Automatizza con RIPOSO
ONTAP Select

NetApp
October 24, 2025

This PDF was generated from https://docs.netapp.com/it-it/ontap-select-9151/concept_api_rest.html on
October 24, 2025. Always check docs.netapp.com for the latest.

Sommario

Automatizza con RIPOSO

Concetti

Base REST per i web Services

Come accedere all’API di implementazione

Implementare la versione delle API

Caratteristiche operative di base

Transazione API di richiesta e risposta

Elaborazione asincrona utilizzando I'oggetto lavoro
Accesso con un browser

Prima di accedere all’API con un browser

Accedere alla pagina della documentazione relativa alla distribuzione

Comprendere ed eseguire una chiamata API
Processi di workflow

Prima di utilizzare i flussi di lavoro API

Workflow 1: Creare un cluster di valutazione a nodo singolo su ESXi
Accesso con Python

Prima di accedere all’API utilizzando Python

Comprendere gli script Python
Esempi di codice Python

Script per creare un cluster

JSON per script per creare un cluster

Script per aggiungere una licenza del nodo

Script per eliminare un cluster

Modulo di supporto comune

Script per ridimensionare i nodi del cluster

© 0 0O NP WDNDN -2 -~ -

Automatizza con RIPOSO

Concetti

Base REST per i web Services

Representational state Transfer (REST) € uno stile per la creazione di applicazioni web
distribuite. Quando viene applicato alla progettazione di un’API di servizi Web, stabilisce
un insieme di tecnologie e Best practice per esporre le risorse basate su server e
gestirne gli stati. Utilizza protocolli e standard mainstream per fornire una base flessibile
per I'implementazione e la gestione dei cluster ONTAP Select.

Architettura e limiti classici

REST fu formalmente articolata da Roy Fielding nel suo dottorato "dissertazione" presso la UC Irvine nel 2000.
Definisce uno stile architettonico attraverso una serie di vincoli, che collettivamente hanno migliorato le
applicazioni basate sul web e i protocolli sottostanti. | vincoli stabiliscono un’applicazione di servizi web
RESTful basata su un’architettura client/server che utilizza un protocollo di comunicazione stateless.

Risorse e rappresentazione dello stato

Le risorse sono i componenti di base di un sistema basato su web. Quando si crea un’applicazione di servizi
Web REST, le attivita di progettazione iniziali includono:

« Identificazione delle risorse di sistema o basate su server che ogni sistema utilizza e gestisce le risorse.
Una risorsa puo essere un file, una transazione di business, un processo o un’entita amministrativa. Una
delle prime attivita nella progettazione di un’applicazione basata sui servizi web REST € quella di
identificare le risorse.

+ Definizione degli stati delle risorse e delle operazioni di stato associate le risorse si trovano sempre in un
numero finito di stati. Gli stati, cosi come le operazioni associate utilizzate per influenzare i cambiamenti di
stato, devono essere chiaramente definiti.

| messaggi vengono scambiati tra il client e il server per accedere e modificare lo stato delle risorse in base al
modello generico CRUD (Create, Read, Update e Delete).

Endpoint URI

Ogni risorsa REST deve essere definita e resa disponibile utilizzando uno schema di indirizzamento ben
definito. Gli endpoint in cui sono situate e identificate le risorse utilizzano un URI (Uniform Resource Identifier).
L'URI fornisce un framework generale per la creazione di un nome univoco per ogni risorsa nella rete. LURL
(Uniform Resource Locator) € un tipo di URI utilizzato con i servizi Web per identificare e accedere alle risorse.
Le risorse sono in genere esposte in una struttura gerarchica simile a una directory di file.

Messaggi HTTP

HTTP (Hypertext Transfer Protocol) € il protocollo utilizzato dal client e dal server dei servizi Web per
scambiare messaggi di richiesta e risposta relativi alle risorse. Durante la progettazione di un’applicazione di
servizi Web, i verbi HTTP (come GET e POST) vengono mappati alle risorse e alle azioni di gestione dello
stato corrispondenti.

HTTP & stateless. Pertanto, per associare un insieme di richieste e risposte correlate in un’unica transazione,

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

€ necessario includere informazioni aggiuntive nelle intestazioni HTTP portate con i flussi di dati di
richiesta/risposta.

Formattazione JSON

Sebbene le informazioni possano essere strutturate e trasferite tra un client e un server in diversi modi,
I'opzione piu diffusa (e quella utilizzata con I'API DI DISTRIBUZIONE REST) & JavaScript Object Notation
(JSON). JSON ¢& uno standard di settore per la rappresentazione di semplici strutture di dati in testo normale e
viene utilizzato per trasferire informazioni di stato che descrivono le risorse.

Come accedere all’API di implementazione

Grazie alla flessibilita intrinseca dei servizi web REST, & possibile accedere all’API di
implementazione ONTAP Select in diversi modi.

Implementare I'interfaccia utente nativa dell’utility

Il modo principale per accedere all’API € tramite l'interfaccia utente Web di ONTAP Select Deploy. Il browser
effettua chiamate all’API e riformatta i dati in base alla progettazione dell'interfaccia utente. E possibile
accedere all’API anche tramite I'interfaccia della riga di comando dell’'utilita di implementazione.

Pagina della documentazione online di ONTAP Select Deploy

La pagina della documentazione online di ONTAP Select Deploy fornisce un access point alternativo quando si
utilizza un browser. Oltre a fornire un modo per eseguire direttamente le singole chiamate API, la pagina
include anche una descrizione dettagliata dell’API, inclusi i parametri di input e altre opzioni per ciascuna
chiamata. Le chiamate API sono organizzate in diverse aree funzionali o categorie.

Programma personalizzato

E possibile accedere all’API di distribuzione utilizzando uno dei diversi linguaggi e tool di programmazione. Le
scelte piu popolari includono Python, Java e CURL. Un programma, uno script o uno strumento che utilizza
I'API agisce come un client di servizi Web REST. L'utilizzo di un linguaggio di programmazione consente di
comprendere meglio I'API e offre 'opportunita di automatizzare le implementazioni di ONTAP Select.

Implementare la versione delle API

AILCAPI REST inclusa nella distribuzione ONTAP Select viene assegnato un numero di
versione. Il numero di versione dell’API & indipendente dal numero di release di
implementazione. E necessario conoscere la versione dell’API inclusa nella release di
deploy e il modo in cui questo potrebbe influire sull’utilizzo del’API.

