

Configurare il software MetroCluster in ONTAP

ONTAP MetroCluster

NetApp April 25, 2024

This PDF was generated from https://docs.netapp.com/it-it/ontap-metrocluster/installip/concept_configure_the_mcc_software_in_ontap.html on April 25, 2024. Always check docs.netapp.com for the latest.

Sommario

Configurare il software MetroCluster in ONTAP	. 1
Configurazione del software MetroCluster in ONTAP	. 1
Gestione delle configurazioni a otto nodi	. 1
Raccolta delle informazioni richieste	. 1
Analogie e differenze tra cluster standard e configurazioni MetroCluster	. 2
Verifica dello stato ha-config dei componenti	. 2
Ripristino delle impostazioni predefinite di sistema su un modulo controller	. 3
Assegnazione manuale delle unità al pool 0	. 5
Configurazione di ONTAP	. 9
Configurazione dei cluster in una configurazione MetroCluster.	15
Verifica dello switchover, della riparazione e dello switchback	62
Configurazione del software MetroCluster Tiebreaker o ONTAP Mediator	63
Protezione dei file di backup della configurazione	63

Configurare il software MetroCluster in ONTAP

Configurazione del software MetroCluster in ONTAP

È necessario impostare ciascun nodo nella configurazione MetroCluster in ONTAP, incluse le configurazioni a livello di nodo e la configurazione dei nodi in due siti. È inoltre necessario implementare la relazione MetroCluster tra i due siti.

Se un modulo controller si guasta durante la configurazione, fare riferimento a. "Scenari di guasto del modulo controller durante l'installazione di MetroCluster".

Gestione delle configurazioni a otto nodi

Una configurazione a otto nodi è costituita da due gruppi di DR. Configurare il primo gruppo DR utilizzando le attività descritte in questa sezione.

Quindi, eseguire le attività in "Espansione di una configurazione IP MetroCluster a quattro nodi in una configurazione a otto nodi"

Raccolta delle informazioni richieste

Prima di iniziare il processo di configurazione, è necessario raccogliere gli indirizzi IP richiesti per i moduli controller.

È possibile utilizzare questi collegamenti per scaricare i file csv e compilare le tabelle con le informazioni specifiche del sito.

"Foglio di lavoro per la configurazione dell'IP MetroCluster, Site_A."

Analogie e differenze tra cluster standard e configurazioni MetroCluster

La configurazione dei nodi in ciascun cluster in una configurazione MetroCluster è simile a quella dei nodi in un cluster standard.

La configurazione di MetroCluster si basa su due cluster standard. Fisicamente, la configurazione deve essere simmetrica, con ciascun nodo con la stessa configurazione hardware e tutti i componenti MetroCluster devono essere cablati e configurati. Tuttavia, la configurazione software di base per i nodi in una configurazione MetroCluster è uguale a quella per i nodi in un cluster standard.

Fase di configurazione	Configurazione standard del cluster Configurazione di MetroCluster				
Configurare le LIF di gestione, cluster e dati su ciascun nodo.	Lo stesso vale per entrambi i tipi di cluster				
Configurare l'aggregato root.	Lo stesso vale per entrambi i tipi di cluster				
Impostare il cluster su un nodo del cluster.	Lo stesso vale per entrambi i tipi di cluster				
Unire l'altro nodo al cluster.	Lo stesso vale per entrambi i tipi di cluster				
Creare un aggregato root mirrorato.	Opzionale	Obbligatorio			
Peer dei cluster.	Opzionale Obbligatorio				
Abilitare la configurazione MetroCluster.	Non applicabile	Obbligatorio			

Verifica dello stato ha-config dei componenti

In una configurazione IP MetroCluster non preconfigurata in fabbrica, verificare che lo stato ha-config dei componenti del controller e del telaio sia impostato su "mcip" in modo che si avviino correttamente. Per i sistemi ricevuti dalla fabbrica, questo valore è preconfigurato e non è necessario verificarlo.

Prima di iniziare

Il sistema deve essere in modalità di manutenzione.

Fasi

1. Visualizzare lo stato ha del modulo controller e dello chassis:

ha-config show

Il modulo controller e lo chassis devono visualizzare il valore "mcip".

2. Se lo stato di sistema visualizzato del controller non è "mccip", impostare lo stato ha per il controller:

ha-config modify controller mccip

3. Se lo stato di sistema visualizzato dello chassis non è "mccip", impostare lo stato ha per lo chassis:

ha-config modify chassis mccip

4. Ripetere questi passaggi su ciascun nodo della configurazione MetroCluster.

Ripristino delle impostazioni predefinite di sistema su un modulo controller

Ripristinare le impostazioni predefinite dei moduli controller.

- 1. Al prompt DEL CARICATORE, riportare le variabili ambientali alle impostazioni predefinite: setdefaults
- 2. Avviare il nodo dal menu di boot: boot_ontap menu

Dopo aver eseguito questo comando, attendere che venga visualizzato il menu di avvio.

- 3. Cancellare la configurazione del nodo:
 - Se si utilizzano sistemi configurati per ADP, selezionare l'opzione 9a dal menu di avvio e rispondere no quando richiesto.

Questo processo è disgregativo.

La seguente schermata mostra il prompt del menu di avvio:

```
Please choose one of the following:
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 9a
. . .
This is a disruptive operation that applies to all the disks
that are attached and visible to this node.
Before proceeding further, make sure that:
The aggregates visible from this node do not contain
data that needs to be preserved.
This option (9a) has been executed or will be executed
on the HA partner node (and DR/DR-AUX partner nodes if
applicable), prior to reinitializing any system in the
HA-pair or MetroCluster configuration.
The HA partner node (and DR/DR-AUX partner nodes if
applicable) is currently waiting at the boot menu.
Do you want to abort this operation (yes/no)? no
```

```
    Se il sistema non è configurato per ADP, digitare wipeconfig Al prompt del menu di avvio, quindi
premere Invio.
```

La seguente schermata mostra il prompt del menu di avvio:

```
Please choose one of the following:
    (1) Normal Boot.
    (2) Boot without /etc/rc.
    (3) Change password.
    (4) Clean configuration and initialize all disks.
    (5) Maintenance mode boot.
    (6) Update flash from backup config.
    (7) Install new software first.
    (8) Reboot node.
    (9) Configure Advanced Drive Partitioning.
    Selection (1-9)? wipeconfig
This option deletes critical system configuration, including cluster
membership.
Warning: do not run this option on a HA node that has been taken over.
Are you sure you want to continue?: yes
Rebooting to finish wipeconfig request.
```

Assegnazione manuale delle unità al pool 0

Se i sistemi preconfigurati non sono stati ricevuti dalla fabbrica, potrebbe essere necessario assegnare manualmente il pool 0 dischi. A seconda del modello di piattaforma e se il sistema utilizza ADP, è necessario assegnare manualmente le unità al pool 0 per ciascun nodo nella configurazione IP di MetroCluster. La procedura da seguire dipende dalla versione di ONTAP in uso.

Assegnazione manuale dei dischi per il pool 0 (ONTAP 9.4 e versioni successive)

Se il sistema non è stato preconfigurato in fabbrica e non soddisfa i requisiti per l'assegnazione automatica del disco, è necessario assegnare manualmente il pool 0 dischi.

A proposito di questa attività

Questa procedura si applica alle configurazioni che eseguono ONTAP 9.4 o versioni successive.

Per determinare se il sistema richiede l'assegnazione manuale del disco, è necessario esaminare "Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive".

Questa procedura viene eseguita in modalità manutenzione. La procedura deve essere eseguita su ciascun nodo della configurazione.

Gli esempi di questa sezione si basano sui seguenti presupposti:

- Node_A_1 e Node_A_2 su:
 - Site_A-shelf_1 (locale)
 - Sito_B-shelf_2 (remoto)

- Node_B_1 e Node_B_2 su:
 - Sito_B-shelf_1 (locale)
 - Site_A-shelf_2 (remoto)

Fasi

1. Visualizzare il menu di avvio:

boot_ontap menu

2. Selezionare l'opzione 9a e rispondere no quando richiesto.

La seguente schermata mostra il prompt del menu di avvio:

```
Please choose one of the following:
(1) Normal Boot.
(2) Boot without /etc/rc.
(3) Change password.
(4) Clean configuration and initialize all disks.
(5) Maintenance mode boot.
(6) Update flash from backup config.
(7) Install new software first.
(8) Reboot node.
(9) Configure Advanced Drive Partitioning.
(10) Set Onboard Key Manager recovery secrets.
(11) Configure node for external key management.
Selection (1-11)? 9a
. . .
########### WARNING: AGGREGATES WILL BE DESTROYED #############
This is a disruptive operation that applies to all the disks
that are attached and visible to this node.
Before proceeding further, make sure that:
The aggregates visible from this node do not contain
data that needs to be preserved.
This option (9a) has been executed or will be executed
on the HA partner node (and DR/DR-AUX partner nodes if
applicable), prior to reinitializing any system in the
HA-pair or MetroCluster configuration.
The HA partner node (and DR/DR-AUX partner nodes if
applicable) is currently waiting at the boot menu.
Do you want to abort this operation (yes/no)? no
```

- 3. Al riavvio del nodo, premere Ctrl-C quando richiesto per visualizzare il menu di avvio, quindi selezionare l'opzione **Maintenance mode boot** (Avvio in modalità manutenzione).
- 4. In modalità Maintenance (manutenzione), assegnare manualmente i dischi per gli aggregati locali sul nodo:

disk assign disk-id -p 0 -s local-node-sysid

I dischi devono essere assegnati simmetricamente, in modo che ogni nodo abbia un numero uguale di dischi. La procedura seguente riguarda una configurazione con due shelf di storage in ogni sito.

- a. Durante la configurazione di Node_A_1, assegnare manualmente le unità dallo slot 0 a 11 al pool 0 del nodo A1 da Site_A-shelf_1.
- b. Durante la configurazione di Node_A_2, assegnare manualmente le unità dallo slot 12 a 23 al pool 0 del nodo A2 da Site_A-shelf_1.
- c. Durante la configurazione di Node_B_1, assegnare manualmente le unità dallo slot 0 a 11 al pool 0 del nodo B1 da Site_B-shelf_1.
- d. Durante la configurazione di Node_B_2, assegnare manualmente le unità dallo slot 12 a 23 al pool 0 del nodo B2 dal sito_B-shelf_1.
- 5. Uscire dalla modalità di manutenzione:

halt

6. Visualizzare il menu di avvio:

boot_ontap menu

- 7. Ripetere questa procedura sugli altri nodi nella configurazione IP MetroCluster.
- 8. Selezionare l'opzione 4 dal menu di boot su entrambi i nodi e lasciare che il sistema si avvii.
- 9. Passare a. "Configurazione di ONTAP".

Assegnazione manuale delle unità per il pool 0 (ONTAP 9.3)

Se si dispone di almeno due shelf di dischi per ciascun nodo, si utilizza la funzionalità di assegnazione automatica di ONTAP per assegnare automaticamente i dischi locali (pool 0).

A proposito di questa attività

Mentre il nodo è in modalità manutenzione, è necessario assegnare un singolo disco sugli shelf appropriati al pool 0. ONTAP assegna quindi automaticamente il resto dei dischi sullo shelf allo stesso pool. Questa attività non è richiesta sui sistemi ricevuti dalla fabbrica, che hanno il pool 0 per contenere l'aggregato root preconfigurato.

Questa procedura si applica alle configurazioni che eseguono ONTAP 9.3.

Questa procedura non è necessaria se si riceve la configurazione MetroCluster dalla fabbrica. I nodi della fabbrica sono configurati con pool 0 dischi e aggregati root.

Questa procedura può essere utilizzata solo se si dispone di almeno due shelf di dischi per ciascun nodo, che consente l'assegnazione automatica a livello di shelf dei dischi. Se non è possibile utilizzare l'assegnazione automatica a livello di shelf, è necessario assegnare manualmente i dischi locali in modo che ogni nodo disponga di un pool locale di dischi (pool 0).

Questi passaggi devono essere eseguiti in modalità manutenzione.

Gli esempi di questa sezione presuppongono i seguenti shelf di dischi:

- Node_A_1 possiede i dischi su:
 - Site_A-shelf_1 (locale)
 - Sito_B-shelf_2 (remoto)
- Node_A_2 è connesso a:
 - Site_A-shelf_3 (locale)
 - Sito_B-shelf_4 (remoto)
- Node_B_1 è connesso a:
 - Sito_B-shelf_1 (locale)
 - Site_A-shelf_2 (remoto)
- Node_B_2 è connesso a:
 - Sito_B-shelf_3 (locale)
 - Site_A-shelf_4 (remoto)

Fasi

1. Assegnare manualmente un singolo disco per l'aggregato root su ciascun nodo:

disk assign disk-id -p 0 -s local-node-sysid

L'assegnazione manuale di questi dischi consente alla funzione di assegnazione automatica ONTAP di assegnare il resto dei dischi su ogni shelf.

