0.0.0.0:2379 --data-dir /etcd
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 30s
timeout: 20s

retries: 3

minio:

container name: milvus-minio
image: minio/minio:RELEASE.2023-03-20T20-16-18%7
environment:

MINIO ACCESS KEY: miniocadmin

MINIO SECRET KEY: miniocadmin
ports:

"9001:9001"

- "9000:9000"
volumes:

- /home/ubuntu/milvusvectordb/volumes/minio:/minio data
command: minio server /minio data --console-address ":9001"

78

healthcheck:
test: ["CMD", "curl", "-f",
"http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s

retries: 3

standalone:
container name: milvus-standalone
image: milvusdb/milvus:v2.4.0-rc.1
command: ["milvus", "run", "standalone"]
security opt:
- seccomp:unconfined
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO ADDRESS: minio:9000
volumes:
- /home/ubuntu/milvusvectordb/volumes/milvus: /var/lib/milvus
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]
interval: 30s
start period: 90s
timeout: 20s
retries: 3
ports:
- "19530:19530"
- "9091:9091"
depends on:
- "etcd"

- "minio"

networks:
default:

name: milwvus

Informazioni sul copyright

Copyright © 2026 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright pud essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
0 meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp € soggetto alla seguente licenza e
dichiarazione di non responsabilita:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSI COM’E" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, ATITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITA E IDONEITA PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRA CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, ATITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITA DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITA AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITA, SIAESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA LEVENTUALITA DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilita circa I'utilizzo dei
prodotti o materiali descritti nel presente documento, con I'eccezione di quanto concordato espressamente e
per iscritto da NetApp. L'utilizzo o I'acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprieta intellettuale di
NetApp.

Il prodotto descritto in questa guida puo essere protetto da uno o piu brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: I'utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

| dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprieta di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. | diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

79

http://www.netapp.com/TM

	Soluzione di database vettoriale con NetApp : NetApp artificial intelligence solutions
	Sommario
	Soluzione di database vettoriale con NetApp
	Soluzione di database vettoriale con NetApp
	Introduzione
	Introduzione

	Panoramica della soluzione
	Panoramica della soluzione

	Database vettoriale
	Database vettoriale

	Requisiti tecnologici
	Requisiti tecnologici
	Requisiti hardware
	Requisiti software

	Procedura di distribuzione
	Procedura di distribuzione

	Verifica della soluzione
	Panoramica della soluzione
	Configurazione del cluster Milvus con Kubernetes in locale
	Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità file e oggetto
	Protezione del database vettoriale tramite SnapCenter
	Ripristino di emergenza tramite NetApp SnapMirror
	Validazione delle prestazioni del database vettoriale

	Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector
	Database vettoriale con Instaclustr utilizzando PostgreSQL: pgvector

	Casi d’uso del database vettoriale
	Casi d’uso del database vettoriale

	Conclusione
	Conclusione

	Appendice A: Values.yaml
	Appendice A: Values.yaml

	Appendice B: prepare_data_netapp_new.py
	Appendice B: prepare_data_netapp_new.py

	Appendice C: verify_data_netapp.py
	Appendice C: verify_data_netapp.py

	Appendice D: docker-compose.yml
	Appendice D: docker-compose.yml