La versione corrente dell’'utility di amministrazione di deploy include la versione 3 dellAPI REST. Le versioni
precedenti dell’utility di distribuzione includono le seguenti versioni API:

Implementare 2.8 e versioni successive
ONTAP Select Deploy 2.8 e tutte le versioni successive includono la versione 3 dell’API REST.

Implementare 2.7.2 e versioni precedenti
ONTAP Select Deploy 2.7.2 e tutte le release precedenti includono la versione 2 del’API REST.

Le versioni 2 e 3 del’API REST non sono compatibili. Se si esegue I'aggiornamento per la

@ distribuzione della versione 2.8 o successiva da una release precedente che include la versione
2 dell’API, € necessario aggiornare qualsiasi codice esistente che acceda direttamente all’AP| e
qualsiasi script che utilizzi l'interfaccia della riga di comando.

Caratteristiche operative di base

Mentre REST stabilisce un insieme comune di tecnologie e Best practice, i dettagli di
ciascuna API possono variare in base alle scelte di progettazione. Prima di utilizzare
I'API, &€ necessario conoscere i dettagli e le caratteristiche operative dell’API di
implementazione di ONTAP Select.

Host hypervisor rispetto al nodo ONTAP Select

Un host hypervisor € la piattaforma hardware principale che ospita una macchina virtuale ONTAP Select.
Quando una macchina virtuale ONTAP Select viene implementata e attiva su un host hypervisor, la macchina
virtuale viene considerata un nodo ONTAP Select. Con la versione 3 del’API REST di implementazione, gli
oggetti host e nodo sono separati e distinti. Cid consente una relazione uno-a-molti, in cui uno o piu nodi
ONTAP Select possono essere eseguiti sullo stesso host hypervisor.

Identificatori di oggetti

A ogni istanza o oggetto di risorsa viene assegnato un identificatore univoco al momento della creazione.
Questi identificatori sono univoci a livello globale all’interno di una specifica istanza di ONTAP Select Deploy.
Dopo aver emesso una chiamata API che crea una nuova istanza dell’'oggetto, il valore id associato viene
restituito al chiamante nell' “location’intestazione della risposta HTTP. E possibile estrarre I'identificatore e
utilizzarlo nelle chiamate successive quando si fa riferimento all’istanza della risorsa.

Il contenuto e la struttura interna degli identificatori di oggetti possono cambiare in qualsiasi
momento. E necessario utilizzare gli identificatori delle chiamate AP applicabili solo se
necessario quando si fa riferimento agli oggetti associati.

Richiedi identificatori

A ogni richiesta API riuscita viene assegnato un identificatore univoco. Lidentificatore viene restituito nell’
‘request-id‘intestazione della risposta HTTP associata. E possibile utilizzare un identificatore di richiesta per
fare riferimento collettivamente alle attivita di una singola transazione richiesta-risposta API specifica. Ad
esempio, & possibile recuperare tutti i messaggi di evento per una transazione in base all'lD della richiesta.

Chiamate sincrone e asincrone

Esistono due modi principali in cui un server esegue una richiesta HTTP ricevuta da un client:

« Sincrono il server esegue immediatamente la richiesta e risponde con un codice di stato 200, 201 o 204.

* Asincrono il server accetta la richiesta e risponde con un codice di stato 202. Indica che il server ha
accettato la richiesta del client e ha avviato un’attivita in background per completare la richiesta. Il
successo o I'errore finale non sono immediatamente disponibili e devono essere determinati tramite
chiamate API aggiuntive.

Confermare il completamento di un lavoro a esecuzione prolungata

In genere, tutte le operazioni che possono richiedere molto tempo vengono elaborate in modo asincrono
utilizzando un’attivita in background sul server. Con I'API di distribuzione REST, ogni attivita in background
viene ancorata da un oggetto Job che tiene traccia dell’attivita e fornisce informazioni, ad esempio lo stato
corrente. Un oggetto Job, incluso il relativo identificatore univoco, viene restituito nella risposta HTTP dopo la
creazione di un’attivita in background.

E possibile eseguire query direttamente sull'oggetto Job per determinare il successo o I'errore della chiamata
API associata. Per ulteriori informazioni, fare riferimento a elaborazione asincrona mediante 'oggetto Job.

Oltre all’'utilizzo dell’oggetto Job, esistono altri modi per determinare il successo o il fallimento di una richiesta,
tra cui:

» Messaggi di evento & possibile recuperare tutti i messaggi di evento associati a una chiamata API specifica
utilizzando I'id della richiesta restituito con la risposta originale. | messaggi di evento contengono in genere
un’indicazione di successo o di errore e possono essere utili anche quando si esegue il debug di una
condizione di errore.

 Stato o stato delle risorse diverse risorse mantengono uno stato o un valore di stato che & possibile
eseguire una query per determinare indirettamente il successo o I'errore di una richiesta.

Sicurezza

L'API di implementazione utilizza le seguenti tecnologie di sicurezza:

« Transport Layer Security tutto il traffico inviato in rete tra il server di implementazione e il client viene
crittografato tramite TLS. L'utilizzo del protocollo HTTP su un canale non crittografato non & supportato. E
supportata la versione TLS 1.2.

 Autenticazione HTTP l'autenticazione di base viene utilizzata per ogni transazione API. A ogni richiesta
viene aggiunta un’intestazione HTTP, che include il nome utente e la password in una stringa base64.

Transazione API di richiesta e risposta

Ogni chiamata API di implementazione viene eseguita come richiesta HTTP alla
macchina virtuale di implementazione, che genera una risposta associata al client.
Questa coppia di richieste/risposte € considerata una transazione API. Prima di utilizzare
I’API di distribuzione, & necessario conoscere le variabili di input disponibili per
controllare una richiesta e il contenuto dell’'output della risposta.

Variabili di input che controllano una richiesta API

E possibile controllare la modalita di elaborazione di una chiamata API tramite i parametri impostati nella
richiesta HTTP.

Intestazioni delle richieste

E necessario includere diverse intestazioni nella richiesta HTTP, tra cui:
» Content-type se il corpo della richiesta include JSON, questa intestazione deve essere impostata su
application/json.

» Accept (Accetta) se il corpo della risposta includera JSON, questa intestazione deve essere impostata su
Application/json.

» Autorizzazione l'autenticazione di base deve essere impostata con il nome utente e la password codificati
in una stringa base64.