- a. Sul nodo_A_1, assegnare manualmente un disco dal sito locale_A-shelf_1 al pool 0.
- b. Sul nodo_A_2, assegnare manualmente un disco dal sito locale_A-shelf_3 al pool 0.
- c. Sul nodo_B_1, assegnare manualmente un disco dal sito locale_B-shelf_1 al pool 0.
- d. Sul nodo_B_2, assegnare manualmente un disco dal sito locale_B-shelf_3 al pool 0.
- 2. Avviare ciascun nodo nel sito A, utilizzando l'opzione 4 del menu di boot:

Completare questo passaggio su un nodo prima di passare al nodo successivo.

a. Uscire dalla modalità di manutenzione:

halt

b. Visualizzare il menu di avvio:

```
boot_ontap menu
```

- c. Selezionare l'opzione 4 dal menu di avvio e procedere.
- 3. Avviare ciascun nodo nel sito B, utilizzando l'opzione 4 del menu di boot:

Completare questo passaggio su un nodo prima di passare al nodo successivo.

a. Uscire dalla modalità di manutenzione:

halt

b. Visualizzare il menu di avvio:

boot_ontap menu

c. Selezionare l'opzione 4 dal menu di avvio e procedere.

Configurazione di ONTAP

Dopo aver avviato ciascun nodo, viene richiesto di eseguire la configurazione di base del nodo e del cluster. Dopo aver configurato il cluster, tornare alla CLI ONTAP per creare aggregati e creare la configurazione MetroCluster.

Prima di iniziare

• La configurazione MetroCluster deve essere cablata.

Se è necessario eseguire il netboot dei nuovi controller, vedere "Avvio in rete dei nuovi moduli controller".

A proposito di questa attività

Questa attività deve essere eseguita su entrambi i cluster nella configurazione MetroCluster.

Fasi

1. Accendere ciascun nodo nel sito locale, se non è già stato fatto, e lasciare che tutti i nodi si avviino completamente.

Se il sistema si trova in modalità manutenzione, è necessario eseguire il comando halt per uscire dalla modalità manutenzione, quindi eseguire il comando boot_ontap per avviare il sistema e accedere alla configurazione del cluster.

- 2. Sul primo nodo di ciascun cluster, seguire le istruzioni per configurare il cluster.
 - a. Attivare lo strumento AutoSupport seguendo le istruzioni fornite dal sistema.

L'output dovrebbe essere simile a quanto segue:

```
Welcome to the cluster setup wizard.
    You can enter the following commands at any time:
    "help" or "?" - if you want to have a question clarified,
    "back" - if you want to change previously answered questions, and
    "exit" or "quit" - if you want to quit the cluster setup wizard.
   Any changes you made before quitting will be saved.
   You can return to cluster setup at any time by typing "cluster
setup".
   To accept a default or omit a question, do not enter a value.
    This system will send event messages and periodic reports to
NetApp Technical
   Support. To disable this feature, enter
   autosupport modify -support disable
   within 24 hours.
   Enabling AutoSupport can significantly speed problem
determination and
    resolution should a problem occur on your system.
    For further information on AutoSupport, see:
   http://support.netapp.com/autosupport/
   Type yes to confirm and continue {yes}: yes
```

b. Configurare l'interfaccia di gestione dei nodi rispondendo alle richieste.

I prompt sono simili ai seguenti:

```
Enter the node management interface port [eOM]:
Enter the node management interface IP address: 172.17.8.229
Enter the node management interface netmask: 255.255.254.0
Enter the node management interface default gateway: 172.17.8.1
A node management interface on port eOM with IP address 172.17.8.229
has been created.
```

c. Creare il cluster rispondendo alle richieste.

I prompt sono simili ai seguenti:

```
Do you want to create a new cluster or join an existing cluster?
{create, join}:
create
Do you intend for this node to be used as a single node cluster?
{yes, no} [no]:
no
Existing cluster interface configuration found:
Port MTU IP Netmask
e0a 1500 169.254.18.124 255.255.0.0
ela 1500 169.254.184.44 255.255.0.0
Do you want to use this configuration? {yes, no} [yes]: no
System Defaults:
Private cluster network ports [e0a,e1a].
Cluster port MTU values will be set to 9000.
Cluster interface IP addresses will be automatically generated.
Do you want to use these defaults? {yes, no} [yes]: no
Enter the cluster administrator's (username "admin") password:
Retype the password:
Step 1 of 5: Create a Cluster
You can type "back", "exit", or "help" at any question.
List the private cluster network ports [e0a,e1a]:
Enter the cluster ports' MTU size [9000]:
Enter the cluster network netmask [255.255.0.0]: 255.255.254.0
Enter the cluster interface IP address for port e0a: 172.17.10.228
Enter the cluster interface IP address for port ela: 172.17.10.229
Enter the cluster name: cluster A
Creating cluster cluster A
Starting cluster support services ...
Cluster cluster A has been created.
```

d. Aggiungere licenze, configurare una SVM di amministrazione cluster e immettere le informazioni DNS rispondendo alle richieste.

I prompt sono simili ai seguenti:

```
Step 2 of 5: Add Feature License Keys
You can type "back", "exit", or "help" at any question.
Enter an additional license key []:
Step 3 of 5: Set Up a Vserver for Cluster Administration
You can type "back", "exit", or "help" at any question.
Enter the cluster management interface port [e3a]:
Enter the cluster management interface IP address: 172.17.12.153
Enter the cluster management interface netmask: 255.255.252.0
Enter the cluster management interface default gateway: 172.17.12.1
A cluster management interface on port e3a with IP address
172.17.12.153 has been created. You can use this address to connect
to and manage the cluster.
Enter the DNS domain names: lab.netapp.com
Enter the name server IP addresses: 172.19.2.30
DNS lookup for the admin Vserver will use the lab.netapp.com domain.
Step 4 of 5: Configure Storage Failover (SFO)
You can type "back", "exit", or "help" at any question.
SFO will be enabled when the partner joins the cluster.
Step 5 of 5: Set Up the Node
You can type "back", "exit", or "help" at any question.
Where is the controller located []: svl
```

e. Abilitare il failover dello storage e configurare il nodo rispondendo alle richieste.

I prompt sono simili ai seguenti:

```
Step 4 of 5: Configure Storage Failover (SFO)
You can type "back", "exit", or "help" at any question.
SFO will be enabled when the partner joins the cluster.
Step 5 of 5: Set Up the Node
You can type "back", "exit", or "help" at any question.
Where is the controller located []: site_A
```

f. Completare la configurazione del nodo, ma non creare aggregati di dati.

Puoi utilizzare ONTAP System Manager puntando il browser web all'indirizzo IP di gestione del cluster (https://172.17.12.153)., Cluster Management)

"Gestione del cluster con Gestore di sistema (ONTAP 9.7 e versioni precedenti)"

"Gestore di sistema ONTAP (versione 9.7 e successive)"

g. Configurare il Service Processor (SP):

"Configurare la rete SP/BMC"

"Utilizza un Service Processor con Gestione di sistema - ONTAP 9.7 e versioni precedenti"

- 3. Avviare il controller successivo e unirsi al cluster, seguendo le istruzioni.
- 4. Verificare che i nodi siano configurati in modalità ad alta disponibilità:

storage failover show -fields mode

In caso contrario, è necessario configurare la modalità ha su ciascun nodo, quindi riavviare i nodi:

storage failover modify -mode ha -node localhost

Lo stato di configurazione previsto di ha e failover dello storage è il seguente:

- · La modalità HA è configurata ma il failover dello storage non è abilitato.
- · La funzionalità HA Takeover è disattivata.
- Le interfacce HA sono offline.
- La modalità HA, il failover dello storage e le interfacce vengono configurati più avanti nel processo.

5. Verificare che siano configurate quattro porte come interconnessioni cluster:

network port show

Le interfacce IP di MetroCluster non sono attualmente configurate e non vengono visualizzate nell'output del comando.

L'esempio seguente mostra due porte del cluster su Node_A_1:

<pre>cluster_A::*> network port show -role cluster</pre>							
Node: nod	e_A_1						
Ignore							
Health						Speed(Mbps)	Health
Port Status	IPspace	Broadcast	Domain	Link	MTU	Admin/Oper	Status
e4a false	Cluster	Cluster		up	9000	auto/40000	healthy
e4e false	Cluster	Cluster		up	9000	auto/40000	healthy
Node: nod	e_A_2						
Ignore							
Health						Speed(Mbps)	Health
Port Status	IPspace	Broadcast	Domain	Link	MTU	Admin/Oper	Status
e4a false	Cluster	Cluster		up	9000	auto/40000	healthy

```
e4e Cluster Cluster up 9000 auto/40000 healthy
false
4 entries were displayed.
```

6. Ripetere questi passaggi sul cluster partner.

Cosa fare in seguito

Tornare all'interfaccia della riga di comando di ONTAP e completare la configurazione di MetroCluster eseguendo le seguenti operazioni.

Configurazione dei cluster in una configurazione MetroCluster

È necessario eseguire il peer dei cluster, eseguire il mirroring degli aggregati root, creare un aggregato di dati mirrorati e quindi eseguire il comando per implementare le operazioni MetroCluster.

A proposito di questa attività

Prima di correre metrocluster configure, La modalità ha e il mirroring DR non sono abilitati e potrebbe essere visualizzato un messaggio di errore relativo a questo comportamento previsto. La modalità ha e il mirroring del DR vengono successivamente attivate quando si esegue il comando metrocluster configure per implementare la configurazione.

Disattivazione dell'assegnazione automatica del disco (se si esegue l'assegnazione manuale in ONTAP 9.4)

In ONTAP 9.4, se la configurazione MetroCluster IP ha meno di quattro shelf di storage esterni per sito, è necessario disattivare l'assegnazione automatica dei dischi su tutti i nodi e assegnarli manualmente.

A proposito di questa attività

Questa attività non è richiesta in ONTAP 9.5 e versioni successive.

Questa attività non si applica a un sistema AFF A800 con uno shelf interno e senza shelf esterni.

"Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive"

Fasi

1. Disattivare l'assegnazione automatica dei dischi:

storage disk option modify -node node name -autoassign off

2. È necessario eseguire questo comando su tutti i nodi della configurazione IP MetroCluster.

Verifica dell'assegnazione dei dischi del pool 0

È necessario verificare che i dischi remoti siano visibili ai nodi e che siano stati assegnati correttamente.

A proposito di questa attività

L'assegnazione automatica dipende dal modello di piattaforma del sistema storage e dalla disposizione degli shelf di dischi.

"Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive"

Fasi

1. Verificare che i dischi del pool 0 siano assegnati automaticamente:

disk show

L'esempio seguente mostra l'output "cluster_A" per un sistema AFF A800 senza shelf esterni.

Un quarto (8 dischi) è stato assegnato automaticamente a "Node_A_1" e un quarto è stato assegnato automaticamente a "Node_A_2". I dischi rimanenti saranno unità remote (pool 1) per "Node_B_1" e "Node_B_2".

cluster_A::*> disk show						
	Usable	Disk		Containe	er	Container
Disk	Size	Shelf	Bay	Туре	Туре	Name
Owner						
node_A_1:0n.12	1.75TB	0	12	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.13	1.75TB	0	13	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.14	1.75TB	0	14	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.15	1.75TB	0	15	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.16	1.75TB	0	16	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.17	1.75TB	0	17	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.18	1.75TB	0	18	SSD-NVM	shared	aggr0
node_A_1						
node_A_1:0n.19	1.75TB	0	19	SSD-NVM	shared	-
node_A_1						
node_A_2:0n.0	1.75TB	0	0	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.1	1.75TB	0	1	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.2	1.75TB	0	2	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					
node_A_2:0n.3	1.75TB	0	3	SSD-NVM	shared	
aggr0_node_A_2_0	node_A_2					

node_A_2:0n.4	1.75TB	0	4	SSD-NVM	shared		
aggr0_node_A_2_0	node_A_2						
node_A_2:0n.5	1.75TB	0	5	SSD-NVM	shared		
aggr0_node_A_2_0	node_A_2						
node_A_2:0n.6	1.75TB	0	6	SSD-NVM	shared		
aggr0_node_A_2_0	node_A_2						
node_A_2:0n.7	1.75TB	0	7	SSD-NVM	shared	-	
node_A_2							
node_A_2:0n.24	-	0	24	SSD-NVM	unassigned	-	-
node_A_2:0n.25	-	0	25	SSD-NVM	unassigned	-	-
node_A_2:0n.26	-	0	26	SSD-NVM	unassigned	-	-
node_A_2:0n.27	-	0	27	SSD-NVM	unassigned	-	-
node_A_2:0n.28	-	0	28	SSD-NVM	unassigned	-	-
node_A_2:0n.29	-	0	29	SSD-NVM	unassigned	-	-
node_A_2:0n.30	-	0	30	SSD-NVM	unassigned	-	-
node_A_2:0n.31	-	0	31	SSD-NVM	unassigned	-	-
node_A_2:0n.36	-	0	36	SSD-NVM	unassigned	-	-
node_A_2:0n.37	_	0	37	SSD-NVM	unassigned	-	-
node_A_2:0n.38	-	0	38	SSD-NVM	unassigned	-	-
node_A_2:0n.39	-	0	39	SSD-NVM	unassigned	-	-
node_A_2:0n.40	-	0	40	SSD-NVM	unassigned	-	-
node_A_2:0n.41	-	0	41	SSD-NVM	unassigned	-	-
node_A_2:0n.42	-	0	42	SSD-NVM	unassigned	-	-
node_A_2:0n.43	_	0	43	SSD-NVM	unassigned	-	-
32 entries were o	displayed.						

L'esempio seguente mostra l'output "cluster_B":

```
cluster B::> disk show
                            Container Container
            Usable
                    Disk
            Size
                     Shelf Bay Type Type
Disk
                                           Name
Owner
----- -----
                             -----
                                           _____
_____
Info: This cluster has partitioned disks. To get a complete list of
spare disk
capacity use "storage aggregate show-spare-disks".
node B 1:0n.12 1.75TB 0 12 SSD-NVM shared aggr0
node B 1
node_B_1:0n.13 1.75TB 0 13 SSD-NVM shared
                                           aggr0
node B 1
node B 1:0n.14 1.75TB 0 14 SSD-NVM shared
                                           aggr0
node B 1
15 SSD-NVM shared
                                           aggr0
```

node_B_1							
node_B_1:0n.16	1.75TB	0	16	SSD-NVM	shared	aggr0	
node_B_1							
node_B_1:0n.17	1.75TB	0	17	SSD-NVM	shared	aggr0	
node_B_1							
node_B_1:0n.18	1.75TB	0	18	SSD-NVM	shared	aggr0	
node_B_1							
node_B_1:0n.19	1.75TB	0	19	SSD-NVM	shared	-	
node_B_1							
node_B_2:0n.0	1.75TB	0	0	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.1	1.75TB	0	1	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.2	1.75TB	0	2	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.3	1.75TB	0	3	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.4	1.75TB	0	4	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.5	1.75TB	0	5	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.6	1.75TB	0	6	SSD-NVM	shared		
aggr0_node_B_1_0	node_B_2						
node_B_2:0n.7	1.75TB	0	7	SSD-NVM	shared	-	
node_B_2							
node_B_2:0n.24	-	0	24	SSD-NVM	unassigned	-	-
node_B_2:0n.25	-	0	25	SSD-NVM	unassigned	-	-
node_B_2:0n.26	-	0	26	SSD-NVM	unassigned	-	-
node_B_2:0n.27	-	0	27	SSD-NVM	unassigned	-	-
node_B_2:0n.28	-	0	28	SSD-NVM	unassigned	-	-
node_B_2:0n.29	-	0	29	SSD-NVM	unassigned	-	-
node_B_2:0n.30	-	0	30	SSD-NVM	unassigned	-	-
node_B_2:0n.31	-	0	31	SSD-NVM	unassigned	-	-
node_B_2:0n.36	-	0	36	SSD-NVM	unassigned	-	-
node_B_2:0n.37	-	0	37	SSD-NVM	unassigned	-	-
node_B_2:0n.38	-	0	38	SSD-NVM	unassigned	-	-
node_B_2:0n.39	-	0	39	SSD-NVM	unassigned	-	-
node_B_2:0n.40	-	0	40	SSD-NVM	unassigned	-	-
node_B_2:0n.41	-	0	41	SSD-NVM	unassigned	-	-
node_B_2:0n.42	-	0	42	SSD-NVM	unassigned	-	-
node_B_2:0n.43	-	0	43	SSD-NVM	unassigned	-	-
32 entries were o	displayed.						
cluster B							

Peering dei cluster

I cluster nella configurazione di MetroCluster devono essere in una relazione peer in modo da poter comunicare tra loro ed eseguire il mirroring dei dati essenziale per il disaster recovery di MetroCluster.

Informazioni correlate

"Configurazione rapida del peering di cluster e SVM"

"Considerazioni sull'utilizzo di porte dedicate"

"Considerazioni sulla condivisione delle porte dati"

Configurazione delle LIF di intercluster per il peering dei cluster

È necessario creare LIF intercluster sulle porte utilizzate per la comunicazione tra i cluster di partner MetroCluster. È possibile utilizzare porte o porte dedicate che dispongono anche di traffico dati.

Configurazione di LIF intercluster su porte dedicate

È possibile configurare le LIF tra cluster su porte dedicate. In genere, aumenta la larghezza di banda disponibile per il traffico di replica.

Fasi

1. Elencare le porte nel cluster:

network port show

Per la sintassi completa dei comandi, vedere la pagina man.

L'esempio seguente mostra le porte di rete in "cluster01":

cluster01::> network port show						
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluste	r01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
cluste	r01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000

2. Determinare quali porte sono disponibili per la comunicazione tra cluster:

network interface show -fields home-port, curr-port

Per la sintassi completa dei comandi, vedere la pagina man.

L'esempio seguente mostra che alle porte "e0e" e "e0f" non sono stati assegnati LIF:

```
cluster01::> network interface show -fields home-port,curr-port
vserver lif
                        home-port curr-port
----- ------
Cluster cluster01-01 clus1 e0a
                                e0a
Cluster cluster01-01 clus2 e0b
                                e0b
Cluster cluster01-02 clus1 eOa
                                e0a
Cluster cluster01-02 clus2 e0b
                                e0b
cluster01
      cluster mgmt
                       e0c e0c
cluster01
      cluster01-01_mgmt1 e0c
                                 e0c
cluster01
      cluster01-02 mgmt1
                        e0c
                                 e0c
```

3. Creare un gruppo di failover per le porte dedicate:

network interface failover-groups create -vserver system_SVM -failover-group
failover_group -targets physical_or_logical_ports

Nell'esempio seguente vengono assegnate le porte "e0e" e" e0f" al gruppo di failover "cluster01" sul sistema "SVMcluster01":

```
cluster01::> network interface failover-groups create -vserver cluster01
-failover-group
intercluster01 -targets
cluster01-01:e0e,cluster01-01:e0f,cluster01-02:e0e,cluster01-02:e0f
```

4. Verificare che il gruppo di failover sia stato creato:

network interface failover-groups show

Per la sintassi completa dei comandi, vedere la pagina man.

```
cluster01::> network interface failover-groups show
                              Failover
Vserver
              Group
                              Targets
-----
 _____
Cluster
               Cluster
                              cluster01-01:e0a, cluster01-01:e0b,
                              cluster01-02:e0a, cluster01-02:e0b
cluster01
               Default
                              cluster01-01:e0c, cluster01-01:e0d,
                              cluster01-02:e0c, cluster01-02:e0d,
                              cluster01-01:e0e, cluster01-01:e0f
                              cluster01-02:e0e, cluster01-02:e0f
               intercluster01
                              cluster01-01:e0e, cluster01-01:e0f
                              cluster01-02:e0e, cluster01-02:e0f
```

5. Creare LIF intercluster sulla SVM di sistema e assegnarle al gruppo di failover.

Versione di ONTAP	Comando
9.6 e versioni successive	<pre>network interface create -vserver system_SVM -lif LIF_name -service -policy default-intercluster -home -node node -home-port port -address port_IP -netmask netmask -failover -group failover_group</pre>

9.5 e versioni precedenti	network interface create -vserver
	<pre>system_SVM -lif LIF_name -role</pre>
	intercluster -home-node node -home
	-port port -address port_IP -netmask
	<pre>netmask -failover-group failover_group</pre>

Per la sintassi completa dei comandi, vedere la pagina man.

Nell'esempio seguente vengono create le LIF di intercluster "cluster01_icl01" e "cluster01_icl02" nel gruppo di failover "intercluster01":

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0e
-address 192.168.1.201
-netmask 255.255.255.0 -failover-group intercluster01
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0e
-address 192.168.1.202
-netmask 255.255.255.0 -failover-group intercluster01
```

6. Verificare che le LIF dell'intercluster siano state create:

In ONTAP 9.6 e versioni successive:

network interface show -service-policy default-intercluster

In ONTAP 9.5 e versioni precedenti:

network interface show -role intercluster

Per la sintassi completa dei comandi, vedere la pagina man.

cluster01::> network interface show -service-policy default-intercluster Logical Status Network Current Current Is Interface Admin/Oper Address/Mask Node Vserver Port Home _____ ____ _____ __ ___ ___ _____ _____ ___ cluster01 cluster01 icl01 up/up 192.168.1.201/24 cluster01-01 e0e true cluster01 icl02 up/up 192.168.1.202/24 cluster01-02 eOf true

7. Verificare che le LIF dell'intercluster siano ridondanti:

In ONTAP 9.6 e versioni successive: network interface show -service-policy default-intercluster -failover In ONTAP 9.5 e versioni precedenti: network interface show -role intercluster -failover

Per la sintassi completa dei comandi, vedere la pagina man.

L'esempio seguente mostra che le LIF dell'intercluster "cluster01_icl01" e "cluster01_icl02" sulla porta "SVMe0e" effettueranno il failover sulla porta "e0f".

<pre>cluster01::> network interface show -service-policy default-intercluster -failover</pre>						
	Logical	Home	Failover	Failover		
Vserver	Interface	Node:Port	Policy	Group		
cluster0	cluster01					
cluster01_icl01 cluster01-01:e0e local-only						
interclu	ster01					
		Failover Targets:	cluster01-01:e0	e, f		
cluster01_icl02 cluster01-02:e0e local-only intercluster01						
		Failover Targets:	cluster01-02:e0 cluster01-02:e0	e, f		

"Considerazioni sull'utilizzo di porte dedicate"

Configurazione delle LIF tra cluster su porte dati condivise

È possibile configurare le LIF di intercluster sulle porte condivise con la rete dati. In questo modo si riduce il numero di porte necessarie per la rete tra cluster.

Fasi

1. Elencare le porte nel cluster:

network port show

Per la sintassi completa dei comandi, vedere la pagina man.

L'esempio seguente mostra le porte di rete in "cluster01":

cluster01::> network port show						
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluster	c01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
cluster	c01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000

2. Creazione di LIF intercluster sulla SVM di sistema:

In ONTAP 9.6 e versioni successive:

```
network interface create -vserver system_SVM -lif LIF_name -service-policy
default-intercluster -home-node node -home-port port -address port_IP -netmask
netmask
```

In ONTAP 9.5 e versioni precedenti:

```
network interface create -vserver system_SVM -lif LIF_name -role intercluster
-home-node node -home-port port -address port_IP -netmask netmask
```

Per la sintassi completa dei comandi, vedere la pagina man.

Nell'esempio seguente vengono create le LIF dell'intercluster "cluster01_icl01" e "cluster01_icl02":

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0c
-address 192.168.1.201
-netmask 255.255.255.0
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0c
-address 192.168.1.202
-netmask 255.255.255.0
```

3. Verificare che le LIF dell'intercluster siano state create:

In ONTAP 9.6 e versioni successive:

network interface show -service-policy default-intercluster

In ONTAP 9.5 e versioni precedenti:

network interface show -role intercluster

Per la sintassi completa dei comandi, vedere la pagina man.

```
cluster01::> network interface show -service-policy default-intercluster
         Logical Status Network
                                         Current
Current Is
Vserver Interface Admin/Oper Address/Mask Node
                                                  Port
Home
_____
_____ ___
cluster01
         cluster01 icl01
                 up/up 192.168.1.201/24 cluster01-01 e0c
true
         cluster01 icl02
                 up/up
                         192.168.1.202/24 cluster01-02 e0c
true
```

4. Verificare che le LIF dell'intercluster siano ridondanti:

In ONTAP 9.6 e versioni successive:

network interface show -service-policy default-intercluster -failover

In ONTAP 9.5 e versioni precedenti:

```
network interface show -role intercluster -failover
```

Per la sintassi completa dei comandi, vedere la pagina man.

L'esempio seguente mostra che i LIF di intercluster "cluster01_icl01" e "cluster01_icl02" sulla porta "e0c" effettueranno il failover sulla porta "e0d".

```
cluster01::> network interface show -service-policy default-intercluster
-failover
        Logical
                        Home
                                             Failover
                                                            Failover
Vserver Interface
                        Node:Port
                                            Policy
                                                             Group
_____ __ ___
cluster01
        cluster01 icl01 cluster01-01:e0c local-only
192.168.1.201/24
                           Failover Targets: cluster01-01:e0c,
                                            cluster01-01:e0d
        cluster01 icl02 cluster01-02:e0c local-only
192.168.1.201/24
                           Failover Targets: cluster01-02:e0c,
                                            cluster01-02:e0d
```

Informazioni correlate

"Considerazioni sulla condivisione delle porte dati"

Creazione di una relazione peer del cluster

È possibile utilizzare il comando cluster peer create per creare una relazione peer tra un cluster locale e un cluster remoto. Una volta creata la relazione peer, è possibile eseguire cluster peer create sul cluster remoto per autenticarla nel cluster locale.

A proposito di questa attività

- È necessario aver creato le LIF di intercluster su ogni nodo dei cluster che vengono sottoposti a peering.
- I cluster devono eseguire ONTAP 9.3 o versione successiva.

Fasi

1. Sul cluster di destinazione, creare una relazione peer con il cluster di origine:

```
cluster peer create -generate-passphrase -offer-expiration MM/DD/YYYY
HH:MM:SS|1...7days|1...168hours -peer-addrs peer LIF IPs -ipspace ipspace
```

Se si specificano entrambi -generate-passphrase e. -peer-addrs, Solo il cluster i cui LIF intercluster sono specificati in -peer-addrs può utilizzare la password generata.

È possibile ignorare -ipspace Se non si utilizza un IPSpace personalizzato. Per la sintassi completa dei comandi, vedere la pagina man.

Nell'esempio seguente viene creata una relazione peer del cluster su un cluster remoto non specificato:

2. Nel cluster di origine, autenticare il cluster di origine nel cluster di destinazione:

cluster peer create -peer-addrs peer_LIF_IPs -ipspace ipspace

Per la sintassi completa dei comandi, vedere la pagina man.

Nell'esempio seguente viene autenticato il cluster locale nel cluster remoto agli indirizzi IP LIF "192.140.112.101" e "192.140.112.102" dell'intercluster:

```
cluster01::> cluster peer create -peer-addrs
192.140.112.101,192.140.112.102
Notice: Use a generated passphrase or choose a passphrase of 8 or more
characters.
        To ensure the authenticity of the peering relationship, use a
phrase or sequence of characters that would be hard to guess.
Enter the passphrase:
Confirm the passphrase:
Clusters cluster02 and cluster01 are peered.
```

Inserire la passphrase per la relazione peer quando richiesto.