Corpo della richiesta

Il contenuto del corpo della richiesta varia in base alla chiamata specifica. Il corpo della richiesta HTTP &
costituito da uno dei seguenti elementi:

* Oggetto JSON con variabili di input (ad esempio, il nome di un nuovo cluster)
* Vuoto
Filtra oggetti

Quando si esegue una chiamata API che utilizza GET, & possibile limitare o filtrare gli oggetti restituiti in base a
qualsiasi attributo. Ad esempio, € possibile specificare un valore esatto da associare:

<field>=<query value>

Oltre a una corrispondenza esatta, sono disponibili altri operatori per restituire un set di oggetti su un intervallo
di valori. ONTAP Select supporta gli operatori di filtraggio indicati di seguito.

Operatore Descrizione

= Uguale a.

< Inferiore a.

> Maggiore di

& Minore o uguale a.

>= Maggiore o uguale a.
Oppure

! Non uguale a.

* Goloso carattere jolly

E inoltre possibile restituire un insieme di oggetti in base allimpostazione o meno di un campo specifico
utilizzando la parola chiave Null o la relativa negazione (!null) come parte della query.

Selezione dei campi oggetto

Per impostazione predefinita, I'emissione di una chiamata API utilizzando GET restituisce solo gli attributi che
identificano in modo univoco lo o gli oggetti. Questo insieme minimo di campi funge da chiave per ciascun
oggetto e varia in base al tipo di oggetto. E possibile selezionare ulteriori proprieta dell’'oggetto utilizzando il
parametro di query dei campi nei seguenti modi:

* | campi economici specificano fields=* di recuperare i campi oggetto che sono mantenuti nella memoria
del server locale o richiedono poca elaborazione per accedere.

* | campi costosi specificano fields=** di recuperare tutti i campi oggetto, compresi quelli che richiedono
un’elaborazione server aggiuntiva per I'accesso.

* Selezione campo personalizzato utilizzare fields=FIELDNAME per specificare il campo esatto
desiderato. Quando si richiedono piu campi, i valori devono essere separati utilizzando virgole senza
spazi.

Come Best practice, devi sempre identificare i campi specifici che desideri. E necessario

recuperare 'insieme di campi economici o costosi solo quando necessario. La classificazione
economica e costosa € determinata da NetApp in base all’analisi interna delle performance. La
classificazione di un dato campo pud cambiare in qualsiasi momento.

Ordinare gli oggetti nel set di output

| record di una raccolta di risorse vengono restituiti nell’ordine predefinito definito dall’oggetto. E possibile
modificare I'ordine utilizzando il parametro query Order_by con il nome del campo e la direzione di
ordinamento come segue:

order by=<field name> asc|desc

Ad esempio, € possibile ordinare il campo tipo in ordine decrescente seguito da id in ordine crescente:
order by=type desc, id asc

Quando si includono piu parametri, &€ necessario separare i campi con una virgola.

Impaginazione

Quando si esegue una chiamata API utilizzando GET per accedere a un insieme di oggetti dello stesso tipo,
vengono restituiti tutti gli oggetti corrispondenti per impostazione predefinita. Se necessario, € possibile limitare
il numero di record restituiti utilizzando il parametro di query max_records con la richiesta. Ad esempio:

max records=20

Se necessario, & possibile combinare questo parametro con altri parametri di query per restringere il set di
risultati. Ad esempio, quanto segue restituisce fino a 10 eventi di sistema generati dopo I'ora specificata:
time= 2019-04-04T15:41:29.140265Z&max _records=10

E possibile inviare pit richieste per scorrere gli eventi (o qualsiasi tipo di oggetto). Ogni successiva chiamata
API deve utilizzare un nuovo valore temporale basato sull’ultimo evento dell’'ultimo set di risultati.

Interpretare una risposta API

Ogni richiesta API genera una risposta al client. E possibile esaminare la risposta per determinare se & stata
eseguita correttamente e recuperare dati aggiuntivi in base alle necessita.

Codice di stato HTTP

| codici di stato HTTP utilizzati dal’API DI DISTRIBUZIONE REST sono descritti di seguito.

Codice Significato Descrizione

200 OK Indica che le chiamate che non creano un nuovo oggetto sono riuscite.

201 Creato Un oggetto & stato creato correttamente; l'intestazione della risposta di
posizione include I'identificatore univoco dell’oggetto.

202 Accettato Per eseguire la richiesta & stato avviato un processo in background a
esecuzione prolungata, ma 'operazione non € ancora stata
completata.

400 Richiesta errata L'input della richiesta non viene riconosciuto o non & appropriato.

403 Vietato Accesso negato a causa di un errore di autorizzazione.

404 Non trovato La risorsa a cui si fa riferimento nella richiesta non esiste.

Codice Significato Descrizione

405 Metodo non Il verbo HTTP nella richiesta non & supportato per la risorsa.
consentito
409 Conflitto Tentativo di creazione di un oggetto non riuscito perché I'oggetto esiste
gia.
500 Errore interno Si & verificato un errore interno generale nel server.
501 Non implementato L’'URI & noto ma non € in grado di eseguire la richiesta.

Intestazioni delle risposte

Nella risposta HTTP generata dal server di implementazione sono incluse diverse intestazioni, tra cui:

» Request-id a ogni richiesta API riuscita viene assegnato un identificatore di richiesta univoco.

» Posizione quando viene creato un oggetto, l'intestazione di posizione include 'URL completo del nuovo
oggetto, incluso I'identificatore univoco dell’oggetto.

Corpo di risposta

Il contenuto della risposta associata a una richiesta API varia in base all'oggetto, al tipo di elaborazione e
all’esito positivo o negativo della richiesta. Il rendering del corpo di risposta viene eseguito in JSON.

» Oggetto singolo Un singolo oggetto pud essere restituito con un insieme di campi in base alla richiesta. AD
esempio, E possibile utilizzare GET per recuperare le proprieta selezionate di un cluster utilizzando
l'identificatore univoco.

« Oggetti multipli &€ possibile restituire piu oggetti da una raccolta di risorse. In tutti i casi, viene utilizzato un
formato coerente, con num_records l'indicazione del numero di record e record contenenti una matrice
delle istanze dell’'oggetto. Ad esempio, & possibile recuperare tutti i nodi definiti in un cluster specifico.

» Oggetto job se una chiamata API viene elaborata in modo asincrono, viene restituito un oggetto Job che
ancora l'attivita in background. Ad esempio, la richiesta POST utilizzata per implementare un cluster viene
elaborata in modo asincrono e restituisce un oggetto Job.