3. Verificare che la relazione peer del cluster sia stata creata:

```
cluster peer show -instance
```

4. Verificare la connettività e lo stato dei nodi nella relazione peer:

cluster peer health show

```
cluster01::> cluster peer health show
Node
       cluster-Name
                                Node-Name
          Ping-Status
                                RDB-Health Cluster-Health Avail...
_____ ____
cluster01-01
         cluster02
                                 cluster02-01
           Data: interface reachable
           ICMP: interface reachable true true
                                                       true
                                 cluster02-02
           Data: interface reachable
           ICMP: interface reachable true true
                                                       true
cluster01-02
         cluster02
                                 cluster02-01
           Data: interface reachable
           ICMP: interface reachable true true
                                                        true
                                cluster02-02
           Data: interface reachable
           ICMP: interface reachable true true
                                                        true
```

Creazione del gruppo DR

È necessario creare le relazioni del gruppo di disaster recovery (DR) tra i cluster.

A proposito di questa attività

Eseguire questa procedura su uno dei cluster nella configurazione MetroCluster per creare le relazioni di DR tra i nodi di entrambi i cluster.

Una volta creati i gruppi DR, non è possibile modificare le relazioni di DR.

Fasi

1. Verificare che i nodi siano pronti per la creazione del gruppo DR immettendo il seguente comando su ciascun nodo:

metrocluster configuration-settings show-status

L'output del comando dovrebbe indicare che i nodi sono pronti:

```
cluster_B::> metrocluster configuration-settings show-status
Cluster Node Configuration Settings Status
------
cluster_B node_B_1 ready for DR group create
node_B_2 ready for DR group create
2 entries were displayed.
```

2. Creare il gruppo DR:

```
metrocluster configuration-settings dr-group create -partner-cluster partner-
cluster-name -local-node local-node-name -remote-node remote-node-name
```

Questo comando viene emesso una sola volta. Non è necessario ripeterlo sul cluster del partner. Nel comando, specificare il nome del cluster remoto e il nome di un nodo locale e di un nodo del cluster partner.

I due nodi specificati vengono configurati come partner DR e gli altri due nodi (non specificati nel comando) vengono configurati come seconda coppia DR nel gruppo DR. Queste relazioni non possono essere modificate dopo aver immesso questo comando.

Il seguente comando crea queste coppie di DR:

- Node_A_1 e Node_B_1
- Node_A_2 e Node_B_2

Cluster_A::> metrocluster configuration-settings dr-group create -partner-cluster cluster_B -local-node node_A_1 -remote-node node_B_1 [Job 27] Job succeeded: DR Group Create is successful.

Configurazione e connessione delle interfacce IP di MetroCluster

È necessario configurare le interfacce IP MetroCluster utilizzate per la replica dello storage e della cache non volatile di ciascun nodo. Le connessioni vengono quindi stabilite utilizzando le interfacce IP di MetroCluster. In questo modo si creano connessioni iSCSI per la replica dello storage.

A proposito di questa attività

i.

È necessario scegliere attentamente gli indirizzi IP MetroCluster, in quanto non è possibile modificarli dopo la configurazione iniziale.

- È necessario creare due interfacce per ciascun nodo. Le interfacce devono essere associate alle VLAN definite nel file RCF di MetroCluster.
- È necessario creare tutte le porte "A" dell'interfaccia IP MetroCluster nella stessa VLAN e tutte le porte "B" dell'interfaccia IP MetroCluster nell'altra VLAN. Fare riferimento a. "Considerazioni sulla configurazione IP di MetroCluster".
 - Alcune piattaforme utilizzano una VLAN per l'interfaccia IP di MetroCluster. Per impostazione predefinita, ciascuna delle due porte utilizza una VLAN diversa: 10 e 20. È inoltre possibile specificare una VLAN diversa (non predefinita) superiore a 100 (tra 101 e 4095) utilizzando -vlan-id parameter in metrocluster configurationsettings interface create comando.
 - A partire da ONTAP 9.9.1, se si utilizza una configurazione Layer 3, è necessario specificare anche -gateway Parametro durante la creazione di interfacce IP MetroCluster. Fare riferimento a. "Considerazioni per le reti wide-area di livello 3".

I seguenti modelli di piattaforma possono essere aggiunti alla configurazione MetroCluster esistente se le VLAN utilizzate sono 10/20 o superiori a 100. Se si utilizzano altre VLAN, queste piattaforme non possono essere aggiunte alla configurazione esistente, in quanto l'interfaccia MetroCluster non può essere configurata. Se si utilizza un'altra piattaforma, la configurazione della VLAN non è rilevante in quanto non è

richiesta in ONTAP.

Piattaforme AFF	Piattaforme FAS
• AFF A220	• FAS2750
• AFF A250	• FAS500f
• AFF A400	• FAS8300
	• FAS8700

Negli esempi vengono utilizzati i seguenti indirizzi IP e subnet:

Nodo	Interfaccia	Indirizzo IP	Subnet
Node_A_1	Interfaccia IP MetroCluster 1	10.1.1.1	10.1.1/24
Interfaccia IP MetroCluster 2	10.1.2.1	10.1.2/24	Node_A_2
Interfaccia IP MetroCluster 1	10.1.1.2	10.1.1/24	Interfaccia IP MetroCluster 2
10.1.2.2	10.1.2/24	Node_B_1	Interfaccia IP MetroCluster 1
10.1.1.3	10.1.1/24	Interfaccia IP MetroCluster 2	10.1.2.3
10.1.2/24	Node_B_2	Interfaccia IP MetroCluster 1	10.1.1.4
10.1.1/24	Interfaccia IP MetroCluster 2	10.1.2.4	10.1.2/24

Le porte fisiche utilizzate dalle interfacce IP di MetroCluster dipendono dal modello di piattaforma, come mostrato nella tabella seguente.

Modello di piattaforma	Porta IP MetroCluster	Nota
AFF A900 e FAS9500	e5b	
e7b	AFF A800	e0b
	e1b	AFF A700 e FAS9000
e5a		e5b

Modello di piattaforma	Porta IP MetroCluster	Nota
AFF A400	e1a	
e1b	AFF A320	ad esempio
	e0h	AFF A300 e FAS8200
e1a		e1b
AFF A220 e FAS2750	e0a	Su questi sistemi, queste porte fisiche vengono utilizzate anche come interfacce cluster.
e0b	AFF A250 e FAS500f	e0c
	e0d	FAS8300 e FAS8700
e1a		e1b

L'utilizzo delle porte nei seguenti esempi riguarda un sistema AFF A700 o FAS9000.

Fasi

1. Verificare che ogni nodo abbia attivato l'assegnazione automatica del disco:

storage disk option show

L'assegnazione automatica del disco assegnerà i dischi del pool 0 e del pool 1 in base a shelf-by-shelf.

La colonna Auto Assign (assegnazione automatica) indica se l'assegnazione automatica del disco è attivata.

NodeBKg. FW. Upd.Auto CopyAuto AssignAuto Assign Policynode_A_1ononondefaultnode_A_2ononondefault2 entries were displayed.

2. Verificare che sia possibile creare interfacce IP MetroCluster sui nodi:

metrocluster configuration-settings show-status

Tutti i nodi devono essere pronti:

```
Cluster
             Node
                          Configuration Settings Status
_____
                _____
cluster A
             node A 1
                          ready for interface create
             node A 2
                          ready for interface create
cluster B
             node B 1
                          ready for interface create
             node B 2
                          ready for interface create
4 entries were displayed.
```

- 3. Creare le interfacce su Node_A_1.
 - L'utilizzo delle porte negli esempi seguenti riguarda un sistema AFF A700 o FAS9000 (e5a e e5b). È necessario configurare le interfacce sulle porte corrette per il modello di piattaforma, come indicato sopra.

- A partire da ONTAP 9.9.1, se si utilizza una configurazione Layer 3, è necessario specificare anche -gateway Parametro durante la creazione di interfacce IP MetroCluster. Fare riferimento a. "Considerazioni per le reti wide-area di livello 3".
- Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti.
- a. Configurare l'interfaccia sulla porta "e5a" su "Node_A_1":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5a -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5a" su "node_A_1" con indirizzo IP "10.1.1.1":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_1 -home-port e5a -address
10.1.1.1 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.
cluster_A::>
```

b. Configurare l'interfaccia sulla porta "e5b" su "Node_A_1":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5b -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5b" su "node_A_1" con indirizzo IP "10.1.2.1":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_1 -home-port e5b -address
10.1.2.1 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.
cluster A::>
```


È possibile verificare che queste interfacce siano presenti utilizzando metrocluster configuration-settings interface show comando.

- 4. Creare le interfacce su Node_A_2.
 - L'utilizzo delle porte negli esempi seguenti riguarda un sistema AFF A700 o FAS9000 (e5a e e5b). È necessario configurare le interfacce sulle porte corrette per il modello di piattaforma, come indicato sopra.

- A partire da ONTAP 9.9.1, se si utilizza una configurazione Layer 3, è necessario specificare anche -gateway Parametro durante la creazione di interfacce IP MetroCluster. Fare riferimento a. "Considerazioni per le reti wide-area di livello 3".
- Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti.
- a. Configurare l'interfaccia sulla porta "e5a" su "Node_A_2":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5a -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5a" su "node_A_2" con indirizzo IP "10.1.1.2":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_2 -home-port e5a -address
10.1.1.2 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.
cluster_A::>
```

Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti. L'esempio seguente mostra il comando per un sistema AFF A220 con un ID VLAN 120:

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_2 -home-port e0a -address
10.1.1.2 -netmask 255.255.255.0 -vlan-id 120
[Job 28] Job succeeded: Interface Create is successful.
cluster A::>
```

b. Configurare l'interfaccia sulla porta "e5b" su "Node_A_2":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5b -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5b" su "node_A_2" con indirizzo IP "10.1.2.2":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_2 -home-port e5b -address
10.1.2.2 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.
cluster_A::>
```

Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti. L'esempio seguente mostra il comando per un sistema AFF A220 con un ID VLAN 220:

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_A -home-node node_A_2 -home-port eOb -address
10.1.2.2 -netmask 255.255.255.0 -vlan-id 220
[Job 28] Job succeeded: Interface Create is successful.
cluster_A::>
```

- 5. Creare le interfacce su "Node_B_1".
 - L'utilizzo delle porte negli esempi seguenti riguarda un sistema AFF A700 o FAS9000 (e5a e e5b). È necessario configurare le interfacce sulle porte corrette per il modello di piattaforma, come indicato sopra.
 - ()
- A partire da ONTAP 9.9.1, se si utilizza una configurazione Layer 3, è necessario specificare anche -gateway Parametro durante la creazione di interfacce IP MetroCluster. Fare riferimento a. "Considerazioni per le reti wide-area di livello 3".
- Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti.

a. Configurare l'interfaccia sulla porta "e5a" su "Node_B_1":

metrocluster configuration-settings interface create -cluster-name clustername -home-node node-name -home-port e5a -address ip-address -netmask netmask

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5a" su "Node_B_1" con indirizzo IP "10.1.1.3":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_B -home-node node_B_1 -home-port e5a -address
10.1.1.3 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.cluster_B::>
```

b. Configurare l'interfaccia sulla porta "e5b" su "Node_B_1":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5a -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5b" su "Node_B_1" con indirizzo IP "10.1.2.3":

```
cluster_A::> metrocluster configuration-settings interface create
-cluster-name cluster_B -home-node node_B_1 -home-port e5b -address
10.1.2.3 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.cluster_B::>
```

- 6. Creare le interfacce su "Node_B_2".
 - L'utilizzo delle porte negli esempi seguenti riguarda un sistema AFF A700 o FAS9000 (e5a e e5b). È necessario configurare le interfacce sulle porte corrette per il modello di piattaforma, come indicato sopra.

- A partire da ONTAP 9.9.1, se si utilizza una configurazione Layer 3, è necessario specificare anche -gateway Parametro durante la creazione di interfacce IP MetroCluster. Fare riferimento a. "Considerazioni per le reti wide-area di livello 3".
- Sui modelli di piattaforma che supportano le VLAN per l'interfaccia IP di MetroCluster, è possibile includere -vlan-id Parametro se non si desidera utilizzare gli ID VLAN predefiniti.
- a. Configurare l'interfaccia sulla porta e5a sul nodo_B_2:

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5a -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5a" su "Node_B_2" con indirizzo IP "10.1.1.4":

```
cluster_B::>metrocluster configuration-settings interface create
-cluster-name cluster_B -home-node node_B_2 -home-port e5a -address
10.1.1.4 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.cluster A::>
```

b. Configurare l'interfaccia sulla porta "e5b" su "Node_B_2":

```
metrocluster configuration-settings interface create -cluster-name cluster-
name -home-node node-name -home-port e5b -address ip-address -netmask
netmask
```

L'esempio seguente mostra la creazione dell'interfaccia sulla porta "e5b" su "Node_B_2" con indirizzo IP "10.1.2.4":