» Oggetto Error se si verifica un errore, viene sempre restituito un oggetto Error. Ad esempio, quando si
tenta di creare un cluster con un nome gia esistente, viene visualizzato un messaggio di errore.

* Vuoto in alcuni casi, non viene restituito alcun dato e il corpo della risposta € vuoto. Ad esempio, il corpo
della risposta & vuoto dopo aver utilizzato DELETE per eliminare un host esistente.

Elaborazione asincrona utilizzando I’oggetto lavoro

Alcune delle chiamate API di implementazione, in particolare quelle che creano o
modificano una risorsa, possono richiedere piu tempo per il completamento rispetto ad
altre chiamate. ONTAP Select Deploy elabora queste richieste a esecuzione prolungata
in modo asincrono.

Richieste asincrone descritte utilizzando I'oggetto Job

Dopo aver effettuato una chiamata API eseguita in modo asincrono, il codice di risposta HTTP 202 indica che
la richiesta & stata convalidata e accettata correttamente, ma non ancora completata. La richiesta viene
elaborata come attivita in background che continua a essere eseguita dopo la risposta HTTP iniziale al client.
La risposta include I'oggetto Job che ancora la richiesta, incluso il relativo identificatore univoco.

@ Fare riferimento alla pagina della documentazione online di ONTAP Select Deploy per
determinare quali chiamate API funzionano in modo asincrono.

Eseguire una query sull’oggetto Job associato a una richiesta API

L’oggetto Job restituito nella risposta HTTP contiene diverse proprieta. E possibile eseguire una query sulla
proprieta state per determinare se la richiesta & stata completata correttamente. Un oggetto Job puo trovarsi in
uno dei seguenti stati:

* In coda

* In esecuzione

» Successo

* Guasto
Esistono due tecniche che € possibile utilizzare quando si esegue il polling di un oggetto Job per rilevare lo
stato di un terminale per I'attivita, ovvero riuscito o non riuscito:

* Richiesta di polling standard lo stato corrente del processo viene restituito immediatamente

* Richiesta di polling lunga lo stato del processo viene restituito solo quando si verifica una delle seguenti
condizioni:

> Lo stato & stato modificato piu di recente rispetto al valore data-ora fornito nella richiesta di polling
o |l valore di timeout & scaduto (da 1 a 120 secondi)

Il polling standard e il polling lungo utilizzano la stessa chiamata API per eseguire query su un oggetto Job.
Tuttavia, una richiesta di polling lunga include due parametri di query: poll timeout E last modified.

Per ridurre il carico di lavoro sulla macchina virtuale di implementazione, &€ necessario utilizzare
sempre il polling lungo.

Procedura generale per I’emissione di una richiesta asincrona

E possibile utilizzare la seguente procedura di alto livello per completare una chiamata API asincrona:

1. Eseguire la chiamata API asincrona.
2. Ricevere una risposta HTTP 202 che indichi la corretta accettazione della richiesta.
3. Estrarre I'identificatore per 'oggetto Job dal corpo della risposta.
4. Allinterno di un loop, eseguire le seguenti operazioni in ogni ciclo:
a. Ottenere lo stato corrente del lavoro con una richiesta di polling lungo
b. Se il job si trova in uno stato non terminale (in coda, in esecuzione), eseguire nuovamente il loop.

5. Interrompere quando il lavoro raggiunge uno stato terminale (successo, errore).

Accesso con un browser

Prima di accedere all’API con un browser

Prima di utilizzare la pagina di documentazione online di implementazione, &€ necessario

conoscere diversi aspetti.

Piano di implementazione

Se si intende effettuare chiamate API nell’ambito dell’esecuzione di attivita amministrative o di
implementazione specifiche, & consigliabile creare un piano di distribuzione. Questi piani possono essere
formali o informali e generalmente contengono gli obiettivi e le chiamate API da utilizzare. Per ulteriori
informazioni, fare riferimento a processi di workflow che utilizzano I'API DI distribuzione REST.

Esempi JSON e definizioni dei parametri

Ogni chiamata API viene descritta nella pagina della documentazione utilizzando un formato coerente. Il
contenuto include note di implementazione, parametri di query e codici di stato HTTP. Inoltre, & possibile
visualizzare i dettagli relativi al JSON utilizzato con le richieste e le risposte APl come segue:

 Valore di esempio se si fa clic su valore di esempio in una chiamata API, viene visualizzata una struttura
JSON tipica per la chiamata. E possibile modificare I'esempio in base alle esigenze e utilizzarlo come input
per la richiesta.

* Modello facendo clic su Model, viene visualizzato un elenco completo dei parametri JSON, con una
descrizione per ciascun parametro.

Prestare attenzione quando si emettono chiamate API

Tutte le operazioni API eseguite utilizzando la pagina della documentazione di implementazione sono
operazioni live. Prestare attenzione a non creare, aggiornare o eliminare per errore la configurazione o altri
dati.

Accedere alla pagina della documentazione relativa alla distribuzione

E necessario accedere alla pagina della documentazione online di ONTAP Select Deploy
per visualizzare la documentazione API e per eseguire manualmente una chiamata API.

Prima di iniziare

E necessario disporre di quanto segue:

* Indirizzo IP 0 nome di dominio della macchina virtuale ONTAP Select Deploy

* Nome utente e password del’lamministratore

Fasi
1. Digitare 'URL nel browser e premere Invio:

https://<ip address>/api/ui
2. Accedere utilizzando il nome utente e la password delllamministratore.

Risultato

Viene visualizzata la pagina Web della documentazione di implementazione con le chiamate organizzate per
categoria nella parte inferiore della pagina.

Comprendere ed eseguire una chiamata API

| dettagli di tutte le chiamate APl vengono documentati e visualizzati in un formato

comune nella pagina Web della documentazione online di ONTAP Select Deploy.
Conoscendo una singola chiamata API, & possibile accedere e interpretare i dettagli di
tutte le chiamate API.

Prima di iniziare
E necessario accedere alla pagina Web della documentazione online di ONTAP Select Deploy. Al momento

della creazione del cluster, & necessario disporre dell’identificatore univoco assegnato al cluster ONTAP
Select.

A proposito di questa attivita

E possibile recuperare le informazioni di configurazione che descrivono un cluster ONTAP Select utilizzando il
relativo identificatore univoco. In questo esempio, vengono restituiti tutti i campi classificati come economici.
Tuttavia, come Best practice, & necessario richiedere solo i campi specifici necessari.

Fasi
1. Nella pagina principale, scorrere fino in fondo e fare clic su Cluster.