```
cluster_B::> metrocluster configuration-settings interface create
-cluster-name cluster_B -home-node node_B_2 -home-port e5b -address
10.1.2.4 -netmask 255.255.255.0
[Job 28] Job succeeded: Interface Create is successful.
cluster_A::>
```

7. Verificare che le interfacce siano state configurate:

metrocluster configuration-settings interface show

L'esempio seguente mostra che lo stato di configurazione di ciascuna interfaccia è stato completato.

cluster A::> metrocluster configuration-settings interface show DR Config Group Cluster Node Network Address Netmask Gateway State _____ _____ 1 cluster A node A 1 Home Port: e5a 10.1.1.1 255.255.255.0 - completed Home Port: e5b 10.1.2.1 255.255.0 - completed node A 2 Home Port: e5a 10.1.1.2 255.255.255.0 completed Home Port: e5b 10.1.2.2 255.255.0 - completed cluster B node B 1 Home Port: e5a 10.1.1.3 255.255.255.0 completed Home Port: e5b 10.1.2.3 255.255.0 - completed node B 2 Home Port: e5a 10.1.1.4 255.255.255.0 completed Home Port: e5b 10.1.2.4 255.255.0 - completed 8 entries were displayed. cluster A::>

8. Verificare che i nodi siano pronti per la connessione alle interfacce MetroCluster:

metrocluster configuration-settings show-status

L'esempio seguente mostra tutti i nodi nello stato "pronto per la connessione":

```
Cluster Node Configuration Settings Status

cluster_A node_A_1 ready for connection connect

node_A_2 ready for connection connect

cluster_B node_B_1 ready for connection connect

node_B_2 ready for connection connect

4 entries were displayed.
```

9. Stabilire le connessioni: metrocluster configuration-settings connection connect

Gli indirizzi IP non possono essere modificati dopo aver eseguito questo comando.

L'esempio seguente mostra che il cluster_A è connesso correttamente:

```
cluster_A::> metrocluster configuration-settings connection connect
[Job 53] Job succeeded: Connect is successful.
cluster_A::>
```

10. Verificare che le connessioni siano state stabilite:

```
metrocluster configuration-settings show-status
```

Lo stato delle impostazioni di configurazione per tutti i nodi deve essere completato:

- 11. Verificare che le connessioni iSCSI siano state stabilite:
 - a. Passare al livello di privilegio avanzato:

set -privilege advanced

Devi rispondere con y quando viene richiesto di passare alla modalità avanzata e viene visualizzato il prompt della modalità avanzata (*>).

b. Visualizzare le connessioni:

storage iscsi-initiator show

Nei sistemi che eseguono ONTAP 9.5, sono presenti otto iniziatori IP MetroCluster su ciascun cluster che dovrebbero essere visualizzati nell'output.

Nei sistemi che eseguono ONTAP 9.4 e versioni precedenti, sono presenti quattro iniziatori IP MetroCluster su ciascun cluster che dovrebbero essere visualizzati nell'output.

L'esempio seguente mostra gli otto iniziatori IP MetroCluster in un cluster che esegue ONTAP 9.5:

cluster A::*> storage iscsi-initiator show

Node Type Label Target Portal Target Name Admin/Op ---- ---- ------_____ ____ cluster A-01 dr auxiliary mccip-aux-a-initiator 10.227.16.113:65200 prod506.com.company:abab44 up/up mccip-aux-a-initiator2 10.227.16.113:65200 prod507.com.company:abab44 up/up mccip-aux-b-initiator 10.227.95.166:65200 prod506.com.company:abab44 up/up mccip-aux-b-initiator2 10.227.95.166:65200 prod507.com.company:abab44 up/up dr partner mccip-pri-a-initiator 10.227.16.112:65200 prod506.com.company:cdcd88 up/up mccip-pri-a-initiator2 10.227.16.112:65200 prod507.com.company:cdcd88 up/up mccip-pri-b-initiator 10.227.95.165:65200 prod506.com.company:cdcd88 up/up mccip-pri-b-initiator2 10.227.95.165:65200 prod507.com.company:cdcd88 up/up cluster A-02 dr auxiliary mccip-aux-a-initiator 10.227.16.112:65200 prod506.com.company:cdcd88 up/up mccip-aux-a-initiator2 10.227.16.112:65200 prod507.com.company:cdcd88 up/up mccip-aux-b-initiator 10.227.95.165:65200 prod506.com.company:cdcd88 up/up mccip-aux-b-initiator2 10.227.95.165:65200 prod507.com.company:cdcd88 up/up