2. Fare clic su GET /clusters/{cluster_id} per visualizzare i dettagli della chiamata API utilizzata per
restituire informazioni su un cluster ONTAP Select.

Processi di workflow

Prima di utilizzare i flussi di lavoro API

E necessario prepararsi a rivedere e utilizzare i processi del workflow.

Comprendere le chiamate API utilizzate nei flussi di lavoro

La pagina della documentazione online di ONTAP Select include i dettagli di ogni chiamata REST API. Invece
di ripetere questi dettagli qui, ogni chiamata API utilizzata negli esempi del flusso di lavoro include solo le
informazioni necessarie per individuare la chiamata nella pagina della documentazione. Dopo aver individuato
una chiamata API specifica, & possibile esaminare i dettagli completi della chiamata, inclusi i parametri di
input, i formati di output, i codici di stato HTTP e il tipo di elaborazione della richiesta.

Le seguenti informazioni sono incluse per ogni chiamata API all'interno di un flusso di lavoro per facilitare
l'individuazione della chiamata nella pagina della documentazione:

» Categoria le chiamate API sono organizzate nella pagina della documentazione in aree o categorie
correlate alla funzionalita. Per individuare una chiamata API specifica, scorrere fino alla fine della pagina e
fare clic sulla categoria API appropriata.

* Verbo HTTP il verbo HTTP identifica 'azione eseguita su una risorsa. Ogni chiamata API viene eseguita
tramite un singolo verbo HTTP.

» Percorso il percorso determina la risorsa specifica a cui si applica I'azione durante I'esecuzione di una
chiamata. La stringa del percorso viene aggiunta all’URL principale per formare 'URL completo che
identifica la risorsa.

Creare un URL per accedere direttamente all’APlI REST

Oltre alla pagina di documentazione di ONTAP Select, & possibile accedere allAPI DI DISTRIBUZIONE REST
direttamente attraverso un linguaggio di programmazione come Python. In questo caso, I'URL principale
leggermente diverso dall’'URL utilizzato per accedere alla pagina della documentazione online. Quando si
accede direttamente all’API, € necessario aggiungere /api al dominio e alla stringa di porta. Ad esempio:

10

http://deploy.mycompany.com/api

Workflow 1: Creare un cluster di valutazione a nodo singolo su ESXi

E possibile implementare un cluster ONTAP Select a nodo singolo su un host VMware
ESXi gestito da vCenter. Il cluster viene creato con una licenza di valutazione.

Il flusso di lavoro per la creazione del cluster € diverso nelle seguenti situazioni:

* L’'host ESXi non € gestito da vCenter (host standalone)
* Nel cluster vengono utilizzati piu nodi o host
* |l cluster viene implementato in un ambiente di produzione con una licenza acquistata

* L’hypervisor KVM viene utilizzato al posto di VMware ESXi

1. Registrare la credenziale del server vCenter

Durante la distribuzione su un host ESXi gestito da un server vCenter, € necessario aggiungere una
credenziale prima di registrare I'host. L 'utility di amministrazione di deploy puo quindi utilizzare la credenziale
per I'autenticazione in vCenter.

Categoria Verbo HTTP Percorso

Implementare POST /security/credentials

Arricciatura

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials'

Ingresso JSON (step01)

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

Tipo di elaborazione
Asincrono

Output
* ID credenziale nell’intestazione della risposta di posizione

» Oggetto lavoro

2. Registrare un host hypervisor

E necessario aggiungere un host hypervisor in cui verra eseguita la macchina virtuale contenente il nodo

11

ONTAP Select.

Categoria Verbo HTTP Percorso
Cluster POST /hosts

Arricciatura

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts"

Ingresso JSON (step02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"

Tipo di elaborazione
Asincrono

Output
* ID host nell’intestazione di risposta della posizione

» Oggetto lavoro

3. Creare un cluster

Quando si crea un cluster ONTAP Select, la configurazione di base del cluster viene registrata e i nomi dei
nodi vengono generati automaticamente da Deploy.

Categoria Verbo HTTP Percorso
Cluster POST [cluster

Arricciatura
[l parametro di query node_count deve essere impostato su 1 per un cluster a nodo singolo.

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

Ingresso JSON (step03)

12

"name": "my cluster"

Tipo di elaborazione
Sincrono

Output
* ID del cluster nell’intestazione della risposta di posizione

4. Configurare il cluster

Durante la configurazione del cluster, &€ necessario fornire diversi attributi.

Categoria Verbo HTTP Percorso
Cluster PATCH [cluster/{cluster_id}

Arricciatura
E necessario fornire I'ID del cluster.

curl -1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Ingresso JSON (punto 04)

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
bo

"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",

"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Tipo di elaborazione
Sincrono

Output
Nessuno

13

5. Recuperare il nome del nodo

L'utility di amministrazione di deploy genera automaticamente gli identificatori e i nomi dei nodi quando viene
creato un cluster. Prima di poter configurare un nodo, & necessario recuperare I'ID assegnato.

Categoria Verbo HTTP Percorso
Cluster OTTIENI [cluster/{cluster_id}/nodi

Arricciatura
E necessario fornire I'ID del cluster.

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=id, name'

Tipo di elaborazione
Sincrono

Output
* Record di array ciascuno dei quali descrive un singolo nodo con ID € nome univoci

6. Configurare i nodi

E necessario fornire la configurazione di base per il nodo, che & la prima delle tre chiamate AP utilizzate per
configurare un nodo.

Categoria Verbo HTTP Percorso
Cluster PERCORSO /clusters/{cluster_id}/nodes/{node_id}

Arricciatura
E necessario fornire I'ID del cluster e I'ID del nodo.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Ingresso JSON (punto 06)
Specificare I'ID host in cui verra eseguito il nodo ONTAP Select.

"host": {

"id": "HOSTID"

b
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

14

Tipo di elaborazione
Sincrono

Output
Nessuno

7. Recuperare le reti di nodi

E necessario identificare le reti di dati e di gestione utilizzate dal nodo nel cluster a nodo singolo. La rete
interna non viene utilizzata con un cluster a nodo singolo.

Categoria Verbo HTTP Percorso
Cluster OTTIENI [clusters/{cluster_id}/nodes/{node_id}/networks

Arricciatura
E necessario fornire I'ID del cluster e I'ID del nodo.

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=1id, purpose’

Tipo di elaborazione
Sincrono

Output
* Array di due record ciascuno che descrive una singola rete per il nodo, inclusi ID e scopo univoci

8. Configurare la rete dei nodi

E necessario configurare le reti dati e di gestione. La rete interna non viene utilizzata con un cluster a nodo
singolo.

@ Eseguire due volte la seguente chiamata API, una per ciascuna rete.

Categoria Verbo HTTP Percorso
Cluster PATCH [cluster/{cluster_id}/nodes/{node_id}/networks/{network_id}

Arricciatura
E necessario fornire I'ID del cluster, I''D del nodo e I'ID di rete.

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Ingresso JSON (step08)
Specificare il nome della rete.

15

"name": "sDOT Network"

Tipo di elaborazione
Sincrono

Output
Nessuno

9. Configurare il pool di storage del nodo

La fase finale della configurazione di un nodo consiste nell’'associare un pool di storage. E possibile
determinare i pool di storage disponibili tramite il client Web vSphere o, facoltativamente, tramite I'API REST di
implementazione.

Categoria Verbo HTTP Percorso
Cluster PATCH [cluster/{cluster_id}/nodes/{node_id}/networks/{network_id}

Arricciatura
E necessario fornire I'ID del cluster, I''D del nodo e I'ID di rete.

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

Ingresso JSON (punto 09)
La capacita del pool & di 2 TB.

"pool array": |
{
"name": "sDOT-01",
"capacity": 2147483648000

Tipo di elaborazione
Sincrono

Output
Nessuno

16

10. Implementare il cluster
Una volta configurati il cluster e il nodo, € possibile implementarlo.

Categoria Verbo HTTP Percorso
Cluster POST [clusters/{cluster_id}/deploy

Arricciatura
E necessario fornire I'ID del cluster.

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Ingresso JSON (step10)
Specificare la password per I'account amministratore di ONTAP.

"ontap credentials": {
"password": "mypassword"

Tipo di elaborazione
Asincrono

Output
» Oggetto lavoro

Accesso con Python

Prima di accedere all’API utilizzando Python
E necessario preparare 'ambiente prima di eseguire gli script Python di esempio.
Prima di eseguire gli script Python, & necessario assicurarsi che I'ambiente sia configurato correttamente:

« E necessario installare I'ultima versione applicabile di python2. | codici campione sono stati testati
utilizzando python2. Devono essere portatili anche per Python3, ma non sono stati testati per verificarne la
compatibilita.

« Le richieste e le librerie urllib3 devono essere installate. E possibile utilizzare pip o un altro tool di gestione
Python appropriato per il proprio ambiente.

» La workstation client in cui vengono eseguiti gli script deve disporre dell’accesso di rete alla macchina
virtuale ONTAP Select Deploy.

Inoltre, € necessario disporre delle seguenti informazioni:

17

¢ Indirizzo IP della macchina virtuale di implementazione

* Nome utente e password di un account amministratore di implementazione

Comprendere gli script Python

Gli script Python di esempio consentono di eseguire diverse attivita. E necessario
comprendere gli script prima di utilizzarli in un’istanza di distribuzione live.

Caratteristiche di progettazione comuni

Gli script sono stati progettati con le seguenti caratteristiche comuni:

» Esecuzione dall’interfaccia della riga di comando su una macchina client &€ possibile eseguire gli script
Python da qualsiasi macchina client correttamente configurata. Per ulteriori informazioni, consulta la
sezione before you begin.

 Accettare i parametri di input CLI ogni script viene controllato in corrispondenza della CLI attraverso i
parametri di input.

* Read input file ogni script legge un file di input in base al suo scopo. Quando si crea o si elimina un cluster,
€ necessario fornire un file di configurazione JSON. Quando si aggiunge una licenza nodo, &€ necessario
fornire un file di licenza valido.

 Utilizza un modulo di supporto comune il modulo di supporto comune deploy requests.py contiene una
singola classe. Viene importato e utilizzato da ciascuno degli script.

Creare un cluster

E possibile creare un cluster ONTAP Select utilizzando lo script cluster.py. In base ai parametri CLI e al
contenuto del file di input JSON, & possibile modificare lo script nel’lambiente di implementazione come segue:

* Hypervisor implementabili in ESXI o KVM (a seconda della release di implementazione). Durante
limplementazione in ESXi, I'hypervisor pud essere gestito da vCenter o pud essere un host standalone.

* Dimensione del cluster & possibile implementare un cluster a nodo singolo o a piu nodi.

* Licenza di produzione o di valutazione & possibile implementare un cluster con una licenza di valutazione o
acquistata per la produzione.

| parametri di input CLI per lo script includono:

* Nome host o indirizzo IP del server di implementazione
» Password per I'account utente admin
* Nome del file di configurazione JSON

 Flag dettagliato per I'output del messaggio

Aggiungere una licenza per nodi

Se si sceglie di implementare un cluster di produzione, & necessario aggiungere una licenza per ciascun nodo
utilizzando lo script add_License.py. E possibile aggiungere la licenza prima o dopo I'implementazione del
cluster.

| parametri di input CLI per lo script includono:

* Nome host o indirizzo IP del server di implementazione

18

Password per I'account utente admin

Nome del file di licenza

Nome utente ONTAP con privilegi per aggiungere la licenza
Password per 'utente ONTAP

Eliminare un cluster

E possibile eliminare un cluster ONTAP Select esistente utilizzando lo script delete_cluster.py.

| parametri di input CLI per lo script includono:

Nome host o indirizzo IP del server di implementazione
Password per I'account utente admin

Nome del file di configurazione JSON

Esempi di codice Python

Script per creare un cluster

E possibile utilizzare lo script seguente per creare un cluster in base ai parametri definiti
all'interno dello script e a un file di input JSON.