```
dr_partner

mccip-pri-a-initiator

10.227.16.113:65200 prod506.com.company:abab44

up/up

mccip-pri-a-initiator2

10.227.16.113:65200 prod507.com.company:abab44

up/up

mccip-pri-b-initiator

10.227.95.166:65200 prod506.com.company:abab44

up/up

mccip-pri-b-initiator2

10.227.95.166:65200 prod507.com.company:abab44
```

a. Tornare al livello di privilegio admin:

set -privilege admin

12. Verificare che i nodi siano pronti per l'implementazione finale della configurazione MetroCluster:

metrocluster node show

Verifica o esecuzione manuale dell'assegnazione dei dischi del pool 1

A seconda della configurazione dello storage, è necessario verificare l'assegnazione delle unità del pool 1 o assegnare manualmente le unità al pool 1 per ciascun nodo nella configurazione IP di MetroCluster. La procedura da seguire dipende dalla versione di ONTAP in uso.

Tipo di configurazione	Procedura
I sistemi soddisfano i requisiti per l'assegnazione automatica del disco o, se è in esecuzione ONTAP 9.3, sono stati ricevuti dalla fabbrica.	Verifica dell'assegnazione dei dischi per il pool 1
La configurazione include tre shelf oppure, se contiene più di quattro shelf, presenta un multiplo non uniforme di quattro shelf (ad esempio, sette shelf) e utilizza ONTAP 9.5.	Assegnazione manuale delle unità per il pool 1 (ONTAP 9.4 o versione successiva)
La configurazione non include quattro shelf di storage per sito e utilizza ONTAP 9.4	Assegnazione manuale delle unità per il pool 1 (ONTAP 9.4 o versione successiva)
I sistemi non sono stati ricevuti dalla fabbrica e utilizzano ONTAP 9.3i sistemi ricevuti dalla fabbrica sono preconfigurati con i dischi assegnati.	Assegnazione manuale dei dischi per il pool 1 (ONTAP 9.3)

Verifica dell'assegnazione dei dischi per il pool 1

Verificare che i dischi remoti siano visibili ai nodi e che siano stati assegnati correttamente.

Prima di iniziare

Una volta create le interfacce IP MetroCluster e le connessioni con, è necessario attendere almeno dieci minuti per il completamento dell'assegnazione automatica del disco metrocluster configuration-settings connection connect comando.

L'output del comando mostra i nomi dei dischi nel formato: Nome-nodo:0m.i1.0L1

"Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive"

Fasi

1. Verificare che i dischi del pool 1 siano assegnati automaticamente:

disk show

Il seguente output mostra l'output di un sistema AFF A800 senza shelf esterni.

L'assegnazione automatica dei dischi ha assegnato un quarto (8 dischi) a "node_A_1" e un quarto a "node_A_2". I dischi rimanenti saranno dischi remoti (pool 1) per "Node_B_1" e "Node_B_2".

cluster_B::>	disk show -host-a	dapter Om -owner	node_B_2	
	Usable	Disk	Container	Container
Disk	Size	Shelf Bay Type	Туре	Name

Owner						
node_B_2:0m.i0.2L4	894.0GB	0	29	SSD-NVM	shared	-
node_B_2						
node B 2:0m.i0.2L10	894.0GB	0	25	SSD-NVM	shared	-
node B 2						
node B 2:0m.i0.3L3	894.0GB	0	28	SSD-NVM	shared	-
node B 2						
 node B 2:0m.i0.3L9	894.0GB	0	24	SSD-NVM	shared	-
node B 2						
node B 2:0m.i0.3L11	894.0GB	0	26	SSD-NVM	shared	_
node B 2		-				
node B 2.0m i0 31.12	894 0GB	0	27	SSD-NVM	shared	_
node B 2	0001.002	0	2,	000 10011	Sharea	
node B $2 \cdot 0 \text{m}$ in 31.15	894 OCB	0	30	SSD-NVM	shared	_
node R 2	004.000	0	50	SSD NVH	Shared	
node P_2	801 OCP	0	21	CCD-NVM	charod	_
node_B_2.0m.10.3110	094.0GB	0	JT	SSD-NVM	SHALEU	
node_B_2	lanad					
o entries were disp.	Layeu.					
aluston D. Aisk al	hart hast a	donton	0 m		do D 1	
Cluster_B::/ disk si	III - HOSL-ad	apter	0111 -	-owner no		Question in the second
	USADIe	DISK			Container	Container
B · I	a '		T	-		3.7
Disk	Size	Shelf	Вау	Туре	Туре	Name
Disk Owner	Size	Shelf	Вау	Туре	Туре	Name
Disk Owner	Size	Shelf	Bay 	Туре	Туре	Name
Disk Owner 	Size	Shelf	Bay	Туре	Туре	Name
Disk Owner node_B_1:0m.i2.3L19	Size 1.75TB	Shelf 0	Bay 42	Type SSD-NVM	Type shared	Name
Disk Owner node_B_1:0m.i2.3L19 node_B_1	Size 1.75TB	Shelf 0	Bay 42	Type SSD-NVM	Type shared	Name
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20	Size 1.75TB 1.75TB	Shelf 0 0	Bay 42 43	Type SSD-NVM SSD-NVM	Type shared spare	Name Pooll
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1	Size 1.75TB 1.75TB	Shelf 0 0	Bay 42 43	Type SSD-NVM SSD-NVM	Type shared spare	Name Pooll
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23	Size 1.75TB 1.75TB 1.75TB	Shelf 0 0 0	Bay 42 43 40	Type SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared	Name Pool1 -
Disk Owner node_B_1:Om.i2.3L19 node_B_1 node_B_1:Om.i2.3L20 node_B_1 node_B_1:Om.i2.3L23 node_B_1	Size 1.75TB 1.75TB 1.75TB	Shelf 0 0 0	Bay 42 43 40	Type SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared	Name Pool1 -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0	Bay 42 43 40 41	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared spare	Name Pool1 - Pool1
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0	Bay 42 43 40 41	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared spare	Name Pool1 - Pool1
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1:0m.i2.3L29	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0	Bay 42 43 40 41 36	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared spare shared	Name Pool1 - Pool1 -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1:0m.i2.3L29 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0	<pre>Bay 42 43 40 41 36</pre>	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared	Name Pool1 - Pool1 -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0	<pre>Bay 42 43 40 41 36 37</pre>	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared	Name Pool1 - Pool1 -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared	Name Pool1 - Pool1 - -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1 node_B_1:0m.i2.3L29 node_B_1 node_B_1:0m.i2.3L30	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0	<pre>Bay 42 43 40 41 36 37 38</pre>	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared	Name Pool1 - Pool1 - -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37 38	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared	Name Pool1 - Pool1 - - -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1 node_B_1:0m.i2.3L29 node_B_1 node_B_1:0m.i2.3L30 node_B_1 node_B_1:0m.i2.3L31 node_B_1:0m.i2.3L31	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>Bay 42 43 40 41 36 37 38 39</pre>	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared shared	Name Pool1 - Pool1 - - - -
Disk Owner node_B_1:0m.i2.3L19 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37 38 39	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared shared	Name Pool1 - Pool1 - - -
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L29 node_B_1 node_B_1:0m.i2.3L30 node_B_1 node_B_1:0m.i2.3L31 node_B_1 node_B_1:0m.i2.3L32 node_B_1 8 entries were disp	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37 38 39	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared shared	Name
Disk Owner node_B_1:0m.i2.3L19 node_B_1 node_B_1:0m.i2.3L20 node_B_1 node_B_1:0m.i2.3L23 node_B_1 node_B_1:0m.i2.3L24 node_B_1	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37 38 39	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared shared	Name Pool1 - Pool1 - - -
Disk Owner node_B_1:Om.i2.3L19 node_B_1 node_B_1:Om.i2.3L20 node_B_1 node_B_1:Om.i2.3L23 node_B_1 node_B_1:Om.i2.3L24 node_B_1 node_B_1:Om.i2.3L29 node_B_1 node_B_1:Om.i2.3L30 node_B_1 node_B_1:Om.i2.3L31 node_B_1 node_B_1:Om.i2.3L32 node_B_1 8 entries were disp cluster_B::> disk sl	Size 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB 1.75TB	Shelf 0 0 0 0 0 0 0 0 0 0 0 0 0	Bay 42 43 40 41 36 37 38 39	Type SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM SSD-NVM	Type shared spare shared shared shared shared shared	Name

	Usable	Disk			Container	Container
Disk	Size	Shelf	Вау	Туре	Туре	Name
Owner						
node B 1:0m.i1.0L6	1.75TB	0	1	SSD-NVM	shared	-
node A 2						
 node B 1:0m.i1.0L8	1.75TB	0	3	SSD-NVM	shared	_
node A 2						
node B 1:0m.i1.0L17	1.75TB	0	18	SSD-NVM	shared	_
node A 1		-				
node B 1:0m.i1.0L22	1.75TB	0	17	SSD-NVM s	shared - nod	e A 1
node B $1.0m$ il 01.25	1 75TB	0	12	SSD-NVM	shared - nod	°_11_1 • 1
node B $1.0m$ il 2L2	1 75TB	0	5 9	SD-NVM st	nared - node	<u>2</u> 2
node $B_1 \cdot 0m i 1 217$	1 75TB	0	2 9	SD-NVM st	ared - node	
node P 1.0m i1 2114	1 75mp	0	7 0	SD NVM SI	nared - node	_A_2
	1.75TD	0	16	COD NUM	hared nod	$\underline{A} \underline{2}$
	1.75TD	0	14	SSD-NVM S	shared - nod	e_A_1
	1.75IB	0	14	SSD-NVM S	shared - nod	e_A_1
node_B_1:0m.11.2L28	1.75TB	0	10	SSD-NVM S	snarea - noa	e_A_I
node_B_1:Um.12.1L1	1.75TB	0	4 S	SD-NVM Sr	nared - node	_A_Z
node_B_1:0m.12.1L5	1.75'I'B	0	0 5	SD-NVM sr	nared - node	_A_2
node_B_1:0m.i2.1L13	1.75TB	0	6 S	SD-NVM st	nared - node	_A_2
node_B_1:0m.i2.1L18	1.75TB	0	19	SSD-NVM s	shared - nod	e_A_1
node_B_1:0m.i2.1L26	1.75TB	0	13	SSD-NVM s	shared - nod	e_A_1
node_B_1:0m.i2.3L19	1.75TB	0 42	SSD-1	NVM share	ed – node_B_	1
node_B_1:0m.i2.3L20	1.75TB	0 43	SSD-1	NVM share	ed - node_B_	1
node_B_1:0m.i2.3L23	1.75TB	0 40	SSD-1	NVM share	ed - node_B_	1
node_B_1:0m.i2.3L24	1.75TB	0 41	SSD-1	NVM share	ed - node_B_	1
node_B_1:0m.i2.3L29	1.75TB	0 36	SSD-1	NVM share	ed - node_B_	1
node_B_1:0m.i2.3L30	1.75TB	0 37	SSD-1	NVM share	ed - node_B_	1
node_B_1:0m.i2.3L31	1.75TB	0 38	SSD-1	NVM share	ed – node_B_	1
node_B_1:0m.i2.3L32	1.75TB	0 39	SSD-1	NVM share	ed - node_B_	1
node_B_1:0n.12	1.75TB	0 12	SSD-1	NVM share	ed aggr0 nod	e_B_1
node_B_1:0n.13	1.75TB	0 13	SSD-1	NVM share	ed aggr0 nod	e_B_1
node_B_1:0n.14	1.75TB	0 14	SSD-1	NVM share	ed aggr0 nod	e_B_1
node B 1:0n.15	1.75TB 0 1	5 SSD-1	NVM	shared ag	ggr0 node_B_	1
node B 1:0n.16	1.75TB 0 1	6 SSD-1	NVM	shared ag	ggr0 node B	1
 node B 1:0n.17	1.75TB 0 1	7 SSD-1	NVM	shared ag	ggr0 node B	1
 node B 1:0n.18	1.75TB 0 1	8 SSD-1	NVM	shared ac	ggr0 node B	1
 node B 1:0n.19	1.75TB 0 1	9 SSD-1	NVM	shared -	node B 1	
node B 1:0n.24	894.0GB 0	24 SSD	-NVM	shared -	- node A 2	
 node B 1:0n.25	894.0GB 0	25 SSD	-NVM	shared -	- node A 2	
node B 1:0n.26	894.0GB 0	26 SSD	-NVM	shared -	- node A 2	
node B 1:0n.27	894.0GB 0	27 SSD	-NVM	shared -	node A 2	
node B 1:0n 28	894 OGB 0	28 550	-NVM	shared -	- node A 2	
node B $1 \cdot 0n \cdot 29$	894 OGB 0	29 99	-NVM	shared -	$- node \Delta 2$	
	001.00000	2,000	14 4 1.1	Shurcu	110000 <u>11</u> 2	

node B 1:0n.30 894.0GB 0 30 SSD-NVM shared - node A 2 node B 1:0n.31 894.0GB 0 31 SSD-NVM shared - node A 2 node B 1:0n.36 1.75TB 0 36 SSD-NVM shared - node A 1 node B 1:0n.37 1.75TB 0 37 SSD-NVM shared - node A 1 node B 1:0n.38 1.75TB 0 38 SSD-NVM shared - node A 1 1.75TB 0 39 SSD-NVM shared - node A 1 node B 1:0n.39 1.75TB 0 40 SSD-NVM shared - node_A_1 node B 1:0n.40 1.75TB 0 41 SSD-NVM shared - node A 1 node B 1:0n.41 1.75TB 0 42 SSD-NVM shared - node A 1 node B 1:0n.42 node B 1:0n.43 1.75TB 0 43 SSD-NVM shared - node A 1 node B 2:0m.i0.2L4 894.0GB 0 29 SSD-NVM shared - node B 2 node B 2:0m.i0.2L10 894.0GB 0 25 SSD-NVM shared - node B 2 node B 2:0m.i0.3L3 894.0GB 0 28 SSD-NVM shared - node B 2 node B 2:0m.i0.3L9 894.0GB 0 24 SSD-NVM shared - node B 2 node B 2:0m.i0.3L11 894.0GB 0 26 SSD-NVM shared - node B 2 node B 2:0m.i0.3L12 894.0GB 0 27 SSD-NVM shared - node B 2 node B 2:0m.i0.3L15 894.0GB 0 30 SSD-NVM shared - node B 2 node B 2:0m.i0.3L16 894.0GB 0 31 SSD-NVM shared - node B 2 node B 2:0n.0 1.75TB 0 0 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.1 1.75TB 0 1 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.2 1.75TB 0 2 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.3 1.75TB 0 3 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.4 1.75TB 0 4 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.5 1.75TB 0 5 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.6 1.75TB 0 6 SSD-NVM shared aggr0 rha12 b1 cm 02 0 node B 2 node B 2:0n.7 1.75TB 0 7 SSD-NVM shared - node B 2 64 entries were displayed. cluster B::> cluster A::> disk show Usable Disk Container Container Disk Size Shelf Bay Type Type Name Owner ----- ----node A 1:0m.i1.0L2 1.75TB 0 5 SSD-NVM shared - node B 2 node A 1:0m.i1.0L8 1.75TB 0 3 SSD-NVM shared - node B 2 node A 1:0m.i1.0L18 1.75TB 0 19 SSD-NVM shared - node B 1 node A 1:0m.i1.0L25 1.75TB 0 12 SSD-NVM shared - node B 1 node A 1:0m.i1.0L27 1.75TB 0 14 SSD-NVM shared - node B 1 node A 1:0m.i1.2L1 1.75TB 0 4 SSD-NVM shared - node B 2 node A 1:0m.i1.2L6 1.75TB 0 1 SSD-NVM shared - node B 2 node A 1:0m.i1.2L7 1.75TB 0 2 SSD-NVM shared - node B 2 node A 1:0m.i1.2L14 1.75TB 0 7 SSD-NVM shared - node B 2

node A 1:0m.i1.2L17 1.75TB 0 18 SSD-NVM shared - node B 1 node A 1:0m.i1.2L22 1.75TB 0 17 SSD-NVM shared - node B 1 node A 1:0m.i2.1L5 1.75TB 0 0 SSD-NVM shared - node B 2 node A 1:0m.i2.1L13 1.75TB 0 6 SSD-NVM shared - node B 2 node A 1:0m.i2.1L21 1.75TB 0 16 SSD-NVM shared - node B 1 node A 1:0m.i2.1L26 1.75TB 0 13 SSD-NVM shared - node B 1 node A 1:0m.i2.1L28 1.75TB 0 15 SSD-NVM shared - node B 1 node A 1:0m.i2.3L19 1.75TB 0 42 SSD-NVM shared - node A 1 node A 1:0m.i2.3L20 1.75TB 0 43 SSD-NVM shared - node A 1 node A 1:0m.i2.3L23 1.75TB 0 40 SSD-NVM shared - node A 1 node A 1:0m.i2.3L24 1.75TB 0 41 SSD-NVM shared - node A 1 node A 1:0m.i2.3L29 1.75TB 0 36 SSD-NVM shared - node A 1 node A 1:0m.i2.3L30 1.75TB 0 37 SSD-NVM shared - node A 1 node A 1:0m.i2.3L31 1.75TB 0 38 SSD-NVM shared - node A 1 node A 1:0m.i2.3L32 1.75TB 0 39 SSD-NVM shared - node A 1 node A 1:0n.12 1.75TB 0 12 SSD-NVM shared aggr0 node A 1 node A 1:0n.13 1.75TB 0 13 SSD-NVM shared aggr0 node A 1 node A 1:0n.14 1.75TB 0 14 SSD-NVM shared aggr0 node A 1 node A 1:0n.15 1.75TB 0 15 SSD-NVM shared aggr0 node A 1 node A 1:0n.16 1.75TB 0 16 SSD-NVM shared aggr0 node A 1 node A 1:0n.17 1.75TB 0 17 SSD-NVM shared aggr0 node A 1 node A 1:0n.18 1.75TB 0 18 SSD-NVM shared aggr0 node A 1 node A 1:0n.19 1.75TB 0 19 SSD-NVM shared - node A 1 node A 1:0n.24 894.0GB 0 24 SSD-NVM shared - node B 2 node A 1:0n.25 894.0GB 0 25 SSD-NVM shared - node B 2 node A 1:0n.26 894.0GB 0 26 SSD-NVM shared - node B 2 node A 1:0n.27 894.0GB 0 27 SSD-NVM shared - node B 2 node A 1:0n.28 894.0GB 0 28 SSD-NVM shared - node B 2 node A 1:0n.29 894.0GB 0 29 SSD-NVM shared - node B 2 node A 1:0n.30 894.0GB 0 30 SSD-NVM shared - node B 2 node A 1:0n.31 894.0GB 0 31 SSD-NVM shared - node B 2 node A 1:0n.36 1.75TB 0 36 SSD-NVM shared - node B 1 node A 1:0n.37 1.75TB 0 37 SSD-NVM shared - node B 1 node A 1:0n.38 1.75TB 0 38 SSD-NVM shared - node B 1 node A 1:0n.39 1.75TB 0 39 SSD-NVM shared - node B 1 node A 1:0n.40 1.75TB 0 40 SSD-NVM shared - node B 1 node A 1:0n.41 1.75TB 0 41 SSD-NVM shared - node B 1 node A 1:0n.42 1.75TB 0 42 SSD-NVM shared - node B 1 node A 1:0n.43 1.75TB 0 43 SSD-NVM shared - node B 1 node A 2:0m.i2.3L3 894.0GB 0 28 SSD-NVM shared - node A 2 node A 2:0m.i2.3L4 894.0GB 0 29 SSD-NVM shared - node A 2 node A 2:0m.i2.3L9 894.0GB 0 24 SSD-NVM shared - node A 2 node A 2:0m.i2.3L10 894.0GB 0 25 SSD-NVM shared - node A 2 node A 2:0m.i2.3L11 894.0GB 0 26 SSD-NVM shared - node A 2 node A 2:0m.i2.3L12 894.0GB 0 27 SSD-NVM shared - node A 2 node A 2:0m.i2.3L15 894.0GB 0 30 SSD-NVM shared - node A 2

```
node_A_2:0m.i2.3L16 894.0GB 0 31 SSD-NVM shared - node_A_2
node_A_2:0n.0 1.75TB 0 0 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.1 1.75TB 0 1 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.2 1.75TB 0 2 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.3 1.75TB 0 3 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.4 1.75TB 0 4 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.5 1.75TB 0 5 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.6 1.75TB 0 6 SSD-NVM shared aggr0_node_A_2_0 node_A_2
node_A_2:0n.7 1.75TB 0 7 SSD-NVM shared aggr0_node_A_2
64 entries were displayed.
```

Assegnazione manuale delle unità per il pool 1 (ONTAP 9.4 o versione successiva)

Se il sistema non è stato preconfigurato in fabbrica e non soddisfa i requisiti per l'assegnazione automatica del disco, è necessario assegnare manualmente i dischi del pool remoto 1.

A proposito di questa attività

Questa procedura si applica alle configurazioni che eseguono ONTAP 9.4 o versioni successive.

I dettagli per determinare se il sistema richiede l'assegnazione manuale del disco sono inclusi nella "Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive".

Quando la configurazione include solo due shelf esterni per sito, il pool di 1 unità per ogni sito deve essere condiviso dallo stesso shelf, come mostrato negli esempi seguenti:

- Node_A_1 è assegnato ai dischi negli alloggiamenti 0-11 del sito_B-shelf_2 (remoto)
- Node_A_2 è assegnato ai dischi negli alloggiamenti 12-23 del sito_B-shelf_2 (remoto)

Fasi

- 1. Da ciascun nodo della configurazione IP di MetroCluster, assegnare le unità remote al pool 1.
 - a. Visualizzare l'elenco delle unità non assegnate:

disk show -host-adapter Om -container-type unassigned

cluster A::> disk show -host-adapter 0m -container-type unassigned Usable Disk Container Container Disk Size Shelf Bay Type Туре Name Owner _____ _ _____ ___ ____ ____ _____ 6.23.0 _ 23 0 SSD unassigned -6.23.1 23 1 SSD unassigned -_ _ . . node A 2:0m.i1.2L51 unassigned -- 21 14 SSD node A 2:0m.i1.2L64 - 21 10 SSD unassigned -48 entries were displayed. cluster A::>

b. Assegnare la proprietà dei dischi remoti (0 m) al pool 1 del primo nodo (ad esempio, node_A_1):

disk assign -disk disk-id -pool 1 -owner owner-node-name

disk-id deve identificare un disco su uno shelf remoto di owner-node-name.

c. Verificare che le unità siano state assegnate al pool 1:

disk show -host-adapter Om -container-type unassigned

La connessione iSCSI utilizzata per accedere ai dischi remoti viene visualizzata come dispositivo 0m.

Il seguente output mostra che i dischi sullo shelf 23 sono stati assegnati perché non compaiono più nell'elenco dei dischi non assegnati:

```
cluster A::> disk show -host-adapter 0m -container-type unassigned
                            Disk Container
               Usable
                                          Container
Disk
                Size Shelf Bay Type
                                 Type
                                          Name
Owner
_____
node A 2:0m.i1.2L51
                  - 21 14 SSD
                                unassigned -
node A 2:0m.i1.2L64
                 - 21 10 SSD unassigned -
node A 2:0m.i2.1L90 - 21 19 SSD unassigned -
24 entries were displayed.
cluster A::>
```

- a. Ripetere questa procedura per assegnare le unità del pool 1 al secondo nodo sul sito A (ad esempio, "node_A_2").
- b. Ripetere questi passaggi sul sito B.

Assegnazione manuale dei dischi per il pool 1 (ONTAP 9.3)

Se si dispone di almeno due shelf di dischi per ciascun nodo, si utilizza la funzionalità di assegnazione automatica di ONTAP per assegnare automaticamente i dischi remoti (pool1).

Prima di iniziare

È necessario assegnare un disco sullo shelf al pool 1. ONTAP assegna quindi automaticamente il resto dei dischi sullo shelf allo stesso pool.

A proposito di questa attività

Questa procedura si applica alle configurazioni che eseguono ONTAP 9.3.

Questa procedura può essere utilizzata solo se si dispone di almeno due shelf di dischi per ciascun nodo, che consente l'assegnazione automatica dei dischi a livello di shelf.

Se non è possibile utilizzare l'assegnazione automatica a livello di shelf, è necessario assegnare manualmente i dischi remoti in modo che ogni nodo disponga di un pool remoto di dischi (pool 1).

La funzione di assegnazione automatica dei dischi di ONTAP assegna i dischi in base allo shelf-by-shelf. Ad esempio:

- Tutti i dischi sul sito_B-shelf_2 vengono assegnati automaticamente al pool 1 del nodo_A_1
- Tutti i dischi sul sito_B-shelf_4 vengono assegnati automaticamente al pool 1 del nodo_A_2
- Tutti i dischi sul sito_A-shelf_2 vengono assegnati automaticamente al pool 1 del nodo_B_1
- Tutti i dischi sul sito_A-shelf_4 vengono assegnati automaticamente al pool 1 del nodo_B_2

È necessario "eseguire il seeding" dell'assegnazione automatica specificando un singolo disco su ogni shelf.

Fasi

- 1. Da ciascun nodo della configurazione IP MetroCluster, assegnare un disco remoto al pool 1.
 - a. Visualizzare l'elenco dei dischi non assegnati:

disk show -host-adapter Om -container-type unassigned

cluster A::> disk show -host-adapter 0m -container-type unassigned Usable Disk Container Container Disk Size Shelf Bay Type Type Name Owner ----- ---- ----- ---------- ------ ------_____ 6.23.0 23 0 SSD unassigned -6.23.1 unassigned -_ 23 1 SSD _ node A 2:0m.i1.2L51 -21 14 SSD unassigned node A 2:0m.i1.2L64 - 21 10 SSD unassigned -. 48 entries were displayed. cluster A::>

 b. Selezionare un disco remoto (0 m) e assegnare la proprietà del disco al pool 1 del primo nodo (ad esempio, "node_A_1"):

disk assign -disk disk-id -pool 1 -owner owner-node-name

Il disk-id deve identificare un disco su uno shelf remoto di owner-node-name.

La funzione di assegnazione automatica dei dischi ONTAP assegna tutti i dischi sullo shelf remoto che contengono il disco specificato.

c. Dopo aver atteso almeno 60 secondi per l'assegnazione automatica del disco, verificare che i dischi remoti sullo shelf siano stati assegnati automaticamente al pool 1:

disk show -host-adapter Om -container-type unassigned

La connessione iSCSI utilizzata per accedere ai dischi remoti viene visualizzata come periferica 0m.

Il seguente output mostra che i dischi sullo shelf 23 sono stati assegnati e non vengono più visualizzati:

cluster_A::> disk she	ow -host	-adapt	cer ()m -co	ntainer-type u	nassigned	
	Usable			Disk	Container	Container	
Disk	Size	Shelf	Вау	Туре	Туре	Name	
Owner							
node_A_2:0m.i1.2L51	-	21	14	SSD	unassigned	-	-
node_A_2:0m.i1.2L64	-	21	10	SSD	unassigned	-	-
node_A_2:0m.i1.2L72	-	21	23	SSD	unassigned	-	-
node_A_2:0m.i1.2L74	-	21	1	SSD	unassigned	-	-
node_A_2:0m.i1.2L83	-	21	22	SSD	unassigned	-	-
node_A_2:0m.i1.2L90	-	21	7	SSD	unassigned	-	-
node_A_2:0m.i1.3L52	-	21	6	SSD	unassigned	-	-
node_A_2:0m.i1.3L59	-	21	13	SSD	unassigned	-	-
node_A_2:0m.i1.3L66	-	21	17	SSD	unassigned	-	-
node_A_2:0m.i1.3L73	-	21	12	SSD	unassigned	-	-
node_A_2:0m.i1.3L80	-	21	5	SSD	unassigned	-	-
node_A_2:0m.i1.3L81	-	21	2	SSD	unassigned	-	-
node_A_2:0m.i1.3L82	-	21	16	SSD	unassigned	-	-
node_A_2:0m.i1.3L91	-	21	3	SSD	unassigned	-	-
node_A_2:0m.i2.0L49	-	21	15	SSD	unassigned	-	-
node_A_2:0m.i2.0L50	-	21	4	SSD	unassigned	-	-
node_A_2:0m.i2.1L57	-	21	18	SSD	unassigned	-	_
node_A_2:0m.i2.1L58	-	21	11	SSD	unassigned	-	-
node_A_2:0m.i2.1L59	-	21	21	SSD	unassigned	-	_
node_A_2:0m.i2.1L65	_	21	20	SSD	unassigned	-	-
node_A_2:0m.i2.1L72	-	21	9	SSD	unassigned	-	-
node_A_2:0m.i2.1L80	_	21	0	SSD	unassigned	-	-
node_A_2:0m.i2.1L88	-	21	8	SSD	unassigned	-	-
node_A_2:0m.i2.1L90	_	21	19	SSD	unassigned	-	-
24 entries were disp	layed.						
cluster_A::>							

- a. Ripetere questa procedura per assegnare i dischi del pool 1 al secondo nodo del sito A (ad esempio, "node_A_2").
- b. Ripetere questi passaggi sul sito B.

Abilitazione dell'assegnazione automatica del disco in ONTAP 9.4

A proposito di questa attività

In ONTAP 9.4, se l'assegnazione automatica del disco è stata disattivata come indicato in precedenza in questa procedura, è necessario riattivarla su tutti i nodi.

"Considerazioni sull'assegnazione automatica dei dischi e sui sistemi ADP in ONTAP 9.4 e versioni successive"

Fasi

1. Abilitare l'assegnazione automatica del disco:

storage disk option modify -node node_name -autoassign on

Questo comando deve essere inviato a tutti i nodi della configurazione IP MetroCluster.

Mirroring degli aggregati root

È necessario eseguire il mirroring degli aggregati root per garantire la protezione dei dati.

A proposito di questa attività

Per impostazione predefinita, l'aggregato root viene creato come aggregato di tipo RAID-DP. È possibile modificare l'aggregato root da RAID-DP a aggregato di tipo RAID4. Il seguente comando modifica l'aggregato root per l'aggregato di tipo RAID4:

storage aggregate modify -aggregate aggr name -raidtype raid4

Nei sistemi non ADP, il tipo RAID dell'aggregato può essere modificato dal RAID-DP predefinito a RAID4 prima o dopo il mirroring dell'aggregato.

Fasi

1. Eseguire il mirroring dell'aggregato root:

storage aggregate mirror aggr name

Il seguente comando esegue il mirroring dell'aggregato root per "controller_A_1":

controller A_1::> storage aggregate mirror aggr0_controller A_1

Questo esegue il mirroring dell'aggregato, quindi è costituito da un plex locale e da un plex remoto situati nel sito MetroCluster remoto.

2. Ripetere il passaggio precedente per ciascun nodo della configurazione MetroCluster.

Informazioni correlate

"Gestione dello storage logico"

Creazione di un aggregato di dati mirrorato su ciascun nodo

È necessario creare un aggregato di dati mirrorato su ciascun nodo del gruppo DR.

A proposito di questa attività

- Devi sapere quali dischi verranno utilizzati nel nuovo aggregato.
- Se nel sistema sono presenti più tipi di dischi (storage eterogeneo), è necessario comprendere come assicurarsi di selezionare il tipo di disco corretto.
- I dischi sono di proprietà di un nodo specifico; quando si crea un aggregato, tutti i dischi in tale aggregato devono essere di proprietà dello stesso nodo, che diventa il nodo principale per quell'aggregato.

Nei sistemi che utilizzano ADP, gli aggregati vengono creati utilizzando partizioni in cui ciascun disco viene partizionato nelle partizioni P1, P2 e P3.

• I nomi degli aggregati devono essere conformi allo schema di denominazione stabilito al momento della pianificazione della configurazione MetroCluster.

"Gestione di dischi e aggregati"

Fasi

1. Visualizzare un elenco delle parti di ricambio disponibili:

storage disk show -spare -owner node_name

2. Creare l'aggregato:

storage aggregate create -mirror true

Se si è connessi al cluster nell'interfaccia di gestione del cluster, è possibile creare un aggregato su qualsiasi nodo del cluster. Per assicurarsi che l'aggregato venga creato su un nodo specifico, utilizzare –node o specificare i dischi di proprietà di quel nodo.

È possibile specificare le seguenti opzioni:

- Nodo principale dell'aggregato (ovvero, il nodo proprietario dell'aggregato durante il normale funzionamento)
- · Elenco dei dischi specifici da aggiungere all'aggregato
- Numero di dischi da includere

Nella configurazione minima supportata, in cui è disponibile un numero limitato di dischi, è necessario utilizzare l'opzione force-Small-aggregate per consentire la creazione di un aggregato RAID-DP a tre dischi.

- · Stile checksum da utilizzare per l'aggregato
- · Tipo di dischi da utilizzare
- · Dimensioni delle unità da utilizzare
- · Velocità del disco da utilizzare
- Tipo RAID per i gruppi RAID sull'aggregato
- · Numero massimo di dischi che possono essere inclusi in un gruppo RAID
- Se sono consentiti dischi con diversi RPM per ulteriori informazioni su queste opzioni, consulta la pagina man di creazione degli aggregati di storage.

Il seguente comando crea un aggregato mirrorato con 10 dischi:

```
cluster_A::> storage aggregate create aggr1_node_A_1 -diskcount 10 -node
node_A_1 -mirror true
[Job 15] Job is queued: Create aggr1_node_A_1.
[Job 15] The job is starting.
[Job 15] Job succeeded: DONE
```

3. Verificare il gruppo RAID e i dischi del nuovo aggregato:

storage aggregate show-status -aggregate aggregate-name

Implementazione della configurazione MetroCluster

È necessario eseguire metrocluster configure Comando per avviare la protezione dei dati in una configurazione MetroCluster.

A proposito di questa attività

• Su ciascun cluster devono essere presenti almeno due aggregati di dati mirrorati non root.

È possibile verificarlo con storage aggregate show comando.

Se si desidera utilizzare un singolo aggregato di dati mirrorato, vedere Fase 1 per istruzioni.

· Lo stato ha-config dei controller e dello chassis deve essere "mccip".

Si emette il metrocluster configure Eseguire un comando una volta su uno dei nodi per abilitare la configurazione MetroCluster. Non è necessario eseguire il comando su ciascuno dei siti o nodi e non è importante il nodo o il sito su cui si sceglie di eseguire il comando.

Il metrocluster configure Command associa automaticamente i due nodi con gli ID di sistema più bassi in ciascuno dei due cluster come partner di disaster recovery (DR). In una configurazione MetroCluster a quattro nodi, esistono due coppie di partner DR. La seconda coppia di DR viene creata dai due nodi con ID di sistema superiori.

È necessario **non** configurare Onboard Key Manager (OKM) o la gestione delle chiavi esterne prima di eseguire il comando metrocluster configure.

Fasi

1. configurare MetroCluster nel seguente formato:

Se la configurazione di MetroCluster dispone di…	Quindi
Aggregati di dati multipli	Dal prompt di qualsiasi nodo, configurare MetroCluster: metrocluster configure <i>node-name</i>

Un singolo aggregato di dati mirrorato	a. Dal prompt di qualsiasi nodo, passare al livello di privilegio avanzato:
	set -privilege advanced
	Devi rispondere con _Y quando viene richiesto di passare alla modalità avanzata e viene visualizzato il prompt della modalità avanzata (*).
	b. Configurare MetroCluster con -allow-with -one-aggregate true parametro:
	metrocluster configure -allow-with -one-aggregate true <i>node-name</i>
	c. Tornare al livello di privilegio admin:
	set -privilege admin

La Best practice consiste nell'avere più aggregati di dati. Se il primo gruppo DR dispone di un solo aggregato e si desidera aggiungere un gruppo DR con un aggregato, è necessario spostare il volume di metadati dal singolo aggregato di dati. Per ulteriori informazioni su questa procedura, vedere "Spostamento di un volume di metadati nelle configurazioni MetroCluster".

Il seguente comando abilita la configurazione MetroCluster su tutti i nodi del gruppo DR che contiene "controller_A_1":