#

!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

import json

import logging

19

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter
['"hostname']) :
log info("Registering vcenter {} credentials".format (vcenter
['hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username',
'password'] }
data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mman

log debug trace ()

hosts = config.get ('hosts', [1])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists
('/security/credentials',
'hostname',
host['name']) :
log info("Registering host {} credentials".format (host][
'name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}
deploy.post ('/security/credentials', data)

def register unkown_hosts (deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

LI |

log debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host
['type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log info(
"Registering from vcenter {mgmt server}".format (**
host))
if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host]
'user']}

log info("Registering {type} host {name}".format (**host))
data["hosts"].append(host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''"'" POST a new cluster with all needed attribute wvalues.
Returns the cluster id of the new config

log debug trace ()

cluster config = config['cluster']

cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

22

if not cluster id:
log info("Creating cluster config named {name}".format (
**cluster configq))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster configlk] for k in |

'name', 'ip',

'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}

num nodes = len(config['nodes'])
log info("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node count={}'.format (num nocdes),
data)
cluster id = resp.headers.get ('Location') .split ('/") [-1]
return cluster id
def get node_ ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'"'

log _debug trace ()

response deploy.get ('/clusters/{}/nodes'.format (cluster id))

node ids [node['id'] for node in response.json().get('records')]

return node ids

def add node_attributes(deploy, cluster id, node_ id, node):

Set all the needed properties on a node '''
log debug trace ()

log info("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find resource('/hosts', 'name', node['host name'])
if not host id:

log and exit ("Host names must match in the 'hosts' array, and the

nodes.host name property")
data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))

deploy.patch('/clusters/{}/nodes/{}"'.format (cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
'''" Set the network information for a node '''

log debug trace ()
log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource (
'/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_storage (deploy, cluster id, node id, node):

23

LI |

Set all the storage information on a node '''

log debug trace ()

log info("Adding node '{}' storage properties".format (node id))

log info("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (

data)

if

'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),

'disks' in node['storage'] and node['storage']['disks']:

data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,

node id), data)

def create cluster config(deploy, config):

LI |

Construct a cluster config in the deploy server using the input

json data '''

def

log debug trace ()

cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)

node configs = config['nodes']

for node id, node config in zip(node ids, node configs):

add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

LI |

Deploy the cluster config to create the ONTAP Select VMs. '''

log debug trace ()

log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'

] ['ontap admin password']}}

deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

24

data, wait for job=True)

def log _debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging (verbose):
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1ogging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (
logging.WARNING)

def main (args) :
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials(deploy, config)
register unkown hosts (deploy, config)

cluster id = create cluster config(deploy, config)

deploy cluster(deploy, cluster id, config)

def parseArgs () :

25

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument ('-c', '--config file', help='Filename of the

cluster config')
parser.add argument ('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',

action='store true', default=False)
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

JSON per script per creare un cluster

Quando si crea o si elimina un cluster ONTAP Select utilizzando gli esempi di codice
Python, & necessario fornire un file JSON come input allo script. E possibile copiare e
modificare 'esempio JSON appropriato in base ai piani di implementazione.

Cluster a nodo singolo su ESXi

26

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
1,
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],

"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"

by

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlan": 1234

by

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

27

Cluster a nodo singolo su ESXi con vCenter

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
I

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"
I
"dns ips": ["10.206.80.135","10.206.80.136"]

I

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username":"selectadmin"

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": |

{
"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian":null

by

{

28

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk":[],

"pools": [

{
"name": "storage-pool-1",

"capacity":5685190380748

Cluster a nodo singolo su KVM

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username":"root"
}
]I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

30

"dns ips": ["10.206.80.135", "10.206.80.136"]

by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" : "CBF4ED97",

"ntp servers": ["10.206.80.183",

"10.206.80.142"],

"ontap admin password": "mypassword2",

"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
I

"host name": "host-1234",

"is storage efficiency enabled":

"instance type": "small",
"storage": {
"disk": [1],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

false,

Script per aggiungere una licenza del nodo

E possibile utilizzare il seguente script per aggiungere una licenza per un nodo ONTAP
Select.

#!/usr/bin/env python

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import Jjson

from deploy requests import DeployRequests

def post_new_license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))

Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},
files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:
nlf data = f.read()

31

r = deploy.post('/licensing/licenses', data={},
files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license(deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get ('statusResp', {1})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:
log and exit ("The license file seems to be missing the

serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

32

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’) .
setlLevel (logging.WARNING)

def main(args):
configure logging/()

serial number = get serial number from license(args.license)
deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use

post new license (deploy, args.license)

def parseArgs():

33

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of ONTAP Select Deploy')
parser.add argument ('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument ('-1', '--license', required=True, type=str, help
='Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password',6 type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

if name == ' main ':
args = parseArgs ()
main (args)

Script per eliminare un cluster

E

34

possibile utilizzare il seguente script CLI per eliminare un cluster esistente.

#!/usr/bin/env python

File: delete cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import Jjson

import logging
from deploy requests import DeployRequests
def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing

response = deploy.get('/clusters/{}?fields=state’'.format (cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':

log info("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete cluster (deploy, cluster id):
log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format(cluster_id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setlLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info("Found the cluster {} with id: {}.".format (config
['cluster'] ['name'], cluster id))

35

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of Deploy server')

parser.add argument ('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument ('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_ args ()

if name == ' main ':

args = parseArgs ()
main (args)

Modulo di supporto comune

Tutti gli script Python utilizzano una classe Python comune in un singolo modulo.

#!/usr/bin/env python

S+

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1s provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= S S S S S S S S S SR S S SR =

import json

36

import logging
import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

LI |

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy")

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %$s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

37

self.exit on errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put (self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug ('PUT DATA:')
response = requests.put (self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors(response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """

response = requests.delete(self.base url + path, auth=self.auth,

verify=False)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:

38

def

('num re

def

error ''

=query o

def

def

.format (

self.wait for job (response.json())
return response

find resource (self, path, name, value):

""" Returns the 'id' of the resource if it exists, otherwise None

None
self.get ('{path}?{field}={value}'.format (
path=path, field=name, value=value))

resource

response

if response.status code == 200 and response.json().get
cords') >= 1:
resource = response.json().get('records') [0].get ('id

return resource

get num records(self, path, query=None):

""" Returns the number of records found in a container,
resource = None

query opt = '?{}'.format (query) if query else
response = self.get('{path}{query}'.format (path=path, qu
pt))

if response.status code == 200

L}

return response.json () .get ('num records')

return None

resource_exists(self, path, name, value):
return self.find resource(path, name, value) is not None

wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

")

or None on

ery

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
job id, poll timeout, last modified))
job body = response.json().get('record', {})

Show interesting message updates
message = job body.get ('message', '")
self.logger.info ('Event: ' + message)

39

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure'l]:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers(response),
response.text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod

def filter headers (response):
''' Returns a filtered set of the response headers '''

return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

Script per ridimensionare i nodi del cluster

E possibile utilizzare lo script seguente per ridimensionare i nodi in un cluster ONTAP
Select.

#!/usr/bin/env python

=

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,

reproduce, modify and create derivatives of the sample code is granted

S oS = S S $E S 3 o

solely for the purpose of researching, designing, developing and

40

testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S H o =

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mman

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'
))
parser.add argument ('--instance-type', required=True, help=(

'The desired instance size of the nodes after the operation is

41

complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:

admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'’

' should be performed. The default is to apply the resize to all
nodes in'

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_ args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).json
() ['"record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

42

changes['nodes'] = [

{'instance type': parsed args.instance type, 'id': node['id'

node 1in nodes]

return changes

def main{() :

]} for

""" Set up the resize operation by gathering the necessary data and

then send

the request to the ONTAP Select Deploy server.

mman

logging.basicConfig(
format='[%(asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getLogger ('requests.packages.urllib3') .setlLevel (logging
.WARNING)

parsed args = parse args|()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1
changes = get request body(parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':

sys.exit (main())

43

Informazioni sul copyright

Copyright © 2025 NetApp, Inc. Tutti i diritti riservati. Stampato negli Stati Uniti d’America. Nessuna porzione di
questo documento soggetta a copyright pud essere riprodotta in qualsiasi formato o mezzo (grafico, elettronico
0 meccanico, inclusi fotocopie, registrazione, nastri o storage in un sistema elettronico) senza previo consenso
scritto da parte del detentore del copyright.

Il software derivato dal materiale sottoposto a copyright di NetApp € soggetto alla seguente licenza e
dichiarazione di non responsabilita:

IL PRESENTE SOFTWARE VIENE FORNITO DA NETAPP "COSI COM’E" E SENZA QUALSIVOGLIA TIPO
DI GARANZIA IMPLICITA O ESPRESSA FRA CUI, ATITOLO ESEMPLIFICATIVO E NON ESAUSTIVO,
GARANZIE IMPLICITE DI COMMERCIABILITA E IDONEITA PER UNO SCOPO SPECIFICO, CHE
VENGONO DECLINATE DAL PRESENTE DOCUMENTO. NETAPP NON VERRA CONSIDERATA
RESPONSABILE IN ALCUN CASO PER QUALSIVOGLIA DANNO DIRETTO, INDIRETTO, ACCIDENTALE,
SPECIALE, ESEMPLARE E CONSEQUENZIALE (COMPRESI, ATITOLO ESEMPLIFICATIVO E NON
ESAUSTIVO, PROCUREMENT O SOSTITUZIONE DI MERCI O SERVIZI, IMPOSSIBILITA DI UTILIZZO O
PERDITA DI DATI O PROFITTI OPPURE INTERRUZIONE DELL'ATTIVITA AZIENDALE) CAUSATO IN
QUALSIVOGLIA MODO O IN RELAZIONE A QUALUNQUE TEORIA DI RESPONSABILITA, SIAESSA
CONTRATTUALE, RIGOROSA O DOVUTA A INSOLVENZA (COMPRESA LA NEGLIGENZA O ALTRO)
INSORTA IN QUALSIASI MODO ATTRAVERSO L'UTILIZZO DEL PRESENTE SOFTWARE ANCHE IN
PRESENZA DI UN PREAVVISO CIRCA LEVENTUALITA DI QUESTO TIPO DI DANNI.

NetApp si riserva il diritto di modificare in qualsiasi momento qualunque prodotto descritto nel presente
documento senza fornire alcun preavviso. NetApp non si assume alcuna responsabilita circa I'utilizzo dei
prodotti o materiali descritti nel presente documento, con I'eccezione di quanto concordato espressamente e
per iscritto da NetApp. L'utilizzo o I'acquisto del presente prodotto non comporta il rilascio di una licenza
nell’ambito di un qualche diritto di brevetto, marchio commerciale o altro diritto di proprieta intellettuale di
NetApp.

Il prodotto descritto in questa guida puo essere protetto da uno o piu brevetti degli Stati Uniti, esteri o in attesa
di approvazione.

LEGENDA PER I DIRITTI SOTTOPOSTI A LIMITAZIONE: I'utilizzo, la duplicazione o la divulgazione da parte
degli enti governativi sono soggetti alle limitazioni indicate nel sottoparagrafo (b)(3) della clausola Rights in
Technical Data and Computer Software del DFARS 252.227-7013 (FEB 2014) e FAR 52.227-19 (DIC 2007).

| dati contenuti nel presente documento riguardano un articolo commerciale (secondo la definizione data in
FAR 2.101) e sono di proprieta di NetApp, Inc. Tutti i dati tecnici e il software NetApp forniti secondo i termini
del presente Contratto sono articoli aventi natura commerciale, sviluppati con finanziamenti esclusivamente
privati. Il governo statunitense ha una licenza irrevocabile limitata, non esclusiva, non trasferibile, non cedibile,
mondiale, per l'utilizzo dei Dati esclusivamente in connessione con e a supporto di un contratto governativo
statunitense in base al quale i Dati sono distribuiti. Con la sola esclusione di quanto indicato nel presente
documento, i Dati non possono essere utilizzati, divulgati, riprodotti, modificati, visualizzati o mostrati senza la
previa approvazione scritta di NetApp, Inc. | diritti di licenza del governo degli Stati Uniti per il Dipartimento
della Difesa sono limitati ai diritti identificati nella clausola DFARS 252.227-7015(b) (FEB 2014).

Informazioni sul marchio commerciale

NETAPP, il logo NETAPP e i marchi elencati alla pagina http://www.netapp.com/TM sono marchi di NetApp,
Inc. Gli altri nomi di aziende e prodotti potrebbero essere marchi dei rispettivi proprietari.

44

http://www.netapp.com/TM

	Automatizza con RIPOSO : ONTAP Select
	Sommario
	Automatizza con RIPOSO
	Concetti
	Base REST per i web Services
	Come accedere all’API di implementazione
	Implementare la versione delle API
	Caratteristiche operative di base
	Transazione API di richiesta e risposta
	Elaborazione asincrona utilizzando l’oggetto lavoro

	Accesso con un browser
	Prima di accedere all’API con un browser
	Accedere alla pagina della documentazione relativa alla distribuzione
	Comprendere ed eseguire una chiamata API

	Processi di workflow
	Prima di utilizzare i flussi di lavoro API
	Workflow 1: Creare un cluster di valutazione a nodo singolo su ESXi

	Accesso con Python
	Prima di accedere all’API utilizzando Python
	Comprendere gli script Python

	Esempi di codice Python
	Script per creare un cluster
	JSON per script per creare un cluster
	Script per aggiungere una licenza del nodo
	Script per eliminare un cluster
	Modulo di supporto comune
	Script per ridimensionare i nodi del cluster