```
cluster_A::*> metrocluster configure -node-name controller_A_1
```

```
[Job 121] Job succeeded: Configure is successful.
```

2. Verificare lo stato della rete sul sito A:

network port show

L'esempio seguente mostra l'utilizzo della porta di rete in una configurazione MetroCluster a quattro nodi:

cluster_A::> network port show						
						Speed (Mbps)
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
contro	ller_A_1					
	e0a	Cluster	Cluster	up	9000	auto/1000
	e0b	Cluster	Cluster	up	9000	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
	e0g	Default	Default	up	1500	auto/1000
contro	ller_A_2					
	e0a	Cluster	Cluster	up	9000	auto/1000
	e0b	Cluster	Cluster	up	9000	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
	e0g	Default	Default	up	1500	auto/1000
14 ent	ries were	displayed.				

- 3. Verificare la configurazione MetroCluster da entrambi i siti nella configurazione MetroCluster.
 - a. Verificare la configurazione dal sito A:

metrocluster show

```
cluster_A::> metrocluster show
Configuration: IP fabric
Cluster Entry Name State
Local: cluster_A Configuration state configured
Mode normal
Remote: cluster_B Configuration state configured
Mode normal
```

b. Verificare la configurazione dal sito B:

metrocluster show

```
cluster_B::> metrocluster show
Configuration: IP fabric
Cluster
Local: cluster_B
Remote: cluster_A
Configuration state
Configuration state
Configured
Node
Node
Note
Note
Configured
Node
Note
Configured
Node
Configured
Node
Configured
Node
Configured
Node
Configured
Conf
```

 Per evitare possibili problemi con il mirroring della memoria non volatile, riavviare ciascuno dei quattro nodi:

node reboot -node node-name -inhibit-takeover true

5. Eseguire il metrocluster show su entrambi i cluster per verificare nuovamente la configurazione.

Configurazione del secondo gruppo DR in una configurazione a otto nodi

Ripetere le operazioni precedenti per configurare i nodi nel secondo gruppo di DR.

Creazione di aggregati di dati senza mirror

È possibile creare aggregati di dati senza mirroring per i dati che non richiedono il mirroring ridondante fornito dalle configurazioni MetroCluster.

A proposito di questa attività

- È necessario sapere quali dischi o LUN di array verranno utilizzati nel nuovo aggregato.
- Se nel sistema sono presenti più tipi di dischi (storage eterogeneo), è necessario comprendere come verificare che sia selezionato il tipo di disco corretto.

Nelle configurazioni MetroCluster IP, gli aggregati remoti senza mirror non sono accessibili dopo uno switchover

Gli aggregati senza mirror devono essere locali rispetto al nodo che li possiede.

- I dischi e le LUN degli array sono di proprietà di un nodo specifico; quando si crea un aggregato, tutti i dischi dell'aggregato devono essere di proprietà dello stesso nodo, che diventa il nodo principale dell'aggregato.
- I nomi degli aggregati devono essere conformi allo schema di denominazione stabilito al momento della pianificazione della configurazione MetroCluster.
- Gestione di dischi e aggregati contiene ulteriori informazioni sugli aggregati di mirroring.

Fasi

1. Implementazione aggregata senza mirror:

metrocluster modify -enable-unmirrored-aggr-deployment true

2. Verificare che l'assegnazione automatica del disco sia disattivata:

disk option show

3. Installare e cablare gli shelf di dischi che conterranno gli aggregati senza mirror.

È possibile utilizzare le procedure descritte nella documentazione di installazione e configurazione per la piattaforma e gli shelf di dischi.

"Documentazione dei sistemi hardware ONTAP"

4. Assegnare manualmente tutti i dischi sul nuovo shelf al nodo appropriato:

disk assign -disk disk-id -owner owner-node-name

5. Creare l'aggregato:

storage aggregate create

Se si è connessi al cluster nell'interfaccia di gestione del cluster, è possibile creare un aggregato su qualsiasi nodo del cluster. Per verificare che l'aggregato sia creato su un nodo specifico, è necessario utilizzare il parametro -node o specificare i dischi di proprietà di quel nodo.

È inoltre necessario assicurarsi di includere nell'aggregato solo i dischi sullo shelf senza mirror.

È possibile specificare le seguenti opzioni:

- Nodo principale dell'aggregato (ovvero, il nodo proprietario dell'aggregato durante il normale funzionamento)
- · Elenco di unità o LUN di array specifici da aggiungere all'aggregato
- · Numero di dischi da includere
- · Stile checksum da utilizzare per l'aggregato
- · Tipo di dischi da utilizzare
- · Dimensioni delle unità da utilizzare
- · Velocità del disco da utilizzare
- Tipo RAID per i gruppi RAID sull'aggregato
- Numero massimo di unità o LUN di array che possono essere inclusi in un gruppo RAID
- Se sono consentiti dischi con diversi RPM

Per ulteriori informazioni su queste opzioni, consulta la pagina man di creazione dell'aggregato di storage.

Il seguente comando crea un aggregato senza mirror con 10 dischi:

```
controller_A_1::> storage aggregate create aggr1_controller_A_1
-diskcount 10 -node controller_A_1
[Job 15] Job is queued: Create aggr1_controller_A_1.
[Job 15] The job is starting.
[Job 15] Job succeeded: DONE
```

6. Verificare il gruppo RAID e i dischi del nuovo aggregato:

storage aggregate show-status -aggregate aggregate-name

7. Disattiva implementazione aggregata senza mirror:

metrocluster modify -enable-unmirrored-aggr-deployment false

8. Verificare che l'assegnazione automatica del disco sia abilitata:

disk option show

Informazioni correlate

"Gestione di dischi e aggregati"

Verifica della configurazione MetroCluster

È possibile verificare che i componenti e le relazioni nella configurazione di MetroCluster funzionino correttamente.

A proposito di questa attività

Dopo la configurazione iniziale e dopo aver apportato eventuali modifiche alla configurazione MetroCluster, è necessario eseguire un controllo.

È inoltre necessario eseguire un controllo prima di un'operazione di switchover negoziata (pianificata) o di switchback.

Se il metrocluster check run il comando viene emesso due volte in un breve periodo di tempo su uno o entrambi i cluster, può verificarsi un conflitto e il comando potrebbe non raccogliere tutti i dati. Successivo metrocluster check show i comandi non mostrano l'output previsto.

Fasi

1. Controllare la configurazione:

metrocluster check run

Il comando viene eseguito come processo in background e potrebbe non essere completato immediatamente.

```
cluster_A::> metrocluster check run
The operation has been started and is running in the background. Wait
for
it to complete and run "metrocluster check show" to view the results. To
check the status of the running metrocluster check operation, use the
command,
"metrocluster operation history show -job-id 2245"
```

```
cluster A::> metrocluster check show
Component
                Result
----- -----
nodes
                 ok
lifs
                  ok
config-replication ok
aggregates
                 ok
clusters
                 ok
connections
                ok
volumes
                 ok
7 entries were displayed.
```

2. Visualizzare risultati più dettagliati dal comando di esecuzione del controllo MetroCluster più recente:

metrocluster check aggregate show
metrocluster check cluster show
metrocluster check config-replication show
metrocluster check lif show

metrocluster check node show

Il metrocluster check show i comandi mostrano i risultati dei più recenti metrocluster check run comando. Eseguire sempre il metrocluster check run prima di utilizzare metrocluster check show i comandi in modo che le informazioni visualizzate siano aggiornate.

Nell'esempio riportato di seguito viene illustrato il metrocluster check aggregate show Output di comando per una configurazione MetroCluster a quattro nodi sana:

```
cluster_A::> metrocluster check aggregate show
Last Checked On: 8/5/2014 00:42:58
```

Node Result	Aggregate	Check
controller_A_1	controller_A_1_aggr0	mirroring-status
ok		disk-pool-allocation
ok		
ok		ownership-state
	controller_A_1_aggr1	mirroring-status
ok		disk-pool-allocation
ok		
ok		ownersnip-state
	controller_A_1_aggr2	mirroring-status
ok		disk-pool-allocation
ok		ounershin-state
ok		ownership-state
controller_A_2	controller_A_2_aggr0	mirroring-status
ok		disk-pool-allocation
ok		
ok		ownership-state
	controller_A_2_aggr1	mirroring-status
ok		disk-pool-allocation
ok		
ok		ownership-state
	controller_A_2_aggr2	mirroring-status
ok		disk-pool-allocation
ok		poor arroadian

```
ownership-state
ok
18 entries were displayed.
```

L'esempio seguente mostra l'output del comando show del cluster di controllo MetroCluster per una configurazione MetroCluster a quattro nodi sana. Indica che i cluster sono pronti per eseguire uno switchover negoziato, se necessario.

```
Last Checked On: 9/13/2017 20:47:04
Cluster
                    Check
                                                  Result
_____
mccint-fas9000-0102
                    negotiated-switchover-ready
                                                  not-applicable
                    switchback-ready
                                                  not-applicable
                    job-schedules
                                                  ok
                    licenses
                                                  ok
                    periodic-check-enabled
                                                  ok
mccint-fas9000-0304
                    negotiated-switchover-ready
                                                  not-applicable
                    switchback-ready
                                                  not-applicable
                    job-schedules
                                                  ok
                    licenses
                                                  ok
                    periodic-check-enabled
                                                  ok
10 entries were displayed.
```

Informazioni correlate

"Gestione di dischi e aggregati"

"Gestione di rete e LIF"

Completamento della configurazione ONTAP

Dopo aver configurato, attivato e verificato la configurazione MetroCluster, è possibile completare la configurazione del cluster aggiungendo ulteriori SVM, interfacce di rete e altre funzionalità ONTAP in base alle necessità.

Verifica dello switchover, della riparazione e dello switchback

Fase

1. Utilizzare le procedure per lo switchover negoziato, la riparazione e lo switchback menzionate nella *Guida* alla gestione e al disaster recovery di MetroCluster.

"Gestione MetroCluster e disaster recovery"

Configurazione del software MetroCluster Tiebreaker o ONTAP Mediator

È possibile scaricare e installare su un terzo sito il software MetroCluster Tiebreaker o, a partire da ONTAP 9.7, il ONTAP Mediator.

Prima di iniziare

È necessario disporre di un host Linux dotato di connettività di rete per entrambi i cluster nella configurazione MetroCluster. I requisiti specifici sono contenuti nella documentazione di MetroCluster Tiebreaker o ONTAP Mediator.

Se si effettua la connessione a un'istanza di Tiebreaker o ONTAP Mediator esistente, è necessario disporre del nome utente, della password e dell'indirizzo IP del servizio di spareggio o mediatore.

Se è necessario installare una nuova istanza di ONTAP Mediator, seguire le istruzioni per installare e configurare il software.

"Configurazione del servizio ONTAP Mediator per lo switchover automatico non pianificato"

Se è necessario installare una nuova istanza del software Tiebreaker, seguire la "istruzioni per installare e configurare il software".

A proposito di questa attività

Non è possibile utilizzare sia il software MetroCluster Tiebreaker che il mediatore ONTAP con la stessa configurazione MetroCluster.

"Considerazioni sull'utilizzo di ONTAP Mediator o MetroCluster Tiebreaker"

Fase

- 1. Configurare il servizio ONTAP Mediator o il software Tiebreaker:
 - Se si utilizza un'istanza esistente del mediatore ONTAP, aggiungere il servizio del mediatore ONTAP a ONTAP:

```
metrocluster configuration-settings mediator add -mediator-address ip-
address-of-mediator-host
```

• Se si utilizza il software Tiebreaker, fare riferimento a. "Documentazione di Tiebreaker".

Protezione dei file di backup della configurazione

È possibile fornire una protezione aggiuntiva per i file di backup della configurazione del cluster specificando un URL remoto (HTTP o FTP) in cui verranno caricati i file di backup della configurazione oltre alle posizioni predefinite nel cluster locale.

Fase

1. Impostare l'URL della destinazione remota per i file di backup della configurazione:

system configuration backup settings modify URL-of-destination

Il "Gestione dei cluster con la CLI" Contiene ulteriori informazioni nella sezione Gestione dei backup di

configurazione.

Informazioni sul copyright

Copyright © 2024 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d'America. Nessuna porzione di questo documento soggetta a copyright può essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico o meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp è soggetto alla seguente licenza e dichiarazione di non responsabilità:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSÌ COM'È" E SENZA QUALSIVOGLIA TIPO DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, GARANZIE IMPLICITE DI COMMERCIABILITÀ E IDONEITÀ PER UNO SCOPO SPECIFICO, CHE VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRÀ CONSIDERATA RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE, SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, A TITOLO ESEMPLIFICATIVO E NON ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITÀ DI UTILIZZO O PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITÀ AZIENDALE) CAUSATO IN QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITÀ, SIA ESSA CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO) INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN PRESENZA DI UN PREAVVISO CIRCA L'EVENTUALITÀ DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilità circa l'utilizzo dei prodotti o materiali descritti nel presente documento, con l'eccezione di quanto concordato espressamente e per iscritto da NetApp. L'utilizzo o l'acquisto del presente prodotto non comporta il rilascio di una licenza nell'ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprietà intellettuale di NetApp.

Il prodotto descritto in questa guida può essere protetto da uno o più brevetti degli Stati Uniti, esteri o in attesa di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: l'utilizzo, la duplicazione o la divulgazione da parte degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

I dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in FAR 2.101) e sono di proprietà di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile, mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la previa approvazione scritta di NetApp, Inc. I diritti di licenza del governo degli Stati Uniti per il Dipartimento della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp, Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.